经济数学33曲线的凹向与拐点-课件(PPT·精·选)

合集下载

《曲线凹凸与拐点》课件

《曲线凹凸与拐点》课件

曲线凹凸的计算方法
定义法
通过定义凹凸性,利用二阶导数正负来判断。如果二阶导数大于0,则曲线在相 应区间内是凹的;如果二阶导数小于0,则曲线在相应区间内是凸的。
切线法
通过切线斜率判断。在某点处做切线,如果切线斜率在相邻两点之间由负变正, 则该点为拐点。
拐点的计算方法
定义法
根据拐点的定义,即函数在某点的左 右极限不相等,来确定拐点。
具体应用
在气候学中,通过研究气候数据的曲线凹凸性,可以更好地理解气候变化的规律和趋势 。在金融学中,通过研究股票价格的拐点,可以更好地把握股票市场的变化和趋势。
导数符号变化法
通过判断函数在某点附近左右两 侧导数的符号变化来确定是否为
拐点。
二阶导数测试法
通过判断二阶导数的符号变化来确 定是否为拐点。如果二阶导数在某 点处从正变为负或从负变为正,则 该点为拐点。
切线方向变化法
通过观察曲线在某点处的切线方向 是否发生变化来确定是否为拐点。 如果切线方向发生改变,则该点为 拐点。
导数法
通过求函数的二阶导数,并令其为0 ,解出相应的x值,再判断该点是否为 拐点。
曲线凹凸与拐点计算中的注意事项
初始判断
在计算前应先大致判断 函数的形态,以便选择
合适的计算方法。
精确度要求
对于实际应用,应考虑 计算结果的精确度,选 择合适的数学工具和算
法。
拐点判断
在确定拐点时,应同时 考虑左右极限,避免误
拐点是曲线上的一个点,在该点处曲线的切线方向发变符号
在拐点处,曲线的导数由正变负或由 负变正。
拐点处凹凸性改变
拐点处切线方向变化
在拐点处,曲线的切线方向发生变化 ,由上升变为下降或由下降变为上升 。

《曲线的凹凸性》PPT课件

《曲线的凹凸性》PPT课件

2
2
可以推行到 n 个数的情形
November, 2004
拐点
inflection point
f (x)
f (x) 0 f (x) 0 f (x) 0
拐点 (x0, f(x0)): f’’(x0) 在点 x0 两侧异号
November, 2004
拐点
inflection point
f (x)
f (x) 0 f (x) 0 f (x) 0
x1 x2
x2
2
凹弧的定义: f ( x1 x2 ) f (x1) f (x2)
2
2
November, 2004
y f (x)
f ( x1)
f (x2)
x1
x1 x2
x2
2
凸弧的定义: f ( x1 x2 ) f (x1) f (x2)
2
2
November, 2004
如何判别曲线的凹凸?
( 1 )f(x ) 0 f(x )凹 (2 ) f(x ) 0 f(x )凸
证 ( 1 )f(x ) 0 f(x )凹
f(x)0f(x1x2)f(x1)f(x2)
2
2
y f (x)
(ax1x2b)
f (x1)
x1
x1 x2 2
f (x2)
x2
November, 2004
f(x)0f(x1x2)f(x1)f(x2)
正的
f(x1)f(x2)2f(x0) x1x22x00
f(x1)f(x2)2f(x1 2x2) 不等式成立
November, 2004
推论:
(1 )f(x ) 0 f(x 1 x 2 )f(x 1 ) f(x 2 )

《曲线的凹凸与拐点》课件

《曲线的凹凸与拐点》课件
《曲线的凹凸与拐点》ppt课件
contents
目录
• 曲线凹凸的定义与性质 • 判断曲线凹凸的方法 • 曲线的拐点及其性质 • 曲线凹凸与拐点的应用 • 总结与思考
01
曲线凹凸的定义与性质
凹凸的定义
凹函数
对于曲线上的任意两点$x_1$和 $x_2$($x_1 < x_2$),如果函 数值$f(x_1) > f(x_2)$,则称该函 数为凹函数。
通过学习更多的函数曲线,加深对 凹凸性和拐点的理解。
探索应用领域
了解曲线凹凸性和拐点在实际问题 中的应用,如物理学、工程学等。
对实际应用的展望
工程设计
在工程设计中,了解曲线的凹凸 性和拐点有助于优化设计,如桥 梁、建筑等结构的稳定性分析。
数据分析
在数据分析中,可以利用曲线凹 凸性和拐点的知识,对数据进行
凸函数
对于曲线上的任意两点$x_1$和 $x_2$($x_1 < x_2$),如果函 数值$f(x_1) < f(x_2)$,则称该函 数为凸函数。
凹凸的性质
01
凹函数的图像呈下凹状,凸函数 的图像呈上凸状。
02
在凹函数中,中点的函数值小于 两端点的函数值;在凸函数中, 中点的函数值大于两端点的函数 值。
凸函数的定义
对于函数$f(x)$在区间$[a,b]$上,如果对任意$x_1, x_2$($x_1 < x_2$)都有 $f(x_1) - f(x_2) > frac{f(x_1) + f(x_2)}{2} (x_1 - x_2)$,则称$f(x)$在区间 $[a,b]$上为凸函数。
凹凸的判断方法
计算二阶导数
拐点的连续性判定
若函数在拐点处的一阶导 数存在且二阶导数改变符 号,则该点为拐点的充分 必要条件是该点连续。

