反激变压器详细设计
反激式开关电源变压器设计步骤(重要)
反激式开关电源变压器设计反激式变压器是反激式开关电源的核心,它决定了反激式变换器一系列的重要参数,如占空比D ,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。
这样可以让其发热量尽量小,对器件的磨损也尽量小。
同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源性能会有很大的下降,如损耗会加大,最大输出功率会下降.设计变压器,就是要先选定一个工作点,在这个点就是最低的交流输入电压,对应于最大的输出功率。
第一步,选定原边感应电压V OR 。
这个值是有自己来设定的,这个值就决定了电源的占空比.可能朋友们不理解什么是原边感应电压。
我们分析一个工作原理图。
当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性上升:I 升=Vs*Ton/L 。
这三项分别是原边输入电压,开关开通时间和原边电感量。
在开关管关断的时候,原边电感放电,电感电流会下降,此时有下降了的电流:I 降=V OR *T OFF /L 。
这三项分别是原边感应电压(即放电电压)、开关管管段时间和电感量。
经过一个周期后,原边电感电流会回到原来的值,不可能会变,所以有:Vs *T ON /L=V OR *T OFF /L 。
即上升了的等于下降了的。
上式中用D 来代替T ON ,用(1-D )来代替T OFF .移项可得:D=V OR /(V OR +Vs)。
这就是最大占空比了.比如说我设计的这个变压器,我选定电感电压V OR =20V ,则Vs 为24V ,D=20/(20+24)=0。
455。
第二步,确定原边电流波形的参数原边电流波形有三个参数,平均电流,有效值电流,峰值电流,首先要知道原边电流的波形,原边电流的波形如下。
这是一个梯形波横向表示时间,总想表示电流大小,这个波形有三个值,一个是平均值I 平均,二是有效值I ,三是峰值Ip 。
首先要确定平均值I 平均:I 平均=Po/(η*Vs )。
反激变压器设计过程
反激变压器设计过程1、初始值设定1.1 开关频率fkHz对于要接受EMI规格适用的产品,不要设定在150kHz预计余量的话120kHz左右以上;一般设定在65kHz左右;1.2 输入电压范围设定主要对瞬时最低输入电压/连续最低输入电压/最大输入电压的3类进行设定;1.3 最大输出电流设定对于过电流保护最大输出电流/连接最大输出电流/峰值最大输出电流在规格书上有规定的情况下3种类,进行设定;另外,在这最大输出电流中需包括对于各自偏差的余量;1.4 最大二次绕组输出端电压设定用以下公式算出:最大二次绕线端输出电压:V N2max V =接插件端输出电压+线间损失0.1~0.5V +整流元器件Vf 0.4~0.6V※ 在有输出电压可变的情况下,根据客户要求规格书的内容不同,适用的范围而各不相同;只保证输出电压 ※只在装置试验时电压可变的情况下; 磁芯用最大输出电压来设计;绕线是用额定输出电压来设计;保证所有的性能※在实际使用条件下通常的电压可变的情况下; 磁芯、绕线都用最大输出电压来设计;1.5 一次电流倾斜率设定输入电压,瞬时最低动作电压、输出电流,在过电流保护最大输出电流/连接最大输出电流/峰值最大输出电流的任意一个最大输出电流的条件下,设定图1-1的一次电流波形的斜率;K 的设定公式如下;作为目标,设定到0.5~0.6,兼顾到之后的其他特性,作最适当的变更;1.6 最大占空比设定一般设定为0.45~0.65;1.7 最大磁通密度设定Bmax设定为磁芯的产品目录上所记载的饱和磁通密度×0.8~0.9;设计的要点:单一输入的情况下设定为0.45、普遍输入的情况下设定为0.65左右;图1-2中表示了TDK 制的磁珠磁芯PC44的B-H 曲线图; 磁芯的磁通密度BT,如图1-2所示,与磁场强度HA/m 成比例,增加;另外,当B 达到一定的值时,在那基础上,即使增加H,B 也不会增加;在此磁束饱和状态下,不仅仅达不到作为变压器的机能,还有开关FET 破损的危险性,因此磁芯绝对必须在此饱和磁通密度以下来使用;另外,从产品目录上引用数据时,需要在符合使用条件的温度下选择饱和磁通密度,因此请注意;※磁芯的饱和磁通密度是根据温度而变动;在TDK 制PC44的120℃下的饱和磁通密度,将降低到25℃时的值的68.6%;因此,如果在25℃的条件下设计的话,有可能发生使用时的故障;1.8 绕线电流密度设定绕线电流密度对绕线的温度上升有一定影响,因此一定要考虑冷却条件、使用温度范围、变压器构造等,再进行适当的设定;设计要点:・ 变压器的发热,是根据,根据磁芯损失的铁损和根据绕线损失的铜损来决定2、变压器特性设计2.1 计算一次绕组的电流峰值变压器总输出功率P 2W 是瞬时最大值;在输出电流规格书中有设定峰值条件的情况下,用I o peak ×V N2max ;另外,多输出的情况下,将各电路的输出功率的总和作为变压器总输出功率;变压器效率一般为0.95;2.2 计算一次/二次绕组的匝数比匝数比根据输出入电压和最大占空比来决定;2.3 计算一次绕组的电感量3、变压器构造设计3.1 计算一次绕组的电流有效值 计算一次绕线电流有效值I N1 TYP RMS ;不用考虑瞬时最低动作输入电压、过电流、峰值最大电流;首先求出占空比α;接着用以上所求出的占空比α,求出一次绕线电流有效值;作为标准,从1.1.8项中设定的绕线电流密度I/SA/mm 2和一次绕线电流有效值I N1typrms A 中,计算出一次绕线截面积S N1mm 2;3.2 计算二次绕组的电流有效值※省略以下的详细计算,可以将直流输入电流的1.6倍作为一※可以省略以下的详细计算,将直流输出电流的1.4倍作为二在实使用条件的通常驻机构状态下,用在1.3.1项中算出的占空比α、一次绕线电流有效值IN1typrmsA,算出连续流出的最大的二次绕线电流有效值;替换为与各自的二次绕线和一次卷的绕线比,进行计算,另※多输出变压器的情况下,将N12中加上对于全功力的其电路输出功力的比率;外在所求得的IN2typrmsA作为标准,从在1.1.8项中设定的绕线电流密度I/SA/mm2与二次绕线电流有效值IN2typrms中,计算出二次绕线断面积Smm2;N2设计要点:・变压器的发热,是根据,根据磁芯损失的铁损和根据绕线损失的铜损来决定的;绕线电流密。
反激变压器设计(标准格式)
副边有效值电流:
根据所选线径计算副边电流容量:
自供电绕组线径:由于自供电绕组的电流非常小只有5mA,因此对线径要求并不是很严格,在这里主要考虑为便于与次级更好的耦合及机械强度,因此也采用裸线径为0.35mm的漆包线进行绕置,使其刚好一层绕下,减小与次级之间的漏感,保证短路时使自供电电压降低。
7、计算变压器损耗和温升
变压器的损耗主要由线圈损耗及磁芯损耗两部分组成,下面分别计算:
1)线圈损耗:
原边直流电阻:
为100℃铜的电阻率为2.3×10-6( ·cm); 为原边绕组的线圈长度,实测为360cm;A为原边0.23mm漆包线的截面积。
原边直流损耗:
原边导线厚度与集肤深度的比值:
d为原边漆包线直径0.23mm,s为导线中心距0.27mm, 为集肤深度0.31mm。
根据所选线径计算原边绕组的电流密度:
计算副边绕组导线允许的最大直径(漆包线):
根据上述计算数据可采用裸线径DIASS=0.72mm的漆包线绕置,但由于在温度100℃、工作频率为60KHz时铜线的集肤深度: ,而0.72mm大于了2倍的集肤深度,使铜线的利用率降低,故采用两根0.35mm的漆包线并绕。
《参考文献》
