Parallel Formulations of Inductive Classification Learning Algorithm

合集下载

unramified数学

unramified数学

unramified数学
在数学中,unramified是一个用于描述代数数论和代数几何领域的术语。

在代数数论中,unramified扩张指的是域的扩张,其中原始域中的元素在扩张域中保持不变。

换句话说,这种扩张不会引入新的分歧点。

在代数几何中,unramified也指的是类似的性质,用于描述概形之间的映射。

在代数数论中,unramified扩张是指在扩张域中不存在分歧的情况。

分歧点是指在扩张中某些元素的性质发生改变的点。

因此,unramified扩张可以看作是相对简单的扩张,因为它们不引入新的复杂性。

在代数几何中,unramified映射类似地描述了概形之间的关系,指的是在映射下不会出现奇异点或多重点。

unramified的概念在数论和几何中都有重要的应用。

在代数数论中,研究unramified扩张可以帮助我们理解数域的结构,而在代数几何中,unramified映射可以帮助我们理解概形之间的关系。

因此,unramified的概念在数学理论和实际问题中都扮演着重要的角色。

总之,unramified在数学中是一个重要的概念,它涉及代数数
论和代数几何中的关键性质,对于理解数论和几何结构都具有重要意义。

希望这个回答能够从多个角度全面地解释了unramified在数学中的含义和应用。

微积分calculus英文单词

微积分calculus英文单词

微积分英语单词Absolute convergence :绝对收敛Absolute extreme values :绝对极值Absolute maximum and minimum :绝对极大与极小Absolute value :绝对值Absolute value function :绝对值函数Acceleration :加速度Antiderivative :反导数Approximate integration :近似积分Approximation :逼近法Arc length :弧长Area :面积Asymptote :渐近线Average speed :平均速率Average velocity :平均速度Axes, coordinate :坐标轴Axes of ellipse :椭圆之轴at a point :在一点处之连续性as the slope of a tangent :导数看成切线之斜率by differentials :用微分逼近between curves :曲线间之面积Binomial series :二项级数Cartesian coordinates :笛卡儿坐标一般指直角坐标Cartesian coordinates system :笛卡儿坐标系Cauch’s Mean Value Theorem :柯西均值定理Chain Rule :连锁律Change of variables :变数变换Circle :圆Circular cylinder :圆柱Closed interval :封闭区间Coefficient :系数Composition of function :函数之合成Compound interest :复利Concavity :凹性Conchoid :蚌线Cone :圆锥Constant function :常数函数Constant of integration :积分常数Continuity :连续性Continuous function :连续函数Convergence :收敛Coordinate :s :坐标Cartesian :笛卡儿坐标cylindrical :柱面坐标Coordinate axes :坐标轴Coordinate planes :坐标平面Cosine function :余弦函数Critical point :临界点Cubic function :三次函数Curve :曲线Cylinder :圆柱Cylindrical Coordinates :圆柱坐标Distance :距离Divergence :发散Domain :定义域Dot product :点积Double integral :二重积分Decreasing function :递减函数Decreasing sequence :递减数列Definite integral :定积分Degree of a polynomial :多项式之次数Density :密度Derivative :导数Determinant :行列式Differentiable function :可导函数Differential :微分Differential equation :微分方程Differentiation :求导法Directional derivatives :方向导数Discontinuity :不连续性Disk method :圆盘法domain of :导数之定义域differential :微分学Ellipse :椭圆Ellipsoid :椭圆体Epicycloid :外摆线Equation :方程式Even function :偶函数Expected Valued :期望值Exponential Function :指数函数Exponents , laws of :指数率Extreme value :极值Extreme Value Theorem :极值定理Factorial :阶乘First Derivative Test :一阶导数试验法First octant :第一卦限Focus :焦点Fractions :分式Function :函数Fundamental Theorem of Calculus :微积分基本定理from the left :左连续from the right :右连续Geometric series :几何级数Gradient :梯度Graph :图形Green Formula :格林公式Half-angle formulas :半角公式Harmonic series :调和级数Helix :螺旋线Higher Derivative :高阶导数Horizontal asymptote :水平渐近线Horizontal line :水平线Hyperbola :双曲线Hyperboloid :双曲面horizontal :水平渐近线Implicit differentiation :隐求导法Implicit function :隐函数Improper integral :瑕积分Increasing/Decreasing Test :递增或递减试验法Increment :增量Increasing Function :增函数Indefinite integral :不定积分Independent variable :自变数Indeterminate from :不定型Inequality :不等式Infinite point :无穷极限Infinite series :无穷级数Inflection point :反曲点Instantaneous velocity :瞬时速度Integer :整数Integral :积分Integrand :被积分式Integration :积分Integration by part :分部积分法Intercepts :截距Intermediate value of Theorem :中间值定理Interval :区间Inverse function :反函数Inverse trigonometric function :反三角函数Iterated integral :逐次积分integral :积分学implicit :隐求导法Laplace transform :Leplace 变换Law of Cosines :余弦定理Least upper bound :最小上界Left-hand derivative :左导数Left-hand limit :左极限Lemniscate :双钮线Length :长度Level curve :等高线L'Hospital's rule :洛必达法则Limacon :蚶线Limit :极限Linear approximation:线性近似Linear equation :线性方程式Linear function :线性函数Linearity :线性Linearization :线性化Line in the plane :平面上之直线Line in space :空间之直线Lobachevski geometry :罗巴切夫斯基几何Local extremum :局部极值Local maximum and minimum :局部极大值与极小值Logarithm :对数Logarithmic function :对数函数linear :线性逼近法Maximum and minimum values :极大与极小值Mean Value Theorem :均值定理Multiple integrals :重积分Multiplier :乘子Natural exponential function :自然指数函数Natural logarithm function :自然对数函数Natural number :自然数Normal line :法线Normal vector :法向量Number :数of a function :函数之连续性on an interval :在区间之连续性Octant :卦限Odd function :奇函数One-sided limit :单边极限Open interval :开区间Optimization problems :最佳化问题Order :阶Ordinary differential equation :常微分方程 Origin :原点Orthogonal :正交的Parabola :拋物线Parabolic cylinder :抛物柱面Paraboloid :抛物面Parallelepiped :平行六面体Parallel lines :并行线Parameter :参数Partial derivative :偏导数Partial differential equation :偏微分方程 Partial fractions :部分分式Partial integration :部分积分Partiton :分割Period :周期Periodic function :周期函数Perpendicular lines :垂直线Piecewise defined function :分段定义函数 Plane :平面Point of inflection :反曲点Polar axis :极轴Polar coordinate :极坐标Polar equation :极方程式Pole :极点Polynomial :多项式Positive angle :正角Point-slope form :点斜式Power function :幂函数Product :积polar :极坐标partial :偏导数partial :偏微分方程partial :偏微分法Quadrant :象限Quotient Law of limit :极限的商定律Quotient Rule :商定律rectangular :直角坐标Radius of convergence :收敛半径Range of a function :函数的值域Rate of change :变化率Rational function :有理函数Rationalizing substitution :有理代换法Rationalizing substitution :有理代换法Rational number :有理数Real number :实数Rectangular coordinates :直角坐标Rectangular coordinate system :直角坐标系Relative maximum and minimum :相对极大值与极小值Revenue function :收入函数Revolution, solid of :旋转体Revolution, surface of :旋转曲面Riemann Sum :黎曼和Riemannian geometry :黎曼几何Right-hand derivative :右导数Right-hand limit :右极限Root :根Saddle point :鞍点Scalar :纯量Secant line :割线Second derivative :二阶导数Second Derivative Test :二阶导数试验法Second partial derivative :二阶偏导数Sector :扇形Sequence :数列Series :级数Set :集合Shell method :剥壳法Sine function :正弦函数Singularity :奇点Slant asymptote :斜渐近线Slope :斜率Slope-intercept equation of a line :直线的斜截式Smooth curve :平滑曲线Smooth surface :平滑曲面Solid of revolution :旋转体Space :空间Speed :速率Spherical coordinates :球面坐标Squeeze Theorem :夹挤定理Step function :阶梯函数Strictly decreasing :严格递减Strictly increasing :严格递增Sum :和Surface :曲面Surface integral :面积分Surface of revolution :旋转曲面Symmetry :对称slant :斜渐近线spherical :球面坐标Tangent function :正切函数Tangent line :切线Tangent plane :切平面Tangent vector :切向量Total differential :全微分Trigonometric function :三角函数Trigonometric integrals :三角积分Trigonometric substitutions :三角代换法Tripe integrals :三重积分term by term :逐项求导法under a curve :曲线下方之面积vertical :垂直渐近线Value of function :函数值Variable :变数Vector :向量Velocity :速度Vertical asymptote :垂直渐近线Volume :体积X-axis :x 轴x-coordinate :x 坐标x-intercept :x 截距Zero vector :函数的零点Zeros of a polynomial :多项式的零点。

