蒸汽动力基础
工程热力学基础——第七章蒸汽动力循环
第四节 回热循环
一、回热循环的装置系统图和T-S 图 分析朗肯循环,导致平均吸热温度不高的原 因是水的预热过程温度较低,故设法使吸热过程 的预热热量降低,提出了回热循环。 回热是指从汽轮机的适当部位抽出尚未完全 膨胀的压力、温度相对较高的少量蒸汽,去回热 加热器中加热低温冷凝水。这部分抽汽未经凝汽 器,因而没有向冷源放热,但是加热了冷凝水, 达到了回热的目的,这种循环称为抽汽回热循环。
b
5
a
6
(4)
A
图8 再热循环的T-S图
二、再热循环工作原理
从图可以看出,再热部分实际上相当于在原来 的郎肯循环1A3561的基础上增加了一个附加的循环 ab2Aa。一般而言,采用再热循环可以提高3%左右的 热效率。
三、再热循环经济性指标的计算
1、热效率
t
w0 q1
(h1 ha ) (hb h2 )
第七章 蒸汽动力循环
本章重点
水蒸气朗肯循环、回热循环、再热循 环、热电循环的组成、热效率计算及提高 热效率的方法和途径
第一节 朗肯循环
一、水蒸汽的卡诺循环
1、水蒸汽的卡诺循环的组成,如图1 2、水蒸汽的卡诺循环在蒸汽动力装置中不被应用
原因:
T
(1)、T1不高(最高
不超 374 0 C ),T2不低
(h1
h2
)
(hb
h a
)
2、汽耗率
d 3600
3600
w0 (h1 ha ) (hb h2 )
四、再热循环分析
1、采用再热循环后,可明显提高汽轮机排 汽干度,增强了汽轮机工作的安全性; 2、正确选择再热循环,不仅可提高汽轮机 排汽干度,还可明显提高循环热效率; 3、采用再热循环后,可降低汽耗率; 4、因要增设再热管道、阀门等设备,采用 再热循环要增加电厂的投资,故我国规定 单机容量在125MW及以上的机组才采用此循 环。 [例7-2] 注意,再热后,各经济指标的变化
蒸汽机的基本原理
蒸汽机的基本原理是利用水蒸气的能量转换为机械功。
具体过程如下:
1. 能量产生:
- 蒸汽机工作时,通常从锅炉中获取能量。
在锅炉内部,燃料(如煤、天然气或石油)燃烧产生热量,将水加热至沸腾,使其蒸发成为高温高压的蒸汽。
2. 蒸汽输送与控制:
- 高温高压的蒸汽通过管道输送到蒸汽机的核心部件——活塞缸或者涡轮叶片部分。
蒸汽的压力和流量可以通过阀门(如节流阀)进行精确调节。
3. 能量转换:
- 在活塞式蒸汽机中,高压蒸汽进入活塞上方的空间后,对活塞产生推力。
活塞连接着曲轴和连杆机构,当蒸汽压力推动活塞向一个方向运动时,通过连杆带动曲轴旋转,从而实现热能到机械能的转化。
- 在蒸汽涡轮机中,高速流动的蒸汽冲击涡轮叶片,使涡轮快速旋转。
这个旋转动能可以直接驱动发电机或其他机械装置。
4. 能量释放与循环:
- 当活塞完成一次往复运动或涡轮完成一次转动后,蒸汽的压力已经下降,不再具有足够的能量推动活塞或涡轮继续有效工作。
这时,蒸汽会通过排气阀排出,返回到冷凝器被冷却并重新变为液态水,然后再次送入锅炉加热,形成一个连续的能量转换循环。
总结来说,蒸汽机的工作原理就是借助燃料产生的热能将水转化为蒸汽,再利用蒸汽膨胀时产生的力量来驱动机械设备运转,这一过程中遵循了热力学第一定律(能量守恒定律),实现了化学能—热能—机械能的有效转换。
气体动力专业知识17-蒸汽发生器基础知识及用途
划
(2)、其它要求
➢整机要求:运行平稳可靠,应有多级可靠的内毒素分离技术,避免交叉污染和意 外故障,应最大限度地减少系统死点。
➢材质要求:凡是与原料水、纯蒸汽接触的材料应采用316L或其它与其性能相符的材 料;密封材料应为无毒无脱落的制药级别的材质,如PTFE等;框架结构应为304不 锈钢材质。