1、《现代高频开关电源实用技术》 刘胜利 编著 电子工业出版社 2001年
2、《开关电源中磁性元器件》 赵修科 主编南京航空航天大学自动学院2004年
3、《TDK磁材手册》 日本TDK公司 2005年
5、计算变压器匝数、有效气隙电感系数及气隙长度。
6、选择绕组线圈线径。
7、计算变压器损耗和温升。
下面就按上述步骤进行变压器的设计。
二、设计过程:
1、电源参数:(有些参数为指标给定,有些参数从资料查得)
反激变压器设计过程
反激变压器设计过程1、初始值设定1.1 开关频率f[kHz]对于要接受EMI规格适用的产品,不要设定在150kHz(预计余量的话120kHz左右)以上。
一般设定在65kHz左右。
1.2 输入电压范围设定主要对瞬时最低输入电压/连续最低输入电压/最大输入电压的3类进行设定。
項目内容瞬时最低输入电压V inmin1[V]考虑了停电保持的最低DC输入电压。
为设计的基准。
连续最低输入电压V inmin2[V] 规格书上的最低AC输入电压×1.2倍。
用于算出绕线的电流容量。
最大输入电压V inmax[V] 规格书上的最大AC输入电压×1.414倍。
用于开关元器件/整流元器件的耐电压算出。
1.3 最大输出电流设定对于过电流保护最大输出电流/连接最大输出电流/峰值最大输出电流(在规格书上有规定的情况下)3种类,进行设定。
另外,在这最大输出电流中需包括对于各自偏差的余量。
项目内容过电流保护最大输出电流I o max1[A]考虑了偏差的最大电流×余量1.1~1.2。
连续最大输出电流I o max2[A] 额定输出电流×余量 1.1~1.2。
为设计的基准。
但是,在有峰值最大电流的情况下,只将峰值最大电流作为设计基准使用。
连接最大电流只用于算出绕线的电流容量。
峰值最大输出电流I o peak[A]峰值最大电流×余量1.1~1.2。
为设计的基准。
1.4 最大二次绕组输出端电压设定用以下公式算出:最大二次绕线端输出电压:V N2max[V]=接插件端输出电压+线间损失0.1~0.5V+整流元器件Vf 0.4~0.6V※在有输出电压可变的情况下,根据客户要求规格书的内容不同,适用的范围而各不相同。
客先要求规格书内容 只保证输出电压※只在装置试验时电压可变的情况下。
磁芯用最大输出电压来设计。
绕线是用额定输出电压来设计。
保证所有的性能 ※在实际使用条件下通常的电压可变的情况下。
反激电路变压器设计总结
反激电路变压器设计输入电压:70~120V开关频率:80KHz T=12.5us输出功率:50W输出电压:1、+12V 34W2、+12V 2W3、+12V 10W (后加7812)4、-12V 2W (后加7912)5、+5V 2W (后加7805)1、根据输出功率选择磁芯从上表可以看出,可以选择的磁芯EE30、EE35、EE40,這里选择EE40。
EE40的参数为:Ae =1402mm 、Aw =1572mm 、le =77mm (我查表查得的参数不是這样的,這里就按SOS 变压器设计中的参数来计算)2、绕组匝数设计变比(副边比原边)K=12.7V*0.53/(70*0.47)=0.2045,设计电路工作在连续状态,那么根据输入输出电压关系:in o U U =)1(D KD -,那么K=in o DU U D )1(-=70*47.07.12*53.0,12.7是输出电压加上二极管压降。
原边绕组:1p N =NdBudt =108*0.9*6.25u/(0.15T*1402mm )=29匝 U=108V ,108为当时设计时选择的输入端电池的最大电压;0.9*6.25u 就是dt ,這是占空比为D=0.45时的on t 值;0.15T 表示在on t 段时间内磁通密度的变化量,反激电路为m B ;140mm 是Ae 值。
副边s1(+12V 34W ):1s N =6匝,根据变比关系1s N =0.2*29=5.8——6匝 副边s2(+12V 2W ):2s N =6匝副边s3(+12V 10W ):3s N =15.2*6/12.7=7.18——8匝。
這里15.2V 是7812的输入电压14V+1.2V 的二极管压降;6为副边S1的匝数;12.7V 为副边S1绕组上的电压(输出电压12V+二极管压降0.7V ),用到的公式为:2121N N u u =。
注意反激变压器原副边不满足电压比的关系,但是他们的电流满足匝比关系。
反激电源变压器设计
反激电源变压器设计一、变压器参数的选择反激电源变压器的核心参数包括输入电压、输出电压、输出功率和工作频率。
在设计反激电源变压器时,首先要确定输入电压和输出电压的数值,通常可以根据电子设备的需求进行选择。
然后,根据输出功率计算变压器的功率大小,一般情况下可以按照变压器的负载能力来选择。
最后,确定工作频率,一般常用的工作频率有50Hz和60Hz两种,可以根据具体的应用需求来选择。
二、绕线的计算1.确定绕组的匝数比反激电源变压器通常是多绕组变压器,其中包括输入绕组、输出绕组和反馈绕组。
输入绕组的匝数Np从输入电压和功率的关系中可以计算得到,公式为Np = Vin * Iin / P,其中Vin表示输入电压,Iin表示输入电流,P表示输出功率。
输出绕组的匝数Ns可以由输出电压和功率的关系计算得到,公式为Ns = Vout * Iout / P,其中Vout表示输出电压,Iout表示输出电流,P表示输出功率。
反馈绕组的匝数Nf可以根据设计需求确定,通常取决于反馈网络的设计。
2.计算绕组的截面积绕制反激电源变压器时需要考虑绕组的电流和电阻损耗。
根据电流密度J,可以计算出绕组的截面积A,公式为A=I/J,其中I为电流密度,J为截面积。
电流密度的取值可以根据设计经验或者具体的应用需求来确定。
另外,要考虑绕组的电阻损耗,可以通过计算电阻来确定。
3.确定绕组的材料反激电源变压器的绕组通常采用铜导线,因为铜导线有较好的导电性能和热稳定性。
在选择铜导线时,要考虑导线的直径、长度和截面积等参数,同时还要根据绕组的电流来选择合适的导线规格,以保证导线能够承受相应的电流负荷。
三、设计注意事项1.绕制绕组时要注意匝数的计算和绕线的排列方式,以保证绕组的结构紧凑和电感性能的稳定。
2.反激电源变压器中会产生电磁干扰,因此在设计时要合理布局绕组,减小磁感应强度的泄漏。
3.反激电源变压器的绕组要用绝缘材料进行绝缘处理,以避免电气短路和绝缘击穿现象的发生。
反激变压器设计步骤及变压器匝数计算
反激变压器设计步骤及变压器匝数计算
一、反激变压器设计步骤
1、确定变压器的参数:反激变压器的主要参数包括输入电压V1,输
出电压V0,额定电流I0,额定损耗PX,以及工作频率f;
2、确定变压器的技术形式:确定变压器的形式,包括结构、安装形
式和外形尺寸;
3、确定变压器的铁芯:根据变压器的输入电压、输出电压、额定功
率和工作频率确定变压器的铁芯型号;
4、确定电缆及配件:根据变压器的类型和参数确定变压器的绕组铜
芯和绝缘材料,以及配件;
5、测试与验收:即电气性能检验,检查外观美观度、尺寸尺寸精度、温度等;
6、求解变压器匝数:可以使用等比法求求解变压器的匝数。
1、等比法:等比法即可求得变压器的匝数,具体步骤如下:
(1)计算输入绕组和输出绕组的有效感抗;
(2)计算输入绕组和输出绕组的匝数;
(3)根据变压器匝数的计算结果调整变压器的匝数;
(4)根据调整后的匝数计算变压器的有效感抗;
(5)如果有效感抗和设计值相符,则变压器的匝数就是最终的匝数;
(6)如果不相符,则根据计算结果再次调整变压器的匝数。
反激式变压器的设计
反激式变压器的设计反激式变压器(Flyback Transformer)是一种常见的开关电源变压器,具有简单的结构、低成本和高效率等优点,被广泛应用于各种电子设备中。
