2018版高考数学大一轮复习 第五章 平面向量 5.2 平面向量基本定理及坐标表示教师用书 理 新人
2018版高考数学(理)一轮复习文档第五章平面向量5-4平面向量的综合应用Word版含解析
1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:(2)用向量方法解决平面几何问题的步骤:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题. 2.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加法和减法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,是力F 与位移s 的数量积,即W =F·s =|F||s |cos θ(θ为F 与s 的夹角).3.向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数),解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题. 【知识拓展】1.若G 是△ABC 的重心,则GA →+GB →+GC →=0.2.若直线l 的方程为:Ax +By +C =0,则向量(A ,B )与直线l 垂直,向量(-B ,A )与直线l 平行. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)若AB →∥AC →,则A ,B ,C 三点共线.( √ ) (2)向量b 在向量a 方向上的投影是向量.( × )(3)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( × ) (4)在△ABC 中,若AB →·BC →<0,则△ABC 为钝角三角形.( × )(5)已知平面直角坐标系内有三个定点A (-2,-1),B (0,10),C (8,0),若动点P 满足:OP →=OA →+t (AB →+AC →),t ∈R ,则点P 的轨迹方程是x -y +1=0.( √ )1.(教材改编)已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则该三角形为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形答案 B解析 AB →=(2,-2),AC →=(-4,-8),BC →=(-6,-6), ∴|AB →|=22+(-2)2=22,|AC →|=16+64=45, |BC →|=36+36=62,∴|AB →|2+|BC →|2=|AC →|2, ∴△ABC 为直角三角形.2.已知在△ABC 中,|BC →|=10,AB →·AC →=-16,D 为边BC 的中点,则|AD →|等于( ) A .6 B .5 C .4 D .3答案 D解析 在△ABC 中,由余弦定理可得,AB 2+AC 2-2AB ·AC ·cos A =BC 2,又AB →·AC →=|AB →|·|AC →|·cos A =-16,所以AB 2+AC 2+32=100,AB 2+AC 2=68.又D 为边BC 的中点,所以AB →+AC→=2AD →,两边平方得4|AD →|2=68-32=36,解得|AD →|=3,故选D.3.(2017·武汉质检)平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则点P 的轨迹方程是____________. 答案 x +2y -4=0解析 由OP →·OA →=4,得(x ,y )·(1,2)=4, 即x +2y =4.4.(2016·银川模拟)已知向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________. 答案 4解析 设a 与b 夹角为α, ∵|2a -b |2=4a 2-4a·b +b 2 =8-4|a||b |cos α=8-8cos α, ∵α∈[0,π],∴cos α∈[-1,1], ∴8-8cos α∈[0,16],即|2a -b |2∈[0,16], ∴|2a -b |∈[0,4]. ∴|2a -b |的最大值为4.5.已知一个物体在大小为6 N 的力F 的作用下产生的位移s 的大小为100 m ,且F 与s 的夹角为60°,则力F 所做的功W =________ J. 答案 300解析 W =F ·s =|F ||s |cos 〈F ,s 〉 =6×100×cos 60°=300(J).题型一 向量在平面几何中的应用例1 (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA→+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( ) A .内心 B .外心 C .重心 D .垂心 答案 (1)12(2)C解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →,又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·(AD →-12AB →)=AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×12|AB →|-12|AB →|2=1.∴⎝⎛⎭⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12. (2)由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心. 引申探究本例(2)中,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________. 答案 内心解析 由条件,得OP →-OA →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,即AP →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.思维升华 向量与平面几何综合问题的解法 (1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.(1)在△ABC 中,已知向量AB →与AC →满足(AB →|AB →|+AC →|AC →|)·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形 B .直角三角形 C .等腰非等边三角形 D .三边均不相等的三角形(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________. 答案 (1)A (2)5解析 (1)AB →|AB →|,AC →|AC →|分别为平行于AB →,AC →的单位向量,由平行四边形法则可知AB →|AB →|+AC →|AC →|为∠BAC 的平分线.因为(AB →|AB →|+AC →|AC →|)·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC .又AB →|AB →|·AC →|AC →|=⎪⎪⎪⎪⎪⎪AB →|AB →|·⎪⎪⎪⎪⎪⎪AC →|AC →|·cos ∠BAC =12,所以cos ∠BAC =12,又0<∠BAC <π,故∠BAC =π3,所以△ABC 为等边三角形. (2)以D 为原点,分别以DA ,DC 所在直线为x 轴、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =y .则D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,y ),P A →=(2,-y ),PB →=(1,a -y ), 则P A →+3PB →=(5,3a -4y ), 即|P A →+3PB →|2=25+(3a -4y )2, 由点P 是腰DC 上的动点,知0≤y ≤a . 因此当y =34a 时,|P A →+3PB →|2的最小值为25.故|P A →+3PB →|的最小值为5. 题型二 向量在解析几何中的应用例2 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则yx =________________________________________________________________________. 答案 (1)2x +y -3=0 (2)±3解析 (1)∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx=±3.思维升华 向量在解析几何中的“两个”作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题的关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a·b =0(a ,b 为非零向量),a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较简捷的方法.(2016·合肥模拟)如图所示,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值为________.答案 -92解析 ∵圆心O 是直径AB 的中点,∴P A →+PB →=2PO →,∴(P A →+PB →)·PC →=2PO →·PC →, ∵PO →与PC →共线且方向相反,∴当大小相等时,乘积最小.由条件知,当PO =PC =32时,最小值为-2×32×32=-92.题型三 向量的其他应用 命题点1 向量在不等式中的应用 例3 已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →·OB →的最大值是最小值的8倍,则实数a 的值是________. 答案 18解析 因为OA →=(x,1),OB →=(2,y ),所以OA →·OB →=2x +y ,令z =2x +y ,依题意,不等式组所表示的可行域如图中阴影部分所示(含边界),观察图象可知,当目标函数z =2x +y 过点C (1,1)时,z max =2×1+1=3,目标函数z =2x +y 过点F (a ,a )时,z min =2a +a =3a ,所以3=8×3a ,解得a =18.命题点2 向量在解三角形中的应用例4 (2016·合肥模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则△ABC 最小角的正弦值等于( ) A.45 B.34 C.35 D.74答案 C解析 ∵20aBC →+15bCA →+12cAB →=0, ∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0, ∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0⇒⎩⎨⎧b =43a ,c =53a ,∴△ABC 最小角为角A , ∴cos A =b 2+c 2-a 22bc=169a 2+259a 2-a 22×43a ×53a =45,∴sin A =35,故选C.命题点3 向量在物理中的应用例5 如图,一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态.已知F 1,F 2成60°角,且F 1,F 2的大小分别为2和4,则F 3的大小为( )A .27B .2 5C .2D .6答案 A解析 如题图所示,由已知得F 1+F 2+F 3=0,则F 3=-(F 1+F 2),即F 23=F 21+F 22+2F 1·F 2=F 21+F 22+2|F 1|·|F 2|·cos 60°=28.故|F 3|=27. 思维升华 利用向量的载体作用,可以将向量与三角函数、不等式结合起来,解题时通过定义或坐标运算进行转化,使问题的条件结论明晰化.(1)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M 、N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是______.(2)已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________. 答案 (1)3 (2)3解析 (1)由图象可知,M ⎝⎛⎭⎫12,1,N ()x N ,-1,所以OM →·ON →=⎝⎛⎭⎫12,1·(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2×⎝⎛⎭⎫2-12=3. (2)∵OP →=(x ,y ),OM →=(1,1),ON →=(0,1),OQ →=(2,3), ∴OP →·OM →=x +y ,OP →·ON →=y ,OQ →·OP →=2x +3y ,即在⎩⎨⎧0≤x +y ≤1,0≤y ≤1条件下,求z =2x +3y 的最大值,由线性规划知识得,当x =0,y =1时,z max =3.三审图形抓特点典例 (2016·太原一模)已知A ,B ,C ,D 是函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2一个周期内的图象上的四个点,如图所示,A ⎝⎛⎭⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π6E 为函数图象的对称中心,C 为图象最低点―――――――――――→作出点C 的对称点MD 、B 两点对称 CD 和MB 对称―――――――――――→CD →在x 轴上的投影是π12BM 在x 轴上的投影OF =π12――――――→A (-π6,0),AF =π4―→T =π―→ω=2――――――――→y =sin (2x +φ)和y =sin 2x 图象比较φ2=π6―→φ=π3解析 由E 为该函数图象的一个对称中心,作点C 的对称点M ,作MF ⊥x 轴,垂足为F ,如图.B 与D 关于点E 对称,CD →在x 轴上的投影为π12,知OF =π12.又A ⎝⎛⎭⎫-π6,0,所以AF =T 4=π2ω=π4,所以ω=2.同时函数y =sin(ωx +φ)图象可以看作是由y =sin ωx 的图象向左平移得到,故可知φω=φ2=π6,即φ=π3.答案 A1.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形答案 C解析 由(BC →+BA →)·AC →=|AC →|2, 得AC →·(BC →+BA →-AC →)=0, 即AC →·(BC →+BA →+CA →)=0, 2AC →·BA →=0, ∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|, 故△ABC 一定是直角三角形.2.(2016·山东)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( )A .4B .-4 C.94 D .-94答案 B解析 ∵n ⊥(t m +n ),∴n ·(t m +n )=0, 即t m ·n +n 2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0, 由已知得t ×34|n |2×13+|n |2=0,解得t =-4,故选B.3.(2016·南宁模拟)已知向量a =(cos α,-2),b =(sin α,1)且a ∥b ,则sin 2α等于( ) A .3B .-3C.45 D .-45答案 D解析 由a ∥b 得cos α+2sin α=0,∴cos α=-2sin α,又sin 2α+cos 2α=1, ∴5sin 2α=1,sin 2α=15,cos 2α=45,sin 2α=2sin αcos α=-cos 2α=-45.4.