微积分专有名词中英文对照

微积分专有名词中英文对照

微积分专有名词中英文对照absolutely convergent 绝对收敛absolute value 绝对值algebraic function 代数函数analytic geometry 解析几何antiderivative 不定积分approximate integration 近似积分approximation 近似法、逼近法arbitrary constant 任意常数arithmetic series/progression (AP)算数级数asymptotes (vertical and horizontal)(垂直/水平)渐近线average rate of change 平均变化率base 基数binomial theorem 二项式定理,二项展开式Cartesian coordinates 笛卡儿坐标(一般指直角坐标) Cartesian coordinates system 笛卡儿坐标系Cauch’s Mean Value Theorem 柯西均值定理chain rule 链式求导法则calculus 微积分学closed interval integral 闭区间积分coefficient 系数composite function 复合函数conchoid 蚌线continuity (函数的)连续性concavity (函数的)凹凸性conditionally convergent 有条件收敛continuity 连续性critical point 临界点cubic function 三次函数cylindrical coordinates 圆柱坐标decreasing function 递减函数decreasing sequence 递减数列definite integral 定积分derivative 导数determinant 行列式differential coefficient 微分系数differential equation 微分方程directional derivative 方向导数discontinuity 不连续性discriminant (二次函数)判别式disk method 圆盘法divergence 散度divergent 发散的domain 定义域dot product 点积double integral 二重积分ellipse 椭圆ellipsoid 椭圆体epicycloid 外摆线Euler's method (BC)欧拉法expected valued 期望值exponential function 指数函数extreme value heorem 极值定理factorial 阶乘finite series 有限级数fundamental theorem of calculus 微积分基本定理geometric series/progression (GP)几何级数gradient 梯度Green formula 格林公式half-angle formulas 半角公式harmonic series 调和级数helix 螺旋线higher derivative 高阶导数horizontal asymptote 水平渐近线horizontal line 水平线hyperbola 双曲线hyper boloid 双曲面implicit differentiation 隐函数求导implicit function 隐函数improper integral 广义积分、瑕积分increment 增量increasing function 增函数indefinite integral 不定积分independent variable 自变数inequality 不等式ndeterminate form 不定型infinite point 无穷极限infinite series 无穷级数infinite series 无限级数inflection point (POI) 拐点initial condition 初始条件instantaneous rate of change 瞬时变化率integrable 可积的integral 积分integrand 被积分式integration 积分integration by part 分部积分法intercept 截距intermediate value of Theorem :中间值定理inverse function 反函数irrational function 无理函数iterated integral 逐次积分Laplace transform 拉普拉斯变换law of cosines 余弦定理least upper bound 最小上界left-hand derivative 左导数left-hand limit 左极限L'Hospital's rule 洛必达法则limacon 蚶线linear approximation 线性近似法linear equation 线性方程式linear function 线性函数linearity 线性linearization 线性化local maximum 极大值local minimum 极小值logarithmic function 对数函数MacLaurin series 麦克劳林级数maximum 最大值mean value theorem (MVT)中值定理minimum 最小值method of lagrange multipliers 拉格朗日乘数法modulus 绝对值multiple integral 多重积分multiple 倍数multiplier 乘子octant 卦限open interval integral 开区间积分optimization 优化法,极值法origin 原点orthogonal 正交parametric equation (BC)参数方程partial derivative 偏导数partial differential equation 偏微分方程partial fractions 部分分式piece-wise function 分段函数parabola 抛物线parabolic cylinder 抛物柱面paraboloid :抛物面parallelepiped 平行六面体parallel lines 并行线parameter :参数partial integration 部分积分partiton :分割period :周期periodic function 周期函数perpendicular lines 垂直线piecewise defined function 分段定义函数plane 平面point of inflection 反曲点point-slope form 点斜式polar axis 极轴polar coordinates 极坐标polar equation 极坐标方程pole 极点polynomial 多项式power series 幂级数product rule 积的求导法则quadrant 象限quadratic functions 二次函数quotient rule 商的求导法则radical 根式radius of convergence 收敛半径range 值域(related) rate of change with time (时间)变化率rational function 有理函数reciprocal 倒数remainder theorem 余数定理Riemann sum 黎曼和Riemannian geometry 黎曼几何right-hand limit 右极限Rolle's theorem 罗尔(中值)定理root 根rotation 旋转secant line 割线second derivative 二阶导数second derivative test 二阶导数试验法second partial derivative 二阶偏导数series 级数shell method (积分)圆筒法sine function 正弦函数singularity 奇点slant 母线slant asymptote 斜渐近线slope 斜率slope-intercept equation of a line 直线的斜截式smooth curve 平滑曲线smooth surface 平滑曲面solid of revolution 旋转体symmetry 对称性substitution 代入法、变量代换tangent function 正切函数tangent line 切线tangent plane 切(平)面tangent vector 切矢量taylor's series 泰勒级数three-dimensional analytic geometry 空间解析几何total differentiation 全微分trapezoid rule 梯形(积分)法则。

用密度函数理论和杜比宁方程研究活性炭纤维多段充填机理

用密度函数理论和杜比宁方程研究活性炭纤维多段充填机理

密度函数理论和杜比宁方程可以用来研究活性炭纤维在多段充填过程中的吸附行为。

密度函数理论是一种分子统计力学理论,它建立在分子统计学和热力学的基础上,用来研究一种系统中分子的分布。

杜比宁方程是一种描述分子吸附行为的方程,它可以用来计算吸附层的厚度、吸附速率和吸附能量等参数。

在研究活性炭纤维多段充填过程中,可以使用密度函数理论和杜比宁方程来研究纤维表面的分子结构和吸附行为。

通过分析密度函数和杜比宁方程的解,可以得出纤维表面的分子结构以及纤维吸附的分子的种类、数量和能量。

这些信息有助于更好地理解活性炭纤维的多段充填机理。

在研究活性炭纤维的多段充填机理时,还可以使用其他理论和方法来帮助我们更好地了解这一过程。

例如,可以使用扫描电子显微镜(SEM)和透射电子显微镜(TEM)等技术来观察纤维表面的形貌和结构。

可以使用X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)等技术来确定纤维表面的化学成分和结构。

还可以使用氮气吸附(BET)和旋转氧吸附(BJH)等技术来测量纤维表面的比表面积和孔结构。

通过综合运用密度函数理论、杜比宁方程和其他理论和方法,可以更全面地了解活性炭纤维的多段充填机理,从而更好地控制和优化多段充填的过程。

在研究活性炭纤维多段充填机理时,还可以使用温度敏感性测试方法来研究充填过程中纤维表面的动力学性质。

例如,可以使用动态氧吸附(DAC)或旋转杆氧吸附(ROTA)等技术来测量温度对纤维表面吸附性能的影响。

通过对比不同温度下纤维表面的吸附性能,可以更好地了解充填过程中纤维表面的动力学性质。

此外,还可以使用分子动力学模拟方法来研究纤维表面的吸附行为。

例如,可以使用拉曼光谱或红外光谱等技术来测量纤维表面的分子吸附构型。

然后,使用分子动力学模拟方法来模拟不同分子吸附构型下的纤维表面的动力学性质,帮助我们更好地了解活性炭纤维的多段充填机理。

不对称催化动态动力学拆分

不对称催化动态动力学拆分

不对称催化动态动力学拆分英文回答:Asymmetric catalysis dynamic kinetic resolution (ACDKR) is a powerful tool for the preparation of enantiomerically enriched compounds. In ACDKR, a racemic mixture of a substrate is reacted with a chiral catalyst and a resolving agent. The catalyst selectively activates one enantiomer of the substrate, leading to its preferential reaction withthe resolving agent. This results in the formation of one enantiomer of the product in excess, while the other enantiomer of the substrate is recovered unreacted.The development of ACDKR methods has been driven by the need for efficient and selective routes to chiral compounds. Chiral compounds are important in a wide range of applications, including pharmaceuticals, agrochemicals, and fragrances. ACDKR offers several advantages overtraditional methods for the preparation of chiral compounds.First, ACDKR is a highly efficient process. The use of a chiral catalyst allows for the selective activation of one enantiomer of the substrate, leading to high enantiomeric excesses of the product.Second, ACDKR is a versatile process. A wide range of substrates can be resolved using ACDKR, including ketones, aldehydes, imines, and epoxides.Third, ACDKR is a green process. The use of a catalytic amount of chiral catalyst and a non-toxic resolving agent makes ACDKR an environmentally friendly process.ACDKR has been used to prepare a wide range of chiral compounds, including pharmaceuticals, agrochemicals, and fragrances. Some of the most important applications of ACDKR include:The preparation of chiral intermediates for the synthesis of pharmaceuticals.The preparation of chiral agrochemicals.The preparation of chiral fragrances.ACDKR is a powerful tool for the preparation of enantiomerically enriched compounds. The development of new ACDKR methods is an active area of research, and this technology is expected to continue to play an importantrole in the synthesis of chiral compounds.中文回答:不对称催化动态动力学拆分(ACDKR)是一种制备对映体富集化合物的有力工具。

