高考数学总复习之轨迹问题

合集下载

2023年高考数学轨迹问题的9种方法答案和解析

2023年高考数学轨迹问题的9种方法答案和解析
第5题
1.(北京市中国科学院附属实验学校 2020-2021 学年高二期中)已知坐标平面上点 M ( x, y ) 与
两个定点 M1 (26,1) , M 2 (2,1) 的距离之比等于 5.
(1)求点 M 的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为 C ,过点 A(2,3) 的直线 l 被 C 所截得的线段的长为 8,求直线 l 的


A.直线
B.圆
C.抛物线的一部分
D.椭圆
知识点二:直接法求轨迹
可以直接列出等量关系式
(1)根据已知条件及一些基本公式(两点间距离公式、点到直线的
距离公式、直线斜率公式等。)
(2)根据公式直接列出动点满足的等量关系式,从而得到轨迹方程。
简化为:设点----列式---化简----去掉“多点”或者补上“少点”
(2,0)。求过点 A 且和◎B 相切的动圆圆心 P 的轨迹。
2
2.(天津市第三中学 2020-2021 学年高二上学期)已知圆 M : x 2 y 2 2 y 7 0 和点
N 0,1 ,动圆 P 经过点 N 且与圆 M 相切,圆心 P 的轨迹为曲线 E.
(1)求曲线 E 的方程;
5
(3)在(2)的条件下,若过点 , 0 的直线 m 与曲线 W 有两个交点,求直线 m 的斜率
2
的取值范围.
知识点六:参交轨法
交轨法;轨迹交点法。
1. 动点满足第一个条件。求出对应的含参方程。用参数 t 表示。
f(x,y,t)0
=
2. 动点满足第二个条件。求出对应的含参方程。用同一参数 t 表示。
(1)求曲线 C 的方程;
(2)已知 A(2, 0) ,过点 F 的动直线 l 与曲线 C 交于 B , D 两点,记 AOB 和 △AOD 的面积

高考数学难点突破_难点22__轨迹方程的求法

高考数学难点突破_难点22__轨迹方程的求法

高考数学难点突破_难点22__轨迹方程的求法在高考数学中,轨迹方程的求法是一个比较常见但也较为复杂的难点。

在解决这类问题时,我们需要考虑几个关键因素,如何确定相关点、如何利用已知条件及使用适当的数学知识等。

一、确定相关点对于轨迹方程的求法,首先需要明确或确定一些与所求轨迹相关的点。

这些点可以从已知条件中得出,如一个点的坐标、两个点的距离、特定点到直线的距离等。

这些已知条件将成为我们解题的基础。

二、利用已知条件在确定了相关的点之后,我们需要利用已知条件来求解轨迹方程。

对于不同的条件,我们可以使用不同的数学知识和方法来解决问题。

下面是一些常见的已知条件及相应的解决思路:1.已知点的坐标:如果已知轨迹上的其中一点的坐标,我们可以将这个点的坐标代入轨迹方程中,得到一个等式,并根据这个等式求解出其他未知量,从而得到轨迹方程。

例如,已知轨迹上的点的坐标满足$x^2+y^2=1$,则这是一个以原点为中心、半径为1的圆的轨迹方程。

2.已知点到另一点的距离:如果已知轨迹上的其中一点到另一点的距离等于一定值,我们可以根据距离公式来求解轨迹方程。

例如,已知轨迹上的点到点$(2,1)$的距离等于2,则可以列出方程$\sqrt{(x-2)^2 + (y-1)^2} = 2$,进而求解出轨迹方程。

3.已知点到直线的距离:如果已知轨迹上的其中一点到直线的距离等于一定值,我们可以利用距离公式和直线方程来求解轨迹方程。

例如,已知轨迹上的点到直线$2x+ 3y = 6$的距离等于3,则可以列出方程$\frac{,2x + 3y -6,}{\sqrt{2^2 + 3^2}} = 3$,进一步求解出轨迹方程。

三、使用适当的数学知识在解决轨迹方程的问题中,我们可能需要应用到一些特定的数学知识,如圆的性质、直线的性质、二次曲线方程等。

我们需要结合问题的具体情况,合理地选择和应用这些知识来解决问题。

总结起来,要解决轨迹方程的问题,我们需要明确相关点、利用已知条件和适当应用数学知识。

2023年高考数学----轨迹问题规律方法与典型例题讲解

2023年高考数学----轨迹问题规律方法与典型例题讲解

2023年高考数学----轨迹问题规律方法与典型例题讲解【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例1.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D −的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为2④点M . 其中正确的命题个数为( ) A .1 B .2 C .3 D .4【答案】B【解析】连接,AC BD ,交于O ,则O 为,AC BD 中点,因为F 为1BD 的中点,所以1//FO DD , 由正方体的性质可知1DD ⊥平面ABCD , 所以FO ⊥平面ABCD , 因为DE ⊂平面ABCD , 所以FO DE ⊥,过点O 作PQ DE ⊥,分别交,BC AD 于,P Q ,过点,P Q 分别作11//,//PH BB QG AA ,分别交1111,B C A D 于点,H G ,连接GH , 所以,PQGH 四点共面,且//,GQ PH GQ PH =, 所以,四边形PQGH 为平行四边形, 因为1AA ⊥平面ABCD ,所以PH ⊥平面ABCD ,PQ ⊂平面ABCD , 所以PH PQ ⊥所以,四边形PQGH 为矩形,因为PQ FO O =,,PQ FO ⊂平面PQGH , 所以DE ⊥平面PQGH ,因为点M 在正方体的表面上运动,且满足FM DE ⊥ 所以,当FM ⊂面PQGH 时,始终有FM DE ⊥, 所以,点M 的轨迹是矩形PQGH ,如下图,因为2DQO QDE QDE AED π∠+∠=∠+∠=,所以,DQO AED ∠=∠, 所以,AQO BED ∠=∠, 因为4OAQ EBD π∠=∠=,所以AOQ △∽BDE △,所以AQ AO BE BD =,即12AQ=,即14AQ = 所以14CP AQ ==,PQ =, 所以,点M 不可能是棱AD 的中点,点M 的轨迹是矩形PQGH ,轨迹长度为矩形PQGH的周长212⎫⎪⎪⎝⎭,1 故正确的命题为③④.个数为2个. 故选:B例2.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D −的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( )A B .2CD .1【答案】A【解析】画出示意图如下:取1CC 中点N ,取11D C 中点M ,连接11,,,B M B N MN ME ,则11,ME B B ME B B =∥,则四边形1MEBB 为平行四边形,所以1B M ∥BE , 连接1D C ,则11,MN D C EF D C ∥∥,故MN ∥EF ,又1B M MN M BE EF E ⋂=⋂=, ,1,B M MN ⊂平面1B MN ,BE EF ⊂平面BEF, 所以平面BEF ∥平面B 1MN ,平面1B MN ∩平面11CDD C =MN ,所以P 点轨迹即为MN ,长度为11||||2MN D C == 证明:因为平面BEF ∥平面1B MN ,P 点是MN 上的动点,故1B P ⊂平面1B MN ,所以1B P ∥平面BEF ,满足题意. 故选:A .例3.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD −中,底面ABCD 是边长为2的正方形,PA ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD −所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆 【答案】D【解析】可将四棱锥P ABCD −补形成正方体ABCD PB CD ''−,如图①,直线AG 即体对角线AC ',易证AC '⊥平面PDB ,A 选项正确; 如图②,取CD 的中点H ,连接FH ,可知FH AC //,所以GFH ∠ (或其补角)与直线FG 和直线AC 所成的角相同,在FGH 中,FG GH FG ==,所以π3GFH ∠=,B 选项正确;如图③,延长EF 交直线CD 于点H ,交直线BC 于点I ,连接GI 交PB 于点M ,连接GH 交PD 于点N ,则五边形EFNGM 即为平面EFG 截 四棱锥P ABCD −所得的截面,C 选项正确;当12AGT S =△时,因为AG 所以点T 到AG 点T 在以AC 为轴,底面半径r =T 在平面ABCD 上,所以点T 的轨迹是椭圆.D 选项错误. 故选:D例4.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P −−的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线【答案】D【解析】连接AC 交BD 于O ,取11B D 中点1O ,连接1OO以O 为原点,分别以OA 、OB 、1OO 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图:令正方体边长为2,则11(,)A C A B ,(0,,)P y z =面11BD A 的一个法向量为1(2,AB =−,面11BB D 的一个法向量为(AC =− 则1(co 1s 2,AC AB −==,故二面角111A BD B −−的大小为π3又二面角11A BD P −−的大小(]0,παÎ,则π3α=或2π3α=由cos sin βα=,,可得π6β=又1(,)y z A P =−1111(1sin 2A P AB A P AB β⋅−===⋅整理得240z z +++= 即3)1y z z =−+,是双曲线. 故选:D例5.(2022·全国·高三专题练习)如图,正方体ABCD A B C D −''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧【答案】C【解析】由P 点的轨迹实际是一个正圆锥面和两个平面的交线,其中这个正圆锥面的中心轴即为AC ',顶点为A ,顶角的一半即为MAC '∠, 以A 点为坐标原点建立空间直角坐标系,则1(0,0,1),(1,1,0),(,1,1)2AC M ,可得1(1,1,1),(,1,0)2ACAM '=−=,1111cos MAC ⨯+⨯'∠===,设AC '与底面A BC D ''''所成的角为θ,则A C cos AC θ''===>',所以MAC θ'<∠,''''的交线是双曲线弧,所以该正圆锥面和底面A B C D同理可知,P点在平面CDD C''的交线是双曲线弧,故选:C.。

高考解析几何轨迹问题解题策略

高考解析几何轨迹问题解题策略

高考解析几何轨迹问题解题策略
一、轨迹方程的求法
1. 直接法:直接法就是不设出动点的坐标,而是根据题设条件,直接列出轨迹上满足的点的几何条件,并从这个条件对方程进行整理,得到轨迹方程.
2. 定义法:定义法就是根据已知条件,结合所学过的圆锥曲线的定义直接写出曲线的方程.
3. 参数法:参数法是指先引入一个参数,如时间、速度等,根据已知条件,写出参数方程,再消去参数化为普通方程.
4. 交轨法:交轨法是指利用圆锥曲线统一定义,通过求交点坐标来求轨迹方程的方法.
二、轨迹问题的解题策略
1. 转化化归:将待求问题转化为已知问题,将复杂问题转化为简单问题,将抽象问题转化为具体问题,这是解决轨迹问题的基本策略.
2. 设而不求:在轨迹问题中,设点而不求出点的坐标是常用的一种解题策略.
3. 整体代换:在轨迹问题中,有时通过整体代换可以简化运算.
4. 坐标转移:在轨迹问题中,有时可以通过坐标转移来转化问题.
5. 逆向思维:在轨迹问题中,有时通过逆向思维可以简化运算.。