(2016·武汉模拟)设△ABC 的三个内角为A ,B ,C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m·n =1+cos(A +B ),则C 等于( ) A.π6 B.π3 C.2π3 D.5π6答案 C解析 依题意得3sin A cos B +3cos A sin B =1+cos(A +B ),3sin(A +B )=1+cos(A +B ),3sin C +cos C =1,2sin(C +π6)=1,sin(C +π6)=12.又π6<C +π6<7π6,因此C +π6=5π6,C =2π3. 5.已知点A (-2,0),B (3,0),动点P (x ,y )满足P A →·PB →=x 2,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 答案 D解析 ∵P A →=(-2-x ,-y ),PB →=(3-x ,-y ), ∴P A →·PB →=(-2-x )(3-x )+y 2=x 2, ∴y 2=x +6,即点P 的轨迹是抛物线.*6.若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是________. 答案 ⎣⎡⎦⎤π6,5π6解析 如图,向量α与β在单位圆O 内,由于|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,故以向量α,β为两边的三角形的面积为14,故β的终点在如图所示的线段AB 上(α∥AB →,且圆心O 到AB 的距离为12),因此夹角θ的取值范围为⎣⎡⎦⎤π6,5π6.7.在菱形ABCD 中,若AC =4,则CA →·AB →=________. 答案 -8解析 设∠CAB =θ,AB =BC =a ,由余弦定理得:a 2=16+a 2-8a cos θ,∴a cos θ=2, ∴CA →·AB →=4×a ×cos(π-θ)=-4a cos θ=-8.8.已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为π3.以a ,b 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为______. 答案3解析 ∵|a +b |2-|a -b |2=4a·b =4|a ||b |cos π3=4>0,∴|a +b |>|a -b |,又|a -b |2=a 2+b 2-2a·b =3, ∴|a -b |= 3.9.已知|a |=2|b |≠0,且关于x 的函数f (x )=13x 3+12|a |x 2+a ·b x 在R 上有极值,则向量a 与b的夹角的范围是__________. 答案 ⎝⎛⎦⎤π3,π解析 设a 与b 的夹角为θ. ∵f (x )=13x 3+12|a |x 2+a ·b x ,∴f ′(x )=x 2+|a |x +a ·b . ∵函数f (x )在R 上有极值,∴方程x 2+|a |x +a ·b =0有两个不同的实数根,即Δ=|a |2-4a ·b >0,∴a ·b <a 24,又∵|a |=2|b |≠0,∴cos θ=a ·b |a ||b |<a 24a 22=12,即cos θ<12,又∵θ∈[0,π],∴θ∈⎝⎛⎦⎤π3,π.*10.已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF →的最小值是________. 答案 6解析 圆(x -2)2+y 2=4的圆心C (2,0),半径为2,圆M (x -2-5cos θ)2+(y -5sin θ)2=1,圆心M (2+5cos θ,5sin θ),半径为1, ∵CM =5>2+1,故两圆相离.如图所示,设直线CM 和圆M 交于H ,G 两点,则PE →·PF →最小值是HE →·HF →,HC =CM -1=5-1=4,HF =HE =HC 2-CE 2=16-4=23,sin ∠CHE =CE CH =12,∴cos ∠EHF =cos 2∠CHE =1-2sin 2∠CHE =12,HE →·HF →=|HE →|·|HF →|·cos ∠EHF =23×23×12=6.11.已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足P A →·AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程.解 设M (x ,y )为所求轨迹上任一点, 设A (a,0),Q (0,b )(b >0),则P A →=(a,3),AM →=(x -a ,y ),MQ →=(-x ,b -y ), 由P A →·AM →=0,得a (x -a )+3y =0.① 由AM →=-32MQ →,得(x -a ,y )=-32(-x ,b -y )=⎝⎛⎭⎫32x ,32(y -b ), ∴⎩⎨⎧x -a =32x ,y =32y -32b ,∴⎩⎨⎧a =-x 2,b =y3.∴b >0,y >0,把a =-x 2代入①,得-x2⎝⎛⎭⎫x +x 2+3y =0, 整理得y =14x 2(x ≠0).∴动点M 的轨迹方程为y =14x 2(x ≠0).12.已知角A ,B ,C 是△ABC 的内角,a ,b ,c 分别是其所对边长,向量m =(23sin A2,cos 2A 2),n =(cos A2,-2),m ⊥n .(1)求角A 的大小; (2)若a =2,cos B =33,求b 的长. 解 (1)已知m ⊥n ,所以m·n =(23sin A 2,cos 2A 2)·(cos A2,-2)=3sin A -(cos A +1)=0,即3sin A -cos A =1,即sin(A -π6)=12,因为0<A <π,所以-π6<A -π6<5π6.所以A -π6=π6,所以A =π3.(2)在△ABC 中,A =π3,a =2,cos B =33,sin B =1-cos 2B =1-13=63.由正弦定理知a sin A =bsin B ,所以b =a ·sin Bsin A =2×6332=423.*13.已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且(PC →+12PQ →)·(PC →-12PQ →)=0.(1)求动点P 的轨迹方程;(2)若EF 为圆N :x 2+(y -1)2=1的任意一条直径,求PE →·PF →的最值. 解 (1)设P (x ,y ),则Q (8,y ). 由(PC →+12PQ →)·(PC →-12PQ →)=0,得|PC →|2-14|PQ →|2=0,即(2-x )2+(-y )2-14(8-x )2=0,化简得x 216+y 212=1.∴动点P 在椭圆上,其轨迹方程为x 216+y 212=1.(2)∵PE →=PN →+NE →,PF →=PN →+NF →, 且NE →+NF →=0.∴PE →·PF →=PN →2-NE →2=(-x )2+(1-y )2-1 =16(1-y 212)+(y -1)2-1=-13y 2-2y +16=-13(y +3)2+19.∵-23≤y ≤2 3.∴当y =-3时,PE →·PF →的最大值为19, 当y =23时,PE →·PF →的最小值为12-4 3. 综上,PE →·PF →的最大值为19,最小值为12-4 3.。
浙江版2018年高考数学一轮复习专题5.2平面向量基本定理及坐标表示讲
第02节 平面向量基本定理及坐标表示【考纲解读】【知识清单】1.平面向量基本定理及其应用 平面向量基本定理如果12e e ,是一平面内的两个不共线向量,那么对于这个平面内任意向量a,有且只有一对实数12λλ,,使1122a e e λλ=+.其中,不共线的向量12e e ,叫做表示这一平面内所有向量的一组基底. 对点练习:向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R),则λμ-=________.【答案】32-2.平面向量的坐标运算 1. 平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. 2.平面向量的坐标表示(1)在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j 作为基底,对于平面内的一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得a x y i j =+,这样,平面内的任一向量a 都可由x 、y 唯一确定,因此把(,)x y 叫做向量a 的坐标,记作(,)a x y =,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标. (2)若1122()()A x y B x y ,,,,则2121()A x x y y B =-,-. 3.平面向量的坐标运算(1)若1122()()a x y b x y ==,,,,则1212()a b x x y y ±=±±,; (2)若()a x y =,,则()a x y λλλ=,. (3)设1122()()A x yB x y ,,,,则2121()A x x y y B =-,-,221221|()A x x y B y =-(-|)对点练习:【2017湖南郴州一测】ABCD Y 中,(1,2)AB =u u u r ,(1,4)AD =-u u u r,则AC =u u u r ( )A .(3,3)-B .(2,2)- C. (2,2)- D .(0,6) 【答案】D【解析】试题分析:AC =u u u r (0,6)AB AD +=u u u r u u u r,故选D.3.平面向量共线的坐标表示 向量共线的充要条件的坐标表示若1122()()a x y b x y ==,,,,则a b ∥⇔12210x y x y =-. 对点练习:【2017广西名校摸底】已知函数322+=-x y 的图象是由函数x y 2=的图象按向量a 平移而得到的,又b a ∥,则=b ( )A .)3,2(--B .)2,3(-C .)3,2(-D .)2,3( 【答案】A【考点深度剖析】平面向量基本定理及坐标表示,往往以选择题或填空题的形式出现.常常以平面图形为载体,借助于向量的坐标形式等考查共线、垂直等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.【重点难点突破】考点1 平面向量基本定理及其应用【2017·杭州测试】 如图,以向量OA →=a ,OB →=b 为邻边作▱OADB ,BM →=13BC →,CN →=13CD →,用a ,b 表示OM →,ON →,MN →.【答案】OM →=16a +56b ,ON →=23a +23b ,MN →=12a -16b.【解析】∵BA →=OA →-OB →=a -b ,BM →=16BA →=16a -16b ,∴OM →=OB →+BM →=16a +56b.【领悟技法】1.用平面向量基本定理解决问题的一般思路是:先选择一组基底,再用该基底表示向量,其实质就是利用平行四边形法则或三角形法则进行向量的加减运算和数乘运算.2.特别注意基底的不唯一性:只要两个向量不共线,就可以作为平面的一组基底,对基底的选取不唯一,平面内任意向量a都可被这个平面的一组基底12e e ,线性表示,且在基底确定后,这样的表示是唯一的. 【触类旁通】【变式一】如图,已知AP uuu r =43AB uuu r ,用OA uu u r ,OB uuu r 表示OP uuu r ,则OP uuu r等于( )A.13OA uu u r -43OB uuu rB.13OA uu u r +43OB uuu rC.-13OA uu u r +43OB uuu rD.-13OA uu ur -43OB uuu r 【答案】C【解析】OP uuu r =OA uu u r +AP uuu r =OA uu u r +43AB uuu r =OA uu u r +43 (OB uuu r -OA uu u r )=-13OA uu ur +43OB uuu r ,选C.考点2 平面向量的坐标运算【2-1】已知向量()()()1,3,1,2,2,4AB BC AD =-=--=u u u r u u u r u u u r,则CD =u u u r ( )A .()4,1-B .()0,9C .()2,1-D .()2,9 【答案】D【2-2】已知向量(,),(1,2)a x y b ==-r r ,且(1,3)a b +=r r ,则|2|a b -r r等于( )A .1B .3C .4D .5 【答案】D 【解析】因(1,3)a b +=r r ,(1,2)b =-r ,故(2,1)a =r ,所以2(4,3)a b -=-r r,故22|2|435a b -=+=r r ,故应选D. 【领悟技法】注意向量坐标与点的坐标的区别:要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向的信息也有大小的信息. 【触类旁通】【变式一】已知向量()2,4a =r ,()1,1b =-r,则2a b -=r r ( )A.()5,7B.()5,9C.()3,7D.()3,9 【答案】A【解析】因为2(4,8)a =r ,所以2(4,8)(1,1)a b -=--r r=()5,7,故选A.【变式二】【2017河北武邑三调】在矩形ABCD 中,()()1,3,,2AB AC k =-=-u u u r u u u r,则实数k =( )A .5-B .4- C. 23D .4 【答案】D【解析】(1,1)1304CB AB AC k AB CB k k =-=--⇒•=-+=⇒=u u u r u u u r u u u r u u u r u u u r,故选D.考点3 平面向量共线的坐标表示【3-1】向量()1,tan cos ,1,3a b αα⎛⎫== ⎪⎝⎭r r ,且//a b r r ,则cos 2πα⎛⎫+= ⎪⎝⎭( )A .13-B .13C .23-D .223-【答案】A【3-2】设向量a r =()21x ,-,b r =()14x ,+,则“3x =”是“a r //b r”的( ).A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【答案】A【解析】当3x =时,()2,2a =r ,()4,4b =r ,此时//a b r r ;当//a b r r时,()()11248x x -+=⨯=,解得3x =±.所以“3x =”是“//a b r r”的充分而不必要条件.【领悟技法】1.向量共线的充要条件有两种: (1)a b ∥⇔(0)a b b λ≠=.(2)若1122()()a x y b x y ==,,,,则a b ∥⇔12210x y x y =-. 当涉及到向量或点的坐标问题时,应用(2)解题较为方便. 2.两向量相等的充要条件,它们的对应坐标相等. 【触类旁通】【变式一】已知向量()()2,3,cos ,sin a b θθ==v v ,且//a b v v,则tan θ=( ) A .32 B .32- C .23 D .23- 【答案】A 【解析】由//a b v v ,可知2sin 3cos 0θθ-=,解得tan θ=32,故选A.【变式二】已知向量=(2,2),=(cosα,﹣sinα),则向量的模的最小值是( ) A .3 B .3 C .D .2 【答案】C 【解析】考点4 平面向量共线的应用【4-1】设(1,2)OA =-u u u r ,(,1)OB a =-u u u r ,(,0)OC b =-u u u r,0,0a b >>,O 为坐标原点,若A 、B 、C 三点共线,则12a b+的最小值是( )A .2B .4C .6D .8 【答案】D 【解析】(1,1)AB a =-u u u r ,(,1)BC b a =--u u u r,若A 、B 、C 三点共线,//AB BC u u u r u u u r ,由向量共线定理得()()111a b a -⨯=⨯--,21a b ∴+=,故()12124244248b a a b a b a b a b⎛⎫+=++=++≥+= ⎪⎝⎭. 