油、气、水层在测井曲线上显示不同的特征

合集下载

测井解释识别油、水、气层

测井解释识别油、水、气层

用测井曲线判断划分油、气、水层测井资料是评价地层、详细划分地层,正确划分、判断油、气、水层依据;从渗透层中区分出油、气、水层,并对油气层的物性及含油性进行评价是测井工作的重要任务,要做好解释工作,必须深入实际,掌握油气层的地质特点和四性关系(岩性、物性、含油性、电性),掌握油、气、水层在各种测井曲线上显示不同的特征。

1、油、气、水层在测井曲线上显示不同的特征:(1)、油层:微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。

自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。

长、短电极视电阻率曲线均为高阻特征。

感应曲线呈明显的低电导(高电阻)。

声波时差值中等,曲线平缓呈平台状。

井径常小于钻头直径。

(2)、气层:在微电极、自然电位、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显的数值增大或周波跳跃现象,中子伽玛曲线幅度比油层高。

(3)、油水同层:在微电极、声波时差、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。

(4)、水层:微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;自然电位曲线显示正异常或负异常,且异常幅度值比油层大;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。

2、定性判断油、气、水层油气水层的定性解释主要是采用比较(对比)的方法来区别它们。

在定性解释过程中,主要采用以下几种比较方法:(1) 纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。

一般油气层的电阻率是水层的3倍以上。

纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。

(2) 径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。

测井曲线与解释示例

测井曲线与解释示例

(北京)
CHINA UNIVERSITY OF PETROLEUM
—测井曲线与解释示例—
图2-2油层测井曲线及解释结果
4753
4754 4755 4756 4757
4758 4781
4782 4783 4784
图2-14 SL-YY2井测井曲线及综合解释成果
2-16正旋回结束期的低阻油层测井曲线及解释结果
图2-17反旋回开始期的低阻油层测井曲线及解释结果
图3-6 TLM-JF地区某井低阻层测井曲线及饱和度评价结果
图3-17 LL-X4井测井曲线及综合处理成果图
图3-18 LL-X1测井曲线及综合处理成果图
3-19 LL-XX井白垩系砂层测井曲线及综合处理成果图
KB-A井J1段高阻油层测井曲线及解释结果
KB-B井J3段岩性油藏低阻油层测井曲线及解释结果
KB-6井J1段低幅度底水油藏油层测井曲线及解释结果
KB-20井J1气层测井曲线及解释结果
KB-20井J
2高阻油层测井曲线及解释结果
3
低阻油层测井曲线及解释结果。

测井曲线具体划分

测井曲线具体划分

井下地层是由各类岩石组成,不同的岩石具有不同的物理化学性质,为了研究各类岩石的物理性质及井下地层是否含有石油天然气和其他有用矿产,建立了一门实用性很强的边缘学科---地球物理测井学,简称“测井”,它以地质学、物理学、数学为理论基础,采用计算机信息技术、电子技术及传感器技术,设计出专门的测井仪器,沿着井身进行测量,得出地层的各种物理、化学性质、地层结构及井身几何特性等各种信息,为石油天然气勘探、油气田开发提供重要数据和资料。

测井的井场作业如图所示,由测井地面仪器、绞车和电缆组成,通过电缆把下井仪器放到井底,在提升电缆过程中进行测量。

第一节:概述普通电阻率测井就是把一个电极系放入井内,测量井内岩层电阻率变化,用以研究地质剖面、判断油气水层。

又称视电阻率测井。

内容:梯度电极系、电位电极系、微电极测井主要任务:通过测井岩石电阻率的差别来区分岩性、划分油气水层,进行剖面地层对比等。

岩石电阻率一、岩石电阻率与岩性的关系不同岩性的岩石,电阻率不同。

主要造岩矿物的电阻率很高,石油的电阻率很高,几乎不导电。

沉积岩是靠岩石孔隙中所含地层水中的离子导电的。

二、岩石电阻率与地层水性质的关系岩石骨架:组成沉积岩的造岩矿物的固体颗粒部分。

沉积岩的导电能力主要取决于其孔隙中的地层水的性质—地层水电阻率。

1.地层水电阻率与含盐类化学成分的关系2.地层水Rw与矿化度Cw的关系:反比3.Rw与温度的关系:反比三、含水岩石电阻率与孔隙度的关系地层因素F:完全含水(100%含水)岩石的电阻率Ro与地层水电阻率的比值。

即F=Ro/Rw该比值只与岩石的孔隙度、胶结情况和孔隙结构有关,与Rw无关。

实验证明:F=a/φ(m)其中:a—与岩性有关的系数,0.6-1.5;m—胶结指数,随岩石胶结程度不同而变化,1.5-3;例:某油田第三系一含水砂岩的电阻率为7.2欧姆.米,地层水电阻率为1.2欧姆.米。

试求该层的孔隙度。

(a=0.93,m=1.64)解:F=Ro/Rw=7.2/1.2=6F=a/φ(m)=0.93/φ(1.64)得,φ=32%四、含油岩石电阻率Rt与含油饱和度So的关系电阻增大系数I:含油岩石的电阻率与该岩石完全含水时电阻率的比值。

