2、液体流体力学基础

合集下载

第二章 液体流体力学基础

第二章 液体流体力学基础

l/d ≤ 0·5 0.5 < l/d ≤4
细长孔
2015年6月1日星期一
l/d > 4
2
1.薄壁小孔的流量计算
根据伯努利方程和连续性 方程可以推得通过薄壁小孔的 流量为:
薄壁小孔
式中:
Cq —流量系数,
当液体完全收缩( d1/d ≥7 )时,
Cq 0.61 ~ 0.62
当液体不完全收缩(d1 /d <7 )时,Cq 0.7 ~ 0.8 A—孔口通流截面的面积, 薄壁小孔因其沿程压力损失很小,其能量损失只涉及局部损失,因 此通过薄壁孔口的流量与粘度无关,即流量对油温的变化不敏感,因此
3)液压系统各元部件的连接处要密封可靠,严防空气侵入。
4)采用抗腐蚀能力强的金属材料,提高零件的机械强度,减小零 件表面粗糙度值。
2015年6月1日星期一
23
因气穴而对金属表面产生腐蚀的现象称为气蚀。 气蚀会严重损伤元件表面质量,大大缩短其使用寿命,因而必须 加以防范。
2015年6月1日星期一
22
3. 减小气穴的措施
在液压系统中,哪里压力低于空气分离压,那里就会产生气穴现 象。为了防止气穴现象的发生,最根本的一条是避免液压系统中 的压力过分降低。具体措施有: 1)减小阀孔口前后的压差,一般希望其压力比p1/p2<3.5。 2)正确设计和使用液压泵站
薄壁小孔适合作节流元件。
2015年6月1日星期一 3
2.短孔的流量计算
短孔的流量公式与薄壁小孔相同,但流量系数不同。
一般可取 Cq
0.82
,短孔的工艺性好,通常用作固定节流器。
3.细长小孔的流量计算
液体流过细长孔时,由于液体内摩擦力的作用较突出,
一般为层流,流量公式可用前面推出的圆管层流的流量公 式,即

(完整版)流体力学知识点总结汇总

(完整版)流体力学知识点总结汇总

流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。

2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。

3 流体力学的研究方法:理论、数值、实验。

4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。

作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。

(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。

质量越大,惯性越大,运动状态越难改变。

常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。

B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。

即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。

由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。

动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。

运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。

2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。

无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。

[工学]第2章 流体力学基础

[工学]第2章 流体力学基础

Q S1S2 2gh /(S12 S22 )
15
4、体位对血压的影响 血流在静脉和动脉中的速度近似不变
当v不变时有: P gh 恒量, h P
举例
直立
平卧
动脉 头
静脉
6.8kPa -5.2kPa
12.67kPa 0.67kPa
直立减小5.87kPa
动脉 脚
静脉
24.4kPa 12.4kPa
头打开时管内水的速度和压强。
解:将一楼至二楼的水管看作一流管,在一楼流管
取一截面A,在二搂流管取一截面B将水视为理想流体,
由连续性方程可得:
vB
S AvA SB
(1102 )2 4 (0.5102 )2
16m s1
又由伯努利方程 P 1 v2 gh 恒量 有:
2
2021/8/26
11
PA
2、柏努利方程中,当P不变时有: 1 v2 gh 恒量
2 当h不变时有: P 1 v2 恒量
2
当v不变时有: P gh 恒量
2021/8/26
9
3、方程的适用条件为:理想流体(无内摩擦,不可压
缩);稳定流动(v不随时间变化)。实际流体只
是具有近似性,对于粘性比较小的水和酒精等可较 好的符合,而对于甘油和血液等粘性较大的流体只 能粗略解释;对于气体,若不受压,可适用。
r v
r+r
5、实验表明:摩擦力 f 与 dv/dr 和接触
v+v
面积A成正比,即:
f
A dv
dr
(牛顿黏滞定律)
2021/8/26
20
f A dv
dr 其中 为黏滞系数或黏度,表示流体间速度梯度为1

化工原理第一章流体力学基础

化工原理第一章流体力学基础

第一章 流体力学基础
m GA uA
17/37
1.3.1 基本概念
三、粘性——牛顿粘性定律
y x
v
内部存在内摩擦力或粘滞力
v=0
内摩擦力产生的原 因还可以从动量传 递角度加以理解:
v
单位面积上的内摩擦力,N m2
dv x
dy
动力粘度 简称粘度
速度梯度
----------------牛顿粘性定律
(2)双液柱压差计
p1
1略小于2
z1
p1 p2 2 1 gR
p1
R
p2
R
p2
1
z1
R 2
0
倾斜式压差计
浙江大学本科生课程 化工原理
第一章 流体力学基础
读数放大
14/14
幻灯片2目录
1.3 流体流动的基本方程 1.3.1 基本概念 1.3.2 质量衡算方程 1.3.3 运动方程 一、作用在流体上的力 二、运动方程 三、N-S方程 四、欧拉方程 五、不可压缩流体稳定层流时的N-S 方程若干解
v x v y vz 0
t x
y
z
t
vx
x
vy
y
vz
z
v x x
v y y
v z z
0
D
Dt
v x x
v y y
v z z
0
-------连续性方程微分式
若流体不可压缩,则D/Dt=0
v x v y v z 0 x y z
浙江大学本科生课程 化工原理
第一章 流体力学基础
dy
N m2 ms
Ns m2
Pa s
m
1Pa s 10P 1000cP