【4-2】如图,在△ABC 中, 13AN NC =u u u r u u u r,P 是BN 上的一点,若29AP m AB AC −−→−−→−−→=+,则实数m的值为( )A .1B .31C .19D .3 【答案】C【课本回眸】向量共线的充要条件有两种: (1)a b ∥⇔(0)a b b λ≠=.(2)若1122()()a x y b x y ==,,,,则a b ∥⇔12210x y x y =-. 【领悟技法】当涉及到向量或点的坐标问题时,应用向量共线的充要条件(2)解题较为方便. 【触类旁通】【变式一】设两个向量()222,cos ,,sin 2μλλθμθ⎛⎫=+-=+ ⎪⎝⎭a b ,其中,,R λμθ∈.若2=a b ,则λμ的最小值为______. 【答案】6- 【解析】值为值为6-.【变式二】【2017山西大学附中二模】在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+u u u v u u u v u u u v ,其中,R λμ∈,则2λμ-的取值范围是___________.【答案】[]1,1-2sin cos 24πλμθθθ⎛⎫-=-=- ⎪⎝⎭,,444πππθ⎡⎤-∈-⎢⎥⎣⎦[]21,14πθ⎛⎫-∈- ⎪⎝⎭.【易错试题常警惕】易错典例:如图,在正方形ABCD 中,E 为AB 的中点,P 为以A 为圆心,AB 为半径的圆弧上的任意一点,设向量的最小值为则μλμλ++=,AP DE AC .易错分析:不能结合图形特征,灵活建立直角坐标系,将向量用坐标表示,将问题转化成三角问题求解.正确解析:以A 为原点,以AB 所在直线为x 轴,建立平面直角坐标系. 设正方形ABCD 的边长为1,则1E 0C 11D 01A 002(,),(,),(,),(,). 设P cos sin (1,1)AC θθ∴=u u u r (,), .又向量,AP DE AC μλ+=由题意得 00cos 10sin 12πθθθ≤≤∴≤≤≤≤,,,∴当cos 1θ=时,同时,sin 0θ=时,λμ+取最小值为21. 温馨提醒:涉及几何图形问题,要注意分析图形特征,利用已有的垂直关系,建立平面直角坐标系,将向量用坐标表示,利用向量共线的充要条件,应用函数方程思想解题.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想我国著名数学家华罗庚曾说过:"数形结合百般好,隔裂分家万事休。
高考数学一轮复习 第五章 平面向量 5.2 平面向量基本定理及坐标表真题演练集训 理 新人教A版(2
表真题演练集训理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第五章平面向量5.2 平面向量基本定理及坐标表真题演练集训理新人教A版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第五章平面向量5.2 平面向量基本定理及坐标表真题演练集训理新人教A版的全部内容。
标表真题演练集训理新人教A版1.[2016·新课标全国卷Ⅱ]已知向量a=(1,m),b=(3,-2),且(a+b)⊥b,则m=()A.-8 B.-6C.6 D.8答案:D解析:由向量的坐标运算,得a+b=(4,m-2),由(a+b)⊥b,得(a+b)·b=12-2(m-2)=0,解得m=8,故选D.2.[2015·四川卷]设向量a=(2,4)与向量b=(x,6)共线,则实数x=( )A.2 B.3C.4 D.6答案:B解析:∵a∥b,∴2×6-4x=0,解得x=3。
3.[2014·福建卷]在下列向量组中,可以把向量a=(3,2)表示出来的是( )A.e1=(0,0),e2=(1,2)B.e1=(-1,2),e2=(5,-2)C.e1=(3,5),e2=(6,10)D.e1=(2,-3),e2=(-2,3)答案:B解析:解法一:若e1=(0,0),e2=(1,2),则e1∥e2,而a不能由e1,e2表示,排除A;若e=(-1,2),e2=(5,-2),因为错误!≠错误!,所以e1,e2不共线,根据共面向量的基本定1理,可以把向量a=(3,2)表示出来,故选B.解法二:因为a=(3,2),若e1=(0,0),e2=(1,2),不存在实数λ,μ,使得a=λe1+μe2,排除A;若e1=(-1,2),e2=(5,-2),设存在实数λ,μ,使得a=λe1+μe2,则(3,2)=(-λ+5μ,2λ-2μ),所以错误!解得错误!所以a=2e1+e2,故选B.4.[2015·新课标全国卷Ⅱ]设向量a,b不平行,向量λa+b与a+2b平行,则实数λ=________。
2018版高考数学理一轮复习文档:第五章 平面向量 5-4
1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:(2)用向量方法解决平面几何问题的步骤:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题. 2.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加法和减法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,是力F 与位移s 的数量积,即W =F·s =|F||s |cos θ(θ为F 与s 的夹角).3.向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数),解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题. 【知识拓展】1.若G 是△ABC 的重心,则GA →+GB →+GC →=0.2.若直线l 的方程为:Ax +By +C =0,则向量(A ,B )与直线l 垂直,向量(-B ,A )与直线l 平行. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)若AB →∥AC →,则A ,B ,C 三点共线.( √ ) (2)向量b 在向量a 方向上的投影是向量.( × )(3)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( × ) (4)在△ABC 中,若AB →·BC →<0,则△ABC 为钝角三角形.( × )(5)已知平面直角坐标系内有三个定点A (-2,-1),B (0,10),C (8,0),若动点P 满足:OP →=OA →+t (AB →+AC →),t ∈R ,则点P 的轨迹方程是x -y +1=0.( √ )1.(教材改编)已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则该三角形为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形答案 B解析 AB →=(2,-2),AC →=(-4,-8),BC →=(-6,-6), ∴|AB →|=22+(-2)2=22,|AC →|=16+64=45, |BC →|=36+36=62, ∴|AB →|2+|BC →|2=|AC →|2, ∴△ABC 为直角三角形.2.已知在△ABC 中,|BC →|=10,AB →·AC →=-16,D 为边BC 的中点,则|AD →|等于( ) A .6 B .5 C .4 D .3答案 D解析 在△ABC 中,由余弦定理可得,AB 2+AC 2-2AB ·AC ·cos A =BC 2,又AB →·AC →=|AB →|·|AC →|·cos A =-16,所以AB 2+AC 2+32=100,AB 2+AC 2=68.又D 为边BC 的中点,所以AB →+AC →=2AD →,两边平方得4|AD →|2=68-32=36,解得|AD →|=3,故选D.3.(2017·武汉质检)平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则点P 的轨迹方程是____________. 答案 x +2y -4=0解析 由OP →·OA →=4,得(x ,y )·(1,2)=4, 即x +2y =4.4.(2016·银川模拟)已知向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________. 答案 4解析 设a 与b 夹角为α, ∵|2a -b |2=4a 2-4a·b +b 2 =8-4|a||b |cos α=8-8cos α, ∵α∈[0,π],∴cos α∈[-1,1], ∴8-8cos α∈[0,16],即|2a -b |2∈[0,16], ∴|2a -b |∈[0,4]. ∴|2a -b |的最大值为4.5.已知一个物体在大小为6 N 的力F 的作用下产生的位移s 的大小为100 m ,且F 与s 的夹角为60°,则力F 所做的功W =________ J. 答案 300解析 W =F ·s =|F ||s |cos 〈F ,s 〉 =6×100×cos 60°=300(J).题型一 向量在平面几何中的应用例1 (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( ) A .内心 B .外心 C .重心 D .垂心 答案 (1)12(2)C解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →,又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·(AD →-12AB →)=AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×12|AB →|-12|AB →|2=1.∴⎝⎛⎭⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12. (2)由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心. 引申探究本例(2)中,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________. 答案 内心解析 由条件,得OP →-OA →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,即AP →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.思维升华 向量与平面几何综合问题的解法 (1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.(1)在△ABC 中,已知向量AB →与AC →满足(AB →|AB →|+AC →|AC →|)·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( )A .等边三角形B .直角三角形C .等腰非等边三角形D .三边均不相等的三角形(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________. 答案 (1)A (2)5解析 (1)AB →|AB →|,AC →|AC →|分别为平行于AB →,AC →的单位向量,由平行四边形法则可知AB →|AB →|+AC →|AC →|为∠BAC 的平分线.因为(AB →|AB →|+AC →|AC →|)·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC .又AB →|AB →|·AC →|AC →|=⎪⎪⎪⎪⎪⎪AB →|AB →|·⎪⎪⎪⎪⎪⎪AC →|AC →|·cos ∠BAC =12,所以cos ∠BAC =12,又0<∠BAC <π,故∠BAC =π3,所以△ABC 为等边三角形. (2)以D 为原点,分别以DA ,DC 所在直线为x 轴、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =y .则D (0,0),A (2,0),C (0,a ),B (1,a ), P (0,y ),P A →=(2,-y ),PB →=(1,a -y ), 则P A →+3PB →=(5,3a -4y ), 即|P A →+3PB →|2=25+(3a -4y )2, 由点P 是腰DC 上的动点,知0≤y ≤a . 因此当y =34a 时,|P A →+3PB →|2的最小值为25.故|P A →+3PB →|的最小值为5. 题型二 向量在解析几何中的应用例2 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则yx =________________________________________________________________________. 答案 (1)2x +y -3=0 (2)±3解析 (1)∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx =±3.思维升华 向量在解析几何中的“两个”作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题的关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a·b =0(a ,b 为非零向量),a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较简捷的方法.(2016·合肥模拟)如图所示,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值为________.答案 -92解析 ∵圆心O 是直径AB 的中点,∴P A →+PB →=2PO →,∴(P A →+PB →)·PC →=2PO →·PC →, ∵PO →与PC →共线且方向相反,∴当大小相等时,乘积最小.由条件知,当PO =PC =32时,最小值为-2×32×32=-92.题型三 向量的其他应用 命题点1 向量在不等式中的应用 例3 已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →·OB →的最大值是最小值的8倍,则实数a 的值是________. 答案 18解析 因为OA →=(x,1),OB →=(2,y ),所以OA →·OB →=2x +y ,令z =2x +y ,依题意,不等式组所表示的可行域如图中阴影部分所示(含边界),观察图象可知,当目标函数z =2x +y 过点C (1,1)时,z max =2×1+1=3,目标函数z =2x +y 过点F (a ,a )时,z min =2a +a =3a ,所以3=8×3a ,解得a =18.命题点2 向量在解三角形中的应用例4 (2016·合肥模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则△ABC 最小角的正弦值等于( ) A.45 B.34 C.35 D.74答案 C解析 ∵20aBC →+15bCA →+12cAB →=0, ∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0, ∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0⇒⎩⎨⎧b =43a ,c =53a ,∴△ABC 最小角为角A , ∴cos A =b 2+c 2-a 22bc=169a 2+259a 2-a 22×43a ×53a =45,∴sin A =35,故选C.命题点3 向量在物理中的应用例5 如图,一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态.