各条测井曲线的原理及应用

各条测井曲线的原理及应用

①确定岩层界面
曲线应用
由于它电极距小,紧贴井壁进行 测量,消除了邻层屏蔽的影响,减小 了泥浆的影响,因此岩层界面在曲线 上反映清楚。分层原则是用微电位曲 线的半幅点来确定地层顶底界面。对 于薄层,必须与视电阻率曲线配合, 才能获准确结果。
②划分渗透层
曲线应用
渗透层处,两条微电极曲线出现幅度 差,非渗透层处,两条曲线出现很小的幅 度差。 微电位曲线幅度大于微梯度曲线幅度, 称做正幅度差。渗透性岩层在微电极曲线 上一般呈正幅度差。当泥浆矿化度很高, 使得泥浆电阻率大于侵入带电阻率,微电 位曲线幅度低于微梯度曲线幅度,出现负 幅度差。
声速测井
• 声波时差曲线的影响因素 裂缝或层理发育的地层 未胶结的纯砂岩气层、高压气层 井眼扩径严重的盐岩层 泥浆中含有天然气
周波跳跃
4、密度测井和岩性—密度测井
• 岩石体积密度是单位体积岩石的 质量,单位是g/cm3。岩石体积密 度是表征岩石性质的一个重要参 数,它不但与岩石矿物成分及其 含量有关,还与岩石孔隙和孔隙 中流体类别、性质及含量有关。
• 气探井测井系列
1:500测井项目(全 井 1 2 3 4 5 6 双侧向 声波时差 自然电位 自然伽马 井径 井斜 1 2 3 4 5 6 7 8 1:200测井项目(目的层段)选测项目 双侧向—微球形聚焦 岩性密度 补偿中子 声波时差 自然电位 自然伽马能谱 井径 地层倾角 微电阻率成像 声波成像 核磁共振
泥 浆
围岩
地 层 厚 度
泥饼
过 冲 渡 洗 带 带 或 环 带
未 侵 入 带
侵入带直径 di 井径 dn 围岩
1.自然电位测井(SP)
N
v
井中电极M与地面 电极N
M

测井曲线图

测井曲线图

水淹层---(硼中子测井) 初期日产油39t,含 水54.4%。 后期日产油0.3t,含 水99.2%。
改进后:下部产 油12t/d,含水 15.5%。
水淹层---(C/O--硅钙比)
14号层: C/O=0.62,上
部中水淹,下
部强水淹。
产液:
85.8m3/d; 油:20.16t/d
地层对比—曲线相似性
识别气层--(中子孔隙度—密度)
识别气层--(中子孔隙度—密度)
在2698~2703 m ,获得气产量为65092 m3 /d 。
识别气层--补偿中子时间推移测井结果对比
试油:
中子孔隙 度已改变
6.4089×104 m3/ d ,
裸眼井、套管 井测井时间相 隔23天;中子
中子孔隙 度未改变
孔隙度降低了 3.5%。
泥浆 侵入
泥浆 侵入
无泥 浆侵 入
淡水泥浆—分层
淡水泥浆---分层
盐水泥浆-分层
识别高GR 渗透层
高GR、铀; 低TH、去铀伽 马低; 泥质含量低。

识别气层--(中子孔隙度—密度) 气层
气层特征:低GR、低密度、低中子孔隙度、高电阻率
空井(empty hole)
识别气层--(中子孔隙度—密度)
密度中子孔隙度气层中子伽马特征油层水层压裂后8mm油嘴自喷日产油1993t累产油1355t识别油层阵列感应测井曲线初期日产油698t累计产油1509t水1833m识别油层阵列感应测井曲线在1068m11036m为厚砂顶部146m为油层中部68m为油水同层底部为水层左图所示4号层一直未射开
两次测井 相距6天
识别油层--(阵列感应测井曲线)
初期日产油 6.98t,累计 产油150.9t, 水183.3m3。

测井曲线图实例介绍

测井曲线图实例介绍

砂 泥 岩 剖 面 测 井 曲 线 实 例
纯泥岩
含生物 灰质砂岩
指状泥岩在感应曲线上的特征
用感应曲线划分油、水层
C/O 比 测 井 实 例
C / O 测 井 实 例
用中子寿命测井确定堵水层位