流体力学

流体力学
a´ 1
h1 流体运动示图
在这个过程中,机械能的增量为:
a´ 2 v2
h2
△2
l
△E = E 2 - E 1
状态2的(动能+势能)- 状态1的(动能+势能)
△E = E 2 - E 1
1 1 2 △ E = △m v2+△mgh 2 - △m v12 - △mgh 1 2 2
在这个过程中,流体两端 的压力对流体作的功为:
= 3.6×105 Pa
第四节 伯努利方程的应用
一.文特利管(串接在管道中测量流体流速)
s1 s2
已知条件:粗管和细管的横截面s1、 s2,水银柱的高度差h 原理:设,流体密度为ρ,大小管处的 压强分别为P1、P2,流速分别为v1、v2 由连续性方程和伯努利方程
h
曲管压强计
消去v2,可得
1ρ v 2 + = 1ρ v 2 +P P1 2 2 2 1 2
△F dF =lim △S =d P S 液体内部压强的特点:
△S 0
单位: Pa (帕斯卡)
1.静止液体内部同一点各个方向的压强相等。 2. 静止液体内部随深度的增加,压强也增加。
ρ P= g h
3. 密闭容器内的静止流体受到
也称重力压强
P
e
外界压强时,流体内任一点的 压强是:
ρ P= P + g h
设:入水端和出水端的截面分别为A1和A2
由:
入水端
v A = v A = 常数
1 1 2 2 1 2 1 2 2 2
2
1
(
v =v
π d) ( A 2 = ( 6.4 =v × 4.0 A 2.5 d) π ( 2 = 26 m/s
1
2

流体力学基础知识

流体力学基础知识

流体力学基础知识一、流体的物理性质1、流动性流体的流动性是流体的基本特征,它是在流体自身重力或外力作用下产生的。

这也是流体容易通过管道输送的原因2、可压缩性流体的体积大小会随它所受压力的变化而变化,作用在流体上的压力增加,流体的体积将缩小,这称为流体的可压缩性。

3、膨胀性流体的体积还会随温度的变化而变化,温度升高,则体积膨胀,这称为流体的膨胀性。

4、粘滞性粘滞性标志着流体流动时内摩擦阻力的大小,它用粘度来表示。

粘度越大,阻力越大,流动性越差。

气体的粘度随温度的升高而升高,液体的粘度随温度的升高而降低。

二、液体静力学知识1、液体静压力及其基本特性液体静压力是指作用在液体内部距液面某一深度的点的压力。

液体静压力有两个基本特性:①液体静压力的方向和其作用面相垂直,并指向作用面。

②液体内任一点的各个方向的静压力均相等。

2、液体静力学基本方程P=Pa+ρgh式中Pa----大气压力ρ-----液体密度上式说明:液体静压力的大小是随深度按线性变化的。

3、绝对压力、表压力和真空①绝对压力:是以绝对真空为零算起的。

用Pj表示。

②表压力(或称相对压力):以大气压力Pa为零算起的。

用Pb表示。

③真空:绝对压力小于大气压力,即表压Pb为负值。

绝对压力、表压力、真空之间的关系为:Pj=Pa+Pb三、液体动力学知识1、基本概念①液体的运动要素:液体流动时,液体中每一点的压力和流速,反映了流体各点的运动情况。

因此,压力和流速是流体运动的基本要素。

②流量和平均流速:假定流体在流过断面时,其各点都具有相同的流速,在这个流速下所流过的流量与同一断面各点以实际流速流动时所流过的流量相当,这个流速称为平均流速,记作V。