已知F 1,F 2成60°角,且F 1,F 2的大小分别为2和4,则F 3的大小为()A .27B .2 5C .2D .6答案 A解析 如题图所示,由已知得F 1+F 2+F 3=0,则F 3=-(F 1+F 2),即F 23=F 21+F 22+2F 1·F 2=F 21+F 22+2|F 1|·|F 2|·cos 60°=28.故|F 3|=27. 思维升华 利用向量的载体作用,可以将向量与三角函数、不等式结合起来,解题时通过定义或坐标运算进行转化,使问题的条件结论明晰化.(1)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M 、N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是______.(2)已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________. 答案 (1)3 (2)3解析 (1)由图象可知,M ⎝⎛⎭⎫12,1,N ()x N ,-1, 所以OM →·ON →=⎝⎛⎭⎫12,1·(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2×⎝⎛⎭⎫2-12=3. (2)∵OP →=(x ,y ),OM →=(1,1),ON →=(0,1),OQ →=(2,3), ∴OP →·OM →=x +y ,OP →·ON →=y ,OQ →·OP →=2x +3y ,即在⎩⎪⎨⎪⎧0≤x +y ≤1,0≤y ≤1条件下,求z =2x +3y 的最大值,由线性规划知识得,当x =0,y =1时,z max =3.三审图形抓特点典例 (2016·太原一模)已知A ,B ,C ,D 是函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2一个周期内的图象上的四个点,如图所示,A ⎝⎛⎭⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π6E 为函数图象的对称中心,C 为图象最低点―――――――――――→作出点C 的对称点MD 、B 两点对称 CD 和MB 对称―――――――――――→CD →在x 轴上的投影是π12BM 在x 轴上的投影OF =π12――――――→A (-π6,0),AF =π4―→T =π―→ω=2――――――――→y =sin (2x +φ)和y =sin 2x 图象比较φ2=π6―→φ=π3解析 由E 为该函数图象的一个对称中心,作点C 的对称点M ,作MF ⊥x 轴,垂足为F ,如图.B 与D 关于点E 对称,CD →在x 轴上的投影为π12,知OF =π12.又A ⎝⎛⎭⎫-π6,0,所以AF =T 4=π2ω=π4,所以ω=2.同时函数y =sin(ωx +φ)图象可以看作是由y =sin ωx 的图象向左平移得到,故可知φω=φ2=π6,即φ=π3.答案 A1.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形答案 C解析 由(BC →+BA →)·AC →=|AC →|2, 得AC →·(BC →+BA →-AC →)=0, 即AC →·(BC →+BA →+CA →)=0, 2AC →·BA →=0, ∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|, 故△ABC 一定是直角三角形.2.(2016·山东)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( )A .4B .-4 C.94 D .-94答案 B解析 ∵n ⊥(t m +n ),∴n ·(t m +n )=0, 即t m ·n +n 2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0, 由已知得t ×34|n |2×13+|n |2=0,解得t =-4,故选B.3.(2016·南宁模拟)已知向量a =(cos α,-2),b =(sin α,1)且a ∥b ,则sin 2α等于( )A .3B .-3 C.45 D .-45答案 D解析 由a ∥b 得cos α+2sin α=0,∴cos α=-2sin α,又sin 2α+cos 2α=1, ∴5sin 2α=1,sin 2α=15,cos 2α=45,sin 2α=2sin αcos α=-cos 2α=-45.4.(2016·武汉模拟)设△ABC 的三个内角为A ,B ,C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m·n =1+cos(A +B ),则C 等于( ) A.π6 B.π3 C.2π3 D.5π6答案 C解析 依题意得3sin A cos B +3cos A sin B =1+cos(A +B ),3sin(A +B )=1+cos(A +B ),3sin C +cos C =1,2sin(C +π6)=1,sin(C +π6)=12.又π6<C +π6<7π6,因此C +π6=5π6,C =2π3. 5.已知点A (-2,0),B (3,0),动点P (x ,y )满足P A →·PB →=x 2,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 答案 D解析 ∵P A →=(-2-x ,-y ),PB →=(3-x ,-y ), ∴P A →·PB →=(-2-x )(3-x )+y 2=x 2, ∴y 2=x +6,即点P 的轨迹是抛物线.*6.若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是________. 答案 ⎣⎡⎦⎤π6,5π6解析 如图,向量α与β在单位圆O 内,由于|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,故以向量α,β为两边的三角形的面积为14,故β的终点在如图所示的线段AB 上(α∥AB →,且圆心O 到AB 的距离为12),因此夹角θ的取值范围为⎣⎡⎦⎤π6,5π6.7.在菱形ABCD 中,若AC =4,则CA →·AB →=________. 答案 -8解析 设∠CAB =θ,AB =BC =a ,由余弦定理得:a 2=16+a 2-8a cos θ,∴a cos θ=2, ∴CA →·AB →=4×a ×cos(π-θ)=-4a cos θ=-8.8.已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为π3.以a ,b 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为______. 答案3解析 ∵|a +b |2-|a -b |2=4a·b =4|a ||b |cos π3=4>0,∴|a +b |>|a -b |,又|a -b |2=a 2+b 2-2a·b =3, ∴|a -b |= 3.9.已知|a |=2|b |≠0,且关于x 的函数f (x )=13x 3+12|a |x 2+a ·b x 在R 上有极值,则向量a 与b的夹角的范围是__________. 答案 ⎝⎛⎦⎤π3,π解析 设a 与b 的夹角为θ. ∵f (x )=13x 3+12|a |x 2+a ·b x ,∴f ′(x )=x 2+|a |x +a ·b . ∵函数f (x )在R 上有极值,∴方程x 2+|a |x +a ·b =0有两个不同的实数根, 即Δ=|a |2-4a ·b >0,∴a ·b <a 24,又∵|a |=2|b |≠0,∴cos θ=a ·b |a ||b |<a 24a 22=12,即cos θ<12,又∵θ∈[0,π],∴θ∈⎝⎛⎦⎤π3,π.*10.已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF →的最小值是________. 答案 6解析 圆(x -2)2+y 2=4的圆心C (2,0),半径为2,圆M (x -2-5cos θ)2+(y -5sin θ)2=1,圆心M (2+5cos θ,5sin θ),半径为1, ∵CM =5>2+1,故两圆相离.如图所示,设直线CM 和圆M 交于H ,G 两点,则PE →·PF →最小值是HE →·HF →,HC =CM -1=5-1=4,HF =HE =HC 2-CE 2=16-4=23, sin ∠CHE =CE CH =12,∴cos ∠EHF =cos 2∠CHE =1-2sin 2∠CHE =12,HE →·HF →=|HE →|·|HF →|·cos ∠EHF =23×23×12=6.11.已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足P A →·AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程.解 设M (x ,y )为所求轨迹上任一点, 设A (a,0),Q (0,b )(b >0),则P A →=(a,3),AM →=(x -a ,y ),MQ →=(-x ,b -y ), 由P A →·AM →=0,得a (x -a )+3y =0.① 由AM →=-32MQ →,得(x -a ,y )=-32(-x ,b -y )=⎝⎛⎭⎫32x ,32(y -b ), ∴⎩⎨⎧x -a =32x ,y =32y -32b ,∴⎩⎨⎧a =-x 2,b =y3.∴b >0,y >0,把a =-x 2代入①,得-x2⎝⎛⎭⎫x +x 2+3y =0, 整理得y =14x 2(x ≠0).∴动点M 的轨迹方程为y =14x 2(x ≠0).12.已知角A ,B ,C 是△ABC 的内角,a ,b ,c 分别是其所对边长,向量m =(23sin A2,cos 2A 2),n =(cos A2,-2),m ⊥n .(1)求角A 的大小; (2)若a =2,cos B =33,求b 的长. 解 (1)已知m ⊥n ,所以m·n =(23sin A 2,cos 2A 2)·(cos A2,-2)=3sin A -(cos A +1)=0,即3sin A -cos A =1,即sin(A -π6)=12,因为0<A <π,所以-π6<A -π6<5π6.所以A -π6=π6,所以A =π3.(2)在△ABC 中,A =π3,a =2,cos B =33,sin B =1-cos 2B =1-13=63. 由正弦定理知a sin A =bsin B ,所以b =a ·sin Bsin A =2×6332=423.*13.已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且(PC →+12PQ →)·(PC →-12PQ →)=0.(1)求动点P 的轨迹方程;(2)若EF 为圆N :x 2+(y -1)2=1的任意一条直径,求PE →·PF →的最值. 解 (1)设P (x ,y ),则Q (8,y ). 由(PC →+12PQ →)·(PC →-12PQ →)=0,得|PC →|2-14|PQ →|2=0,即(2-x )2+(-y )2-14(8-x )2=0,化简得x 216+y 212=1.∴动点P 在椭圆上,其轨迹方程为x 216+y 212=1.(2)∵PE →=PN →+NE →,PF →=PN →+NF →, 且NE →+NF →=0.∴PE →·PF →=PN →2-NE →2=(-x )2+(1-y )2-1 =16(1-y 212)+(y -1)2-1=-13y 2-2y +16=-13(y +3)2+19.∵-23≤y ≤2 3.∴当y =-3时,PE →·PF →的最大值为19, 当y =23时,PE →·PF →的最小值为12-4 3. 综上,PE →·PF →的最大值为19,最小值为12-4 3.。
2018版高考数学(文)(人教A版)大一轮复习配套讲义:第五章 平面向量含解析
第1讲平面向量的概念及线性运算最新考纲 1.了解向量的实际背景;2。
理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6。
了解向量线性运算的性质及其几何意义.知识梳理1。
向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量长度为零的向量;其方向是任意的记作0单位向量长度等于1个单位的向量非零向量a的单位向量为±a|a|平行向量方向相同或相反的非零向量0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为02。
向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a+b=b+a。
(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差a-b=a+(-b)数乘求实数λ与向量a的积的运(1)|λa|=|λ||a|;(2)当λ>0时,λaλ(μa)=λμa;(λ+μ)a=λa+μa;算的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λ(a+b)=λa+λb3.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.诊断自测1。
判断正误(在括号内打“√”或“×")精彩PPT展示(1)零向量与任意向量平行.()(2)若a∥b,b∥c,则a∥c。
()(3)向量错误!与向量错误!是共线向量,则A,B,C,D四点在一条直线上.( )(4)当两个非零向量a,b共线时,一定有b=λa,反之成立.( )(5)在△ABC中,D是BC中点,则错误!=错误!(错误!+错误!).( )解析(2)若b=0,则a与c不一定平行。
2018版高考数学(全国人教B版理)大一轮复习讲义:第五章平面向量第1讲含解析
基础巩固题组(建议用时:30分钟)一、选择题1。
已知下列各式:①错误!+错误!+错误!;②错误!+错误!+错误!+错误!;③错误!+错误!+错误!+错误!;④错误!-错误!+错误!-错误!。
其中结果为零向量的个数为()A.1B.2 C。
3 D。
4解析由题知结果为零向量的是①④,故选B。
答案B2。
设a是非零向量,λ是非零实数,下列结论中正确的是()A。
a与λa的方向相反 B。
a与λ2a的方向相同C。
|-λa|≥|a| D.|-λa|≥|λ|·a解析对于A,当λ>0时,a与λa的方向相同,当λ<0时,a与λa 的方向相反;B正确;对于C,|-λa|=|-λ||a|,由于|-λ|的大小不确定,故|-λa|与|a|的大小关系不确定;对于D,|λ|a 是向量,而|-λa|表示长度,两者不能比较大小.答案B3.如图,在正六边形ABCDEF中,错误!+错误!+错误!=()A.0B。
错误!C。
AD→ D.错误!解析由题图知错误!+错误!+错误!=错误!+错误!+错误!=错误!+错误!=错误!.答案D4。
设a0为单位向量,下述命题中:①若a为平面内的某个向量,则a=|a|a0;②若a与a0平行,则a=|a|a0;③若a与a0平行且|a|=1,则a=a0.假命题的个数是()A.0B.1C.2 D。
3解析向量是既有大小又有方向的量,a与|a|a0的模相同,但方向不一定相同,故①是假命题;若a与a0平行,则a与a0的方向有两种情况:一是同向,二是反向,反向时a=-|a|a0,故②③也是假命题。
综上所述,假命题的个数是3.答案D5。
设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD 所在平面内任意一点,则错误!+错误!+错误!+错误!等于()A.错误!B。
2错误! C.3错误! D.4错误!解析错误!+错误!+错误!+错误!=(错误!+错误!)+(错误!+错误!)=2错误!+2错误!=4错误!.故选D。
A版2018版高考数学理一轮专题复习课件专题5 平面向量 精品
第一步,观察并将待求向量表示成两个 (或多个)相关向量a,b(或a,b,c,…)的和 或差;
第二步,把向量a,b(或a,b,c,…)分别进 行分解,直到用基底表示出向量a,b(或 a,b,c,…) ; 第三步,将a,b(或a,b,c,…)代入第一步 中的式子,从而得到结果.