高考数学核心考点必备专题8-1 立体几何中的轨迹问题-(解析版)-2023年高考数学

高考数学核心考点必备专题8-1  立体几何中的轨迹问题-(解析版)-2023年高考数学

专题8-1 立体几何中的轨迹问题目录一、热点题型归纳 (1)【题型一】由动点保持平行求轨迹 .................................................................................................................. 1 【题型二】由动点保持垂直求轨迹 .................................................................................................................. 2 【题型三】由动点保持等距(或定长)求轨迹 .............................................................................................. 4 【题型四】由动点保持等角(或定角)求轨迹 .............................................................................................. 5 【题型五】投影求轨迹 ...................................................................................................................................... 6 【题型六】翻折与动点求轨迹 .......................................................................................................................... 7 二、最新模考题组练 .. (8)【题型一】由动点保持平行性求轨迹【典例分析】如图,在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、N 分别是CC 1、C 1D 1、DD 1、CD 、BC 的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥面A 1BD ,则点M 轨迹的长度是( )A B C D【提分秘籍】基本规律1.线面平行转化为面面平行得轨迹2.平行时可利用法向量垂直关系求轨迹【变式演练】1.在三棱台111A B C ABC 中,点D 在11A B 上,且1//AA BD ,点M 是三角形111A B C 内(含边界)的一个动点,且有平面//BDM 平面11A ACC ,则动点M 的轨迹是( )A .三角形111ABC 边界的一部分 B .一个点 C .线段的一部分D .圆的一部分2.已知正方体1111ABCD A B C D -的棱长为2,E 、F 分别是棱1AA 、11A D 的中点,点P 为底面ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为( )A 1BC D3.在棱长为2的正方体1111ABCD A B C D -中,点E ,F 分别是棱11C D ,11B C 的中点,P 是上底面1111D C B A 内一点(含边界),若//AP 平面BDEF ,则Р点的轨迹长为( )A .1BC .2D .【题型二】动点保持垂直性求轨迹【典例分析】在正方体1111ABCD A B C D -中,Q 是正方形11B BCC 内的动点,11A Q BC ⊥,则Q 点的轨迹是( ) A .点1B B .线段1B C C .线段11B C D .平面11B BCC【提分秘籍】基本规律1.可利用线线线面垂直,转化为面面垂直,得交线求轨迹2.利用空间坐标运算求轨迹3.利用垂直关系转化为平行关系求轨迹【变式演练】1.在正方体1111ABCD A B C D -中,点P 在侧面11BCC B 及其边界上运动,且保持1AP BD ⊥,则动点P 的轨迹为 A .线段1CBB .线段1BCC .1BB 的中点与1CC 的中点连成的线段D .BC 的中点与11B C 的中点连成的线段2.在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别为1BD ,11B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥.给出下列说法: ∥点P 可以是棱1BB 的中点;∥线段MP 的最大值为34;∥点P 的轨迹是正方形;∥点P 轨迹的长度为2其中所有正确说法的序号是________.3.如图,在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,则下列说法不正确的是( )A .1A F 与1D E 不可能平行B .1A F 与BE 是异面直线C .点F 的轨迹是一条线段D .三棱锥1F ABD -的体积为定值【题型三】由动点保持等距(或者定距)求轨迹【典例分析】已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面ABCD 内一点,若P 到棱CD ,A 1D 1距离相等的点,则点P 的轨迹是( ) A .直线 B .椭圆C .抛物线D .双曲线【提分秘籍】基本规律1.距离,可转化为在一个平面内的距离关系,借助于圆锥曲线定义或者球和圆的定义等知识求解轨迹2.利用空间坐标计算求轨迹【变式演练】1.如图,在四棱锥P ABCD -中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为正方形ABCD 内(包括边界)的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为( )A .B .C .D .2.如图,在棱长为4的正方体ABCD A B C D ''''-中,E 、F 分别是AD 、A D ''的中点,长为2的线段MN 的一个端点M 在线段EF 上运动,另一个端点N 在底面A B C D ''''上运动,则线段MN 的中点P 的轨迹(曲面)与正方体(各个面)所围成的几何体的体积为( )A .43π B .23π C .6πD .3π3.四棱锥P ﹣OABC 中,底面OABC 是正方形,OP ∥OA ,OA =OP =a .D 是棱OP 上的一动点,E 是正方形OABC 内一动点,DE 的中点为Q ,当DE =a 时,Q 的轨迹是球面的一部分,其表面积为3π,则a 的值是( )A .B .C .D .6【题型四】由动点保持等角(或定角)求轨迹【典例分析】正方体1111ABCD A B C D -中,M ,N 分别为AB ,11A B 的中点,P 是边11C D 上的一个点(包括端点),Q 是平面1PMB 上一动点,满足直线MN 与直线AN 夹角与直线MN 与直线NQ 的夹角相等,则点Q 所在轨迹为( )A .椭圆B .双曲线C .抛物线D .抛物线或双曲线【提分秘籍】基本规律1. 直线与面成定角,可能是圆锥侧面。

高考数学难点突破_难点22__轨迹方程的求法

高考数学难点突破_难点22__轨迹方程的求法

高考数学难点突破_难点22__轨迹方程的求法难点22:轨迹方程的求法轨迹是一个几何对象的运动过程中所留下的轨迹,轨迹方程是研究轨迹的数学工具之一、在高考中,轨迹方程往往是一道比较复杂的题目,考查学生对平面几何知识的掌握和应用能力。

本文将从轨迹方程的基本概念、推导方法和例题讲解三个方面来突破难点22一、轨迹方程的基本概念轨迹方程通常由若干个关联点的坐标关系确定。

可以是一条曲线、一个闭合图形或是一个点的集合,根据题目所给条件可以是直线、圆、椭圆、抛物线、双曲线等各种图形。

二、轨迹方程的推导方法在求解轨迹方程时,需要根据题目给出的条件列出方程式,然后根据方程式进行推导,最终得到轨迹方程。

(1)通过代数方法推导轨迹方程:通过解方程组,来获取图形上特定点的坐标关系,从而得到轨迹方程。

(2)通过几何性质推导轨迹方程:根据图形的几何性质进行推导。

例如,利用垂直、平行、相切等性质,可以推导出轨迹方程。

三、轨迹方程的例题讲解例1:已知直线l过坐标原点,并且向量(3,4)与直线l垂直。

求直线l的轨迹方程。

解析:设直线l的方程为y=kx,由题意可知直线l过坐标原点,因此方程为y=kx。

直线向量(3,4)与直线l垂直,说明这两个向量的点积为0。

即3k+4=0,解得k=-\frac{4}{3}。

因此,直线l的方程为y=-\frac{4}{3}x。

例2:已知点P(x,y)在椭圆C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1上,并且点P的切线与直线x=1垂直。

求椭圆C的轨迹方程。

解析:椭圆C的方程为\frac{x^2}{a^2}+\frac{y^2}{b^2}=1、设过点P(x,y)的切线方程为y=k(x-1),根据题意得知,点P的切线与直线x=1垂直,因此k的值为0。

代入点P的坐标得到y=0。

将点P的坐标带入椭圆C的方程,得到\frac{x^2}{a^2}=1、解得x=\pm a。

因此,椭圆C的轨迹方程为x=\pm a。

高考数学经典常考题型之轨迹问题 含详解

高考数学经典常考题型之轨迹问题 含详解

1. 已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( )A. 一个圆 B. 两条平行直线 C. 四个点D. 两个点2 在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( ) A. 圆B. 不完整的圆C. 抛物线D. 抛物线的一部分3. 如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点。

且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A. 一条线段,但要去掉两个点B. 一个圆,但要去掉两个点C. 一个椭圆,但要去掉两个点D. 半圆,但要去掉两个点4. 如图3,在正方体1111D C B A ABCD -中,P 是侧面1BC 内一动点,若P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在的曲线是( ) A. 直线B. 圆C. 双曲线D. 抛物线图35. 已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( ) A. 抛物线B. 双曲线C. 椭圆D. 直线6. 已知异面直线a,b 成 60角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a,b 上移动,且线段AB 长等于4,求线段AB 中点的轨迹方程。

7. 已知圆E 的方程为 (x -1)2 + y 2 = 1, 四边形PABQ 为该圆的内接梯形,底AB 为圆的直径且在x 轴上,以A 、B 为焦点的椭圆C 过P 、Q 两点.(1) 若直线QP 与椭圆C 的右准线相交于点M ,求点M 的轨迹; (2) 当梯形PABQ 周长最大时,求椭圆C 的方程.8. 已知双曲线的两个焦点分别为F 1、F 2,其中F 1又是抛物线 y 2 = 4 x 的一个焦点,且点A(-1, 2),B(3, 2)在双曲线上.(1)求点F 2的轨迹;(2)是否存在直线y = x+m 与点F 2的轨迹有且只有两个公共点,若存在,求出实数m 的值,若不存在,说明理由.9. 已知常数a > 0,c = (0, a),i = (1, 0),经过原点O ,以c +λi 为方向向量的直线与经过定点A(0 , a),以i - 2λc 为方向向量的直线交于点P ,其中λ∈R ,试问:是否存在两个定点E , F ,使得 | PE| + | PF | 为定值,若存在,求出E, F 的坐标,若不存在,说明理由.10. 如图,矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=点(11)T -,在AD 边所在直线上.(I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,求动圆P 的圆心的轨迹方程.11. 如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB.12. 已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT (Ⅰ)设x 为点P 的横坐标,证明x aca P F +=||1; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M , 使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.13. 过抛物线y 2=4x 的焦点的直线l 与抛物线交于A 、B 两点,O 为坐标原点.求△AOB 的重心G 的轨迹C 的方程.14. 已知圆22:1C x y +=和点(2,0)Q ,动点M 到圆C 的切线长与||MQ 的比等于常数(0)λλ>,求动点M 的轨迹方程,并说明它表示什么曲线?15. 如图,圆1O 与圆2O 的半径都是1,421=O O ,过动点P 分别作圆1O 、圆2O 的切线PM 、PN (M 、N 分别为切点),使得PN PM 2=.试建立适当的坐标系,并求动点P的轨迹方程.16. 已知椭圆C:x y221691+=和点P(1,2),直线l经过点P并与椭圆C交于A、B两点,求当l倾斜角变化时,弦中点的轨迹方程。

高考数学考点总复习课件 第60讲 轨迹问题

高考数学考点总复习课件 第60讲  轨迹问题

【解析】 设 M(x0,0),P(0,y0),N(x,y), 点 N 为轨迹上任意一点. 因为P→M⊥P→F,P→M=(x0,-y0),P→F=(1,-y0), 所以(x0,-y0)·(1,-y0)=0,所以 x0+y20=0. 由M→N=2M→P,得(x-x0,y)=2(-x0,y0),
所以xy-=x20y=0 -2x0
综合(1)(2)知,MN 的中点 P 的轨迹方程为 2ax +2by-a2-b2=0.
3代入法(相关点法):当所求动点M 是随着
另一动点P(称之为相关点)而运动,如果相关 点P满足某一曲线方程,这时我们可以用动点 坐标表示相关点坐标,再把相关点坐标代入 曲线方程,就把相关点所满足的方程转化为动 点的轨迹方程;
4 参数法:有时求动点应满足的几何条件不易
得出,也无明显的相关点,但却较易发现这个 动点的运动常常受到另一个变量(角度、斜率、 比值、截距或时间等)的制约,即动点坐标( x,y ) 中的x,y分别随另一变量的变化而变化,我们可 称这个变量为参数,建立轨迹的参数方程;.
由 OA⊥OB,得 y1y2=-x1x2, 所以4kpb=-bk22,b=-4kp, 故 y0=kx0+b=k(x0-4p). 把 k=-xy00代入,得 x20+y20-4px0=0(x0≠0). AB⊥x 轴时,M(4p,0)也符合 x2+y2-4px=0(x≠0), 即点 M 的轨迹方程为 x2+y2-4px=0(x≠0).
5交轨法:在求两动曲线交点的轨迹问题时,通
过引入参变量求出两曲线的轨迹方程,再联立方 程,通过解方程组消去参变量,直接得到x,y的 关系式.
【要点指南】 ①方程的解;②曲线上的点; ③几何条件的集合; ④代入几何条件;⑤定义
1.方程 x2+xy=x 表示的曲线是( )