在进行反激式变压器的设计时,需要确定变压器的参数,包括输入输出电压、功率容量、工作频率等。
本文将详细介绍反激式变压器设计的步骤和注意事项。
设计步骤如下:1.确定输入输出电压:根据电子设备的要求和规格,确定变压器的输入和输出电压。
输入电压一般为交流电压,输出电压可以是直流电压或交流电压。
2.确定功率容量:根据电子设备的功率需求,确定变压器的功率容量。
功率容量是指变压器能够输出的最大功率,它与变压器的尺寸和导线截面积有关。
3.确定工作频率:反激式变压器通常工作在几十千赫兹到数百千赫兹的频率范围内。
选择合适的工作频率可以提高变压器的效率和稳定性。
4.计算变比:根据输入输出电压的比例关系,计算变压器的变比。
变比是指变压器的一次匝数与二次匝数之间的比例关系,它决定了输入输出电压的变换比例。
5.选择磁芯材料:磁芯是变压器的重要组成部分,它决定了变压器的性能和效率。
选择合适的磁芯材料可以提高变压器的磁耦合效果和磁导率。
6.计算匝数:根据输入输出电压的变比和磁芯的尺寸,计算一次匝数和二次匝数。
匝数决定了变压器的输入输出电压和电流。
7.计算绕线参数:根据匝数和导线截面积,计算变压器的绕线电阻和电感。
绕线电阻决定了变压器的功率损耗和温升,电感决定了变压器的高频特性和耦合效果。
8.确定绝缘等级:根据输入输出电压的大小和工作环境的要求,确定变压器的绝缘等级。
绝缘等级决定了变压器的安全性和可靠性。
9.进行结构设计:根据变压器的参数和要求,进行变压器的结构设计。
包括磁芯的形状、绕线的布局和绝缘的设计等。
10.进行实验验证:根据设计的参数和要求,制作样品变压器进行实验验证。
通过实验数据的分析和比较,优化设计参数和结构,最终得到满足要求的变压器。
设计反激式变压器时需要注意以下几点:1.磁芯损耗:磁芯材料有磁滞损耗和涡流损耗,在高频工作下会产生较大的损耗。
反激变压器设计详解
注意事项
• 选择合适的磁芯材料和绕组结构 • 遵循设计规范和行业标准
CREATE TOGETHER
谢谢观看
THANK YOU FOR WATCHING
反激变压器的分类与特点
反激变压器的分类
• 单端反激变压器:输入输出共用一个绕组 • 双端反激变压器:输入输出各有独立的绕组
反激变压器的特点
• 结构简单,易于集成 • 效率高,损耗较低 • 输出电压稳定,易于调节
反激变压器的主要应用场景
开关电源
• 直流电源转换为稳定直流 • 适用于电子设备、通信设备等
绕组损耗计算
• 根据绕组电阻、绕组电感和工作频率计算绕组损耗 • 考虑绕组绝缘材料和温度影响
反激变压器的效率计算与优化
效率计算
• 根据输入功率、输出功率和损耗计算效率 • 考虑效率计算精度和温度影响
优化方法
• 优化磁芯材料和绕组结构降低损耗 • 提高开关频率和输出电压提高效率
影响反激变压器效率的因素与改进措施
输出电压调整
• 通过改变开关频率或调整输出整流器实现输出电压调整 • 考虑输出电压稳定性和调节精度
输出电流调整
• 通过改变输出滤波器或调整负载实现输出电流调整 • 考虑输出电流稳定性和调节精度
03
反激变压器的损耗与效率计算
磁芯损耗与绕组损耗的计算方法
磁芯损耗计算
• 根据磁通密度、磁芯材料和工作频率计算磁芯损耗 • 考虑磁芯损耗系数和温度影响
• 根据输入电压、输出电压和开关频率计算磁通密度 • 考虑磁芯体积和磁通密度利用率
绕组的结构与匝数设计
绕组结构
• 选择合适的绕组形式,如单层绕组、双层绕组等 • 考虑绕组间距、绕组绝缘和绕组屏蔽
反激电源变压器及关键元件参数设计
反激电源变压器是一种常用的电源变压器,其工作原理是利用变压器的反转作用以实现能量的传递。
在电子设备中广泛应用,特别是在小功率电源供应中,以其高效、小体积、低成本等优势备受青睐。
在设计反激电源变压器时,关键元件参数的选择至关重要,直接影响到变压器的性能与稳定性。
本文将从反激电源变压器的设计要点和关键元件参数的设计角度入手,详细介绍如何合理选择关键元件参数,在保证性能的实现效率和可靠性的最大化。
一、反激电源变压器的设计要点1. 输入输出参数确定反激电源变压器的设计首先需要确定输入和输出的电压、电流参数。
输入参数主要包括输入电压范围、输入电流限制等,而输出参数涉及输出电压、输出电流等。
这些参数的确定需要考虑到实际应用场景和需求,以确保变压器在实际工作中能够稳定可靠地工作。
2. 磁芯选择磁芯是反激电源变压器中重要的材料之一,直接影响到变压器的工作效率和性能。
一般来说,高频电源变压器会选择磁芯材料具有低损耗、高饱和磁感应强度、低磁滞等特点的材料,如磁粉芯、铁氧体磁芯等。
3. 绕线设计绕线是构成变压器的重要组成部分,绕线的设计影响到变压器的电磁特性和功率传输效率。
在反激电源变压器中,需要合理设计绕线的匝数、线径等参数,以降低损耗、提高效率。
4. 开关管选择开关管是反激电源变压器中的关键元件之一,直接影响到变压器的频率、效率和稳定性。
在选择开关管时,需要考虑到其导通压降、开关速度、耐压能力等参数,以确保变压器的可靠工作。
二、关键元件参数设计1. 输入电感元件的参数设计输入端的电感元件是反激电源变压器中的重要元件之一,其参数设计直接关系到变压器的输入电流波形和功率因数。
- 选择电感元件的匝数时,应根据输入输出电压比例和工作频率来确定,一般来说,输入端的电感匝数可以通过输入输出电压比例的平方来估算。
- 选择电感元件的材料时,需要考虑到其导磁性能、损耗、饱和磁感应强度等因素,以确保电感元件能够在高频工作条件下保持良好的性能。
反激变压器设计过程
反激变压器设计过程反激变压器设计是电力电子领域中重要的设计工作之一,其主要应用于电源供电系统中的低功率电子设备。
反激变压器通过将输入电能进行储能,然后经过开关管的开关转换,输出所需电能,以达到升、降压的目的,同时实现电能的传输和转换。
第一步:确定设计参数:在设计反激变压器之前,首先需要明确设计要求和参数。
包括输入电压、输出电压、输出功率、工作频率等。
这些参数决定了反激变压器的尺寸、绕组参数和开关器件的选择。
第二步:计算变压器参数:根据设计要求和参数,计算出所需的变压器参数。
包括输入输出电压比、绕组匝数、绕组电流、铁芯面积等。
这些参数可以通过经验公式和设计手册进行计算,也可以通过电磁场仿真软件进行计算。
第三步:选择合适的铁芯材料:根据计算得到的铁芯面积和设计要求,选择合适的铁芯材料。
铁芯材料的选择需要考虑材料的磁导率、饱和磁感应强度、损耗等参数。
常用的铁芯材料有软磁合金、铁氧体等。
第四步:设计绕组参数:根据计算得到的绕组匝数和绕组电流,设计绕组的结构和参数。
包括导线截面积、绕组层数、绕组间隔、绕组材料等。
绕组的设计需要考虑到绝缘和散热等问题,确保绕组的安全和性能。
第五步:选择合适的开关管:根据设计要求,选择合适的开关管。
开关管的选择需要考虑到工作电压和电流、开关速度、导通压降、损耗等参数。
常用的开关管有IGBT、MOSFET等。
第六步:设计反激变压器的控制电路:设计反激变压器的控制电路,包括开关管的驱动电路和保护电路。
开关管的驱动电路需要保证开关管能够正确地切换和控制,保护电路需要保证开关管和变压器的安全和稳定工作。
第七步:进行电磁兼容性设计:在设计反激变压器时,需要考虑电磁兼容性问题。
包括电磁辐射和电磁干扰等问题。
通过合理的布局、绕组屏蔽和滤波设计,可以降低电磁辐射和电磁干扰。
第八步:进行样机制作和测试:根据设计结果制作样机,并进行测试。
通过测试得到的结果,可以对设计进行修正和优化,以进一步提高反激变压器的性能和可靠性。
反激式开关电源变压器的设计
反激式开关电源变压器的设计反激式开关电源变压器是一种常见的变压器类型,广泛应用于电子设备和通信设备中。