用声波时差曲线划分油、气、水层
砂 泥 岩 剖 面 自 然 伽 马 测 井 图
应 用 自 然 伽 马 和 中 子 伽 马 曲 线 判 别 岩 性
管外窜通,液流向下的井的井温测井曲线 1—地温梯度,2—梯度温度曲线,3—微 差井温曲线
管外窜通,液流向上的井温测井曲 线1—地温梯度,2—梯度温度曲线, 3—微差井温曲线
寻找 吸水 层位 的井 温测 井曲 线实 例
正常注入下的温度曲线为水井动态温度曲线。 特点为在吸水层以上近似为一条直线吸水层以 下,温度朝地温曲线偏移。 关井后测的温度曲线为 静温曲线,吸水层位 为负异常。
测井曲线图实例
的某 两井 层钻 侧井 向液 测浸 井泡 ( 4 盐 6 水天 泥与 浆 8 ) 10 天
-
含轻质油 层在钻井 液浸泡3 天和 20 天的双感 应测井 (淡水泥 浆)
某井钻 开气层 3天和 13天的 深感应 测井曲 线(盐 水泥浆)
某井 测井 图 (高 阻油 层与 低阻 油层)
寻找出气层位的井温测井曲线实例(出气层段 为井温负异常)
地温梯度:地层深度每增加100米,地层温度 的增加量。 梯度温度曲线:用梯度井温仪测量的井内各个 深度处液体的温度。 梯度微差温度曲线:用梯度微差井温仪测量的 井轴上相隔一定间距两点间的温度差值。 径向微差井温曲线:某一深度上,同一水平面 圆周上相差180度两点间的温度差。 油井出气层段在各条梯度井温曲线均有明显 的显示,各条微差井温曲线也都有负异常。负 异常随生产油嘴的加大更加明显。油层微差井 温曲线一般没有负异常显示,只有在大油嘴生 产发生脱气时,才略有负异常。

测井曲线

测井曲线

主要测井曲线及其含义主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。

自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。

Rmf≈Rw时,SP几乎是平直的; Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。

自然电位测井SP曲线的应用:①划分渗透性地层。

②判断岩性,进行地层对比。

③估计泥质含量。

④确定地层水电阻率。

⑤判断水淹层。

⑥沉积相研究。

自然电位正异常Rmf<Rw时,SP出现正异常。

淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。

自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。

测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。

视电阻率曲线的应用:①划分岩性剖面。

②求岩层的真电阻率。

③求岩层孔隙度。

④深度校正。

⑤地层对比。

电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。

底部梯度电极系分层:顶:低点;底:高值。

三、微电极测井(ML)微电极测井是一种微电阻率测井方法。

其纵向分辨能力强,可直观地判断渗透层。

主要应用:①划分岩性剖面。

②确定岩层界面。

③确定含油砂岩的有效厚度。

④确定大井径井段。

⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。

微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。

四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。

油、气、水层在各种录井资料中的应用

油、气、水层在各种录井资料中的应用
2.自然电位:当地层水矿化度>钻井液矿化度时,储集层自然电位曲线偏负。地层水矿化度越高或孔隙渗透性越好、泥质钙质含量越低、地层中含流体越多……则曲线越偏负,幅度也愈大,当地层水矿化度<钻井液矿化度时,曲线偏正,影响幅度大小因素同上。
3.自然伽玛:泥质含量越多,放射性元素含量越多,则自然伽玛越高,反之越低。


较大
接近储集岩骨架值

低平

碳酸盐岩
含气缝洞层
变快
岩心可见缝洞,岩屑中可见缝洞矿物
平衡钻井条件下,槽面有气泡,好者有“气侵”、“井涌”,可闻到气味

很低
பைடு நூலகம்微量


据产层压力而变中压层增加
中高
较低
(有时可很高)
>165
明显小于储集岩骨架值

≥d0



要考虑地层背景和地面条件及井下钻头使用的影响
岩屑代表性要好,分析要认真,情况要落实
最高
微量
微量


稍增
略增或不变
高—较高


(砂岩>200)
小于储集岩骨架值

≤d0
中值(正差异)