(完整版)高考数学轨迹问题

(完整版)高考数学轨迹问题

第23讲:轨迹问题一.高考要求能理解轨迹的概念,能根据所给条件选择适当的直角坐标系求轨迹方程,在高考中小题大题均会出现,注重数学方法和数学思想的运用,综合性较强.二.两点解读重点:①求轨迹方程的两大类方法:直接法(定义法、直译法);间接法(坐标转移法、参数法、交轨法)②几何性质转化为方程;③运用向量知识.难点:①求轨迹方程的“完备性”、“纯粹性";②数形结合的思想和分类讨论的思想的运用.三.课前训练1.分别过12(1,0),(1,0)A A -作两条互相垂直的直线,则它们的交点M 的轨迹方程是221x y +=2.椭圆14922=+y x 与直线 y x =平行的所有弦的中点的轨迹方程为490x y += 3.已知椭圆的焦点是1F 、2F ,P 是椭圆上的一个动点.如果延长P F 1到Q ,使得||||2PF PQ =,那么动点Q 的轨迹是 ( A )(A )圆 (B)椭圆 (C )双曲线的一支 (D )抛物线4.抛物线22y x =上各点与焦点连线中点的轨迹方程是214y x =- 四.典型例题例1 直角坐标平面xoy 中,若定点)2,1(A 与动点),(y x P 满足4=⋅OA OP ,则点P 的轨迹方程是_____________ 解:由向量的坐标运算知 24OP OA x y •=+=,则点P 的轨迹方程是:24x y +=例2 与两圆221x y +=和228120x y x +-+=都外切的圆的圆心在 ( )(A ) 一个椭圆上 (B )双曲线的一支上(C)一条抛物线上 (D )一个圆上解:将228120x y x +-+=配方得22(4)4x y -+=,设所求圆心为P ,则由题意知211PO PO R r -=-=,故选B例3 在圆229x y +=中,过已知点(1,2)P 的弦中点轨迹方程为解:设弦的中点为M ,则OM PM ⊥,所以M 在以OP 为直径的圆上,故所求轨迹方程为 2215()(1)24x y -+-= 例4 过抛物线24x y =的焦点F 作直线l 交抛物线于,A B 两点,则弦AB 的中点M 的轨迹方程是解:(0,1)F ,设11(,)A x y ,22(,)B x y ,(,)M x y ,则由2114x y =,2224x y =,两式相减得 l k = 21212142y y x x x x x -+==-,又1l FM y k k x -==,12x y x -∴=,即2112y x =+ 例5 如图,圆1O 与圆2O 的半径都是1,421=O O ,过动点P 分别作圆1O 、圆2O 的切线PM 、PN (M 、N 分别为切点),使得PN PM 2=.试建立适当的坐标系,并求动点P 的轨迹方程.解:以21O O 的中点O 为原点,21O O 所在的直线为x 轴,建立平面直角坐标系,则)0,2(),0,2(21O O - 由已知PN PM 2=可得:222PN PM =因为两圆的半径均为1,所以)1(212221-=-PO PO设),(y x P ,则]1)2[(21)2(222-+-=-+y x x ,即33)6(22=+-y x 所以所求轨迹方程为:33)6(22=+-y x (或031222=+-+x y x )。

高考数学重要知识点轨迹方程的求解

高考数学重要知识点轨迹方程的求解

高考数学重要知识点轨迹方程的求解高考数学中,轨迹方程是一个非常重要的知识点。

轨迹方程主要讲述了一个点随着一些条件的变化而形成的轨迹。

在解题过程中,我们常常需要根据给定的条件,确定点的坐标,并通过数学方法得出其轨迹方程。

下面我将详细介绍一下轨迹方程的求解方法。

轨迹方程的求解方法主要分为以下几种情况:1.直线轨迹:在数学中,直线是一种常见的轨迹形式。

当我们需要求解一些点在直线上的轨迹方程时,一般需要两个条件来限定点的坐标。

通过解方程可以得到轨迹方程。

例如,设点P(x,y)在直线l上,且满足条件2x-3y=6,那么可以通过解方程2x-3y=6得到轨迹方程。

2.抛物线轨迹:另一个常见的轨迹形式是抛物线。

对于求解抛物线上一点的轨迹方程,我们一般需要给出点的横坐标或纵坐标,并通过一定条件和关系推导出轨迹方程。

例如,设点P(x,y)在抛物线y = ax^2 + bx + c上,且满足条件P(1,2),那么可以通过代入条件,解出a、b、c,并得到轨迹方程。

3.圆轨迹:圆是另一种常见的轨迹形式。

当我们需要求解点在圆上的轨迹方程时,一般需要给出点到圆心的距离或者给出边缘点的坐标,通过数学关系来求解出轨迹方程。

例如,设点P(x,y)在圆上,且与圆心A(a,b)的距离等于r,那么可以通过点到圆心的距离公式,得到轨迹方程(x-a)^2+(y-b)^2=r^24.椭圆和双曲线轨迹:椭圆和双曲线也是常见的轨迹形式。

当我们需要求解点在椭圆或双曲线上的轨迹方程时,一般需要给出点到中心的距离或者给出边缘点的坐标,并通过数学关系来求解出轨迹方程。

例如,设点P(x,y)在椭圆上,且与中心O(0,0)之间的距离的和恒定为d,那么可以通过代入条件,解得轨迹方程。

在实际的解题过程中,我们需要根据题目给出的具体条件,选择合适的方法和数学工具来求解轨迹方程。

另外,我们还需要注意数学推导过程的准确性和严密性,避免漏解或者得出错误的轨迹方程。

除了上面介绍的常见情况,还有一些其他的轨迹形式,例如双曲线的渐近线、追踪问题等,都需要根据具体情况进行推导和求解。

【高中数学】高考数学题型归纳:轨迹方程的求解

【高中数学】高考数学题型归纳:轨迹方程的求解

【高中数学】高考数学题型归纳:轨迹方程的求解高考数学问题的归纳:轨迹方程的解符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹包括两个问题:轨迹上的所有点都满足给定的条件,这称为轨迹的纯度(也称为必要性);所有不在轨迹上的点都不满足给定条件,即满足给定条件的点必须在轨迹上,这称为轨迹的完整性(也称为充分性)【轨迹方程】就是与几何轨迹对应的代数描述。

一、求运动点轨迹方程的基本步骤⒈建立适当的坐标系,设出动点m的坐标;2.写出点m的集合;⒊列出方程=0;4.简化方程是最简单的形式;⒌检验。

二、求解运动点轨迹方程的常用方法:求解轨迹方程的方法有很多,包括直译法、定义法、相关点法、参数法、轨道交叉法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

2.定义方法:如果可以确定运动点的轨迹符合已知曲线的定义,则可以使用曲线的定义来编写方程。

这种计算弹道方程的方法称为定义法。

⒊相关点法:用动点q的坐标x,y表示相关点p的坐标x0、y0,然后代入点p的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点q轨迹方程,这种求轨迹方程的方法叫做相关点法。

4.参数法:当很难找到运动点坐标x和y之间的直接关系时,我们通常先找到x和y与某个变量t之间的关系,然后消除参数变量t,得到方程,即运动点的轨迹方程。

这种计算弹道方程的方法称为参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

*求解运动点轨迹方程的一般步骤①建系建立适当的坐标系;② 设定点设定轨道上的任意点P(x,y);③列式列出动点p所满足的关系式;④ 根据替代条件的特点,选择距离公式和斜率公式,将其转化为关于X和Y的方程,并对其进行简化;⑤证明证明所求方程即为符合条件的动点轨迹方程。

高考数学难点:轨迹方程的求法

高考数学难点:轨迹方程的求法

高考数学难点:轨迹方程的求法求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.●难点磁场(★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线.●案例探究[例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目.知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程.错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题.技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程.解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.[例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招)命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:直线与抛物线的位置关系.错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论.技巧与方法:将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系.解法一:设A (x 1,y 1),B (x 2,y 2),M (x ,y )依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x y x y px y px y ①-②得(y 1-y 2)(y 1+y 2)=4p (x 1-x 2) 若x 1≠x 2,则有2121214y y px x y y +=-- ⑥①×②,得y 12·y 22=16p 2x 1x 2③代入上式有y 1y 2=-16p 2 ⑦ ⑥代入④,得yxy y p -=+214⑧⑥代入⑤,得pyx y y x x y y y y p442111121--=--=+ 所以211214)(44y px y y p y y p --=+ 即4px -y 12=y (y 1+y 2)-y 12-y 1y 2⑦、⑧代入上式,得x 2+y 2-4px =0(x ≠0)当x 1=x 2时,AB ⊥x 轴,易得M (4p ,0)仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0(x ≠0)它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设M (x ,y ),直线AB 的方程为y =kx +b由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+(2kb -4p )x +b 2=0所以x 1x 2=22kb ,消x ,得ky 2-4py +4pb =0① ② ③ ④ ⑤所以y 1y 2=kpb4,由OA ⊥OB ,得y 1y 2=-x 1x 2 所以k pk4=-22kb ,b =-4kp故y =kx +b =k (x -4p ),用k =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.[例3]某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图:本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力,属★★★★★级题目.知识依托:圆锥曲线的定义,求两曲线的交点.错解分析:正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键.技巧与方法:研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程.解:设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ② 由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ●锦囊妙计求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法.(1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程.(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.●歼灭难点训练 一、选择题1.(★★★★)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2.(★★★★)设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y xD.14922=-x y二、填空题3.(★★★★)△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________. 4.(★★★★)高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________.三、解答题5.(★★★★)已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6.(★★★★)双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程.7.(★★★★★)已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.(★★★★★)已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案难点磁场解:建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0). 设M (x ,y )是轨迹上任意一点.则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴).(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0.点M 的轨迹是以 (-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆. 歼灭难点训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|, ∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆. 答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0) ∵A 1、P 1、P 共线,∴300+=--x yx x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a ,∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-.答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC | =|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ). ∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2. 即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0), 则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =mn m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =nm n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ , ∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0).|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。