第一步,把待求向量看作未知量; 第二步,列出方程组; 第三步,用解方程组的方法求解待求向 量.
考点29 平面向量的基本定理及坐标运算
考点29 考法3 平面向量基本定理的应用
1.基底的选择 (1)一组基底有两个向量; (2)这两个向量不共线.
2.用基底表示其他向量 主要有以下三种方法: 方法一:通过观察图形直接寻求 向量之间的关系. 方法二:采用方程思想. 方法三:建立坐标系,根据向量 的坐标运算求解.
3.平面向量的坐标运算
考点29 平面向量的基本定理及坐标运算
平面向量的基本定理及坐标运算
考点29
✓ 考法3 平面向量基本定理的应用
✓ 考法4 平面向量的共线问题 ✓ 考法5 平面向量的坐标表示与运算
考点29 平面向量的基本定理及坐标运算
考点29 考法3 平面向量基本定理的应用
1.基底的选择 (1)一组基底有两个向量; (2)这两个向量不共线.
应注意的是,基底的选择并不唯一,只 要两个向量不共线,都可作为一组基底. 2.平面向量的坐标表示
在平面直角坐标系内,分别取与x轴、y轴 正方向相同的两个单位向量i, j作为基底,对 平面内任一向量a,有且仅有一对实数x,y,使得 a=xi+yj,则实数对(x,y)叫做向量a的直角坐 标,记作a=(x,y),其中x,y分别叫做a在x轴,y 轴上的坐标,相等向量的坐标相同,坐标相同 的向量是相等向量.
2018版高考数学一轮复习第五章平面向量第2讲平面向量的基本定理及向量坐标运算理
第2讲 平面向量的基本定理及向量坐标运算一、选择题1.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b ( ).A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线解析 由题意得a +b =(x -x,1+x 2)=(0,1+x 2),易知a +b 平行于y 轴.答案 C2.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ).A .(-2,-4)B .(-3,-6)C .(-4,-8)D .(-5,-10)解析 由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2)⇒m =-4,从而b =(-2,-4),那么2a +3b =2×(1,2)+3×(-2,-4)=(-4,-8).答案 C3.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相连能构成四边形,则向量d 为( ).A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)解析 设d =(x ,y ),由题意知4a =(4,-12),4b -2c =(-6,20),2(a -c )=(4,-2),又4a +4b -2c +2(a -c )+d =0,解得x =-2,y =-6,所以d =(-2,-6).故选D.答案 D4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( ).A.14B.12C .1D .2 解析 依题意得a +λb =(1+λ,2),由(a +λb )∥c ,得(1+λ)×4-3×2=0,∴λ=12. 答案 B5. 若向量=(1,2),=(3,4),则=( ) A (4,6) B (-4,-6) C (-2,-2) D (2,2)解析 因为=+=,所以选A.答案 A6.若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为( ).A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)解析 ∵a 在基底p ,q 下的坐标为(-2,2),即a =-2p +2q =(2,4),令a =x m +y n =(-x +y ,x +2y ),∴⎩⎪⎨⎪⎧ -x +y =2,x +2y =4,即⎩⎪⎨⎪⎧ x =0,y =2.∴a 在基底m ,n 下的坐标为(0,2).答案 D二、填空题7.若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b的值为________. 解析 AB →=(a -2,-2),AC →=(-2,b -2),依题意,有(a -2)(b -2)-4=0,即ab -2a -2b =0,所以1a +1b =12. 答案 128.设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为________.解析 设a =λb (λ<0),则|a |=|λ||b |,∴|λ|=|a||b|, 又|b |=5,|a |=2 5.∴|λ|=2,∴λ=-2.∴a =λb =-2(2,1)=(-4,-2).答案 (-4,-2)9.设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a+2b的最小值为________. 解析 AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(a -1)-(-b -1)=0,∴2a +b =1.。
2018年高考数学 第五章 平面向量 专题18 平面向量的概念及线性运算、平面向量的基本定理考场高招大全
专题十八平面向量的概念及线性运算、平面向量的基本定理考点40平面向量的线性运算和几何意义考场高招1 向量的线性运算的解题规律1.解读高招(1)(2)(3)⇔2.典例指引1(1)(2016湖北武汉调研)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内的任意一点,则等于()A. B.2 C.3 D.4(2)(2016河北衡水中学质检)若点M是△ABC所在平面内的一点,且满足|3|=0,则△ABM与△ABC 的面积之比等于()A. B. C. D.(3)(2016四川成都模拟)O是面α上一定点,A,B,C是面α上△ABC的三个顶点,∠B,∠C分别是边AC,AB的对角.以下命题正确的序号是.①动点P满足,则△ABC的外心一定在满足条件的P点集合中;②动点P满足+λ(λ>0),则△ABC的内心一定在满足条件的P点集合中;③动点P 满足+λ(λ>0),则△ABC 的重心一定在满足条件的P 点集合中;④动点P 满足+λ(λ>0),则△ABC 的垂心一定在满足条件的P 点集合中.【解析】 (1)因为M 是平行四边形ABCD 对角线AC ,BD 的交点,所以=2=2,所以=4,故选D .(3)对于①,由=0,故点P 是△ABC 的重心,故①错;对于②,由+λ=λ,因为分别表示方向上的单位向量,故AP 平分∠BAC ,因此△ABC 的内心一定在满足条件的P 点集合中,故②正确;对于③,由+λ可知=λ.在△ABC 中,由于||sin B ,||sin C 表示BC 边上的高h ,故)=(其中D 为BC 的中点),即点P 在BC 边的中线所在直线上,因此△ABC 的重心一定在满足条件的P 点集合中,故③正确;对于④,由已知可得=λ.则=λ,得=0,即点P 在边BC 的高线所在直线上,因此△ABC 的垂心一定在满足条件的P 点集合中,故④正确. 【答案】 (1)D (2)C (3)②③④3.亲临考场1 (2013四川,理12)在平行四边形ABCD 中,对角线AC 与BD 交于点O ,=λ,则λ= .(k ∈Z ) 【答案】22.(2017广东惠州二调)如图,在正方形ABCD 中,点E 为DC 的中点,点F 为BC 上靠近点B 的三等分点,则=()A. B.C.D.【答案】 D 在△CEF 中,.因为点E 为DC 的中点,所以.因为点F 为BC 上靠近点B 的三等分点,所以.所以,故选D考场高招2 三法(定理法、坐标法、结论法)搞定平面向量共线问题 1. 解读高招利用三点共线的结论+(2.典例指引2(1)已知向量a=(2,3),b=(-1,2),若m a+4b 与a-2b共线,则m的值为()A. B.2 C.- D.-2(2)(2017广东佛山质检)一直线l与平行四边形ABCD中的两边AB,AD分别交于点E,F,且交其对角线AC于点K,若=2=3=λ(λ∈R),则λ=()A.2B.C.3D.5(3)在△ABC中,点H是边BC上异于端点B,C的一点,M是AH的中点,=λ+μ,则λ+μ= .(2)由平行四边形法则,知,∴)=(2+3)=.∵E,K,F三点共线,∴=1,解得λ=5.故选D.(3)∵点H是边BC上异于端点B,C的一点,∴存在实数t使得=t(0<t<1),∴+t+t()=(1-t)+t.∵M为AH中点,∴,∴∴λ+μ=.【答案】 (1)D (2)D(3) 3.亲临考场1.(2012四川,理7)设a ,b 都是非零向量,下列四个条件中,使成立的充分条件是( )A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a |=|b |【答案】 C 因为,则向量是方向相同的单位向量,所以a 与b 共线同向,即使成立的充分条件为选项C .2.(2015课标Ⅱ,理13)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ= .【答案】考点41平面向量的基本定理和坐标运算考场高招3 平面向量基本定理的应用方法 1.解读高招2.典例指引3(1)在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F.若=a ,=b ,则=( )A.a+bB.a+bC.a+bD.a+b(2)(2017河北石家庄一检)已知的夹角为90°,||=2,||=1,=λ+μ(λ,μ∈R),且=0,则的值为.(2)根据题意,建立如图所示的平面直角坐标系,则A(0,0),B(0,2),C(1,0),所以=(0,2),=(1,0),=(1,-2).设M(x,y),则=(x,y),所以=(x,y)·(1,-2)=x-2y=0.所以x=2y.又=λ+μ,即 (x,y)=λ(0,2)+μ(1,0)=(μ,2λ),所以x=μ,y=2λ.所以.3.亲临考场1.(2015课标Ⅰ,理7)设D为△ABC所在平面内一点,=3,则()A.=-B.C.D.2.(2017四川四市第一次联考)如图,四边形ABCD是正方形,延长CD至点E,使得DE=CD,若点P为CD的中点,且=λ+μ,则λ+μ=()A.3B.C.2D.1【答案】B由题意,不妨设正方形的边长为1,建立如图所示的平面直角坐标系,则A(0,0),B(1,0),E(-1,1),P,所以=(1,0),=(-1,1).由=λ+μ=(λ-μ,μ)=,得解得所以λ+μ=.故选B.考场高招4 向量的坐标表示及运算常用技巧1.解读高招2.典例指引 4已知向量满足||=||=1,=λ+μ(λ,μ∈R ).若M 为AB 的中点,并且||=1,则λ+μ的最大值是( )A.1-B.1+C. D.1+因为=λ+μ(λ,μ∈R ),所以=λ+μ=λ(1,0)+μ(0,1)=(λ,μ),即点C (λ,μ). 所以.因为||=1,所以=1,即点C (λ,μ)在以为圆心,1为半径的圆上.令t=λ+μ,则直线λ+μ-t=0与此圆有公共点,所以d=≤1,解得-+1≤t ≤+1,即λ+μ的最大值是1+.故选B .【答案】 B 3.亲临考场1.(2014福建,理8)在下列向量组中,可以把向量a=(3,2)表示出来的是()A.e1=(0,0),e2=(1,2)B.e1=(-1,2),e2=(5,-2)C.e1=(3,5),e2=(6,10)D.e1=(2,-3),e2=(-2,3)【答案】 B由平面向量基本定理可知,平面内任意一个向量可用平面内两个不共线向量线性表示,A中e1=0·e2,B中e1,e2为两个不共线向量,C中e2=2e1,D中e2=-e1.故选B.2.(2014陕西,理13)设0<θ<,向量a=(sin 2θ,cos θ),b=(cos θ,1),若a∥b,则tan θ= . 【答案】3.(2013北京,理13)向量a,b,c在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R),则= .【答案】 4【解析】可设a=-i+j,i,j为单位向量且i⊥j,则b=6i+2j,c=-i-3j.由c=λa+μb=(6μ-λ)i+(λ+2μ)j,。
高三数学一轮复习平面向量基本定理及坐标表示
A. 2
√B. 5
C. 10
D.5
解析 根据题意可得1×t=2×(-2),可得t=-4,
所以a+b=(-1,-2),
从而可求得|a+b|= 1+4= 5,故选 B.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4.已知平面直角坐标系内的两个向量a=(1,2),b=(m,3m-2),且平面内的任
∴-2×(4-k)=-7×(-2k),解得 k=-23.
3 课时作业
PART THREE
基础保分练
1.已知 M(3,-2),N(-5,-1),且M→P=12M→N,则 P 点的坐标为
A.(-8,1)
√B.-1,-23
解析 设 P(x,y),则M→P=(x-3,y+2).