曲线的凹凸与拐点概述课件

曲线的凹凸与拐点概述课件
几何意义
对于凹函数,其图像在任何一点处切线的斜率都大于0;对于凸函数,其图像在任何一点 处切线的斜率都小于0。
应用
在经济学、生物学、工程学等领域中,凹函数和凸函数都有广泛的应用。例如,在经济学 中,凹函数可以描述成本、收益等经济变量的变化规律;在生物学中,凸函数可以描述种 群数量、资源分配等生物变量的变化规律。

对于给定曲线y = f(x),如果在区间(a,b)内,对于任意 x1<x2<x3,都有f(x2) > f(x1) + (x2 - x1) * (x3 - x2) / (x3 x1),则称f(x)在区间(a,b)内是凸函数。
拐点的定义
• 拐点:对于给定曲线y = f(x),如果存在点x0,使得f'(x0) = 0,且在x0的左侧和右侧,f'(x)的符号相反,则称x0为拐点。
二次函数
在极值点处有拐点,因为极值点 处函数的单调性发生改变。
三角函数
在正弦函数和余弦函数的周期性 变化过程中,每一个周期内都有
两个拐点。
拐点的应用
经济预测
利用拐点预测经济周期的转换点。
科学计算
在求解函数的极值点和最值点时,拐点是一个重 要的参考指标。
工程设计
在机械工程中,拐点被用来确定机构的临界状态 和设计参数。
04 曲线凹凸与拐点的实际意义
CHAPTER
经济中的应用
股价走势分析
通过分析股票价格的拐点,可以 判断股票价格的未来趋势,为投 资者提供参考。
经济学模型
拐点在经济学模型中可以用于描 述经济变量的转折点或变化趋势 的转折点。
自然科学中的应用
生态学
拐点可以描述生态系统中的转折点, 如气候变化对生物多样性的影响等。

《曲线的凹凸与拐点》PPT课件

《曲线的凹凸与拐点》PPT课件
定理 2 如果 f ( x)在( x0 , x0 )内存在二阶导
数,则点x0 , f ( x0 )是拐点的必要条件是 f "( x0 ) 0 .
证 f ( x) 二阶可导, f ( x) 存在且连续,
7
又( x0 , f ( x0 ) )是拐点, 则 f ( x) [ f ( x)]在x0两边变号, f ( x)在x0取得极值,由可导函数取得极值的条件, f ( x) 0.
13
例4 假定f(x)在x=x0处具有直到n阶的连续导数,且
f ( x0 ) f ( x0 ) f (n1)( x0 ) 0,但 f (n)( x0 ) 0
这里n为奇数≥3, 则( x0 , f ( x0 ))是拐点
证 记 g( x) f ( x) 则 g(n3)( x0 ) f (n)( x0 ) 0 由高阶导数判定极值的方法知
x0 , x2 ]上
x1 x2 x0 分别应用L—定理,得
f ( x0 ) f ( x1 ) f (1 )h ( x1 1 x0 )
f ( x2 ) f ( x0 ) f (2 )h ( x0 2 x2 )
两式相减,得
2 f ( x0 ) [ f ( x1 ) f ( x2 )] [ f (1 ) f (2 )]h
y cos x sin x .
令 y 0,

x1
3 4
,
7 x2 4 .
f (3) 2 0,
4
f (7) 2 0,
4
12
在[0,2]内曲线有拐点为 (3 ,0), (7 ,0).
4
4
注意: 若 f ( x0 ) 不存在,点 ( x0 , f ( x0 )) 也可能 是连续曲线 y f ( x)的拐点.

