2019-2020年中考数学三模试卷(含解析)(III)
北京市石景山区2019-2020学年中考数学模拟试题(3)含解析
北京市石景山区2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知(AC BC)ABC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,则符合要求的作图痕迹是( )A .B .C .D . 2.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-3.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE=AD ,连接EB ,EC ,DB .添加一个条件,不能使四边形DBCE 成为矩形的是( )A .AB=BEB .BE ⊥DC C .∠ADB=90°D .CE ⊥DE4.在同一平面直角坐标系中,函数y=x+k 与k y x=(k 为常数,k≠0)的图象大致是( )A.B.C.D.5.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1 B.2 C.3 D.47.下列博物院的标识中不是轴对称图形的是()A.B.C.D.8.已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,-5)B.(3,-13)C.(2,-8)D.(4,-20)9.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A.主视图B.俯视图C.左视图D.一样大10.下列计算正确的是()A.a6÷a2=a3B.(﹣2)﹣1=2C.(﹣3x2)•2x3=﹣6x6D.(π﹣3)0=111.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.线段B.等边三角形C.正方形D.平行四边形12.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30°B.50°C.40°D.70°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中有矩形ABCD,A(0,0),C(8,6),M为边CD上一动点,当△ABM 是等腰三角形时,M点的坐标为_____.14.不等式-2x+3>0的解集是___________________15.某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为___________元.16.因式分解:a3﹣2a2b+ab2=_____.17.正方形EFGH的顶点在边长为3的正方形ABCD边上,若AE=x,正方形EFGH的面积为y,则y 与x的函数关系式为______.18.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)请添加一个条件使四边形BEDF为菱形.20.(6分)一位运动员推铅球,铅球运行时离地面的高度y(米)是关于运行时间x(秒)的二次函数.已知铅球刚出手时离地面的高度为53米;铅球出手后,经过4秒到达离地面3米的高度,经过10秒落到地面.如图建立平面直角坐标系.(Ⅰ)为了求这个二次函数的解析式,需要该二次函数图象上三个点的坐标.根据题意可知,该二次函数图象上三个点的坐标分别是____________________________;(Ⅱ)求这个二次函数的解析式和自变量x的取值范围.21.(6分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.22.(8分)求抛物线y=x2+x﹣2与x轴的交点坐标.23.(8分)如图,AB是⊙O的直径, ⊙O过BC的中点D,DE⊥AC.求证: △BDA∽△CED.24.(10分)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.25.(10分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y 与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.26.(12分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.27.(12分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故选D.考点:作图—复杂作图.2.D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,33∴△ABC的面积为12BC•AD=1232⨯3S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣2×3﹣3,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.3.B【解析】【分析】先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答.【详解】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误,故选B.【点睛】本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键. 4.B【解析】【分析】【详解】选项A 中,由一次函数y=x+k 的图象知k<0,由反比例函数y=的图象知k>0,矛盾,所以选项A 错误;选项B 中,由一次函数y=x+k 的图象知k>0,由反比例函数y=的图象知k>0,正确,所以选项B 正确;由一次函数y=x+k 的图象知,函数图象从左到右上升,所以选项C 、D 错误.故选B.5.C【解析】试题分析:已知,△ABE 向右平移2cm 得到△DCF ,根据平移的性质得到EF=AD=2cm ,AE=DF ,又因△ABE 的周长为16cm ,所以AB+BC+AC=16cm ,则四边形ABFD 的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C .考点:平移的性质.6.D【解析】【分析】由抛物线的对称轴的位置判断ab 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线对称轴是y 轴的右侧,∴ab <0,∵与y 轴交于负半轴,∴c <0,∴abc >0,故①正确;②∵a >0,x=﹣2b a<1, ∴﹣b <2a ,∴2a+b >0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选D.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.7.A【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.【详解】A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误8.C【解析】试题分析:=,∴点M(m,﹣m2﹣1),∴点M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故选C.考点:二次函数的性质.9.C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C.10.D【解析】解:A.a6÷a2=a4,故A错误;B.(﹣2)﹣1=﹣12,故B错误;C.(﹣3x2)•2x3=﹣6x5,故C错;D.(π﹣3)0=1,故D正确.故选D.11.B【解析】【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、线段,是轴对称图形,也是中心对称图形,故本选项不符合题意;B、等边三角形,是轴对称图形但不是中心对称图形,故本选项符合题意;C、正方形,是轴对称图形,也是中心对称图形,故本选项不符合题意;D、平行四边形,不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.A【解析】【分析】利用三角形内角和求∠B,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:∠B=30°,根据相似三角形的性质可得:∠B′=∠B=30°.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(4,6),(8﹣2,6),(2,6).【解析】【分析】分别取三个点作为定点,然后根据勾股定理和等腰三角形的两个腰相等来判断是否存在符合题意的M的坐标.【详解】解:当M为顶点时,AB长为底=8,M在DC中点上,所以M的坐标为(4,6),当B为顶点时,AB长为腰=8,M在靠近D处,根据勾股定理可知ME==2所以M的坐标为(8﹣2,6);当A为顶点时,AB长为腰=8,M在靠近C处,根据勾股定理可知MF==2所以M的坐标为(2,6);综上所述,M的坐标为(4,6),(8﹣2,6),(2,6);故答案为:(4,6),(8﹣2,6),(2,6).【点睛】本题主要考查矩形的性质、坐标与图形性质,解题关键是根据对等腰三角形性质的掌握和勾股定理的应用.14.x<3 2【解析】【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】。
2019-2020年黑龙江省哈尔滨市中考数学测试试卷(三) 解析版
2020年黑龙江省哈尔滨市中考数学测试试卷(三)一.选择题(共10小题)1.﹣3的相反数是()A.﹣3 B.3 C.D.2.下列运算中,不正确的是()A.a3+a3=2a3B.a2•a3=a5C.(﹣a3)2=a9D.2a3÷a2=2a3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.在每一象限内的双曲线y=上,y都随x的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2 C.m≥﹣2 D.m≤﹣25.如图所示几何体的左视图是()A.B.C.D.6.如图,点P在点A的北偏东60°方向上,点B在点A正东方向,点P在点B的北偏东30°方向上,若AB=50米,则点P到直线AB的距离为()A.50米B.25米C.50米D.25米7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3 D.y=2(x+2)2﹣38.某种服装的成本在两年内从300元降到243元,那么平均每年降低成本的百分率为()A.5% B.10% C.15% D.20%9.已知在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB 的平行线交BC于点F.则下列说法不正确的是()A.=B.=C.=D.=10.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6二.填空题(共10小题)11.将9420000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.计算:=.14.把多项式9m2﹣36n2分解因式的结果是.15.以O为圆心,4cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则弦AC所对的劣弧长等于cm.16.不等式组的整数解是.17.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则△AED的周长是.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.19.等腰△ABC中,AB=AC,AD⊥BC于D,点E在直线AC上,CE=AC,AD=18,BE=15,则△ABC的面积是.20.如图,已知平行四边形ABCD,DE⊥CD,CE⊥BC,CE=AD,F为BC上一点,连接DF,且点A在BF的垂直平分线上,若DE=1,DF=5,则AD的长为.三.解答题(共7小题)21.先化简,再求值:,其中x=4cos30°﹣2tan45°.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上.(1)请用两种不同的方法分别在图1中和图2中画出△ABD和△ACD,使得两个三角形都是轴对称图形;(2)请直接写出两个图形中线段BD的长度之和.23.为了解某学校学生的个性特长发展情况,学校决定围绕“音乐、体育、美术、书法、其它活动项目中,你参加哪一项活动(每人只限一项)的问题”,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如图所示的条形统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中一共抽查了多少名学生?(2)求参加“音乐”活动项目的人数占抽查总人数的百分比.(3)若全校有2400名学生,请估计该校参加“美术”活动项目的人数.24.已知函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1 (I)求该二次函教的解析式;(Ⅱ)当﹣2≤x≤0时,求该二次函数的函数值y的取值范围.25.某水果商贩用了300元购进一批水果,上市后销售非常好,商贩又用了700元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能卖售,该商贩将两批水果按同一价格全部销售完毕后获利不低于400元,求每箱水果的售价至少是多少元.26.已知△ABD内接于⊙O中,DP为⊙O的切线.(1)如图1,求证:∠BAD=∠BDP;(2)如图2,连接PB并延长交⊙O于点C,连接AC、CD,CD交AB于点E,若CD⊥AB,∠CAB=2∠BAD,求证:BD+DE=CE;(3)如图3,在(2)的条件下,延长AB至点F,使得BF=BD,连接CF,若AC=10,S=20,求DE的长.△BCF27.在平面直角坐标系中,O为坐标原点,直线AB:y=2x+4与x轴交于B点,与y轴交于A点,D为BA延长线上一点,C为x轴上一点,连接CD,且DB=DC,BC=8.(1)如图1,求直线CD的解析式;(2)如图2,P为BD上一点,过点P作CD的垂线,垂足为H,设PH的长为d,点P的横坐标为t,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)如图3,点E为CD上一点,连接PE,PE=PB,在PE上取一点K,在AB上取一点F,使得PK=BF,在EK上取点N,连接FN交BK于点M,若∠PFN=2∠KMN,MN=NE,求点P 的坐标.参考答案与试题解析一.选择题(共10小题)1.﹣3的相反数是()A.﹣3 B.3 C.D.【分析】依据相反数的定义解答即可.【解答】解:﹣3的相反数是3.故选:B.2.下列运算中,不正确的是()A.a3+a3=2a3B.a2•a3=a5C.(﹣a3)2=a9D.2a3÷a2=2a 【分析】根据合并同类项法则和幂的运算性质,计算后利用排除法求解.【解答】解:A、a3+a3=2a3,正确;B、a2•a3=a5,正确;C、应为(﹣a3)2=a6,故本选项错误;D、2a3÷a2=2a,正确.故选:C.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:C.4.在每一象限内的双曲线y=上,y都随x的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2 C.m≥﹣2 D.m≤﹣2【分析】根据反比例函数的性质得到关于m的不等式,解不等式可以得到m的取值范围.【解答】解:∵在每一象限内的双曲线y=上,y都随x的增大而增大,∴m+2<0,解得,m<﹣2,故选:B.5.如图所示几何体的左视图是()A.B.C.D.【分析】根据左视图是从物体的左面看得到的图形解答.【解答】解:从左边看到的现状是A中图形,故选:A.6.如图,点P在点A的北偏东60°方向上,点B在点A正东方向,点P在点B的北偏东30°方向上,若AB=50米,则点P到直线AB的距离为()A.50米B.25米C.50米D.25米【分析】作PC⊥AB,根据正切的定义用PC分别表示出AC、BC,根据题意列式计算,得到答案.【解答】解:作PC⊥AB交AB的延长线于点C,由题意得,∠PAC=30°,∠PBC=60°,在Rt△ACP中,tan∠PAC=,∴AC==PC,在Rt△BCP中,tan∠PBC=,∴BC==PC,由题意得,PC﹣PC=50,解得,PC=25,即点P到直线AB的距离为25米,故选:D.7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3 D.y=2(x+2)2﹣3【分析】根据“上加下减、左加右减”的原则进行解答即可.【解答】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为y=2(x﹣2)2+3,故选:B.8.某种服装的成本在两年内从300元降到243元,那么平均每年降低成本的百分率为()A.5% B.10% C.15% D.20%【分析】要求每次降价的百分率,应先设每次降价的百分率为x,则第一次降价后每件300(1﹣x)元,第二次降价后每件300(1﹣x)2元,又知经两次降价后每件243元,由两次降价后每件价钱相等为等量关系列出方程求解.【解答】解:设平均每次降价的百分率为x,则第一次降价后每件300(1﹣x)元,第二次降价后每件300(1﹣x)2元,由题意得:300(1﹣x)2=243解得:x1=0.1,x2=1.9(不符合题意舍去)所以平均每次降价的百分率为:10%.故选:B.9.已知在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB 的平行线交BC于点F.则下列说法不正确的是()A.=B.=C.=D.=【分析】由平行线分线段成比例定理即可得出结论.【解答】解:∵DE∥BC,EF∥AB,∴=,A、B、D选项正确;∵四边形BDEF是平行四边形,∴DE=BF,∴,故C选项错误;故选:C.10.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6【分析】根据平行线的性质和翻转变换的性质得到FD=FE,FA=FC,根据勾股定理计算即可.【解答】解:∵DC∥AB,∴∠FCA=∠CAB,又∠FAC=∠CAB,∴∠FAC=∠FCA,∴FA=FC=,∴FD=FE,∵DC=AB=8,AF=,∴FD=FE=8﹣=,∴AD=BC=EC==6,故选:D.二.填空题(共10小题)11.将9420000用科学记数法表示为9.42×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9420000=9.42×106.故答案为:9.42×106.12.在函数y=中,自变量x的取值范围是x≠2 .【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣2≠0,求解可得自变量x的取值范围.【解答】解:根据题意,有x﹣2≠0,解得x≠2;故自变量x的取值范围是x≠2.故答案为x≠2.13.计算:=2.【分析】首先化简各二次根式,进而合并同类项得出即可.【解答】解:=﹣=.故答案为:2.14.把多项式9m2﹣36n2分解因式的结果是9(m﹣2n)(m+2n),.【分析】首先提公因式9,再利用平方差进行二次分解即可.【解答】解:原式=9(m2﹣4n2)=9(m﹣2n)(m+2n),故答案为:9(m﹣2n)(m+2n).15.以O为圆心,4cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则弦AC所对的劣弧长等于πcm.【分析】连接OB,如图,先利用菱形的性质可判断△OAB和△OBC都是等边三角形,则∠AOB=∠BOC=60°,于是可根据弧长公式计算出弦AC所对的劣弧的长.【解答】解:连接OB,如图,∵四边形OABC为菱形,∴OA=AB=BC=OC,∴△OAB和△OBC都是等边三角形,∴∠AOB=∠BOC=60°,∴弦AC所对的劣弧的长==π,故答案为π.16.不等式组的整数解是 2 .【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【解答】解:,由不等式①得x>1,由不等式②得x<3,其解集是1<x<3,所以整数解是2.故答案为:2.17.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则△AED的周长是9 .【分析】先根据旋转的性质得BE=BD,AE=CD,∠DBE=60°,于是可判断△BDE为等边三角形,则有DE=BD=4,所以△AED的周长=DE+AC,再利用等边三角形的性质得AC=BC=5,则易得△AED的周长为9.【解答】解:∵△BCD绕点B逆时针旋转60°得到△BAE,∴BE=BD,AE=CD,∠DBE=60°,∴△BDE为等边三角形,∴DE=BD=4,∴△AED的周长=DE+AE+AD=DE+CD+AD=DE+AC,∵△ABC为等边三角形,∴AC=BC=5,∴△AED的周长=DE+AC=4+5=9.故答案为9°.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.【分析】根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.故答案为:.19.等腰△ABC中,AB=AC,AD⊥BC于D,点E在直线AC上,CE=AC,AD=18,BE=15,则△ABC的面积是144 .【分析】根据等腰三角形三线合一的性质可得到AD是底边BC的中线,从而得到点G为△ABC的重心,从而不难求得DG,BG的长,再根据勾股定理求得BD的长,最后根据三角形面积公式求解即可.【解答】解:如图,∵在等腰△ABC中,AB=AC,AD⊥BC于D,∴AD是底边BC的中线,∵CE=AC,∴G为△ABC的重心,∵AD=18,BE=15,∴DG=AD=6,BG=BE=10,∴在直角△BDG中,由勾股定理得到:BD==8,∴S△ABC=BC×AD=144.故答案是:144.20.如图,已知平行四边形ABCD,DE⊥CD,CE⊥BC,CE=AD,F为BC上一点,连接DF,且点A在BF的垂直平分线上,若DE=1,DF=5,则AD的长为.【分析】连接AF,AC,过点A作AH⊥CD于H,AH交EC于O,设AD与CE交于G,根据全等三角形的性质得到DE=DH=1,AH=CD,根据线段垂直平分线的性质得到AB=AF,求得∠ABF=∠AFB,根据平行四边形的性质得到AB=CD,AB∥CD,求得∠BCD=∠AFC,根据全等三角形的性质得到DF=AC=5,根据勾股定理即可得到结论.【解答】解:连接AF,AC,过点A作AH⊥CD于H,AH交EC于O,设AD与CE交于G,∵∠AGC=∠AHC=90°,∠AOG=∠COH,∴∠DAH=∠ECD,∵∠AHD=∠EDC=90°,AD=CE,∴△ADH≌△CED(AAS),∴DE=DH=1,AH=CD,∵点A在BF的垂直平分线上,∴AB=AF,∴∠ABF=∠AFB,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABF+∠BCD=180°,∴∠BCD=∠AFC,∵CF=CF,∴△AFC≌△DCF(SAS),∴DF=AC=5,设CH=x,则AH=CD=x+1,∵AH2+CH2=AC2,∴(x+1)2+x2=52,解得:x=3(负值舍去),∴AH=4,∴AD==,故答案为:.三.解答题(共7小题)21.先化简,再求值:,其中x=4cos30°﹣2tan45°.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,再利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=[﹣]•,=•,=,当x=4×﹣2×1=2﹣2时,原式==.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上.(1)请用两种不同的方法分别在图1中和图2中画出△ABD和△ACD,使得两个三角形都是轴对称图形;(2)请直接写出两个图形中线段BD的长度之和.【分析】(1)根据△ABD和△ACD都是轴对称图形,即可得到格点D的位置;(2)依据勾股定理进行计算,即可得到线段BD的长度之和.【解答】解:(1)如图所示,△ABD和△ACD即为所求;(2)两个图形中线段BD的长度之和为+2=.23.为了解某学校学生的个性特长发展情况,学校决定围绕“音乐、体育、美术、书法、其它活动项目中,你参加哪一项活动(每人只限一项)的问题”,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如图所示的条形统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中一共抽查了多少名学生?(2)求参加“音乐”活动项目的人数占抽查总人数的百分比.(3)若全校有2400名学生,请估计该校参加“美术”活动项目的人数.【分析】(1)根据条形统计图求得各类的人数的和即可;(2)利用(1)中所求总人数,再利用参加“音乐”活动项目的人数,求出所占百分比即可;(3)根据样本中美术所占的百分比估计总体.【解答】解:(1)12+16+6+10+4=48(人);(2)参加“音乐”活动项目的人数占抽查总人数的百分比为:12÷48×100%=25%;(3)6÷48×2400=300(名),估计该校参加“美术”活动项目的人数约为300人.24.已知函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1 (I)求该二次函教的解析式;(Ⅱ)当﹣2≤x≤0时,求该二次函数的函数值y的取值范围.【分析】(Ⅰ)根据对称轴方程,列式求出b的值,从而求得二次函数的解析式;(Ⅱ)先由y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2知函数有最大值﹣2,然后求出x=﹣2和x =0时y的值即可得答案.【解答】解:(Ⅰ)∵函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1,∴m﹣1=2,﹣=1,∴m=3,b=2.∴该二次函教的解析式为y=﹣x2+2x﹣3.(Ⅱ)∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴当x=1时,函数y有最大值﹣2,当x=﹣2时,y=﹣11;当x=0时,y=﹣3;∵﹣2<0<1,∴当﹣2≤x≤0时,求该二次函数的函数值y的取值范围为﹣11≤y≤﹣3.25.某水果商贩用了300元购进一批水果,上市后销售非常好,商贩又用了700元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能卖售,该商贩将两批水果按同一价格全部销售完毕后获利不低于400元,求每箱水果的售价至少是多少元.【分析】(1)设该商场第一批购进了这种水果x,则第二批购进这种水果2x,根据关键语句“每个进价多了5元”可得方程,解方程即可;(2)设水果的售价为y元,根据题意可得不等关系:水果的总售价﹣成本﹣损耗≥利润,由不等关系列出不等式即可.【解答】解:(1)设该商场第一批购进了这种水果x,则第二批购进这种水果2x,可得:﹣=5,解得:x=10,经检验:x=10是原分式方程的解,=30,答:该商贩第一批购进水果每箱30元;(2)设水果的售价为y元,根据题意得:30y﹣(300+700)﹣20×10%y≥400,解得:y≥50,则水果的售价为50元.答:水果的售价至少为50元.26.已知△ABD内接于⊙O中,DP为⊙O的切线.(1)如图1,求证:∠BAD=∠BDP;(2)如图2,连接PB并延长交⊙O于点C,连接AC、CD,CD交AB于点E,若CD⊥AB,∠CAB=2∠BAD,求证:BD+DE=CE;(3)如图3,在(2)的条件下,延长AB至点F,使得BF=BD,连接CF,若AC=10,S=20,求DE的长.△BCF【分析】(1)如图1,连接OD,并延长DO交⊙O于H,由切线的性质和圆周角定理可得∠DBH=∠ODP=90°,可得∠ODB+∠BDP=90°,∠BDH+∠H=90°,可得∠H=∠BDP=∠BAD;(2)在CE上截取KE=DE,连接BK,由圆周角可得∠BAD=∠BDP=∠BCD,∠CAB=∠CDB =2∠BDP=2∠BCD,由线段垂直平分线的性质可得BK=BD,由等腰三角形的性质和外角的性质可得BK=CK=BD,即可得结论;(3)如图3,在CE上取点K,使DE=KE,连接BK,过点K作KR⊥BC于R,过点F作FH ⊥BP于点H,由“AAS”可知△CRK≌△FHB,可得FH=CR,由三角形面积公式可求BC的长,由角的数量关系可证AB=AC=10,由勾股定理可求AE,BE,CE的长,由锐角三角函数可求解.【解答】解:(1)如图1,连接OD,并延长DO交⊙O于H,∵DP为⊙O的切线.∴∠ODP=90°,∴∠ODB+∠BDP=90°,∵DH是直径,∴∠DBH=90°,∵∠BDH+∠H=90°,∴∠H=∠BDP,∵∠H=∠BAD,∴∠BAD=∠BDP;(2)如图2,在CE上截取KE=DE,连接BK,∵∠CAB=2∠BAD,∠BAD=∠BCD,∠BAD=∠BDP,∠CAB=∠CDB,∴∠BAD=∠BDP=∠BCD,∠CAB=∠CDB=2∠BDP=2∠BCD,∵KE=DE,AB⊥CD,∴BK=BD,∴∠BKD=∠BDK=2∠BCD,∵∠BKD=∠BCD+∠CBK,∴∠BCD=∠CBK,∴BK=CK,∴CE=KE+CK=DE+BK,∴CE=DE+BD(3)如图3,在CE上取点K,使DE=KE,连接BK,过点K作KR⊥BC于R,过点F作FH ⊥BP于点H,由(2)可知,CK=BK,∴CR=BR,∵BF=BD,CK=BK=BD,∴CK=BF=BD=BK,∵∠KRC=∠FPH=90°,∠CBE=∠FBH,∴∠BCE=∠BFH,且CK=BF,∠CRK=∠FHB,∴△CRK≌△FHB(AAS),∴FH=CR,设FH=CR=BR=x,∴BC=2x,∵S△BCF=20=×BC×FH,∴20=×2x×x∴x=2(负值舍去),∴FH=CR=BR=2,BC=4,∵∠BAD=∠BCD,∠BAC=2∠BAD,∴∠BAC=2∠BCD,∵∠CBA=90°﹣∠BCD,∠BAC+∠ACB+∠ABC=180°,∴∠ACB=90°﹣∠BCD,∴∠ACB=∠ABC,∴AC=AB=10,∵CE2=AC2﹣AE2,CE2=CB2﹣BE2,∴AC2﹣AE2=CB2﹣BE2,∴100﹣AE2=80﹣(10﹣AE)2,∴AE=6,∴BE=4,∴EC===8∵∠ECB=∠EAD,∴tan∠ECB=tan∠EAD,∴,∴,∴DE=3.27.在平面直角坐标系中,O为坐标原点,直线AB:y=2x+4与x轴交于B点,与y轴交于A点,D为BA延长线上一点,C为x轴上一点,连接CD,且DB=DC,BC=8.(1)如图1,求直线CD的解析式;(2)如图2,P为BD上一点,过点P作CD的垂线,垂足为H,设PH的长为d,点P的横坐标为t,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)如图3,点E为CD上一点,连接PE,PE=PB,在PE上取一点K,在AB上取一点F,使得PK=BF,在EK上取点N,连接FN交BK于点M,若∠PFN=2∠KMN,MN=NE,求点P 的坐标.【分析】(1)解方程得到OB=2,OA=﹣4,过D作DX⊥BC于X,根据平行线分线段成比例定理得到DX=8,求得D(2,8),解方程组即可得到结论;(2)过点P作PY∥BC交CD于Y,求得P(t,2t+4),Y(﹣t+4,2t+4)根据平行线的性质和解直角三角形即可得到结论;(3)如图3,延长FN到点T,使PN=NT,连接PT,于是得到MT=MN+NT=NE+PN=PE,过点T作TV⊥BK交BK的延长线于V,根据全等三角形的性质得到BQ=MV,PQ=YT,∴BM=VQ,设PT交MV于点R,∵∠由全等三角形的性质得到QR=VR=BM,过点F 作FL⊥BM于L,过点R作RZ∥FN交PQ于点Z,推出△FML≌△ZRQ(ASA),求得RZ=FM 根据全等三角形的性质得到∠PRQ=∠QPR,求得∠ZRQ=∠QPK,过点P作SW∥BC,过B 作BS⊥SB于S,过E作EW⊥SW于W根据余角的性质得到∠WPE=∠SBP,推出△SPB≌△WEP(AAS),得到BS=PW,SP=WE,设P(t,2t+4),求得E(3t+4,t+2),解方程即可得到结论.【解答】解:(1)在y=2x+4中,令y=0,则x=﹣2,令x=0,则y=4,∴B(﹣2,0),A(0,4),∴OB=2,OA=﹣4,过D作DX⊥BC于X,∵DB=DC,∴BX=XC=BC=4,∴OX=2,∵∠AOB=∠DXB=90°,∴OA∥DX,∴=,∴DX=8,∴D(2,8),∵OC=BC﹣OB=6,C(6,0),设直线CD的解析式为:y=kx+b,∴,解得:,∴直线CD的解析式为y=﹣2x+12;(2)过点P作PY∥BC交CD于Y,∵点P的横坐标为t,∴P(t,2t+4),∴Y(﹣t+4,2t+4),∴PY=﹣2t+4,∵PY∥BC,∴∠DCB=∠DYP,∵BD=CD,∴∠DBC=∠DCB,∴∠DCB=∠DYP,∴tan∠DBC=tan∠DYP,∵tan∠DBC==2,∴tan∠DYP=2,∴=2,∴PH=2HY,在Rt△PHY中,PY===HY,∴==,∴PH=(﹣2t+4)=﹣t+(﹣2≤t<2);(3)如图3,延长FN到点T,使PN=NT,连接PT,∴MT=MN+NT=NE+PN=PE,∵PE=PB,∴MT=PB,过点T作TV⊥BK交BK的延长线于V,∵∠PFN=2∠KMN=2∠FMB,∴∠FBM=∠FMB,∴∠PBM=∠VMT,∵∠PQB=∠V=90°,∴△PQB≌△TVM(AAS),∴BQ=MV,PQ=YT,∴BM=VQ,设PT交MV于点R,∵∠PRQ=∠TRV,∠PQR=∠V,PQ=VT,∴△PQR≌△TVR(AAS),∴QR=VR=BM,过点F作FL⊥BM于L,过点R作RZ∥FN交PQ于点Z,∵∠FBM=∠FMB,∴BF=FM,∴ML=BM,∴QR=ML,∵RZ∥FN,∴∠ZRQ=∠KMN,∴∠FML=∠ZRQ,∵∠FLM=∠ZQR=90°,∴△FML≌△ZRQ(ASA),∴RZ=FM,∴BF=RZ,∵BF=PK,∴RZ=PK,∵PN=NT,∴∠NPT=∠NTP,∵RZ∥FN,∴∠PRZ=∠NTP,∴∠NPT=∠PRZ,∵PR=PR,∴△PRK≌△RPZ(ASA),∴∠PRQ=∠QPR,∴∠ZRQ=∠QPK,∴∠PBM=∠ZRQ,∴∠PBM=∠QPK,∵∠PBM+∠BPM=90°,∴QPK+∠BPM=90°,∴∠BPE=90°,过点P作SW∥BC,过B作BS⊥SB于S,过E作EW⊥SW于W,∴∠SPB+∠WPE=90°,∵∠SPB+∠SBP=90°,∴∠WPE=∠SBP,∵∠S=∠W=90°,PB=PE,∴△SPB≌△WEP(AAS),∴BS=PW,SP=WE,设P(t,2t+4),∴E(3t+4,t+2),∵点E在直线CD上,∴t+2=﹣2(3t+4)+12,解得:t=,∴P(,).。