高考数学复习---轨迹方程规律方法及典型例题

高考数学复习---轨迹方程规律方法及典型例题

高考数学复习---轨迹方程规律方法及典型例题【规律方法】求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.【典型例题】例1.(2022·全国·高三专题练习)双曲线2222:1(0,0)x y C a b a b−=>>的一条渐近线为y =,(1)求双曲线方程;(2)过点()0,1的直线l 与双曲线交于异支两点,,P Q OM OP OQ =+,求点M 的轨迹方程. 【解析】(1)由渐近线为y知,ba=(),0c 到直线y ==2c =,224a b +=②,联立①②,解得21a =,23b =,则双曲线方程为2213y x −=.(2)因为直线l 与双曲线交于异支两点,P Q ,所以直线l 的斜率必存在,且经过()01,点,可设直线:1l y kx =+,与双曲线联立得:()223240kxkx −−−=,设()()()1122,,,,,M x y P x y Q x y ,则有122122Δ023403k x x k x x k ⎧⎪>⎪⎪+=⎨−⎪−⎪⋅=<⎪−⎩解得k <由OM OP OQ =+uuu r uu u r uuu r 知,()1221212223623k x x x k y y y k x x k ⎧=+=⎪⎪−⎨⎪=+=++=⎪−⎩两式相除得3x k y =,即3x k y =代入263y k=−得22230y y x −−=,又k <2y …, 所以点M 的轨迹方程为()222302y y x y −−=…. 例2.(2022春·吉林辽源·高三辽源市第五中学校校考期中)已知过定点()01P ,的直线l 交曲线2214y x −=于A ,B 两点.(1)若直线l 的倾斜角为45︒,求AB ;(2)若线段AB 的中点为M ,求点M 的轨迹方程.【解析】(1)由题得l 方程为:1y x =+,将其与2214yx −=联立有22114y x y x =+⎧⎪⎨−=⎪⎩,消去y 得:23250x x −−=,解得=1x −或53x =. 则令A ()1,0−,B 5833⎛⎫ ⎪⎝⎭,,则AB=. (2)由题,直线l 存在,故设l 方程为:1y kx =+.将其与2214y x −=联立有:22114y kx y x =+⎧⎪⎨−=⎪⎩,消去y 得:()224250k x kx −−−= 因l 与双曲线有两个交点,则2240Δ80160k k ⎧−≠⎨=−>⎩, 得205k ≤<且24k ≠.设()()1122,,A x y B x y ,. 又设M 坐标为()00x y ,,则12120022,x x y y x y ++==. 因A ,B 在双曲线上,则有()221112012212120222144414y x x x x y y k y y x x y y x ⎧−=⎪+−⎪⇒=⇒=⎨+−⎪−=⎪⎩. 又M ,()01P ,在直线l 上,则001y k x −=.故000014y x x y −=2200040x y y ⇒−+= 由韦达定理有,12224k x x k +=−,12284y y k +=−. 则M 坐标为22444,k k k ⎛⎫ ⎪−−⎝⎭.又0244y k=−,205k ≤<且24k ≠,则01y ≥或04y <−. 综上点M 的轨迹方程为:2240x y y −+=,其中()[)41y ⋃∞∈−∞−+,,. 例3.(2022·全国·高三专题练习)在学习数学的过程中,我们通常运用类比猜想的方法研究问题.(1)已知动点P 为圆222:O x y r +=外一点,过P 引圆O 的两条切线PA 、PB ,A 、B 为切点,若0PA PB ⋅=,求动点P 的轨迹方程;(2)若动点Q 为椭圆22:194x y M +=外一点,过Q 引椭圆M 的两条切线QC 、QD ,C 、D 为切点,若0QC QD ⋅=,求出动点Q 的轨迹方程;(3)在(2)问中若椭圆方程为22221(0)x y a b a b +=>>,其余条件都不变,那么动点Q 的轨迹方程是什么(直接写出答案即可,无需过程).【解析】(1)由切线的性质及0PA PB ⋅=可知,四边形OAPB 为正方形, 所以点P 在以O 为圆心,||OP长为半径的圆上,且|||OP OA , 进而动点P 的轨迹方程为2222x y r += (2)设两切线为1l ,2l ,①当1l 与x 轴不垂直且不平行时,设点Q 的坐标为0(Q x ,0)y 则03x ≠±, 设1l 的斜率为k ,则0k ≠,2l 的斜率为1k−,1l 的方程为00()y y k x x −=−,联立22194x y +=, 得2220000(49)18()9()360k x k y kx x y kx ++−+−−=,因为直线与椭圆相切,所以Δ0=,得22222000018()4(49)9[()4]0k y kx k y kx −−+⋅−−=, 化简,2222200009()(49)()(49)40k y kx k y kx k −−+−++=,进而2200()(49)0y kx k −−+=,所以2220000(9)240−−+−=x k x y k y 所以k 是方程222000(9)240−−+−=x k x y k y 的一个根, 同理1k−是方程222000(9)240−−+−=x k x y k y 的另一个根, 202041()9y k k x −∴⋅−=−,得220013x y +=,其中03x ≠±,②当1l 与x 轴垂直或平行时,2l 与x 轴平行或垂直, 可知:P 点坐标为:(3,2)±±,P 点坐标也满足220013x y +=,综上所述,点P 的轨迹方程为:220013x y +=.(3)动点Q 的轨迹方程是222200x y a b +=+以下是证明: 设两切线为1l ,2l ,①当1l 与x 轴不垂直且不平行时,设点Q 的坐标为0(Q x ,0)y 则0x a ≠±, 设1l 的斜率为k ,则0k ≠,2l 的斜率为1k−,1l 的方程为00()y y k x x −=−,联立22221x y a b+=, 得2222222220000()2()()0b a k x a k y kx x a y kx a b ++−+−−=,因为直线与椭圆相切,所以Δ0=,得()222222220000222()4()[()]0a k y kx k y kx b a a b −−+⋅−−=,化简,222220002222202()()()()0a b a b a k y kx k y kx b k −−+−++=, 进而220220()()0y x b k a k −−+=,所以222000022()20x k x y k y a b −−+−= 所以k 是方程22200022()20x k x y k y a b −−+−=的一个根, 同理1k−是方程222000022()20x k x y k y a b −−+−=的另一个根,2020221()y k ax b k −∴⋅−=−,得222200x y a b +=+,其中0x a ≠±, ②当1l 与x 轴垂直或平行时,2l 与x 轴平行或垂直, 可知:P 点坐标为:(,)a b ±±,P 点坐标也满足222200x y a b +=+,综上所述,点P 的轨迹方程为:222200x y a b +=+.。

高考数学总复习8.5轨迹问题

高考数学总复习8.5轨迹问题
• (2)若求轨迹,则不仅要求求出其轨迹方程,而且还需要说明和 讨论所求轨迹是什么样的图形,在何处,即图形的形状、位置、 大小都需说明、讨论清楚.最后“补漏”和“去掉增多”的点, 若轨迹有不同的情况,应分别讨论,以保证它的完整性.
整理课件
10
• 2.估计2011年高考对求轨迹方程仍是重点
• (1)对于求曲线(或轨迹)的方程这类问题,高考常常不给出图形 或不给出坐标系,以考查学生理解解析几何问题的基本思想方 法和能力.
整理课件
8
• 5.体会数学思想方法 • 方程思想、转化思想、数形结合等思想方法在解题中的运用.
整理课件
9
• 1.求轨迹方程与求轨迹的区别
• (1)若是求轨迹方程,我们应选择合适的方法求出其方程,最后 “补漏”和“去掉增多”的点即可,若轨迹有不同的情况,应 分类讨论,以保证它的完整性.即求轨迹方程就是求得的方程 加限制条件.
• 1.动点轨迹 • 看成适合某几何条件的点的集合. • 2.求动点轨迹方程的方法 • (1)轨迹类型已确定的,一般用待定系数法. • (2)定义法:如果动点的轨迹满足某种已知曲线的定义,则可依
定义写出轨迹方程.
• (3)直接法:动点满足的条件在题目中有明确的表述且轨迹类型 未知的,一般用直接法.
整理课件
6
• (6)交轨法:求两动曲线的交点的问题,常常通过解方程组得出 交点坐标,然后再消去参数求出轨迹方程的方法.
• (7)几何法:若所求的轨迹满足某些几何条件(如:线段的垂直 平分线,角平分线的性质).根据图形的几何性质而得到轨迹方 程的方法.
整理课件
7
• 3.直接法求轨迹方程的方法步骤 • (1)建系:建立适当的直角坐标系. • (2)设点:设动点M的坐标为(x,y). • (3)列式:列出几何等式:P={M|P(M)}. • (4)代换:代入坐标M(x,y),列出方程F(x,y)=0. • (5)化简:化简成最简方程形式. • (6)证明:(略),注意对特殊情况的讨论. • 4.体会“设而不求”在解题中的简化运算功能 • (1)求弦长时用韦达定理设而不求. • (2)弦中点问题用“点差法”设而不求.