曲线的凸凹性与拐点课件

曲线的凸凹性与拐点课件

凸函数的性 质
凸函数的性质
如果函数$f(x)$在区间$I$上是凸函数,则对于任意$x_1, x_2 \in I$,都有$f(\frac{x_1 + x_2}{2}) \leq \frac{f(x_1) + f(x_2)}{2}$。
凸函数的性质还包括
如果函数$f(x)$在区间$I$上是凸函数,则对于任意$x \in I$, 都有$f(\frac{x + x}{2}) \leq f(x)$。
定义
对于函数$f(x)$,如果$f''(x_{0})=0$ 且$f'(x_{0})\neq 0$,那么点 $(x_{0},f(x_{0}))$称为函数$f(x)$的拐 点。
拐点的求法
求解方法一
直接求解法。通过观察函数的导数形式,确定导数在某一点为零,然后进一步求 解二阶导数在该点的值,判断其是否为零。
VS
极值的意义
极值反映了函数在某一点附近的变化情况, 是局部的、暂时的最大值或最小值。
极值的求法
01
02
03
04
判断函数的单调性
根据导数与函数单调性的关系, 判断函数在某区间内的单调性,
寻找极值点。
求导数
根据函数表达式求出导数,并 找到导数为零的点。
判断导数的符号
判断导数在零点附近的符号变 化,以确定极值的存在性。
凹函数的几何特征
曲线开口向下,即函数图像是向内凹的。
凹函数的性 质
若函数$f(x)$在区间$I$上是凹函数,则对于任意$x_{1}, x_{2}$在$I$上,都有 $f(x_{1}) \leq f(x_{2})$。
若函数$f(x)$在区间$I$上是凹函数,则对于任意$x_{1}, x_{2}$在$I$上,都有 $\frac{f(x_{1})}{x_{1}} \leq \frac{f(x_{2})}{x_{2}}$。

经济数学3.3曲线的凹向与拐点

经济数学3.3曲线的凹向与拐点
1 没有拐点,它在整个 (,) 是凹的.
ESC
二. 曲线凹凸与拐点的求法
例5 与拐点. 求曲线 y 2 ( x 4) 的凹凸区间
1 3
, 解 函数的连续区间为(, ) 2 5 1 2 ( x 4) 3 ( x 4) 3 y y 3 9 y 在 (,) 内恒不为零,但 x 4 时, y 不存在. x 在4的左侧邻近时, y 0 ; 在4的右 侧邻近时, y 0 .即 y在 x 4两侧异号,所 以 (4,2)是曲线的拐点. ESC
二. 曲线凹凸与拐点的求法
4) (, 曲线的凹区间是( , ,凸区间是 4 )
练习:
1、求曲线
y (x 1)31 的拐点。
2、 确定曲线
y x x 的凹凸区间与拐点.
3
ESC
内容小结
本节重点讲了: 一. 曲线凹凸与拐点的定义 二.曲线凹凸与拐点的求法 求拐点的一般步骤: ①求函数定义域; ②求函数的二阶导数 f (x) ; ③令 f ( x) 0,解出全部根,并求出所 有二阶导数不存在的点;
二. 曲线凹凸与拐点的求法
例2 (续)
结论: 在区间 (0, b)内,曲线凹; 2 在区间 ( b ,) 内, 曲线凸; 2 曲线的拐点是 ( b , Ae2).
设一消费品的需求 Q 是消费者的收入 x 的函数
Q Ae
b x
(A 0, b 0).
Q
试讨论该需求收入曲线的凹凸区间与拐点.
(3)判定:在各个部分区间内讨论导 数 (x) 的符号:设, b) I 的一个 是 f (a 部分区间,当 (a, b) 时,若(x) 0, x f (2)求二阶导数 (a (1)确定 f (x), 解方程 求其 则曲线在区间, b) 内凹;若 函数的 f (a 根.(x) 0, 其根将 (x) 0, 则曲线在区间, b) 内凸 f 连续区间; 又假设 I, 且有(x ) 0, 若在 x0 f 0 函数连续区间 分成 I 点 的左右邻近(x) 的符号相反, f 0 若干个部分区间; 则曲线上的点, f (x0)) 是曲线的拐 (x0 点; 若在点 的左右邻近(x) 的符 f 0 号相同,则在 处,曲线没有拐点. 0 ESC