2019-2020年九年级中考第三次模拟数学试题
2019-2020年九年级中考第三次模拟数学试题注意事项:1.本试卷全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题卡相应位置上)1.下列计算正确的是A.-(-3)2=9 B.=3 C.-(-2)0=1 D.=-32.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家.嫦娥三号探测器的发射总质量约3 700千克,3 700用科学记数法表示为A.3.7×102B.3.7×103C.37×102 D.0.37×104 3.对参加某次野外训练的中学生的年龄(单位:岁)进行统计,结果如下:年龄14 15 16 17 18人数 5 6 6 7 2则这些学生年龄的众数和中位数分别是A.17 15.5 B.17 16 C.15 15.5 D.16 164.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为A.53°B.55°C.57°D.60°5.反比例函数y =k x 和正比例函数y =mx 的部分图象如图所示.由此可以得到方程k x=mx 的实数根为A .x =1B .x =2C .x 1=1,x 2=-1D .x 1=1,x 2=-26.如图,QQ 软件里的“礼盒”图标是一个表面印有黑色实线,顶端有图示箭头的正方体.下列图形中,是该几何体的表面展开图的是二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.-3的绝对值等于 . 8.(12+8 )× 2 = . 9.使1x +2有意义的x 的取值范围是 . 10.(2×103)2×(3×10-3) = .(结果用科学计数法表示) 11.已知⊙O 1,⊙O 2没有公共点.若⊙O 1的半径为4,两圆圆心距为5,则⊙O 2的半径可以是 .(写出一个符合条件的值即可)12.如图,在梯形ABCD 中,AB ∥CD ,∠B =90°,连接AC ,∠ DAC =∠BAC .若BC =4cm ,AD=5cm,则梯形ABCD的周长为 cm.13.如图,在□ABCD中,∠A=70°,将□ABCD绕顶点B顺时针旋转到□A1BC1D1,当C1D1首次经过顶点C时,旋转角∠ABA1=°.14.某科研机构对我区400户有两个孩子的家庭进行了调查,得到了表格中的数据,其中(男,女)代表第一个孩子是男孩,第二个孩子是女孩,其余类推.由数据,请估计我区两个孩子家庭中男孩与女孩的人数比为:.类别数量(户)(男,男)101(男,女)99(女,男)116(女,女)84合计40015.如图,⊙O的半径是5,△ABC是⊙O的内接三角形,过圆心O分别作AB、BC、AC的垂线,垂足为E、F、G,连接EF.若OG=2,则EF为.16.将一张长方形纸片按照图示的方式进行折叠:①翻折纸片,使A与DC边的中点M重合,折痕为EF;②翻折纸片,使C 落在ME 上,点C 的对应点为H ,折痕为MG ;③翻折纸片,使B 落在ME 上,点B 的对应点恰与H 重合,折痕为GE .根据上述过程,长方形纸片的长宽之比AB BC= .三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)计算:2x 2-4-12x -4. 18.(6分)解不等式组⎩⎪⎨⎪⎧5+3x >18,x 3≤4-x -22. 并写出不等式组的整数解.19.(8分)已知:如图,在正方形ABCD 中,点E 、F 在对角线BD 上,且BF =DE . (1)求证:四边形AECF 是菱形.(2)若AB =2,BF =1,求四边形AECF 的面积.20.(8分)甲、乙、丙三位歌手进入“我是歌手”的冠、亚、季军的决赛,他们通过抽签来决定演唱顺序. (1)求甲第一位出场的概率;(2)求甲比乙先出场的概率.21.(8分)为了解南京市xx 年市城镇非私营单位员工每月的收入状况,统计局对市城镇非私营单位随机抽取了1000人进行抽样调查.整理样本数据,得到下列图表:市城镇非私营单位1000人月收入频数分布表月工资x (元) 频数(人)x<xx60 xx ≤x<40006104000≤x<6001806000≤x<80050x≥8000 100合计1000(1)如果1000人全部在金融行业抽取,这样的抽样是否合理?请说明理由;(2)根据这样的调查结果,绘制条形统计图;(3)xx年南京市城镇非私营单位月平均工资为5034元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?22.(8分)(1)如图①,若BC=6,AC=4,∠C=60°,求△ABC的面积S△ABC ;(2)如图②,若BC=a,AC=b,∠C=α,求△ABC的面积S△ABC ;(3)如图③,四边形ABCD,若AC=m,BD=n,对角线AC、BD交于O点,它们所成的锐角为β.求四边形ABCD的面积S四边形ABCD .23.(8分)如图,把长为40cm,宽为30cm的长方形硬纸板,剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),将剩余部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为x cm.(纸板的厚度忽略不计)(1)长方体盒子的长、宽、高分别为(单位:cm);(2)若折成的一个长方体盒子的表面积为950cm2,求此时长方体盒子的体积.24.(8分)xx年2月,纯电动出租车在南京正式上路运行,下表是普通燃油出租车和纯电动出租车的运价.车型起步公里数起步价格超出起步公里数后的单价普通燃油型 3 9元+2元(燃油附加费) 2.4元/公里纯电动型 2.5 9元 2.9元/公里设乘客打车的路程为x公里,乘坐普通燃油出租车及纯电动出租车所需费用分别为y1、y2元.(1)直接写出y1、y2关于x的函数关系式,并注明对应的x的取值范围;(2)在如下的同一个平面直角坐标系中,画出y1、y2关于x的函数图象;(3)结合图象,求出当乘客打车的路程在什么范围内时,乘坐纯电动出租车更合算.25.(8分)如图,在□ABCD中,过A、B、D三点的⊙O交BC于点E,连接DE,∠CDE=∠DAE.(1)判断四边形ABED的形状,并说明理由;(2)判断直线DC与⊙O的位置关系,并说明理由;(3)若AB=3,AE=6,求CE的长.26.(11分)问题提出平面内不在同一条直线上的三点确定一个圆.那么平面内的四点(任意三点均不在同一直线上),能否在同一个圆呢?初步思考设不在同一条直线上的三点A、B、C确定的圆为⊙O.(1)当C、D在线段AB的同侧时,如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是;如图②,若点D在⊙O内,此时有∠ACB∠ADB;如图③,若点D在⊙O外,此时有∠ACB∠ADB.(填“=”、“>”或“<”);由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件:.类比学习(2)仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.此时有,此时有,此时有.由上面的探究,请用文字语言直接写出A 、B 、C 、D 四点在同一个圆上的条件: . 拓展延伸(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线? 已知:如图,AB 是⊙O 的直径,点C 在⊙O 上. 求作:CN ⊥AB . 作法:①连接CA ,CB ;②在 ⌒CB上任取异于B 、C 的一点D ,连接DA ,DB ; ③DA 与CB 相交于E 点,延长AC 、BD ,交于F 点; ④连接F 、E 并延长,交直径AB 于M ; ⑤连接D 、M 并延长,交⊙O 于N .连接CN . 则CN ⊥AB .请按上述作法在图④中作图,并说明CN ⊥AB 的理由.(提示:可以利用(2)中的结论)27.(9分)【课本节选】反比例函数y =k x(k 为常数,k ≠0)的图象是双曲线.当k >0时,双曲线两个分支分别在三象限,在每一个象限内,y 随x 的增大而减小(简称增减性);反比例函数的图象关于原点对称(简称对称性).这些我们熟悉的性质,可以通过说理得到吗? 【尝试说理】我们首先对反比例函数y =k x(k >0)的增减性来进行说理.如图,当x >0时.在函数图象上任意取两点A 、B ,设A (x 1,k x 1),B (x 2,k x 2), 且0<x 1< x 2.下面只需要比较k x 1和k x 2的大小.k x 2—k x 1=k (x 1-x 2) x 1 x 2. ∵0<x 1< x 2,∴x 1-x 2<0,x 1 x 2>0,且 k >0. ∴k (x 1-x 2) x 1 x 2<0.即k x 2<k x 1.这说明:x 1< x 2时,k x 1>kx 2.也就是:自变量值增大了,对应的函数值反而变小了. 即:当x >0时,y 随x 的增大而减小. 同理,当x <0时,y 随x 的增大而减小.(1)试说明:反比例函数y = k x(k >0)的图象关于原点对称. 【运用推广】(2)分别写出二次函数y =ax 2(a >0,a 为常数)的对称性和增减性,并进行说理. 对称性: ; 增减性: . 说理:(3)对于二次函数y=ax2+bx+c (a>0,a,b,c为常数),请你从增减性的角度,简要解释为何当x=—b2a 时函数取得最小值.xx 年山东省滕州市卓楼中学九年级中考第三次模拟数学试卷参考答案说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分.)二、填空题(本大题共10小题,每小题2分,共20分.) 7.3 8.5 9.x ≠-2 10.1.2×10411.答案不唯一,如0.5(满足0<r <1或r >9即可)12.22 13.40 14.417︰383 15.21 16. 2 三、解答题(本大题共11小题,共88分.) 17.(6分)解:原式=2(x +2)(x -2)-12(x -2)2分=2-x2(x +2)(x -2)4分 =-12x +4. 6分18.(6分)解:解不等式①,得x >133; 2分解不等式②,得x ≤6.4分所以原不等式组的解集为133<x ≤6.5分它的整数解为5,6. 6分19.(8分)(1)连接AC ,AC 交BD 于点O . 在正方形ABCD 中,OB =OD ,OA =OC ,AC ⊥BD .∵BF =DE ,∴OB -BF =OD -DE ,即OF =OE . ∴四边形AECF 是平行四边形.又∵AC ⊥EF , ∴□AECF 是菱形.4分(2)∵AB =2,∴AC =BD =AB 2+AD 2=22. ∴OA =OB = BD2=2.∵BF =1,∴OF =OB -BF =2-1.∴S 四边形AECF =12AC ·EF =12×22×2(2-1)=4-22.8分20.(8分)解:所有可能出现的结果如下:5分以上共有6种等可能的结果.其中甲第一位出场的结果有2种,甲比乙先出场的结果有3种. 所以P (甲第一位出场)=26=13.7分 P (甲比乙先出场)=36=12.8分(注:用树状图列举所有结果参照以上相应步骤给分.) 21.(8分)解:(1)不合理.因为如果1000人全部在金融行业抽取,那么全市城镇非私营单位员工被抽到的机会不相等,样本不具有代表性和广泛性. 2分 (2)6分(3)本题答案不惟一,下列解法供参考.用平均数反映月收入情况不合理.由数据可以看出1000名被调查者中有670人的月收入不超过4000元,月收入的平均数受高收入者和低收入者收入变化的影响较大,月收入的中位数几乎不受高低两端收入变化的影响,因此,用月收入的中位数反映月收入水平更合理.8分(注:对于(1)(3)两问,学生回答只要合理,应酌情给分.) 22.(8分)(1)如图①,过点A 作AH ⊥BC ,垂足为H . 在Rt△AHC 中,AH AC=sin 60°, ∴AH =AC ·sin 60°=4×32=23. ∴S △ABC =12×BC ×AH =12×6×23=63.…………………………………………3分(2)如图②,过点A 作AH ⊥BC ,垂足为H . 在Rt△AHC 中,AH AC=sin α, ∴AH =AC ·sin α=b sin α.∴S △ABC =12×BC ×AH =12ab sin α.……………………………………………………5分(3)如图③,分别过点A ,C 作AH ⊥BD ,CG ⊥BD ,垂足为H ,G . 在Rt△AHO 与Rt△CGO 中,AH =OA sin β,CG =OC sin β; 于是,S △ABD =12×BD ×AH =12n ×OA sin β;S △BCD =12×BD ×CG =12n ×OC sin β;∴S 四边形ABCD = S △ABD +S △BCD =12n ×OA sin β+12n ×OC sin β=12n ×(OA +OC )sin β=12mn sin β.……………………………………………………………………8分23.(8分)解:(1)30-2x 、20-x 、x ;3分(2)根据图示,可得2(x 2+20x )=30×40-950 解得x 1=5,x 2=-25(不合题意,舍去)长方体盒子的体积V =(30-2×5)×5×(20-5)=20×5×15=1500(cm 3). 答:此时长方体盒子的体积为1500 cm 3. 8分 24.(8分)(1)y 1=⎩⎪⎨⎪⎧11,(x ≤3)2.4x +3.8,(x >3)y 2=⎩⎪⎨⎪⎧9,(x ≤2.5)2.9x +1.75,(x >2.5)4分(2)画图正确. 6分(3)由2.4x +3.8=2.9x +1.75,解得,x =4.1.∴ 结合图象可知,当乘客打车的路程不超过 4.1公里时,乘坐纯电动出租车合算.8分25.(8分)(1)四边形ABED 是等腰梯形.理由如下:在□ABCD 中,AD ∥BC , ∴∠DAE =∠AEB . ∴ ⌒DE= ⌒AB ,DE =AB . ∵AB ∥CD ,∴AB 与DE 不平行. ∴四边形ABDE 是等腰梯形. 2分(2)直线DC 与⊙O 相切.如图,作直径DF ,连接AF . 于是,∠EAF =∠EDF . ∵∠DAE =∠CDE ,∴∠EAF +∠DAE =∠EDF +∠CDE ,即∠DAF =∠CDF . ∵DF 是⊙O 的直径,点A 在⊙O 上,∴∠DAF =90°,∴∠CDF =90°.∴OD ⊥CD . 直线DC 经过⊙O 半径OD 外端D ,且与半径垂直, 直线DC 与⊙O 相切. 5分(3)由(1),∠EDA =∠DAB . 在□ABCD 中,∠DAB =∠DCB ,∴∠EDA =∠DCB .又∵∠DAE =∠CDE ,∴△ADE ∽△DCE .∴AE DE =DECE,∵AB =3,由(1)得,AB =DE =DC =3.即 63=3DE.解得,CE =32.…………………………………………………………………………8分26.(11分)(1)同弧所对的圆周角相等. ∠ACB <∠ADB ,∠ACB >∠ADB . 答案不惟一,如:∠ACB =∠ADB . 4分(2)如图:此时∠ACB +∠ADB =180°, 此时∠ACB +∠ADB >180°, 此时∠ACB +∠ADB <180若四点组成的四边形对角互补,则这四点在同一个圆上.8分(3)作图正确.9分∵AB 是⊙O 的直径,C 、D 在⊙O 上, ∴∠ACB =90°,∠ADB =90°. ∴点E 是△ABF 三条高的交点. ∴FM ⊥AB . ∴∠EMB =90°.∠EMB +∠EDB =180°, ∴点E ,M ,B ,D 在同一个圆上. ∴∠EMD =∠DBE .又∵点N ,C ,B ,D 在⊙O 上, ∴∠DBE =∠CND ,∠EMD =∠CND . ∴FM ∥CN .∴∠CPB =∠EMB =90°. ∴CN ⊥AB .11分(注:其他正确的说理方法参照给分.) 27.(9分)(1)在反比例函数y =kx(k >0)的图象上任取一点P (m ,n ),于是:mn =k . 那么点P 关于原点的对称点为P 1(-m ,-n ).而(-m )(-n )=mn =k , 这说明点P 1也必在这个反比例函数y =k x的图象上.所以反比例函数y = k x(k >0)的图象关于原点对称.…………………………2分 (2)对称性:二次函数y =ax 2(a >0,a 为常数)的图象关于y 轴成轴对称. 增减性:当x >0时,y 随x 增大而增大;当x <0时,y 随x 增大而减小. 理由如下:①在二次函数y =ax 2(a >0,a 为常数)的图象上任取一点Q (m ,n ),于是n =am 2. 那么点Q 关于y 轴的对称点Q 1(-m ,n ).而n =a (-m )2,即n =am 2. 这说明点Q 1也必在在二次函数y =ax 2(a >0,a 为常数) 的图象上. ∴二次函数y =ax 2(a >0,a 为常数)的图象关于y 轴成轴对称,②在二次函数y =ax 2(a >0,a 为常数)的图象上任取两点A 、B,设A (m ,am 2),B (n ,an 2) ,且0<m <n .则an 2-am 2=a (n +m )(n -m ) ∵n >m >0,∴n +m >0,n -m >0; ∵a >0,∴an 2-am 2=a (n +m )(n -m )>0.即an 2>am 2. 而当m <n <0时,n +m <0,n -m >0;∵a >0,∴an 2-am 2=a (n +m )(n -m )<0.即an 2<am 2.这说明,当x >0时,y 随x 增大而增大;当x <0时,y 随x 增大而减小.7分(3)二次函数y =ax 2+bx +c (a >0,a ,b ,c 为常数) 的图象可以由y =ax 2的图象通过平移得到,关于直线x =—b 2a 对称,当x =—b 2a 时,y =4ac -b24a.由(2),当x ≥—b 2a 时,y 随x 增大而增大;也就是说,只要自变量x ≥—b2a ,其对应的函数值y ≥4ac -b 24a ;而当x ≤—b2a时,y 随x 增大而减小,也就是说,只要自变量x≤—b 2a ,其对应的函数值y ≥4ac -b24a.综上,对于二次函数y =ax 2+bx +c (a >0,a ,b ,c 为常数),当x =—b 2a时取得最小值4ac -b24a. 9分。
2020年河北石家庄 中考数学三模试卷 (解析版)
2020年中考数学三模试卷一、选择题1.下列各数中比1大的数是()A.B.0.5 C.0 D.﹣22.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣84.由若干个相同的小正方体搭成的一个几何体的俯视图如图所示,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.5.六边形的内角和是()A.540°B.720°C.900°D.1080°6.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P 所在的格点为()A.P1B.P2C.P3D.P47.下列说法正确的是()A.“三角形任意两边之差小于第三边”是必然事件B.在连续5次的测试中,两名同学的平均分相同,方差较大的同学成绩更稳定C.某同学连续10次抛掷质量均匀的硬币,6次正面向上,因此正面向上的概率是60%D.检测某品牌笔芯的使用寿命,适宜用普查8.方程x2﹣2x﹣1=0根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根9.计算:(﹣x2y)2÷(﹣2xy)=()A.x B.x3y C.﹣x3y D.﹣2x3y10.在圆内接正方形ABCD中,正方形的边长AB是8,则这个正方形的中心角和边心距是()A.90°,4 B.90°,1 C.45°,4 D.45°,1二、填空题(每小题3分,共18分)11.一组数据15,20,25,30,20,这组数据的中位数为.12.分解因式:9x﹣x3=.13.如图,直线a∥b,若∠1=139°,则∠2=.14.如图,在平行四边形ABCD中,AB=3cm,BC=2cm,连接BD,作BD的垂直平分线交CD于点E,交BD于点F,连接BE,则△BCE的周长是cm.15.如图,假设篱笆(虚线部分)的长度是8m,则所围成矩形ABCD的最大面积是.16.正方形ABCD,点P为正方形内一点,且满足PA=3,PB=2,PC=5,则∠APB的度数为度.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.先化简,再求值:(﹣1)•(),其中x=(﹣2)2,y=.18.在一个不透明的盒子中放有三张卡片,每张卡片上写有1个实数,分别为1,2,3.(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是2的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为点P的横坐标,卡片不放回,再随机抽取一张卡片,将卡片上的实数作为点P的纵坐标,两次抽取的卡片上的实数分别作为点P的横纵坐标.请你用列表法或树状图法,求出点P在反比例函数y=上的概率.19.已知:如图,在矩形ABCD中,AD=2,对角线AC与BD相交于点O,BD=4,过点C作BD的平行线,过点D作AC的平行线,两线相交于点E.(1)求DE的长;(2)直接写出四边形OCED的面积为.四、(每小题8分,共16分)20.某中学准备开展“体育活动”,决定开设篮球、足球、乒乓球和羽毛球四种项目的活动,为了了解学生对这四项活动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择这四项活动中的一种),并将调查结果绘制成如下的不完整的统计图:根据以上统计图提供的信息,解答下列问题:(1)a=,b=,c=;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)根据抽样调查结果,请你估计该校1000名学生中有多少名学生最喜爱打篮球.21.一个批发兼零售的文具店规定:凡一次购买铅笔300支以上(不包括300支),可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,小明来该店购买铅笔,如果给学校九年级学生每人购买1支,那么只能按零售价付款,需用150元;如果多购买60支,那么可以按批发价付款,同样需用150元.(1)这个学校九年级的学生总数在什么范围内?(2)如果按批发价购买360支与按零售价购买300支所付款相同,那么这个学校九年级学生有多少人?五、(本题10分)22.如图,四边形ABCD是⊙O的内接四边形,四边形ABCD两组对边的延长线分别相交于点E、F,且∠E=40°,∠F=50°,连接BD.(1)求∠A的度数;(2)当⊙O的半径等于2时,请直接写出的长(结果保留π)六、(本题10分)23.在平面直角坐标系中,一次函数y=﹣x+3图象与x轴交于点A,与y轴交于点B.(1)请直接写出点A坐标,点B坐标;(2)点C是直线AB上一个动点,当△AOC的面积是△BOC的面积的2倍时,求点C 的坐标;(3)点D为直线AB上的一个动点,在平面内找另一个点E,且以O、B、D、E为顶点的四边形是菱形,请直接写出满足条件的菱形的周长.七、(本题12分)24.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.八、(本题12分)25.如图,在平面直角坐标系中,O是坐标原点,抛物线y=ax2+bx经过A(﹣5,0),B (﹣,)两点,连接AB,BO.(1)求抛物线表达式;(2)点C是第三象限内的一个动点,若△AOC与△AOB全等,请直接写出点C坐标;(3)若点D从点O出发沿线段OA向点A作匀速运动,速度为每秒1个单位长度,同时线段OA上另一个点H从点A出发沿线段AO向点O作匀速运动,速度为每秒2个单位长度(当点H到达点O时,点D也同时停止运动).过点D作x轴的垂线,与直线OB交于点E,延长DE到点F,使得EF=DE,以DF为边,在DF左侧作等边三角形DGF(当点D运动时点G、点F也随之运动).过点H作x轴的垂线,与直线AB交于点L,延长HL到点M,使得LM=HL,以HM为边,在HM的右侧作等边三角形HMN (当点H运动时,点M、点N也随之运动).当点D运动t秒时,△DGF有一条边所在直线恰好过△HMN的重心,直接写出此刻t的值.参考答案一、选择题(每小题2分,共20分)1.下列各数中比1大的数是()A.B.0.5 C.0 D.﹣2【分析】根据实数比较大小的法则进行比较即可.解:A、比1大,故此选项符合题意;B、0.5比1小,故此选项不合题意;C、0比1小,故此选项不合题意;D、﹣2比1小,故此选项不合题意;故选:A.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解:A、此图形不是中心对称图形,是轴对称图形,故此选项不合题意;B、此图形不是中心对称图形,是轴对称图形,故此选项不合题意;C、此图形是中心对称图形,不是轴对称图形,故此选项不合题意;D、此图形是中心对称图形,也是轴对称图形,故此选项符合题意.故选:D.3.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000001=1×10﹣7,故选:C.4.由若干个相同的小正方体搭成的一个几何体的俯视图如图所示,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有四列,从左到右分别是1,2,1,2个正方形.解:由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,1,2个正方形.故选:B.5.六边形的内角和是()A.540°B.720°C.900°D.1080°【分析】多边形内角和定理:n边形的内角和等于(n﹣2)×180°(n≥3,且n为整数),据此计算可得.解:由内角和公式可得:(6﹣2)×180°=720°,故选:B.6.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P 所在的格点为()A.P1B.P2C.P3D.P4【分析】由于∠BAC=∠PED=90°,而=,则当=时,可根据两组对应边的比相等且夹角对应相等的两个三角形相似判断△ABC∽△EPD,然后利用DE=4,所以EP=6,则易得点P落在P3处.解:∵∠BAC=∠PED,而=,∴=时,△ABC∽△EPD,∵DE=4,∴EP=6,∴点P落在P3处.故选:C.7.下列说法正确的是()A.“三角形任意两边之差小于第三边”是必然事件B.在连续5次的测试中,两名同学的平均分相同,方差较大的同学成绩更稳定C.某同学连续10次抛掷质量均匀的硬币,6次正面向上,因此正面向上的概率是60%D.检测某品牌笔芯的使用寿命,适宜用普查【分析】分别利用概率的意义以及抽样调查的意义以及方差的意义分别分析得出答案.解:A、三角形任意两边之差小于第三边,是必然事件,正确;B、在连续5次的测试中,两名同学的平均分相同,方差较小的同学成绩更稳定,故本选项错误;C、某同学连续10次抛掷质量均匀的硬币,6次正面向上,并不能说明正面向上的概率是60%,而是正面朝上的概率是50%,故本选项错误;D、检测某品牌笔芯的使用寿命,适宜用抽样调查,故本选项错误;故选:A.8.方程x2﹣2x﹣1=0根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.解:∵△=(﹣2)2﹣4×(﹣1)=8>0,∴方程有两个不相等的实数根.故选:D.9.计算:(﹣x2y)2÷(﹣2xy)=()A.x B.x3y C.﹣x3y D.﹣2x3y【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.解:(﹣x2y)2÷(﹣2xy)=x4y2÷(﹣2xy)=﹣x3y.故选:C.10.在圆内接正方形ABCD中,正方形的边长AB是8,则这个正方形的中心角和边心距是()A.90°,4 B.90°,1 C.45°,4 D.45°,1【分析】运用正方形的性质,以及与外接圆的关系,可分别求出中心角,边心距.解:∵正方形的边长为8,由中心角只有四个可得出=90°,∴中心角是90°,正方形的外接圆半径是:sin∠AOC=,∵AC==4,∠AOC=45°,∴OC=AC=4,∴边心距为:4.故选:A.二、填空题(每小题3分,共18分)11.一组数据15,20,25,30,20,这组数据的中位数为20 .【分析】根据中位数的定义求解可得.解:将数据重新排列为15、20、20、25、30,所以这组数据的中位数为20,故答案为:20.12.分解因式:9x﹣x3=x(3+x)(3﹣x).【分析】首先提取公因式x,金进而利用平方差公式分解因式得出答案.解:原式=x(9﹣x2)=x(3﹣x)(3+x).故答案为:x(3﹣x)(3+x).13.如图,直线a∥b,若∠1=139°,则∠2=41°.【分析】由平行线的性质可得∠1+∠2=180°,即可求解.解:∵直线a∥b,∴∠1+∠2=180°,∵∠1=139°,∴∠2=180°﹣139°=41°,故答案为:41°.14.如图,在平行四边形ABCD中,AB=3cm,BC=2cm,连接BD,作BD的垂直平分线交CD于点E,交BD于点F,连接BE,则△BCE的周长是 5 cm.【分析】根据线段垂直平分线的性质和平行四边形的性质解答即可.解:∵BD的垂直平分线交CD于点E,交BD于点F,∴DE=BE,∵四边形ABCD是平行四边形,∴DC=AB=3(cm),∴△BCE的周长=BE+CE+BC=DE+CE+BC=CD+BC=3+2=5(cm),故答案为:5.15.如图,假设篱笆(虚线部分)的长度是8m,则所围成矩形ABCD的最大面积是16 .【分析】首先设围成矩形ABCD的长是xm,则宽为(8﹣x)m,利用面积公式写出矩形的面积表达式,再配方,将其写成顶点式,然后根据二次函数的性质可得答案.解:设围成矩形ABCD的长是xm,则宽为(8﹣x)m,矩形的面积为:S矩形ABCD=x(8﹣x)=﹣x2+8x=﹣(x﹣4)2+16.∵二次项系数为﹣1<0,∴当x=4时,S矩形ABCD有最大值,最大值为16.