单位时间内,通过与管内液流方向相垂直的断面的液体数量,称为流量。

流量可分为体积流量Qv和质量流量Qm。

Qv=V AQm=ρV A③稳定流和非稳定流:稳定流是指流体流速和压力不随时间的变化而变化的流动,反之则为非稳定流。

第二章:液体流体力学

第二章:液体流体力学

Fx 2 dFx 2 plr cos d 2 plr pAx
2 2


第一节:流体静力学基础
67-9
第二节 液体动力学基础
本节主要讨论液体的流动状态、运动规律及能量转换
等问题,具体地说主要有连续性方程、伯努利方程和动
量方程三个基本方程。这些都是液体动力学的基础及液 压传动中分析问题和设计计算的理论依据。 一、基本概念: 二、连续性方程:
第三节:液体流动时的压力损失
39-32
第三节:液体流动时的压力损失
39-33
二、沿程压力损失
液体在等径直管中流动时因粘性摩擦而产生的压力损
失,称为沿程压力损失。液体的流动状态不同,所产生
的沿程压力损失也有所不同。
第三节:液体流动时的压力损失
39-34
二、沿程压力损失
1、层流时的沿程压力损失
在管道内液体的层流压力损失分析: 1)取微圆柱体 2)液体压力与液体摩擦力受力平衡 3) 求得速度表达式 4)求得流量表达式
层流:液体质点互不干扰,液 体的流动呈线性或层状,且平 行于管道轴线。 紊流:液体质点的运动杂乱无 章,在沿管道流动时,除平行 于管道轴线的运动外,还存在 着剧烈的横向运动,液体质点 在流动中互相干扰。
第三节:液体流动时的压力损失
39-29
雷诺实验表明: 影响液体在圆形管道中的流动状态因素 管内的平均流速v; 管道的直径d; 液体的运动粘度ν 。 液体流动状态是由上述三个参数所确定雷诺 数Re,即:
理。
F p A
第一节:流体静力学基础
67-6
例:如图所示的两个相互连通的液压缸,已知大缸 内径D=100mm,小缸内径d=20mm,大活塞上放置的 物体所产生的重力为 F2 50000 N,试求在小活塞上 应施加多大的力 F1 才能使大活塞顶起重物。

流体动力学

流体动力学

3)按照液体流动方向列出伯努利方程的一般形式;
4)忽略影响较小的次要参数,以简化方程; 5)若未知数的数量多于方程数,则必须列出其它辅助 方程,如连续性方程、静压力方程等联立求解。
伯努利方程应用举例
例1:如图示简易热水器,左端接冷水管,右端接淋浴莲蓬头。 已知 A1=A2/4 和A1、h 值,问冷水管内流量达到多少时才能 抽吸热水? 解:沿冷水流动方向列A1、A2截面的伯努利方程
2 1 1 2 2
注意: 1)截面1、2应顺流向选取,且选在流动平稳的通流截面上。 2)z和p应为通流截面的同一点上的两个参数,一般将其定在 通流截面的轴心处。
应用伯努利方程解题的一般步骤
1)顺流向选取两个计算截面:一个设在所求参 数的截面上,另一个设在已知参数的截面上; 2)选取适当的基准水平面;
伯 努 利 方 程 应 用 举 例
泵吸油口真空度
分析变截面水平管道各处的压力情况
求水银柱高度?
管中流量达多少时才能抽吸?
判断管中液体流动方向和流量?
动量方程
动量方程是动量定理在流体力学中的具体应用,可用来计算 流动液体作用在限制其流动的固体壁面上的总作用力。
∑F = Δ(m u)/Δt = ρq(u2 - u1)
例1:如图所示,进入液压缸的流量Q1是否等于缸排
出的流量Q2?
d1
d2
Q2
解: ∵油液是不连续的,不可用连续性方程。
Q 1≠ Q 2
例2 如图所示,已知流量 q1= 25L/min,小活塞杆直径d1=20mm,小活塞
直径D1=75mm,大活塞杆直径d2=40mm,大活塞直径D2=125mm,假设没有泄 漏流量,求大小活塞的运动速度v1,v2。

25 L / min

2、液体流体力学基础

2、液体流体力学基础
π/2 π / 2
dFx plr cos d
该方向的投影面积。

π/2
π / 2
2 plr pAX
F=pAx
总目录
返回本章
返回本节
上一页
下一页
结束
第三节 液体动力学基础
流体动力学主要研究液体流动时流速和压力的变化 规律。流动液体的连续性方程、伯努利方程、动量方 程是描述流动液体力学规律的三个基本方程式。前两 个方程反映了液体的压力、流速与流量之间的关系, 动量方程用来解决流动液体与固体壁面间的作用力问 题。主要内容:
总目录
返回本章 上一页 下一页
结束
重点、难点
液压油的粘性和粘度
粘温特性
静压特性
压力形成
静力学基本方程 流量与流速的关系,三大方程的 形式及物理意义
总目录
返回本章 上一页 下一页
结束
本章目录
第一节 液体的物理性质 第二节 流体静力学基础 第三节 流体动力学基础 第四节 液体流动时的液力损失 第五节 液体流经小孔和缝隙的流量 第六节 液压冲击和空穴现象
总目录
返回本章
返回本节
上一页
下一页
结束
压力的分布
静压力基本方程式 p=p0+ρgh ( pA po A ghA) 重力作用下静止液体压力分布特征: • 压力由两部分组成:液面压力p0,自重形成的压力ρgh; • 液体内的压力与液体深度成正比; • 离液面深度相同处各点的压力相等,压力相等的所有点组成 等压面,重力作用下静止液体的等压面为水平面; • 静止液体中任一质点的总能量p/ρg+h 保持不变,即能量守恒。 (压力随深 度线性增加; 等深等压。)
G V