油层
变快
可见“油砂”或散状砂岩,干照呈褐黄或金黄色荧光,滴水呈圆珠状
槽面有时见油花,呈零星状或条带状分布
较高





稍增
略增或不变
高—较高


(200~250)
小于储集岩骨架值

≤d0
中值(正差异)
较高
油、气、水层在各种录井资料中的应用

油气层在测井曲线中的反应讲解

油气层在测井曲线中的反应讲解

油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。

自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。

微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。

长、短电极视电阻率曲线均为高阻特征。

感应曲线呈明显的低电导(高电阻)。

井径常小于钻头直径。

(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。

(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。

(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。

2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。

在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。

一般油气层的电阻率是水层的3倍以上。

纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。

(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。

在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。

一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。

(3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。

长江大学测井参考试题1

长江大学测井参考试题1

一、填空题(0.5分×40=20分)1.以泥岩为基线,渗透性地层的SP曲线的偏转(异常)方向主要取决于_泥浆滤液_和地层水的相对矿化度。

当R w>R mf时,SP曲线出现__正_异常,R w<R mf时,SP曲线出现_负_异常。

2.N2.25M0.5A电极系称为单极供电倒装0.5米电位电极系,电极距L=_0.5米。

3.电阻率增大系数I定义为含油岩石电阻率与该岩石完全含水时的电阻率之比,其大小主要取决于_岩石的含油饱和度_。

4.微电极系由两种电极系组成,其中_微梯度主要反映泥饼电阻率,_微电位主要反映冲洗带电阻率。

渗透层在微电极曲线上的基本特征是_出现正幅度差_。

5.在不含放射性物质时,沉积岩的自然放射性大小主要取决于地层的_泥质含量。

6.伽马射线与物质相互作用时,可能产生的三种效应为_光电效应_、_康普顿效应_和电子对效应。

地层密度测井主要利用了_康普顿效应。

7.对快中子的减速作用取决于地层的__氢__含量,对热中子的俘获能力取决于地层的氯含量。

补偿中子测井的“补偿”主要是为了消除地层中氯含量对测量孔隙度的影响。

8.用Φ,Φxo,Φw三孔隙度曲线重叠对地层做流体体积分析时,Φ-Φw表示_含油气孔隙度,Φxo-Φw表示__可动油气孔隙度_。

9.测井解释中的泥质是指_岩石中水、粘土、细粉砂的混合物_,按泥质在岩石中的分布形式可以分为_分散泥质_、_结构泥质__和_层状泥质_三种类型。

10.在砂泥岩剖面中,SP异常幅度很大,Ra低,井径缩小的是_含水砂岩_地层。

11.声波测井时地层中产生滑行波的基本条件是:入射角等于临界角_和第二种介质的速度大于第一种介质的速度。

12.某段声波变密度测井图上,左侧几乎显示为空白,右侧显示清晰的黑色弯曲条带,则反映水泥固井质量为第一界面_胶结良好_,第二界面_胶结良好_。

13.采用标准水层对比法判断油气层时,要求进行比较的解释层与标准水层在_岩性、物性和地层水矿化度等方面必须具有一致性。

地球物理测井

地球物理测井

地球物理测井第一节:概述地球物理测井的分类:分为电法测井和非电法测井两种。

1、电法测井:a:视电阻率、b:微电极、c:自然电位、d:微球型聚焦、e:感应测井。

2、非电法测井:a:声速测井、b:自然伽玛测井、c:中子测井、d:密度测井,e:井径、f:井斜、g:井温、h:地层倾角(HDT)、I:地层压力(RFT)、j:垂直地震测井(VSP)第二节:电法测井一、视电阻率曲线:测井时将电极系放入井下,在上提过程中测量记录一条△Vmn(电位差)随井深变化的曲线,称为视电阻率曲线。

梯度电极系:成对电极间的距离小于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。

电位电极系:成对电极间的距离大于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。

底部梯度电极系在高阻层测井曲线的形状特点如下:(1)对着高阻层视电阻率升高,但曲线不对称于地层中点,高阻层顶界面、底界面分别在极小值、极大值的1/2mn处。

(2)对于厚层、地层中部附近曲线出现平直或变化平缓,随地层减薄平直段缩短直至消失,该处视电阻率值接近地层真电阻率。

(3)对于薄层,在高阻层底界面以下一个电极处,在视电阻率曲线上出现一个“假极大”,极小也比原层上移。

视电阻率曲线的应用:1、划分岩层界面:利用底部梯度电极系视电阻率曲线划分岩层界面的原理是高阻层顶界面(底界面)位于视电阻率曲线极小值(极大值以下1/2MN处。

2、判断岩性:在砂泥岩剖面中,当地层水含盐浓度不是很大时,砂岩电阻率大于泥岩的电阻率,粉砂岩泥质砂岩、砂质泥岩介于它们之间。

但视电阻率曲线无法区分灰岩和拉拉扯扯云岩,它们的电阻都非常大。

3、地层对比和定性判断油水层:对于同一储层,如果0.45m底部梯度幅度高于4m底部梯度梯度测井曲线幅度该层可能为水层,反之则为水层。

二:微电极测井微电极测井:利用特制的短电极系帖附井壁,测量井壁附近的岩层电阻率的一种测井方法叫微电极测井。

微电极测井曲线的应用:1、详细划分地层:地层界面一般在曲线的转折点或半幅点2、划分渗透层,判断岩性:微电极曲线在渗层上显示正幅度差,数值中等,地层渗透率越好,二者的幅度差越大,因此可以根据微电极曲线的幅度差判断地层的渗透性好坏。

油、气、水层在测井曲线上显示不同的特征

油、气、水层在测井曲线上显示不同的特征

油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。

自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。

微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。

长、短电极视电阻率曲线均为高阻特征。

感应曲线呈明显的低电导(高电阻)。

井径常小于钻头直径。

(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。

(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。

(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。

2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。

在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。

一般油气层的电阻率是水层的3倍以上。

纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。

(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。

在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。

一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。

(3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。

油、气、水层划分

油、气、水层划分
(3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。这种对比要注意储集层的岩性、物性和地层水矿化度等在横向上的变化,如下图所示。
(4)最小出油电阻率法:对某一构造或断块的某一层组来说,地层矿化度一般比较稳定,纯水层的电阻率高低主要与岩性、物性有关,所以若地层的岩性物性相近,则水层的电阻率相同,当地层含油饱和度增加,地层电阻率也随之升高。比较测井解释的真电阻率与试油结果,就要以确定一个电性标准(最小出油电阻率),高于电性标准是油层,低于电性标准的是水层。从而利用地层真电阻率(感应曲线所求的电阻率)和其它资料,可划分出油(气)、水层。但是应用这种方法时,必须考虑到不同断块、不同层系的电性标准不同,当岩性、物性、水性变化,则最小出油电阻也随之变化。
(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。
(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。一般油气层的电阻率是水层的3倍以上。纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测阻率小于浅探测电阻率的现象,但没有水层差别那样大。