高考数学轨迹问题专题练习题讲解

高考数学轨迹问题专题练习题讲解

高考数学轨迹问题专题练习题讲解第1讲 轨迹问题一.选择题(共12小题)1.方程|1|x −=所表示的曲线是( ) A .一个圆B .两个圆C .半个圆D .两个半圆【解答】解:将方程|1|x − 得22(1)(1)1x y −+−=,其中02x 剟,02y 剟.因此方程|1|x −表示以(1,1)C 为圆心,半径1r =的圆. 故选:A .2.方程||1x −=( ) A .两个半圆B .一个圆C .半个圆D .两个圆【解答】解:两边平方整理得:22(||1)2x y y −=−, 化简得22(||1)(1)1x y −+−=,由||10x −…得||1x …,即1x …或1x −…, 当1x …时,方程为22(1)(1)1x y −+−=, 表示圆心为(1,1)且半径为1的圆的右半圆; 当1x −…时,方程为22(1)(1)1x y ++−=, 表示圆心为(1,1)−且半径为1的圆的左半圆综上所述,得方程||1x −= 故选:A .3.在数学中有这样形状的曲线:22||||x y x y +=+.关于这种曲线,有以下结论: ①曲线C 恰好经过9个整点(即横、纵坐标均为整数的点); ②曲线C 上任意两点之间的距离都不超过2; ③曲线C 所围成的“花瓣”形状区域的面积大于5. 其中正确的结论有( ) A .①③B .②③C .①②D .①②③【解答】解:①曲线C 经过的整点有(0,0),(1,0),(1,0)−,(0,1),(0,1)−,(1,1),(1,1)−,(1,1)−,(1,1)−−,恰有9个点,即①正确;②点(1,1)和(1,1)−−均在曲线C 上,而这两点间的距离为2,即②错误; ③由于图形是对称的,所以只需考虑第一象限内的部分即可.此时有,22x y x y +=+,整理得,22111()()222x y −+−=,是以11(,)22为半径的圆,作出曲线在第一象限的图形如图所示,面积211111122224AOB C S S S ππ∆=+=⨯⨯+⋅⋅=+圆,故曲线C 的面积为14()2524ππ⨯+=+>,即③正确.故选:A .4.双纽线最早于1694年被瑞士数学家雅各布伯努利用来描述他所发现的曲线.在平面直角坐标系xOy 中,把到定点1(,0)F a −,2(,0)F a 距离之积等于2(0)a a >的点的轨迹称为双纽线C 、已知点0(P x ,0)y 是双纽线C 上一点,下列说法中正确的有( )①双纽线经过原点O ; ②双纽线C 关于原点O 中心对称;③022a ay −剟;④双纽线C 上满足12||||PF PF =的点P 有两个. A .①②B .①②③C .②③D .②③④【解答】解;根据双纽线C 2a =, 将0x =,0y =代入,符合方程,所以①正确;用(,)x y −−替换方程中的(,)x y ,原方程不变,所以双纽线C 关于原点O 中心对称,②正确; 根据三角形的等面积法可知,1212011||||sin 2||22PF PF F PF a y ∠=⨯⨯,即012||sin 22a ay F PF =∠…,亦即022a ay −剟,③正确; 若双纽线C 上点P 满足12||||PF PF =,则点P 在y 轴上,即0x =,代入方程, 解得0y =,所以这样的点P 只有一个,④错误. 故选:B .5.双纽线最早于1694年被瑞士数学家雅各布伯努利用来描述他所发现的曲线.在平面直角坐标系xOy 中,把到定点1(,0)F a −,2(,0)F a 距离之积等于2(0)a a >的点的轨迹称为双纽线C .已知点0(P x ,0)y 是双纽线C 上一点,下列说法中正确的有( )①双纽线C 关于原点O 中心对称;②022a a y −剟;③双纽线C 上满足12||||PF PF =的点P 有两个;④||PO . A .①②B .①②④C .②③④D .①③【解答】解:根据双纽线C 2a =,用(,)x y −−替换方程中的(,)x y ,原方程不变,所以双纽线C 关于原点O 中心对称,①正确; 根据三角形的等面积法可知,1212011||||sin 2||22PF PF F PF a y ∠=⨯⨯,即012||sin 22a ay F PF =∠…,亦即022a ay −剟,②正确; 若双纽线C 上点P 满足12||||PF PF =,则点P 在y 轴上,即0x =,代入方程, 解得0y =,所以这样的点P 只有一个,③错误;因为121()2PO PF PF =+,所以2221121221||[||2||||cos ||]4PO PF PF PF F PF PF =+∠+由余弦定理可得,2221121224||2||||cos ||a PF PF PF F PF PF =−∠+22222121212||||||cos cos 2PO a PF PF F PF a a F PF a =+∠=+∠…,所以|PO ,④正确.故选:B .6.如图,设点A 和B 为抛物线22(0)y px p =>上除原点以外的两个动点,已知OA OB ⊥,OM AB ⊥,则点M 的轨迹方程为( )A .2220x y px +−=(原点除外)B .2220x y py +−=(原点除外)C .2220x y px ++=(原点除外)D .2220x y py ++=(原点除外)【解答】解:设(,)M x y ,直线AB 的方程为y kx b =+, 由OM AB ⊥得x k y=−, 联立22y px =和y kx b =+消去y 得222(22)0k x x kb p b +−+=,所以2122b x x k=,所以22121212122()()()pby y kx b kx b k x x kb x x b k=++=+++=,由OA OB ⊥得12120x x y y +=,所以2220b pbk k +=,所以2b kp =−, 所以(2)y kx b k x p =+=−,把xk y =−代入得2220(0)x y px y +−=≠,故选:A .7.如果把一个平面区域内两点间的距离的最大值称为此区域的直径,那么曲线422x y +=围成的平面区域的直径为( )A B .3 C .D .4【解答】解:曲线422x y +=围成的平面区域,关于x ,y 轴对称,设曲线上的点(,)P x y ,可得3||2OP . 所以曲线422x y +=围成的平面区域的直径为:3. 故选:B .8.由曲线222||2||x y x y +=+围成的图形面积为( ) A .24π+B .28π+C .44π+D .48π+【解答】解:根据对称性,曲线222||2||x y x y +=+围成的图形面积等于在第一象限围成面积的4倍, 当0x …且0y …时222||2||x y x y +=+等价为2222x y x y +=+, 即22220x y x y +−−=, 即22(1)(1)2x y −+−=,圆心(1,1)C ,半径R , 则ACO ∆的面积12112S =⨯⨯=,BCO ∆的面积1S =,在第一象限部分的面积211122S ππ=++⨯=+,则四个象限的面积为44(2)84S ππ=+=+, 故选:D .9.如图,平面直角坐标系中,曲线(实线部分)的方程可以是( )A .22(||1)(1)0x y x y −−−+=B .( 22)(1)0x y −+=C .2(||1)(10x y x −−−+=D .(2)(10x −+=【解答】解:如图曲线表示折线段的一部分和双曲线,选项A 等价于||10x y −−=或2210x y −+=,表示折线||1y x =−的全部和双曲线,故错误; 选项B 等价于22||1010x y x y −−⎧⎨−+=⎩…,或||10x y −−=,||10x y −−=表示折线||1y x =−的全部,故错误; 选项C 等价于22||1010x y x y −−=⎧⎨−+⎩…或2210x y −+=,22||1010x y x y −−=⎧⎨−+⎩…表示折线||1y x =−在双曲线的外部 (包括有原点)的一部分,2210x y −+=表示双曲线,符合题中图象,故正确; 选项D 等价于22||1010x y x y −−=⎧⎨−+⎩…或22||1010x y x y −−⎧⎨−+=⎩…, 22||1010x y x y −−=⎧⎨−+⎩…表示表示折线||1y x =−在双曲线的外部(包括有原点)的一部分,22||1010x y x y −−⎧⎨−+=⎩…表示双曲线在x 轴下方的一部分,故错误. 故选:C .10.已知点集22{(,)|1}M x y y xy =−…,则平面直角坐标系中区域M 的面积是( ) A .1B .34π+C .πD .22π+【解答】解:当0xy …时,只需要满足21x …,21y …即可;当0xy >时,对不等式两边平方整理得到221x y +…,所以区域M 如下图.易知其面积为22π+.故选:D .11.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为22322()x y x y +=.给出下列四个结论: ①曲线C 有四条对称轴;②曲线C 上的点到原点的最大距离为14; ③曲线C 第一象限上任意一点作两坐标轴的垂线与两坐标轴 围成的矩形面积最大值为18;④四叶草面积小于4π. 其中,所有正确结论的序号是( )A .①②B .①③C .①③④D .①②④【解答】解:四叶草曲线方程为22322()x y x y +=,将x 换为x −,y 不变,可得方程不变,则曲线关于y 轴对称;将y 换为y −,x 不变,可得方程不变,则曲线关于x 轴对称;将x 换为y ,y 换为x ,可得方程不变,则曲线关于直线y x =对称;将x 换为y −,y 换为x −,可得方程不变,则曲线关于直线y x =−对称; 曲线C 有四条对称轴,故①正确;由y x =与22322()x y x y +=联立,可得y x ==或y x ==C 上的点到原点的最大距离为12=,故②错误; 设曲线C 第一象限上任意一点为(,)x y ,(0,0)x y >>,可得围成的矩形面积为xy ,由222x y xy +…, 则223223()8()x y x y xy +=…,即18xy …,当且仅当x y =取得最大值,故③正确; 易得四叶草曲线在以原点为圆心,12为半径的圆内,故四叶草面积小于4π,则④正确. 故选:C .12.曲线C 为:到两定点(2,0)M −、(2,0)N 距离乘积为常数16的动点P 的轨迹.以下结论正确的个数为( )(1)曲线C 一定经过原点; (2)曲线C 关于x 轴、y 轴对称; (3)MPN ∆的面积不大于8;(4)曲线C 在一个面积为64的矩形范围内. A .1B .2C .3D .4【解答】解:设(,)P x y 22(2)16x −+,对于(1),原点(0,0)代入方程,得2216⨯≠,即方程不成立, 则曲线C 一定经过原点,命题错误;对于(2),以x −代替x ,y −代替y 22(2)16x −−成立,16也成立,即曲线C 关于x 、y 轴对称,命题正确;对于(3),0x =,y =±MPN ∆的最大面积为1482⨯⨯=,命题正确;对于(4),令0y =,可得x =±,根据距离乘积为16可以得出x 的取值只可能在−到同理y 的取值只可能在−所以曲线C 在一个面积为= 综上,正确的命题有(2)(3),共2个. 故选:B .二.多选题(共2小题)13.数学中的很多符号具有简洁、对称的美感,是形成一些常见的漂亮图案的基石,也是许多艺术家设计作品的主要几何元素.如我们熟悉的∞符号,我们把形状类似∞的曲线称为“∞曲线”.经研究发现,在平面直角坐标系xOy 中,到定点(,0)A a −,(,0)B a 距离之积等于2(0)a a >的点的轨迹C 是“∞曲线”.若点0(P x ,0)y 是轨迹C 上一点,则下列说法中正确的有( ) A .曲线C 关于原点O 中心对称 B .0x 的取值范围是[a −,]aC .曲线C 上有且仅有一个点P 满足||||PA PB =D .22PO a −的最大值为22a【解答】解:在平面直角坐标系xOy 中,到定点(,0)A a −,(,0)B a 距离之积等于2(0)a a >的点的轨迹C 是“∞曲线”. 故点(P x ,0)y 满足2a ,点(M x −,0)y −代入2a ,得2a ,故A 正确;对于B :设x 轴上0x 范围的最大值为m x ,所以2()()m m x a x a a −+=,解得m x =,故0x 的范围为[].故B 错误; 对于C :若PA PB =,则点P 在AB 的垂直平分线上,即0P x =,设点(0,)P P y ,所以22a =,所以0P y =,即仅原点满足,故C 正确;对于2D a =, 化简得2222222()220x y a x a y +−+=,根据cos x ρθ=,sin y ρθ=,得到222cos 2a ρθ=, 所以2PO 的最大值为22a ,22PO a −的最大值为2a ,故D 错误.