OSHA现场作业手册说明书

OSHA现场作业手册说明书

DIRECTIVE NUMBER: CPL 02-00-150 EFFECTIVE DATE: April 22, 2011 SUBJECT: Field Operations Manual (FOM)ABSTRACTPurpose: This instruction cancels and replaces OSHA Instruction CPL 02-00-148,Field Operations Manual (FOM), issued November 9, 2009, whichreplaced the September 26, 1994 Instruction that implemented the FieldInspection Reference Manual (FIRM). The FOM is a revision of OSHA’senforcement policies and procedures manual that provides the field officesa reference document for identifying the responsibilities associated withthe majority of their inspection duties. This Instruction also cancels OSHAInstruction FAP 01-00-003 Federal Agency Safety and Health Programs,May 17, 1996 and Chapter 13 of OSHA Instruction CPL 02-00-045,Revised Field Operations Manual, June 15, 1989.Scope: OSHA-wide.References: Title 29 Code of Federal Regulations §1903.6, Advance Notice ofInspections; 29 Code of Federal Regulations §1903.14, Policy RegardingEmployee Rescue Activities; 29 Code of Federal Regulations §1903.19,Abatement Verification; 29 Code of Federal Regulations §1904.39,Reporting Fatalities and Multiple Hospitalizations to OSHA; and Housingfor Agricultural Workers: Final Rule, Federal Register, March 4, 1980 (45FR 14180).Cancellations: OSHA Instruction CPL 02-00-148, Field Operations Manual, November9, 2009.OSHA Instruction FAP 01-00-003, Federal Agency Safety and HealthPrograms, May 17, 1996.Chapter 13 of OSHA Instruction CPL 02-00-045, Revised FieldOperations Manual, June 15, 1989.State Impact: Notice of Intent and Adoption required. See paragraph VI.Action Offices: National, Regional, and Area OfficesOriginating Office: Directorate of Enforcement Programs Contact: Directorate of Enforcement ProgramsOffice of General Industry Enforcement200 Constitution Avenue, NW, N3 119Washington, DC 20210202-693-1850By and Under the Authority ofDavid Michaels, PhD, MPHAssistant SecretaryExecutive SummaryThis instruction cancels and replaces OSHA Instruction CPL 02-00-148, Field Operations Manual (FOM), issued November 9, 2009. The one remaining part of the prior Field Operations Manual, the chapter on Disclosure, will be added at a later date. This Instruction also cancels OSHA Instruction FAP 01-00-003 Federal Agency Safety and Health Programs, May 17, 1996 and Chapter 13 of OSHA Instruction CPL 02-00-045, Revised Field Operations Manual, June 15, 1989. This Instruction constitutes OSHA’s general enforcement policies and procedures manual for use by the field offices in conducting inspections, issuing citations and proposing penalties.Significant Changes∙A new Table of Contents for the entire FOM is added.∙ A new References section for the entire FOM is added∙ A new Cancellations section for the entire FOM is added.∙Adds a Maritime Industry Sector to Section III of Chapter 10, Industry Sectors.∙Revises sections referring to the Enhanced Enforcement Program (EEP) replacing the information with the Severe Violator Enforcement Program (SVEP).∙Adds Chapter 13, Federal Agency Field Activities.∙Cancels OSHA Instruction FAP 01-00-003, Federal Agency Safety and Health Programs, May 17, 1996.DisclaimerThis manual is intended to provide instruction regarding some of the internal operations of the Occupational Safety and Health Administration (OSHA), and is solely for the benefit of the Government. No duties, rights, or benefits, substantive or procedural, are created or implied by this manual. The contents of this manual are not enforceable by any person or entity against the Department of Labor or the United States. Statements which reflect current Occupational Safety and Health Review Commission or court precedents do not necessarily indicate acquiescence with those precedents.Table of ContentsCHAPTER 1INTRODUCTIONI.PURPOSE. ........................................................................................................... 1-1 II.SCOPE. ................................................................................................................ 1-1 III.REFERENCES .................................................................................................... 1-1 IV.CANCELLATIONS............................................................................................. 1-8 V. ACTION INFORMATION ................................................................................. 1-8A.R ESPONSIBLE O FFICE.......................................................................................................................................... 1-8B.A CTION O FFICES. .................................................................................................................... 1-8C. I NFORMATION O FFICES............................................................................................................ 1-8 VI. STATE IMPACT. ................................................................................................ 1-8 VII.SIGNIFICANT CHANGES. ............................................................................... 1-9 VIII.BACKGROUND. ................................................................................................. 1-9 IX. DEFINITIONS AND TERMINOLOGY. ........................................................ 1-10A.T HE A CT................................................................................................................................................................. 1-10B. C OMPLIANCE S AFETY AND H EALTH O FFICER (CSHO). ...........................................................1-10B.H E/S HE AND H IS/H ERS ..................................................................................................................................... 1-10C.P ROFESSIONAL J UDGMENT............................................................................................................................... 1-10E. W ORKPLACE AND W ORKSITE ......................................................................................................................... 1-10CHAPTER 2PROGRAM PLANNINGI.INTRODUCTION ............................................................................................... 2-1 II.AREA OFFICE RESPONSIBILITIES. .............................................................. 2-1A.P ROVIDING A SSISTANCE TO S MALL E MPLOYERS. ...................................................................................... 2-1B.A REA O FFICE O UTREACH P ROGRAM. ............................................................................................................. 2-1C. R ESPONDING TO R EQUESTS FOR A SSISTANCE. ............................................................................................ 2-2 III. OSHA COOPERATIVE PROGRAMS OVERVIEW. ...................................... 2-2A.V OLUNTARY P ROTECTION P ROGRAM (VPP). ........................................................................... 2-2B.O NSITE C ONSULTATION P ROGRAM. ................................................................................................................ 2-2C.S TRATEGIC P ARTNERSHIPS................................................................................................................................. 2-3D.A LLIANCE P ROGRAM ........................................................................................................................................... 2-3 IV. ENFORCEMENT PROGRAM SCHEDULING. ................................................ 2-4A.G ENERAL ................................................................................................................................................................. 2-4B.I NSPECTION P RIORITY C RITERIA. ..................................................................................................................... 2-4C.E FFECT OF C ONTEST ............................................................................................................................................ 2-5D.E NFORCEMENT E XEMPTIONS AND L IMITATIONS. ....................................................................................... 2-6E.P REEMPTION BY A NOTHER F EDERAL A GENCY ........................................................................................... 2-6F.U NITED S TATES P OSTAL S ERVICE. .................................................................................................................. 2-7G.H OME-B ASED W ORKSITES. ................................................................................................................................ 2-8H.I NSPECTION/I NVESTIGATION T YPES. ............................................................................................................... 2-8 V.UNPROGRAMMED ACTIVITY – HAZARD EVALUATION AND INSPECTION SCHEDULING ............................................................................ 2-9 VI.PROGRAMMED INSPECTIONS. ................................................................... 2-10A.S ITE-S PECIFIC T ARGETING (SST) P ROGRAM. ............................................................................................. 2-10B.S CHEDULING FOR C ONSTRUCTION I NSPECTIONS. ..................................................................................... 2-10C.S CHEDULING FOR M ARITIME I NSPECTIONS. ............................................................................. 2-11D.S PECIAL E MPHASIS P ROGRAMS (SEP S). ................................................................................... 2-12E.N ATIONAL E MPHASIS P ROGRAMS (NEP S) ............................................................................... 2-13F.L OCAL E MPHASIS P ROGRAMS (LEP S) AND R EGIONAL E MPHASIS P ROGRAMS (REP S) ............ 2-13G.O THER S PECIAL P ROGRAMS. ............................................................................................................................ 2-13H.I NSPECTION S CHEDULING AND I NTERFACE WITH C OOPERATIVE P ROGRAM P ARTICIPANTS ....... 2-13CHAPTER 3INSPECTION PROCEDURESI.INSPECTION PREPARATION. .......................................................................... 3-1 II.INSPECTION PLANNING. .................................................................................. 3-1A.R EVIEW OF I NSPECTION H ISTORY .................................................................................................................... 3-1B.R EVIEW OF C OOPERATIVE P ROGRAM P ARTICIPATION .............................................................................. 3-1C.OSHA D ATA I NITIATIVE (ODI) D ATA R EVIEW .......................................................................................... 3-2D.S AFETY AND H EALTH I SSUES R ELATING TO CSHO S.................................................................. 3-2E.A DVANCE N OTICE. ................................................................................................................................................ 3-3F.P RE-I NSPECTION C OMPULSORY P ROCESS ...................................................................................................... 3-5G.P ERSONAL S ECURITY C LEARANCE. ................................................................................................................. 3-5H.E XPERT A SSISTANCE. ........................................................................................................................................... 3-5 III. INSPECTION SCOPE. ......................................................................................... 3-6A.C OMPREHENSIVE ................................................................................................................................................... 3-6B.P ARTIAL. ................................................................................................................................................................... 3-6 IV. CONDUCT OF INSPECTION .............................................................................. 3-6A.T IME OF I NSPECTION............................................................................................................................................. 3-6B.P RESENTING C REDENTIALS. ............................................................................................................................... 3-6C.R EFUSAL TO P ERMIT I NSPECTION AND I NTERFERENCE ............................................................................. 3-7D.E MPLOYEE P ARTICIPATION. ............................................................................................................................... 3-9E.R ELEASE FOR E NTRY ............................................................................................................................................ 3-9F.B ANKRUPT OR O UT OF B USINESS. .................................................................................................................... 3-9G.E MPLOYEE R ESPONSIBILITIES. ................................................................................................. 3-10H.S TRIKE OR L ABOR D ISPUTE ............................................................................................................................. 3-10I. V ARIANCES. .......................................................................................................................................................... 3-11 V. OPENING CONFERENCE. ................................................................................ 3-11A.G ENERAL ................................................................................................................................................................ 3-11B.R EVIEW OF A PPROPRIATION A CT E XEMPTIONS AND L IMITATION. ..................................................... 3-13C.R EVIEW S CREENING FOR P ROCESS S AFETY M ANAGEMENT (PSM) C OVERAGE............................. 3-13D.R EVIEW OF V OLUNTARY C OMPLIANCE P ROGRAMS. ................................................................................ 3-14E.D ISRUPTIVE C ONDUCT. ...................................................................................................................................... 3-15F.C LASSIFIED A REAS ............................................................................................................................................. 3-16VI. REVIEW OF RECORDS. ................................................................................... 3-16A.I NJURY AND I LLNESS R ECORDS...................................................................................................................... 3-16B.R ECORDING C RITERIA. ...................................................................................................................................... 3-18C. R ECORDKEEPING D EFICIENCIES. .................................................................................................................. 3-18 VII. WALKAROUND INSPECTION. ....................................................................... 3-19A.W ALKAROUND R EPRESENTATIVES ............................................................................................................... 3-19B.E VALUATION OF S AFETY AND H EALTH M ANAGEMENT S YSTEM. ....................................................... 3-20C.R ECORD A LL F ACTS P ERTINENT TO A V IOLATION. ................................................................................. 3-20D.T ESTIFYING IN H EARINGS ................................................................................................................................ 3-21E.T RADE S ECRETS. ................................................................................................................................................. 3-21F.C OLLECTING S AMPLES. ..................................................................................................................................... 3-22G.P HOTOGRAPHS AND V IDEOTAPES.................................................................................................................. 3-22H.V IOLATIONS OF O THER L AWS. ....................................................................................................................... 3-23I.I NTERVIEWS OF N ON-M ANAGERIAL E MPLOYEES .................................................................................... 3-23J.M ULTI-E MPLOYER W ORKSITES ..................................................................................................................... 3-27 K.A DMINISTRATIVE S UBPOENA.......................................................................................................................... 3-27 L.E MPLOYER A BATEMENT A SSISTANCE. ........................................................................................................ 3-27 VIII. CLOSING CONFERENCE. .............................................................................. 3-28A.P ARTICIPANTS. ..................................................................................................................................................... 3-28B.D ISCUSSION I TEMS. ............................................................................................................................................ 3-28C.A DVICE TO A TTENDEES .................................................................................................................................... 3-29D.P ENALTIES............................................................................................................................................................. 3-30E.F EASIBLE A DMINISTRATIVE, W ORK P RACTICE AND E NGINEERING C ONTROLS. ............................ 3-30F.R EDUCING E MPLOYEE E XPOSURE. ................................................................................................................ 3-32G.A BATEMENT V ERIFICATION. ........................................................................................................................... 3-32H.E MPLOYEE D ISCRIMINATION .......................................................................................................................... 3-33 IX. SPECIAL INSPECTION PROCEDURES. ...................................................... 3-33A.F OLLOW-UP AND M ONITORING I NSPECTIONS............................................................................................ 3-33B.C ONSTRUCTION I NSPECTIONS ......................................................................................................................... 3-34C. F EDERAL A GENCY I NSPECTIONS. ................................................................................................................. 3-35CHAPTER 4VIOLATIONSI. BASIS OF VIOLATIONS ..................................................................................... 4-1A.S TANDARDS AND R EGULATIONS. .................................................................................................................... 4-1B.E MPLOYEE E XPOSURE. ........................................................................................................................................ 4-3C.R EGULATORY R EQUIREMENTS. ........................................................................................................................ 4-6D.H AZARD C OMMUNICATION. .............................................................................................................................. 4-6E. E MPLOYER/E MPLOYEE R ESPONSIBILITIES ................................................................................................... 4-6 II. SERIOUS VIOLATIONS. .................................................................................... 4-8A.S ECTION 17(K). ......................................................................................................................... 4-8B.E STABLISHING S ERIOUS V IOLATIONS ............................................................................................................ 4-8C. F OUR S TEPS TO BE D OCUMENTED. ................................................................................................................... 4-8 III. GENERAL DUTY REQUIREMENTS ............................................................. 4-14A.E VALUATION OF G ENERAL D UTY R EQUIREMENTS ................................................................................. 4-14B.E LEMENTS OF A G ENERAL D UTY R EQUIREMENT V IOLATION.............................................................. 4-14C. U SE OF THE G ENERAL D UTY C LAUSE ........................................................................................................ 4-23D.L IMITATIONS OF U SE OF THE G ENERAL D UTY C LAUSE. ..............................................................E.C LASSIFICATION OF V IOLATIONS C ITED U NDER THE G ENERAL D UTY C LAUSE. ..................F. P ROCEDURES FOR I MPLEMENTATION OF S ECTION 5(A)(1) E NFORCEMENT ............................ 4-25 4-27 4-27IV.OTHER-THAN-SERIOUS VIOLATIONS ............................................... 4-28 V.WILLFUL VIOLATIONS. ......................................................................... 4-28A.I NTENTIONAL D ISREGARD V IOLATIONS. ..........................................................................................4-28B.P LAIN I NDIFFERENCE V IOLATIONS. ...................................................................................................4-29 VI. CRIMINAL/WILLFUL VIOLATIONS. ................................................... 4-30A.A REA D IRECTOR C OORDINATION ....................................................................................................... 4-31B.C RITERIA FOR I NVESTIGATING P OSSIBLE C RIMINAL/W ILLFUL V IOLATIONS ........................ 4-31C. W ILLFUL V IOLATIONS R ELATED TO A F ATALITY .......................................................................... 4-32 VII. REPEATED VIOLATIONS. ...................................................................... 4-32A.F EDERAL AND S TATE P LAN V IOLATIONS. ........................................................................................4-32B.I DENTICAL S TANDARDS. .......................................................................................................................4-32C.D IFFERENT S TANDARDS. .......................................................................................................................4-33D.O BTAINING I NSPECTION H ISTORY. .....................................................................................................4-33E.T IME L IMITATIONS..................................................................................................................................4-34F.R EPEATED V. F AILURE TO A BATE....................................................................................................... 4-34G. A REA D IRECTOR R ESPONSIBILITIES. .............................................................................. 4-35 VIII. DE MINIMIS CONDITIONS. ................................................................... 4-36A.C RITERIA ................................................................................................................................................... 4-36B.P ROFESSIONAL J UDGMENT. ..................................................................................................................4-37C. A REA D IRECTOR R ESPONSIBILITIES. .............................................................................. 4-37 IX. CITING IN THE ALTERNATIVE ............................................................ 4-37 X. COMBINING AND GROUPING VIOLATIONS. ................................... 4-37A.C OMBINING. ..............................................................................................................................................4-37B.G ROUPING. ................................................................................................................................................4-38C. W HEN N OT TO G ROUP OR C OMBINE. ................................................................................................4-38 XI. HEALTH STANDARD VIOLATIONS ....................................................... 4-39A.C ITATION OF V ENTILATION S TANDARDS ......................................................................................... 4-39B.V IOLATIONS OF THE N OISE S TANDARD. ...........................................................................................4-40 XII. VIOLATIONS OF THE RESPIRATORY PROTECTION STANDARD(§1910.134). ....................................................................................................... XIII. VIOLATIONS OF AIR CONTAMINANT STANDARDS (§1910.1000) ... 4-43 4-43A.R EQUIREMENTS UNDER THE STANDARD: .................................................................................................. 4-43B.C LASSIFICATION OF V IOLATIONS OF A IR C ONTAMINANT S TANDARDS. ......................................... 4-43 XIV. CITING IMPROPER PERSONAL HYGIENE PRACTICES. ................... 4-45A.I NGESTION H AZARDS. .................................................................................................................................... 4-45B.A BSORPTION H AZARDS. ................................................................................................................................ 4-46C.W IPE S AMPLING. ............................................................................................................................................. 4-46D.C ITATION P OLICY ............................................................................................................................................ 4-46 XV. BIOLOGICAL MONITORING. ...................................................................... 4-47CHAPTER 5CASE FILE PREPARATION AND DOCUMENTATIONI.INTRODUCTION ............................................................................................... 5-1 II.INSPECTION CONDUCTED, CITATIONS BEING ISSUED. .................... 5-1A.OSHA-1 ................................................................................................................................... 5-1B.OSHA-1A. ............................................................................................................................... 5-1C. OSHA-1B. ................................................................................................................................ 5-2 III.INSPECTION CONDUCTED BUT NO CITATIONS ISSUED .................... 5-5 IV.NO INSPECTION ............................................................................................... 5-5 V. HEALTH INSPECTIONS. ................................................................................. 5-6A.D OCUMENT P OTENTIAL E XPOSURE. ............................................................................................................... 5-6B.E MPLOYER’S O CCUPATIONAL S AFETY AND H EALTH S YSTEM. ............................................................. 5-6 VI. AFFIRMATIVE DEFENSES............................................................................. 5-8A.B URDEN OF P ROOF. .............................................................................................................................................. 5-8B.E XPLANATIONS. ..................................................................................................................................................... 5-8 VII. INTERVIEW STATEMENTS. ........................................................................ 5-10A.G ENERALLY. ......................................................................................................................................................... 5-10B.CSHO S SHALL OBTAIN WRITTEN STATEMENTS WHEN: .......................................................................... 5-10C.L ANGUAGE AND W ORDING OF S TATEMENT. ............................................................................................. 5-11D.R EFUSAL TO S IGN S TATEMENT ...................................................................................................................... 5-11E.V IDEO AND A UDIOTAPED S TATEMENTS. ..................................................................................................... 5-11F.A DMINISTRATIVE D EPOSITIONS. .............................................................................................5-11 VIII. PAPERWORK AND WRITTEN PROGRAM REQUIREMENTS. .......... 5-12 IX.GUIDELINES FOR CASE FILE DOCUMENTATION FOR USE WITH VIDEOTAPES AND AUDIOTAPES .............................................................. 5-12 X.CASE FILE ACTIVITY DIARY SHEET. ..................................................... 5-12 XI. CITATIONS. ..................................................................................................... 5-12A.S TATUTE OF L IMITATIONS. .............................................................................................................................. 5-13B.I SSUING C ITATIONS. ........................................................................................................................................... 5-13C.A MENDING/W ITHDRAWING C ITATIONS AND N OTIFICATION OF P ENALTIES. .................................. 5-13D.P ROCEDURES FOR A MENDING OR W ITHDRAWING C ITATIONS ............................................................ 5-14 XII. INSPECTION RECORDS. ............................................................................... 5-15A.G ENERALLY. ......................................................................................................................................................... 5-15B.R ELEASE OF I NSPECTION I NFORMATION ..................................................................................................... 5-15C. C LASSIFIED AND T RADE S ECRET I NFORMATION ...................................................................................... 5-16。