C.1,32
D.(8,-1)
而12M→N=12(-8,1)=-4,12,
x-3=-4, ∴y+2=12,
x=-1, 解得y=-32,
∴P-1,-23.故选 B.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.(2019·山西榆社中学诊断)若向量A→B=D→C=(2,0),A→D=(1,1),则A→C+B→C等于
2.平面向量的坐标运算
(1)向量加法、减法、数乘及向量的模
设a=(x1,y1),b=(x2,y2),则 a+b= (x1+x2,y1+y2) ,a-b= (x1-x2,y1-y2) , λa= (λx1,λy1) ,|a|= x21+y21 .
(2)向量坐标的求法
①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A(x1,y1),B(x2,y2),则 A→B= (x2-x1,y2-y1),|A→B|= x2-x12+y2-y12 . 3.平面向量共线的坐标表示 设a=(x1,y1),b=(x2,y2),其中b≠0.a,b共线⇔ x1y2-x2y1=0 .
2018版高考数学(全国人教B版理)大一轮复习讲义:第五章平面向量第2讲含解析
基础巩固题组(建议用时:30分钟)一、选择题1.(教材改编)下列各组向量中,可以作为基底的是()A.e1=(0,0),e2=(1,-2)B.e1=(-1,2),e2=(5,7)C.e1=(3,5),e2=(6,10)D.e1=(2,-3),e2=错误!解析两个不共线的非零向量构成一组基底,故选B。
答案 B2.(2016·沈阳质监)已知在▱ABCD中,错误!=(2,8),错误!=(-3,4),则错误!=()A。
(-1,-12) B.(-1,12)C。
(1,-12) D.(1,12)解析因为四边形ABCD是平行四边形,所以错误!=错误!+错误!=(-1,12),故选B.答案 B3。
已知向量a=(-1,2),b=(3,m),m∈R,则“m=-6”是“a∥(a+b)"的()A。
充分必要条件B。
充分不必要条件C。
必要不充分条件 D.既不充分也不必要条件解析由题意得a+b=(2,2+m),由a∥(a+b),得-1×(2+m)=2×2,所以m=-6,则“m =-6"是“a∥(a+b)”的充要条件,故选A。
答案 A4。
如右图,向量e1,e2,a的起点与终点均在正方形网格的格点上,则向量a可用基底e1,e2表示为()A.e1+e2B.-2e1+e2C。
2e1-e2 D.2e1+e2解析以e1的起点为坐标原点,e1所在直线为x轴建立平面直角坐标系,由题意可得e1=(1,0),e2=(-1,1),a=(-3,1),因为a=x e1+y e2=x(1,0)+y(-1,1),=(x-y,y),则错误!解得错误!故a=-2e1+e2。
答案 B5.已知向量错误!=(k,12),错误!=(4,5),错误!=(-k,10),且A,B,C三点共线,则k的值是()A.-错误!B.错误!C.错误!D。
错误!解析错误!=错误!-错误!=(4-k,-7),错误!=错误!-错误!=(-2k,-2),因为A,B,C三点共线,所以错误!,错误!共线,所以-2×(4-k)=-7×(-2k),解得k=-错误!。
2018届高三数学一轮复习第五章平面向量第二节平面向量基本定理及坐标表示课件文
C.(6,2) D.(-2,0)
答案 A
M =N -3a=-3(1,-2)=(-3,6),
设N(x,y),则M N=(x-5,y+6)=(-3,6),
所以
x y
即5
6
6
3,故, 点 Nxy 的 20 坐,. 标为(2,0).
4.已知a=(4,5),b=(8,y),且a∥b,则y等于 ( )
.
答案 - 2
3
解析
A B= O -B O=(A 4-k,-7),
=A C
-
O =C (-2O kA,-2),因为A、B、C三点共
线,即 A B与 A共C 线,所以 =4 k (k≠ 7 0),解得k=- . 2
2k 2
3
考点突破
考点一 平面向量基本定理及其应用
典例1
(1)△ABC中,点D在边AB上,CD平分∠ACB.若 C B=a,
=λ2,μ1=μ2. (√) (5)若两个向量的终点不同,则这两个向量的坐标一定不同.(×) (6)当向量的始点在坐标原点时,向量终点的坐标就是向量的坐标.
(√)
(7)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件可表示成
x x
1 2
=y 1
y2
. (×)
1.如果e1,e2是平面α内一组不共线的向量,那么下列四组向量中,不能作
C =A b,|a|=1,
|b|=2,则C
D
=
(
)
12
21
34
43
A. a+ b B. a+ b C. a+ b D. a+ b
33
33
55
55
(2)在平行四边形ABCD中,E和F分别是边CD和BC的中点,有
高考数学大一轮复习 第五章 平面向量 5.2 平面向量基本定理及坐标表示教师用书 理 新人教版(20
2018版高考数学大一轮复习第五章平面向量5.2 平面向量基本定理及坐标表示教师用书理新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第五章平面向量5.2 平面向量基本定理及坐标表示教师用书理新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第五章平面向量5.2 平面向量基本定理及坐标表示教师用书理新人教版的全部内容。
第五章 平面向量 5。
2 平面向量基本定理及坐标表示教师用书 理 新人教版1.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2。
其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2), λa =(λx 1,λy 1),|a |=错误!.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则错误!=(x 2-x 1,y 2-y 1),|错误!|=错误!。
3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0。
a 、b 共线⇔x 1y 2-x 2y 1=0.【知识拓展】1.若a 与b 不共线,λa +μb =0,则λ=μ=0.2.设a =(x 1,y 1),b =(x 2,y 2),如果x 2≠0,y 2≠0,则a ∥b ⇔x 1x 2=错误!.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内的任何两个向量都可以作为一组基底.( ×)(2)若a,b不共线,且λ1a+μ1b=λ2a+μ2b,则λ1=λ2,μ1=μ2.( √)(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √)(4)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件可表示成错误!=错误!.( ×)(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √)1.设e1,e2是平面内一组基底,那么( )A.若实数λ1,λ2使λ1e1+λ2e2=0,则λ1=λ2=0B.空间内任一向量a可以表示为a=λ1e1+λ2e2(λ1,λ2为实数)C.对实数λ1,λ2,λ1e1+λ2e2不一定在该平面内D.对平面内任一向量a,使a=λ1e1+λ2e2的实数λ1,λ2有无数对答案A2.(教材改编)已知a1+a2+…+a n=0,且a n=(3,4),则a1+a2+…+a n-1的坐标为()A.(4,3)B.(-4,-3)C.(-3,-4) D.(-3,4)答案C解析a1+a2+…+a n-1=-a n=(-3,-4).3.(2015·课标全国Ⅰ)已知点A(0,1),B(3,2),向量错误!=(-4,-3),则向量错误!等于( )A.(-7,-4) B.(7,4)C.(-1,4)D.(1,4)答案A解析错误!=(3,1),错误!=(-4,-3),错误!=错误!-错误!=(-4,-3)-(3,1)=(-7,-4).4.已知向量a=(2,3),b=(-1,2),若m a+n b与a-2b共线,则错误!=________。
2018届高考数学理大一轮复习教师用书:第五章第二节平
第二节平面向量基本定理及坐标表示突破点(一) 平面向量基本定理平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.[例1] 如果e 1,e 2是平面内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是( )A .e 1与e 1+e 2B .e 1-2e 2与e 1+2e 2C .e 1+e 2与e 1-e 2D .e 1+3e 2与6e 2+2e 1[解析] 选项A 中,设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧1=λ,1=0无解;选项B 中,设e 1-2e 2=λ(e 1+2e 2),则⎩⎪⎨⎪⎧1=λ,-2=2λ无解;选项C 中,设e 1+e 2=λ(e 1-e 2),则⎩⎪⎨⎪⎧1=λ,1=-λ无解;选项D 中,e 1+3e 2=12(6e 2+2e 1),所以两向量是共线向量,不能作为平面内所有向量的一组基底.[答案] D[易错提醒]本节主要包括2个知识点: 1.平面向量基本定理; 2.平面向量的坐标表示.某平面内所有向量的一组基底必须是两个不共线的向量,不能含有零向量.平面向量基本定理的应用[例2] (2016·江西南昌二模)如图,在△ABC 中,设AB =a ,AC =b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点恰为P ,则AP =( )A.12a +12b B.13a +23b C.27a +47b D.47a +27b [解析] 如图,连接BP ,则AP =AC +CP =b +PR ,①AP =AB +BP =a +RP -RB ,②①+②,得2AP =a +b -RB ,③又RB =12QB =12(AB -AQ )=12⎝⎛⎭⎫a -12 AP ,④ 将④代入③,得2AP =a +b -12⎝⎛⎭⎫a -12 AP , 解得AP =27a +47b .[答案] C [方法技巧]平面向量基本定理的实质及解题思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.能力练通 抓应用体验的“得”与“失”1.[考点二](2017·潍坊模拟)在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB =a ,AC =b ,则PQ =( )A.13a +13b B .-13a +13bC.13a -13b D .-13a -13b解析:选A 由题意知PQ =PB +BQ =23AB +13BC =23AB +13(AC -AB )=13AB +13AC =13a +13b ,故选A.2.[考点一](2016·泉州调研)若向量a ,b 不共线,则下列各组向量中,可以作为一组基底的是( )A .a -2b 与-a +2bB .3a -5b 与6a -10bC .a -2b 与5a +7bD .2a -3b 与12a -34b解析:选C 不共线的两个向量可以作为一组基底.因为a -2b 与5a +7b 不共线,故a -2b 与5a +7b 可以作为一组基底.3.[考点二]如图,在△OAB 中,P 为线段AB 上的一点,OP =x OA+y OB ,且BP =2PA ,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14解析:选A 由题意知OP =OB +BP ,又BP =2PA ,所以OP =OB +23BA =OB +23(OA -OB )=23OA +13OB ,所以x =23,y =13. 4.[考点二](2017·绵阳诊断)在△ABC 中,AN =12AC ,P 是BN 上一点,若AP =m AB +38AC ,则实数m 的值为________. 解析:∵B ,P ,N 三点共线,∴AP =t AB +(1-t )AN =t AB +12(1-t )AC ,又∵AP =m AB +38AC ,∴⎩⎪⎨⎪⎧m =t ,12(1-t )=38,解得m =t =14. 答案:14突破点(二) 平面向量的坐标表示1.平面向量的坐标运算(1)向量加法、减法、数乘的坐标运算及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则:a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法若向量的起点是坐标原点,则终点坐标即为向量的坐标.一般地,设A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1).2.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.[例1] 已知A (-2,4),B (3,-1),C (-3,-4).设AB =a ,BC =b ,CA =c ,且CM =3c ,CN =-2b ,(1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M ,N 的坐标及向量MN 的坐标.[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42). (2)∵mb +nc =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.即所求实数m 的值为-1,n 的值为-1. (3)设O 为坐标原点, ∵CM =OM -OC =3c ,∴OM =3c +OC =(3,24)+(-3,-4)=(0,20), 即M (0,20).又∵CN =ON -OC =-2b ,∴ON =-2b +OC =(12,6)+(-3,-4)=(9,2), 即N (9,2).