故答案为:16.16.正方形ABCD,点P为正方形内一点,且满足PA=3,PB=2,PC=5,则∠APB的度数为135 度.【分析】根据题意可以画出相应的图形,然后画出△APB绕点B旋转90°得到的△AP′C,然后根据正方形的性质和旋转的性质可以求得∠BP′P和∠BP′P的度数,然后即可得到∠∠BP′C,从而可以得到∠APB的度数.解:将△APB绕点B旋转90°得到△AP′C,则∠PBP′=90°,BP=BP′,AP=P′C,∠APB=∠CP′B,∵PB=2,∴BP′=2,∴PP′=4,∠BP′P=45°,∵PA=3,PC=5,∴P′C=3,∵PP′2+P′C2=42+32=52=PC2,∴△PP′C是直角三角形,∠PP′C=90°,∴∠BP′C=∠BP′P+∠PP′C=135°,∴∠APB=135°,故答案为:135.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.先化简,再求值:(﹣1)•(),其中x=(﹣2)2,y=.【分析】先把括号内通分,再把分子分解因式后约分得到原式=x﹣y,接着利用乘方的意义和算术平方根的定义求出x、y的值,然后把x、y的值代入计算即可.解:原式=•=x﹣y,当x=(﹣2)2=4,y==2时,原式=4﹣2=2.18.在一个不透明的盒子中放有三张卡片,每张卡片上写有1个实数,分别为1,2,3.(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是2的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为点P的横坐标,卡片不放回,再随机抽取一张卡片,将卡片上的实数作为点P的纵坐标,两次抽取的卡片上的实数分别作为点P的横纵坐标.请你用列表法或树状图法,求出点P在反比例函数y=上的概率.【分析】(1)根据题意可以直接写出卡片上的实数是2的概率;(2)根据题意可以写出所有的可能性,从而可以得到点P在反比例函数y=上的概率.解:(1)由题意可得,卡片上的实数是2的概率是;(2)由树状图可知,一共有六种可能性,其中横坐标和纵坐标的积等于2的有2中可能性,点P在反比例函数y=上的概率是=.19.已知:如图,在矩形ABCD中,AD=2,对角线AC与BD相交于点O,BD=4,过点C作BD的平行线,过点D作AC的平行线,两线相交于点E.(1)求DE的长;(2)直接写出四边形OCED的面积为2.【分析】(1)根据四边形OCED是平行四边形,CO=DO,即可得到四边形OCED是菱形,进而得到DE=DO=BD=2;(2)根据勾股定理即可得到AB的长,再根据矩形和菱形的性质,即可得到四边形OCED 的面积.解:(1)∵DE∥OC,CE∥DO,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴CO=DO,∴四边形OCED是菱形,∴DE=DO=BD=2;(2)∵矩形ABCD中,AD=2,BD=4,∴AB===2,∴S△COD=S矩形ABCD=×2×2=,∴S菱形OCED=2S△COD=2.故答案为:2.四、(每小题8分,共16分)20.某中学准备开展“体育活动”,决定开设篮球、足球、乒乓球和羽毛球四种项目的活动,为了了解学生对这四项活动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择这四项活动中的一种),并将调查结果绘制成如下的不完整的统计图:根据以上统计图提供的信息,解答下列问题:(1)a=100 ,b=20 ,c=15 ;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)根据抽样调查结果,请你估计该校1000名学生中有多少名学生最喜爱打篮球.【分析】(1)篮球30人占30%,可得总人数,由此可以计算出a;(2)求出羽毛球人数=100﹣30﹣35﹣20=15人,补全条形统计图即可;(3)用样本估计总体的思想即可解决问题.解:(1)30÷30%=100(人),=20%,1﹣35%﹣20%﹣30%=15%,∴a=100,b=20,c=15,故答案为:100,20,15;(2)喜欢羽毛球的人数为:100﹣35﹣30﹣20=15,补全条形统计图如图所示;(3)估计该校1000名学生中有1000×30%=300名学生最喜爱打篮球.21.一个批发兼零售的文具店规定:凡一次购买铅笔300支以上(不包括300支),可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,小明来该店购买铅笔,如果给学校九年级学生每人购买1支,那么只能按零售价付款,需用150元;如果多购买60支,那么可以按批发价付款,同样需用150元.(1)这个学校九年级的学生总数在什么范围内?(2)如果按批发价购买360支与按零售价购买300支所付款相同,那么这个学校九年级学生有多少人?【分析】(1)设这个学校九年级学生有x人,根据“如果给学校九年级学生每人购买1支,那么只能按零售价付款;如果多购买60支,那么可以按批发价付款”,即可得出关于x的一元一次不等式组,解之即可得出结论;(2)设铅笔的零售价为y元,则批发价为y元,根据数量=总价÷单价结合150元按批发价比按零售价多购买60支,即可得出关于y的分式方程,解之经检验后即可得出y值,再将其代入中即可求出结论.解:(1)设这个学校九年级学生有x人,依题意,得:,解得:240<x≤300.答:这个学校九年级的学生总数大于240且小于等于300.(2)设铅笔的零售价为y元,则批发价为y元,依题意,得:﹣=60,解得:y=,经检验,y=是原分式方程的解,且符合题意,∴=300.答:这个学校九年级学生有300人.五、(本题10分)22.如图,四边形ABCD是⊙O的内接四边形,四边形ABCD两组对边的延长线分别相交于点E、F,且∠E=40°,∠F=50°,连接BD.(1)求∠A的度数;(2)当⊙O的半径等于2时,请直接写出的长(结果保留π)【分析】(1)根据圆内接四边形的性质得到∠DCE=∠A,根据三角形外角性质得到∠EDF=∠A+50°,然后根据三角形内角和定理得到∠A+50°+∠A+40°=180°,从而解方程得到∠A的度数;(2)连接OB、OD,如图,根据圆周角定理得到∠BOD=2∠A=90°,然后利用弧长公式计算的长.解:(1)∵四边形ABCD是⊙O的内接四边形,∴∠DCE=∠A,∵∠EDF=∠A+∠F=∠A+50°,而∠EDF+∠DCE+∠E=180°,∴∠A+50°+∠A+40°=180°,∴∠A=45°;(2)连接OB、OD,如图,∵∠BOD=2∠A=90°,∴的长==π.六、(本题10分)23.在平面直角坐标系中,一次函数y=﹣x+3图象与x轴交于点A,与y轴交于点B.(1)请直接写出点A坐标(3,0),点B坐标(0,3);(2)点C是直线AB上一个动点,当△AOC的面积是△BOC的面积的2倍时,求点C 的坐标;(3)点D为直线AB上的一个动点,在平面内找另一个点E,且以O、B、D、E为顶点的四边形是菱形,请直接写出满足条件的菱形的周长12或6.【分析】(1)依据一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于点B,即可得到A点和B点的坐标;(2)求出S△AOB=,分两种情况,由面积关系可求出点C的坐标;(3)分OB为边和为对角线两种情况,利用菱形的性质及直角三角形的性质即可得出结论.解:(1)在y=﹣x+3中,令x=0,则y=3;令y=0,则x=3;∴A(3,0),B(0,3);故答案为:(3,0);(0,3).(2)∵A(3,0),B(0,3),∴OA=3,OB=3,∴S△AOB=OA×OB=×3×3=,设C(m,n),①当点C在线段AB上时,如图1,∵△AOC的面积是△BOC的面积的2倍,∴S△AOC=,∴∴m=2或m=﹣2(舍去),∵点C在直线y=﹣x+3上,∴﹣2+3=n,∴n=1,∴C(2,1).②当点C在线段AB的延长线上时,如图2,∵△AOC的面积是△BOC的面积的2倍,∴S△BOC=S△AOB,∴×OB×|m|=,∴m=﹣3或m=3(舍去),∴C(﹣3,6).综合以上可得点C的坐标为(2,1)或(﹣3,6).(3)如图3,以OB为边的菱形OBDE中,∵OB=3,∴周长为3×4=12,如图4,以OB边的菱形OBDE中,同理周长为12.如图5,以OB为对角线的菱形ODBE中,∵OB=OA=3,∴∠OBA=45°,∴∠DBE=90°,∴四边形ODBE为正方形,∴BD=3×.∴四边形ODBE的周长为4×.综上可得以O、B、D、E为顶点的菱形的周长为12或6.故答案为:12或6.七、(本题12分)24.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.【分析】(1)如图1中,作CH⊥AB于H.解直角三角形求出CH,证明△CHB是等腰直角三角形即可解决问题.(2)①利用直角三角形斜边中线定理,证明△MEF是等腰直角三角形即可解决问题.②如图2中,由①可知△MEF是等腰直角三角形,当ME的值最小时,△MEF的面积最小,因为ME=BD,推出当BD⊥AC时,ME的值最小,此时BD=.解:(1)如图1中,作CH⊥AB于H.在Rt△ACH中,∵∠AHC=90°,AC=,tan A==3,∴AH=1,CH=3,∵∠CBH=45°,∠CHB=90°,∴∠HCB=∠CBH=45°,∴CH=BH=3,∴BC=CH=3.(2)①结论:∠EMF=90°不变.理由:如图2中,∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∵DM=MB,∴ME=BD,MF=BD,∴ME=MF=BM,∴∠MBE=∠MEB,∠MBF=∠MFB,∵∠DME=∠MEB+∠MBE,∠DMF=∠MFB+∠MBF,∴∠EMF=∠DME+∠DMF=2(∠MBE+∠MBF)=90°,②如图2中,作CH⊥AB于H,由①可知△MEF是等腰直角三角形,∴当ME的值最小时,△MEF的面积最小,∵ME=BD,∴当BD⊥AC时,ME的值最小,此时BD===,∴EM的最小值=,∴△MEF的面积的最小值=××=.故答案为.八、(本题12分)25.如图,在平面直角坐标系中,O是坐标原点,抛物线y=ax2+bx经过A(﹣5,0),B(﹣,)两点,连接AB,BO.(1)求抛物线表达式;(2)点C是第三象限内的一个动点,若△AOC与△AOB全等,请直接写出点C坐标(﹣,)或(﹣,﹣)或(﹣,﹣);(3)若点D从点O出发沿线段OA向点A作匀速运动,速度为每秒1个单位长度,同时线段OA上另一个点H从点A出发沿线段AO向点O作匀速运动,速度为每秒2个单位长度(当点H到达点O时,点D也同时停止运动).过点D作x轴的垂线,与直线OB交于点E,延长DE到点F,使得EF=DE,以DF为边,在DF左侧作等边三角形DGF(当点D运动时点G、点F也随之运动).过点H作x轴的垂线,与直线AB交于点L,延长HL到点M,使得LM=HL,以HM为边,在HM的右侧作等边三角形HMN (当点H运动时,点M、点N也随之运动).当点D运动t秒时,△DGF有一条边所在直线恰好过△HMN的重心,直接写出此刻t的值1s或s.【分析】(1)利用待定系数法求二次函数的解析式;(2)先根据勾股定理的逆定理证明△AOB是直角三角形,且∠ABO=90°,当△AOC 与△AOB全等,如图1,分两种情况:由对称性可得点C的坐标;(3)分两种情况:①当直线DF经过△HMN的重心P时,如图2,先根据特殊的三角函数值计算∠BAO=60°,根据OA=AH+DH+OD=5,列方程2t+2t+t=5,可得t的值;②当直线DG经过△HMN的重心P时,如图3,根据平行线分线段成比例定理可得结论.解:(1)把A(﹣5,0),B(﹣,)两点代入抛物线y=ax2+bx中得:,解得:,∴y=﹣;(2)如图1,∵A(﹣5,0),B(﹣,),∴AO2=52=25,AB2===,OB2==,∴AB2+OB2=OA2,∴△AOB是直角三角形,且∠ABO=90°,当△AOC与△AOB全等,如图1,分两种情况:①在x轴的上方,由对称得:C1(﹣,);②在x轴的下方,同理得:C2(﹣,﹣),C3(﹣,﹣);综上,点C的坐标是(﹣,)或(﹣,﹣)或(﹣,﹣);(3)分两种情况:①当直线DF经过△HMN的重心P时,如图2,连接NL,∵LM=LH,且△HMN是等边三角形,∴P在LN上,由题意得:OD=t,AH=2t,由(2)知:AB=,OA=5,∴cos∠BAO==,∴∠BAO=60°,Rt△LAH中,∴LH=2t,HN=4t,∴LN=6t,∵FD⊥x轴,HM⊥x轴,∴∠LHD=∠PDH=∠PLH=90°,∴四边形PLHD是矩形,∵P是重心,∴PL=DH=2t,∵OA=AH+DH+OD=5,∴2t+2t+t=5,解得:t=1;②当直线DG经过△HMN的重心P时,如图3,∵DP∥MN,∴,∵LH=LM,∴,∵LP∥DH,∴,∴,解得:t=,综上,t的值是1s或s.故答案为:1s或s.。
河北省唐山市路南区2019年中考数学三模试卷(解析版)
2019年河北省唐山市路南区中考数学三模试卷一、选择题(本大题共16小题,共42分1-10小题各3分,11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m2.(3分)全民阅读已成为一种良好风尚,现在的图书是人们阅读的好地方.下列图书馆标志的图形中不是轴对称图形的是()A.B.C.D.3.(3分)计算5.2×107﹣5.1×107,结果用科学记数法表示为()A.1×107B.1×106C.0.1×107D.0.1×1064.(3分)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.5.(3分)如图所示,用量角器度量几个角的度数,下列结论正确的是()A.∠BOC=60°B.∠AOD与∠COE互补C.∠AOC=∠BOD D.∠COA是∠EOD的余角6.(3分)九年级某班在一次考试中对某道单选题的答题情况进行统计,结果如图所示:根据以上统计图,下列判断错误的是()A.选A的有8人B.选B的有4人C.选C的有28人D.该班共有40人参加考试7.(3分)与算式32+32+32的运算结果相等的是()A.33B.23C.36D.388.(3分)书店、学校、食堂在平面上分别用A、B、C来表示,书店在学校的北偏西30°,食堂在学校的南偏东15°,则平面图上的∠ABC的度数应该是()A.65°B.35°C.165°D.135°9.(3分)一个正方形的面积是19,则它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间10.(3分)如图,矩形纸片ABCD,M为AD边的中点将纸片沿BM、CM折叠,使A点落在A1处,D点落在D1处,若∠1=30°,则∠BMC=()A.75°B.150°C.120°D.105°11.(2分)若a+b=5,则代数式(﹣a)÷()的值为()A.5B.﹣5C.﹣D.12.(2分)如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A.B.C.D.13.(2分)关于x的一元二次方程x2+3x﹣1=0的根的情况()A.无实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定14.(2分)已知点P是△ABC的内心,若∠BAP=50°,则∠BPC的度数为()A.100°B.110°C.140°D.130°15.(2分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示,则下列结论错误的是()A.甲车间每小时加工服装80件B.这批服装的总件数为1140件C.乙车间每小时加工服装为60件D.乙车间维修设备用了4小时16.(2分)如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,判断下列叙述不正确的是()A.O是△AEB的外心,O不是△AED的外心B.O是△BEC的外心,O不是△BCD的外心C.O是△AEC的外心,O不是△BCD的外心D.O是△ADB的外心,O不是△ADC的外心二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.(3分)在函数y=中,自变量x的取值范围是.18.(3分)如图,一个正n边形纸片被撕掉了一部分,已知它的中心角是40°,那么n =.19.(4分)如图,正方形ABCD的边长为3,点E,F分别在边BCCD上,BE=CF=1,小球P从点E出发沿直线向点F运动,完成第1次与边的碰撞,每当碰到正方形的边时反弹,反弹时反射角等于入射角,则小球P与正方形的边第2次碰撞到边上,小球P与正方形的边完成第5次碰撞所经过的路程为.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.(9分)在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC =1,如图所示,设点A,B,D,C所对应数的和是p.(1)①若以B为原点.写出点A,D,C所对应的数,并计算p的值;②若以D为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.21.(9分)现有4个质地和大小完全相同的小球,分别标有数字2,3,4,6.将标有2,3的小球放入不透明的甲袋中,标有4,6的小球放入不透明的乙袋中.从甲袋中随机摸出一个球,将球上的数字当作一个分数的分子:再从乙袋中随机摸出一个球,将球上的数字当作这个分数的分母,从而得到一个分数,如图(1)用列表法(或画树状图)表示所有的可能结果;(2)小亮说:“得到的分数大于和小于的概率相同”请通过计算说明小亮的说法是否正确.22.(9分)如图,∠CAB=∠ABD=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.连接MB,NA.(1)求证:四边形MBNA为平行四边形;(2)当α=°时,四边形MBNA为矩形;(3)当α=°时,四边形MBNA为菱形;(4)四边形MBNA可能是正方形吗?(回答“可能”或“不可能”)23.(9分)如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3),反比例函数的图象经过点D,点P是一次函数y=kx+3﹣3k(k≠0)的图象与该反比例函数图象的一个公共点.①求反比例函数解析式;②通过计算,说明一次函数y=kx+3﹣3k(k≠0)的图象一定过点C;③对于一次函数y=kx+3﹣k(k≠0)当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写过程)24.(10分)某新建小区要修一条1050米长的路,甲、乙两个工程队想承建这项工程.经了解得到以下信息(如表):工程队每天修路的长度(米)单独完成所需天数(天)每天所需费用(元)甲队30n600乙队m n﹣141160(1)甲队单独完成这项工程所需天数n=,乙队每天修路的长度m=(米);(2)甲队先修了x米之后,甲、乙两队一起修路,又用了y天完成这项工程(其中x,y 为正整数).①当x=90时,求出乙队修路的天数;②求y与x之间的函数关系式(不用写出x的取值范围);③若总费用不超过22800元,求甲队至少先修了多少米.25.(11分)在锐角△ABC中,AB=6,BC=11,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA上时,∠CC1A1=°;(2)如图2,连接AA1,CC1.若△ABA1的面积为24,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是P1,求在旋转过程中,线段EP1长度的最大值与最小值的差.26.(11分)已知如图,A(1,9),动点M(x,y)从点A出发向右下方运动,碰到x轴时停止.运动过程中,M、A的水平距离m与运动时间t成正比例,M、A的垂直距离h与t的平方成正比例.并且,当t=1时,m与h的值均为1;已知直线l的解析式为y=x+2.(1)①用t表示x和y;②求出y与x的关系式并直接写出自变量x的取值范围;③说出点M的运行轨迹.(2)求当t为何值时,点M落在直线l上;(3)求当t为何值时,点M与直线1的距离小于.2019年河北省唐山市路南区中考数学三模试卷参考答案与试题解析一、选择题(本大题共16小题,共42分1-10小题各3分,11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m【分析】根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.【解答】解:若向东走2m记作+2m,则向西走3m记作﹣3m,故选:C.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.2.(3分)全民阅读已成为一种良好风尚,现在的图书是人们阅读的好地方.下列图书馆标志的图形中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:B.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(3分)计算5.2×107﹣5.1×107,结果用科学记数法表示为()A.1×107B.1×106C.0.1×107D.0.1×106【分析】根据乘法分配律计算即可求解.【解答】解:5.2×107﹣5.1×107=(5.2﹣5.1)×107=0.1×107=1×106.故选:B.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.4.(3分)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.【分析】根据过直线外一点向直线作垂线即可.【解答】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.【点评】此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.5.(3分)如图所示,用量角器度量几个角的度数,下列结论正确的是()A.∠BOC=60°B.∠AOD与∠COE互补C.∠AOC=∠BOD D.∠COA是∠EOD的余角【分析】由图形,根据角的度量和互余、互补的定义求解即可.【解答】解:A、∠BOC=120°,故选项错误;B、∠AOD+∠COE=150°+30°=180°,它们互补,故选项正确;C、∠AOC=60°,∠BOD=30°,它们的大小不相等,故选项错误;D、∠COA=60°,∠EOD=60°,它们相等,但不是互余关系,故选项错误.故选:B.【点评】本题主要考查了余角和补角,角的度量,量角器的使用方法,正确使用量角器是解题的关键.6.(3分)九年级某班在一次考试中对某道单选题的答题情况进行统计,结果如图所示:根据以上统计图,下列判断错误的是()A.选A的有8人B.选B的有4人C.选C的有28人D.该班共有40人参加考试【分析】先求出九年级某班参加考试的人数,再分别求出选A、选B、选C的人数即可.【解答】解:∵九年级某班参加考试的人数是8+4+28+10=50人,∴选A的人有50×16%=8人,选B的人有50×8%=4人,选C的人有50×56%=28人,故选:D.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.7.(3分)与算式32+32+32的运算结果相等的是()A.33B.23C.36D.38【分析】32+32+32表示3个32相加.【解答】解:32+32+32=3×32=33.故选:A.【点评】本题根据乘法的意义可知32+32+32=3×32,根据乘方的意义可知3×32=33.8.(3分)书店、学校、食堂在平面上分别用A、B、C来表示,书店在学校的北偏西30°,食堂在学校的南偏东15°,则平面图上的∠ABC的度数应该是()A.65°B.35°C.165°D.135°【分析】首先根据叙述作出A、B、C的相对位置,然后根据角度的和差计算即可.【解答】解:∠ABD=90°﹣30°=60°,则∠ABC=60°+90°+15°=165°.故选:C.【点评】本题考查了方向角的定义,理解方向角的定义,作出A、B、C的相对位置是解决本题的关键.9.(3分)一个正方形的面积是19,则它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【分析】根据无理数的估计解答即可.【解答】解:∵16<19<25,∴,故选:C.【点评】本题主要考查的是估算无理数的大小,熟练掌握算术平方根的性质是解题的关键.10.(3分)如图,矩形纸片ABCD,M为AD边的中点将纸片沿BM、CM折叠,使A点落在A1处,D点落在D1处,若∠1=30°,则∠BMC=()A.75°B.150°C.120°D.105°【分析】利用折叠的性质,相重合的角相等,然后利用平角定理求出角的度数.【解答】解:ɛ∠1=30°,∴∠AMA1+∠DMD1=180﹣30=150°.∴∠BMA1+∠CMD1=75°.∴∠BMC=∠BMA1+∠CMD1+∠1=105°.故选:D.【点评】本题考查了轴对称的性质,矩形的性质,角的计算.解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.11.(2分)若a+b=5,则代数式(﹣a)÷()的值为()A.5B.﹣5C.﹣D.【分析】根据a+b=5,可以求得题目中所求式子的值,本题得以解决.【解答】解:∵a+b=5,∴(﹣a)÷()===﹣(a+b)=﹣5,故选:B.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.12.(2分)如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A.B.C.D.【分析】根据全等三角形的判定定理进行判断.【解答】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选:C.【点评】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.13.(2分)关于x的一元二次方程x2+3x﹣1=0的根的情况()A.无实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定【分析】先根据根的判别式求出△的值,再判断即可.【解答】解:x2+3x﹣1=0,△=32﹣4×1×(﹣1)=13>0,所以一元二次方程有两个不相等的实数根,故选:C.【点评】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键.14.(2分)已知点P是△ABC的内心,若∠BAP=50°,则∠BPC的度数为()A.100°B.110°C.140°D.130°【分析】由点P是△ABC的内心,∠BAP=50°,得到∠BAC=2∠BAP=100°,根据三角形的内角和得到∠ABC+∠ACB=80°,根据角平分线的定义得到∠PBC+∠PCB=80°=40°,于是得到结论.【解答】解:∵点P是△ABC的内心,∠BAP=50°,∴∠BAC=2∠BAP=100°,∴∠ABC+∠ACB=80°,∴∠PBC+∠PCB=80°=40°,∴∠BPC=180°﹣40°=140°,故选:C.【点评】此题主要考查了三角形的内切圆和内心,正确理解∠PBC+∠PCB=(∠ABC+∠ACB)是关键.15.(2分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示,则下列结论错误的是()A.甲车间每小时加工服装80件B.这批服装的总件数为1140件C.乙车间每小时加工服装为60件D.乙车间维修设备用了4小时【分析】根据图象确定两个车间的生产速度,再由乙车间剩余工作量推得复工后生产时间,得到乙车间加工零件数量y与x之间的函数关系式即可.【解答】解:由图象可知,甲车间每小时加工零件个数为720÷9=80个,则A正确;由题意总零件个数为720+420=1140个,则B正确;乙车间生产速度为120÷2=60个/时,则C正确;乙车间复工后生产时间为(420﹣120)÷60=5小时,故乙车间维修设备时间为9﹣5﹣2=2小时,则D错误.故选:D.【点评】本题为一次函数实际应用问题,考查了一次函数图象的实际意义和根据图象确定一次函数关系式.16.(2分)如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,判断下列叙述不正确的是()A.O是△AEB的外心,O不是△AED的外心B.O是△BEC的外心,O不是△BCD的外心C.O是△AEC的外心,O不是△BCD的外心D.O是△ADB的外心,O不是△ADC的外心【分析】根据三角形的外心得出OA=OC=OA,根据正方形的性质得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐个判断即可.【解答】解:连接OB、OD、OA,∵O为锐角三角形ABC的外心,∴OA=OC=OA,∵四边形OCDE为正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OE≠OD,即O不是△AED的外心,OA=OE=OB,即O是△AEB的外心,OA=OC=OE,即O是△ACE的外心,OB=OA≠OD,即O不是△ABD的外心,故选:C.【点评】本题考查了正方形的性质和三角形的外心与外接圆,能熟记知识点的内容是解此题的关键,注意:三角形的外心到三个顶点的距离相等,正方形的四边都相等.二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.(3分)在函数y=中,自变量x的取值范围是x≠1.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.18.(3分)如图,一个正n边形纸片被撕掉了一部分,已知它的中心角是40°,那么n=9.【分析】利用360度除以中心角的度数即可求得.【解答】解:∵正n边形的中心角==40°,n==9.故答案为:9.【点评】本题考查了多边形的计算,正多边形的中心角相等,理解中心角的度数和正多边形的边数之间的关系是关键.19.(4分)如图,正方形ABCD的边长为3,点E,F分别在边BCCD上,BE=CF=1,小球P从点E出发沿直线向点F运动,完成第1次与边的碰撞,每当碰到正方形的边时反弹,反弹时反射角等于入射角,则小球P与正方形的边第2次碰撞到AB边上,小球P与正方形的边完成第5次碰撞所经过的路程为.【分析】由题意可以画出小球每次碰撞后反弹的路线,求出反射角和入射角的正切值,找到小球路径最终循环的规律,因此可求问题.【解答】解:∵正方形ABCD的边长为3,点E,F分别在边BCCD上,BE=CF=1∴Rt△ECF中,tan∠EFC=∵每当碰到正方形的边时反弹,反弹时反射角等于入射角∴每次反弹的反射角正切值为2依此类推,画出小球的反弹路线∴可知小球在正方形ABCD边上反弹6次后回到原位则小球与正方形的边第2次碰撞到AB边上.由勾股定理计算小球五次碰撞经过的路径为故答案为:AB,【点评】本题是几何动点探究题,考查了锐角三角函数(三角形相似)、勾股定理,解答关键是数形结合.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.(9分)在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC =1,如图所示,设点A,B,D,C所对应数的和是p.(1)①若以B为原点.写出点A,D,C所对应的数,并计算p的值;②若以D为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.【分析】(1)①根据以B为原点,则A,D,C所对应的数分别为:﹣2,3,4,进而得到p的值;②以D为原点,A,D,C所对应的数分别为:﹣5,﹣3,1,进而得到p的值;(2)用x的代数式分别表示A,D,C所对应的数,根据题意列方程解答即可.【解答】解:(1)①点A,D,C所对应的数分别为:﹣2,3,4;p=﹣2+3+4=5;②若以D为原点,P=﹣3﹣5+1=﹣7;(2)由题意,A,B,C,D表示的数分别为:﹣6﹣x,﹣4﹣x,﹣1﹣x,﹣x,﹣6﹣x﹣4﹣x﹣1﹣x﹣x=﹣71,﹣4x=﹣60,x=15.【点评】本题主要考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.21.(9分)现有4个质地和大小完全相同的小球,分别标有数字2,3,4,6.将标有2,3的小球放入不透明的甲袋中,标有4,6的小球放入不透明的乙袋中.