它具有体积小、效率高以及输出电压稳定等优点。
本文将分别从设计原理、工作方式和设计步骤等方面对反激式开关电源变压器的设计进行详细介绍。
一、设计原理二、工作方式反激式开关电源变压器的工作方式可以分为两个阶段:储能和传输。
在储能阶段,开关管打开,电流通过变压器一侧的绕组进行储能;在传输阶段,开关管关闭,储存的能量被转移到变压器另一侧的绕组上,最后输出所需的电压。
三、设计步骤1.确定输入电压和输出电压的需求。
根据实际应用需求确定输入电压和输出电压的范围。
2.计算变压器的变比。
根据输入电压和输出电压的比例计算变压器的变比N。
3.计算变压器的功率。
根据输出电压和输出电流计算变压器的功率,确保变压器能够承受所需的功率。
4.确定变压器的工作频率。
根据实际应用需求选择合适的工作频率,通常在20kHz到200kHz之间。
5.计算变压器的参数。
根据变压器的变比、工作频率和功率计算变压器的参数,包括绕组的匝数、铁芯的尺寸等。
6.选择合适的磁性材料。
根据变压器的参数选择适合的磁性材料,常用的材料有软磁合金和磁性氧化铁等。
7.进行原型设计和测试。
根据上述设计参数制作变压器的原型,并进行测试以验证设计结果的准确性。
8.进行参数调整和优化。
根据原型测试结果进行参数调整和优化,以实现更好的性能和效果。
9.进行批量生产。
当设计满足要求时,可以进行批量生产并进行产品验证和测试。
总结:。
反激式开关电源变压器设计说明
反激式开关电源变压器设计说明反激式开关电源变压器是一种常见的电源变压器,能够将输入电压通过开关转换和变换输出为所需的电压。
它具有多种应用领域,如电子设备、通信设备、医疗设备等。
本文将详细介绍反激式开关电源变压器的设计原理、设计步骤以及注意事项。
一、设计原理开关管是控制开关电路导通和断开的关键元件。
当开关导通时,输入电压通过变压器传递到输出端,当开关断开时,输出端与输入端相隔离。
变压器用于变换电压。
它通常由两个或多个线圈绕制而成,主要包括输入线圈和输出线圈。
输入线圈与开关管相连接,负责将输入电压传递到输出线圈。
输出线圈则负责变换电压。
滤波电路用于对输出信号进行滤波,减小波动和噪音。
二、设计步骤1.确定输入电压和输出电压:首先需要明确所需的输入电压和输出电压。
这将决定变压器的变比。
2.选择合适的变压器:根据所需的变比,选择合适的变压器。
变压器的选取应基于电流容量和功率需求等因素。
3.计算变压器的线圈数:根据变压器的变比和输入输出电压,计算输入线圈和输出线圈的匝数。
同时,考虑变压器的耦合系数和数量线圈相对位置等因素。
4.确定开关管和开关频率:根据输入电压、输出电压和功率需求,确定合适的开关管。
同时,选择合适的开关频率,以避免电磁干扰。
5.设计滤波电路:根据输出电压的要求,设计合适的滤波电路。
滤波电路可以使用电容、电感和抗干扰电路等组成。
6.确定电源保护电路:为了保证电源的稳定性和可靠性,设计合适的保护电路,如过流保护、过压保护、短路保护等。
7.进行仿真分析:使用电路仿真工具,对设计的电源变压器进行仿真分析,检查电源变压器的性能和特性。
8.制作和测试:按照设计的电路图,制作电源变压器,并进行测试。
测试包括输出电压稳定性、效率和波动等。
三、注意事项1.选择适当的变压器:变压器应能满足所需的电流容量和功率需求。
同时,应注意变压器的质量和耐用性。
2.稳定性和可靠性:电源变压器应具有良好的输出电压稳定性和可靠性。
反激式开关电源变压器设计
反激式开关电源变压器设计一、设计原理反激式开关电源变压器基于开关电源的工作原理,利用开关元件(开关管或者MOS管)、变压器、滤波电容和反激电容等组成。
其基本原理为:输入交流电经过整流滤波得到直流电压,然后由开关元件进行开关控制,将直流电压通过变压器变换为所需的输出直流电压,最后通过滤波电容输出稳定的直流电压。
二、关键技术1.变压器设计:反激式开关电源变压器的设计是整个电源设计中最为关键的部分。
在设计变压器时,要考虑输出功率、输入电压范围、输出电压等参数。
通常采用环型铁芯、锥形铁芯或者斜式铁芯,以减小漏电感和磁性损耗,提高效率。
同时,在设计过程中还要考虑绕组的匝数、电流和绝缘等级等方面的因素。
2.开关元件选择:开关元件是实现能量转换和控制的关键部分。
常用的开关元件有开关管、MOS管等。
选择合适的开关元件需要综合考虑电源输出功率、开关频率、开关速度、导通压降以及温升等因素。
3.控制电路设计:控制电路主要负责控制开关元件的导通和关断。
常见的控制电路有单片机控制和集成电路控制两种。
单片机控制的优点是灵活性高、可编程性强,但需要额外增加单片机等硬件,造成成本增加;集成电路控制则更简单,但灵活性较差。
三、注意事项1.确保变压器设计合理:变压器设计要保证核心材料的选取合理,应该选择磁性能好、耐高温的材料。
此外,变压器的绕组要均匀绝缘,并合理设计匝数,以减小漏电感和损耗。
2.开关元件的选择要合适:开关元件选择要根据实际工作条件来确定,如输出功率、输入电压范围、输入电流等。
3.控制电路设计要稳定可靠:控制电路要设计稳定可靠,能够保证开关元件的正常工作。
如果选用单片机控制,还需考虑保护电路的设计,以避免过电流和过压等问题。
4.散热设计要合理:反激式开关电源在工作过程中会产生较多的热量,因此散热设计要合理。
可以采用散热片、散热风扇等降低温度。
总结:反激式开关电源变压器的设计涉及变压器设计、开关元件选择和控制电路设计等多个方面。
反激式变压器设计
变压器电路形式 单端反激式;工作频率f 100KHZ (工作周期T=10us ); 最高输入电压max ,in U 60V ;最低输入电压min ,in U 40V ;开关管最大导通时间max ,on T 4.5us ;开关管导通时压降 1V ;整流二极管正向电压降 0.4V ;输出电压o U 15V ;输出电流o I 3A ;最高工作环境温度 +45℃;最高允许温升 不大于60K ;计算步骤如下:1、 变压器初、次级电压计算① 计算初级电压取线路压降和变压器初级绕组铜阻压降为输入电压的2%,则初级电压为:;V U P 8.571%)21(60max ,1=--⨯=;V U P 2.381%)21(40min ,1=--⨯=② 计算次级电压;V U P 7.154.0%)21(152=++⨯= 2、 计算变压器工作比① 最大工作比%45%100105.4max ,max =⨯==∂T T on ② 电压变化系数 51.12.388.57min ,1max ,1===P P V U U K ③ 最小工作比 %35%10045.051.1)45.01(45.0)1(max max max min =⨯+⨯-=∂+∂-∂=∂V K3、 计算匝数比0.27.152.3845.0145.0max 1max 2min ,1=⨯-=∙∂-∂=P P U U n 4、 计算初级电感① 临界电感 uH P T U L P 4.311037.1521045.02.3810262260max 2min ,12min =⨯⨯⨯⨯⨯=⨯∂=-- ② 取电感uH L P 351=5、 计算初级峰值电流A T U T P I on P P 48.55.42.381037.1522max ,min ,101=⨯⨯⨯⨯== 6、 各绕组有效电流① 初级绕组有效电流A I I P 13.2345.048.53max 11=⨯=∂= ② 次级绕组有效电流A nI I 26.413.2212=⨯==7、 确定磁芯尺寸计算面积乘积取mT B 250=∆,2/5mm A J = (2/53mm A J -=),选用PC40磁芯4204.0525.048.5103550050026121=⨯⨯⨯⨯=∆=-BJ I L A P P P 按Ap 选择磁芯,查表取EE25X25X7,并查得有关参数为:4466.0cm Ap =,mm le 0.58=,28.51mm Ae =,33000mm Ve =,290.0cm S M = W K R T /40=∆8、 计算空气气隙长度cm B Ae I L P P 041.025.0108.5148.5103514.34.04.0lg 22262121=⨯⨯⨯⨯⨯⨯=∆=--π 9、 绕组匝数计算① 初级绕组匝数匝151048.514.34.0041.025.0104.0lg 4411=⨯⨯⨯⨯=⨯∆=P I B N π② 次级绕组匝数53.745.045.012.387.1515max max 1min ,1212=-⨯⨯=∂∂-∙∙=P P U U N N 匝 故取匝82=N修正匝16221==N N10、确定导线规格 mm J I d 738.0513.213.113.111=⨯== mm J I d 04.1526.413.113.122=⨯== 当时:KHZ f 100=mm f 2089.01.66==∆当导线直径大于2倍穿透深度时,应尽可能采用多股线。