高分子溶液的相平衡

高分子溶液的相平衡
DGM-j2关系曲线与x和c1
的大小有关, 当x一定时:
当c1 < c1C 或 T > TC时 当c1 = c1C 或 T = TC时 当c1 > c1C 或 T < TC时
DGM/RT
0
j’ ja j2 jb j” 1.0
DGM/RT
当c1 > c1C 或 T < TC时
曲率半径大于0
体系为均相
路漫漫其修远兮, 吾将上下而求索
Discussion 1
路漫漫其修远兮, 吾将上下而求索
(1) 从纵轴的截距可求聚合 物的相对分子质量
(2) 从直线的斜率可计算第 二维利系数
c
Discussion 2
The second Virial coefficient
A2与c1相似,也是高分子与溶剂分子间相互作用
的反映,但A2可以直接从实验中得到。它们都与 高分子在溶液中的形态有密切关系。
路漫漫其修远兮, 吾将上下而求索
良溶剂
溶剂
劣溶剂
c
A2 > 0 A2 = 0 A2 < 0
线团扩张 无扰线团 线团紧缩
温度与A2的关系 A2
0
对于同一高分子-溶剂体系, 改变体系的温度, 则有:
T
A2 > 0 A2 = 0 A2 < 0
良溶剂 线团扩张
溶剂 无扰线团
劣溶剂 线团紧缩
路漫漫其修远兮, 吾将上下而求索
3.3.2 相分离
高分子溶液作为由聚合物和溶剂组成的二元体系 , 在一定条件下可分为两相, 其为一相为含聚合物 较少的“稀相”, 另一相为含聚合物较多的“浓相”, 这种现象称之为相分离
对于聚合物和溶剂都确定的体系, 相分离发生与 否同温度有关

31届iCho

31届iCho
235 92 U
226 88 Ra 222
(t1/2 = 1620 years) which,
b)
In the neutron induced binary fission products
are often found. Assuming that these nuclides have come from the original fission process, find (i) (ii) (iii) what elementary particles are released, energy released per fission in MeV and in joules, energy released per 1 gram of 235 U in unit of kW-hour. 235 136 Atomic masses: 92 U = 235.04393 u, 54 Xe = 135.90722 u,
31st International Chemistry Olympiad Preparatory Problems
Problem 2
a) Acetone (denoted as A) and chloroform (denoted as C) are miscible at all proportions. The partial pressure of acetone and chloroform have been measured at 35oC for the following solutions: Xc 0.00 0.20 0.40 0.60 0.80 1.00 0.00 35 82 142 219 293 Pc (torr) PA (torr) 347 270 185 102 37 0.00 where Xc is the mole fraction of chloroform in the solution. (i) (ii) (iii) each component in the solution. Activity (a) may be found from the following equation (taking chloroform as an example):