流体力学基础知识

流体力学基础知识


升的高度,称为压强水头,也称为流体的静压能、
静压头等;
返回 上页 下页
流体力学基础知识
Z
P

——测压管水头;
Z
P
的测压管水头均相等。

C —— 同一容器内的静止液体中,所有各点
返回 上页 下页
流体力学基础知识
4.流体压强的表示方法:
( 1 )用应力单位表示。从压强定义出发,用单位面 积上的力表示,即牛顿 /米 2( N/m2),国际单位制为 帕斯卡(Pa)。 ( 2 )用液柱高度表示。常用水柱高度和汞柱高度表 示。其单位是:mH2O、mmH2O或mmHg。
返回 上页 下页
流体力学基础知识
当流体所受质量力只有重力时,由G=mg可得 单位质量力为:
f X 0、f Y 0、f Z - g
2、表面力 表面力是指作用在流体表面上的力,其大小与 受力表面的面积成正比。 流体处于静止状态时,不存在黏性力引起的内 摩擦力(切向力为零),表面力只有法向压力。对于 理想流体,无论是静止或处于运动状态,都不存在 内摩擦力,表面力只有法向压力。
返回 上页 下页
流体力学基础知识
4.均匀流和非均匀流 均匀流是流体运动时流线是平行直线的流动。 如等截面长直管中的流动。 非均匀流是流体运动时流线不是平行直线的流 动。如流体在收缩管、扩大管或弯管中流动等。 非均匀流又可分为渐变流和急变流。渐变流是 流体运动中流线接近于平行线的流动;急变流是流 体运动中流线不能视为平行直线的流动 。
Q wv
返回 上页 下页
流体力学基础知识
2.恒定流和非恒定流 流体运动形式分为恒定流动和非恒定流动两类。 恒定流动是指流体中任一点的压强和流速等运动 参数不随时间而变化的流动。 非恒定流动是指流体中任一点压强和流速等参数 随时间而变化的流动。 自然界的流体流动都是非恒定流动,在一定条件 下工程上近似认为是恒定流。

液压与气压传动知识要点第2章

液压与气压传动知识要点第2章

液压与气压传动
第2章 流体力学基础
2.2
一、基本概念
液体动力学
1.理想液体、 1.理想液体、恒定流动 理想液体
液压与气压传动
第2章 流体力学基础
2.一维流动 2.一维流动 流场中流体的运动参数一般都随空间位置的 改变而不同。因此,严格地说,是三维的。 改变而不同。因此,严格地说,是三维的。但 在数学上相当复杂,有时甚至得不到方程的解。 在数学上相当复杂,有时甚至得不到方程的解。 在工程上,我们在满足工作性能要求的情况下, 在工程上,我们在满足工作性能要求的情况下, 抓住主要因素, 抓住主要因素,把三维问题化成二维甚至一维 问题来解决。 问题来解决。 图
液压与气压传动
第2章 流体力学基础
1.理想液体的伯努利方程 1.理想液体的伯努利方程 在流动过程中,外力对此段液体做了功,并引 在流动过程中,外力对此段液体做了功, 起其动能发生相应改变。根据功能原理, 起其动能发生相应改变。根据功能原理,外力所 做的功应该等于其动能的改变量。 做的功应该等于其动能的改变量。 (1)作用在液体段上的外力所做的功 外力有:重力和压力 外力有:重力和 ①液体段上重力所做的功 液体段上重力所做的功等于液体段位置势能的 变化量。 变化量。
液压与气压传动
第2章 流体力学基础
重力作用下静止液体的压力分布: 重力作用下静止液体的压力分布: (1)静止液体内任一点处的压力都由两部分组成: (1)静止液体内任一点处的压力都由两部分组成: 静止液体内任一点处的压力都由两部分组成 液面上的压力; 液面上的压力;该点以上液体自重所形成的压 的乘积。 力,即,ρg与该点离液面深度h的乘积。 (2)静止液体内的压力随液体深度呈直线规律分布 静止液体内的压力随液体深度呈直线规律分布。 (2)静止液体内的压力随液体深度呈直线规律分布。 (3)距液面深度相同的各点组成等压面 距液面深度相同的各点组成等压面, (3)距液面深度相同的各点组成等压面,等压面为 水平面。 水平面。

流体力学基础知识

流体力学基础知识

g
注:水银的密度是13.6g/cm3
练习
•A、B两管平齐,里面盛满水,下面的U形管里充有水银,水
银柱高差为Δh=20cm,则A、B两管中的压强差值为( )B
kPa。
A. 20.1 B. 24.7
C. 26.7 D. 1.96
作业
• 如图所示,用U形水银压差计测量水管A、B两点的压强差, 水银面高hp=10cm, A、B两点压强差为多少kPa。
P R T
二、流体静压强及其分布规律
(一)流体的静压强及其特征
Ⅰ Ⅱ
1.流体静压强的概念
lim P
a
p
P ( N/m2 )
0
p称为a点的静压强
2.静压强的单位 ➢从压强的定义出发: 力/面积
国际单位: N/m2 (以符号Pa表示) ➢用大气压的倍数表示:
国际单位: 标准大气压 1标准大气压=101325Pa=1.01325bar(巴)
C.—0.4个大气压
D.—0.6个大气压
练习
3、油的密度为800kg/m3,油处于静止状态,油面与大气接触,
则油面下0.5m处的表压强为 kPDa。
(A)0.8 ;(B)0.5;(C)0.4;(D)3.9
4、静止油面(油面上为大气)下3m深度处的绝对压强为—
__D__(油的密度为800kg/m3,当地大气压为100kPa) A.3kPa
G N/m3 V
3.密度与容重的关系
GMgg
VV
4.密度和容重与压力、温度的关系
❖ 压力升高
流体的密度和容重增加;
❖ 温度升高
流体的密度和容重减小。
(二)流体的粘滞性
1. 流体粘滞性的概念
流体内部质点间或流层间因相对运动而产生内摩