从甲袋中随机摸出一个球,将球上的数字当作一个分数的分子:再从乙袋中随机摸出一个球,将球上的数字当作这个分数的分母,从而得到一个分数,如图(1)用列表法(或画树状图)表示所有的可能结果;(2)小亮说:“得到的分数大于和小于的概率相同”请通过计算说明小亮的说法是否正确.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图求得得到的分数大于和小于的情况,再利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有4种等可能的结果;(2)小亮的说法正确,∵得到的分数大于的概率为,得到的分数小于的概率为,∴得到的分数大于和小于的概率相同.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.(9分)如图,∠CAB=∠ABD=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.连接MB,NA.(1)求证:四边形MBNA为平行四边形;(2)当α=80°时,四边形MBNA为矩形;(3)当α=90°时,四边形MBNA为菱形;(4)四边形MBNA可能是正方形吗?不可能(回答“可能”或“不可能”)【分析】(1)由“AAS”可证△APM≌△BPN,可得AM=BN,即可得结论;(2)由矩形的性质和三角形的内角和定理可求解;(3)由菱形的性质可求解;(4)由正方形的性质可求解.【解答】证明:(1)∵P为AB中点,∴AP=BP∵∠CAB=∠ABD=50°,∴AM∥BN∴∠AMP=∠BNP,且AP=BP,∠CAB=∠ABD=50°,∴△APM≌△BPN(AAS)∴AM=BN,且AM∥BN∴四边形MBNA为平行四边形;(2)若四边形MBNA为矩形∴BP=AP=MP=NP∴∠ABN=∠MNB=50°∴α=180°﹣50°﹣50°=80°故答案为:80(3)若四边形MBNA为菱形∴AB⊥MN∴α=90°故答案为:90(4)若四边形MBNA为正方形∴∠ABD=45°≠50°∴四边形MBNA不可能为正方形故答案为:不可能【点评】本题考查了正方形的性质,矩形的性质和判定,菱形的性质和判定,平行四边形的判定和性质,灵活运用这些性质是本题的关键.23.(9分)如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3),反比例函数的图象经过点D,点P是一次函数y=kx+3﹣3k(k≠0)的图象与该反比例函数图象的一个公共点.①求反比例函数解析式;②通过计算,说明一次函数y=kx+3﹣3k(k≠0)的图象一定过点C;③对于一次函数y=kx+3﹣k(k≠0)当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写过程)【分析】(1)由B(3,1),C(3,3)得到BC⊥x轴,BC=2,根据平行四边形的性质得AD=BC=2,而A点坐标为(1,0),可得到点D的坐标为(1,2),然后把D(1,2)代入y=即可得到m=2,从而可确定反比例函数的解析式;(2)把x=3代入y=kx+3﹣3k(k≠0)得到y=3,即可说明一次函数y=kx+3﹣3k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,由于一次函数y=kx+3﹣3k(k≠0)过C点,并且y随x的增大而增大时,则P点的纵坐标要小于3,横坐标要小于3,当纵坐标小于3时,由y=得到a>,于是得到a的取值范围.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,∵B(3,1),C(3,3),∴BC⊥x轴,AD=BC=2,而A点坐标为(1,0),∴点D的坐标为(1,2).∵反比例函数y=(x>0)的函数图象经过点D(1,2),∴2=,∴m=2,∴反比例函数的解析式为y=;(2)当x=3时,y=kx+3﹣3k=3k+3﹣3k=3,∴一次函数y=kx+3﹣3k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,∵一次函数y=kx+3﹣3k(k≠0)过C点,并且y随x的增大而增大时,∴k>0,P点的纵坐标要小于3,横坐标要小于3,当纵坐标小于3时,∵y=,∴<3,解得:a>,则a的范围为<a<3.【点评】本题考查了反比例函数综合题:点在函数图象上,则点的横纵坐标满足图象的解析式;利用平行四边形的性质确定点的坐标;掌握一次函数的增减性.24.(10分)某新建小区要修一条1050米长的路,甲、乙两个工程队想承建这项工程.经了解得到以下信息(如表):工程队每天修路的长度(米)单独完成所需天数(天)每天所需费用(元)甲队30n600乙队m n﹣141160(1)甲队单独完成这项工程所需天数n=35,乙队每天修路的长度m=50(米);(2)甲队先修了x米之后,甲、乙两队一起修路,又用了y天完成这项工程(其中x,y 为正整数).①当x=90时,求出乙队修路的天数;②求y与x之间的函数关系式(不用写出x的取值范围);③若总费用不超过22800元,求甲队至少先修了多少米.【分析】(1)用总长度÷每天修路的长度可得n的值,继而可得乙队单独完成时间,再用总长度÷乙单独完成所需时间可得乙队每天修路的长度m;(2)①根据:甲队先修建的长度+(甲队每天修建长度+乙队每天修建长度)×两队合作时间=总长度,列式计算可得;②由①中的相等关系可得y与x之间的函数关系式;③根据:甲队先修x米的费用+甲、乙两队每天费用×合作时间≤22800,列不等式求解可得.【解答】解:(1)甲队单独完成这项工程所需天数n=1050÷30=35(天),则乙单独完成所需天数为21天,∴乙队每天修路的长度m=1050÷21=50(米),故答案为:35,50;(2)①乙队修路的天数为=12(天);②由题意,得:x+(30+50)y=1050,∴y与x之间的函数关系式为:y=﹣x+;③由题意,得:600×+(600+1160)(﹣x+)≤22800,解得:x≥150,∵x,y均为正整数,∴当x=170时,y=11,符合题意;答:若总费用不超过22800元,甲队至少先修了170米.【点评】本题主要考查由实际问题抽象出一次函数解析式、一元一次不等式的应用,根据题意完成表格是解题的根本,理解题意得到相等关系或不等关系是解题的关键.25.(11分)在锐角△ABC中,AB=6,BC=11,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA上时,∠CC1A1=60°;(2)如图2,连接AA1,CC1.若△ABA1的面积为24,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是P1,求在旋转过程中,线段EP1长度的最大值与最小值的差.【分析】(1)根据旋转的性质可知:∠A1C1B=30°,再由等边对等角得∠BC1C=30°,则∠CC1A1=60°;(2)由△ABC≌△A1BC1得比例式,证明△ABA1∽△CBC1,根据面积比等于相似比的平方求出△CBC1的面积;(3)作辅助线,当点P在D处时BP最小,则BP1最小,EP1最小;当点P在点C处时,BP最大,则BP1最大,EP1最大,代入计算.【解答】解:(1)如图1,由旋转得:∠A1C1B=∠C=30°,BC=BC1,∴∠C=∠BC1C=30°,∴∠CC1A1=60°,故答案为:60°;(2)如图2,∵△ABC≌△A1BC1,∴BA=BA1,BC=BC1,∠ABC=∠A1BC1,∴,。
2019年河北省保定市中考数学三模试卷 含解析
2019年中考数学三模试卷一、选择题1.下列各式错误的是()A.﹣(﹣3)=3B.|2|=|﹣2|C.0>|﹣1|D.﹣2>﹣32.下列计算结果为x7的是()A.x9﹣x2B.x•x6C.x14÷x2D.(x4)33.如图,要修建一条公路,从A村沿北偏东75°方向到B村,从B村沿北偏西25°方向到C村.若要保持公路CE与AB的方向一致,则∠ECB的度数为()A.80°B.90°C.100°D.105°4.若是3﹣m的立方根,则()A.m=3B.m是小于3的实数C.m是大于3的实数D.m可以是任意实数5.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5B.左视图的面积为3C.俯视图的面积为3D.三种视图的面积都是46.设“●”“■”“▲”分别表示不同的物体,如图所示,前两架天平保持平衡,如果要第三架天平也平衡,那么“?”处应放“■”的个数为()A.5B.4C.3D.27.如图点A,B,C在正方形网格中的格点上,每个小正方形的边长为1,则下列关于△ABC边长的说法,正确的是()A.AB,BC长均为有理数,AC长为无理数B.AC长是有理数,AB,BC长均为无理数C.AB长是有理数,AC,BC长均为无理数D.三边长均为无理数8.下列式子运算结果为x+1的是()A.B.1﹣C.D.÷9.某同学以正六边形三个不相邻的顶点为圆心,边长为半径,向外作三段圆弧,设计了如图所示的图案.已知正六边形的边长为1,则该图案外围轮廓的周长为()A.2πB.3πC.4πD.6π10.由下列两个点确定的直线经过原点的是()A.(1,2)和(2,3)B.(﹣2,3)和(4,﹣6)C.(2,3)和(﹣4,6)D.(2,﹣3)和(﹣4,﹣6)11.如图,C、E是直线l两侧的点,以点C为圆心,CE长为半径作圆弧交l于A、B两点;再分别以A,B为圆心,大于AB的长为半径作圆弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A.CD⊥l B.点A,B关于直线CD对称C.CD平分∠ACB D.点C,D关于直线l对称12.若点(x1,y1)、(x2,y2)都是反比例函数y=﹣图象上的点,并且y1<0<y2,则下列结论中正确的是()A.x1>x2B.x1<x2C.y随x的增大而减小D.两点有可能在同一象限13.某工厂六台机床第一天和第二天生产的零件数分别如图1和图2所示,则与第一天相比,这六台机床第二天生产零件数的平均数与方差的变化是()A.平均数变大,方差不变B.平均数变小,方差变大C.平均数不变,方差变小D.平均数不变,方差变大14.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为()A.75m2B.C.48m2D.15.把两个相同的矩形按如图方式叠合起来,重叠部分为图中的阴影部分,已知AD=4,DC=3,则重叠部分的面积为()A.6B.C.D.16.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,则下面说法正确的是()A.1一定不是方程x2+bx+a=0的根B.0一定不是方程x2+bx+a=0的根C.﹣1可能是方程x2+bx+a=0的根D.1和﹣1都是方程x2+bx+a=0的根二、填空题(有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.计算:﹣=.18.一个矩形的两边长分别为a,b,其周长为14,面积是12,则ab2+a2b的值为.19.如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=4.①AB的长为;②若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于F,当DE∥AC时,tan∠BCD的值为.三、解答题(共7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.李华同学准备化简:(3x2﹣5x﹣3)﹣(x2+2x□6),算式中“□”是“+,一,×,÷”中的某一种运算符号(1)如果“□”是“÷”,请你化简:(3x2﹣5x﹣3)﹣(x2+2x÷6);(2)当x=1时,(3x2﹣5x﹣3)﹣(x2+2x□6)的结果是﹣2,请你通过计算说明“□”所代表的运算符号.21.某校380名学生参加了这学期的“读书伴我行”活动要求每人在这学期读书4~7本活动结束后随机抽查了20名学生每人的读书量,并分为四种等级,A:4本;B:5本;C:6本;D:7本.将各等级的人数绘制成尚不完整的扇形图(如图1)和条形图(如图2)回答下列问题:(1)补全条形图;这20名学生每人这学期读书量的众数是本,中位数是本;(2)在求这20名学生这学期每人读书量的平均数时,小亮是这样计算的:==5.5(本);小亮的计算是否正确?如果正确估计这380名学生在这学期共读书多少本;如果不正确,请你帮他计算出正确的平均数并估计这380名学生在这学期共读书多少本;(3)若A等级的四名学生中有男生、女生各两名现从中随机选出两名学生写读书感想,请用画树状图的方法求出刚好选中一名男生、一名女生的概率.22.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下我们称使等式a﹣b=ab+1成立的一对有理数“a,b”为共生有理数对”,记为(a,b)(1)通过计算判断数对“﹣2,1”,“4,”是不是“共生有理数对”;(2)若(6,a)是“共生有理数对”,求a的值;(3)若(m,n)是“共生有理数对”,则“﹣n,﹣m”“共生有理数对”(填“是”或“不是”),并说明理由;(4)如果(m,n)是“共生有理数对”(其中n≠1),直接用含n的代数式表示m.23.如图1,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=40°,连接BD,CE将△ADE绕点A旋转,BD,CE也随之运动(1)求证:BD=CE;(2)在△ADE绕点A旋转过程中,当AE∥BC时,求∠DAC的度数;(3)如图2,当点D恰好是△ABC的外心时,连接DC,判断四边形ADCE的形状,并说明理由.24.甲、乙两车沿相同路线从A城出发前往B城已知A、B两城之间的距离是300km,甲车8:30出发,速度为60km/h;乙车9:30出发,速度为100km/h设甲、乙两车离开A 城的距离分别为y1,y2(单位km),甲车行驶x(h)(1)分别写出y1,y2与x之间的函数关系式,并直接写出x的取值范围;(2)当甲车出发1.5小时时,求甲车与乙车之间的距离;(3)在乙车行驶过程中;①求乙车没有超过甲车时x的取值范围;②直接写出甲车与乙车之间的距离是40km时x的值.25.如图,在矩形ABCD中,AB=4,BC=3,点M是AB边上一点,且∠CMB=45°.点Q是直线AB上一点且在点B的右侧,BQ=4,点P从点Q出发,沿射线QA方向以每秒1个单位长度的速度运动设运动时间为t秒以P为圆心,PC为半径作半圆P;交直线AB分别于点G,H(点G在H的左侧).(1)当t=3秒时,PC的长等于,t=秒时,半圆P与AD相切;(2)当点P与点B重合时,求半圆P被矩形ABCD的对角线AC所截得的弦长;(3)若∠MCP=15°,求扇形HPC的面积(参考数据:sin37°=,sin53°=,tan37°=);26.已知点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数且a≠0)上,L交y轴于点C,连接CP.(1)用a表示k,并求L的对称轴;(2)当L经过点(4,﹣7)时,求此时L的表达式及其顶点坐标;(3)横,纵坐标都是整数的点叫做整点.如图,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有5个整点,求a的取值范围;(4)点M(x1,y1),N(x2,y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2,直接写出t的取值范围.参考答案一、选择题(共16个小题,共42分.1~10小题各3分;11~16小题各2分在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各式错误的是()A.﹣(﹣3)=3B.|2|=|﹣2|C.0>|﹣1|D.﹣2>﹣3【分析】根据正数大于零,零大于负数和绝对值、相反数的概念可得答案.解:A、﹣(﹣3)=3,正确;B、|2|=|﹣2|,正确;C、0<|﹣1|,错误;D、﹣2>﹣3,正确;故选:C.2.下列计算结果为x7的是()A.x9﹣x2B.x•x6C.x14÷x2D.(x4)3【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别计算得出答案.解:A、x9﹣x2,无法计算,故此选项错误;B、x•x6=x7,故此选项正确;C、x14÷x2=x12,故此选项错误;D、(x4)3=x12,故此选项错误;故选:B.3.如图,要修建一条公路,从A村沿北偏东75°方向到B村,从B村沿北偏西25°方向到C村.若要保持公路CE与AB的方向一致,则∠ECB的度数为()A.80°B.90°C.100°D.105°【分析】根据题意得出∠FBD的度数以及∠FBC的度数,进而得出答案.解:由题意可得:AN∥FB,EC∥BD,故∠NAB=∠FBD=75°,∵∠CBF=25°,∴∠CBD=100°,则∠ECB=180°﹣100°=80°.故选:A.4.若是3﹣m的立方根,则()A.m=3B.m是小于3的实数C.m是大于3的实数D.m可以是任意实数【分析】依据立方根的定义回答即可.解:∵是3﹣m的立方根∴3﹣m为任意实数∴m可以是任意实数故选:D.5.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5B.左视图的面积为3C.俯视图的面积为3D.三种视图的面积都是4【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,看分别得到几个面,比较即可.解:A、从正面看,可以看到4个正方形,面积为4,故A选项错误;B、从左面看,可以看到3个正方形,面积为3,故B选项正确;C、从上面看,可以看到4个正方形,面积为4,故C选项错误;D、三种视图的面积不相同,故D选项错误.故选:B.6.设“●”“■”“▲”分别表示不同的物体,如图所示,前两架天平保持平衡,如果要第三架天平也平衡,那么“?”处应放“■”的个数为()A.5B.4C.3D.2【分析】设“●”“■”“▲”分别为x、y、z,由图列出方程组解答即可解决问题.解:设“●”“■”“▲”分别为x、y、z,由图(1)(2)可知,,解得x=2y,z=3y,所以x+z=2y+3y=5y,即“■”的个数为5.故选:A.7.如图点A,B,C在正方形网格中的格点上,每个小正方形的边长为1,则下列关于△ABC边长的说法,正确的是()A.AB,BC长均为有理数,AC长为无理数B.AC长是有理数,AB,BC长均为无理数C.AB长是有理数,AC,BC长均为无理数D.三边长均为无理数【分析】根据勾股定理求出三边的长度,再判断即可.解:由勾股定理得:AC==5,是有理数,不是无理数;BC==,是无理数;AB==,是无理数,即网格上的△ABC三边中,AC长是有理数,AB,BC长均为无理数,故选:B.8.下列式子运算结果为x+1的是()A.B.1﹣C.D.÷【分析】对各个选项中的式子进行化简即可解答本题.解:∵=x﹣1,故选项A不符合题意,∵,故选项B不符合题意,∵,故选项C符合题意,∵=,故选项D不符合要求,故选:C.9.某同学以正六边形三个不相邻的顶点为圆心,边长为半径,向外作三段圆弧,设计了如图所示的图案.已知正六边形的边长为1,则该图案外围轮廓的周长为()A.2πB.3πC.4πD.6π【分析】根据多边形的内角和公式得到正六边形的内角==120°,根据弧长公式即可得到结论.解:正六边形的内角==120°,∵正六边形的边长为1,∴该图案外围轮廓的周长=3×=4π,故选:C.10.由下列两个点确定的直线经过原点的是()A.(1,2)和(2,3)B.(﹣2,3)和(4,﹣6)C.(2,3)和(﹣4,6)D.(2,﹣3)和(﹣4,﹣6)【分析】设函数的解析式为y=kx,求出k=,再逐个判断即可.解:∵经过原点的直线是正比例函数,∴设解析式为y=kx,即k=,A、≠,即过点(1,2)和(2,3)的直线不是正比例函数,即不经过原点,故本选项不符合题意;B、=,即过点(﹣2,3)和(4,﹣6)的直线是正比例函数,即经过原点,故本选项符合题意;C、≠,即过点(2,3)和(﹣4,6)的直线不是正比例函数,即不经过原点,故本选项不符合题意;D、≠,即过点(2,﹣3)和(﹣4,﹣6)的直线不是正比例函数,即不经过原点,故本选项不符合题意;故选:B.11.如图,C、E是直线l两侧的点,以点C为圆心,CE长为半径作圆弧交l于A、B两点;再分别以A,B为圆心,大于AB的长为半径作圆弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A.CD⊥l B.点A,B关于直线CD对称C.CD平分∠ACB D.点C,D关于直线l对称【分析】利用基本作图可对A进行判断;利用CD垂直平分AB可对B、D进行判断;利用AC与AD不一定相等可对C进行判断.解:由作法得CD垂直平分AB,所以A、B选项正确;因为CD垂直平分AB,所以CA=CB,所以CD平分∠ACB,所以C选项正确;因为AD不一定等于AC,所以D选项错误.故选:D.12.若点(x1,y1)、(x2,y2)都是反比例函数y=﹣图象上的点,并且y1<0<y2,则下列结论中正确的是()A.x1>x2B.x1<x2C.y随x的增大而减小D.两点有可能在同一象限【分析】直接利用反比例函数的增减性得出两点分布的象限,进而得出y1<0<y2时,对应x的值大小.解:∵点(x1,y1)、(x2,y2)都是反比例函数y=﹣图象上的点,并且y1<0<y2,∴图象分布在第二、四象限,每个象限内y随x的增大而增大,第二象限内所有点对应y值都是正值,第四象限内所有点对应y值都是负值,∴点(x1,y1)在第四象限,(x2,y2)在第二象限,∴x1>x2.故选:A.13.某工厂六台机床第一天和第二天生产的零件数分别如图1和图2所示,则与第一天相比,这六台机床第二天生产零件数的平均数与方差的变化是()A.平均数变大,方差不变B.平均数变小,方差变大C.平均数不变,方差变小D.平均数不变,方差变大【分析】根据统计图给出的数据得出平均数相等,而第二天的方差大于第一天的方差,从而得出方差变大.解:根据统计图可知,第一天的平均数是m,第二天的平均数还是m,所以平均数不变,但方差变大;故选:D.14.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为()A.75m2B.C.48m2D.【分析】设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,表示出总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75即可求得面积的最值.解:设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故饲养室的最大面积为75平方米,故选:A.15.把两个相同的矩形按如图方式叠合起来,重叠部分为图中的阴影部分,已知AD=4,DC=3,则重叠部分的面积为()A.6B.C.D.【分析】根据勾股定理求出AC,继而求出CE,易证得△CEF∽△CAB,根据相似三角形的相似比等于对应高之比求出,求出S四边形ABEF=S△ABC,代入求出即可.解:∵在矩形ABCD中,AD=4,DC=3,∴在Rt△ADC中,AC==5,∴CF=AC﹣AF=5﹣4=1,由矩形的性质得:∠CFE=∠CBA=90°,∵∠FCE=∠CAB,∴△CEF∽△CAB,∴=()2=,∴S四边形ABEF=S△ABC=××3×4=,故选:D.16.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,则下面说法正确的是()A.1一定不是方程x2+bx+a=0的根B.0一定不是方程x2+bx+a=0的根C.﹣1可能是方程x2+bx+a=0的根D.1和﹣1都是方程x2+bx+a=0的根【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:C.二、填空题(有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.计算:﹣=.【分析】直接利用有理数的加减运算法则计算得出答案.解:﹣+=﹣+=.故答案:.18.一个矩形的两边长分别为a,b,其周长为14,面积是12,则ab2+a2b的值为84.【分析】直接利用矩形面积求法以及矩形周长求法得出ab,a+b的值,再利用提取公因式法分解因式得出答案.解:∵一个矩形的两边长分别为a,b,其周长为14,面积是12,∴ab=12,a+b=7,ab2+a2b=ab(b+a)=12×7=84.故答案为:84.19.如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=4.①AB的长为7;②若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于F,当DE∥AC时,tan∠BCD的值为.【分析】①如图作AM⊥BC于M.在Rt△ABM中,由∠AMB=90°,∠B=45°,推出BM=AM,AB=AM,设AM=BM=x,在Rt△AMC中,根据AC2=AM2+CM2,可得方程52=x2+(4﹣x)2,求出x即可解决问题.②如图作FN⊥BC于N.由△ACF∽△ABC,得到AC2=AF•AB,推出AF=,BF =AB﹣AF=,求出FN、CN,根据tan∠BCD=计算即可.解:①如图作AM⊥BC于M.在Rt△ABM中,∵∠AMB=90°,∠B=45°,∴BM=AM,AB=AM,设AM=BM=x,在Rt△AMC中,∵AC2=AM2+CM2,∴52=x2+(4﹣x)2,解得x=或(舍弃),∴AB=x=7,故答案为7.②如图作FN⊥BC于N.∵DE∥AC,∴∠ACF=∠D=∠B,∵∠CAF=∠CAB,∴△ACF∽△ABC,∴AC2=AF•AB,∴AF=,∴BF=AB﹣AF=7﹣=,∴BN=FN=,∴CN=BC﹣BN=4﹣=,∴tan∠BCD===,故答案为.三、解答题(共7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.李华同学准备化简:(3x2﹣5x﹣3)﹣(x2+2x□6),算式中“□”是“+,一,×,÷”中的某一种运算符号(1)如果“□”是“÷”,请你化简:(3x2﹣5x﹣3)﹣(x2+2x÷6);(2)当x=1时,(3x2﹣5x﹣3)﹣(x2+2x□6)的结果是﹣2,请你通过计算说明“□”所代表的运算符号.【分析】(1)原式去括号合并即可得到结果;(2)“□”所代表的运算符号是“﹣”,验证即可.解:(1)原式=(3x2﹣5x﹣3)﹣(x2+x)=3x2﹣5x﹣3﹣x2﹣x=2x2﹣x﹣3;(2)“□”所代表的运算符号是“﹣”,当x=1时,原式=(3﹣5﹣3)﹣(1+2□6)=﹣2,整理得:﹣8﹣□6=﹣2,即□处应为“﹣”.21.某校380名学生参加了这学期的“读书伴我行”活动要求每人在这学期读书4~7本活动结束后随机抽查了20名学生每人的读书量,并分为四种等级,A:4本;B:5本;C:6本;D:7本.将各等级的人数绘制成尚不完整的扇形图(如图1)和条形图(如图2)回答下列问题:(1)补全条形图;这20名学生每人这学期读书量的众数是6本,中位数是 5.5本;(2)在求这20名学生这学期每人读书量的平均数时,小亮是这样计算的:==5.5(本);小亮的计算是否正确?如果正确估计这380名学生在这学期共读书多少本;如果不正确,请你帮他计算出正确的平均数并估计这380名学生在这学期共读书多少本;(3)若A等级的四名学生中有男生、女生各两名现从中随机选出两名学生写读书感想,请用画树状图的方法求出刚好选中一名男生、一名女生的概率.【分析】(1)求出等级C的人数,补全统计图;由众数和中位数的定义即可得出结果;(2)由加权平均数求出正确的平均数,用总人数乘以平均数即可;(3)根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案.解:(1)20×40%=8,补全条形图如图2所示;这20名学生每人这学期读书量的众数是6本,中位数是=5.5(本);故答案为:6,5.5;(2)小亮的计算不正确;正确的平均数为=5.4(本),5.4×380=2052(本);即估计这380名学生在这学期共读书2052本;(3)画树状图如图3所示:∵共有12种等可能的结果,所选两名学生刚好是一名女生和一名男生的有8种情况,∴所选两名学生刚好是一名女生和一名男生的概率为:=.22.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下我们称使等式a﹣b=ab+1成立的一对有理数“a,b”为共生有理数对”,记为(a,b)(1)通过计算判断数对“﹣2,1”,“4,”是不是“共生有理数对”;(2)若(6,a)是“共生有理数对”,求a的值;(3)若(m,n)是“共生有理数对”,则“﹣n,﹣m”是“共生有理数对”(填“是”或“不是”),并说明理由;(4)如果(m,n)是“共生有理数对”(其中n≠1),直接用含n的代数式表示m.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义,构建方程即可解决问题;(3)根据“共生有理数对”的定义即可判断;(4)根据“共生有理数对”的定义即可解决问题.解:(1)﹣2﹣1=﹣3,﹣2×1+1=1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是共生有理数对;∵4﹣=,,∴(4,)是共生有理数对;(2)由题意得:6﹣a=6a+1,解得a=;(3)是.理由:﹣n﹣(﹣m)=﹣n+m,﹣n•(﹣m)+1=mn+1,∵(m,n)是共生有理数对,∴m﹣n=mn+1,∴﹣n+m=mn+1,∴(﹣n,﹣m)是共生有理数对;故答案为:是;(4)∵(m,n)是共生有理数对,∴m﹣n=mn+1,即mn﹣m=﹣(n+1),∴(n﹣1)m=﹣(n+1),∴.23.如图1,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=40°,连接BD,CE将△ADE绕点A旋转,BD,CE也随之运动(1)求证:BD=CE;(2)在△ADE绕点A旋转过程中,当AE∥BC时,求∠DAC的度数;(3)如图2,当点D恰好是△ABC的外心时,连接DC,判断四边形ADCE的形状,并说明理由.【分析】(1)由∠BAC=∠DAE可得出∠BAD=∠CAE,结合AB=AC,AD=AE即可证出△BAD≌△CAE(SAS),利用全等三角形的性质即可证出BD=CE;(2)当点E在点A的右侧时,由等腰三角形的性质及三角形内角和定理可求出∠ABC 的度数,由AE∥BC利用“两直线平行,同旁内角互补”可求出∠BAE的度数,结合∠CAD=∠BAE﹣∠BAC﹣∠DAE即可求出∠DAC的度数;当点E在点A的左侧时,由等腰三角形的性质及三角形内角和定理可求出∠ABC的度数,由AE∥BC利用“两直线平行,内错角相等”可求出∠BAE的度数,结合∠CAD=∠BAC+∠BAE+∠DAE即可求出∠DAC的度数;(3)四边形ADCE为菱形,由外心的定义可得出AD=BD=CD,同(1)可得出BD=CE,结合AD=AE可得出AD=AE=CD=CE,进而可证出四边形ADCE为菱形.【解答】(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠CAD+∠DAE,即∠BAD=∠CAE.在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE.(2)解:当点E在点A的右侧时,如图1所示.∵AB=AC,∠BAC=40°,∴∠ABC=(180°﹣∠BAC)=70°.∵AE∥BC,∴∠BAE=180°﹣∠ABC=110°,∴∠CAD=∠BAE﹣∠BAC﹣∠DAE=30°.当点E在点A的左侧时,如图3所示.∵AB=AC,∠BAC=40°,∴∠ABC=(180°﹣∠BAC)=70°.∵AE∥BC,∴∠BAE=∠ABC=70°,∴∠CAD=∠BAC+∠BAE+∠DAE=150°.∴当AE∥BC时,求∠DAC的度数为30°或150°.(3)解:四边形ADCE为菱形,理由如下:∵点D为△ABC的外心,∴AD=BD=CD.同(1)可得出△BAD≌△CAE(SAS),∴BD=CE.又∵AD=AE,∴AD=AE=CD=CE,∴四边形ADCE为菱形.24.甲、乙两车沿相同路线从A城出发前往B城已知A、B两城之间的距离是300km,甲车8:30出发,速度为60km/h;乙车9:30出发,速度为100km/h设甲、乙两车离开A 城的距离分别为y1,y2(单位km),甲车行驶x(h)(1)分别写出y1,y2与x之间的函数关系式,并直接写出x的取值范围;(2)当甲车出发1.5小时时,求甲车与乙车之间的距离;(3)在乙车行驶过程中;①求乙车没有超过甲车时x的取值范围;②直接写出甲车与乙车之间的距离是40km时x的值.