∴MN =(9,-18).[方法技巧]平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解.平面向量共线的坐标表示[例2] 已知a =(1,0),b =(2,1). (1)当k 为何值时,ka -b 与a +2b 共线;(2)若AB =2a +3b ,BC =a +mb ,且A ,B ,C 三点共线,求m 的值. [解] (1)∵a =(1,0),b =(2,1), ∴ka -b =k (1,0)-(2,1)=(k -2,-1), a +2b =(1,0)+2(2,1)=(5,2),∵ka -b 与a +2b 共线,∴2(k -2)-(-1)×5=0, ∴k =-12.(2)AB =2a +3b =2(1,0)+3(2,1)=(8,3),BC =a +mb =(1,0)+m (2,1)=(2m +1,m ).∵A ,B ,C 三点共线,∴AB ∥BC ,∴8m -3(2m +1)=0, ∴m =32.[方法技巧]向量共线的坐标表示中的乘积式和比例式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0,这是代数运算,用它解决平面向量共线问题的优点在于不需要引入参数“λ”,从而减少了未知数的个数,而且它使问题的解决具有代数化的特点和程序化的特征.(2)当x 2y 2≠0时,a ∥b ⇔x 1x 2=y 1y 2,即两个向量的相应坐标成比例,这种形式不易出现搭配错误.(3)公式x 1y 2-x 2y 1=0无条件x 2y 2≠0的限制,便于记忆;公式x 1x 2=y 1y 2有条件x 2y 2≠0的限制,但不易出错.所以我们可以记比例式,但在解题时改写成乘积的形式.1.[考点一]若向量a =(2,1),b =(-1,2),c =⎝⎛⎭⎫0,52,则c 可用向量a ,b 表示为( ) A.12a +b B.-12a -bC.32a +12b D.32a -12b 解析:选A 设c =xa +yb ,则⎝⎛⎭⎫0,52=(2x -y ,x +2y ),所以⎩⎪⎨⎪⎧2x -y =0,x +2y =52,解得⎩⎪⎨⎪⎧x =12,y =1,则c =12a +b .2.[考点一]已知点M (5,-6)和向量a =(1,-2),若MN =-3a ,则点N 的坐标为( ) A .(2,0) B .(-3,6) C .(6,2) D .(-2,0) 解析:选A MN =-3a =-3(1,-2)=(-3,6), 设N (x ,y ),则MN =(x -5,y +6)=(-3,6),所以⎩⎪⎨⎪⎧ x -5=-3,y +6=6,解得⎩⎪⎨⎪⎧x =2,y =0,即N (2,0).3.[考点二]已知向量OA =(k,12),OB =(4,5),OC =(-k,10),且A ,B ,C 三点共线,则k 的值是( )A .-23 B.43 C.12 D.13解析:选A AB =OB -OA =(4-k ,-7),AC =OC -OA =(-2k ,-2).∵A ,B ,C 三点共线,∴AB ,AC 共线,∴-2×(4-k )=-7×(-2k ),解得k =-23.4.[考点二]已知梯形ABCD ,其中AB ∥DC ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解析:∵在梯形ABCD 中,DC =2AB ,AB ∥DC ,∴DC =2AB .设点D 的坐标为(x ,y ),则DC =(4-x ,2-y ),AB =(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 答案:(2,4)5.[考点二]已知OA =a ,OB =b ,OC =c ,OD =d , OE =e ,设t ∈R ,如果3a =c,2b =d ,e =t (a +b ),那么t 为何值时,C ,D ,E 三点共线?解:由题设知,CD =OD -OC =d -c =2b -3a ,CE =OE -OC =e -c =t (a +b )-3a =(t -3)a +tb .C ,D ,E 三点共线的充要条件是存在实数k , 使得CE =k CD ,即(t -3)a +tb =-3ka +2kb , 整理得(t -3+3k )a =(2k -t )b . 若a ,b 共线,则t 可为任意实数;若a ,b 不共线,则有⎩⎪⎨⎪⎧t -3+3k =0,2k -t =0,解得t =65.综上,可知a ,b 共线时,t 可为任意实数;a ,b 不共线时,t =65.[全国卷5年真题集中演练——明规律] 1.(2015·新课标全国卷Ⅰ)已知点A (0,1),B (3,2),向量AC =(-4,-3),则向量BC =( )A .(-7,-4)B .(7,4)C .(-1,4)D .(1,4)解析:选A 设C (x ,y ),则AC=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y -1=-3,解得⎩⎪⎨⎪⎧x =-4,y =-2,从而BC =(-4,-2)-(3,2)=(-7,-4).故选A. 2.(2016·全国甲卷)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 解析:∵a =(m,4),b =(3,-2),a ∥b ,∴-2m -4×3=0.∴m =-6. 答案:-6[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.若向量AB =(2,4),AC =(1,3),则BC =( ) A .(1,1) B .(-1,-1) C .(3,7)D .(-3,-7)解析:选B 由向量的三角形法则,BC =AC -AB =(1,3)-(2,4)=(-1,-1).故选B.2.(2017·丰台期末)已知向量a =(3,-4),b =(x ,y ),若a ∥b ,则( )A .3x -4y =0B .3x +4y =0C .4x +3y =0D .4x -3y =0解析:选C 由平面向量共线基本定理可得3y +4x =0,故选C.3.已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( ) A .(-23,-12) B .(23,12) C .(7,0)D .(-7,0)解析:选A 由题意可得3a -2b +c =3(5,2)-2(-4,-3)+(x ,y )=(23+x,12+y )=(0,0),所以⎩⎪⎨⎪⎧ 23+x =0,12+y =0,解得⎩⎪⎨⎪⎧x =-23,y =-12,所以c =(-23,-12).4.若AC 为平行四边形ABCD 的一条对角线,AB =(3,5),AC =(2,4),则AD =( ) A .(-1,-1) B .(5,9) C .(1,1) D .(3,5)解析:选A 由题意可得AD =BC =AC -AB =(2,4)-(3,5)=(-1,-1). 5.若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 解析:AB =(a -1,3),AC =(-3,4),据题意知AB ∥AC ,∴4(a -1)=3×(-3),即4a =-5,∴a =-54.答案:-54[练常考题点——检验高考能力]一、选择题1.已知平面向量a =(1,-2),b =(2,m ),若a ∥b ,则3a +2b =( ) A .(7,2) B .(7,-14) C .(7,-4) D .(7,-8)解析:选B ∵a ∥b ,∴m +4=0,∴m =-4,∴b =(2,-4),∴3a +2b =3(1,-2)+2(2,-4)=(7,-14).2.设向量a =(x,1),b =(4,x ),且a ,b 方向相反,则x 的值是( ) A .2 B .-2 C .±2D .0解析:选B 因为a 与b 方向相反,所以b =ma ,m <0,则有(4,x )=m (x,1),∴⎩⎪⎨⎪⎧4=mx ,x =m ,解得m =±2.又m <0,∴m =-2,x =m =-2.3.已知在平行四边形ABCD 中,AD =(2,8),AB =(-3,4),对角线AC 与BD 相交于点M ,则AM =( )A.⎝⎛⎭⎫-12,-6 B.⎝⎛⎭⎫-12,6C.⎝⎛⎭⎫12,-6 D.⎝⎛⎭⎫12,6解析:选B 因为在平行四边形ABCD 中,有AC =AB +AD ,AM =12AC ,所以AM =12(AB +AD )=12[(-3,4)+(2,8)]=12×(-1,12)=⎝⎛⎭⎫-12,6,故选B. 4.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相连能构成四边形,则向量d =( )A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)解析:选D 设d =(x ,y ),由题意知4a =4(1,-3)=(4,-12),4b -2c =4(-2,4)-2(-1,-2)=(-6,20),2(a -c )=2[(1,-3)-(-1,-2)]=(4,-2),又4a +(4b -2c )+2(a -c )+d =0,所以(4,-12)+(-6,20)+(4,-2)+(x ,y )=(0,0),解得x =-2,y =-6,所以d =(-2,-6).5.已知平行四边形ABCD 中,AD =(3,7),AB =(-2,3),对角线AC 与BD 交于点O ,则CO 的坐标为( )A.⎝⎛⎭⎫-12,5 B.⎝⎛⎭⎫12,5 C.⎝⎛⎭⎫12,-5D.⎝⎛⎭⎫-12,-5 解析:选D AC =AB +AD =(-2,3)+(3,7)=(1,10).∴OC =12AC =⎝⎛⎭⎫12,5.∴CO =⎝⎛⎭⎫-12,-5. 6.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内一点且∠AOC =π4,|OC |=2,若OC =λOA +μOB ,则λ+μ=( )A .2 2 B. 2 C .2D .4 2解析:选A 因为|OC |=2,∠AOC =π4,所以C (2,2),又OC =λOA +μOB ,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.二、填空题7.在△ABC 中,点P 在BC 上,且BP =2PC ,点Q 是AC 的中点,若 PA =(4,3),PQ =(1,5),则BC =________.解析:AQ =PQ -PA =(1,5)-(4,3)=(-3,2),∴AC =2AQ =2(-3,2)=(-6,4).PC =PA +AC =(4,3)+(-6,4)=(-2,7),∴BC =3PC =3(-2,7)=(-6,21).答案:(-6,21)8.已知向量AC ,AD 和AB 在正方形网格中的位置如图所示,若AC =λAB +μAD ,则λμ=________.解析:建立如图所示的平面直角坐标系xAy ,则AC =(2,-2),AB =(1,2),AD =(1,0),由题意可知(2,-2)=λ(1,2)+μ(1,0),即⎩⎪⎨⎪⎧ 2=λ+μ,-2=2λ,解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λμ=-3. 答案:-39.P ={a |a =(-1,1)+m (1,2),m ∈R},Q ={b |b =(1,-2)+n (2,3),n ∈R}是两个向量集合,则P ∩Q 等于________.解析:P 中,a =(-1+m,1+2m ),Q 中,b =(1+2n ,-2+3n ).则⎩⎪⎨⎪⎧-1+m =1+2n ,1+2m =-2+3n .得⎩⎪⎨⎪⎧m =-12,n =-7.此时a =b =(-13,-23). 答案:{(-13,-23)}10.在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB =λAM +μAN ,则λ+μ=________.解析:由AB =λAM +μAN ,得AB =λ·12(AD +AC )+μ·12(AC +AB ),则⎝⎛⎭⎫μ2-1AB +λ2AD +λ2+μ2AC =0,得⎝⎛⎭⎫μ2-1AB +λ2AD +⎝⎛⎭⎫λ2+μ2⎝⎛⎭⎫AD +12 AD =0,得⎝⎛⎭⎫14λ+34μ-1AB +⎝⎛⎭⎫λ+μ2AD =0.又因为AB ,AD 不共线,所以由平面向量基本定理得⎩⎨⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎨⎧λ=-45,μ=85.所以λ+μ=45.答案:45三、解答题11.如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.设BA =a ,BC =b ,试用a ,b 为基底表示向量EF ,DF ,CD . 解:EF =EA +AB +BF =-16b -a +12b =13b -a ,DF =DE +EF =-16b +⎝⎛⎭⎫13b -a =16b -a ,CD =CF +FD =-12b -⎝⎛⎭⎫16b -a =a -23b .12.给定两个长度为1的平面向量OA 和OB ,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB 上运动.若OC =x OA +y OB ,其中x ,y ∈R ,求x +y 的最大值.解:以O 为坐标原点,OA 所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B -12,32,设∠AOC =αα∈0,2π3,则C (cos α,sin α),由OC =x OA +y OB ,得⎩⎨⎧ cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin ⎝⎛⎭⎫α+π6,又α∈⎣⎡⎦⎤0,2π3,则α+π6∈⎣⎡⎦⎤π6,5π6.所以当α+π6=π2,即α=π3时,x +y 取得最大值2.。
2018版高考数学一轮复习第五章平面向量5.2平面向量基本定理及坐标表课件理新人教A版
故 2λ+μ=0.
向量易忽略的两个问题:向量的 则 a,b 的夹角
120° 为__________ .