测井曲线划分油、气、水层

测井曲线划分油、气、水层
(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。ﻫ2、定性判断油、气、水层
油气水层的定性解释主要是采用比较的方法来区别它们。在定性解释过程中,主要采用以下几种比较方法:ﻫ(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。一般油气层的电阻率是水层的3倍以上。纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
长、短电极视电阻率曲线均为高阻特征。ﻫ感应曲线呈明显的低电导(高电阻)。ﻫ井径常小于钻头直径。ﻫ(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。ﻫ(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
电阻增大系数I:含油岩石的电阻率与该岩石完全含水时电阻率的比值。即
概述 分类 主要方法 应用" alt="地球物理测井 概述 分类 主要方法 应用" src="" width=1 height=1 real_src="" eventslistuid="e4">
第一节:概述
普通电阻率测井就是把一个电极系放入井内,测量井内岩层电阻率变化,用以研究地质剖面、判断油气水层。又称视电阻率测井。
沉积岩的导电能力主要取决于其孔隙中的地层水的性质—地层水电阻率。

地球矿场物理(测井)复习总结(电法测井部分)

地球矿场物理(测井)复习总结(电法测井部分)

地球矿场物理(测井)复习总结(电法测井部分)第一篇:地球矿场物理(测井)复习总结(电法测井部分)1.自然电动势产生的主要机理?淡水泥浆沙泥岩刨面井,砂岩层和泥岩层井内自然电位的特点?答:井壁附近两种不同矿化度溶液接触产生电化学过程,结果产生电动势。

自然电动势主要由扩散电动势和扩散吸附电动势产生。

扩散电动势主要存在砂岩中满足渗透膜原理,扩散吸附电动势存在于泥岩中,主要是因为泥岩隔膜的阳离子交换作用。

在沙泥岩剖面中钻井,一般为淡水泥浆钻进(CW>Cmf),故在砂岩渗透层井段自然电位曲线出现明显的负异常,泥岩渗透层井段自然电位曲线出现明显的正异常。

2.如何确定自然点位测井曲线的泥岩基线?答:在实测的自然电位曲线中,由于泥岩或页岩层岩性稳定,在自然电位曲线上显示为一条电位不变的直线,将它作为自然电位的基线,这就是所谓的泥岩基线。

泥岩基线:均质、巨厚的泥岩层对应的自然电位曲线。

3.自然电位测井的影响因素?答:①CW和Cmf的比值(比值>1,负异常,比值<1,正异常)②地层水及泥浆滤液中含盐性质③岩性(泥质含量增加,SP曲线幅度降低)④地层温度(温度升高,Kda、Kd增加)SSP•rm⑤地层电阻率的影响(电阻率升高,SP幅度下降)∆Usp=⑥地层厚度的影响(厚度减小,SP幅度下降)rm+rsd+rsh⑦井径扩大和侵入的影响,(井眼越大,侵入越深,SP幅度越小)4.自然电位测井的主要应用?答:①划分渗透性层;②估计泥质含量;③确定地层水电阻率Rw;④判断水淹层。

5.描述岩石电阻率与孔隙度和饱和度的关系,并详细给出阿尔奇公式。

答:地层因数F=R0/RW=a/φm,R0为孔隙中100%含水的地层电阻率,RW为孔隙中所含地层水的电阻率,a为岩性比例(0.6~1.5),m为胶结指数(1.5~3),F只与岩石孔隙度、胶结情况有关,而与饱含在岩石中的地层水电阻率无关。

阿尔奇公式是地层电阻率因数F、孔隙度ψ、含水饱和度S和地层电阻率之间的经验关系式F=1ψm,F=ROR1, t=n RWRoSw式中:Rt 为地层电阻率;Ro为地层全含水时的电阻率层水电阻率;m为胶结指数;n为饱和度指数。

测井原理及各种曲线的应用

测井原理及各种曲线的应用

一、SP曲线和GR曲线测井基本原理用淡水泥浆钻井时,由于地层水矿化度小于泥浆滤液矿化度而在砂岩段形成扩散电位——在井眼内砂岩段靠近井壁的地方负电荷富集,地层内砂岩段靠近井壁的地方正电荷富集,导致砂层段井眼泥浆的电势低于砂层电势,正象一个平行于地层且正极指向地层的“电池”(第一个)。

在泥岩段,因为泥浆滤液与地层水之间存在矿化度差及选择性吸附作用形成吸附电位——在井眼内泥岩段靠近井壁的地方正电荷富集,地层中泥岩段负电荷富集,导致泥岩段井眼泥浆的电势高于地层电势,正象一个平行于地层且正极指向井眼的“电池”(第二个)。