第二章:液体流体力学

第二章:液体流体力学

Re =
d Hυ
ν
4A 水力直径为 d H = x
39-23
二、沿程压力损失
液体在等径直管中流动时因粘性摩擦而产生的压力损 失,称为沿程压力损失。液体的流动状态不同,所产生 的沿程压力损失也有所不同。
l ρυ 2 层流和紊流的沿程阻力损失计算公式: ∆pλ = λ d 2
层流和紊流的沿程阻力系数的计算不相同。
v1 =
π
qV d2
=
π
1.5 × 10 −3
则 u1d 3.06 × 25 × 10 −3 Re = = = 1663 < 2320 −6 v 46 × 10 层流
4
(25 ×10 ) 4
−3 2
= 3.06m/s
39-27
沿程阻力系统
p2
所以液压泵吸油口处的真空度为
pa − p2 = ρgh +
2 ρv2
2
+ ρghw = ρgh +
2 ρv2
2
+ ∆p
真空度由三部分组成:油液提升高度所需压力,液体加速所需压 力和吸油管路的压力损失。
39-18
四、动量方程
动量方程是动量定理在流体力学中的具体应用。用动 量方程来计算液流作用在固体壁面上的力比较方便。动 量定理指出:作用在物体上的合外力的大小等于物体在 力作用方向上的动量的变化率,即
39-2
1.液体的压力
液体单位面积上所受的法向力称为静压力。这一定义在物理学中 称为压强,但在液压传动中习惯称为压力,即
p = lim ∆F ∆A → 0 ∆A
F p= A
静止液体的压力有如下特性: 1)液体的压力沿着内法线方向作用于承压面。 2)静止液体内任一点的压力在各个方向上都相等。

第1章流体力学基础部分

第1章流体力学基础部分

∵ 液体在静止状态下不呈现粘性
∴ 内部不存在切向剪应力而只有法向应力 (2)各向压力相等
∵ 有一向压力不等,液体就会流动
∴ 各向压力必须相等
1.2.2 静止液体中的压力分布
1、液体静力学基本方程式
质量力(重力、惯性力)作用于液体的所有质点 作用于液体上的力
表面力(法向力、切向力、或其它物体或其它容器对液体、一部
赛氏秒SUS:
雷氏秒R:
美国用
英国用
巴氏度0B:
法国用
恩氏粘度与运动粘度之间的换算关系: ν=(7.310E – 6.31/0E)×10-6
m2/s
三、液体的可压缩性
可压缩性: 液体受压力作用而发生体积缩小性质 1、液体的体积压缩系数(液体的压缩率) 定义:体积为V的液体,当压力增大△p时,体积减小△V, 则液体在单位压力变化下体积的相对变化量 公式:
工作介质: 传递运动和动力 液压油的任务 润滑剂: 润滑运动部件 冷却、去污、防锈
1、 对液压油的要求
(1)合适的粘度和良好的粘温特性;
(2)良好的润滑性;
(3)纯净度好,杂质少; (4)对系统所用金属及密封件材料有良好的相容性。 (5)对热、氧化水解都有良好稳定性,使用寿命长; (6)抗泡沫性、抗乳化性和防锈性好,腐蚀性小; (7)比热和传热系数大,体积膨胀系数小,闪点和燃点高,流 动点和凝固点低。(凝点:油液完全失去其流动性的最高温度) (8)对人体无害,对环境污染小,成本低,价格便宜
υ=q/A
1.3.2 连续性方程--质量守恒定律在流体力学中的应用
1、连续性原理--理想液体在管道中恒定流动时,根据质 量守恒定律,液体在管道内既不能增多,也不能减少,因此 在单位时间内流入液体的质量应恒等于流出液体的质量。 2、连续性方程 ρ 1υ1A1=ρ 2υ2A2 若忽略液体可压缩性 ρ 1=ρ 则 υ1A1=υ2A2 或q=υA=常数

大学物理学习指导第2章流体力学基础

大学物理学习指导第2章流体力学基础

⼤学物理学习指导第2章流体⼒学基础第2章流体⼒学基础2.1 内容提要(⼀)基本概念 1.流体:由许多彼此能够相对运动的流体元(物质微团)所组成的连续介质,具有流动性,常被称为流体。

流体是液体和⽓体的总称。

2.流体元:微团或流体质量元,它是由⼤量分⼦组成的集合体。

从宏观上看,流体质量元⾜够⼩,⼩到仅是⼀个⼏何点,只有这样才能确定流体中某点的某个物理量的⼤⼩;从微观上看,流体质量元⼜⾜够⼤,⼤到包含相当多的分⼦数,使描述流体元的宏观物理量有确定的值,⽽不受分⼦微观运动的影响。