反激式变压器设计(52步)
工作在不连续电流模式且具有隔离的Buck-Boost 变换器的设计举例Buck-Boost-倒向型的设计要求:1. 输入电压标称值V V 28in =2. 输入电压最小值V V 24in(min)=3. 输入电压最大值V V 32in(max)=4. 输出电压V V 521=5. 输出电流A I 221=6. 输出电压V V 1222=7. 输出电流A I 5.022=8. 窗口利用系数29.0u =K 注:当工作在高频时,工程师必须重新考虑窗口利用系数。
当采用有骨架的铁氧体磁心时,骨架的绕线面积与磁心的窗口面积之比仅为0.6.工作在100kHz 和由于趋肤效应,必须要用26号线时,导线裸铜面积与带绝缘面积之比为0.78因此总的窗口利用系数变小。
在第三章中磁心几何常数是利用窗口u K g K 4.0u =K 计算的。
为了计算恢复正常。
磁心几何常数要乘以1.35,然后用窗口利用系数g K 29.0u =K 计算电流密度,详见第四章9. 变换器效率)(%9898.0=η 10. 频率khz f 100=11. 最大占空比5.0max =D 12. 休止时间的占空比为1.0=w D 13. 调整率%0.1=α14. 工作磁通密度T B m 25.0=15. 二极管压降V V d 1=趋肤效应:电感器中的趋肤效应和变压器中的趋肤效应一一样得。
在常规的直流电感器(DC )中。
交流(AC )电流(交流AC 磁通)很小,不需要与变压器中同样的最大号导线。
而在不连续电流模式时的flyback 变换器的设计中。
必须像高频变压器那样来考虑趋肤效应。
有时,大尺寸粗导线太难绕制,大尺寸导线不仅加工困难,而且也不可能绕的很伏贴。
通常用双股或四股来绕制就比较容易,或用利玆线。
选择一导线,使其交流电阻等于直流电阻,即;DC AC R R = 趋肤深度是:)(0209.010000062.6)(62.6cm cm f==−−=ε则考虑趋肤效应后导线的最小直径为:2min (min)min 126.044.0418.00418.00209.022mm A mm mm cm d W ==≈==×==πε导线面积为 *************************************************))(75Hz f mm f s s 开关频率(−−=Δ 8***************************************************计算步骤1计算总周期s f T μ1010000011=== 计算步骤2计算晶体管最大导通时间n t 0 s s TD t n μμ55.010)(max 0=×=−−=计算步骤3计算次级绕组1负载功率21P ()()ww V V I P d 12152)(212121=+×=−−+=计算步骤4计算次级绕组2负载功率 22P()()ww V V I P d 5.61125.0)(222222=+×=−−+=计算步骤5计算输出总功率 2P )(5.185.61222212w P P P =+=+=计算步骤6计算最大输入电流(max)in I A A V P I in in 787.098.0245.18)((min)2(max)=×=−−×=η 计算步骤7计算初级电流峰值)(pk p I A A t V T P I on in pk p 15.31052498.010105.182)(266(max)(min)2)(=××××××=−−−=−−η计算步骤8计算初级电流有效值)(RMS P I A A T t I I on PK P RMS P 29.1103515.3)(3)()(=×=−−−= 计算步骤9 计算最大输入功率(max)in P w w P P o in 88.1898.05.18)((max)(max)==−−=η计算步骤10计算等效输入电阻)(equiv in R Ω=×=Ω−−−=5.3088.182424)((max)2(min))(in in equiv in P V R计算步骤11计算要求的初级电感量 L H H TD R L equiv in μ3825.010105.30)(2262max)(=×××=−−−=− 计算步骤12计算能量处理能力WJ JLI W pk p −=××=−−=−000189.0215.310382262)( 计算步骤13计算电状态e K0000168.01025.05.18145.010145.042422=×××=×=−−m e B P K 计算步骤14计算磁心几何常数g K 55625200288.035.100213.000213.01108.16000189.0)(cm cm cm K W K e g =×=××=−−−=−α计算步骤15查表找出磁心尺寸铁氧体磁心尺寸数据表选上磁心型号为EFD-20其参数如下:制造商 Plilips材料牌号: 3C85磁路平均长度MPL=4.7cm磁心质量g W tFe 7=铜线质量g W tCu 8.6=线圈平均匝长MLT=3.8cm磁心截面积231.0cm A c =2501.0cm W a =窗口面积4155.0cm A p =面积乘积500506..0cm K g =磁心几何常数23.13·cm A t =散热面积变压器2500=m μ磁心导磁率cm G 54.1=绕组长度计算步骤16计算绕组电流密度J29.0/36.329.0155.025.010000189.02)/(1022422=−−=××××=−−×=磁心窗口铜线利用系数u up m K mm A mm A K A B W J 计算步骤17计算初级导线面积)(B pw A 22)()(384.036.329.1mm mm J I A RMS P B pw ==−−=计算步骤18计算初级绕组需要导线股数np S 304.3126.0384.0(min))(≈===W B pw np A A S 计算步骤19计算初级绕组匝数p N 1. 先根据导线面积看骨架能容纳几根导线2. 初、次级绕组各占一半绕线面积225.02501.02cm W W a ap === 199.1810384.025.029.02)(≈=××==−B pw apu p A W K N 即绕组最多可绕19匝计算步骤20计算磁心需要的气隙g l cm cm MPL L A N l mc pg −−=−×××=−−−×=−−0384.025007.4000035.01031.0194.0)(104.08282πμπ 计算步骤21计算以圆密尔为单位的等效气隙mils 圆密尔-157.3930384.07.393=×=×=g l mils不知次计算有什么用?