故选:AC .14.在平面直角坐标系xOy 中,(,)P x y 为曲线22:422||4||C x y x y +=++上一点,则( ) A .曲线C 关于原点对称B .[1x ∈−C .曲线C 围成的区域面积小于18D .P 到点1(0,)2【解答】解:当0x >,0y >时,曲线C 的方程为22422||4||x y x y +=++, 去掉绝对值化简可得22(1)1()142x y −+−=,将2214x y +=的中心平移到1(1,)2位于第一象限的部分, 因为点(,)x y −,(,)x y −,(,)x y −−都在曲线C 上, 所以曲线C 的图象关于x 轴、y 轴和坐标原点对称, 作出图象如图所示,由图可知曲线C关于原点对称,故选项A正确;令2214xy+=中的0y=,解得2x=,向右平移一个单位可得到横坐标为3,根据对称性可知33x−剟,故选项B错误;令2214xy+=中的0x=,解得1y=,向上平移12个单位可得纵坐标的最大值为32,曲线C第一象限的部分被包围在矩形内,矩形面积为39322⨯=,所以曲线C围成的区域面积小于94182⨯=,故选项C正确;令22(1)1()142xy−+−=中的0x=,可得12 y=所以到点1(0,)2,故选项D正确.故选:ACD.三.填空题(共6小题)15.数学中有许多形状优美、寓意美好的曲线,曲线22:1||C x y xy+=+就是其中之一(如图),给出下列三个结论:①曲线C恰好经过4个整点(即横、纵坐标均为整数的点);②曲线C③曲线C所围成的“花形”区域的面积小于4.其中,所有正确结论的序号是②.【解答】解:①令0x =,方程化为:21y =,解得1y =±,可得点(0,1)±;令0y =,方程化为:21x =,解得1x =±,可得点(1,0)±;令x y =±,方程化为:21x =,解得1x =±,可得点(1,1)±±.由此可得:曲线C 恰好经过8个整点,因此不正确. ②221||2||xy x y xy +=+…,方程化为:||1xy …,∴曲线C 上任意一点到原点的距离d ==,即曲线C③由四个点(1,1)±±作为正方形的顶点,可得正方形的面积为4,曲线C 所围成的“花形”区域的面积大于4.其中,所有正确结论的序号是②. 故答案为:②.16.数学中有许多形状优美、寓意美好的曲线,曲线22:1||C x y x y +=+就是其中之一(如图),给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 ①② .【解答】解:根据题意,曲线22:1||C x y x y +=+,用(,)x y −替换曲线方程中的(,)x y ,方程不变,所以曲线C 关于y 轴对称,对于①,当0x …时,221||x y x y +=+,即为,2222112x y x y xy ++=++…,可得222x y +…, 所以曲线经过点(0,1),(0,1)−,(1,0),(1,1),再根据对称性可知,曲线还经过点(1,0)−,(1,1)−,故曲线恰好经过6个整点,①正确;对于②,由上可知,当0x …时,222x y +…,即曲线C再根据对称性可知,曲线C ②正确;对于③,因为在x 轴上方,图形面积大于四点(1,0)−,(1,0),(1,1),(1,1)−围成的矩形面积122⨯=, 在x 轴下方,图形面积大于三点(1,0)−,(1,0),(0,1)−围成的等腰直角三角形的面积12112⨯⨯=,所以曲线C 所围成的“心形”区域的面积大于3,③错误. 故答案为:①②.17.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322:()16C x y x y +=恰好是四叶玫瑰线.给出下列结论: ①曲线C 经过5个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到坐标原点O 的距离都不超过2; ③曲线C 围成区域的面积大于4π;④方程22322()16(0)x y x y xy +=<表示的曲线C 在第二象限和第四象限. 其中正确结论的序号是 ②④ .【解答】解:22223222()16()2x y x y x y ++=…,224x y ∴+…(当且仅当222x y ==时取等号), 则②正确;将224x y +=和22322()16x y x y +=联立, 解得222x y ==,即圆224x y +=与曲线C相切于点,(,(,, 则①和③都错误;由0xy <,得方程22322()16x y x y +=表示的曲线C 在第二象限和第四象限,故④正确. 故答案为:②④.18.曲线C 是平面内到定点(1,0)A 的距离与到定直线1x =−的距离之和为3的动点P 的轨迹.则曲线C 与y 轴交点的坐标是(0, ;又已知点(B a ,1)(a 为常数),那么||||PB PA +的最小值d (a )= . 【解答】解:(1)设动点(,)P x y|1|3x +=, ①当4x <−时,|1|3x +>,无轨迹;②当41x −−剟4x +,化为231015(1)2y x x =+−−厖,与y 轴无交点;③当1x >−2x −,化为223y x =−+,3(1)2x −<…. 令0x =,解得y =综上①②③可知:曲线C 与y轴的交点为(0,; (2)由(1)可知:231015,(1)2323,(1)2x x y x x ⎧+−−⎪⎪=⎨⎪−+−<⎪⎩剟….如图所示,令1y =,则10151x +=,或231x −+=, 解得 1.4x =−或1.①当 1.4a −…或1a …时,||||||PA PB AB +…,d ∴(a)||AB ==; ②当11a −<<时,当直线1y =与2323(1)2y x x =−+−<…相交时的交点P 满足||||PA PB +取得最小值, 此抛物线的准线为2x =,∴直线1y =与准线的交点(2,1)Q ,此时d (a )||2QB a ==−;③当 1.41a −<−…时,当直线1y =与231015(1)2y x x =+−−剟相交时的交点P 满足|||PA PB +取得最小值,此抛物线的准线为4x =−,∴直线1y =与准线的交点(4,1)Q −,此时d (a )||4QB a ==+.综上可知:d (a) 1.414, 1.412,1 1.a a a a a a −=+−<−⎨⎪−−<<⎪⎩或剠…19.已知点(A B ,动点P 满足APB θ∠=且2||||cos 12PA PB θ=,则点P 的轨迹方程为2213x y += . 【解答】解:由2||||cos 12PA PB θ=,(0,)θπ∈,则1cos ||||12PA PB θ+=,||AB = 所以|||||||||cos 2PA PB PA PB θ+=,而在三角形ABP 中22222||||||||||8cos 2||||2||||PA PB AB PA PB PA PB PA PB θ+−+−==,所以可得22||||||||62PA PB PA PB ++=,而222||||(||||)2||||PA PB PA PB PA PB +=+−,所以可得2(||||)12PA PB +=,所以||||PA PB +=||AB ,所以可得P的轨迹为椭圆,且长轴长2a =2c =x 轴上,中心在原点的椭圆,即a =c =2221b a c =−=,所以P 的轨迹方程为:2213x y +=,故答案为:2213x y +=.20.在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O 的两不同动点A 、B 满足AO BO ⊥(如图所示).则AOB ∆得重心G (即三角形三条中线的交点)的轨迹方程为2233y x =+;【解答】解:显然直线AB 的斜率存在,记为k ,AB 的方程记为:y kx b =+,(0)b ≠,1(A x ,1)y ,2(B x ,2)y ,将直线方程代入2y x =得:20x kx b −−=,则有:△240k b =+>①,12x x k +=②,12x x b =−③,又211y x =,222y x =212y y b ∴=;AO BO ⊥,12120x x y y ∴+=,得:20b b −+=且0b ≠,1b ∴=,代入①验证,满足;故21212()22y y k x x k +=++=+; 设AOB ∆的重心为(,)G x y ,则1233x x k x +==④,212233y y k y ++==⑤, 由④⑤两式消去参数k 得:G 的轨迹方程为2233y x =+. 故答案为:2233y x =+. 四.解答题(共5小题)21.如图,直线1l 和2l 相交于点M ,12l l ⊥,点1N l ∈.以A ,B 为端点的曲线段C 上的任一点到2l 的距离与到点N 的距离相等.若AMN ∆为锐角三角形,||AM =||3AN =,且||6BN =.建立适当的坐标系,求曲线段C 的方程.【解答】解:法一:如图建立坐标系,以1l 为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点.依题意知:曲线段C 是以点N 为焦点,以2l 为准线的抛物线的一段,其中A ,B 分别为C 的端点. 设曲线段C 的方程为22(0)y px p =>,(A B x x x 剟,0)y >, 其中A x ,B x 分别为A ,B 的横坐标,||p MN =. 所以(2p M −,0),(2pN ,0).由||AM =||3AN =得 2()2172A A p x px ++=,① 2()292A A p x px −+=.② 由①,②两式联立解得4A x p =.再将其代入①式并由0p >解得421 2.A Ap p x x ==⎧⎧⎨⎨==⎩⎩或 因为AMN ∆是锐角三角形,所以2A px >,故舍去22Ap x =⎧⎨=⎩ 所以4p =,1A x =.由点B 在曲线段C 上,得||42B px BN =−=. 综上得曲线段C 的方程为 28(14,0)y x x y =>剟.解法二:如图建立坐标系,分别以1l 、2l 为x 、y 轴,M 为坐标原点.作1AE l ⊥,2AD l ⊥,2BF l ⊥,垂足分别为E 、D 、F . 设(A A x ,)A y 、(B B x ,)B y 、(N N x ,0). 依题意有||||||3A x ME DA AN ====,||A y DM =,由于AMN ∆为锐角三角形,故有 ||||N x ME EN =+||4ME = ||||6B x BF BN ===.设点(,)P x y 是曲线段C 上任一点,则由题意知P 属于集合 {(x ,222)|()N y x x y x −+=,A B x x x 剟,0}y >.故曲线段C 的方程为28(2)(36y x x =−剟,0)y >.22.已知双曲线2212x y −=的左、右顶点分别为1A 、2A ,点1(P x ,1)y ,1(Q x ,1)y −是双曲线上不同的两个动点.求直线1A P 与2A Q 交点的轨迹E 的方程.【解答】解:由题设知1||x 1(A 0),2A 0), 直线1A P 的斜率为1k =,∴直线1A P 的方程为y x =,⋯①同理可得直线2A Q 的方程为y x .⋯②将①②两式相乘,得222121(2)2y y x x =−−.⋯③点1(P x ,1)y 在双曲线2212x y −=上,∴221112x y −=,可得22211111(2)22x y x =−=−,⋯④ 将④代入③,得21222211(2)12(2)122x y x x x −=−=−−,整理得2212x y +=,即为轨迹E 的方程. 点P 、Q 不重合,且它们不与1A 、2A 重合,x ∴≠,轨迹E的方程为221(2x y x +=≠23.设圆C与两圆22(4x y ++=,22(4x y +=中的一个内切,另一个外切,求圆心C 的轨迹L 的方程.【解答】解:(1)两圆的半径都为2,两圆心为1(F 0)、2F 0), 由题意得:12||2||2CF CF +=−或21||2||2CF CF +=−,2112||||||42||2CF CF a F F c ∴−==<=,可知圆心C 的轨迹是以原点为中心,焦点在x 轴上,且实轴为4,焦距为 因此2a =,c =2221b c a =−=, 所以轨迹L 的方程为2214x y −=.24.已知椭圆221(0)259x y a b +=>>的左、右焦点分别是1F ,2F ,Q 是椭圆外的动点,满足1||10FQ =.