【分析】(1)根据“路程、速度、时间”之间的关系解答即可;(2)根据两车路程差解答即可;(3)①根据题意列不等式解答即可;②根据题意分三情况列方程解答即可.解:(1)根据题意得:y1=60x(0≤x≤5);y2=100(x﹣1)=100x﹣100(0≤x≤4);(2)60×1.5﹣100×0.5=40(千米);(3)①根据题意得:0≤100x﹣100≤60x,解得0≤,∴乙车没有超过甲车时x的取值范围为0≤x≤;②根据题意得:60x﹣(100x﹣100)=40或100x﹣100﹣60x=40或60x=300﹣40,解得x=1.5或3.5或.答:甲车与乙车之间的距离是40km时x的值为1.5或3.5或.25.如图,在矩形ABCD中,AB=4,BC=3,点M是AB边上一点,且∠CMB=45°.点Q是直线AB上一点且在点B的右侧,BQ=4,点P从点Q出发,沿射线QA方向以每秒1个单位长度的速度运动设运动时间为t秒以P为圆心,PC为半径作半圆P;交直线AB分别于点G,H(点G在H的左侧).(1)当t=3秒时,PC的长等于,t=秒时,半圆P与AD相切;(2)当点P与点B重合时,求半圆P被矩形ABCD的对角线AC所截得的弦长;(3)若∠MCP=15°,求扇形HPC的面积(参考数据:sin37°=,sin53°=,tan37°=);【分析】(1)由点P的运动速度可找出t=3秒时PQ的长,进而可得出BP的长,在Rt△BCP中,利用勾股定理可求出PC的长;设当半圆P与AD相切时,BP=x,则PC =PA=4﹣x,利用勾股定理可得出关于x的方程,解之即可得出x的值,再结合PQ=BQ+BP即可求出此时t的值;(2)过点B作BE⊥AC于点E,利用面积法可求出BE的长,在Rt△BCE中利用勾股定理可求出CE的长,再利用垂径定理可求出半圆P被矩形ABCD的对角线AC所截得的弦长;(3)分点P在点M的左侧和点P在点M的右侧两种情况考虑:①当点P在点M的右侧时,∠CPB=60°,通过解直角三角形可求出PC的长,再利用扇形的面积公式即可求出扇形HPC的面积;②当点P在点M的左侧时,∠CPB=30°,通过解直角三角形可求出PC的长,再利用扇形的面积公式即可求出扇形HPC的面积.综上,此题得解.解:(1)当t=3秒时,PQ=3,∴BP=BQ﹣PQ=1.在Rt△BCP中,BP=1,BC=3,∴PC==.设当半圆P与AD相切时,BP=x,则PC=PA=4﹣x,∴x2+32=(4﹣x)2,解得:x=,∴PQ=4+=,∴当t=时,半圆P与AD相切.故答案为:;.(2)过点B作BE⊥AC于点E,如图2所示.∵AB=4,BC=3,∴AC==5,∴BE==.在Rt△BCE中,BC=3,BE=,∴CE==,∴半圆P被矩形ABCD的对角线AC所截得的弦长为×2=.(3)分两种情况考虑,如图3所示:①当点P在点M的右侧时,∵∠CMB=45°,∠MCP=15°,∴∠MCB=45°,∠PCB=30°,∴∠CPB=60°,CP===2,∴S扇形HPC=πPC2=2π;②当点P在点M的左侧时,∵∠MCB=45°,∠MCP=15°,∴∠PCB=∠MCB+∠MCP=60°,∴∠CPB=30°,CP===6,∴S扇形HPC=πPC2=3π.综上所述:当∠MCP=15°时,扇形HPC的面积为2π或3π.26.已知点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数且a≠0)上,L交y轴于点C,连接CP.(1)用a表示k,并求L的对称轴;(2)当L经过点(4,﹣7)时,求此时L的表达式及其顶点坐标;(3)横,纵坐标都是整数的点叫做整点.如图,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有5个整点,求a的取值范围;(4)点M(x1,y1),N(x2,y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2,直接写出t的取值范围.【分析】(1)点P(2,﹣3)代入抛物线上,则k=﹣3﹣a;抛物线L的对称轴为直线x=﹣=1,即x=1;(2)点(4,﹣7),代入抛物线上,则有k=﹣3﹣a,解得a=﹣,k=﹣,即可求解;(3)顶点坐标(1,﹣a﹣3),2<﹣a﹣3≤3时在指定区域内有5个整数点;(4)当a>0时,t≥3或t+1≤﹣1;当a<0时,t+1≤3或t≥﹣1.解:(1)∵点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数且a≠0)上,∴﹣3=4a﹣4a+a+k,∴k=﹣3﹣a;抛物线L的对称轴为直线x=﹣=1,即x=1;(2)∵L经过点(4,﹣7),∴16a﹣8a+a+k=﹣7,∵k=﹣3﹣a,∴8a=﹣4,解得a=﹣,k=﹣,∴L的表达式为y=﹣x2+x﹣3;∵y=﹣x2+x﹣4=﹣(x﹣1)2﹣,∴顶点坐标为(1,﹣);(3)顶点坐标(1,﹣a﹣3),∵在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有5个整点,∴2<﹣a﹣3≤3,∴﹣6≤a<﹣5;(4)当a>0时,t≥3或t+1≤﹣1,∴t≥3或t≤﹣2;代入检验,此时有不符合条件的点使y1≥y2,故此情况舍去;当a<0时,t+1≤3且t≥﹣1,∴﹣1≤t≤2;综上所述,﹣1≤t≤2;。
【附5套中考模拟试卷】贵州省贵阳市2019-2020学年中考中招适应性测试卷数学试题(3)含解析
贵州省贵阳市2019-2020学年中考中招适应性测试卷数学试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若()292m m --=1,则符合条件的m 有( ) A .1个 B .2个 C .3个 D .4个2.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是( )A .甲B .乙C .甲乙同样稳定D .无法确定3.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是( )A .0.15B .0.2C .0.25D .0.34.如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,∠1=60°,则∠2的度数为( )A .30°B .45°C .60°D .75°5.下面运算结果为6a 的是( )A .33a a +B .82a a ÷C .23•a aD .()32a - 6.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,则下列结论:①ac>0;②a-b+c<0; ③当x 0<时,y 0<;2a b 0+=④,其中错误的结论有( )A .②③B .②④C .①③D .①④7.如图所示,在长方形纸片ABCD 中,AB=32cm ,把长方形纸片沿AC 折叠,点B 落在点E 处,AE 交DC 于点F ,AF=25cm ,则AD 的长为( )A.16cm B.20cm C.24cm D.28cm 8.下列运算正确的是()A.a4+a2=a4B.(x2y)3=x6y3C.(m﹣n)2=m2﹣n2D.b6÷b2=b39.4的平方根是( )A.2 B.2C.±2 D.±2 10.-3的相反数是()A.13B.3 C.13D.-311.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠412.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )A.24π cm2B.48π cm2C.60π cm2D.80π cm2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=__________.14.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数的图像上,OA=1,OC=6,则正方形ADEF 的边长为.15.若式子23x 有意义,则x 的取值范围是______. 16.反比例函数y=1k x与正比例函数y=k 2x 的图象的一个交点为(2,m ),则12k k =____. 17.如图,四边形ABCD 是菱形,☉O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE ,若∠D=78°,则∠EAC=________°.18.如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A =52°,则∠1+∠2的度数为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC 中,∠ABC=90°,以AB 为直径的⊙O 与AC 边交于点D ,过点D 的直线交BC 边于点E ,∠BDE=∠A .判断直线DE 与⊙O 的位置关系,并说明理由.若⊙O 的半径R=5,tanA=34,求线段CD的长.20.(6分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:请将以上两幅统计图补充完整;若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_ ▲ 人达标;若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?21.(6分)雾霾天气严重影响市民的生活质量。
江苏省无锡市2019-2020学年中考数学三模考试卷含解析
江苏省无锡市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为()A.23B.2 C.4 D.32.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.23D.333.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C.D.4.关于x的不等式组312(1)x mx x-<⎧⎨->-⎩无解,那么m的取值范围为( )A.m≤-1 B.m<-1 C.-1<m≤0D.-1≤m<05.如图所示,如果将一副三角板按如图方式叠放,那么∠1 等于( )A.120︒B.105︒C.60︒D.45︒6.关于x的一元二次方程x2﹣3有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3D.m≥37.(2017•鄂州)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.8.学校小组5名同学的身高(单位:cm)分别为:147,156,151,152,159,则这组数据的中位数是().A.147B.151C.152D.1569.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在l<x<3的范围内有解,则t的取值范围是( )A.-5<t≤4B.3<t≤4C.-5<t<3 D.t>-510.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=57011.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A.30°B.45°C.50°D.75°12.下列图形中既是中心对称图形又是轴对称图形的是A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,矩形ABCD中,AB=2AD,点A(0,1),点C、D在反比例函数y=kx(k>0)的图象上,AB与x轴的正半轴相交于点E,若E为AB的中点,则k的值为_____.14.已知Rt△ABC中,∠C=90°,AC=3,BC=7,CD⊥AB,垂足为点D,以点D为圆心作⊙D,使得点A在⊙D外,且点B在⊙D内.设⊙D的半径为r,那么r的取值范围是_________.15.二次根式2x在实数范围内有意义,x的取值范围是_____.16.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.17.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为_______.18.一个凸多边形的内角和与外角和相等,它是______边形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:|3﹣2|+2cos30°﹣(﹣3)2+(tan45°)﹣120.(6分)如图,已知∠AOB=45°,AB⊥OB,OB=1.(1)利用尺规作图:过点M作直线MN∥OB交AB于点N(不写作法,保留作图痕迹);(1)若M为AO的中点,求AM的长.21.(6分)已知:如图,梯形ABCD中,AD∥BC,DE∥AB,DE与对角线AC交于点F,FG∥AD,且FG=EF.(1)求证:四边形ABED 是菱形;(2)联结AE ,又知AC ⊥ED ,求证:21·2AE EF ED .22.(8分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A 、B 、C 、D 四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C 厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D 厂家的零件为 件,扇形统计图中D 厂家对应的圆心角为 ;抽查C 厂家的合格零件为 件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A 、B 、C 、D 四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.23.(8分)如图,将等边△ABC 绕点C 顺时针旋转90°得到△EFC ,∠ACE 的平分线CD 交EF 于点D ,连接AD 、AF .求∠CFA 度数;求证:AD ∥BC .24.(10分)如图,抛物线与x 轴相交于A 、B 两点,与y 轴的交于点C ,其中A 点的坐标为(﹣3,0),点C 的坐标为(0,﹣3),对称轴为直线x =﹣1.(1)求抛物线的解析式;(2)若点P 在抛物线上,且S △POC =4S △BOC ,求点P 的坐标;(3)设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.25.(10分)如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.26.(12分)先化简,再求值:2(m﹣1)2+3(2m+1),其中m是方程2x2+2x﹣1=0的根27.(12分)现在,某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?小张按合算的方案,把这台冰箱买下,如果某商场还能盈利25%,这台冰箱的进价是多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】连接CC′,∵将△ADC沿AD折叠,使C点落在C′的位置,∠ADC=30°,∴∠ADC′=∠ADC=30°,CD=C′D,∴∠CDC′=∠ADC+∠ADC′=60°,∴△DCC′是等边三角形,∴∠DC′C=60°,∵在△ABC中,AD是BC边的中线,即BD=CD,∴C′D=BD,∴∠DBC′=∠DC′B=12∠CDC′=30°,∴∠BC′C=∠DC′B+∠DC′C=90°,∵BC=4,∴BC′=BC•cos∠DBC′=4×3=23,故选A.【点睛】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键.2.C【解析】【分析】由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.【详解】∵四边形ABCD是矩形,∴OB=OD ,OA=OC ,AC=BD ,∴OA=OB ,∵BE :ED=1:3,∴BE :OB=1:2,∵AE ⊥BD ,∴AB=OA ,∴OA=AB=OB ,即△OAB 是等边三角形,∴∠ABD=60°,∵AE ⊥BD ,AE=3,∴AB=30AE cos ︒, 故选C .【点睛】此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB 是等边三角形是解题关键.3.B【解析】A 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a ->,∴0a <,所以A 错误;B 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a -<,∴0a >,所以B 正确;C 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以C 错误;D 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以D 错误.故选B .点睛:在函数2y ax =与y ax b =-+中,相同的系数是“a ”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“a ”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.4.A【解析】【分析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m 的不等式,就可以求出m 的取值范围了.【详解】()03121x m x x -<⎧⎪⎨->-⎪⎩①②,解不等式①得:x<m,解不等式②得:x>-1,由于原不等式组无解,所以m≤-1,故选A.【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.5.B【解析】解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B.点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.6.A【解析】分析:根据关于x的一元二次方程x23有两个不相等的实数根可得△=(32-4m>0,求出m的取值范围即可.详解:∵关于x的一元二次方程x23有两个不相等的实数根,∴△=(32-4m>0,∴m<3,故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.7.D【解析】解:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB于H,EK⊥AB 于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易证△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE 2=BK 2+KE 2=BC 2+EC 2,∴42+z 2=y 2①,(5﹣y )2+y 2=12+(4﹣z )2②,由①②可得y=,∴S △ABE =×5×=,故选D .点睛:本题考查直角梯形的性质、全等三角形的判定和性质、角平分线的性质定理、勾股定理、二元二次方程组等知识,解题的关键是学会添加常用辅助线,学会利用参数,构建方程解决问题,属于中考压轴题. 8.C【解析】【分析】根据中位数的定义进行解答【详解】将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.【点睛】本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.9.B【解析】【分析】先利用抛物线的对称轴方程求出m 得到抛物线解析式为y=-x 2+4x ,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x 2+4x 与直线y=t 在1<x <3的范围内有公共点可确定t 的范围.【详解】∵ 抛物线y=-x 2+mx 的对称轴为直线x=2,∴222(1)b m a -=-=⨯-, 解之:m=4,∴y=-x 2+4x ,当x=2时,y=-4+8=4,∴顶点坐标为(2,4),∵关于x的-元二次方程-x2+mx-t=0 (t为实数)在l<x<3的范围内有解,当x=1时,y=-1+4=3,当x=2时,y=-4+8=4,∴ 3<t≤4,故选:B【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.10.A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.11.B【解析】试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.12.B【解析】【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13【解析】解:如图,作DF⊥y轴于F,过B点作x轴的平行线与过C点垂直与x轴的直线交于G,CG交x轴于K,作BH⊥x轴于H,∵四边形ABCD是矩形,∴∠BAD=90°,∴∠DAF+∠OAE=90°,∵∠AEO+∠OAE=90°,∴∠DAF=∠AEO,∵AB=2AD,E为AB的中点,∴AD=AE,在△ADF和△EAO 中,∵∠DAF=∠AEO,∠AFD=∠AOE=90°,AD=AE,∴△ADF≌△EAO(AAS),∴DF=OA=1,AF=OE,∴D(1,k),∴AF=k﹣1,同理;△AOE≌△BHE,△ADF≌△CBG,∴BH=BG=DF=OA=1,EH=CG=OE=AF=k﹣1,∴OK=2(k﹣1)+1=2k﹣1,CK=k﹣2,∴C(2k﹣1,k﹣2),∴(2k﹣1)(k﹣2)=1k,解得k1=35+,k2=35-,∵k﹣1>0,∴k=35+.故答案为35+.点睛:本题考查了矩形的性质和反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14.79 44xp p.【解析】【分析】先根据勾股定理求出AB的长,进而得出CD的长,由点与圆的位置关系即可得出结论.【详解】解:∵Rt△ABC中,∠ACB=90,AC=3,7,∴223(7)+.∵CD⊥AB,∴CD=374.∵AD•BD=CD2,设AD=x,BD=1-x.解得x=94,∴点A在圆外,点B在圆内,r的范围是79 44x<<,故答案为79 44x<<.【点睛】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.15.x≤1【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,1﹣x≥0,解得,x≤1,故答案为x≤1.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.16.1【解析】【分析】观察给出的数,发现个位数是循环的,然后再看2019÷4的余数,即可求解.【详解】由给出的这组数21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,个位数字1,3,1,5循环出现,四个一组,2019÷4=504…3,∴22019﹣1的个位数是1.故答案为1.【点睛】本题考查数的循环规律,确定循环规律,找准余数是解题的关键.17.3 8【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值即其发生的概率.详解:由于共有8个球,其中篮球有5个,则从袋子中摸出一个球,摸出蓝球的概率是38,故答案是38.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.18.四【解析】【分析】任何多边形的外角和是360度,因而这个多边形的内角和是360度.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:设边数为n,根据题意,得(n-2)•180=360,解得n=4,则它是四边形.故填:四.【点睛】此题主要考查已知多边形的内角和求边数,可以转化为方程的问题来解决.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1【解析】【分析】本题涉及绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方5个考点,先针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.【详解】解:原式=23+1=1.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方等考点的运算.20.(1)详见解析;(1.【解析】【分析】(1)以点M为顶点,作∠AMN=∠O即可;(1)由∠AOB=45°,AB⊥OB,可知△AOB为等腰为等腰直角三角形,根据勾股定理求出OA的长,即可求出AM的值.【详解】(1)作图如图所示;(1)由题知△AOB 为等腰Rt △AOB ,且OB=1,所以,22又M 为OA 的中点,所以,AM=12⨯22【点睛】本题考查了尺规作图,等腰直角三角形的判定,勾股定理等知识,熟练掌握作一个角等于已知角是解(1)的关键,证明△AOB 为等腰为等腰直角三角形是解(1)的关键.21. (1)见解析;(2)见解析【解析】分析:(1)由两组对边分别平行的四边形是平行四边形,得到ABED 是平行四边形. 再由平行线分线段成比例定理得到:FG CF AD CA =, EF CF AB CA = ,FG AD =EF AB,即可得到结论; (2)连接BD ,与AE 交于点H .由菱形的性质得到12EH AE BD =,⊥AE ,进而得到90DHE ∠=o ,90AFE o ∠=,即有DHE AFE ∠∠=,得到△DHE ∽△AFE ,由相似三角形的性质即可得到结论. 详解:(1)∵ AD ∥BC DE ,∥AB ,∴四边形ABED 是平行四边形.∵FG ∥AD ,∴FG CF AD CA =. 同理 EF CF AB CA= . 得:FG AD =EF AB∵FG EF =,∴AD AB =.∴四边形ABED 是菱形.(2)连接BD ,与AE 交于点H .∵四边形ABED 是菱形,∴12EH AE BD =,⊥AE . 得90DHE ∠=o .同理90AFE o ∠=.∴DHE AFE ∠∠=.又∵AED ∠是公共角,∴△DHE ∽△AFE . ∴EH DE EF AE=.∴21·2AE EF ED .点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质.灵活运用菱形的判定与性质是解题的关键.22.(1)500, 90°;(2)380;(3)合格率排在前两名的是C 、D 两个厂家;(4)P (选中C 、D )=16. 【解析】试题分析:(1)计算出D 厂的零件比例,则D 厂的零件数=总数×所占比例,D 厂家对应的圆心角为360°×所占比例;(2)C 厂的零件数=总数×所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:(1)D 厂的零件比例=1-20%-20%-35%=25%,D 厂的零件数=2000×25%=500件;D 厂家对应的圆心角为360°×25%=90°;(2)C 厂的零件数=2000×20%=400件, C 厂的合格零件数=400×95%=380件,如图:(3)A 厂家合格率=630÷(2000×35%)=90%, B 厂家合格率=370÷(2000×20%)=92.5%, C 厂家合格率=95%,D 厂家合格率470÷500=94%,合格率排在前两名的是C 、D 两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)=212=16.考点:1.条形统计图;2.扇形统计图;3. 树状图法.23.(1)75°(2)见解析【解析】【分析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF=90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=12(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.24.(1)y=x2+2x﹣3;(2)点P的坐标为(2,21)或(﹣2,5);(3)94.【解析】【分析】(1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;(2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.然后依据S△POC=2S△BOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;(3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可.【详解】解:(1)∵抛物线与x轴的交点A(﹣3,0),对称轴为直线x=﹣1,∴抛物线与x轴的交点B的坐标为(1,0),设抛物线解析式为y=a(x+3)(x﹣1),将点C(0,﹣3)代入,得:﹣3a=﹣3,解得a=1,则抛物线解析式为y=(x+3)(x﹣1)=x2+2x﹣3;(2)设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.∵S△POC=2S△BOC,∴12•OC•|a|=2×12OC•OB,即12×3×|a|=2×12×3×1,解得a=±2.当a=2时,点P的坐标为(2,21);当a=﹣2时,点P的坐标为(﹣2,5).∴点P的坐标为(2,21)或(﹣2,5).(3)如图所示:设AC的解析式为y=kx﹣3,将点A的坐标代入得:﹣3k﹣3=0,解得k=﹣1,∴直线AC的解析式为y=﹣x﹣3.设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3).∴QD=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+94﹣94)=﹣(x+32)2+94,∴当x=﹣32时,QD有最大值,QD的最大值为94.【点睛】本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用.25.(1)详见解析;(1)①详见解析;②1;③62 4.【解析】【分析】(1)只要证明△BAE≌△CDE即可;(1)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(1)①解:如图1中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=1 2•x(4-x)=-12(x-1)1+1,∵-12<0,∴x=1时,△BMN的面积最大,最大值为1.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=3m,EB=6m.∴3(3m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)2m mm+=3+32m,在Rt△EBH中,sin∠EBH=3+36226EHEB m+==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,26.2m2+2m+5;1;【解析】【分析】先利用完全平方公式化简,再去括号合并得到最简结果,把已知等式变形后代入值计算即可.【详解】解:原式=2(m2﹣2m+1)+1m+3,=2m2﹣4m+2+1m+3=2m2+2m+5,∵m是方程2x2+2x﹣1=0的根,∴2m2+2m﹣1=0,即2m2+2m=1,∴原式=2m2+2m+5=1.【点睛】此题考查了整式的化简求值以及方程的解,利用整体代换思想可使运算更简单.27.(1)当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,能节省400元钱;(3)这台冰箱的进价是2480元.【解析】【分析】(1)设顾客购买x元金额的商品时,买卡与不买卡花钱相等,根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,列出方程,解方程即可;根据x的值说明在什么情况下购物合算(2)根据(1)中所求即可得出怎样购买合算,以及节省的钱数;(3)设进价为y元,根据售价-进价=利润,则可得出方程即可.【详解】解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.根据题意,得300+0.8x=x,解得x=1500,所以当顾客消费等于1500元时,买卡与不买卡花钱相等;当顾客消费少于1500元时,300+0.8x>x不买卡合算;当顾客消费大于1500元时,300+0.8x<x买卡合算;(2)小张买卡合算,3500﹣(300+3500×0.8)=400,所以,小张能节省400元钱;(3)设进价为y元,根据题意,得(300+3500×0.8)﹣y=25%y,解得y=2480答:这台冰箱的进价是2480元.【点睛】此题主要考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.。