因此,流体元具有微观⼤,宏观⼩的特点。

3.理想流体:指绝对不可压缩、完全没有黏滞性的流体。

它是实际流体的理想化模型。

4.定常流动:指流体的流动状态不随时间发⽣变化的流动。

流体做定常流动时,流体中各流体元在流经空间任⼀点的流速不随时间发⽣变化,但各点的流速可以不同。

5.流线:是分布在流体流经区域中的许多假想的曲线,曲线上每⼀点的切线⽅向和该点流体元的速度⽅向⼀致。

流线不可相交,且流速⼤的地⽅流线密,反之则稀。

6.流管:由⼀束流线围成的管状区域称为流管。

对于定常流动,流体只在管内流动。

流线是流管截⾯积为零的极限状态。

(⼆)两个基本原理 1.连续性原理:理想流体在同⼀细流管内,任意两个垂直于该流管的截⾯S 1、S 2,流速v 1、v 2,密度ρ1、ρ2,则有111211v v S S ρρ= (2.1a )它表明,在定常流动中,同⼀细流管任⼀截⾯处的质量密度、流速和截⾯⾯积的乘积是⼀个常数。

也叫质量守恒⽅程。

若ρ为常量,则有Q = S v = 常量(2.1b )它表明,对于理想流体的定常流动,同⼀细流管中任⼀截⾯处的流速与截⾯⾯积的乘积是⼀个常量。

也叫体积流量守恒定律或连续性⽅程。

2 伯努利⽅程:理想流体在同⼀细流管中任意两个截⾯处其截⾯积S ,流速v ,⾼度h ,压强p 之间有11222121gh p gh p ρρρρ++=++2122v v (2.2) 或写成常量=++gh p ρρ221v 。

流体力学基础知识

流体力学基础知识

返回 上页 下页
流体力学基础知识
(2)相对压强 相对压强是以大气压强(p0)为零点计算的压强。
用符号p表示。 在实际工程中,因为被研究对象的表面均受大气压
强作用,因此不需考虑大气压强的作用,即常用相对 压强。 p gh
如果液体是自由表面,则自由表面压强:
p gh
返回 上页 下页
流体力学基础知识
对变化量 。
1 dV
V0 dT
流体压缩性的大小,一般用压缩系数β(Pa-1)
来表示。压缩系数是指单位压强所引起的体积相对
变化量。
1 dV
V0 dp
返回 上页 下页
流体力学基础知识
一般结论: 水的压缩性和热膨胀性是很小的,在建筑设备
工程中,一般计算均不考虑流体的压缩性和热膨胀 性。
气体的体积随压强和温度的变化是非常明显的 ,故称为可压缩流体。
参数不随时间而变化的流动。 非恒定流动是指流体中任一点压强和流速等参数
随时间而变化的流动。 自然界的流体流动都是非恒定流动,在一定条件
下工程上近似认为是恒定流。
返回 上页 下页
流体力学基础知识
3.压力流和无压流 压力流是流体在压差作用下流动时,流体各个
过流断面的整个周界都与固体壁相接触,没有自由 表面。
、f Z
FZ m
返回 上页 下页
流体力学基础知识
当流体所受质量力只有重力时,由G=mg可得 单位质量力为:
fX 0、fY 0、fZ -g
2、表面力 表面力是指作用在流体表面上的力,其大小与
受力表面的面积成正比。 流体处于静止状态时,不存在黏性力引起的内
摩擦力(切向力为零),表面力只有法向压力。对于 理想流体,无论是静止或处于运动状态,都不存在 内摩擦力,表面力只有法向压力。

1流体力学基本知识

1流体力学基本知识
G Mg γ = = = ρ⋅g V V
(kg/m3)
密度: 单位体积的质量称为流体的密度
(N/m3)
容重: 单位体积的重量称为流体的密度
二、流体的流动性和粘滞性
流体在运动状态时,由于流体各层的流速不同,就会在流层 粘滞性: 间产生阻滞相对运动和剪切变形的内摩擦力,称为粘滞力也 称粘滞性。
u ν0 = y h
作业:
1、名词解释: 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 2、写出流体的柏努利方程,并解释各部分意义。 写出流体的柏努利方程,并解释各部分意义。 3、如图判断压力的大小 4、判断图 中,A—A(a、b、c 、d),B—B,E—E是否为等压面,并说 判断图2中 是否为等压面, 明理由。 明理由。 5、如图3,液体1和液体3的密度相等,ρ1g=ρ3g=8.14 kN/m3,液体2的 如图3 液体1和液体3的密度相等, 1g=ρ = =ρ3g kN/m3,液体2 2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。( 。(1 ρ2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。(1)当 pB=68950Pa时,pA等于多少?(2)当pA=137900Pa时,且大气压力计 pB=68950Pa时 pA等于多少 等于多少? pA=137900Pa时 的读数为95976Pa时 点的表压力为多少? 的读数为95976Pa时,求B点的表压力为多少?
qv = ∫∫ v cos(v , x)dA
A
有效截面: 有效截面:
qv = ∫∫ vdA
A
3.平均流速: 3.平均流速:流经有效截 平均流速 面的体积流量除以有效截 面积而得到的商
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