最新理论试题及答案英语

最新理论试题及答案英语

最新理论试题及答案英语一、选择题(每题1分,共10分)1. The word "phenomenon" is most closely related to which of the following concepts?A. EventB. FactC. TheoryD. Hypothesis答案:C2. In the context of scientific research, what does the term "hypothesis" refer to?A. A proven factB. A testable statementC. A final conclusionD. An unverifiable assumption答案:B3. Which of the following is NOT a characteristic of scientific theories?A. They are based on empirical evidence.B. They are subject to change.C. They are always universally applicable.D. They are supported by a body of evidence.答案:C4. The scientific method typically involves which of the following steps?A. Observation, hypothesis, experimentation, conclusionB. Hypothesis, observation, conclusion, experimentationC. Experimentation, hypothesis, observation, conclusionD. Conclusion, hypothesis, observation, experimentation答案:A5. What is the role of experimentation in the scientific process?A. To confirm a hypothesisB. To disprove a hypothesisC. To provide evidence for or against a hypothesisD. To replace the need for a hypothesis答案:C6. The term "paradigm shift" in the philosophy of science refers to:A. A minor change in scientific theoryB. A significant change in the dominant scientific viewC. The process of scientific discoveryD. The end of scientific inquiry答案:B7. Which of the following is an example of inductive reasoning?A. Observing a pattern and making a general ruleB. Drawing a specific conclusion from a general ruleC. Making a prediction based on a hypothesisD. Testing a hypothesis through experimentation答案:A8. Deductive reasoning is characterized by:A. Starting with a specific observation and drawing a general conclusionB. Starting with a general rule and applying it to a specific caseC. Making assumptions without evidenceD. Relying on intuition rather than logic答案:B9. In scientific research, what is the purpose of a control group?A. To provide a baseline for comparisonB. To test an alternative hypothesisC. To increase the number of participantsD. To confirm the results of previous studies答案:A10. The principle of falsifiability, introduced by Karl Popper, suggests that:A. Scientific theories must be proven trueB. Scientific theories must be able to withstand attempts at being disprovenC. Scientific theories are never wrongD. Scientific theories are always based on personal beliefs答案:B二、填空题(每题1分,共5分)1. The scientific method is a systematic approach to__________ knowledge through observation, experimentation, and __________.答案:gaining; logical reasoning2. A scientific law is a statement that describes a__________ pattern observed in nature, while a scientific theory explains the __________ behind these patterns.答案:recurring; underlying principles3. The process of peer review in scientific publishing is important because it helps to ensure the __________ and__________ of research findings.答案:validity; reliability4. In the context of scientific inquiry, an __________ is a tentative explanation for an aspect of the natural world that is based on a limited range of __________.答案:hypothesis; observations5. The term "empirical" refers to knowledge that is based on __________ and observation, rather than on theory or__________.答案:experimentation; speculation三、简答题(每题5分,共10分)1. Explain the difference between a scientific theory and a scientific law.答案:A scientific theory is a well-substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experimentation. It is a broad framework that can encompass multiple laws and observations. A scientific law, on the other hand, is a concise verbal or mathematical statement that describes a general pattern observed in nature. Laws summarize specific phenomena, while theories explain the broader principles behind those phenomena.2. What is the significance of the falsifiability criterionin the philosophy of science?答案:The falsifiability criterion, proposed byphilosopher of science Karl Popper, is significant because it provides a way to distinguish between scientific and non-scientific theories. For a theory to be considered scientific, it must be testable and potentially refutable by empirical evidence. This criterion ensures that scientific theories are open。

英语报告相关英语常用词汇

英语报告相关英语常用词汇

冲裁下料 压毛边 凸圆 凸点 成型 压线 弯曲 卷曲 拉伸 固定接合
PD Plastic Tooling - Apple Confidential
5.品质英语缩写词汇
详细请双击图片 然后按F5
1 ACC Accepted 2 ADM Absolute Dimension Measurement 3 AOD Accept On Deviation 4 APP Approved 5 AQL Acceptable Quality Level 6 C= Critical 7 CAR Corrective action request 8 CP Capability index 9 CPK Capability index of process 10 FAI First article inspection
母模板
公模板 推料板 动模板 定模板 水口推板 顶针 拉杆 上模板 下模板
PD Plastic Tooling - Apple Confidential
3.产品品质缺陷的相关英语词汇
详细请双击图片 然后按F5
1 Broken/Break
2 Cosmetic defect 3 Critical defect 4 Defective-product 5 Poor processing 6 Dent 7 Discoloration 8 Excessive gap 9 Dim/size is a little bigger/smaller 10 Qualified-product
PD Plastic Tooling - Apple Confidential
202X
To be continued
单击此处添加副标题
断裂
外观不良 严重缺陷

一类高阶P—Laplacian方程周期解的存在性和唯一性

一类高阶P—Laplacian方程周期解的存在性和唯一性

( +()卢) +蛳 (( ‘ ( )( g ( £ (( 厂(+ ( )一) m ) ) , ) :
存在唯一周期解的问题, 所得结果推广和改进了 4 5 文[和[ 的结果. ] 】 这里 ( = f )
为方 便叙 述 ,全文 约定 :
/T 、
( 3 )

Cl C2
一 ’ss s y). ) (d
A :


Cm 3

Cm


( (… ( ) ( 一m = 0 0 ) 6 ,- 一 ) ) l 6) , , , 一
由( 和( 可知 Ⅳ在 上是 紧的 ,其中 c 4 5 ) ) _X是开集. -
中 国分 类 号 :0151 7. 2 文 献 标 识 码 :A 文章 编 号 :10 — 8 3 (0 20 — 0 10 0 7 6 8 一2 1)3 0 0 — 6
1 引言及 引理
关于线性项 前系 ( ) 数为常数的D r g u n方程周期解的存在性和唯一性的研究已 i 取得了 很多成果 . 然而, 允许线性项 前系数可变号的却少见.文[ 、 5 ( ) 4 文[分别研究了一类具偏差变元的L nr型 】 ] i. ed d
对方程( ) 1 两边在 [ T积分, 2 0】 , 得
胎 。,tT)/) 0 , 。 (- ( )( t 3 ) . ( - ) =
根 据积 分 中值定 理 , eo ,t [, s. .
g ,() , 一()3 () 0 ( ,( - ) = 。 (
s, 丽i 2 2 c T , , . di s- …
— Y是 指标 为零 的 Fehl rd o m
引理 1】 ( w iy 拓定 理 )设 XY都 是 Bnc 空 间 , LD 【 1 Ma hn 延 , aah :㈣

非一致椭圆型方程的广义green函数

非一致椭圆型方程的广义green函数

非一致椭圆型方程的广义green函数广义Green函数是解偏微分方程的一种方法,它可以通过椭圆型方程的积分表示来表示非一致椭圆型方程的解。

本文将详细介绍广义Green函数的定义、性质和表示方法。

首先,我们来定义非一致椭圆型方程。

非一致椭圆型方程是指不满足Laplace方程的椭圆型方程。

它可以表示为:\[Lu=f(x)\]其中,\(L\)是一个椭圆型的偏微分算子,\(u\)是未知函数,\(f(x)\)是给定函数。

通常,非一致椭圆型方程的最常见形式是Poisson 方程:\[\Delta u = f(x)\]其中\(\Delta\)表示Laplace算子。

广义Green函数可以用于求解非一致椭圆型方程的边界值问题。

边界值问题是指在给定边界条件下求解方程的特解。

对于非一致椭圆型方程,广义Green函数的定义如下:\[L_x G(x,y) = \delta(x-y) - \frac{1}{,\Omega,}\]其中,\(L_x\)是关于\(x\)的椭圆型偏微分算子,\(G(x,y)\)是Green函数,\(\delta(x-y)\)是Dirac Delta函数,\(,\Omega,\)是定义域\(\Omega\)的体积。

广义Green函数的性质如下:1. 广义Green函数是关于\(x\)的椭圆型方程的唯一解。

2. 广义Green函数在定义域\(\Omega\)内满足边界条件。

3. 广义Green函数在边界\(\partial \Omega\)上满足约束方程。

接下来,我们介绍用积分方法来表示广义Green函数的方法。

\[u(y) = \int_\Omega G(x,y)f(x)dx\]其中,\(G(x,y)\)是广义Green函数。

这个积分表示了\(u(y)\)是在整个定义域\(\Omega\)上对\(f(x)\)与Green函数的积分。

根据广义Green函数的定义,可以将其表示为:\[G(x,y) = G_0(x,y) - \frac{1}{,\Omega,}\int_\OmegaG(x,z)dz\]其中,\(G_0(x,y)\)是关于\(x\)的椭圆型方程的Green函数。