点P 是线段1F Q 与该椭圆的交点,点T 在线段2F Q 上,并且满足20PT TF =,2||0TF =. (Ⅰ)设x 为点P 的横坐标,证明14||55F P x =+; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M ,使△12F MF 的面积9S =,求12F MF ∠的正切值;若不存在,请说明理由.【解答】(Ⅰ)证明:设点P 的坐标为(,)x y . 记1122||,||F P r F P r ==,则12r r = 由22121211410,16,55r r r r x F P r x +=−===+得;(Ⅱ)解:设点T 的坐标为(,)x y .当||0PT =时,点(5,0)和点(5,0)−在轨迹上. 当200PT TF ≠≠且时,由20PT TF =,得2PT TF ⊥. 又2||||PQ PF =,所以T 为线段2F Q 的中点. 在△12QF F 中,11||||52OT FQ ==,所以有2225x y +=. 综上所述,点T 的轨迹C 的方程是2225x y +=;(Ⅲ)结论:在点T 的轨迹C 上,存在点M 使△12F MF 的面积9S =,此时12F MF ∠的正切值为2. 理由如下:C 上存在点0(M x ,0)y 使9S =的充要条件是22000254||9x y y ⎧+=⎪⎨=⎪⎩,显然09||54y =<,∴存在点M ,使9S =; 不妨取094y =,则10(4MF x =−−,9)4−,20(4MF x=−,9)4−, 121212||||cos MF MF MF MF F MF =∠0(4x =−−,09)(44x −−,9)4−220916()4x =−+21 / 21 2209()164x =+− 25169=−=, 又12121||||sin 92S MF MF F MF =∠=, 121212121||||cos ||||sin 2MF MF F MF MF MF F MF ∴∠=∠, 12tan 2F MF ∴∠=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学总复习辅导材料(第27讲)一、教学进度高考数学总复习之轨迹问题主要学习: 求动点的轨迹方程.二、学习指导1.掌握直角坐标系中的曲线与方程的关系和轨迹的概念,能够根据所给条件,选择适当的直角坐标系求曲线的方程并画出方程所表示的曲线.2.“曲线与方程”是解析几何的重要概念.在直角坐标系中,如果曲线C 上的点与一个二元方程f (x ,y )=0的实解有如下关系: ①曲线上的点的坐标都是这个方程的解; ②以这个方程的解为坐标的点都是曲线上的点. 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.简言之,当组成曲线的点集..与方程f (x ,y )=0的解集..之间如果能建立起一一对应的关系,则此方程称为曲线的方程,而曲线则是此方程的曲线.3.掌握求轨迹方程的常用方法:直接法、代入法、交轨法和参数法.已知曲线,怎样求出它的方程?这是解几学习中常遇到的一个问题.求曲线方程的过程有五个步骤,我们在具体解题时应注意:①建立直角坐标系时,首先要考虑坐标系的定位问题,图形中的垂直、对称、平行等条件,是定位时必须优先考虑的条件,因为这将有利于后面的计算.②步骤3是解题的关键步骤,目前初学阶段,一般将条件的几何意义直接代数化(即将几何语言“翻译”成代数语言,常见的有:两点间距离公式、夹角公式等等)即可.③如果化简过程是同解变形,则证明也就可以省略了;若不是同解变形,如两边同时平方等,则方程解集可能扩大(或缩小),则应把因化简引起方程解集扩大(或缩小)的部分舍去(或补上).三、典型例题例1.过M (1,3)作两条互相垂直的直线l 1和l 2,l 1与x 轴交于A 点,l 2与y 轴交于B 点,求线段AB 中点的轨迹.分析:求动点的轨迹可以通过求动点的轨迹方程来解;也可利用平面几何的知识来处理.例2.已知椭圆15922=+y x 的两个焦点分别是F 1、F 2,△MF 1F 2的重心G 恰为椭圆上的点,求M 的轨迹方程.分析:求轨迹方程的根本特点就是求出动点的横坐标x 与纵坐标y 满足的方程,即根据条件建立的等式关系.本题可以考虑用M 的坐标表示重心G 的坐标,利用G 在椭圆上来解.例3.过圆x 2+y 2=4内一点A (1,0)作圆的弦,求弦的中点M 的轨迹方程.分析:可以看出,弦的中点M 由弦所在的直线来决定,而弦所在的直线过定点,即直线仅由延伸方向来确定,故M 直线的延伸方向来确定,所以,M 的坐标可以用直线的斜率来表示;也可以利用弦中点的几何意义指出轨迹的特征.例4.已知点A (-a ,0),B (a ,0)(a >0).(1)若动点M 与A 、B 是一个直角三角形的三个顶点,求直角顶点M 的轨迹方程; (2)若动点M 满足条件:∠MBA =2∠MAB ,求点M 的轨迹方程.分析:将动点满足的几何条件“坐标化”,即直接将几何条件通过有关定理、公式“翻译”成含有x 、y 的等式,就得到了轨迹(曲线)的方程.例5.求与y 轴相切,并与圆x 2+y 2-4x =0相外切的动圆圆心M 的轨迹方程.分析:利用圆的切线、两圆外切的的几何意义,找出两点之间的距离和点到直线之间的距离之间的关系,先确定轨迹的几何特征,再写出轨迹方程.例6.求过点M (1,-1),离心率为22,且以y 轴为准线的椭圆的右焦点F 的轨迹方程. 分析:依题意,y 轴为椭圆的左准线,现已知e =22,故由椭圆的定义,有Mx F M || =e (其中F ′为椭圆的左焦点).因而解本题的关键是寻求椭圆左焦点与右焦点坐标之间的关系.例7.如图27-1,已知椭圆42x +y 2=1的左、右焦点分别为F 1和F 2,垂直于椭圆长轴的动直线与椭圆的两个交点分别为P 1和P 2,其中P 1的纵坐标为正数,求直线F 1P 1与F 2P 2的交点M 的轨迹方程.分析:考虑到P 1,P 2是椭圆上两个关于x 轴对称的点,点M 同时在直线F 1P 1与F 2P 2上,可利用点M 的坐标同时满足直线F 1P 1,F 2P 2的方程,消去有关参照量,建立M 的轨迹方程.例8.已知平面内两点M (-1,0),N (1,0),若动点P 满足MP ·MN ,PM ·PN ,NM ·NP 成等差数列,且公差为负数,求点P 的轨迹方程.分析:将向量的数量积用P 的坐标x ,y 表示,结合三个数成等差数列的等价条件,建立关于x ,y 的方程,就是P 的轨迹. 巩固练习图 27-11.已知椭圆13422=+y x 的两个焦点分别是F 1,F 2,P 是这个椭圆上的一个动点,延长F 1P 到Q ,使得|PQ |=|F 2P |,求Q 的轨迹.2.动点P 到直线x +4=0的距离比到定点M (2,0)的距离大2,求点P 的轨迹.3.求与两定圆x 2+y 2=1,x 2+y 2-8x -33=0都相切的动圆圆心的轨迹方程.4.已知直线l :y =k (x -5)及圆C :x 2+y 2=16. (1)若直线l 与圆C 相切,求k 的值;(2)若直线l 与圆C 交于A 、B 两点,求当k 变动时,弦AB 的中点的轨迹.5.已知两直线l 1:2x -3y +2=0,l 2:3x -2y +3=0,有一动圆M (圆心和半径都在变动)与l 1,l 2都相交,并且截l 1,l 2所得的弦长分别是定值26和24,求圆心M 的轨迹方程.6.已知椭圆E 经过定点M (1,0),以直线x +2=0为准线,离心率为21,求椭圆E 的左顶点的轨迹方程.7.已知抛物线C :y 2=4x ,若椭圆的左焦点及相应准线与抛物线C 的焦点F 和准线l 分别重合(图26-2),求椭圆短轴端点B 与焦点F 所连线段的中点P 的轨迹方程.8.已知△ABC 中,A (-2,0),B (2,0),顶点C 在直线l :y =3上移动,求△ABC 垂心H 的轨迹方程.9.如图27-3,已知椭圆42x+y 2=1的左、右顶点分别为A 1和A 2,垂直于椭圆长轴的动直线与椭圆的两个交点分别为P 1和P 2,其中P 1的纵坐标为正数,求直线A 1P 1与A 2P 2的交点M 的轨迹方程.10.设x 、y ∈R ,i 、j 为直角坐标平面内x 、y 轴正方向上的单位向量,若向量a =(x +5)i +y j ,b =(x -5)i +y j ,且|a |-|b |=8.求点M (x ,y )的轨迹C 的方程.图 27-3参考答案1.解 由题意及椭圆的定义知,|F 1P |+|F 2P |=4. ∵ |PQ |=|F 2P |,∴|F 1Q |=4. ∴ Q 的轨迹是以F 1为圆心,4为半径的圆. 2.解法1 设P (x ,y ),则|x +4|-2=22)2(y x +-. ∵22)2(y x +-≥0,∴ x ≤-6或x ≥-2. 当x ≤-6时,得-x -6=22)2(y x +-. 两边平方得x 2+12x +36=x 2-4x +4+y 2, 整理,得y 2=16x +32≤-96+32<0. 与y 2≥0矛盾, ∴ x ≥-2.∴ x +2=22)2(y x +-. 两边平方得x 2+4x +4=x 2-4x +4+y 2, 即 y 2=8x .这就是P 点的轨迹方程,它表示一条顶点为原点,焦点是(2,0)的抛物线. 解法2 ∵ P 点到直线x +4=0的距离比到定点M (2,0)的距离大2, ∴ P 点在直线x +4=0的右侧.将直线右移2个单位,得到直线x +2=0,则P 点到直线x +2=0的距离等于到定点M (2,0)的距离, ∴ P 点的轨迹是以直线x +2=0为准线,定点M (2,0)为焦点的抛物线,其方程为y 2=8x . 3.解 将⊙O 1的方程化为(x -4)2+y 2=49,∴ O 1(4,0),r 1=7,设动圆圆心为C (x ,y ). (1) 动圆C 与⊙O 外切而与⊙O 1内切(如图27-4). 由两圆相切时圆心距与两圆半径之关系,有: 7-|O 1C |=|OC |-1, 即 |OC |+|O 1C |=8.也就是说C 点到点O 1、O 的距离之和等于8.由椭圆定义知点C 的轨迹是以(0,0)和(4,0)为焦点,长轴长为8的椭圆. 由a =4,c =2,得b 2=a 2-c 2=12.∴ 动圆圆心C 的轨迹方程为16)2(2-x +122y =1.(2)当动圆C 与⊙O 、⊙O 1,都内切时,有|OC |+|O 1C |=6.同理可得动圆圆心C 的轨迹方程为9)2(2-x +52y =1.4.解 (1) 直线l 的方程可化为kx -y -5k =0, 由题知,1|5|2+k k =4,解得 k =±34. (2)设弦AB 的中点为M .显然,直线l 过定点P (5,0). 当直线l 不过圆心(即原点O )时,OM ⊥AB ,∴ M 在以线段OP 为直径的圆上,以线段OP 为直径的圆的方程为 (x -25)2+y 2=425; (*) 当直线l 过圆心(即原点O )时,O 恰为弦AB 的中点,O 点的坐标满足的方程(*). ∵ 弦AB 中点在已知圆内,∴弦AB 中点的轨迹是以OP 为直径的圆在已知圆内的部分,它的方程为 (x -25)2+y 2=425(0≤x <516). 5.解 设动圆圆心M (x ,y ),动圆的半径为r ,点M 到l 1、l 2的距离分别为d 1、d 2. 根据弦、弦心距、半径三者间关系,有 21d +(226)2=r 2,22d +(224)2=r 2, 可得 21d +132=22d +122, 即 22d -21d =52. ①根据点到直线距离公式,得 d 1=13|232|+-y x ,d 2=13|323|+-y x ,代入①式得213323⎪⎪⎭⎫ ⎝⎛+-y x -213232⎪⎪⎭⎫ ⎝⎛+-y x =52. 化简得(x +1)2-y 2=65,这就是所求的轨迹方程. 6.解 如图27-5,设椭圆的左顶点为A (x ,y ). 作AD ⊥l ,为垂足. ∵||||MN FM =||||AD FA =21.从而 F (223+x ,y ). 又|MN |=3,∴ |FM |=23. ∴ (223+x -1)2+y 2=(23)2.即椭圆左顶点的轨迹方程为 x 2+942y =1.7.解法1 如图27-6,由已知得F (1,0),l :x =-1. 设B (x 0,y 0),则椭圆的半焦距为c =|OF |=|OO 1|-|OF |=x 0-1(x 0>1),椭圆的半长轴为a =|BF |=2020)1(y x +-.椭圆的短轴端点B 到准线l 的距离为|BB 1|=|NO |+|OO 1|=x 0+1. 由椭圆的定义,得椭圆的离心率e =||||1BB BF =1)1(02020++-x y x ,又 e =a c=20200)1(1y x x +--.