2019-2020年中考数学三模试卷及答案解析
2019-2020年中考数学三模试卷及答案解析一、选择题(共8小题,每小题3分,满分24分)1.在已知实数:﹣1,0,,﹣2中,最大的一个实数是()A.﹣1 B.0 C.D.﹣22.2014年4月25日青岛世界园艺博览会成功开幕,预计将接待1500万人前来观赏,将1500万用科学记数法表示为()A.15×105B.1.5×106C.1.5×107D.0.15×1083.观察如图所示的两个物体,其主视图为()A.B.C.D.4.下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.5.下列计算正确的是()A.+=B.﹣=﹣1 C.×=6 D.÷=36.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是()A.1.65,1.70 B.1.70,1.65 C.1.70,1.70 D.3,57.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对B.①②都错C.①对②错D.①错②对8.如图,在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,则AC的长是()A.4 B.4C.8 D.8二、填空题(共7小题,每小题3分,满分21分)9.2的相反数是.10.已知扇形的半径为3,圆心角为120°,它的弧长为.11.袋中有4个红球,x个黄球,从中任摸一个恰为黄球的概率为,则x的值为.12.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为.13.如图,△ABC的三个顶点都在5×5的网格(2016•淅川县一模)如图,▱ABCD中,E是边BC上一点,AE交BD于F,若BE=2,EC=3,则的值为.15.如图,矩形ABCD中,AB=6,BC=8,E是BC边上的一定点,P是CD边上的一动点(不与点C、D重合),M,N分别是AE、PE的中点,记MN的长度为a,在点P运动过程中,a不断变化,则a的取值范围是.三、解答题(共8小题,满分75分)16.先化简,再求值:,其中.17.已知:如图,在△ABC中,∠ACB=90°,∠CAB的平分线交BC于D,DE⊥AB,垂足为E,连结CE,交AD于点H.(1)求证:AD⊥CE;(2)如果过点E作EF∥BC交AD于点F,连结CF,猜想四边形是什么图形?并证明你的猜想.18.某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(2010•义乌市)如图,一次函数y=kx+2的图象与反比例函数y=的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,=.(1)求点D的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.20.腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为30°,底部B点的俯角为45°,小华在五楼找到一点D,利用三角板测得A点的俯角为60°(如图②).若已知CD为10米,请求出雕塑AB的高度.(结果精确到0.1米,参考数据=1.73)21.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?22.在Rt△AOB中,∠AOB=90°,OA=OB=4厘米,点P从B出发,以1厘米/秒的速度沿射线BO 运动,设点P运动时间为t(t>0)秒.△APC是以AP为斜边的等腰直角三角形,且C,O两点在直线BO的同侧,连接OC.(1)当t=1时,求的值;(2)求证:△APB∽△ACO;(3)设△POC的面积为S,求S与t的函数解析式.23.如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,且A点坐标为(﹣3,0),经过B 点的直线交抛物线于点D(﹣2,﹣3).(1)求抛物线的解析式;(2)过x轴上点E(a,0)(E点在B点的右侧)作直线EF∥BD,交抛物线于点F,求直线BD 和直线EF的解析式;(3)是否存在实数a使四边形BDFE是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.2016年河南省南阳市淅川县中考数学一模试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.在已知实数:﹣1,0,,﹣2中,最大的一个实数是()A.﹣1 B.0 C.D.﹣2【考点】实数大小比较.【分析】根据正数大与负数和0,0大于负数,两个负数,绝对值大的反而小,即可解答.【解答】解:∵﹣2<﹣1<0<,∴最大的一个实数是,故选:C.【点评】本题考查了实数比较大小,解决本题的关键是熟记正数大与负数和0,0大于负数,两个负数,绝对值大的反而小.2.2014年4月25日青岛世界园艺博览会成功开幕,预计将接待1500万人前来观赏,将1500万用科学记数法表示为()A.15×105B.1.5×106C.1.5×107D.0.15×108【考点】科学记数法—表示较大的数.【专题】常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1500万用科学记数法表示为:1.5×107.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.观察如图所示的两个物体,其主视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看左边是一个高矩形,右边是一个低矩形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故A选项不合题意;B、是轴对称图形,不是中心对称图形,故B选项不合题意;C、是轴对称图形,也是中心对称图形.故C选项不合题意;D、不是轴对称图形,也不是中心对称图形,故D选项符合题意;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.5.下列计算正确的是()A.+=B.﹣=﹣1 C.×=6 D.÷=3【考点】二次根式的加减法;二次根式的乘除法.【分析】分别根据二次根式的加减法则、乘除法则结合选项求解,然后选出正确答案.【解答】解:A、和不是同类二次根式,不能合并,故本选项错误;B、和不是同类二次根式,不能合并,故本选项错误;C、×=,计算错误,故本选项错误;D、÷==3,计算正确,故本选项正确.故选D.【点评】本题二次根式的加减法、二次根式的乘除法等运算,掌握各运算法则是解题的关键.6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是()A.1.65,1.70 B.1.70,1.65 C.1.70,1.70 D.3,5【考点】众数;中位数.【分析】根据一组数据中出现次数最多的数据叫做众数,及中位数的定义,结合所给数据即可得出答案.【解答】解:跳高成绩为170的人数最多,故跳高成绩的众数为176;共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为165,故中位数为165;故选A.【点评】本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,在求中位数的时候注意数据的奇偶性.7.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对B.①②都错C.①对②错D.①错②对【考点】翻折变换(折叠问题);平行四边形的性质.【专题】压轴题.【分析】根据题意,推出∠B=∠D=∠AMN,即可推出结论①,由AM=DA推出四边形AMND为菱形,因此推出②.【解答】解:∵平行四边形ABCD,∴∠B=∠D=∠AMN,∴MN∥BC,∵AM=DA,∴四边形AMND为菱形,∴MN=AM.故选A.【点评】本题主要考查翻折变换的性质、平行四边形的性质、菱形的判定和性质,平行线的判定,解题的关键在于熟练掌握有关的性质定理,推出四边形AMND为菱形.8.如图,在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,则AC的长是()A.4 B.4C.8 D.8【考点】线段垂直平分线的性质;含30度角的直角三角形;勾股定理.【分析】求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.【解答】解:如图,∵在Rt△ABC中,∠ACB=60°,∴∠A=30°.∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,∵BD=2,∴CD=AD=4,∴AB=2+4=6,在△BCD中,由勾股定理得:CB=2,在△ABC中,由勾股定理得:AC==4,故选:B.【点评】本题考查了线段垂直平分线,含30度角的直角三角形,等腰三角形的性质,三角形的内角和定理等知识点的应用,主要考查学生运用这些定理进行推理的能力,题目综合性比较强,难度适中.二、填空题(共7小题,每小题3分,满分21分)9.2的相反数是﹣2.【考点】相反数.【分析】根据相反数的定义可知.【解答】解:﹣2的相反数是2.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.10.已知扇形的半径为3,圆心角为120°,它的弧长为2π.【考点】弧长的计算.【分析】直接利用弧长公式求出即可.【解答】解:∵扇形的圆心角为120°,半径为6,∴扇形的弧长是:=2π.故答案为:2π.【点评】此题主要考查了弧长公式的应用,熟练记忆弧长公式是解题关键.11.袋中有4个红球,x个黄球,从中任摸一个恰为黄球的概率为,则x的值为12.【考点】概率公式.【分析】根据黄球的概率为,列出关于x的方程,解方程即可求出x的值.【解答】解:设袋中有x个黄球,根据题意得=,解得x=12.故答案为:12.【点评】本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为130°.【考点】平行线的性质;直角三角形的性质.【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【解答】解:∵∠1=40°,∴∠3=90°﹣∠1=90°﹣40°=50°,∴∠4=180°﹣50°=130°,∵直尺的两边互相平行,∴∠2=∠4=130°.故答案为:130°.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质,邻补角的定义,是基础题,准确识图是解题的关键.13.如图,△ABC的三个顶点都在5×5的网格(2016•淅川县一模)如图,▱ABCD中,E是边BC上一点,AE交BD于F,若BE=2,EC=3,则的值为.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,继而可判定△BEF∽△DAF,根据相似三角形的对应边成比例,即可得BF:DF=BE:AD问题得解.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BE=2,EC=3,∴BC=AD=BE+CE=2+3=5,∵AD∥BC,∴△BEF∽△DAF,∴BE:AD=BF:DF=2:5,即=,故答案为:.【点评】此题考查了相似三角形的判定与性质与平行四边形的性质.此题比较简单,解题的关键是根据题意判定△BEF∽△DAF,再利用相似三角形的对应边成比例定理求解.15.如图,矩形ABCD中,AB=6,BC=8,E是BC边上的一定点,P是CD边上的一动点(不与点C、D重合),M,N分别是AE、PE的中点,记MN的长度为a,在点P运动过程中,a不断变化,则a的取值范围是4<a<5.【考点】矩形的性质;三角形中位线定理.【分析】根据矩形的性质求出AC,然后求出AP的取值范围,再根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AP.【解答】解:∵矩形ABCD中,AB=6,BC=8,∴对角线AC==10,∵P是CD边上的一动点(不与点C、D重合),∴8<AP<10,连接AP,∵M,N分别是AE、PE的中点,∴MN是△AEP的中位线,∴MN=AP,∴4<a<5.故答案为:4<a<5.【点评】本题考查了矩形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质以及定理并求出AP的取值范围是解题的关键.三、解答题(共8小题,满分75分)16.先化简,再求值:,其中.【考点】分式的化简求值.【专题】计算题.【分析】线将括号内的分式通分,进行加减后再算除法,计算时,要将除法转化为乘法.【解答】解:原式=[﹣]×=×=,当x=时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.已知:如图,在△ABC中,∠ACB=90°,∠CAB的平分线交BC于D,DE⊥AB,垂足为E,连结CE,交AD于点H.(1)求证:AD⊥CE;(2)如果过点E作EF∥BC交AD于点F,连结CF,猜想四边形是什么图形?并证明你的猜想.【考点】全等三角形的判定与性质;菱形的判定.【分析】(1)欲证明AD⊥CE,只需证得△ACE为等腰三角形;(2)四边形CDEF是菱形.由(1)的结论结合已知条件可以推知对角线FD、CE相互垂直平分.【解答】证明:(1)如图,∵∠ACB=90°,∠CAB的平分线交BC于D,DE⊥AB,∴在△ACD与△AED中,,∴△ACD≌△AED(AAS),∴AC=AE,∴AH⊥CE,即AD⊥CE;(2)四边形CDEF是菱形.理由如下:∵由(1)知,AC=AE,AD⊥CE,∴CH=EH,∵EF∥BC,∴=,∴FH=HD,∴四边形CDEF是菱形.【点评】此题主要考查了全等三角形的判定与性质,菱形与平行四边形的判定,以及角平分线的性质,题目综合性较强,关键是需要同学们熟练掌握基础知识.18.某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(2010•义乌市)如图,一次函数y=kx+2的图象与反比例函数y=的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,=.(1)求点D的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.【考点】反比例函数综合题.【专题】数形结合;待定系数法.【分析】(1)在y=kx+2中,只要x=0得y=2即可得点D的坐标为(0,2).(2)由AP∥OD得Rt△PAC∽Rt△DOC,又=,可得==,故AP=6,BD=6﹣2=4,由S△PBD=4可得BP=2,把P(2,6)分别代入y=kx+2与y=可得一次函数解析式为:y=2x+2反比例函数解析式为:y=(3)当x>0时,一次函数的值大于反比例函数的值的x的取值范围由图象能直接看出x>2.【解答】解:(1)在y=kx+2中,令x=0得y=2,∴点D的坐标为(0,2)(2)∵AP∥OD,∴∠CDO=∠CPA,∠COD=∠CAP,∴Rt△PAC∽Rt△DOC,∵=,即=,∴==,∴AP=6,又∵BD=6﹣2=4,∴由S△PBD=BP•BD=4,可得BP=2,∴P(2,6)把P(2,6)分别代入y=kx+2与y=可得一次函数解析式为:y=2x+2,反比例函数解析式为:y=;(3)由图可得x>2.【点评】考查反比例函数和一次函数解析式的确定、图形的面积求法、相似三角形等知识及综合应用知识、解决问题的能力.有点难度.20.腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为30°,底部B点的俯角为45°,小华在五楼找到一点D,利用三角板测得A点的俯角为60°(如图②).若已知CD为10米,请求出雕塑AB的高度.(结果精确到0.1米,参考数据=1.73)【考点】解直角三角形的应用-仰角俯角问题.【专题】应用题.【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.【解答】解:过点C作CE⊥AB于E.∵∠ADC=90°﹣60°=30°,∠ACD=90°﹣30°=60°,∴∠CAD=90°.∵CD=10,∴AC=CD=5.在Rt△ACE中,∵∠AEC=90°,∠ACE=30°,∴AE=AC=,CE=AC•cos∠ACE=5•cos30°=.在Rt△BCE中,∵∠BCE=45°,∴BE=CE=,∴AB=AE+BE=≈6.8(米).故雕塑AB的高度约为6.8米.【点评】本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.21.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?【考点】一次函数的应用.【分析】(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,根据图象得到点C的坐标,然后利用待定系数法求一次函数解析式解答;(2)根据图形写出点A、B的坐标,再利用待定系数法求出线段AB的解析式,再与OC的解析式联立求解得到交点的坐标,即为相遇时的点.【解答】解:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,∵点C(30,600)在函数y=kx的图象上,∴600=30k,解得k=20,∴y=20x(0≤x≤30);(2)设乙在AB段登山的路程y与登山时间x之间的函数解析式为y=ax+b(8≤x≤20),由图形可知,点A(8,120),B(20,600)所以,,解得,所以,y=40x﹣200,设点D为OC与AB的交点,联立,解得,故乙出发后10分钟追上甲,此时乙所走的路程是200米.【点评】本题考查了一次函数的应用,观察图象提供的信息,利用待定系数法求函数解析式是本题考查了的重点.22.在Rt△AOB中,∠AOB=90°,OA=OB=4厘米,点P从B出发,以1厘米/秒的速度沿射线BO 运动,设点P运动时间为t(t>0)秒.△APC是以AP为斜边的等腰直角三角形,且C,O两点在直线BO的同侧,连接OC.(1)当t=1时,求的值;(2)求证:△APB∽△ACO;(3)设△POC的面积为S,求S与t的函数解析式.【考点】相似形综合题.【分析】(1)根据t=1求出BP、OP,根据勾股定理求出AP,根据余弦的定义求出AC,计算即可;(2)根据等腰直角三角形的性质求出==和∠BAO=∠PAC=45°,根据相似三角形的判定定理证明;(3)分0<t<4、t=4和t>4三种情况,根据等腰直角三角形的性质和正弦的定义以及三角形的面积公式计算即可.【解答】解:(1)当t=1时,OP=3,OA=4,在Rt△AOP中,AP==5,∵△ACP为等腰三角形,∴AC=AP•cos45°=,∴=;(2)证明:∵△AOB,△ACP都是等腰三角形,∴==,∵∠BAO=∠PAC=45°,∴∠BAP=∠OAC,∴△APB∽△ACO;(3)①当0<t<4时,∵△APB∽△ACO,∴==,∠AOC=∠ABP=45°,∴OC=BP=t,作CM⊥BO,垂足为M,则CM=OC•sin45°=t,∴S=×OP×CM=×(4﹣t)×t=﹣t2+t;②当t=4时,点P与点O重合,△POC不存在;③当t>4时,BP=t,则OP=t﹣4.由①得,S=×=×(t﹣4)×t=t2﹣t;∴S=.【点评】本题考查的是相似三角形的判定和性质、锐角三角函数的定义以及等腰直角三角形的性质,掌握相似三角形的判定定理和性质定理、熟记锐角三角函数的定义是解题的关键.23.如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,且A点坐标为(﹣3,0),经过B 点的直线交抛物线于点D(﹣2,﹣3).(1)求抛物线的解析式;(2)过x轴上点E(a,0)(E点在B点的右侧)作直线EF∥BD,交抛物线于点F,求直线BD 和直线EF的解析式;(3)是否存在实数a使四边形BDFE是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将A、D两点的坐标代入解析式求出b、c即可;(2)先求出B点坐标,再根据B、D两点坐标求出BD解析式,进而求出EF解析式;(3)由于EF已经与BD平行了,只需让DF∥BE就可以了,此时,F点的纵坐标与D点相同,从而可求出F点的坐标,进而求出E点坐标,即求出a的值.【解答】解:(1)将A、D两点代入y=x2+bx+c可求得:b=2,c=﹣3,∴抛物线解析式为y=x2+2x﹣3(2)由抛物线解析式y=x2+2x﹣3可求B的坐标是(1,0),由B、D两点坐标求得直线BD的解析式为y=x﹣1;∵EF∥BD,∴直线EF的解析式为:y=x﹣a(3)若四边形BDFE是平行四边形,则DF∥x轴,如图,∴D、F两点的纵坐标相等,即点F的纵坐标为﹣3.∴F点的坐标为(0,﹣3),∴DF=2,∴BE=DF=2,∴E(3,0),即:a=3.所以存在实数a=3,使四边形BDFE是平行四边形.【点评】本题是二次函数综合题,主要考查了待定系数法求二次函数解析式、抛物线与x轴的交点坐标、待定系数法求直线解析式、平行四边形的判定与性质等知识点,虽有一定综合性,但难度不大,属于较基础的题.。
2019年中考数学三模试卷(含解析)
2019 年中考数学三模试卷一、精心选一选,相信自己的判断!(本大题共10 小题,每题 3 分,共30 分,每题给出的四个选项中,只有一个是正确的,不涂、选涂或涂出的代号超出一个的,一律得0 分)1.( 3 分)计算(﹣1)2的结果是()A.﹣2 B .2 C.﹣ 1 D. 12.( 3 分)如图,直线AB,CD 交于点O, EO⊥ AB 于点O,∠ EOD= 40°,则∠BOC 的度数为()A .120°B .130°C. 140°D. 150°3.( 3 分)如图,是一个几何体的表面睁开图,则该几何体是()A .三棱柱B .四棱锥C.长方体D.正方体4.( 3 分)以下计算正确的选项是()2 3 6 2 3 6 3 4 7 3 3A .( a )= aB .a ?a = a C. a +a =a D.( ab)= ab 5.( 3 分)一个多边形的内角和是720°,这个多边形的边数是()A .4B .5 C. 6 D. 76.( 3 分)某车间20 名工人日加工部件数如表所示:日加工部件数 4 5 6 7 8人数 2 6 5 4 3 这些工人日加工部件数的众数、中位数、均匀数分别是()A .5、6、5 B.5、5、6 C.6、5、6 D.5、6、 67.( 3 分)如图,将矩形ABCD 沿对角线BD 折叠,点 A 落在点 E 处,DE 交 BC 于点F.若∠ CFD = 40°,则∠ABD 的度数为()A .50°B .60°C . 70°D . 80°8.( 3 分)如图,平行四边形 ABCD 的周长为 16,∠ B = 60°,设 AB 的长为 x ,平行四边形 ABCD 的面积为 y ,则表示y 与 x 的函数关系的图象大概是( )A .B .C .D .9.( 3 分)反比率函数的图象以下图, 则二次函数y = 2kx 2﹣ 4x+k 2的图象大概是 ()A .B .C.D.10.( 3 分)如图,已知正方形ABCD ,点 E, F 分别在 CD , BC 上,且∠ EAF =∠ DAE+∠BAF ,则的值为()A .B .C.D.二、仔细填一填,试一试自己的身手!(本大题共 6 小题,每题 3 分,共 18 分,请将结果直接填写在答题卡相应地点上)11.(3 分)函数的自变量 x 的取值范围是.12.( 32.分)分解因式: x y﹣ 4y=13.( 3 分)如图,在△ ABC 中, D, E 分别是 AB,AC 的中点,则=.14.( 3 分)如图,在△ ABC 中,∠ B=45°, tanC=,AB=,则AC=.15.(3 分)《九章算术》是我国古代数学成就的优秀代表作,书中记录:“今有圆材埋壁中,不知大小.以锯锯之,深 1 寸,锯道长 1 尺,问经几何?“其意思为:“如图,今有一圆形木材埋在墙壁中,不知其大小用锯子去锯这个木材,锯口深道长 1 尺(即弦 AB= 1 尺),问这块圆形木材的直径是多少?”1 寸(即 DE =1该问题的答案是寸),锯(注:1 尺=10 寸)16.( 3 分)如图,已知Rt △ AOB,∠ OBA= 90°,双曲线两点,且OC= 2AC, S四边形OBDC= 11,则 k=.与 OA, BA 分别交于C,D三、专心做一做,显显自己的能力!(本大题共8 小题,满分72 分,解答写在答题卡上)17.( 6 分)计算:.18.( 8 分)如图, AB∥ CD ,AB= CD, BF⊥ AC 于点 F, DE ⊥ AC 于点 E 求证:四边形DEBF 是平行四边形.19.( 8 分)四张大小、形状都相同的卡片上分别写有数字1, 2, 3, 4,把它们放入到不透明的盒子中摇匀.(1)从中随机抽出 1 张卡片,求抽出的卡片上的数字恰巧是偶数的概率;(2)从中随机抽出 2 张卡片,求抽出的 2 张卡片上的数字恰巧是相邻两整数的概率.20.( 8 分)如图,在△ ABC 中,∠ ACB= 90°.小聪同学利用直尺和圆规达成了以下作图①分别以点A, B 为圆心,以大于AB 长为半径画弧,两弧交于点M ,N,过点 M, N作直线与AB 交于点 D ;② 连结 CD ,以点 D 为圆心,以必定长为半径画弧,交MN 于点 E ,交 CD 于点 F ,以点C 为圆心,以相同定长为半径画弧,与CD 交于点 G ,以点 G 为圆心,以EF 长为半径画弧与前弧交于点 H .作射线 CH 与 AB 交于点 K ,请依据以上操作,解答以下问题( 1)由尺规作图可知:直线MN 是线段 AB 的 线,∠ DCK = .( 2)若 CD = 5, AK = 2,求 CK 的长.21.( 10 分)已知对于 x 的方程 x 2﹣ 2kx+k 2﹣ k ﹣ 1= 0 有两个不相等的实数根 x 1, x 2.( 1)求 k 的取值范围;( 2)若 x 1﹣ 3x 2= 2,求 k 的值.22.(10 分)某商铺计划购进甲、乙两种商品,乙种商品的进价是甲种商品进价的九折,用3600 元购置乙种商品要比购置甲种商品多买10 件( 1)求甲、乙两种商品的进价各是多少元?( 2)该商铺计划购进甲、乙两种商品共80 件,且乙种商品的数目不低于甲种商品数目的 3 倍.甲种商品的售价定为每件80 元,乙种商品的售价定为每件 70 元,若甲、乙两种商品都能卖完,求该商铺能获取的最大收益.23.( 10 分)如图,在 Rt △ABC 中,∠ ACB = 90°, AD 为∠ CAB 的均分线,点 O 在 AB 上, ⊙ O 经过点 A , D 两点,与 AC , AB 分别交于点 E , F( 1)求证: BC 与 ⊙O 相切;( 2)若 AC = 8, AF = 10,求 AD 和 BC 的长.24.( 12 分)如图 1,直线 1: y =﹣ x+1 与 x 轴、 y 轴分别交于点 B 、点 E ,抛物线L : y =2ax +bx+c 经过点 B、点 A(﹣ 3, 0)和点 C( 0,﹣ 3),并与直线l 交于另一点D.(1)求抛物线 L 的分析式;(2)点 P 为 x 轴上一动点①如图 2,过点 P 作 x 轴的垂线,与直线 1 交于点 M ,与抛物线 L 交于点 N.当点 P 在点 A、点 B 之间运动时,求四边形 AMBN 面积的最大值;②连结 AD, AC, CP,当∠ PCA=∠ ADB 时,求点P 的坐标.2019 年湖北省孝感市安陆市、应城市、云梦县、孝昌县四县市中考数学三模试卷参照答案与试题分析一、精心选一选,相信自己的判断!(本大题共 10 小题,每题 3 分,共 30 分,每题给出的四个选项中,只有一个是正确的,不涂、选涂或涂出的代号超出一个的,一律得0 分)1.( 3 分)计算(﹣ 1)2的结果是()A.﹣2 B .2 C.﹣ 1 D. 1【剖析】直接利用有理数乘方的性质化简求出即可.2【解答】解:(﹣ 1)= 1.【评论】本题主要考察了有理数的乘方运算,正确掌握运算法例是解题重点.2.( 3 分)如图,直线AB,CD 交于点 O, EO⊥ AB 于点 O,∠ EOD= 40°,则∠ BOC 的度数为()A .120°B .130°C. 140°D. 150°【剖析】直接利用垂直的定义联合互余以及互补的定义剖析得出答案.【解答】解:∵直线AB, CD 订交于点O, EO⊥ AB 于点 O,∴∠ EOB= 90°,∵∠ EOD= 40°,∴∠ BOD= 50°,则∠ BOC 的度数为: 180°﹣ 50°= 130°.应选: B.【评论】本题主要考察了垂直的定义、互余以及互补的定义,正确掌握有关定义是解题重点.3.( 3 分)如图,是一个几何体的表面睁开图,则该几何体是()A .三棱柱B .四棱锥C.长方体D.正方体【剖析】由睁开图得这个几何体为棱柱,底面为三边形,则为三棱柱.【解答】解:由图得,这个几何体为三棱柱.应选: A.【评论】考察了几何体的睁开图,有两个底面的为柱体,有一个底面的为锥体.4.( 3 分)以下计算正确的选项是()2 3 6 2 3 6 3 4=a 7 3= ab3A .( a )= aB .a ?a = a C. a +a D.( ab)【剖析】依据幂的乘方,同类项的归并、同底数幂的乘法和积的乘方解答即可.【解答】解: A、( a 2)3=a6,正确;2 3 5B、 a ?a = a ,错误;3 4 不可以归并,错误;C、 a 与 a3 3 3D 、( ab)=a b ,错误;应选: A.【评论】本题考察幂的乘方和积的乘方,重点是依据法例进行解答.5.( 3 分)一个多边形的内角和是720°,这个多边形的边数是()A .4B.5C.6D.7【剖析】依据内角和定理180°?(n﹣ 2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣ 2)?180°,∴( n﹣ 2)× 180°= 720°,解得 n= 6,∴这个多边形的边数是6.应选: C.【评论】本题主要考察了多边形的内角和定理即180°?( n﹣ 2),难度适中.6.( 3 分)某车间20 名工人日加工部件数如表所示:日加工部件数45678 人数2654 3这些工人日加工部件数的众数、中位数、均匀数分别是()A .5、6、5B.5、5、6C.6、5、6D.5、6、 6【剖析】依据众数、均匀数和中位数的定义分别进行解答即可.【解答】解: 5 出现了 6 次,出现的次数最多,则众数是5;把这些数从小到大摆列,中位数第10、 11 个数的均匀数,则中位数是= 6;均匀数是:=6;应选: D.【评论】本题考察了众数、均匀数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据依据从小到大(或从大到小)的次序摆列,假如数据的个数是奇数,则处于中间地点的数就是这组数据的中位数;假如这组数据的个数是偶数,则中间两个数据的均匀数就是这组数据的中位数.均匀数是指在一组数据中全部数据之和再除以数据的个数.7.( 3 分)如图,将矩形 ABCD 沿对角线BD 折叠,点 A 落在点 E 处, DE 交 BC 于点F.若∠ CFD = 40°,则∠ ABD 的度数为()A .50°B .60°C. 70°D. 80°【剖析】依据矩形的性质和平行线的性质获取∠FDA = 40°,依据翻折变换的性质获取∠ ADB=∠ EDB =20°,依据直角三角形的性质可求出∠ABD 的度数,即可求出答案.【解答】解:∵四边形ABCD 是矩形,∴AD∥ BC,∠ A= 90°,∴∠ FDA =∠ CFD = 40°,由翻折变换的性质获取∠ ADB =∠ EDB= 20°,∴∠ ABD= 70°.应选: C.【评论】本题考察平行线的性质、图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,依据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.8.