解析: 求两向量的夹角要求两向量的起点是同一点, 因此 a, b 的夹角为 120° .
→ (2)已知 A(1,3),B(4,-1),则与向量AB共线的单位向量为
3 4 3 4 ,- - , 或 5 5 5 5 __________________________ .
→ → → 解析:由已知得AB=(3,-4),所以|AB|=5,因此与AB共线 4 3 4 1→ 1→ 3 的单位向量为 AB= ,- 或- AB=- , . 5 5 5 5 5 5
(2)向量坐标的求法 ①若向量的起点是坐标原点,则终点的坐标即为向量的坐 标. → (x2-x1,y2-y1) , ②设 A(x1,y1),B(x2,y2),则AB=________________
2 2 → x - x + y - y 2 1 2 1 |AB|=___________________.
[典题 1]
(1)如果 e1, e2 是平面 α 内一组不共线的向量,
那么下列四组向量中,不能作为平面内所有向量的一组基底 的是( D ) B.e1-2e2 与 e1+2e2 D.e1+3e2 与 6e2+2e1
A.e1 与 e1+e2 C.e1+e2 与 e1-e2
[解析]
选项 A 中,设 e1+e2=λe1, 无解;选项 B 中,设 e1-2e2=λ(e1+2e2),
必考部分
第五章
平面向量
§5.2 平面向量基本定理及坐标表
考纲展示► 1.了解平面向量基本定理及其意义. 2.掌握平面向量的正交分解及坐标表示. 3.会用坐标表示平面向量的加法、减法与数乘运算. 4.理解用坐标表示的平面向量共线的条件.
高三数学一轮复习第五章 平面向量5.2 平面向量的基本定理及向量坐标运算课件
【解析】由题意得
uur P1P
=
1 3
uuur P1P2
或
uur P1P
=
2 uuur 3 P1P2
,
uuur P1P2
=(3,-3).
设P(x,y),则
uur P1P
=(x-1,y-3),
当
uur P1P
=
1 uuur 3 P1P2时,(x-1,ຫໍສະໝຸດ -3)=1 (3,-3),
3
所以x=2,y=2,即P(2,2).
【解析】因为a∥b,所以4×3-2x=0,所以x=6. 答案:6
2.(必修4P79练习T7改编)已知三个力F1=(-2,-1),F2= (-3,2),F3=(4,-3)同时作用于某物体上一点,为使物体 保持平衡,现加上一个力F4,则F4=________.
【解析】根据力的平衡原理有F1+F2+F3+F4=0,所以F4= -(F1+F2+F3)=(1,2). 答案:(1,2)
(2)基底:不共线的向量e1,e2叫做表示这一平面内所有 向量的一组基底. (3)平面向量的正交分解. 向量正交分解是把一个向量分解为两个_互__相__垂__直__的向 量.
2.平面向量的坐标表示 (1)平面向量的坐标表示: 在平面直角坐标系中,分别取与x轴、y轴方向相同的两 个单位向量i,j作为基底,由平面向量基本定理知,该平 面内的任一向量a可表示成a=x i+y j,由于a与有序数 对(x,y)是一一对应的,因此向量a的坐标是(x,y),记作 _a_=_(_x_,_y_)_.
2
2
于是得
1 2
1 2
1, 解得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 平面向量 5.2 平面向量基本定理及坐标表示教师用书 理新人教版1.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a 、b 共线⇔x 1y 2-x 2y 1=0.【知识拓展】1.若a 与b 不共线,λa +μb =0,则λ=μ=0.2.设a =(x 1,y 1),b =(x 2,y 2),如果x 2≠0,y 2≠0,则a ∥b ⇔x 1x 2=y 1y 2.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × ) (5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )1.设e 1,e 2是平面内一组基底,那么( )A .若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0B .空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数)C .对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内D .对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对 答案 A2.(教材改编)已知a 1+a 2+…+a n =0,且a n =(3,4),则a 1+a 2+…+a n -1的坐标为( ) A .(4,3) B .(-4,-3) C .(-3,-4) D .(-3,4)答案 C解析 a 1+a 2+…+a n -1=-a n =(-3,-4).3.(2015·课标全国Ⅰ)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →等于( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4)答案 A解析 AB →=(3,1),AC →=(-4,-3),BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4). 4.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn=________. 答案 -12解析 由已知条件可得m a +n b =(2m,3m )+(-n,2n )=(2m -n,3m +2n ),a -2b =(2,3)-(-2,4)=(4,-1).∵m a +n b 与a -2b 共线,∴2m -n 4=3m +2n -1,即n -2m =12m +8n ,∴m n =-12. 5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.题型一 平面向量基本定理的应用例1 在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →等于( ) A.14a +12b B.12a +14b C.23a +13b D.13a +23b 答案 C解析 ∵AC →=a ,BD →=b ,∴AD →=AO →+OD → =12AC →+12BD →=12a +12b . ∵E 是OD 的中点,∴DE EB =13,∴DF =13AB .∴DF →=13AB →=13(OB →-OA →)=13×[-12BD →-(-12AC →)] =16AC →-16BD →=16a -16b , ∴AF →=AD →+DF →=12a +12b +16a -16b=23a +13b , 故选C.思维升华 平面向量基本定理应用的实质和一般思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m的值为________.答案311解析 设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN → =AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )A.⎝ ⎛⎭⎪⎫1,83 B.⎝ ⎛⎭⎪⎫-133,83 C.⎝⎛⎭⎪⎫133,43D.⎝ ⎛⎭⎪⎫-133,-43(2)已知向量a =(1,-2),b =(m,4),且a ∥b ,则2a -b 等于( ) A .(4,0) B .(0,4) C .(4,-8) D .(-4,8)答案 (1)D (2)C解析 (1)由已知3c =-a +2b=(-5,2)+(-8,-6)=(-13,-4). 所以c =⎝ ⎛⎭⎪⎫-133,-43.(2)因为向量a =(1,-2),b =(m,4),且a ∥b , 所以1×4+2m =0,即m =-2,所以2a -b =2×(1,-2)-(-2,4)=(4,-8).思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)(2016·北京东城区模拟)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.(2)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( ) A .(2,72)B .(2,-12)C .(3,2)D .(1,3)答案 (1)4 (2)A解析 (1)以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO →=(-1,1),b =OB →=(6,2),c =BC →=(-1,-3). ∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2),即⎩⎪⎨⎪⎧-λ+6μ=-1,λ+2μ=-3,解得λ=-2,μ=-12,∴λμ=4.(2)设D (x ,y ),AD →=(x ,y -2),BC →=(4,3),又BC →=2AD →,∴⎩⎪⎨⎪⎧4=2x ,3=y -,∴⎩⎪⎨⎪⎧x =2,y =72,故选A.题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3). 命题点2 利用向量共线求参数例4 (2017·郑州月考)已知向量a =(1-sin θ,1),b =(12,1+sin θ),若a ∥b ,则锐角θ=________. 答案 45°解析 由a ∥b ,得(1-sin θ)(1+sin θ)=12,所以cos 2θ=12,∴cos θ=22或cos θ=-22,又θ为锐角,∴θ=45°.思维升华 平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(1)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.(2)设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b的最小值为________.答案 (1)(2,4) (2)3+222解析 (1)∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).(2)由已知得AB →=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λb +,-2=-4λ,整理得2a +b =2,所以1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+ 222(当且仅当b =2a 时,等号成立).11.解析法(坐标法)在向量中的应用典例 (12分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思想方法指导 建立平面直角坐标系,将向量坐标化,将向量问题转化为函数问题更加凸显向量的代数特征. 规范解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32).[4分]设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎪⎨⎪⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin(α+π6),[10分]又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.[12分]1.(2016·安徽六校教育研究会二模)在平行四边形ABCD 中,AB →=a ,AC →=b ,DE →=2EC →,则BE →等于( ) A .b -13aB .b -23aC .b -43aD .b +13a答案 C解析 因为BC →=AC →-AB →,DE →=2EC →, 所以BE →=BC →+CE →=BC →+13CD →=BC →-13AB →=AC →-AB →-13AB →=AC →-43AB →=b -43a ,故选C.2.已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为( ) A .(7,4) B .(7,14) C .(5,4) D .(5,14) 答案 D解析 设点B 的坐标为(x ,y ),则AB →=(x +1,y -5).由AB →=3a ,得⎩⎪⎨⎪⎧x +1=6,y -5=9,解得⎩⎪⎨⎪⎧x =5,y =14.3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ等于( ) A.14 B.12 C .1 D .2 答案 B解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb )∥c ,∴1+λ3=24,∴λ=12,故选B.4.已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( ) A .-12a +32bB.12a -32b C .-32a -12bD .-32a +12b答案 B解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎪⎨⎪⎧λ=12,μ=-32,∴c =12a -32b .5.(2017·淮南质检)已知平行四边形ABCD 中,AD →=(3,7),AB →=(-2,3),对角线AC 与BD 交于点O ,则CO →的坐标为( ) A .(-12,5)B .(12,5)C .(12,-5)D .(-12,-5)答案 D解析 ∵AC →=AB →+AD →=(-2,3)+(3,7)=(1,10), ∴OC →=12AC →=(12,5),∴CO →=(-12,-5).6.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则m n的值为( )A .2B.52 C .3D .4答案 C解析 ∵OA →·OB →=0,∴OA →⊥OB →, 以OA 为x 轴,OB 为y 轴建立直角坐标系(图略),OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ). ∵tan 30°=3n m =33, ∴m =3n ,即m n =3,故选C.7.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________.答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1),∴BD →=AD →-AB →=BC →-AB →=(-3,-5).8.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 答案 12解析 ∵a ∥b ,∴sin 2θ×1-cos 2θ=0,∴2sin θcos θ-cos 2θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ, ∴tan θ=12. 9.在平行四边形ABCD 中,E 和F 分别是CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________. 答案 43解析 选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →, 又AC →=λAE →+μAF →=(12λ+μ)AB →+(λ+12μ)AD →,于是得⎩⎪⎨⎪⎧ 12λ+μ=1,λ+12μ=1,解得⎩⎪⎨⎪⎧ λ=23,μ=23,所以λ+μ=43. *10.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=k λOA →+k (1-λ)OB →,∴m =k λ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).11.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧ a =5,b =-3.∴点C 的坐标为(5,-3).12.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ;(3)求M ,N 的坐标及向量MN →的坐标.解 (1)由已知得a =(5,-5),b =(-6,-3),c =(1,8).3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵m b +n c =(-6m +n ,-3m +8n )=(5,-5),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5, 解得⎩⎪⎨⎪⎧ m =-1,n =-1.(3)设O 为坐标原点,∵CM →=OM →-OC →=3c ,∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20),∴M (0,20).又∵CN →=ON →-OC →=-2b ,∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2),∴N (9,2),∴MN →=(9,-18).*13.如图所示,G 是△OAB 的重心,P ,Q 分别是边OA 、OB 上的动点,且P ,G ,Q 三点共线.(1)设PG →=λPQ →,将OG →用λ,OP →,OQ →表示;(2)设OP →=xOA →,OQ →=yOB →,证明:1x +1y 是定值.(1)解 OG →=OP →+PG →=OP →+λPQ →=OP →+λ(OQ →-OP →)=(1-λ)OP →+λOQ →.(2)证明 一方面,由(1),得 OG →=(1-λ)OP →+λOQ →=(1-λ)xOA →+λyOB →;①另一方面,∵G 是△OAB 的重心, ∴OG →=23OM →=23×12(OA →+OB →)=13OA →+13OB →.② 由①②得⎩⎪⎨⎪⎧ -λx =13,λy =13.∴1x +1y =3(1-λ)+3λ=3(定值).。