♣流束段aa‘-bb’能量的变化ΔE 动能 位能
而dA u1 dA2u2 dq 1
所以
W dqdt(p p2 ) 1
♣外力做功=能量变化W=ΔE
2 2 u2 u1 ΔE1 dqdt ρ dqdt ρ 2 2 ΔE2 gdqdth2 ρ gdqdth1 ρ
2 2 p1 u1 p2 u2 h1g h2 g ρ 2 ρ 2
q udA
A
udA q v
A
A
流速:流体质点单位时间内流过的距离,实际流体内 各质点流速不等。 平均流速:通过流体某截面流速的平均值。
q v A
第三节 液体动力学基础
1.4、液体的流态
1)实验 2)流态 ♣层流: 分层、稳定、 无横向流动。 ♣ 湍流: 不分层、不稳定、有横向流动。 3)判定流态 vd Re 其中V为平均流 υ ♣雷诺数Re
第一节
主要内容:
液体的物理性质
•流体的密度和重度 •液体的可压缩性 •液体的粘性和粘度 •液压油的要求 •液压油的类型和选用 •液压油的污染和控制
第一节
液体的物理性质
M V
1 流体的密度和重度
• 液体的密度
液压油的密度为900kg/m3

液体的重度
G V
液压油的重度为8800N/m3
动力粘度 单位速度梯度上的内摩擦力; 是表征液体粘性的内摩擦系数 。
μ=
τ
du / dy 单位: PaS μ
•运动粘度
动力粘度与密度之比值, 没有明确的物理意义,但是工 程实际中常用的物理量。
ν=
ρ
单位:m2/s, cSt 1 m 2 /s =10 6 cSt
第一节 液体的物理性质 对同一种介质,其运动粘度新旧牌 号对比如下表所示:
第三节 液体动力学基础
3.2.实际液体伯努利方程
实际液体: 有粘性、可压缩、 非稳定流动。 速度修正: α动能修正系数 平均流速代替实际流速,考虑能量损失hw
p1 1u1 p2 h1 g 2
2
2u 2 2
2
h 2 g hwg
1 1 2 2 p1 gh1 1 v1 p 2 gh 2 2 v2 p 2 2
第三节础
1.2.流线、流束、流管、通流截面: 流线:液流中各质点的速度方向相切的曲线。 流束:许多流线组成的一束曲线。 流管:通过一条封闭曲线的密集流线束。 通流截面:垂直于流动方向的截面,也称为过流截 面。
第三节 液体动力学基础
1.3.流速、流量 流量:单位时间内流经某通流截面流体的体积,流量 以q表示,单位为 m3 / s 或 L/min。
第三节 液体动力学基础
4 动量方程
依据:动量定理 用来计算流动液体作用在限制 F 其流动的固体壁面上的总作用力。 推导:
第二节 液体静力学基础 3 压力的表示
1)按测量方式表示 ♣水柱高度(m)、水银柱
高度(mm) ♣单位面积受力值(帕Pa、 兆帕MPa、工程大气压at)
2)按测量基准不同表示 p > p 0
p表压=p相对= p绝对– p0 p<p0 p真空度= – p相对=p0 –p绝对
第二节 液体静力学基础

第一节
液体的粘性
液体的物理性质
3 液体的粘性和粘度
液体在外力作用下流动 时,液体分子间的内聚力 (内摩擦力)阻碍其相对 μ 运动的性质 du Ff μA 内摩擦力 dy
μ是比例系数,称为动力粘度 式中:
内摩擦应力
du dy
第一节

液体的物理性质
液体的粘度
度量液体粘性大小的物理量
第二节 液体静力学基础
已知:D=100mm, d=20mm, G=5000kg 求: F=? G=mg=5000kgx9.8m/s2
=49000N
由p1=p2 则F/(π d2/4)=G/(πD2/4) F=(d2/D2)G =(202/1002)49000=1960N
第二节 液体静力学基础
5 压力的计算
♣临界雷诺数Rec ♣判定方法 Re< Rec——层流 Re > Rec——湍流
速, 为运动粘度 d为管道直径
υ
第三节 液体动力学基础
Re
vd

Re无量纲
物理意义 非圆管截面
Re Rv (R为水力直径)