New Evidence on Measuring Financial

New Evidence on Measuring Financial

New Evidence on Measuring FinancialConstraints:Moving Beyond the KZ Index Charles J.HadlockMichigan State UniversityJoshua R.PierceUniversity of South CarolinaWe collect detailed qualitative information from financial filings to categorize financial constraints for a random sample of firms from 1995to ing this categorization,we estimate ordered logit models predicting constraints as a function of different quantita-tive factors.Our findings cast serious doubt on the validity of the KZ index as a measure of financial constraints,while offering mixed evidence on the validity of other common measures of constraints.We find that firm size and age are particularly useful predictors of financial constraint levels,and we propose a measure of financial constraints that is based solely on these firm characteristics.(JEL G31,G32,D92)A large literature in corporate finance examines how various frictions in the process of raising external capital can generate financial constraints for firms.Researchers have hypothesized that these constraints may have a substantial effect on a variety of decisions,including a firm’s major investment and cap-ital structure choices (e.g.,Hennessy and Whited 2007).Additional research suggests that financial constraints may be related to a firm’s subsequent stock returns (e.g.,Lamont et al.2001).To study the role of financial constraints in firm behavior,researchers are often in need of a measure of the severity of these constraints.The literature has suggested many possibilities,including investment–cash flow sensitivities (Fazzari et al.1988),the Kaplan and Zingales (KZ)index of constraints (Lamont et al.2001),the Whited and Wu (WW)index of constraints (Whited and Wu 2006),and a variety of different sorting criteria based on firm characteristics.We describe these approaches in more detail below.While there are many possible methods for measuring financial constraints,considerable debate exists with respect to the relative merits of each approach.This is not surprising,since each method relies on certain empirical and/or the-Prior versions of this article circulated under alternative titles.We thank Julian Atanassov,Sreedhar Bharath,Murillo Campello,Jonathan Carmel,Jonathan Cohn,Ted Fee,Jun-Koo Kang,Michael Mazzeo,Uday Rajan,David Scharfstein,Michael Weisbach,two anonymous referees,and seminar participants at George Mason,Michigan,North Carolina,Oregon,Pittsburgh,South Carolina,Texas,Texas Tech,and Wayne State for helpful comments.Tehseen Baweja and Randall Yu provided superb data assistance.All errors remain our own.Send correspondence to Charles J.Hadlock,Department of Finance,Michigan State University,315Eppley Center,East Lansing,MI 48824-1121;telephone:(517)353-9330.E-mail:hadlock@.c The Author 2010.Published by Oxford University Press on behalf of The Society for Financial Studies.All rights reserved.For Permissions,please e-mail:journals.permissions@.doi:10.1093/rfs/hhq009RFS Advance Access published March 1, 2010 at Wuhan University Library on March 12, 2010 Downloaded fromThe Review of Financial Studies/v00n002010oretical assumptions that may or may not be valid.In addition,many of these methods rely on endogenousfinancial choices that may not have a straightfor-ward relation to constraints.For example,while an exogenous increase in cash on hand may help alleviate the constraints that a givenfirm faces,the fact that afirm chooses to hold a high level of cash may be an indication that thefirm is constrained and is holding cash for precautionary reasons.In this article,we studyfinancial constraints by exploiting an approachfirst advocated by Kaplan and Zingales(1997).In particular,we use qualitative in-formation to categorize afirm’sfinancial constraint status by carefully reading statements made by managers in SECfilings for a sample of randomly selected firms from1995to2004.1This direct approach to categorizingfinancial con-straints is not practical for large samples,since it requires extensive hand data collection.However,by studying the relation between constraint categories and variousfirm characteristics,we can make inferences that are useful for thinking about how to measurefinancial constraints in larger samples.We exploit our qualitative data onfinancial constraints for two purposes. First,we critically evaluate methods commonly used in the literature to mea-surefinancial constraints.We pay particular attention to the KZ index,given its relative prominence in the literature and the fact that our data are particularly useful for evaluating this measure.Second,after examining past approaches, we propose a simple new approach for measuring constraints that has substan-tial support in the data and considerable intuitive appeal.We then subject thisnew measure to a variety of robustness checks.To evaluate the KZ index,we estimate ordered logit models in which afirm’s categorized level of constraints is modeled as a function offive Compustat-based variables.This modeling approach parallels the analysis of Lamont et al. (2001),who create the original KZ index by estimating similar models using the original Kaplan and Zingales(1997)sample.The KZ index,which is based on the estimated coefficients from one of the Lamont,Polk,and Saa-Requejo models,loads positively on leverage and Q,and negatively on cashflow,cash levels,and dividends.In the ordered logit models we estimate,only two of thefive components of the KZ index,cashflow and leverage,are consistently significant with a sign that agrees with the KZ index.For two of the otherfive components, Q and dividends,the coefficientsflip signs across estimated models and in many cases are insignificant,particularly for the dividend variable.Finally,in contrast to its negative loading in the KZ index,wefind that cash holdings generally display a positive and significant coefficient in models predicting constraints.This positive relation is consistent with constrainedfirms holding cash for precautionary reasons.1The information we use includes statements regarding the strength of afirm’s liquidity position and thefirm’s ability to raise any needed external funds.Additional details are provided below.2 at Wuhan University Library on March 12, 2010 Downloaded fromNew Evidence on Measuring Financial ConstraintsOur estimates differ substantially from the KZ index coefficients even though we use a parallel modeling approach.Upon further investigation,we find that the differences most likely arise from the fact that the dependent variable in the original modeling underlying the KZ index includes quantita-tive information in addition to qualitative information.This treatment adds a hard-wired element to the estimates underlying the KZ index,since the same information is mechanically built into both the dependent and the independent variables.In our treatment,we are careful to avoid this problem.Once this problem is addressed,ourfindings indicate that many of the estimated coefficients change substantially.Clearly our evidence raises serious questions about the use of the KZ index. To explore this issue further,we calculate the KZ index for the entire Com-pustat universe and compare this to an index constructed using the coefficient estimates from one of our models.Wefind that the correlation between the tra-ditional index and our alternative version of this index is approximately zero. This provides compelling evidence that the KZ index is unlikely to be a useful measure offinancial constraints.Thus,it would appear that researchers should apply extreme caution when using the traditional KZ index or interpreting re-sults based on index sorts.An alternative index offinancial constraints has been proposed by Whited and Wu(2006),who exploit a Euler equation approach from a structural model of investment to create the WW index.This index loads on six different factorscreated from Compustat data.When we use these six factors as explanatory variables in ordered logit models predicting constraints,only three of the six variables have significant coefficients that agree in sign with the WW index. Two of these variables,cashflow and leverage,are essentially the same vari-ables thatfigure prominently in the KZ index.Thus,the only truly new variable from the WW index that offers marginal explanatory power in our models is firm size.As one would expect,smallerfirms are more likely to be constrained.A more traditional approach to identifyingfinancially constrainedfirms is to sort by afirm characteristic that is believed to be associated with constraints. To evaluate this approach,we study the relation between several common sort-ing variables and ourfinancial constraint categories.Wefind that some of these sorting variables are not significantly related to constraint categories.Two vari-ables that do appear to be closely related tofinancial constraints arefirm size and age.An appealing feature of these variables is that they are much less en-dogenous than most other sorting variables.Once we control forfirm size and age,some of the variables that are significantly related to constraints in a uni-variate sense become insignificant.Thus,it appears that some common sorting variables are largely proxies forfirm size and/or age.The only variables that consistently predict afirm’s constraint status in our sample after controlling for size and age are afirm’s leverage and cash flow.However,given the endogenous nature of these variables,particularly the leverage variable,we are hesitant to recommend any measure of constraints3 at Wuhan University Library on March 12, 2010 Downloaded fromThe Review of Financial Studies/v00n002010that is derived from a model that relies on these factors.In addition,as we explain below,typical disclosure practices may lead us to under-detect the presence of constraints infirms with low leverage,thus possibly leading to a spurious coefficient on leverage.Given these concerns,we recommend that researchers rely solely onfirm size and age,two relatively exogenousfirm characteristics,to identify constrainedfirms.To provide further guidance on the role of size and age infinancial con-straints,we examine the relation between these factors and constraints for sub-samples grouped byfirm characteristics and time period.While there is minor variation across groups,the general form of the relation between size,age,and financial constraint categories appears to be robust.Wefind that the role of both size and age in predicting constraints is nonlinear.At certain points,roughly the sample ninety-fifth percentiles($4.5billion in assets,thirty-seven years in age),the relation between constraints and thesefirm characteristics is essen-tiallyflat.Below these cutoffs,we uncover a quadratic relation between size and constraints and a linear relation between age and constraints.We represent this relation in what we call the size–age or SA index.2This index indicates thatfinancial constraints fall sharply as young and smallfirms start to mature and grow.Eventually,these relations appear to level off.Since all measures offinancial constraints have potential shortcomings,we attempt to provide corroboratory evidence regarding our proposed index.In particular,we exploit the cashflow sensitivity of cash approach advanced byAlmeida et al.(2004).When we sortfirms into constrained and unconstrained groups using the SA index,wefind that the constrainedfirms display a sig-nificant sensitivity of cash to cashflow,whereas the unconstrainedfirms do not.This evidence increases our confidence in the SA index as a reasonable measure of constraints.While we cannot prove that our index is the optimal measure of constraints, it has many advantages over other approaches,including its intuitive appeal, its independence from various theoretical assumptions,and the presence of corroborating evidence from an alternative approach.The correlation between the SA index and the KZ index is negligible,casting additional doubt on the usefulness of the KZ index.The correlation between the SA index and the WW index is much higher,but this largely reflects the fact that the WW index includesfirm size as one of its six components.For completeness,we use our data to revisit the Kaplan and Zingales (1997)assertion that investment–cashflow sensitivities are dubious measures2This index is derived from coefficients in one of our ordered logit models presented below.The index is cal-culated as(−0.737*Size)+(0.043*Size2)−(0.040*Age),where Size equals the log of inflation-adjustedbook assets,and Age is the number of years thefirm is listed with a non-missing stock price on Compustat. In calculating this index,Size is winsorized(i.e.,capped)at(the log of)$4.5billion,and Age is winsorized at thirty-seven years.4 at Wuhan University Library on March 12, 2010 Downloaded fromNew Evidence on Measuring Financial Constraintsoffinancial constraints.3Ourfindings here are consistent with what Kaplan and Zingales(1997)report.In particular,using both our direct qualitative categorization of constraints and the SA index,wefind that investment–cash flow sensitivities are not monotonically increasing in afirm’s level offinancial constraints.The rest of the article is organized as follows.In Section1,we detail our sample selection procedure and our assignment offirms intofinancial constraint groups using qualitative information.In Section2,we use our data to critically evaluate past approaches for measuringfinancial constraints.In Section3,we further explore the relation betweenfinancial constraints and the size and age of afirm and propose a simple index based on thesefirm characteristics.In Section4,we revisit the prior evidence on investment–cash flow sensitivities.Section5concludes.1.Sample Construction and Categorization of Financial Constraints1.1Sample selection and data collectionOur goal is to study a large and representative sample of modern public firms.We begin with the set of all Compustatfirms in existence at some point between1995and2004.From this universe,we eliminate allfinancial firms(SIC Codes6000–6999),regulated utilities(SIC Codes4900–4949), andfirms incorporated outside the United States.We then sortfirms byCompustat identifier and select every twenty-fourthfirm for further analysis. This procedure results in a random sample of407firms that should be broadly representative of the overall Compustat universe.After selecting the initial sample,we locate eachfirm’s annual reports and 10-Kfilings from Lexis-Nexis and SEC EDGAR.We restrict the sample to firm years for which we can locate at least one of these electronicfilings.In addition,we impose the requirement that thefirm has nonzero sales and assets in the observation year and sufficient accounting data to calculate all of the components of the KZ index.The resulting sample consists of356uniquefirms and1,848firm years during the1995–2004period.4To collect qualitative information onfinancial constraints,we carefully read annual reports and10-Kfilings following the general procedure outlined by Kaplan and Zingales(1997).In particular,for eachfirm year,we read the annual letter to shareholders and the management discussion and analysis section.In addition,we perform an electronic search of the entire text of the annual report and/or10-K to identify all sections of text that include 3For critiques of the investment–cashflow approach,see Cleary(1999),Kaplan and Zingales(1997),Erickson and Whited(2000),Alti(2003),and Moyen(2004).For a defense,see Fazzari et al.(2000).4While we borrow heavily from Kaplan and Zingales(2000),the sample we study is quite different from theirs. They study a small sample(forty-ninefirms)from the1970s and1980s that satisfies a variety of sampling requirements pertaining to industry,size,growth,dividend policy,and survival.5 at Wuhan University Library on March 12, 2010 Downloaded fromThe Review of Financial Studies/v00n002010the following keywords:financing,finance,investing,invest,capital,liquid, liquidity,note,covenant,amend,waive,violate,and credit.Using these procedures,we extract every statement that pertains to a firm’s ability to raise funds orfinance its current or future operations.5In manyfilings,we identify multiple statements.We assign to each individual statement an integer code from1to5,with higher(lower)numbers being more indicative of the presence(lack)of constraints.These codes are based on the description provided by KZ regarding their categorization scheme. Later,we aggregate these codes to derive a single overall categorization of a firm’sfinancial constraint status in any given year.It is important to note that there are literally hundreds of different types of relevant statements made by samplefirms.Grouping such a large number of statements intofive categories necessarily requires some judgment.Specific examples of how we code different types of statements are reported in the Appendix.Following the spirit of the KZ algorithm,we assign to category1all state-ments that indicate that afirm has excessive or more than sufficient liquidity to fund all of its capital needs.In category2,we place all statements that in-dicate that afirm has adequate or sufficient liquidity to fund its needs.The main difference between category1and category2is the strength of thefirm’s language.In category3,we place all statements that provide some qualifica-tion regarding thefirm’s ability to fund future needs,but that do not indicate any type of current problem.Most of these statements are soft warnings,oftengeneric or boilerplate in character,indicating that under some possible future scenario thefirm could have difficulty raising funds orfinancing desired in-vestments.Category3also includes all statements that are opaque and thus not easy to classify into the other groups.We place all statements that indicate some current liquidity problem into category4,but with no direct indication that these problems have led to a substantive change in thefirm’s investment policy or to overtfinancial stress. This would include difficulties in obtainingfinancing or the postponing of a security issue.Finally,category5includes all cases of clearfinancial prob-lems/constraints including a current and substantive covenant violation,a rev-elation that investment has been affected by liquidity problems,going concern statements,or involuntary losses of usual sources of credit.65We were assisted by two trained accountants in our search and categorization efforts.Allfilings were searched independently by at least two individuals to minimize the probability of missing any relevant disclosure.6Somefirms indicate that a covenant had been waived or amended.Often thesefirms indicate that the violation was technical in nature and not of substantive concern.For example,somefirms indicate that a covenant was routinely waived,and others indicate that an accounting ratio fell below a threshold because of a one-time event such as an asset sale or special charge.Since these cases are quite different from and less serious than current violations,in our baseline coding,we ignore waived/amended covenants.Alternative treatments of these cases are discussed below.6 at Wuhan University Library on March 12, 2010 Downloaded fromNew Evidence on Measuring Financial Constraints1.2Categorization of afirm’s overallfinancial constraint statusWe proceed to assign eachfirm year to a singlefinancial constraint group. Borrowing from the KZ algorithm and terminology,we createfive mutually exclusive groups:notfinancially constrained(NFC),likely notfinancially con-strained(LNFC),potentiallyfinancially constrained(PFC),likelyfinancially constrained(LFC),andfinancially constrained(FC).We place in the NFC groupfirms with at least one statement coded as a1and no statement coded below a2.These arefirms that indicate more than sufficient liquidity and re-veal no evidence to the contrary.In the LNFC category,we place allfirms with statements solely coded as2s.These arefirms that indicate adequate or sufficient liquidity with no statements of excessive liquidity and no statements indicating any weakness.7We place allfirms with mixed information on their constraint status into the PFC category.Specifically,we include all observations in which thefirm re-veals a statement coded as2or better(indicatingfinancial strength),but also reveals a statement coded as3or worse(indicating possiblefinancial weak-ness).We also include in this category cases in which all of thefirm’s state-ments are coded as3.The LFC category includesfirms with at least one statement coded as4,no statement coded as5,and no statement coded better than3.These arefirms that indicate some current liquidity problems,with no offsetting positive statement and no statement that is so severe that they are brought into the lowest(FC)category.Finally,all observations with at least one statement coded as5and no other statement coded better than3are assigned to the FC category.These are firms that clearly indicate the presence of constraints with no strong offsetting positive revelation.We refer to this initial categorization scheme as qualitative scheme1and report a sample breakdown in Column1of table1.For comparison purposes, we report in Column4the correspondingfigures reported by KZ.One peculiar feature of qualitative scheme1is that a large number offirms are placed in the PFC category(32.36%versus7.30%in the KZ sample).This elevated rate primarily reflects the fact that manyfirms in our sample provide boilerplate generic warnings about future uncertainties that could affect afirm’s liquidity position.These statements place manyfirms that otherwise report strongfi-nancial health into the PFC category.In our estimation,many of these generic warning statements are uninformative.In particular,they appear to be included as a blanket protection against future legal liability and often pertain to unfore-seen or unlikely contingencies that could potentially affect almost anyfirm.In light of these observations,we prefer an alternative assignment procedure that ignores all generic or soft nonspecific warnings regarding afirm’s future liquidity position.This procedure,which we refer to as qualitative scheme2,7We also place in this group the few observations with no useful qualitative disclosure that could be used to ascertain afirm’sfinancial constraint status.If we exclude these observations,the ordered logit results we report below in tables3,4,and6are substantively unchanged.7 at Wuhan University Library on March 12, 2010 Downloaded fromThe Review of Financial Studies/v00n002010Table1Frequency of Financial Constraint CategoriesConstraint assignment procedureQualitative Qualitative Qual./quant.KZ samplescheme1scheme2schemeNotfinancially const:NFC10.28%10.98%55.84%54.50% Likely notfinancially const.:LNFC50.49%71.59%31.01%30.90% Potentiallyfinancially const.:PFC32.36%10.55% 6.44%7.30% Likelyfinancially const.:LFC0.32%0.32% 2.49% 4.80% Financially const.:FC 6.55% 6.55% 4.22% 2.60% Correlation with qual.scheme1 1.00Correlation with qual.scheme20.89 1.00Correlation with qual./quant.scheme0.750.87 1.00This table reports the fraction of allfirm-year observations in which an observation is assigned to the indicated financial constraint group.Thefigures in Columns1–3pertain to our random sample of1,848Compustatfirm years representing356firms operating during the1995–2004period for observations with non-missing data on thefive components of the KZ index.Qualitative scheme1uses only qualitative statements made byfirms in their filings subsequent to thefiscal year-end regarding thefirm’s liquidity position and ability to fund investments. The exact algorithm used in coding and categorizing this information is detailed in the text.Qualitative scheme 2is constructed identically to scheme1except that it ignores all soft and generic nonspecific warnings made byfirms regarding possible future scenarios under which thefirm could experience a liquidity problem.The qualitative/quantitative scheme augments scheme2by movingfirms upward one category if thefirm materially increases dividends,repurchases shares,or has a high(top quartile)level of(cash/capital expenditures)on hand. Additional details concerning the assignment procedures are provided in the text and the Appendix.Thefigures in Column4are taken from table2of Kaplan and Zingales(1997)and are based on their sample and algorithm for categorizing constraints.The correlationfigures represent simple correlations over the sample between the two constraint assignment procedures in the indicated cell.is identical to qualitative scheme1outlined earlier except that it ignores this one class of statements.As we report in Column2of table1,this modification moves many(a few)firms from the PFC grouping up into the LNFC(NFC) grouping.It is important to emphasize that the categorization schemes outlined above deliberately differ from the KZ procedure in one key respect.In particular, in our categorization,we choose to ignore quantitative information on both the size of afirm’s cash position and its recent dividend/repurchase behavior. We do so this because it seems inappropriate to incorporate this information into categories that will eventually be used for coding our dependent variables, given that this same information will later be used to construct some of the in-dependent variables.Such treatment would lead to uninformative coefficients that are hardwired and potentially misleading in terms of their ability to de-scribe the underlying relation between quantitative variables and qualitative disclosures of constraints.For completeness,we experiment with modifying our qualitative scheme2 categorization to more closely match the exact KZ treatment by incorporating quantitative information on dividends,repurchases,and cash balances.In par-ticular,we move afirm’s constraint status up one notch in a given year(e.g., from PFC to LNFC)if any of the following criteria are met:(i)thefirm ini-tiates a dividend;(ii)thefirm has a material increase in dividends(change in dividends/assets greater than thefifth percentile of dividend increasers);(iii) 8 at Wuhan University Library on March 12, 2010 Downloaded fromNew Evidence on Measuring Financial ConstraintsTable2Sample Characteristics(1)(2)(3)(4)(5)(6) Statistic Mean Mean Mean Median Median Median Cashflow/K−2.379−0.915−9.3150.2430.327−0.907 Cash/K 3.689 3.579 4.2080.4390.5080.199 Dividends/K0.0770.0640.1390.0000.0000.000 Tobin’s Q 2.672 2.036 5.686 1.535 1.489 1.809 Debt/total capital0.3380.2770.6290.2750.2240.728 Capital exp./K0.4110.4150.3920.2140.2290.133 Prop.,plant,278.370303.457159.48020.66429.594 2.951 equip.(PPE)Book assets782.928872.877356.647124.627167.08914.800 Age13.92314.71610.1659.0009.0007.000 Sales growth0.2720.2470.3940.0570.070−0.049#of qualitative 3.37 3.32 3.62 3.00 3.00 3.00 statementsWhich observations All Less More All Less Moreconstrained constrained constrained constrained Thefigures in each column represent the mean or median of the indicated variable over the indicated set of observations.Thefigures in Columns1and4refer to our random sample of1,848Compustatfirm years repre-senting356firms operating during the1995–2004period.Thefigures in Columns2and5are calculated over the subset of observations in which thefirm was classified as less constrained(NFC/LNFC)using qualitative scheme2to categorize constraints.Thefigures in Columns3and6are calculated over the subset of observa-tions in which thefirm was classified as more constrained(PFC/LFC/FC).All variables are constructed from Compustat information.The PPE and book assets statistics are in millions of inflation adjusted year2004dol-lars.All variables that are normalized by K are divided by beginning-of-period PPE.Cashflow is defined to be operating income plus depreciation(Compustat item18+item14).Cash is defined to be cash plus marketable securities(item1).Dividends are total annual dividend payments(item21+item19).Tobin’s Q is defined as (book assets minus book common equity minus deferred taxes plus market equity)/book assets calculated as [item6−item60−item74+(item25×item24)]/item6.Debt is defined as short-term plus long-term debt(item9+item34).Total capital is defined as debt plus total stockholders’equity(item9+item34+item216). If stockholders’equity is negative,we set debt/total capital equal to1.Capital expenditures are item128.Age is defined to be the number of years preceding the observation year that thefirm has a non-missing stock price on the Compustatfile.Sales growth is defined as(sales in year t minus sales in year t−1)/sales in year t−1. Sales arefirst inflation adjusted before making this growth calculation.The number of statements row refers to the number of qualitative statements from disclosurefilings that were used in assigning thefirm to a constraint grouping using qualitative scheme2,as outlined in the text.thefirm repurchases a material number of shares(repurchases/assets greater than thefifth percentile of repurchasers);or(iv)thefirm’s balance of cash and marketable securities normalized by capital expenditures falls in the top sample quartile.The resulting categorization is referred to in what follows as the qualitative/quantitative categorization scheme.We report in Column3of table1the percentage offirms in each of the constraint categories using this alternative scheme.As thefigures illustrate,the sample frequencies using the qualitative/quantitative scheme more closely resemble thefigures reported by KZ,with the modal category beingfirms in the most unconstrained(NFC) category.In table2,we present summary statistics for the sample as a whole and for subsamples grouped by the level of constraints using our preferred constraint assignment procedure,qualitative scheme2.Several interesting differences be-tween the more constrained and less constrainedfirms emerge.In particular, comparing both the reported means and medians for the subsamples grouped9 at Wuhan University Library on March 12, 2010 Downloaded from。