又因为泥浆和地层各具导电性,正象两条导线把以上两个“电池”串联了起来而形成回路,这样在地层中电流从砂岩段(第一个电池正极)流向泥岩段(第二个电池负极);在井眼中电流从泥岩段(第二个电池正极)流向砂岩段(第一个电池负极)。

在此回路中,地层也充当电阻的作用,总电动势等于扩散电动势和吸附电动势之和。

用M电极在井眼中测的自然电流在泥浆中产生的电位降即得自然电位曲线。

其值在正常情况下与对应地层中泥质含量关系密切,砂岩中泥质含量增加,则电位降下降,异常幅度减小;砂岩中泥质含量下降,则电位降上升,异常幅度增大。

另外,当泥浆柱与地层流体间存在压力差时发生过滤作用形成过滤电动势——动电学电位。

沉积岩的放射形取决于岩石中放射性元素的含量,放射性元素的含量主要取决于粘土和泥质的含量,粘土和泥质含量越高放射性越强。

GR曲线主要测量地层的放射性。

1、曲线幅度反映沉积时水动力能量的强弱;2、曲线形态反映物源供给的变化和沉积时水动力条件的变化;3、顶、底部形态的变化反映沉积初、末期水动力能量和物源供给的变化速度;4、曲线的光滑程度水动力对沉积物改造所持续时间的长短;5、曲线的齿中线组合方式反映沉积物加积特点;6、曲线包络形态反映在大层段内垂向层序特征和多层砂在沉积过程中能量的变化。

影响自然电位曲线异常幅度的因素:(1)岩性、地层水与泥浆含盐度比值的影响。

常规测井曲线意义

常规测井曲线意义

AC :声波时差,主要反映地层的物性(孔隙度),孔隙度较大时其声波时差高,反之亦然;
DEN:密度,反映地层物性,地层孔隙度大时与之对应的岩石密度低,孔隙度小时与之对应的岩石密度大;
CNL:补偿中子,一般在水层中相对高值,在油层中亦为高值,但在油层中的高值趋势没有在水层中明显。

在气层和致密层中相对低值,相对而言,一般较好的气层中的补偿中子比致密层还要低;
GR:自然伽马,主要反映地层的岩性,一般在砂岩(或灰岩)地层中呈低值,在泥岩(或页岩)地层中呈高值。

在含有高放射性物质或碳质泥岩地层中呈相对更高值;
SP:自然电位,反映储层的物性(渗透性),砂岩中呈低值(负异常),泥岩中呈高值(正异常)。

在储层中自然电位值越低表明储层渗透性越好;
RLLD(S):或LLD、LLS,深浅侧向电阻率;
RILD、RILM、RLL8或ILD、ILM、LL8:深感应、中感应、八侧向电阻率;
油气层中电阻率呈高值,水层中电阻率呈相对低值;。

测井曲线图实例

测井曲线图实例

砂 泥 岩 剖 面 测 井 曲 线 实 例
纯泥岩
含生物 灰质砂岩
指状泥岩在感应曲线上的特征
用感应曲线划分油、水层
C/O 比 测 井 实 例
C / O 测 井 实 例
用中子寿命测井确定堵水层位



用声波时差曲线划分油、气、水层
砂 泥 岩 剖 面 自 然 伽 马 测 井 图
应 用 自 然 伽 马 和 中 子 伽 马 曲 线 判 别 岩 性
某井低 电阻率 凝析气 层(泥 岩电阻 率30-60) 水层电 阻率0.51.3;油 气层5-9 欧姆米。
某井油 组双感 应-声波 测井图 水层0.40.5;油 层0.45欧 姆米 (油层 含黄铁 矿)
海水泥浆侵 入产生的低 阻油气层 A—5.7;B— 4.5;C—6.5 欧姆米盐水 钻井液与淡 地层水差别 越大,气层、 油层与水层 的正自然电 位差别越大
裂缝发育 的油层
解释见下页
DG 油田 盐水泥浆钻井的测井曲线
1.选中wis文件
岩心参数文件装入过程
2. 选中所要用的井文件
3.点击表选项
4.选择装入
5.选择从文件装入表数据并点击浏览,选中要装 载的文件
6.点打开,然后确定。
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
SP
异常幅度大
幅度异常
幅度异常

声波时差和电阻率曲线

声波时差和电阻率曲线

声波时差和电阻率曲线1.(1)油层:声波时差值中等,曲线平缓呈平台状。

自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。

微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。

长、短电极视电阻率曲线均为高阻特征。

感应曲线呈明显的低电导(高电阻)。

井径常小于钻头直径。

(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。

(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。

(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。

2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。

在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。

一般油气层的电阻率是水层的3倍以上。

纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。

(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。

在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。

一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。

(3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。

自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。

微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。

长、短电极视电阻率曲线均为高阻特征。

感应曲线呈明显的低电导(高电阻)。

井径常小于钻头直径。

(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。

(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。

(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。

2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。

在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。

一般油气层的电阻率是水层的3倍以上。

纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。

(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。

在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。

一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。

(3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。

这种对比要注意储集层的岩性、物性和地层水矿化度等在横向上的变化,如下图所示。

(4)最小出油电阻率法:对某一构造或断块的某一层组来说,地层矿化度一般比较稳定,纯水层的电阻率高低主要与岩性、物性有关,所以若地层的岩性物性相近,则水层的电阻率相同,当地层含油饱和度增加,地层电阻率也随之升高。