第三节 液体动力学基础
2 流体的连续方程
依据:质量守恒定律 • 液体在管内作恒定流动, 任取1、2两个通流截面, 根据质量守恒定律,在单 位时间内流过两个截面的 液体质量相等,即: ρ1v 1 A 1 = ρ2 v 2 A2 不考虑液体的压缩性,则得 q =v A =常量 结论:流量连续性方程说明了恒定流动中流过各截面 的不可压缩流体的流量是不变的。因而流速与通流截 面的面积成反比。
第二节 液体静力学基础 帕斯卡原理
在密闭容器内,施加于 静止液体的压力可以等值地传递 到液体各点。
这就是帕斯卡原理,也称为静压 传递原理。图示是应用帕斯卡原理的实 例,作用在大活塞上的负载F1形成液体 压力p= F1/A1 。为防止大活塞下降,在 小活塞上应施加的力F2= pA2= 1A2/A1。: 液压传动可使力放大,可使力缩小,也可以改变力的方向。 液体内的压力是由负载决定的。
第一节
液体的物理性质
• 相对粘度 雷式粘度〞R——英国、欧洲 赛式粘度SSU——美国 恩式粘度oE——俄国、德国、中国
t oE 1
t2
单位:无量纲
200ml 温度为T的被测液体,流经恩氏粘度计小
孔(φ2.8mm)所用时间t1,与同体积20度的水
通过小孔所用时间t2之比。
第一节
液体的物理性质
第一节
液体和固体壁面接触时, 固体壁面将受到液体静压力的 作用。
当固体壁面为平面时,液
体压力在该平面的总作用力 F = p A ,方向垂直于该平面。 当固体壁面为曲面时,液 体压力在曲面某方向上的总作 用力 F = p Ax , Ax 为曲面在 该方向的投影面积。
Fx
π/2
π / 2
dFx plr cos d

π/2
π / 2
2 plr pAX
F=pAx
第三节 液体动力学基础
流体动力学主要研究液体流动时流速和压力的变化 规律。流动液体的连续性方程、伯努利方程、动量方 程是描述流动液体力学规律的三个基本方程式。前两 个方程反映了液体的压力、流速与流量之间的关系, 动量方程用来解决流动液体与固体壁面间的作用力问 题。主要内容:
液压流体力学基础
教学要求 液压传动是以液体作为工 作介质进行能量传递的,因而, 了解液体的物理性质,掌握液 体在静止和运动过程中的基本 力学规律,对于正确理解液压 传动的基本原理,合理设计和 使用液压系统都非常必要。
重点难点
本章目录
教学要求
液压传动是以液体作为工作介质进行能量的传递。 1、了解液体的物理性质,静压特性、方程、传递 规律,掌握液体在静止和运动过程中的基本力学规 律,掌握静力学基本方程、压力表达式和结论 ; 2、了解流动液体特性、传递规律,了解动力学三 大方程、流量和结论; 3、掌握流量公式、特点、两种现象产生原因,掌 握薄壁孔流量公式及通用方程、两种现象的危害及 消除。
第一节
液体的物理性质
4 液压油的要求
• 对液压油液的要求
– 粘温特性好
– 有良好的润滑性 – 成分要纯净 – 有良好的化学稳定性 – 抗泡沫性和抗乳化性好
– 材料相容性好
– 无毒,价格便宜
第一节

液体的物理性质
•石油型液压油 •合成型液压油 •乳化型液压油
(参见教材中表2-2油的类型及指标) 液压系统的工作压力—压力 高,要选择粘度较大的液压油液 环境温度—温度高,选用粘度较 大的液压油。 运动速度—速度高,选用粘 度较低的液压油。 液压泵的类型—各类泵适用 的粘度范围见教材中表2-3。
第三节 液体动力学基础
3 流体的伯努利方程
3.1 、 理想液体微小流束伯努利方程 假设:理想液体作恒定流动 依据:能量守恒定律 推导:研究流束段ab在时间dt内流到a'b‘ ♣外力对流束段ab所做的功W
W p1dA ds1 p2 dA2 ds2 p1dA u1dt1 p2 dA2 u2 dt 2 1 1
彻底清洗系统 保持系统清洁 定期清除污物 定期换油
第二节 液体静力学基础

压力的概念 压力的分布
压力的表示
压力的传递

压力的计算
第二节 液体静力学基础
1 压力的概念
静止液体在单位面积上所受的法向力称为静 压力。 F p lim (ΔA→0) A 0 A 液体静压力的特性: 若在液体的面积A上所 液体静压力垂 受的作用力F为均匀分布 直于承压面,方向为 时,静压力可表示为: 该面内法线方向。 p=F/A 液体内任一点 液体静压力在物理学上 所受的静压力在各个 称为压强,工程实际应用 方向上都相等。 中习惯称为压力。
5 液压油的类型和选用
液压油的类型

液压油的选用 •合适的类型(油型) •适当的粘度(油号) 环境因素 运动性能 设备种类
第一节

液体的物理性质
造成系统故障 降低元件寿命 使液压油变质 影响工作性能
系统残留物 外界侵入物 内部生成物
6 液压油的污染及控制 液压油污染的危害

液压油的污染源

污染的控制
液体的流态与流速 流体的连续方程 流体的伯努利方程 流体的动量方程
第三节 液体动力学基础
1 液体的流态和流速
1.1理想液体、稳定流动 理想液体:假设的既无粘性又不可压缩的流 体称为理想流体。 实际液体:有粘度、可压缩的液体 稳定流动:液体流动时,液体中任一点处的 压力、速度和密度都不随时间而变化的流动, 称为定常流动或非时变流动。(实验) 非稳定流动: 压力、速度、密度随时间变化 的流动。
相关文档
最新文档