∴1)1(0220++-x y x =20200)1(1y x x +--,化简得y 02=2(x 0-1)(x 0>1). ① 设线段BF 的中点为P (x ,y ), ∴ ⎩⎨⎧.=,-=y y x x 2120代入①式,化简得点P 的轨迹方程为y 2=x -1(x >1). 解法2 设P (x ,y ),则B (2x -1,y ). ∵ F (1,0),l :x =-1, ∴ |BB 1|=(2x -1)+1=2x . 又 c =(2x -1)-1=2(x -1)(x >1), a 2=|BF |2=(2x -2)2+4y 2. 由椭圆的定义,得||||1BB BF =a c ,即x a 2=ac , ∴ a 2=2cx . ② 将a 2及c 代入②式,并化简得P 点之轨迹方程:27y 2=x -1(x >1). 解法3 设P (x ,y ),则B (2x -1,2y ). 设x 轴与准线l 的交点为N ,则|FN |=2.∵ |FN |=c a 2-c =cb 2,∴ cb 2=2,即 b 2=2c . ③ ∵ b =|2y |,c =2x -2(x >1),代入③式得 y 2=x -1(x >1).111211且 421x +y 21=1. ①由于直线F 1P 1与F 2P 2的交点不可能落在坐标轴上, ∴ x 1≠0,y 1>0. 设M (x ,y ),则A 1P 1的方程为:2+x y=211+x y , ② A 2P 2的方程为:2-x y =211--x y , ③ ②×③得422-x y =42121--x y . ④由①得 42121--x y =4. ⑤将⑤代入④,得42x -162y =1.由y 1>0及②得 y ≠0,故M 点的轨迹方程为42x -162y =1(y ≠0).10.解法1 ∵ a =(x +5)i +y j ,b =(x -5)i +y j ,且|a |-|b |=8. ∴ 点M (x ,y )到两个定点F 1(0,-5),F 2(0,5)的距离之差为8. ∴ 轨迹C 为以F 1,F 2为焦点的双曲线的右支,方程为162x -92y =1(x ≥4).解法2 由题知,22)5(y x ++-22)5(y x +-=8, 移项,得 22)5(y x ++=8+22)5(y x +-. ① ∴22)5(y x ++>22)5(y x +-.解得 x >0.①两边平方,得 22)5(y x ++=22)5(y x +-+1622)5(y x +-+64, 整理,得 422)5(y x +-=5x -16, 两边平方,得 16[22)5(y x +-]=(5x -16)2 (x ≥2532), 展开,整理得 162x -92y =1(x ≥4).附录例1.解法1 如图27-8,设P (x ,y )是轨迹上任意一点. ∵ P 为线段AB 的中点, ∴ A (2x ,0)、B (0,2y ).①当两直线斜率存在时,k MA ·k MB =-1,即x 213-·123y -=-1(x ≠21), 化简得x +3y -5=0(x ≠21). ②若k 1不存在,即A (1,0),此时B (0,3),AB 中点为(21,23),代入方程x +3y -5=0适合,即此点在直线x +3y -5=0上.综合①、②,所求轨迹方程为x +3y -5=0,它表示一条直线. 解法2 设P (x ,y )是轨迹上任意一点.∵ P 为线段AB 的中点,AB 为Rt △ABC 与Rt △ABM 公共的斜边, ∴ |OP |=|MP |.∴ P (x ,y )的轨迹是线段OM 的垂直平分线.说明 解法1是通过斜率的关系来列式的,所以要分k 1存在与不存在两种情况(k 2一定存在)来解题,结果②中所得点(21,23)恰好是①中直线上所缺的一个点;解法2是利用动点的几何性质来求的,是直接法的体现.往往,用动点的几何性质求轨迹方程比较简捷,在下面的学习中应好好体会.另外,“轨迹”与“轨迹方程”是两个不同的概念,前者要指出曲线的形状、大小、位置,后者仅指方程.例2.解 设M 的坐标为(x ,y ).∵ 椭圆15922=+y x 的两个焦点分别是F 1(-2,0),F 2(2,0), ∴ △MF 1F 2的重心G 的坐标为(3x,3y ). ∵ G 是椭圆上的点,∴ 1539322=⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛y x ,即1458122=+y x . ∵ M ,F 1,F 2三点不共线, ∴ y ≠0.∴ M 的轨迹方程是1458122=+y x (y ≠0). 说明 本题采用的是转移法求轨迹方程,这是求轨迹方程的最基本方法,其基本特点是:利用动点的坐标表示参照点(或称之为相关点)的坐标,结合参照点的坐标满足已知曲线方程,从而间接得到动点的坐标满足的方程,即轨迹方程.一般地,在一些问题中,动点P (x ,y )随着另一动点Q (x 1,y 1)(参照点)而运动,如果参照点Q 的运动规律易于揭示或Q 点就在一已知曲线上运动,即满足约束条件f (x 1,y 1)=0,这时,只要寻求P 、Q 两点坐标之间的关系,如⎩⎨⎧==),,(),,(11y x h y y x g x 并将这种关系代入f (x 1,y 1)=0,即可求得动点P 的轨迹方程.方程f (x ,y )=0被称为动点P 的轨迹方程的母方程.例3.解法1 如图27-9,设过A 的直线方程为y =k (x -1).由 ⎩⎨⎧=+-=4),1(22y x x k y 消去y ,得 (1+k 2)x 2-2k 2x +k 2-4=0,再设弦的端点C (x 1,y 1),D (x 2,y 2),线段CD 的中点为M (x ,y ),则 ⎪⎩⎪⎨⎧-=+=+=(2) )1((1) ,122221,x k y kk x x x 当x ≠1时,由(2)解得k =1-x y,代入(1),整理得 x 2+y 2-x =0. ①当k 不存在,即CD ⊥ox 轴时,线段CD 的中点就是A (1,0)点. ∵ A (1,0)在曲线①上, ∴方程①就是所求的轨迹方程. 解法2 ∵ OM ⊥AM ,∴ 点M 在以OA 为直径的圆上. ∴ 线段OA 中点(21,0)是此圆的圆心,此圆的半径r =21. 又A 点也是轨迹上的点.∴ 线段CD 的中点M 的轨迹方程为(x -21)2+y 2=41. 说明 解法1是利用“参数法”,即用一个确定动点的量来表示动点的坐标(建立动点的坐标与这个参数之间的函数关系),消去这个量(参数),得到动点的坐标满足的方程;解法2是用动点的几何意义,利用已知的轨迹来求方程.两解法相比,优劣不言自明.因此在解有关圆的题目时,尽量运用它的几何性质,会给你的计算中带来便捷.例4.解 (1)如图27-10,设M (x ,y ).由于MA ⊥MB ⇔ |MA |2+|MB |2=|AB |2,故(22)(y a x ++)2+(22)(y a x +-)2=(2a )2且y ≠0. ① 化简得 x 2+y 2=a 2(y ≠0). ② 也可以这样解:由于MA ⊥MB ⇔ k MA ·k MB =1,图27-9即 a x y +·ax y -=-1, ③ 化简得 x 2+y 2=a 2(x ≠±a ). ④(2) 设∠MAB =α,∠MBA =β,∵ tan β=tan2α, ⑤由图26-10知,0≤α+β≤π.∵ β=2α, ⑥∴ 0≤α≤3π,又x >-a . ∴当y ≥0时,tan α=k MA =ax y +(x ≠-a ), tan β=tan(π-∠xBM )=-k MB =x a y -(x ≠a ). 由 tan β=tan2α=α-α2tan 1tan 2, 即 x a y -=2)(12a x y a x y+-+⋅, ⑦ 整理得 y (3x 2-y 2+2ax -a 2)=0. ⑧当y <0时,同样可得上式.又x =a 时,tan β不存在,但β=2π,依题意,只要α=4π,M 仍为所求的点. ∵ 1=tan 4π=tan α=±ax y +=±a y 2, ∴ y =±2a ,即点(a ,±2a )在所求的轨迹上.容易验证点(a ,2a )与(a ,-2a )的坐标都满足方程⑧,故所求的轨迹方程为y =0(-a <x <a )与3x 2-y 2+2ax -a 2=0(x >-a ).说明 对β=2π的情况进行验证是必要的,否则将破坏轨迹的完备性. 例5.解 将已知圆的方程化为(x -2)2+y 2=4. 这是圆心在P (2,0),半径r =2的一个圆(圆27-10 ). 当⊙M 位于y 轴右方时,作直线x =-2. 依题意,点M 到P 点的距离等于它到直线x =-2的距离. 由抛物线的定义,即得动点M 的轨迹方程为y 2=8x .当⊙M 位于y 轴左方时,依题意,⊙M 只能与⊙P 相切于O 点,此时,⊙M 的圆心M 必落在x 轴的负半轴上,∴ M 点的轨迹方程为y =0(x <0).∴ M 点的轨迹方程为y 2=8x 或y =0(x <0).说明 (1)本题没有直接运用距离公式,通过添作辅助线,创造了运用抛物线定义的条件,从而避免了繁杂的运算.可见在解题中要善于创造条件,充分运用圆锥曲线的定义以简化运算.(2)在求动点的轨迹的问题中,要考虑各种可能出现的情况,如本题中若遗漏方程y =0(x <0),将破坏轨迹的完备性.例6.解 设F (x ,y ),则椭圆左焦点F ′的坐标为'F x =x -2c ,'F y =y .∵ ac =22, ∴ a 2=2c 2.又y 轴为椭圆的左准线,∴ x =ca 2+c =3c . ∴ c =3x . ∴ 左焦点F ′的坐标为(x -32x ,y ),即F ′(3x ,y ). 又由已知点M 在椭圆上,∴ Mx F M ||'=22. 即 1)1()13(22++-y x =22. ∴ 椭圆右焦点F 的轨迹方程为9)3(22-x +2(y +1)2=1. 说明 通过本题,更能看出“转移法”在求轨迹方程过程中的重要作用.由题知,a =2,b =1,得 c =3.∴ F 1(-3,0)、F 2(3,0).设 P 1(x 1,y 1),则P 2(x 1,-y 1).由题知, 421x +y 21=1(x 1>0). ① 设M (x ,y ),则F 1P 1:3+x y =311+x y , ②F 2P 2:3-x y =311--x y , ③ ②÷③得x 1=x 3, 代入②得y 1=xy 3. 将x 1,y 1代入①,得4x 2-12y 2=9.由于直线F 1P 1与F 2P 2的交点只可能落在第一或第三象限,故M 点的轨迹方程为4x 2-12y 2=9(xy >0).说明 (1)在本题中,P ={M |M ∈直线F 1P 1且M ∈直线F 2P 2},故M =F 1P 1∩F 2P 2.由曲线与方程的定义,M 点的坐标就是方程组②、③的解.由于点M 的运动与动点P 1相关,因而本题的技巧在于没有直接从方程组②、③中求x ,y ,而是求出了x 1,y 1,再利用代入法求得点M 的轨迹方程,这种预见性在解题中常常可以达到减少思维回路、缩简运算程序的目的,值得引起重视.(2)本题答案中条件“xy >0”不可遗漏,否则将破坏轨迹的纯粹性.例8.解 设P (x ,y ).∵ M (-1,0),N (1,0),∴ =(x +1,y ),=(-x -1,-y ),=(2,0),=(-2,0),PN (1-x ,y ),=(x -1,-y ),∴ MP ·MN =2(x +1),PM ·PN =x 2+y 2-1,NM ·NP =2(1-x ).∵ MP ·MN ,PM ·PN ,NM ·NP 成等差数列,且公差为负数,∴ ⎪⎩⎪⎨⎧<+---++=-+,0)1(2)1(2)],1(2)1(2[21122x x x x y x 即 22y x +=3(x >0).∴ 这就是点P 的轨迹方程,轨迹是以原点为圆心,3为半径的圆在y 轴右边的部分(半圆不含端点).说明 这是2002年全国高考(新课程卷)的一道解答题,是以向量为背景的轨迹题,充分体现了向量的工具性作用,这一点在求轨迹方程时应好好体会.一般来说,求曲线(轨迹)方程式,如果实际到两直线的夹角、两直线互相垂直等知识,应考虑是否能利用向量知识来解,既方便,又简捷.分析:考虑到P 1,P 2是椭圆上两个关于x 轴对称的点,点M 同时在直线F 1P 1与F 2P 2上,可利用点M 的坐标同时满足直线F 1P 1,F 2P 2的方程,消去有关参照量,建立M 的轨迹方程.例8.已知平面内两点M (-1,0),N (1,0),若动点P 满足MP ·MN ,PM ·PN ,NM ·NP 成等差数列,且公差为负数,求点P的轨迹方程.分析:将向量的数量积用P的坐标x,y表示,结合三个数成等差数列的等价条件,建立关于x,y的方程,就是P的轨迹方程.。

相关文档
最新文档