( 3形分)如图,平行四边形ABCD 的周长为16,∠ B= 60°,设ABCD 的面积为 y,则表示y 与 x 的函数关系的图象大概是(AB 的长为)x,平行四边A.B.C.D.【剖析】过点A 作AE ⊥BC 于点E,建立直角△ABE,经过解该直角三角形求得度,而后利用平行四边形的面积公式列出函数关系式,联合函数关系式找到对应的图象【解答】解:如图,过点 A 作 AE⊥ BC 于点 E,AE 的长∵∠ B= 60°,设边AB 的长为 x,∴AE= AB?sin60°=x.∵平行四边形ABCD 的周长为12,∴BC=( 12﹣ 2x)= 6﹣ x,∴ y= BC?AE=( 6﹣ x)×x=﹣2x( 0≤ x≤ 6).x +则该函数图象是一张口向下的抛物线的一部分,察看选项, C 选项切合题意.应选: C.【评论】 考察了动点问题的函数图象.掌握平行四边形的周长公式和解直角三角形求得AD 、 BE 的长度是解题的重点.9.( 3 分)反比率函数的图象以下图, 则二次函数y = 2kx 2﹣ 4x+k 2的图象大概是 ()A .B .C .D .【剖析】 本题可先由反比率函数的图象获取字母系数k >﹣ 1,再与二次函数的图象的开口方向和对称轴的地点对比较看能否一致,最后获取答案.【解答】 解:∵函数y =的图象经过二、四象限,∴ k < 0,由图知当 x =﹣ 1 时, y =﹣ k < 1,∴ k >﹣ 1,∴抛物线 y = 2kx 2﹣4x+k 2张口向下,对称轴为 x =﹣= ,﹣ 1< < 0,∴对称轴在﹣ 1 与 0 之间,∵当 x =0 时, y =k 2> 1.应选: D .【评论】 本题主要考察了二次函数与反比率函数的图象与系数的综合应用,正确判断抛物线张口方向和对称轴地点是解题重点.属于基础题.10.( 3 分)如图,已知正方形 ABCD ,点 E , F 分别在 CD , BC 上,且∠ EAF =∠ DAE+∠ BAF ,则的值为()A .B .C .D .【剖析】 将△ ADE 旋转至△ ABH ,依据旋转的性质可得∠DAE =∠ BAH , AE = AH , DE= BH ,再利用” SAS “证明△ AEF ≌△ AHF ,从而得 EF = FH ,再依据勾股定理即可求22 222CE +CF = EF ,即有( CE ﹣ CF ) +2CE ?CF =( BF ﹣ DE ) +4BF?DE ,而 BF ﹣ DE = CE﹣ CF ,即可求解【解答】 解:如图,连结 EF ,将△ ADE 旋转至△ ABH∴∠ DAE =∠ BAH , AE = AH , DE = BH∴∠ EAF =∠ DAE +∠ BAF =∠ BAH+∠ BAF =∠ FAH∵∠ D =∠ ABC =∠ ABH = 90°∴∠ ABC+∠ ABH = 180°∴ C , B ,H 三点共线 ∵ AF = AF∴△ AEF ≌△ AHF ( SAS )∴ EF = FH = FB+BH = FB+DE∵ DE+CE = CF+BF∴ BF ﹣ DE = CE ﹣ CF∵ CE 2+CF 2= EF 2∴ CE 2+CF 2=( BF+DE )222∴( CE ﹣ CF ) +2CE?CF =( BF ﹣ DE ) +4 BF?DE∵ BF ﹣ DE = CE ﹣ CF∴ 2CE?CF = 4BF?DE∴=应选: A .【评论】 本题主要考察对正方形的性质,全等三角形的性质和判断,相像三角形的性质和判断,比率的性质,直角三角形的性质等知识点的理解和掌握,重点要经过作协助线,找出全等三角形,获取边与边的关系.再利用勾股定理进行解题.二、仔细填一填,试一试自己的身手 !(本大题共 6 小题,每题3 分,共接填写在答题卡相应地点上)11.(3 分)函数 的自变量 x 的取值范围是 x ≥ 0 且 x ≠ 1 .【剖析】 依据被开方数大于等于0,分母不等于 0 列式计算即可得解.【解答】 解:由题意得, x ≥ 0 且 x ﹣1≠ 0,18 分,请将结果直解得 x ≥0 且 x ≠ 1.故答案为: x ≥ 0 且 x ≠ 1.【评论】 本题考察了函数自变量的范围,一般从三个方面考虑:( 1)当函数表达式是整式时,自变量可取全体实数;( 2)当函数表达式是分式时,考虑分式的分母不可以为0;( 3)当函数表达式是二次根式时,被开方数非负.212.( 3 分)分解因式: x y ﹣ 4y = y ( x+2)(x ﹣ 2) .【剖析】 先提取公因式 y ,而后再利用平方差公式进行二次分解.【解答】 解: x 2y ﹣4y ,= y ( x 2﹣4),= y ( x+2)( x ﹣ 2).故答案为: y( x+2)( x﹣ 2).【评论】本题考察了提公因式法,公式法分解因式,利用平方差公式进行二次分解因式是解本题的难点,也是重点.13.( 3 分)如图,在△ ABC 中, D ,E 分别是 AB, AC 的中点,则=.【剖析】易证△ ADE ∽△ ABC,则=,因D,E分别是AB,AC的中点,则可得 DE : BC= 1: 2,即可求解.【解答】解:∵ D, E 分别是 AB, AC 的中点∴ DE∥ BC,DE =BC易证△ ADE ∽△ ABC∴==∴=故答案为【评论】本题主要考察相像三角形的性质,熟习相像三角形的性质:相像三角形的面积比是相像比的平方.14.( 3 分)如图,在△ ABC 中,∠ B=45°, tanC=,AB=,则AC=.【剖析】先过点 A 作 AD ⊥ BC,垂足是点2 2 2= 2,再依据∠ B= 45°,D ,得出 AD +BD = AB得出 AD = BD = 1,而后依据 tanC = ,得出求出 AC .【解答】 解:过点 A 作 AD ⊥ BC ,垂足是点 D ,∵AB =,= , CD = 2,最后依据勾股定理即可∴ AD 2+BD 2= AB 2= 2,∵∠ B = 45°,∴∠ BAD =∠ B = 45°,∴ AD = BD ,∴ AD 2= BD 2=1,∴ AD = BD = 1,∵ tanC = ,∴= ,∴ CD =2,∴ AC =故答案为:.== .【评论】 本题考察认识直角三角形,用到的知识点是勾股定理、解直角三角形等,重点是作出协助线,结构直角三角形.15.(3 分)《九章算术》是我国古代数学成就的优秀代表作,书中记录:“今有圆材埋壁中,不知大小.以锯锯之,深1 寸,锯道长 1 尺,问经几何?“其意思为: “如图,今有一圆形木材埋在墙壁中,不知其大小用锯子去锯这个木材,锯口深1 寸(即 DE =1 寸),锯道长 1 尺(即弦 AB = 1 尺),问这块圆形木材的直径是多少?”该问题的答案是26 寸(注: 1 尺= 10 寸)【剖析】延伸 CD ,交⊙ O 于点 E,连结 OA,由题意知CE 过点 O,且 OC⊥ AB, AD =BD= AB =5(寸),设圆形木材半径为2 2 2 r,可知 OD = r ﹣ 1,OA= r,依据 OA = OD +AD列方程求解可得.【解答】解:延伸CD ,交⊙O 于点 E,连结 OA,由题意知CE 过点 O,且 OC⊥ AB,则 AD = BD= AB= 5(寸),设圆形木材半径为r ,则 OD =r﹣ 1, OA= r,2 2 2,∵ OA = OD +AD∴ r 2=( r ﹣1)2+52,解得 r =13,因此⊙O 的直径为26 寸,故答案为:26 寸.【评论】本题考察的是垂径定理的应用,掌握垂直弦的直径均分这条弦,而且均分弦所对的两条弧及勾股定理是解题的重点.16.( 3 分)如图,已知 Rt △ AOB,∠ OBA= 90°,双曲线与 OA, BA 分别交于 C,D 两点,且 OC= 2AC, S四边形OBDC= 11,则 k= 12 .【剖析】第一设出点 B 坐标,再依据 AB⊥ x 轴,表示出 D 点坐标,而后运用且OC= 2AC,可得出 C 点及 A 点坐标,坐标转变线段长,表示出四边形OBDC 的面积,解出k 值.【解答】解:设 B( x, 0)则 D( x,)点 A 的横坐标也为:x过点 C 作 CE⊥ x 轴交 x 轴于点 E则△ COE∽△ AOB∵OC= 2AC∴∴点 C 的横坐标为:代入反比率函数分析式:y=得 y=∴C 点的坐标为:(,)又∵∴ A 点的纵坐标为:s 四边形OBDC= s△AOB﹣ s△ADC∴即:解得: k= 12故本题答案为:12【评论】本题考察反比率函数背景以下图形面积转变问题,用点坐标转变线段长是解题重点.三、专心做一做,显显自己的能力!(本大题共8 小题,满分72 分,解答写在答题卡上)17.( 6 分)计算:.【剖析】直接利用二次根式的性质以及特别角的三角函数值和负指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:原式= 3﹣4×+﹣ 3=3﹣2+﹣3=﹣.【评论】本题主要考察了实数运算,正确化简各数是解题重点.18.( 8 分)如图, AB∥ CD ,AB= CD, BF⊥ AC 于点 F, DE ⊥ AC 于点E 求证:四边形 DEBF 是平行四边形.【剖析】由 AAS 证明△ ABF ≌△ CDE 得出 BF= DE .由 BF ∥ DE,即可得出四边形 DEBF 是平行四边形.【解答】证明:∵ AB∥ CD,∴∠ A=∠ C.∵ BF⊥ AC, DE ⊥ AC,∴∠ BFA=∠ DEC =90°, BF∥ DE.在△ ABF 和△ CDE 中,,∴△ ABF ≌△ CDE (AAS),∴BF= DE .又∵ BF∥ DE,∴四边形 DEBF 是平行四边形.【评论】本题考察了平行四边形的判断、全等三角形的判断与性质、平行线的判断与性质;娴熟掌握平行四边形的判断,证明三角形全等是解题的重点.19.( 8 分)四张大小、形状都相同的卡片上分别写有数字1, 2, 3, 4,把它们放入到不透明的盒子中摇匀.(1)从中随机抽出 1 张卡片,求抽出的卡片上的数字恰巧是偶数的概率;(2)从中随机抽出 2 张卡片,求抽出的 2 张卡片上的数字恰巧是相邻两整数的概率.【剖析】( 1)依据 4 个数字 1, 2, 3, 4 中偶数有 2 和 4,即可得出抽出的卡片上的数字恰巧是偶数的概率;(2)先利用画树状图展现全部 12 种等可能的结果数,再找出切合题意的结果数,而后依据概率公式求解.【解答】解:( 1) 4 个数字 1, 2, 3, 4 中偶数有 2 和 4,∴ P(偶数)==.(2)画树状图为:共有 12 种等可能的结果,此中两数恰巧是相邻整数的结果数为6,∴ P(恰巧是相邻整数)==.【评论】本题考察的是用列表法或画树状图法求概率.列表法或画树状图法能够不重复不遗漏的列出全部可能的结果,合适于两步达成的事件.用到的知识点为:概率=所讨状况数与总状况数之比.20.( 8 分)如图,在△ ABC 中,∠ ACB= 90°.小聪同学利用直尺和圆规达成了以下作图M, N①分别以点 A, B 为圆心,以大于 AB 长为半径画弧,两弧交于点 M ,N,过点作直线与AB 交于点 D ;② 连结CD,以点 D 为圆心,以必定长为半径画弧,交MN 于点E,交CD 于点F,以点C 为圆心,以相同定长为半径画弧,与CD 交于点G,以点G 为圆心,以EF 长为半径画弧与前弧交于点H .作射线CH 与 AB 交于点 K,请依据以上操作,解答以下问题( 1)由尺规作图可知:直线MN 是线段 AB 的垂直均分线,∠ DCK =∠ CDM .( 2)若 CD = 5, AK = 2,求 CK 的长.【剖析】( 1)利用基本作图(作线段的垂直均分线和作一个角等于已知角)填空;( 2)先利用 CD 为斜边上的中线获取 AD=CD = BD = 5.则 DK = 3,再利用∠ DCK =∠CDM 获取 CK∥ MN ,因此∠ CKD =∠ MDB = 90°,而后利用勾股定理计算 CK 的长.【解答】解:( 1)由作法得直线 MN 是线段 AB 的垂直均分线,∠ DCK =∠ CDM ;故答案为垂直均分;∠ CDM ;(2)∵∠ ACB= 90°, AD=BD ,∴ AD= CD=BD = 5.∴DK =AD﹣AK =3,∵∠DCK =∠CDM ,∴ CK∥ MN,∴∠ CKD =∠ MDB = 90°,∴CK===4.【评论】本题考察了作图﹣复杂作图:复杂作图是在五种基本作图的基础长进行作图,一般是联合了几何图形的性质和基本作图方法.解决此类题目的重点是熟习基本几何图形的性质,联合几何图形的基天性质把复杂作图拆解成基本作图,逐渐操作.21.( 10 分)已知对于 x 的方程 x 2﹣ 2kx+k2﹣ k﹣ 1= 0 有两个不相等的实数根x1, x2.( 1)求 k 的取值范围;( 2)若 x1﹣ 3x2= 2,求 k 的值.【剖析】( 1)由题意得出△≥0 从而得出答案;( 2)依据解方程组求出x1、 x2的值,将其代入x1﹣ 3x2= 2 中可求出k 值.2 2【解答】解:( 1)△=(﹣ 2k)﹣ 4(k ﹣ k﹣ 1)= 4k+4> 0,(2)∵,∴,∵x1?x2= k 2﹣k﹣ 1,∴( 3k+1)( k﹣ 1)= k 2﹣k﹣ 1,∴k1= 3, k2=﹣1,∵ k>﹣ 1,∴k= 3.【评论】本题考察了根与系数的关系,解题的重点是娴熟掌握根与系数的关系.22.(10 分)某商铺计划购进甲、乙两种商品,乙种商品的进价是甲种商品进价的九折,用3600 元购置乙种商品要比购置甲种商品多买10 件(1)求甲、乙两种商品的进价各是多少元?(2)该商铺计划购进甲、乙两种商品共80 件,且乙种商品的数目不低于甲种商品数目的 3 倍.甲种商品的售价定为每件80 元,乙种商品的售价定为每件70 元,若甲、乙两种商品都能卖完,求该商铺能获取的最大收益.【剖析】( 1)依据题意能够列出相应的分式方程,从而能够求得甲、乙两种商品的进价各是多少元,注意分式方程要查验;( 2)依据题意能够获取收益和购置甲种商品件数的函数关系式,而后一次函数的性质即可解答本题.【解答】解:( 1)设甲种商品的进价为x 元 /件,则乙种商品的进价为0.9x 元 /件,,解得, x= 40,经查验, x= 40 是原分式方程的解,∴=36,答:甲、乙两种商品的进价各是40 元 /件、 36 元 /件;( 2)设甲种商品购进m 件,则乙种商品购进(80﹣ m)件,总收益为w 元,w=( 80﹣ 40) m+( 70﹣ 36)( 80﹣m)= 6m+2720,∵ 80﹣m≥ 3m,∴ m≤ 20,∴当 m= 20 时, w 获得最大值,此时w= 2840,答:该商铺获取的最大收益是2840 元.【评论】本题考察一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的重点是明确题意,利用一次函数的性质和不等式的性质解答,注意分式方程要查验.23.( 10 分)如图,在Rt △ABC 中,∠ ACB= 90°, AD 为∠ CAB 的均分线,点 O 在 AB 上,⊙ O 经过点 A, D 两点,与 AC, AB 分别交于点 E, F(1)求证: BC 与⊙O 相切;(2)若 AC= 8, AF= 10,求 AD 和 BC 的长.【剖析】( 1)连结OD.依据等腰三角形的性质获取∠ODA =∠ OAD.依据角均分线的定义获取∠ CAD=∠ BAD .依据平行线的性质获取∠ODB =∠ ACB= 90°,于是获取结论;( 2)连结DF .依据圆周角定理获取∠ADF = 90°,依据相像三角形的性质获取AD =4,由勾股定理获取CD ==4.依据相像三角形的性质即可获取结论.【解答】( 1)证明:连结OD.∵ OA= OD,∴∠ ODA=∠ OAD .又∵ AD 均分∠ CAB ,∴∠ CAD=∠ BAD.∴∠ ODA =∠ CAD ,∴ OD ∥AC ,∴∠ ODB =∠ ACB = 90°,∴ OD ⊥BC ,∴ BC 与 ⊙O 相切;( 2)解:连结 DF . ∵ AF 为直径,∴∠ ADF = 90°, ∴∠ ACD =∠ ADF .又∵∠ CAD =∠ FAD ,∴△ CAD ∽△ DAF , ∴=,∴ AD 2= CA?AF = 80,∴ AD =4 ,在 Rt △ACD 中, CD == 4.∵ OD ∥AC ,∴△ BOD ∽△ BAC ,∴= ,∴ =,∴ BC =.【评论】 本题考察了切线的判断和性质,极品飞车的定义,平行线的判断和性质,相像三角形的判断和性质,勾股定理,正确的作出协助线是解题的重点.24.( 12 分)如图 1,直线 1: y =﹣ x+1 与 x 轴、 y 轴分别交于点B 、点 E ,抛物线L : y =2ax +bx+c 经过点 B 、点 A (﹣ 3, 0)和点 C ( 0,﹣ 3),并与直线 l 交于另一点 D .( 1)求抛物线 L 的分析式;( 2)点 P 为 x 轴上一动点① 如图 2,过点 P 作 x 轴的垂线,与直线 1 交于点 M ,与抛物线 L 交于点 N .当点 P 在点 A 、点 B 之间运动时,求四边形 AMBN 面积的最大值;② 连结 AD , AC , CP ,当∠ PCA =∠ ADB 时,求点 P 的坐标.2【剖析】( 1)先求出 B 的坐标,再将 A 、 B 、 C 坐标代入 y = ax +bx+c 列方程组,而后求 解,即可求出抛物线的分析式;( 2)① 依据 S 四边形 AMBN = AB?MN = 2,=﹣ 2( x+ ) +因此当 x =﹣ 时, S 四边形 AMBN 最大值为;② 先联立方程组.求出 D 点的坐标,两种状况议论:Ⅰ.当点 P 在点 A 的右侧,∠ PCA=∠ ADB 时,△ PAC ∽△ ABD ;Ⅱ.当点 P 在点 A 的左侧,∠ PCA =∠ ADB 时,记此时的点 P 为 P 2,则有∠ P 2CA =∠ P 1CA .【解答】 解:( 1)∵ y =﹣ x+1 ,∴ B ( 1, 0),2将 A (﹣ 3, 0)、 C (0,﹣ 3),B ( 1,0)代入 y = ax +bx+c ,,∴∴抛物线 L 的分析式: y =x 2+2x ﹣ 3;( 2)设 P ( x , 0).① S 四边形AMBN=AB?MN ==﹣ 2( x+ )2+ ,∴当 x=﹣时, S 四边形AMBN最大值为;② 由,得,,∴D(﹣ 4,5),∵ y=﹣x+1,∴E( 0, 1),B( 1, 0),∴OB= OE,∴∠ OBD= 45°.∴BD=.∵ A(﹣ 3, 0), C( 0,﹣ 3),∴ OA= OC,AC= 3,AB=4.∴∠ OAC= 45°,∴∠ OBD =∠ OAC.Ⅰ.当点P 在点 A 的右侧,∠ PCA=∠ ADB 时,△ PAC∽△ ABD.∴,∴,∴,∴P1()Ⅱ.当点P 在点 A 的左侧,∠ PCA=∠ ADB 时,记此时的点P 为 P2,则有∠ P2CA=∠P1CA.过点 A 作 x 轴的垂线,交P2C 于点 K,则∠ CAK =∠ CAP1,又 AC 公共边,∴△ CAK≌△ CAP1(ASA)∴ AK= AP1=,∴ K(﹣ 3,﹣),∴直线CK :,∴ P2(﹣ 15, 0).P 的坐标: P1(), P2(﹣ 15, 0).【评论】本题考察了二次函数,娴熟掌握二次函数的基天性质和相像三角形的性质是解题的重点.。
2019-2020年湖北省中考数学各地区模拟试题分类(武汉市专版(三)--《圆》及答案
2019-2020年湖北省中考数学各地区模拟试题分类(武汉市专版)(三)——《圆》一.选择题1.(2020•武汉模拟)如图,AB为半圆⊙O的直径,AB=10,AC为⊙O的弦,AC=8,D 为的中点,DM⊥AC于M,则DM的长为()A.B.C.1D.2.(2020•武汉模拟)在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(﹣10,1)与⊙O的位置关系为()A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定3.(2020•武汉模拟)已知⊙O的半径等于8cm,圆心O到直线l上某点的距离为8cm,则直线l与⊙O的公共点的个数为()A.0B.1或0C.0或2D.1或2 4.(2020•武汉模拟)直角△ABC,∠BAC=90°,AB=8,AC=6,以A为圆心,4.8长度为半径的圆与直线BC的公共点的个数为()A.0B.1C.2D.不能确定5.(2020•武汉模拟)小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a为160mm,直角顶点到轮胎与底面接触点AB长为320mm,请帮小名计算轮胎的直径为()mm.A.350B.700C.800D.400 6.(2020•武汉模拟)如图,BC为⊙O直径,弦AC=2,弦AB=4,D为⊙O上一点,I 为AD上一点,且DC=DB=DI,AI长为()A.B.C.D.7.(2020•武汉模拟)如图是一个隧道的横截面,它的形状是以O为圆心的圆的一部分,CM=DM=2,MO交圆于E,EM=6,则圆的半径为()A.4B.2C.D.8.(2020•武汉模拟)已知⊙O的半径等于3,圆心O到点P的距离为5,那么点P与⊙O 的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定9.(2020•江岸区校级模拟)如图,AB为半圆O的直径,BC⊥AB且BC=AB,射线BD交半圆O的切线于点E,DF⊥CD交AB于F,若AE=2BF,DF=2,则⊙O的半径长为()A.B.4C.D.10.(2020•江夏区模拟)如图,BC是⊙O的直径,AB切⊙O于点B,AB=BC=8,点D 在⊙O上,DE⊥AD交BC于E,BE=3CE,则AD的长是()A.B.C.4D.3二.填空题11.(2020•武汉模拟)如图,在△ABC中,∠A=62°,⊙O截△ABC三边所得的弦长相等,则∠BOC的度数是.12.(2020•蔡甸区模拟)已知Rt△ABC中,AC=3,BC=4,以C为圆心,以r为半径作圆.若此圆与线段AB只有一个交点,则r的取值范围为.13.(2020•武汉模拟)如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为.14.(2020•武汉模拟)如图,四边形ABCD是⊙O的内接四边形,∠BOD=100°,则∠BCD=°.15.(2019•武汉模拟)如图,正五边形ABCDE和正△AFG都是⊙O的内接多边形,则∠FOC=.16.(2019•武汉模拟)矩形ABCD的边AB=4,边AD上有一点M,连接BM,将MB绕M点逆时针旋转90°得MN,N恰好落在CD上,过M、D、N作⊙O,⊙O与BC相切,Q为⊙O上的动点,连BQ,P为BQ中点,连AP,则AP的最小值为.17.(2019•武汉模拟)圆心角为125°的扇形的弧长是12.5π.则扇形的面积为.18.(2019•江岸区校级模拟)已知圆锥的侧面积是其底面积的3倍,这个圆锥的侧面展开图的扇形角的度数为.19.(2019•江岸区校级模拟)如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是.20.(2019•硚口区模拟)已知⊙O的直径AB为4cm,点C是⊙O上的动点,点D是BC 的中点,AD延长线交⊙O于点E,则BE的最大值为.21.(2019•江夏区校级模拟)如图,四边形ABCD内接于⊙O,连结AC,若∠BAC=35°,∠ACB=40°,则∠ADC=°.22.(2019•硚口区模拟)如图,⊙O是正△ABC的外接圆.若正△ABC的边心距为1,则⊙O的周长为.23.(2019•武昌区模拟)用48m长的篱笆在空地上围成一个正六边形的绿化场地,则其面积为m2三.解答题24.(2020•武汉模拟)如图1,在△ABC中,AB=CB且∠BAC=45°,以AB为直径作⊙O,线段AC交⊙O于点E,连接OC.(1)求证:AE=CE;(2)如图2,取CE的中点M,连接BM交OC于N,连接EN,求的值.25.(2020•武汉模拟)如图,⊙O过正方形ABCD的顶点A、D,且与BC相切于点M,⊙O 分别交AB、CD于E、F两点,连接MO并延长交AD于点N.(1)求证:AN=DN;(2)连接BF交⊙O于点G,连接EG.若AD=8,求EG的长.26.(2020•江岸区校级模拟)如图,AB为⊙O的直径,C为⊙O上的一点,AD⊥CD于点D,AC平分∠DAB.(1)求证:CD是⊙O的切线.(2)设AD交⊙O于E,=,△ACD的面积为6,求BD的长.27.(2020•武汉模拟)如图,在△ABC中,AB=AC,∠BAC=90°,点D在以AB为直径的⊙O上,且CD=CA.(1)求证:CD是⊙O切线.(2)求tan∠AEC的值.28.(2020•江岸区校级模拟)如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.29.(2020•硚口区模拟)已知如图:在⊙O中,直径AB⊥弦CD于G,E为DC延长线上一点,BE交⊙O于点F.(1)求证:∠EFC=∠BFD;(2)若F为半圆弧AB的中点,且2BF=3EF,求tan∠EFC的值.30.(2020•武汉模拟)如图,A,B,C三点在⊙O上,=,AD⊥AB,DE∥AB交BC 于点E,在BC的延长线上取一点F,使得EF=ED.(1)求证:DF是⊙O的切线;(2)连接AF交DE于点M,若AD=4,BF=10,求tan∠AFD的值.参考答案一.选择题1.解:如图,连接OD交AC于H,连接BC.∵AB是直径,∴∠ACB=90°,∴BC==6,∵=,∴OD⊥AB,∵∠OAH=∠CAB,∠AOH=∠ACB=90°,∴△AOH∽△ACB,∴==∴==∴OH=,AH=,∵DH=OD﹣OH=5﹣=,∵DM⊥AC,∵∠DMH=∠AOH=90°,∠DHM=∠AHO,∴△DMH∽△AOH,∴=,∴=,∴DM=1,故选:C.2.解:∵圆心P的坐标为(﹣10,1),∴OP==.∵⊙O的半径为10,∴>10,∴点P在⊙O外.故选:B.3.解:∵⊙O的半径等于8cm,圆心O到直线l的距离为8cm,即圆心O到直线l的距离小于或等于圆的半径,∴直线l和⊙O相切或相交,∴直线l与⊙O公共点的个数为1或2.故选:D.4.解:∵∠BAC=90°,AB=8,AC=6,∴BC=10,∴斜边上的高为:=4.8,∴d=4.8cm=r=4.8cm,∴圆与该直线AB的位置关系是相切,交点个数为1,故选:B.5.解:如图,连接OB,OC,作CD⊥OB于D.设⊙O半径为xmm,在Rt△OCD中,由勾股定理得方程,(x﹣160)2+3202=x2,解得,x=400,∴2x=800,答:车轱辘的直径为800mm.故选:C.6.解:如图,连接IC,作IE⊥AC于E,IF⊥AB于F,IG⊥BC于G.∵DB=DC,∴=,∠DBC=∠DCB,∴∠BAD=∠CAD,∵DI=DC,∴∠DIC=∠DCI,∵∠DIC=∠DAC+∠ACI,∠DCI=∠DCB+∠ICB,∠DBC=∠DAC,∴∠ICA=∠ICB,∴点I为△ABC内心,∴IE=IF=IG,∵BC是直径,∴∠BAC=90°,∴BC===2,∵S=•AB•AC=•IE•(AB+AC+BC),△ABC∴IE=3﹣,∵∠IAE=∠AIE=45°,∴AI=IE=3﹣,故选:D.7.解:连接OC,∵M是⊙O弦CD的中点,根据垂径定理:EM⊥CD,设圆的半径是x,在Rt△COM中,有OC2=CM2+OM2,即:x2=22+(6﹣x)2,解得:x=,所以圆的半径长是.故选:D.8.解:∵r=3,d=5,∴d>r,∴点P在⊙O外.故选:B.9.解:连接AD,CF,作CH⊥BD于H,如图所示:∵AB是直径,∴∠ADB=90°,∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°,∵∠BDF+∠BDC=90°,∠CBD+∠DBA=90°,∴∠ADF=∠BDC,∠DAB=∠CBD,∴△ADF∽△BDC,∴==,∵∠DAE+∠DAB=90°,∠E+∠DAE=90°,∴∠E=∠DAB,∴△ADE∽△BDA,∴=,∴=,即=,∵AB=BC,∴AE=AF,∵AE=2BF,∴BC=AB=3BF,设BF=x,则AE=2x,AB=BC=3x,∴BE==x,CF==,由切割线定理得:AE2=ED×BE,∴ED===x,∴BD=BE﹣ED=,∵CH⊥BD,∴∠BHC=90°,∠CBH+∠BCH=∠CBH+∠ABE,∴∠CBH=∠ABE,∵∠BAE=90°=∠BHC,∴△BCH∽△EBA,∴==,即==,解得:BH=x,CH=x,∴DH=BD﹣BH=x,∴CD2=CH2+DH2=x2,∵DF⊥CD,∴CD2+DF2=CF2,即x2+(2)2=()2,解得:x=,∴AB=3,∴⊙O的半径长为;故选:A.10.解:连接AE、BD、DC,∵AB与⊙O相切于点B,∴∠ABC=90°,∵BC=8,BE=3CE,∴CE=2,BE=6,∵AB=8,∴由勾股定理得:AE===10,∵BC是直径,∴∠BDC=90°,∵∠ADE=90°,∴∠ABD+∠CBD=90°,∠DCE+∠CBD=90°,∴∠ABD=∠DCE,∵∠ADE=∠ABE=90°,∴∠DAB+∠DEB=360°﹣90°﹣90°=180°,∵∠DEC+∠DEB=180°,∴∠DEC=∠DAB,∴△DCE∽△DBA,∴===,∴AD=4DE,在Rt△ADE中,AE2=AD2+DE2,∴102=(4DE)2+DE2,∴DE=,∴AD=,故选:A.二.填空题(共13小题)11.解:∵△ABC中∠A=62°,⊙O截△ABC的三条边所得的弦长相等,∴O到三角形三条边的距离相等,即O是△ABC的内心,∴∠1=∠2,∠3=∠4,∠1+∠3=(180°﹣∠A)=(180°﹣62°)=59°,∴∠BOC=180°﹣(∠1+∠3)=180°﹣59°=121°.故答案是:121°.12.解:当以点C为圆心,r为半径的圆与斜边AB只有一个公共点时,过点C作CD⊥AB于点D,∵AC=3,BC=4.,∴AB=5,∴CD×AB=AC×BC,∴CD=r=,当直线与圆如图所示也可以有一个交点,∴3<r≤4,故答案为:3<r≤4或r=.13.解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.故答案为:60πcm2;14.解:∵∠BOD=100°,∴∠A=50°.∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣50°=130°.故答案为:130.15.解:连接OA,OB,∵五边形ABCDE是正五边形,∴∠AOB=∠BOC==72°,∵△AFG是正三角形,∴∠AOF==120°,∴∠BOF=∠AOF﹣∠AOB=48°,∴∠FOC=∠BOC﹣∠BOF=72°﹣48°=24°,故答案为:24°.16.解:设⊙O与BC的交点为F,连接OB、OF,如图1所示.∵△MDN为直角三角形,∴MN为⊙O的直径,∵BM与⊙O相切,∴MN⊥BM,∵将MB绕M点逆时针旋转90°得MN,∴MB=MN,∴△BMN为等腰直角三角形,∵∠AMB+∠NMD=180°﹣∠AMN=90°,∠MBA+∠AMB=90°,∴∠NMD=∠MBA,且BM=NP,∠A=∠NMD=90°,∴△ABM≌△DMN(AAS),∴DM=AB=4,DN=AM,设DN=2a,则AM=2a,OF=4﹣a,BM==2,∵BM=MP=2OF,∴2=2×(4﹣a),解得:a=,∴DN=2a=3,OF=4﹣=,∴⊙O半径为,如图2,延长BA,使AH=AB=4,连接HQ,OH,过O作OG⊥AB于G,∵AB=AH,BP=PQ,∴AP=HQ,HQ∥AP,∴当HQ取最小值时,AP有最小值,∴当点Q在HO时,HQ的值最小,∵HG=4+4﹣=,GO=3+4﹣2=5,∴OH===,∴HQ的最小值=﹣=,∴AP的最小值为,故答案为:.17.解:∵圆心角为125°的扇形的弧长是12.5π,∴12.5π=,解得:r=18,故扇形的面积为:×18×12.5π=112.5π.故答案为:112.5π.18.解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S底面面积=πr2,l底面周长=2πr,S扇形=3S底面面积=3πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R得3πr2=×2πr×R,故R=3r.由l扇形弧长=得:2πr=,解得n=120°.故答案为:120°.19.解:设OE交DF于N,如图所示:∵正八边形ABCDEFGH内接于⊙O,∴DE=FE,∠EOF==45°,,∴∠OEF=∠OFE=∠OED,OE⊥DF,∴△ONF是等腰直角三角形,∴ON=FN=OF=,∠OFM=45°,∴EN=OE﹣OM=2﹣,∠OEF=∠OFE=∠OED=67.5°,∴∠CED=∠DFE=67.5°﹣45°=22.5°,∴∠MEN=45°,∴△EMN是等腰直角三角形,∴MN=EN,∴MF=MN+FN=ON+EN=OE=2,∴△MEF的面积=MF×EN=×2×(2﹣)=2﹣;故答案为:2﹣.20.解:如图,以OB为直径作⊙K,当直线AE切⊙K于D时,BE的值最大.∵AE是⊙K的切线,∴DK⊥AE,∴∠ADK=90°,∵AB是直径,∴∠AEB=90°,∴∠ADK=∠AEB,∴DK∥BE,∴=,∴=,∴BE=,故答案为.21.