计算步骤22计算边缘磁通系数 F 30.10384.054.12ln 31.00384.012ln 1=×+=+=gc gl G A l F 计算步骤23通过引入边缘磁通系数F 计算新的初级匝数 np N 匝−−=××××=×=−−17103.131.04.0000038.00384.0104.088ππF A L l N c g np 计算步骤24计算磁通密度峰值pk B)(219.025007.40384.01015.,33.1174.0)(104.044)(T T MPL l FI N B m g PK P np PK −−=+××××=−−−+×=−−πμπ 计算步骤25计算初级每厘米阻值cm /Ωμ cm S cm r np p /--45331360/Ω==Ω=μμ计算步骤26计算初级绕组阻值P R ())(293.010453178.3)(10)(66Ω−−=×××=Ω−−⎟⎠⎞⎜⎝⎛×Ω=−−cm N MLT R np P μ 计算步骤27计算初级铜损pcu P w w R I P p RMS P pcu −−=×=−−=488.0293.029.1)(22)(计算步骤28计算次级1绕组的匝数 21N ()()()()34.35.0241.05.0115171max min max 2121≈=×−−+=−−+=D V D D V V N N P W d np 计算步骤29计算次级绕组1电流的峰值 21I )21pk I ()(101.05.0122)(12max 21)21A A D D I I W pk −=−−×=−−−−=(计算步骤30计算次级绕组1电流的有效值 21I )21RMS I (A A D D I I W pk RMS −−=−−=−−−−=65.331.05.0110)(31max )21)21((计算步骤31计算次级绕组1导线的面积 21W A 22)(212108.136.365.3mm mm J I A RMS W −==−−= 计算步骤32计算次级绕组1需要导线股数 21n S 96,8126.008.1min2121≈===W W n A A S 计算步骤33计算次级绕组1的每厘米阻值 21r cm cm S cm r n /15191360//2121Ω−−==Ω−−Ω=μμμ 计算步骤34计算次级绕组1的阻值 21R ()()Ω−−=×××=Ω−−×=−−0018.01015138.3)(1066212121r N MLT R 计算步骤35计算次级绕组1的铜损cu P 21w w R I P rms cu −−=×=−−=0240.00018.065.3)(2212)(2121 计算步骤36计算次级2绕组的匝数 22N()()()()74.75.0241.05.01112171max min max 2222≈=×−−+=−−+=D V D D V V N N P W d np 计算步骤37计算次级绕组2电流的峰值 22I )22pk I ()(5.21.05.015.02)(12max 22)22A A D D I I W pk −=−−×=−−−−=(计算步骤38计算次级绕组2电流的有效值 22I )22rms I (A A D D I I W pk rms −−=−−=−−−−=913.031.05.015.2)(31max )22)22((计算步骤39计算次级绕组2导线的面积 22W A 22)(2222271.036.3913.0mm mm J I A RMS W −==−−=计算步骤40计算次级绕组2需要导线股数 22n S 21,2126.0271.0min2222≈===W W n A A S 计算步骤41计算次级绕组2的每厘米阻值 22r cm cm S cm r n /68021360//2122Ω−−==Ω−−Ω=μμμ 计算步骤42计算次级绕组2的阻值22R ()()Ω−−=×××=Ω−−×=−−0181.01068078.3)(1066222222r N MLT R 计算步骤43计算次级绕组2的铜损cu P 22ww R I P RMS cu −−=×=−−=0151.00181.0913.0)(2222)(2222计算步骤44计算窗口利用系数 U K ()()可以绕下小于计算设定−−==××+×+×++=29.0224.0501.000126.02793316(min)22222121u aW n n np P u K W A S N S N S N K计算步骤45计算总铜损 CU P wP P P P CUCU PCU CU −−=++=++=0879.00151.00240.00488.02221计算步骤46计算此设计的调整率α %475.0%1005.180879.0%1002=×=×=P P CU α计算步骤47计算交流磁通密度AC B )(111.025007.4384.010244.33.1164.0)(1024.044){T T MPL l I FN B mg PK P np AC −−=+××××=−−−+×=−−πμπ计算步骤48计算磁心每公斤损耗功率p )/(6.21111.010*********.4)/(10855.462.263.1562.263.15kg w kg w B f p AC AC −−=×××=−−×××=−−计算步骤49计算磁心损耗fe P ww W p P t fe −−=××=−−××=−−151.01076.21)(1033 计算步骤50计算变压器效率η%7.98151.00879.05.185.18%10022=++=×++=feCU P P P P η计算步骤51计算变压器散热表面积散热密度ψ018.03.13151.00879.0)/(2=+=−−+=cm w A P P tfecu ψ计算步骤52计算温升t T )(3.16018.0450)(450826.0826.0C C T t °−−=×=°−−×=ψ隐形专家根据“变压器与电感器设计手册”第三版。
第9章_反激式变压器的设计
选择最小的变压器尺寸
变压器的尺寸为: AP=Ae×Ac=(Pt×106)/ (2×η×f×Bmax×d×Km×Kc) 这里的, Pt:输入及输出功率的平均值,W; Bmax:Bmax=Bsat/2; d:d=4~5A/mm2; Km:窗口的铜填充系数,0.4; Kc:铁氧体的磁心系数,1。 小功率Ae的估算经验公式在第五章有说明。
变压器的原理图
变压器制作工艺
变压器其他参数设定
1、选用新康达EF20磁芯;选用鑫雄辉EF20的10脚(脚间距为 3.75±0.3mm,两排之间的跨距为 15.5±0.5mm)卧式标准 骨架(长*宽*高为:22*22*18.5mm); 初级的电感量(1-4脚)为1.3mH;漏感LK≤30uH; 高压测试时, AC 3500V,60 秒状态下, N1/N3 与 N2/N5 之间 的电流小于5mA(“ / ”表示测试时相互短接); 绕 组 之 间 的 绝 缘 电 阻 ≥ 1 0 0 MΩ;N1/N3 与 N4 之 间 耐 压 ≥AC500V;变压器的底部要用绝缘胶布缠绕,防止漏电; 按顺序绕制,先绕 N1(40TS),再绕 N2/N5(6TS)(注意 这里的 N2 和 N5 是同时并绕的),再绕 N3(40TS),最后绕 N4(10TS); 侧面贴标签,并标注生产日期;随样品提供确认书及测试报告;
计算变压器的次级匝数
其次级匝数为: Ns=(Np*(Vout+Vd)×(1Dmax))/(Vinmin×Dmax)
计算变压器的线径
变压器的线径计算是有规定的,特别是 反激式电源变压器更应该注意?