福山组全部全合成文献和其他一些文档(e的文件)-预测选择的脂肪C-H键羟基化反应

福山组全部全合成文献和其他一些文档(e的文件)-预测选择的脂肪C-H键羟基化反应

Cl
CH3
Cl
CH3 no oxidation state
K2Pt(IV)Cl6 change to the metal
Cl
K2Pt(II)Cl4 Pt(II) catalyst is regenerated
Bercaw et al. Angew. Chem. Int. Ed. 1998, 37, 2180.
CH3OH or
b. C-C bond forming reactions of preoxidized fragments
O R1 R2
+ R3
c. olefin oxidations
O R4
acid or base
OH O
RR1 2
R4
R3
dehydration
R1 O
R2
R4
R3
R1
OsO4
OH
R1
OH R1
A Predictably Selective Aliphatic C–H Hydroxylation Reaction
Mark S. Chen and M. Christina White* Science, 2007, 318, 783-787. Ke Chen, Jeremy M. Richter, and Phil S. Baran* J. Am. Chem. Soc. 2008, 130, 7247-7249.
H
Cl PtIV Cl
ClRΒιβλιοθήκη Sol– solvent
H
Cl PtIV Cl
Cl
R
H
Cl PtIV Cl
Cl
R
Cl
– Cl
PtII H

formulation名词解释

formulation名词解释

formulation名词解释Formulation 名词解释1. 定义在科学、技术和工程领域中,formulation(制剂或配方)指的是将多种材料、化合物或成分按照一定比例和条件混合在一起,制成具有特定功能或性能的产品或材料的过程。