解:∠ABC=180°﹣∠BAC﹣∠ACB=105°,∵四边形ABCD内接于⊙O,∴∠ADC=180°﹣∠ABC=75°,故答案为:75.22.解:延长AO交BC于D,连接OB,如图,∵△ABC为等边三角形,∴∠ABC=60°,AB=AC,∵OB=OC,∴AO垂直平分BC,即OD⊥BC,∴OD=1,AD平分∠BAC,同理OB平分∠ABC,∴∠OBD=30°,在Rt△OBD中,OB=2OD=2,∴⊙O的周长=2π×2=4π.故答案为4π.23.解:由题意得:AB=48÷6=8m,过O作OC⊥AB,∵AB=BO=AO=8m,∴CO==4m,∴正六边形面积为:4×8××6=96m2,故答案为:96.三.解答题(共7小题)24.(1)证明:如图1中,∵AB是直径,∴∠AEB=90°,∴BE⊥AC,∵AB=CB,∴AE=EC.(2)解:如图2中,连接OE,BE,过点C作CT⊥EN交EN的延长线于T.∵BA=BC,∠ACB=45°,∴∠BAC=∠ACB=45°,∴∠ABC=90°,∵AE=EC,∴∠ABE=∠CBE=∠ABC=45°,∵BE⊥AC,∴EB=EC=EA,∵EM=MC,OA=OB,∴tan∠EBM==,tan∠OCB==,∴tan∠EBM=tan∠OCB,∴∠EBM=∠OCB,∵AO=OB.AE=EC,∴OE∥BC,∴∠EOC=∠OCB,∴∠EON=∠EBN,∴O,E,N,B四点共圆,∴∠EOB+∠ENB=180°,∵EA=EB,AO=OB,∴EO⊥AB,∴∠BOE=∠ENB=90°,∵∠BEN+∠EBN=90°,∠BEN+∠CET=90°,∴∠EBN=∠CET,∵EB=EC,∴△EBN≌△CET(AAS),∴EN=CT,∵∠ONE=∠CNT=∠EBO=45°,CT⊥NT,∴CT=TN,∴EN=NT,CN=NT,∴CN=EN,∴=.25.解:(1)证明:∵⊙O与BC相切于点M,∴∠BMN=90°,∵四边形ABCD是正方形,∴AD∥BC,∴∠ONA=90°,由垂径定理得,AN=DN;(2)如图,连接DE,EF,DG,∵∠DAE=90°,∴∠DFE=90°,∴DE是⊙O的直径,且四边形AEFD是矩形,由(1)知四边形ABMN是矩形,∴MN=AB=8,设OD=r,则ON=8﹣r,DN=4,在Rt△ODN中,根据勾股定理,得42+(8﹣r)2=r2,解得r=5,∴DE=10,∵AD=8,∴AE=6,∴BE=2,∵EF=AD=8,∴BF==2,∵∠BFE=∠EDG,∴sin∠BFE=sin∠EDG,∴=,即=,解得EG=.26.(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,∴∠OCE=∠ADC=90°,∴CD是⊙O的切线;(2)解:∵=,∴设AC=5x,CD=3x,∴AD=4x,∵△ACD的面积为6,∴AD•CD==6,∴x=1(负值舍去),∴AD=4,CD=3,AC=5,连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=∠ADC,∵∠DAC=∠CAB,∴△ADC∽△ACB,∴=,∴=,∴AB=,∵∠DAC=∠CAB,∴=,连接BE交OC于F,∴OC⊥BE,BF=EF,∵AB为⊙O的直径,∴∠AEB=∠DEB=90°,∴四边形CDEF是矩形,∴EF=CD=3,∴BE=6,∴AE==,∴DE=4﹣=,∴BD==.27.(1)证明:连接OC,OD,∵OA=OD,AC=CD,OC=OC,∴△AOC≌△DOC(SSS),∴∠CDO=∠CAB=90°,∵OD为⊙O的半径,∴CD是⊙O切线;(2)解:过B作BH⊥AB交AD的延长线于H,∴∠BAC=∠ABH=90°,∵CD=AD,OD=OA,∴OC⊥AD于T,∴∠OTA=90°,∴∠1+∠2=∠2+∠3=90°,∴∠1=∠3,在△ACO和△BAH中,∴△ACO≌△BAH(ASA),∴BH=AO,设OA=OB=r,则AC=AB=2r,BH=r,在Rt△OAC中,OC===r,在Rt△ABC中,BC===2r,∵∠BAC+∠ABH=180°,∴BH∥AC,∴△BEH∽△CEA,∴,∴CE=BC=r,∴cos∠1==,∴CT=,在Rt△CET中,ET==r,∴tan∠AEC===3.28.(1)证明:在⊙O中,∵∠BAC与∠CPB是对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.29.(1)证明:如图,连接BD,∵AB⊥CD且AB为直径,∴=.∴∠BFD=∠CDB.又∵∠EFC+∠CFB=180°,而∠CFB+∠CDB=180°,∴∠EFC=∠CDB.∴∠EFC=∠BFD;(2)解:如图,连OF,OC,BC,可知∠EFC=∠BFD=∠BCG,又F为半圆AB的中点,∴∠FOB=∠FOA=90°,∴OF∥CD,∴OG:OB=EF:FB=2:3.设OG=2x,则0B=OC=3x,则CG=x.∴tan∠EFC=tan∠BCG==.30.(1)证明:连接BD,∵AD⊥AB,∴BD是⊙O的直径,∵=,∴BD平分∠ABC,∴∠ABD=∠CBD.∵DE∥AB,∴∠ABD=∠BDE.∴∠CBD=∠BDE.∵ED=EF,∴∠EDF=∠EFD.∵∠EDF+∠EFD+∠EDB+∠EBD=180°,∴∠BDF=∠BDE+∠EDF=90°.∴OD⊥DF.∵OD是半径,∴DF是⊙O的切线.(2)解:连接DC,∵BD是⊙O的直径,∴∠BAD=∠BCD=90°.∵∠ABD=∠CBD,BD=BD,∴△ABD≌△CBD(AAS).∴CD=AD=4,AB=BC.∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴DE=BE,∴DE=EF=EB=BF=5,∴EC===3,EF=DE=5.∴BC=BE+EC=8,∴BD===4,连接AC交BD于H,设BD与AF交于N,∵=,∴AC⊥BD,∴AH=CH===,∴DH==,∵∠DCF=∠BDF=90°,∴∠DBF+∠DFB=∠DFC+∠CDF=90°,∴∠DBC=∠CDF,∴△BDF∽△DCF,∴=,∴DF==2,∵DF⊥BD,AC⊥BD,∴AC∥DF,∴∠CAF=∠AFD,∴△AHN∽△FDN,∴=,∴=,∴DN=,∴tan∠AFD===.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年中考数学三模试卷(含解析)(III)一、选择题1.如果a与﹣3互为相反数,那么a等于()A.3 B.﹣3 C. D.2.下列几何体中,其主视图不是中心对称图形的是()A. B. C. D.3.下列运算中,结果是a6的式子是()A.a2•a3 B.a12﹣a6C.(a3)3D.(﹣a)64.如图,AB∥CD,点E在BC上,且CD=CE,∠D=75°,则∠B的度数为()A.20° B.30° C.40° D.50°5.不等式组的解集在数轴上可表示为()A. B. C. D.6.如图,点B,C分别在直线y=2x和直线y=kx上,A,D是x轴上两点,若四边形ABCD是长方形,且AB:AD=1:2,则k的值是()A. B. C. D.7.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B. +1 C.﹣1 D. +18.如图,菱形ABCD中,点O对角线AC的三等分点,连接OB、OD,且OB=OC=OD.已知AC=3,那么菱形的边长为()A. B.2 C. D.9.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为()A. B. C. D.10.如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C﹣D﹣E上移动,若点C、D、E的坐标分别为(﹣1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为()A.1 B.2 C.3 D.4二、填空题11.比较大小:.12.如图,直线y=x﹣4与y轴交于点C,与x轴交于点B,与反比例函数y=的图象在第一象限交于点A,连接OA.若S△AOB:S△BOC=1:2,则k的值为.13.如图,在 Rt△ABC中,∠ABC是直角,AB=4,BC=2,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x的取值范围是.三、填空题(共2小题,每小题3分,满分6分)14.如图,正六边形ABCDEF的边长为2,则对角线AF= .15.如图,在离地面高度为5米的A处引拉线固定电线杆,要使拉线与地面α=37°,工作人员需买拉线的长度约为(精确到米).(sin37°≈0.6,cos37°≈0.8).三、解答题16.计算: +|﹣2|﹣()﹣2+(tan60°﹣1)0.17.先化简,再求值:÷(+1),其中x是的整数部分.18.如图,已知在△ABC中,∠A=90°,请用圆规和直尺作⊙P,使圆心P在AC上,且与AB、BC两边都相切.(要求保留作图痕迹,不必写出作法和证明)19.初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?20.在▱ABCD中,点E在边BC上,点F在BC的延长线上,且EF=AD.求证:∠BAE=∠CDF.21.如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长2米,在同时刻测量旗杆的影长时,旗杆的影子一部分落在地面上(BC),有一部分落在斜坡上(CD),他测得落在地面上影长为10米,留在斜坡上的影长为2米,∠DCE为45°,则旗杆的高度约为多少米?(参考数据:≈1.4,≈1.7)22.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y (米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?23.小明和小亮正在按以下三步做游戏:第一步:两人同时伸出一只手,小明出“剪刀”,小亮出“布”;第二步:两人再同时伸出另一只手,小明出“石头”,小亮出“剪刀”;第三步:两人同时随机撤去一只手,并按下述约定判定胜负:在两人各留下的一只手中,“剪刀”胜“布”,“布”胜“石头”,“石头”胜“剪刀”,同时手势部分胜负.(1)请利用列表法或画树状图法求小亮获胜的概率;(2)若小明想取胜,你觉得小明应留下哪种手势?24.如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D 垂直于AC的直线交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)如果AD=5,AE=4,求⊙O的半径.25.如图,二次函数y=x2+4x+c图象与x轴交于A,B两点(A在B的左边),与y轴交于点C,M为不同于A,B,C的抛物线上的点.(1)当M坐标为(﹣2,﹣1)时,求c的值;(2)当M为顶点,且MA⊥MB时,求二次函数y=x2+4x+c的解析式;(3)在(2)的条件下,E为线段AC上的点,过E作y的平行线交抛物线于F,△ACF面积是否存在最大值,若存在求出最大值,不存在说明理由.26.用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;(2)当点P在运动的过程中出现PA=FC时,求∠PAB的度数.探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.在旋转△DEF的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.xx年陕西省西安市交大附中中考数学三模试卷参考答案与试题解析一、选择题1.如果a与﹣3互为相反数,那么a等于()A.3 B.﹣3 C. D.【考点】相反数.【分析】根据相反数的性质进行解答.【解答】解:由题意,得:a+(﹣3)=0,解得a=3.故选A.2.下列几何体中,其主视图不是中心对称图形的是()A. B. C. D.【考点】中心对称图形;简单几何体的三视图.【分析】先判断出各图形的主视图,然后结合中心对称的定义进行判断即可.【解答】解:A、主视图是矩形,矩形是中心对称图形,故本选项错误;B、主视图是三角形,三角形不是中心对称图形,故本选项正确;C、主视图是圆,圆是中心对称图形,故本选项错误;D、主视图是正方形,正方形是中心对称图形,故本选项错误;故选B.3.下列运算中,结果是a6的式子是()A.a2•a3 B.a12﹣a6C.(a3)3D.(﹣a)6【考点】同底数幂的乘法;合并同类项;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;有理数的乘方的意义,对各选项计算后利用排除法求解.【解答】解:A、a2•a3=a5,故本选项错误;B、不能进行计算,故本选项错误;C、(a3)3=a9,故本选项错误;D、(﹣a)6=a6,正确.故选:D.4.如图,AB∥CD,点E在BC上,且CD=CE,∠D=75°,则∠B的度数为()A.20° B.30° C.40° D.50°【考点】平行线的性质;等腰三角形的性质.【分析】根据等腰三角形两底角相等求出∠C的度数,再根据两直线平行,内错角相等解答即可.【解答】解:∵CD=CE,∴∠D=∠DEC,∵∠D=75°,∴∠C=180°﹣75°×2=30°,∵AB∥CD,∴∠B=∠C=30°.故选B.5.不等式组的解集在数轴上可表示为()A. B. C. D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x>1,解②得x≥2.则不等式组的解集是x≥2.故选A.6.如图,点B,C分别在直线y=2x和直线y=kx上,A,D是x轴上两点,若四边形ABCD是长方形,且AB:AD=1:2,则k的值是()A. B. C. D.【考点】一次函数综合题.【分析】根据长方形ABCD的边长AB:AD=1:2,设AB为a,则BC为2a,继而可得出B点纵坐标,代入y=2x可求得B点的坐标,然后可得出C点的坐标,将C点的坐标代入y=kx,即可求出k的值.【解答】解:设长方形的AB边的长为a,则BC边的长度为2a,B点的纵坐标是a,把点B的纵坐标代入直线y=2x的解析式得:x=,则点B的坐标为(,a),点C的坐标为(+2a,a),把点C的坐标代入y=kx中得,a=k(+2a),解得:k=.故选B.7.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B. +1 C.﹣1 D. +1【考点】勾股定理.【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=,在Rt△ADC中,DC===1,∴BC=+1.故选D.8.如图,菱形ABCD中,点O对角线AC的三等分点,连接OB、OD,且OB=OC=OD.已知AC=3,那么菱形的边长为()A. B.2 C. D.【考点】菱形的性质.【分析】由菱形的性质得出AB=BC,得出∠BAC=∠ACB,由已知条件得出OB=OC=AC=1,由等腰三角形的性质得出△BOC∽△ABC,得出对应边成比例,即可求出菱形的边长.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∴∠BAC=∠ACB,∵点O对角线AC的三等分点,∴OB=OC=AC=1,∴∠BAC=∠ACB=∠OBC,∴△BOC∽△ABC,所以,即,∴BA2=3,∴BA=;故选:A.9.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为()A. B. C. D.【考点】垂径定理;圆周角定理;锐角三角函数的定义.【分析】根据垂径定理得到AC=BC=AB=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中根据勾股定理得到x2=42+(x﹣2)2,解得x=5,则AE=10,OC=3,再由AE是直径,根据圆周角定理得到∠ABE=90°,利用OC是△ABE的中位线得到BE=2OC=6,然后在Rt△CBE中利用勾股定理可计算出CE,由三角函数的定义求出sin∠ECB即可.【解答】解:连结BE,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中,∵AO2=AC2+OC2,∴x2=42+(x﹣2)2,解得:x=5,∴AE=10,OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE===2,∴sin∠ECB===.故选:B.10.如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C﹣D﹣E上移动,若点C、D、E的坐标分别为(﹣1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为()A.1 B.2 C.3 D.4【考点】二次函数综合题.【分析】抛物线在平移过程中形状没有发生变化,因此函数解析式的二次项系数在平移前后不会改变.首先,当点B横坐标取最小值时,函数的顶点在C点,根据待定系数法可确定抛物线的解析式;而点A横坐标取最大值时,抛物线的顶点应移动到E点,结合前面求出的二次项系数以及E点坐标可确定此时抛物线的解析式,进一步能求出此时点A的坐标,即点A 的横坐标最大值.【解答】解:由图知:当点B的横坐标为1时,抛物线顶点取C(﹣1,4),设该抛物线的解析式为:y=a(x+1)2+4,代入点B坐标,得:0=a(1+1)2+4,a=﹣1,即:B点横坐标取最小值时,抛物线的解析式为:y=﹣(x+1)2+4.当A点横坐标取最大值时,抛物线顶点应取E(3,1),则此时抛物线的解析式:y=﹣(x﹣3)2+1=﹣x2+6x﹣8=﹣(x﹣2)(x﹣4),即与x轴的交点为(2,0)或(4,0)(舍去),∴点A的横坐标的最大值为2.故选B.二、填空题11.比较大小:<.【考点】有理数大小比较.【分析】先计算|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数越小进行大小比较.【解答】解:∵|﹣|==,|﹣|==,∴﹣<﹣.故答案为<.12.如图,直线y=x﹣4与y轴交于点C,与x轴交于点B,与反比例函数y=的图象在第一象限交于点A,连接OA.若S△AOB:S△BOC=1:2,则k的值为12 .【考点】反比例函数与一次函数的交点问题.【分析】由直线求得C的坐标,然后根据S△AOB:S△BOC=1:2,得出A的纵坐标为2,代入直线解析式求得A的坐标,代入y=即可求得k的值.【解答】解:由直线y=x﹣4可知C(0,﹣4),∴OC=4,∵S△AOB:S△BOC=1:2,∴A的纵坐标为2,把y=2代入y=x﹣4得,x=6,∴A(6,2),∴k=6×2=12;故答案为12.13.如图,在 Rt△ABC中,∠ABC是直角,AB=4,BC=2,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x的取值范围是≤x≤2 .【考点】勾股定理.【分析】先根据勾股定理计算出AC=6,由于∠BQP=90°,根据圆周角定理得到点Q在以PB 为直径的圆⊙M上,而点Q在AC上,则有AC与⊙M相切于点Q,连结MQ,根据切线的性质得MQ⊥AC,MQ=BM=x,然后证明Rt△CMQ∽Rt△CAB,再利用相似比得到x:4=(2﹣x):6,最后解方程即可.【解答】解:∵∠ABC=90°,AB=4,BC=2,∴AC==6,∵∠BQP=90°,∴点Q在以PB为直径的圆⊙M上,∵点Q在AC上,∴AC与⊙M相切于点Q,连结MQ,如图,则MQ⊥AC,MQ=BM=x,∵∠QCM=∠BCA,∴Rt△CMQ∽Rt△CAB,∴QM:AB=CM:AC,即x:4=(2﹣x):6,∴x=.当P与C重合时,BP=2,∴BP=x的取值范围是:≤x≤2,故答案为:≤x≤2.三、填空题(共2小题,每小题3分,满分6分)14.如图,正六边形ABCDEF的边长为2,则对角线AF= 2 .【考点】正多边形和圆.【分析】作BG⊥AF,垂足为G.构造等腰三角形ABF,在直角三角形ABG中,求出AG的长,即可得出AF.【解答】解:作BG⊥AF,垂足为G.如图所示:∵AB=BF=2,∴AG=FG,∵∠ABF=120°,∴∠BAF=30°,∴AG=AB•cos30°=2×=,∴AC=2AG=2;故答案为2.15.如图,在离地面高度为5米的A处引拉线固定电线杆,要使拉线与地面α=37°,工作人员需买拉线的长度约为8 (精确到米).(sin37°≈0.6,cos37°≈0.8).【考点】解直角三角形的应用.【分析】在直角△ABC中,利用正弦函数即可求解.【解答】解:在直角△ABC中,sin∠ABC=,∴AB=AC÷sin∠ABC=5÷sin37°=≈8(米).三、解答题16.计算: +|﹣2|﹣()﹣2+(tan60°﹣1)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】先算立方根,绝对值,负整数指数幂和0指数幂,再算加减,由此顺序计算即可.【解答】解:原式=3+﹣2﹣9+1=﹣7.17.先化简,再求值:÷(+1),其中x是的整数部分.【考点】分式的化简求值;估算无理数的大小.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出x的值代入计算即可求出值.【解答】解:原式=÷=•=,∵x是的整数部分,∴x=2,则原式=.18.如图,已知在△ABC中,∠A=90°,请用圆规和直尺作⊙P,使圆心P在AC上,且与AB、BC两边都相切.(要求保留作图痕迹,不必写出作法和证明)【考点】作图—复杂作图.【分析】与AB、BC两边都相切.根据角平分线的性质可知要作∠ABC的角平分线,角平分线与AC的交点就是点P的位置.【解答】解:如图所示,则⊙P为所求作的圆.19.初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了560 名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54 度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】(1)根据专注听讲的人数是224人,所占的比例是40%,即可求得抽查的总人数;(2)利用360乘以对应的百分比即可求解;(3)利用总人数减去其他各组的人数,即可求得讲解题目的人数,从而作出频数分布直方图;(4)利用6000乘以对应的比例即可.【解答】解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).;(4)在试卷评讲课中,“独立思考”的初三学生约有:6000×=1800(人).20.在▱ABCD中,点E在边BC上,点F在BC的延长线上,且EF=AD.求证:∠BAE=∠CDF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】根据平行四边形的性质可得AB=CD,AD=BC,AB∥CD,进而可得∠ABE=∠DCF,然后再证明BE=CF,利用SAS定理可证明△BAE≌△CDF,进而可得结论∠BAE=∠CDF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠ABE=∠DCF,又∵EF=AD,∴BC=EF,∴BE=CF,在△ABE和△DCF中,,∴△BAE≌△CDF(SAS),∴∠BAE=∠CDF.21.如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长2米,在同时刻测量旗杆的影长时,旗杆的影子一部分落在地面上(BC),有一部分落在斜坡上(CD),他测得落在地面上影长为10米,留在斜坡上的影长为2米,∠DCE为45°,则旗杆的高度约为多少米?(参考数据:≈1.4,≈1.7)【考点】相似三角形的应用;解直角三角形的应用.【分析】延长AD交BC的延长线于点F,过点D作DE⊥BC于点E,根据勾股定理求出ED的长,再由同一时刻物高与影长成正比得出EF的长,根据DE∥AB可知△EDF∽△ABF,由相似三角形的对应边成比例即可得出AB的长.【解答】解:延长AD交BC的延长线于点F,过点D作DE⊥BC于点E,∵CD=2米,∠DCE=45°,∴DE=CE=,∵同一时刻物高与影长成正比,∴=,解得EF=2DE=2,∵DE⊥BC,AB⊥BC,∴△EDF∽△ABF,∴=,即=∴AB=5+≈7.1米.答:旗杆的高度约为7.1米.22.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y (米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?【考点】一次函数的应用.【分析】(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,根据图象得到点C 的坐标,然后利用待定系数法求一次函数解析式解答;(2)根据图形写出点A、B的坐标,再利用待定系数法求出线段AB的解析式,再与OC的解析式联立求解得到交点的坐标,即为相遇时的点.【解答】解:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,∵点C(30,600)在函数y=kx的图象上,∴600=30k,解得k=20,∴y=20x(0≤x≤30);(2)设乙在AB段登山的路程y与登山时间x之间的函数解析式为y=ax+b(8≤x≤20),由图形可知,点A(8,120),B(20,600)所以,,解得,所以,y=40x﹣200,设点D为OC与AB的交点,联立,解得,故乙出发后10分钟追上甲,此时乙所走的路程是200米.23.小明和小亮正在按以下三步做游戏:第一步:两人同时伸出一只手,小明出“剪刀”,小亮出“布”;第二步:两人再同时伸出另一只手,小明出“石头”,小亮出“剪刀”;第三步:两人同时随机撤去一只手,并按下述约定判定胜负:在两人各留下的一只手中,“剪刀”胜“布”,“布”胜“石头”,“石头”胜“剪刀”,同时手势部分胜负.(1)请利用列表法或画树状图法求小亮获胜的概率;(2)若小明想取胜,你觉得小明应留下哪种手势?【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小亮获胜的情况,再利用概率公式即可求得答案;(2)由小明留下剪刀手势时,可能取胜,也能不分胜负,当不会输;即可知小明应留下剪刀手势.【解答】解:(1)画树状图得:∵共有4种等可能的结果,小亮获胜的有1种情况,∴小亮获胜的概率为;(2)小明应留下剪刀手势.理由:∵“剪刀”胜“布”,同种手势不分胜负,∴小明留下剪刀手势时,可能取胜,也能不分胜负,当不会输;∵“布”胜“石头”,“石头”胜“剪刀”,∴小明留下石头手势时,可能取胜,但也能会输;∴小明应留下剪刀手势.24.如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D 垂直于AC的直线交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)如果AD=5,AE=4,求⊙O的半径.【考点】切线的判定.【分析】(1)连接OD,由AD为角平分线,得到一对角相等,再由OA=OD,得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行可得AE与OD平行,由两直线平行同旁内角互补,得到∠E与∠EDO互补,再由∠E为直角,可得∠EDO为直角,即DE为圆O的切线,得证;(2)连接BD,由AB为圆O的直径,根据直径所对的圆周角为直角,得到∠ADB为直角,在直角三角形ABD中,利用锐角三角函数定义得到cos∠DAB=,又在直角三角形AED中,由AE 及AD的长,利用锐角三角函数定义求出cos∠EAD的值,由∠EAD=∠DAB,得到cos∠EAD=cos ∠DAB,得出cos∠DAB的值,即可求出直径AB的长,进而求得半径长.【解答】(1)证明:连接OD,如图1所示:∵AD为∠CAB的平分线,∴∠CAD=∠BAD,又∵OA=OD,∴∠BAD=ODA,∴∠CAD=∠ODA,∴AC∥OD,∴∠E+∠EDO=180°,又∵AE⊥ED,即∠E=90°,∴∠EDO=90°,则ED为圆O的切线;(2)解:连接BD,如图2所示,过点A作AF⊥AC,∵AB为圆O的直径,∴∠ADB=90°,在Rt△ABD中,cos∠DAB=,在Rt△AED中,AE=4,AD=5,∴cos∠EAD==,又∠EAD=∠DAB,∴cos∠DAB=cos∠EAD==,则AB=AD=,即圆的直径为,∴半径AO=.25.如图,二次函数y=x2+4x+c图象与x轴交于A,B两点(A在B的左边),与y轴交于点C,M为不同于A,B,C的抛物线上的点.(1)当M坐标为(﹣2,﹣1)时,求c的值;(2)当M为顶点,且MA⊥MB时,求二次函数y=x2+4x+c的解析式;(3)在(2)的条件下,E为线段AC上的点,过E作y的平行线交抛物线于F,△ACF面积是否存在最大值,若存在求出最大值,不存在说明理由.【考点】二次函数综合题.【分析】(1)把M点坐标代入抛物线解析式即可求得c;(2)把抛物线解析式化为顶点式,则可用c表示出M点的坐标,由条件可用c表示出B点的坐标,代入抛物线解析式可求得c的值,则可求得抛物线解析式;(3)可设出F点坐标,则可表示出E点坐标,从而可表示出EF的长,进一步表示出△ACF 的面积,再利用二次函数的性质可求得其最大值.【解答】解:(1)∵M为不同于A,B,C的抛物线上的点,∴﹣1=4﹣8+c,解得c=3;(2)∵y=x2+4x+c=(x+2)2+c﹣4,∴M(﹣2,c﹣4),如图1,设抛物线对称轴交x轴于点D,则D(﹣2,0),∵MA⊥MB,且D为中点,∴BD=MD=4﹣c,∴OB=OD﹣BD=2﹣(4﹣c)=﹣2+c,∴B(2﹣c,0),∵B点在抛物线上,∴(2﹣c)2+4(2﹣c)+c=0,解得c=3或c=4,当c=4时,M点在x轴上,不符合题意,舍去,∴c=3,∴抛物线解析式为y=x2+4x+3;(3)由(2)可知抛物线解析式为y=x2+4x+3,令x=0可得y=3,令y=0可得x2+4x+3=0,解得x=﹣1或x=﹣3,∴A(﹣3,0),C(0,3),∴直线AC解析式为y=x+3,设F(t,t2+4t+3),则E(t,t+3),如图2,∵E为线段AC上的点,∴EF=t+3﹣(t2+4t+3)=﹣t2﹣3t,∴S△AFC=EF•OA=×3(﹣t2﹣3t)=﹣t2﹣t=﹣(t+)2+,∵﹣<0,∴当t=﹣时,S△AFC有最大值,最大值为.26.用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;(2)当点P在运动的过程中出现PA=FC时,求∠PAB的度数.探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.在旋转△DEF的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.【考点】几何变换综合题.【分析】(1)如答图1所示,过点A作AG⊥BC于点G,构造Rt△APG,利用勾股定理求出AP的长度;(2)如答图2所示,符合条件的点P有两个.解直角三角形,利用特殊角的三角函数值求出角的度数;(3)如答图3所示,证明△AMD≌△CND,得AM=CN,则△AMN两直角边长度之和为定值;设AM=x,求出斜边MN的表达式,利用二次函数的性质求出MN的最小值,从而得到△AMN周长的最小值.【解答】解:探究一:(1)依题意画出图形,如答图1所示:由题意,得∠CFB=60°,FP为角平分线,则∠CFP=30°,∴CF=BC•tan30°=3×=,∴CP=CF•tan∠CFP=×=1.过点A作AG⊥BC于点G,则AG=BC=,∴PG=CG﹣CP=﹣1=.在Rt△APG中,由勾股定理得:AP===.(2)由(1)可知,FC=.如答图2所示,以点A为圆心,以FC=长为半径画弧,与BC交于点P1、P2,则AP1=AP2=.过点A过AG⊥BC于点G,则AG=BC=.在Rt△AGP1中,cos∠P1AG===,∴∠P1AG=30°,∴∠P1AB=45°﹣30°=15°;同理求得,∠P2AG=30°,∠P2AB=45°+30°=75°.∴∠PAB的度数为15°或75°.探究二:△AMN的周长存在有最小值.如答图3所示,连接AD.∵△ABC为等腰直角三角形,点D为斜边BC的中点,∴AD=CD,∠C=∠MAD=45°.∵∠EDF=90°,∠ADC=90°,∴∠MDA=∠NDC.∵在△AMD与△CND中,∴△AMD≌△CND(ASA).∴AM=CN.设AM=x,则CN=x,AN=AC﹣CN=BC﹣CN=﹣x.在Rt△AMN中,由勾股定理得:MN====.△AMN的周长为:AM+AN+MN=+,当x=时,有最小值,最小值为+=.∴△AMN周长的最小值为.。