《曲线的凹向与拐点》课件

《曲线的凹向与拐点》课件
本次课程将通过ppt课件的 形式,系统介绍曲线的凹 向与拐点的概念、性质和 应用。
课程目标
掌握曲线的凹向与拐点的定义和 判定方法。 理解曲线的凹向与拐点在函数极 值问题中的应用。 能够运用曲线的凹向与拐点解决 一些实际问题。
02
曲线的凹向
凹向的定义
凹向
在平面曲线上,任意两点的连线 段位于曲线弧的下方,则称该曲 线为凹曲线。
凹向的曲线在一定区域内具有下凹的趋势 ,即随着自变量的增加,函数值会减小。
对于连续的凹函数,其图像是连续下降的 。
03
曲线的拐点
拐点的定义
01
拐点是函数图像上凹凸性发生改 变的点,即二阶导数等于零的点 。
02
在数学上,拐点是曲线在某点的 切线斜率由正变负或由负变正的 点。
拐点的判断方法
首先求函数的二阶导数,然后 找出二阶导数等于零的点。
的变化趋势。
在物理中的应用
振动分析
在物理学中,曲线的凹向和拐点可以用于 分析振动的周期、幅度和相位。
光学分析
在光学中,利用曲线的凹向和拐点可以分 析光的折射、反射和干涉现象。
力学分析
在力学中,利用曲线的凹向和拐点可以分 析物体的运动轨迹和受力情况。
在经济中的应用
供需分析
风险管理
在经济分析中,利用曲线的凹向和拐 点可以分析供需关系,预测市场价格 变化。
检查二阶导数在零点左右的符 号变化,如果由正变负或由负 变正,那么这个点就是拐点。
另一种方法是利用泰勒展开式 来判断,在拐点附近,函数可 以展开为两个线性项,且斜率 发生改变。
拐点的性质
拐点是局部性质,只影响曲线在 该点的附近凹凸性,不影响整体
形状。
不是所有的函数都有拐点,例如 单调函数就没有拐点。

函数的凹凸性ppt课件

函数的凹凸性ppt课件

② f (x1 x2 ) f (x1 ) f (x2 ) ;
③ f (x1 ) f (x2 ) 0; x1 x2
④ f ( x1 x2 ) f (x1 ) f (x2 ) .
2
2
当 f (x) lg x 时,上述结论中正确结论的序号

.
9
10
【详解】
对于①②可以用 f (x) lg x
f
(x ) 故函数 2
f
(x) 是
凹函数。
14
(2)由 f (x) 1 1 f (x) 1 1 ax2 x 1 ①
ax2 x 1

x
0时, a R ,当
x (0,1]时①即 ax2x恒成立1
a 即
a
1
x2 1
1
x 1
(1 1)2 x2
(1 1)2 1
1 4
恒成立,当
2
2

DC
x
轴交
f
(x)

D(
x1
2
x2
,
yD )
D

f (x)



yD
f
( x1
2
x2
)
yC
f (x1) f (x2 ) 故④不正确 2
11
点评:本题主要考查了 f (x) lg x 函数运算性质以及直
线斜率应用,题目较综合.判断④不正确也可直接利 用函数图象的上凸性作结论.
12
定 义 在 R 上 的 函 数 f (x) 满 足 : 如 果 对 任 意 x , x R 都 有 12
f
(
x 1
x 2
)
1
f (x ) f (x ) 则称函数 f (x) 是 R 上的凹函数,已知二次函

《曲线凹凸性》PPT课件

《曲线凹凸性》PPT课件

原点时, 点 M 与某一直线 L 的距离趋于 0, 则称直线 L 为
曲线y = f (x)的渐近线 .
例如, 双曲线
有渐近线
x y0 ab
y
y f(x)
C M ykxb
L PN
o
x
y
但抛物线
无渐近线 .
渐近线分为水平渐近线、铅直渐近线
ox
和斜渐近线三种.
精选ppt
11
机动 目录 上页 下页 返回 结束
0
4
(极大)
11
6
(拐点)
精选ppt
19
机动 目录 上页 下页 返回 结束
4) 求渐近线
lim y ,x 3为铅直渐近线
x3
lim y 1,
x
lim y 0 x x
y 1 为水平渐近线 无斜渐近线
y
1
36x (x 3)2
,
y
36(3 x) (x 3)3
,
y
72( x (x
6) 3)4
3
9
93 x2
令 y 0, 得x =3, y 不存在的点为x =2,
列 x ( , 2)
2
( 2 , 3 ) 3 (3, )
表 y 不存在 0
y凸
20 9
凹 -4

因此,曲线的拐点 :( 2 , 2 0 ) , (3, 4);
9
凹区间: ( 2 , 3 ) 凸区精间选p:pt (, 2], [3, ).
弧 是向上凸的, 曲线在切线的下方,
而B是弯曲状况的
分界点.
O
A
a
精选ppt
x0
b
x
2
机动 目录 上页 下页 返回 结束
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档