比较测井解释的真电阻率与试油结果,就要以确定一个电性标准(最小出油电阻率),高于电性标准是油层,低于电性标准的是水层。

从而利用地层真电阻率(感应曲线所求的电阻率)和其它资料,可划分出油(气)、水层。

但是应用这种方法时,必须考虑到不同断块、不同层系的电性标准不同,当岩性、物性、水性变化,则最小出油电阻也随之变化。

(5)判断气层的方法:气层与油层在许多方面相似,利用一般的测井方法划分不开,只能利用气层的“三高”特点进行区分。

所谓“三高”即高时差值(或出现周波跳跃);高中子伽马值;高气测值(甲烷高,重烃低)。

根据油、气、水层的这些曲线特征和划分油、气、水层的方法,就可以把一般岩性、简单明显的油、气、水层划分出来。

注解:周波跳跃现象:声波测井在含气裂缝性地层处的典型响应特征;裂缝和气显示强烈,声波会周波跳跃;当遇到气层时候,声波时差会引起周波跳跃。

挖掘效应:挖掘效应是气层段中子与密度曲线交叉,分开明显的曲线特征。

周波跳跃现象挖掘效应井下地层是由各类岩石组成,不同的岩石具有不同的物理化学性质,为了研究各类岩石的物理性质及井下地层是否含有石油天然气和其他有用矿产,建立了一门实用性很强的边缘学科---地球物理测井学,简称“测井”,它以地质学、物理学、数学为理论基础,采用计算机信息技术、电子技术及传感器技术,设计出专门的测井仪器,沿着井身进行测量,得出地层的各种物理、化学性质、地层结构及井身几何特性等各种信息,为石油天然气勘探、油气田开发提供重要数据和资料。

测井的井场作业如图所示,由测井地面仪器、绞车和电缆组成,通过电缆把下井仪器放到井底,在提升电缆过程中进行测量。

概述分类主要方法应用" alt="地球物理测井概述分类主要方法应用" src="/blog7style/images/common/sg_trans.gif" width=1 height=1 real_src="/ac/b.gif" eventslistuid="e4">第一节:概述普通电阻率测井就是把一个电极系放入井内,测量井内岩层电阻率变化,用以研究地质剖面、判断油气水层。

又称视电阻率测井。

内容:梯度电极系、电位电极系、微电极测井主要任务:通过测井岩石电阻率的差别来区分岩性、划分油气水层,进行剖面地层对比等。

岩石电阻率一、岩石电阻率与岩性的关系不同岩性的岩石,电阻率不同。

主要造岩矿物的电阻率很高,石油的电阻率很高,几乎不导电。

沉积岩是靠岩石孔隙中所含地层水中的离子导电的。

二、岩石电阻率与地层水性质的关系岩石骨架:组成沉积岩的造岩矿物的固体颗粒部分。

沉积岩的导电能力主要取决于其孔隙中的地层水的性质—地层水电阻率。

1.地层水电阻率与含盐类化学成分的关系2.地层水Rw与矿化度Cw的关系:反比3.Rw与温度的关系:反比三、含水岩石电阻率与孔隙度的关系地层因素F:完全含水(100%含水)岩石的电阻率Ro与地层水电阻率的比值。

即F=Ro/Rw该比值只与岩石的孔隙度、胶结情况和孔隙结构有关,与Rw无关。

实验证明:F=a/φ(m)其中:a—与岩性有关的系数,0.6-1.5;m—胶结指数,随岩石胶结程度不同而变化,1.5-3;例:某油田第三系一含水砂岩的电阻率为7.2欧姆.米,地层水电阻率为1.2欧姆.米。

试求该层的孔隙度。

(a=0.93,m=1.64)解:F=Ro/Rw=7.2/1.2=6F=a/φ(m)=0.93/φ(1.64)得,φ=32%四、含油岩石电阻率Rt与含油饱和度So的关系电阻增大系数I:含油岩石的电阻率与该岩石完全含水时电阻率的比值。