制剂可以是液体、固体、粉末、胶体或乳液等形式。

2. 常见的formulation 名词解释及示例药物制剂(Pharmaceutical Formulation)•定义:药物制剂是将药物活性成分与辅助成分混合,以适合于给药途径的形式制成的药品。

•示例:口服片剂、注射液、栓剂、眼药水等。

化妆品配方(Cosmetic Formulation)•定义:化妆品配方是将不同的化学成分和添加剂混合在一起,制成用于美容、修饰或改善皮肤、头发或身体的产品。

•示例:面霜、洗发水、口红、眼影等。

涂料配方(Paint Formulation)•定义:涂料配方是将颜料、溶剂、树脂和其他添加剂按照一定比例混合而成,用于表面涂覆和保护的物质。

•示例:壁漆、木器清漆、汽车涂料等。

饲料配方(Feed Formulation)•定义:饲料配方是将不同种类的原料,如粮食、鱼粉、蛋白质和维生素等,按照动物的需要混合而成,用于动物饲养的食物。

•示例:家禽饲料、猪饲料、鱼饲料等。

肥料配方(Fertilizer Formulation)•定义:肥料配方是将不同种类的营养元素,如氮、磷、钾和微量元素等,按照植物的需要混合而成,用于提供植物生长所需的养分。

•示例:全面复合肥、有机肥料、氮磷钾单一肥料等。

3. 结论Formulation(制剂或配方)是将不同的成分按照特定的配方比例和条件混合而成的过程。

在各个领域中,formulation都扮演着重要的角色,制造出满足特定需求的产品。

药物制剂、化妆品配方、涂料配方、饲料配方和肥料配方等都是常见的formulation示例,它们都使我们日常生活更加丰富多样。

4. 原料选择与优化(Raw Material Selection and Optimization)•定义:在formulation过程中,选择和优化合适的原料是非常重要的一步。

Residue formulae for vector partitions and Euler-MacLaurin sums

Residue formulae for vector partitions and Euler-MacLaurin sums
m
f (x) =
j =1
e yj ,x Pj (x),
where y1 , . . . , ym ∈ CN , and the functions P1 , . . . , Pm are polynomials with complex coefficients. If the elements {yj , 1 ≤ j ≤ m} are such that there exists an integer M with M yj ∈ 2πiZN , then the function f is said to be periodic-polynomial. The restriction of such a function to any coset x + M ZN of ZN /M ZN is plainly polynomial.
ξ ∈ΠΦ (λ)∩ZN
f (ξ ).
Indeed, if f = 1, the function S [f, Φ] is just the function ιΦ . Such a sum S [f, Φ] will be called an Euler-MacLaurin sum. In this paper, we will search for “explicit” formulae for the function λ → S [f, Φ](λ) on Γ∗ . Let us recall some qualitative results about this function. We start with the following result of Ehrhart: for a rational polytope Π in Rr , consider the function k → #(kΠ ∩ Zr ), where #S stands for the cardinality of the set S . Ehrhart proved that this function is given by a periodic-polynomial formula for all k ≥ 0. More precisely (see [13] and references therein), if M is an integer such that all the vertices of the polytope M Π are in Zr , then there exist polynomial functions Pj , 0 ≤ j ≤ iπj M −1 2M k Pj (k). If f is a polynomial, then M − 1, such that #(kΠ ∩ Zr ) = j =0 e S [f, Φ](λ) consists of summing up the values of a polynomial over the integral points of the rational polytope ΠΦ (λ). If f is an exponential x → e y,x , then S [ey , Φ](λ) is the sum ξ ∈ΠΦ (λ)∩ZN e y,ξ ; such sums were evaluated “explicitly” by M. Brion [4] and by A.I. Barvinok [3] for generic exponentials. Assume first that Φ consists of n = dim V linearly independent vectors of Γ∗ . Denote by ρ the linear isomorphism from Rn to V ∗ defined by ρ(x) = n i=1 xi βi . The set ΠΦ (λ) is nonempty if and only if λ ∈ C (Φ) ∩ ZΦ. In this case, the set ΠΦ (λ) coincides with ρ−1 (λ), and our function λ → S [f, Φ](λ) on Γ∗ is just the function λ → f (ρ−1 (λ)) restricted to C (Φ) ∩ ZΦ. In general, the map ρ : RN → V ∗ defined by ρ(x) = N i=1 xi βi is a surjection, and the following qualitative statement holds: Theorem 0.1. For each conic chamber c of the cone C (Φ), there exists an exponentialpolynomial function P [c, f, Φ] on V ∗ such that for each λ ∈ c ∩ Γ∗ , we have S [f, Φ](λ) = P [c, f, Φ](λ). This theorem follows, for example, from [5], and there are many antecedents of this result in particular cases. The periodic-polynomial behavior of ιΦ (λ) on closures of conic chambers of the cone C (Φ) is proved in [21]. If f is a polynomial function, then the sum ξ ∈kΠ f (ξ ) is a polynomial function of k for k ≥ 0 if the vertices of Π have integral coordinates [13, 4, 9]. Let Π1 , Π2 , . . . , ΠN be rational polytopes in Rr . For a sequence [k1 , . . . , kN ] of nonnegative integers, denote by k1 Π1 + k2 Π2 + · · · + kN ΠN the weighted Minkowski sum of the polytopes Πi . Then, as proved in [18], there exists an periodic-polynomial function P on RN such that #((k1 Π1 + k2 Π2 + · · · + kN ΠN ) ∩ Zr ) = P (k1 , k2 , . . . , kN ). We explain in Section 3.2 how to pass from the setting of Minkowski sums to the setting of partition polytopes. Most of the investigations of the function S [f, Φ] ([16, 9, 5]), starting with the Euler-MacLaurin formula evaluating the sum B A f (k ) of the values of a function f at all integral points of an interval [A, B ], were dedicated to the fascinating relation of
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
the important problems in data mining SAD 93] is the classi cation{rule learning. The classi cation{rule learning involves nding rules or decision trees that partition given data into prede ned classes. For any realistic problem domain of the classi cation{rule learning, the set of possible decision trees is too large to be searched exhaustively. In fact, the computational complexity of nding an optimal classi cation decision tree is NP {hard. All of the existing algorithms, like C 4:5 Qui93], CDP AIS93] and SLIQ MAR96], use local heuristics to handle the computational complexity. The computational complexity of these algorithms ranges from O(ANlogN ) to O(AN (logN ) ) with N training data items and A attributes. These algorithms are fast enough for application domains where N is relatively small. However, in the data mining domain where millions of records and a large number of attributes are involved, the execution time of these algorithms can become prohibitive, particularly in interactive applications. In this paper, we present parallel formulations of classi cation{rule{learning algorithm based on induction. We describe two basic parallel formulation, one is based on Synchronous Tree Construction Approach and the other is based on Partitioned Tree Construction Approach. We discuss the advantages and disadvantages of using these methods and propose a hybrid method that employs the good features of these methods. We also provide the analysis of the cost of computation and communication of the proposed hybrid method. The rest of the paper is organized as follows. Section 2 provides a brief overview of the existing algorithms for classi cation{rule learning. Section 3 describes the two basic parallel formulation. The hybrid method is described in Section 4 and its analysis is shown in Section 5. Section 6 presents our conclusions.
Abstract
One of the important problems in data mining SAD 93] is the classi cation{rule learning. The classi cation{rule learning involves nding rules or decision trees that partition given data into prede ned classes. For any realistic problem domain of the classi cation{ rule learning, the set of possible decision trees is too large to be searched exhaustively. In fact, the computational complexity of nding an optimal classi cation decision tree is NP { hard. All of the existing algorithms, like C 4:5 Qui93], CDP AIS93] and SLIQ MAR96], use local heuristics to handle the computational complexity. The computational complexity of these algorithms ranges from O(ANlogN ) to O(AN (logN ) ) with N training data items and A attributes. These algorithms are fast enough for application domains where N is relatively small. However, in the data mining domain where millions of records and a large number of attributes are involved, the execution time of these algorithms can become prohibitive, particularly in interactive applications. In this paper, we present parallel formulations of classi cation{rule{learning algorithm based on induction. We describe two basic parallel formulation, one is based on Synchronous Tree Construction Approach and the other is based on Partitioned Tree Construction Approach. We discuss the advantages and disadvantages of using these methods and propose a hybrid method that employs the good features of these methods. We also provide the analysis of the cost of computation and communication of the proposed hybrid method. Keywords: Data mining, parallel processing, classi cation, decision trees.
Parallel Formulations of Inductive Classi cation Learning Algorithm
Vineet Singh IBM T.J. Watson Research Center Eui-Hong (Sam) Han, Anurag Srivastava, Vipin Kumar Dept. of Computer & Information Sciences 4-192 EECS Bldg., 200 Union St. SE University of Minnesota Minneapolis, MN 55455, USA
1 2
Case 1 T contains one or more cases, all belonging to a single class Cj : The decision tree
for T is a leaf identifying class Cj . Case 2 T contains no cases: The decision tree for T is a leaf, but the class to be associated with the leaf must be determined from information other than T. For example, C4.5 chooses this to be the most frequent class at the parent of this node. Case 3 T contains cases that belong to a mixture of classes: A test is chosen, based on a single attribute, that has one or more mutually exclusive outcomes fO ; O ; : : : ; Ong. T is partitioned into subsets T ; T ; : : : ; Tn, where Ti contains all the cases in T that have outcome Oi of the chosen test. The decision tree for T consists of a decision node identifying the test, and one branch for each possible outcome. The same tree building machinery is applied recursively to each subset of training cases.
相关文档
最新文档