自然冷却时d=1.5~4A/mm2,强迫冷 风时3~5A/mm2。 在不同的频率下选取d也是不同的,在 200KHz以下时,一般为4~5A/mm2, 在200KHz以上时,一般为 2~3A/mm2。
反激变压器设计步骤及变压器匝数计算
1. 确定电源规格..输入电压范围Vin=85—265Vac;.输出电压/负载电流:Vout1=5V/10A,Vout2=12V/1A;.变压器的效率ŋ=0.902. 工作频率和最大占空比确定.取:工作频率fosc=100KHz, 最大占空比Dmax=0.45.T=1/fosc=10us.Ton(max)=0.45*10=4.5usToff=10-4.5=5.5us.3. 计算变压器初与次级匝数比n(Np/Ns=n).最低输入电压Vin(min)=85*√2-20=100Vdc(取低频纹波为20V).根据伏特-秒平衡,有: Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n.n= [Vin(min)* Dmax]/ [(Vout+Vf)*(1-Dmax)]n=[100*0.45]/[(5+1.0)*0.55]=13.644. 变压器初级峰值电流的计算.设+5V输出电流的过流点为120%;+5v和+12v整流二极管的正向压降均为1.0V.+5V输出功率Pout1=(V01+Vf)*I01*120%=6*10*1.2=72W+12V输出功率Pout2=(V02+Vf)*I02=13*1=13W变压器次级输出总功率Pout=Pout1+Pout2=85W1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout/Ip1=2*Pout/[ŋ(1+k)*Vin(min)*Dmax]=2*85/[0.90*(1+0.4)*100*0.45]=3.00AIp2=0.4*Ip1=1.20A5. 变压器初级电感量的计算.由式子Vdc=Lp*dip/dt,得:Lp= Vin(min)*Ton(max)/[Ip1-Ip2]=100*4.5/[3.00-1.20]=250uH6.变压器铁芯的选择.根据式子Aw*Ae=Pt*106/[2*ko*kc*fosc*Bm*j*ŋ],其中: Pt(变压器的标称输出功率)= Pout=85WKo(窗口的铜填充系数)=0.4Kc(磁芯填充系数)=1(对于铁氧体),变压器磁通密度Bm=1500 Gsj(电流密度): j=5A/mm2;Aw*Ae=85*106/[2*0.4*1*100*103*1500Gs*5*0.90] =0.157cm4考虑到绕线空间,选择窗口面积大的磁芯,查表:EER2834S铁氧体磁芯的有效截面积Ae=0.854cm2它的窗口面积Aw=148mm2=1.48cm2EER2834S的功率容量乘积为Ap =Ae*Aw=1.48*0.854=1.264cm4 >0.157cm4故选择EER2834S铁氧体磁芯.7.变压器初级匝数及气隙长度的计算.1).由Np=Lp*(Ip1-Ip2)/[Ae*Bm],得:Np=250*(3.00-1.20)/[85.4*0.15] =35.12 取Np=36由Lp=uo*ur*Np2*Ae/lg,得:气隙长度lg=uo*ur*Ae*Np2/Lp=4*3.14*10-7*1*85.4mm2*362/(250.0*10-3mH)=0.556mm 取lg=0.6mm2). 当+5V限流输出,Ip为最大时(Ip=Ip1=3.00A),检查Bmax. Bmax=Lp*Ip/[Ae*Np]=250*10-6*3.00/[85.4 mm2*36]=0.2440T=2440Gs <3000Gs因此变压器磁芯选择通过.8. 变压器次级匝数的计算.Ns1(5v)=Np/n=36/13.64=2.64 取Ns1=3Ns2(12v)=(12+1)* Ns1/(5+1)=6.50 取Ns2=7故初次级实际匝比:n=36/3=129.重新核算占空比Dmax和Dmin.1).当输入电压为最低时: Vin(min)=100Vdc.由Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n,得:Dmax=(Vout+Vf)*n/[(Vout+Vf)*n+ Vin(min)]=6*12/[6*12+100]=0.4182).当输入电压为最高时: Vin(max)=265*1.414=374.7Vdc.Dmin=(Vout+Vf)*n/[(Vout+Vf)*n+ Vin(max)]=6*12.00/[6*12.00+374.7]=0.1610. 重新核算变压器初级电流的峰值Ip和有效值Ip(rms).1).在输入电压为最低Vin(min)和占空比为Dmax条件下,计算Ip值和K值.设Ip2=k*Ip1.实际输出功率Pout'=6*10+13*1=73W1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout'/ŋ(1)K=1-[Vin(min)* Ton(max)]/(Ip1*Lp) (2)由(1)(2)得:Ip1=1/2*{2*Pout'*T/[ŋ* Vin(min)*Ton(max)]+Vin(min)* Ton(max)/Lp}=0.5*{2*73*10/[0.90*100*4.18]+100*4.18/250.0}=2.78AK=1-100*4.18/[2.78*250]=0.40Ip2=k*Ip1=2.78*0.40=1.11A2).初级电流有效值Ip(rms)=[Ton/(3T)*(Ip12+Ip22+Ip1*Ip2)]1/2=[0.418/3*(2.782+1.112+2.78*1.11)] 1/2=1.30A11. 次级线圈的峰值电流和有效值电流计算:当开关管截止时, 变压器之安匝数(Ampere-Turns NI)不会改变,因为∆B并没有相对的改变.因此开关管截止时,初级峰值电流与匝数的乘积等于次级各绕组匝数与峰值电流乘积之和(Np*Ip=Ns1*Is1p+Ns2*Is2p).由于多路输出的次级电流波形是随各组负载电流的不同而不同, 因而次级电流的有效值也不同.然而次级负载电流小的回路电流波形,在连续时接近梯形波,在不连续时接近三角波,因此为了计算方便,可以先计算负载电流小的回路电流有效值.1).首先假设+12V输出回路次级线圈的电流波形为连续,电流波形:1/2*[Is2p +Is2b]*toff/T=I02 (3)Ls1*[Is2p –Is2b]/toff=V02+Vf (4)Ls2/Lp=(Ns2/Np)2 (5)由(3)(4)(5)式得:Is2p=1/2*{2*I02/[1-D]+[V02+Vf]*[1-D]*T*Np2/[Ns22*Lp]}=0.5*{2*1/[1-0.418]+[12+1]*[1-0.418]*10*362/[72*250]}=5.72AIs2b =I01/[1-D]-1/2*[V01+Vf]*[1-D]*Np2/[Ns22*Lp] =1/0.582-0.5*13*0.582*10*362/[72*250]=-2.28A <0因此假设不成立.则+12V输出回路次级线圈的电流波形为不连续, 电流波形. 令+12V整流管导通时间为t’.将Is2b=0代入(3)(4)(5)式得:1/2*Is2p*t’/T=I02(6)Ls1*Is2p/t’=V02+Vf(7)Ls2/Lp=(Ns2/Np)2 (8)由(6)(7)(8)式得:Is2p={(V02+Vf)*2*I02*T*Np2/[Lp*Ns22]}1/2={2*1*[12+1]*10*362/[72*250]} 1/2=5.24At’=2*I02*T/ Is2p=2*1*10/5.24=3.817us2).+12V输出回路次级线圈的有效值电流:Is2(rms)= [t’/(3T)]1/2*Is2p=[3.817/3*10] 1/2*5.24=1.87A3).+5v输出回路次级线圈的有效值电流计算:Is1rms= Is2(rms)*I01/I02=1.87*10/1=18.7A12.变压器初级线圈和次级线圈的线径计算.1).