即I=Rt/Ro对一定的岩样,该比值只与岩样的含油饱和度有关,与Rw、φ及孔隙形状无关。

实验证明:I=Rt/Ro=b/Sw(n)=b/(1-So)(n)其中:b-系数,与岩性有关n—饱和度指数,与岩性有关。

例:已知某砂岩层的电阻率为14欧姆.米,地层水电阻率Rw为0.4欧姆.米。

地层孔隙度为25%。

求含油饱和度So.(a=b=1,m=n=2)解:由F=Ro/Rw=1/φ(2)得Ro=Rw/φ(2)=0.4/0.25(2)=6.4由I=Rt/Ro=1/Sw(2)得Sw=(Ro/Rt)½=(6.4/14)½=67.6%So=1-Sw=1-67.6%=32.4%普通电阻率测井原理一、均匀介质中电阻率的测量原理1.均匀介质中电阻率R、电流强度I与电位U的关系R=4пrU/I其中,I—点电源的电流强度U—距点电源距离为r点处的电位2.均匀介质电阻率的测量原理Rt=KΔU/I其中,K—电极系系数,只与电极系结构尺寸有关ΔU—测量电极M、N之间的电位差二、非均匀介质电阻率的测量1.泥浆侵入冲洗带:侵入带:原状地层:泥浆侵入类型:泥浆高侵:是指冲洗带电阻率Rxo明显高于地层电阻率Rt.淡水泥浆钻井的水层多位泥浆高侵。

泥浆低侵:是指冲洗带电阻率Rxo明显小于地层电阻率Rt。

油层多为泥浆低侵或侵入不明显。

2.视电阻率RaRa=KΔU/I三、电极系按一定顺序排列的一组电极。

由供电电极和测量电极组成。

成对电极不成对电极(单电极)1.梯度电极系:在电极系的三个电极中,成对电极间距离最小的电极系。

分为:顶部梯度电极系—成对电极在不成对电极之上的梯度电极系。

底部梯度电极系—之下理想梯度电极系:成对电极之间距离无限小时的梯度电极系。

记录点O:在成对电极的中点上。

即AB或MN的中点。

电极距L:记录点到单电极之间的距离。

L=OA或OM2.电位电极系:在电极系的三个电极中,成对电极之间距离较大的电极系。

理想电位电极系:成对电极之间距离无限大时的电极系。

记录点O:单电极同与它最近的成对电极的中点上。

即AM的中点。

电极距L:单电极到与它最近的电极之间的距离,L=AM。

3.电极系的表示法:符号法图示法4.电极系的探测深度:探测半径r在均匀介质中,电位电极系:r=2L梯度电极系:r=1.4L视电阻率曲线的特点及其影响因素一、梯度电极系理论曲线1.理想梯度电极系视电阻率简化公式对理想梯度电极系,MN→0,其视电阻率公式可简化为:Ra=4п.AO²Eo/I在记录点,Eo=Ro.jo所以,Ra=Rojo/joj其中,joj=I/(4п.AO²),为均匀介质中记录点处的电流密度,常数。

上式表明,在测量条件不变的情况下,所测的Ra与记录点处的电流密度、电阻率成正比。

对一定的地层来讲,记录点处的电流密度jo是引起视电阻率变化的主要因素,分析Ra曲线变化,主要分析jo变化即可。

2.梯度电极系曲线特点图2-9,2-10,2-111)Ra曲线对地层中部不对称,对高祖层,底部梯度电极系的Ra曲线在高阻层的底界面显示极大值,顶界面显示极小值;顶部梯度电极系则正好相反。

2)地层厚度很大时,对着地层中部Ra曲线出现一个直线段,其幅度值接对应地层的真电阻率Rt。

3)对厚度大于电极距的中厚层,其视电阻率曲线形状与厚层相似。

但随厚度变薄,地层中部的直线段变小直至消失,幅度变小。

二、电位电极系Ra曲线图2-12由图2-12可看出:1.电位电极系的Ra曲线对地层中部对称;2.Ra曲线对着地层中点取值。

当厚度h大于电极距L时,对应地层中点,Ra呈现极大值,且h 越大,极大值月接近Rt;当h<L时,对应地层中点,Ra呈现极小值,不反映地层Rt的变化。

要求:实际工作中使用的电位电极系的电极距小于要求划分地层的最小厚度。

四、Ra曲线的影响因素1.电极系的影响不同电极系,其电极距不同,探测深度不同,泥浆、围岩等的影响不同,曲线也就不同。

2.井的影响—井内泥浆Rm的影响见图2-14实际工作中,要求Rm>5Rw。

3.围岩—层厚的影响4.泥浆侵入影响:高侵,使Ra增大;低侵使Ra减小。

5.高阻邻层的屏蔽影响:增阻屏蔽影响视电阻率曲线的应用一、划分岩性剖面在砂泥岩剖面,利用Ra曲线的幅度差异将高阻层分辨出来,然后参考SP曲线,将显示负异常的高阻层段划分出来即为渗透层。

二、求岩层的电阻率三、求岩层的孔隙度首先在Ra曲线上找出厚度很大的含水纯地层,取其Ra值,经过相应校正作为Ro,再通过水样化验或其它资料求得Rw,然后利用阿尔奇公式F=Ro/Rw,F=f(φ)关系求得φ。

四、求含油饱和度由孔隙度测井(Δt、ρ中子)→F →Ro=FRw Rt →So球物理测井的分类:分为电法测井和非电法测井两种。

相关文档
最新文档