导线横截面积:前面已提到,取电流密度j=5A/mm2变压器初级线圈:导线截面积= Ip(rms)/j=1.3A/5A/mm2=0.26mm2变压器次级线圈:(+5V)导线截面积= Is1(rms)/j=18.7A/5A/mm2=3.74 mm2(+12V)导线截面积= Is2(rms)/j=1.87A/5A/mm2=0.374mm22).线径及根数的选取.考虑导线的趋肤效应,因此导线的线径建议不超过穿透厚度的2倍.穿透厚度=66.1*k/(f)1/2 k为材质常数,Cu在20℃时k=1.=66.1/(100*103)1/2=0.20因此导线的线径不要超过0.40mm.由于EER2834S骨架宽度为22mm,除去6.0mm的挡墙宽度,仅剩下16.0mm的线包宽度.因此所选线径必须满足每层线圈刚好绕满.3).变压器初级线圈线径:线圈根数=0.26*4/[0.4*0.4*3.14]=0.26/0.1256=2取Φ0.40*2根并绕18圈,分两层串联绕线.4).变压器次级线圈线径:+5V: 线圈根数=3.74/0.1256=30取Φ0.40*10根并绕3圈, 分三层并联绕线. +12V: 线圈根数=0.374/0.1256=3取Φ0.40*1根并绕7圈, 分三层并联绕线.5).变压器绕线结构及工艺.。
完整版反激变压器设计
参数要求INPUT MIN90VAC INPUT MAX 265VAC OUTPUT 119VDC I 3.16A Po60.04W OUTPUT 212VDC I 0.1A Po1.2W OUTPUT 30VDC I 0A Po0W NVcc12VDC I 0A Po0W 工作频率Fs70KHz Dmax=0.5Ae 70.3步骤1求CORE 137.790.2TAP=0.62cm4步骤2 估算臨界電流 IOB ( DCM / CCM BOUNDARY )IOB = 80%*Io(max)IoB = 2.528步骤3求匝數比 nN = [VIN(min) / (Vo + Vf)] * [Dmax / (1-Dmax)]107.26N= 5.4447*1= 5.44步骤4求CCM / DCM臨界狀態之副邊峰值電流ΔISB.ΔIsb = 2Iob / (1-Dmax)=10.112A步骤5計算次級電感 Ls 及原邊電感 Lp.Ls = (Vo + Vf)(1-Dmax) * Ts / ΔISB =0.14070.013916=13.916uHLp = n2 Ls =412.5193uH步骤6求CCM時副邊峰值電流ΔIsp.Io(max) = (2ΔIs + ΔISB) * (1- Dmax) / 2ΔIs = Io(max) / (1-Dmax) - (ΔISB / 2 )ΔIsp = ΔISB +ΔIs = Io(max) / (1-Dmax) + (ΔISB / 2 )=11.376A步骤7求CCM時原邊峰值電流ΔIpp.ΔIpp = ΔIcp / n = 2.089383A步骤8確定Np、Ns1> Np Np = Lp * ΔIpp / (ΔB* Ae)=61.302T 2> Ns Ns = Np / n =11.259T 3> Nvcc求每匝伏特數Va Va = (Vo + Vf) / Ns= 1.7497V/Ts Nvcc = (Vcc + Vf) / Va =7.0298T 本文介绍了设计反激变压器的步骤及公式,在红色框内输入数据即可..........反激变压器设计AP= AW*Ae=(Pt*100000)/(2ΔB*fs*J*Ku)VIN(min)=△B = 0.6 * (390 - 60) = 198mT ≒传递功率Pt = Po /η +Po = J : 電流密度 A / cm2 (300~500)Ku: 繞組系數 0.2 ~ 0.5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本参数
输入电压:%)201(220u ±=V 即 min u =176V ,max u =264V
输入电压频率:50f in =Hz
输出电压:12=O U V
输出电流:5.2=O I A
输出功率:30=O P W
开关频率:=f 100 kHz
电源效率:=η80%
最大占空比:4.0D max =
1、计算一次绕组的电感量p L
当电网电压在220V ±20%范围内变化时,就对应于176~264V 。
经全波整流和滤波后直流输入电压的最大值、最小值分别为V 360U ax Im ≈,V 240U in Im ≈。
输入电流的平均值:
)A (161.0240
8.05.2)4.012(U P I in Im O AVG =⨯⨯+==η (1-1) 注,上式计算中考虑到肖特基二极管压降为0.4V
一次侧的峰值电流:
)A (805.04
.02161.0D 2I I max AVG p =⨯=⨯= 一次侧的有效电流:
)A (294.03
4.080
5.03D I I max P RMS =⨯=⨯= 一次绕组的电感量:
)mH (193.110
100805.04.0240f P 2)D U (f I D U L 3o 2max in Im p max in Im p =⨯⨯⨯==⨯⨯=η (1-2) 2、磁芯的选择
高频变压器的最大承受功率M P 与磁芯截面积e A (单位是2
cm )之间存在下述经验公式: M e P 15.0A = (1-3) 其中M P 的单位是W 。
高频变压器的额定输入功率:
)W (75.388
.05.2)4.012(P P O
I =⨯+==η (1-4) 实取W 40P M =,代入式1-3得:
)cm (949.04015.0P 15.0A 2M e =⨯== (1-5) 在留有一定裕量的前提下,查表可选择磁芯的型号为:EE-30。
具体参数如下: 材料:PC40;尺寸:30*13.15*10.7(mm );p A :0.7995(4cm );e A :1092mm W A :73.352mm ;L A :46902N /nH ;S B :500mT (25℃) 390mT (100℃) 使用时为防止出现磁饱和,实取磁通密度m B = 250 mT
3、计算一次侧绕组的匝数及二次侧绕组的匝数
(1)一次侧绕组的匝数:
匝)(23.3510
10925.0101004.0240A fB D U A B t U N 63e m max in Im e m on in Im p =⨯⨯⨯⨯⨯===- (1-6) 实取匝36N p =。
(2)二次侧绕组的匝数
匝)(73.210
10925.0101006.012A fB )D 1(U N 63e m max O s =⨯⨯⨯⨯⨯=-=- (1-7) 实取匝3N s =。
4、计算变压器磁芯气隙
如果变压器工作时,磁通不能回到始发点,变压器的磁通会随着反复工作逐步增大,将导致磁通饱和,尖峰电压和浪涌电流,立刻烧坏主功率开关管解决磁通复位的问题,就是靠增加气隙解决。
合理的气隙不但能使变压器稳定工作,也可以增加电源输出功率,减少变压器的高频磁芯损耗,并且可以进一步提高开关频率,降低初次级的纹波电流。
变压器磁芯气隙计算公式为:
p e
2p 0g L A N l ⨯⨯=μ (1-8)
式中 g l —气隙长度(mm );0μ—7104-⨯π;P N —原边匝数;P L —原边电感(mH);
e A —磁芯面积(2mm )。
代入数据计算得:
)mm (149.0193
.110936104L A N l 27p e
2p 0g =⨯⨯⨯=⨯⨯=-πμ (1-9) 5、线径的选择
变压器绕组导线的电流密度J 一般应在22mm /A 6~mm /A 3,在计算中通常取2mm /A 5.4J =。
(1)一次侧绕组导线截面积
)mm (0653.05.4294
.0J I S 2RMS
p ===
(1-10) )mm (2888.00653.013.1S 13.1d p p =⨯==
(1-11) (2)二次侧绕组导线截面积
)mm (5556.05.45
.2J I S 2O
s ===
(1-12) )mm (8423.05556.013.1S 13.1d s s =⨯== (1-13)。