➢表面要求:与物料、纯蒸汽接触的材料的内表面应采用电化学抛光并进行酸洗钝化 处理;所有保温结构应有304不锈钢外保护层,保护层表面亚光,焊接/铆接处理;正 常开机时保温机构的外表面应不超过45℃;框架结构的外表面也宜亚光处理。
➢主要部件要求:蒸发器、预热器、冷却器等换热结构应采用双管板管壳式换热结构, 最大限度的避免交叉污染;应有可靠去除不凝性气体的分离装置;宜配置在线监测装 置。
划➢设备集成要求:水平管道的安装应有足够的坡度,保证管道的完全排空;焊点图要 有焊缝编号,关键部位的焊缝要有焊丝材质,焊接工艺参数,一定比例的X光射线探 伤和内窥镜检验报告,酸洗钝化报告等;管子尽量采用三维弯管,尽量减少弯头对接; 尽量满足3D原则。
主要检测指标有:
微生物限度:同注射用水。(100个/100ml)
电导率:同注射用水。(1.1μs.cm-1@20℃)
TOC:同注射用水。(0.5mg/l)
汽轮机学习应该怎么计划
汽轮机学习应该怎么计划第一部分:汽轮机基础知识在学习汽轮机之前,我们首先应该了解汽轮机的基础知识。
汽轮机是一种利用蒸汽或气体动力的机械设备,广泛应用于发电厂、船舶和工业生产中。
汽轮机的工作原理是利用蒸汽或气体的压力能将叶片推动旋转,从而产生动力。
因此,了解汽轮机的基本原理和结构是学习的第一步。
学习计划:1.1 理解汽轮机的基本原理学习目标:了解汽轮机的工作原理和基本结构,包括汽轮机的热力循环、叶片叶轮结构以及热能转化过程。
学习内容:通过教材、网络资料或参考书籍进行学习,掌握汽轮机的基本原理和热力循环过程。
1.2 掌握汽轮机的工作特性学习目标:了解汽轮机的工作特性,包括工作范围、效率、输出功率和运行稳定性。
学习内容:通过学习汽轮机的性能参数、工作特性曲线和实际案例分析,掌握汽轮机在不同工况下的工作特性和适用范围。
第二部分:汽轮机的应用领域汽轮机作为一种重要的动力装置,被广泛应用于发电厂、船舶和工业生产中。
学习汽轮机的应用领域可以帮助我们了解汽轮机的实际运用场景和工作环境,从而更好地理解其工作原理和特性。
学习计划:2.1 了解汽轮机在发电厂的应用学习目标:了解汽轮机在发电厂中的应用场景和工作原理,包括汽轮机发电系统的组成、运行方式和效率优化。
学习内容:通过学习发电厂汽轮机的布置和运行原理,了解不同类型的发电系统、汽轮机发电的工作流程和优化技术。
2.2 熟悉汽轮机在船舶上的应用学习目标:了解汽轮机在船舶上的应用场景和工作原理,包括船舶动力系统的组成、动力输出方式和动力调节技术。
学习内容:通过学习船舶汽轮机的布置和工作原理,了解不同类型的船用汽轮机、船舶动力系统的结构和动力调节技术。
2.3 了解汽轮机在工业生产中的应用学习目标:了解汽轮机在工业生产中的应用场景和工作原理,包括工业汽轮机的组成、工作方式和能量利用技术。
学习内容:通过学习工业汽轮机的布置和运行原理,了解工业用汽轮机的类型、工作原理和能量利用技术。
蒸汽机工作原理
蒸汽机工作原理引言概述:蒸汽机是一种利用蒸汽的压力产生动力的机械设备。
它的工作原理基于热能转换为机械能的原理。
本文将详细介绍蒸汽机的工作原理,包括蒸汽的产生、蒸汽的传导、蒸汽的扩张、蒸汽的排出和蒸汽机的运转。
一、蒸汽的产生1.1 燃料燃烧:蒸汽机的工作原理首先需要燃料燃烧产生热能。
燃料可以是煤、油、天然气等。
燃料在燃烧室中与空气发生化学反应,产生高温高压的燃烧气体。
1.2 热能传导:燃烧气体的高温通过传导方式传递给锅炉内的水。
水在锅炉内受热,温度升高,逐渐转化为蒸汽。
1.3 蒸汽产生:水的温度升高到一定程度时,水分子变得活跃,逐渐蒸发成蒸汽。
蒸汽的产生需要一定的压力和温度条件。
二、蒸汽的传导2.1 管道系统:蒸汽在锅炉内产生后,需要通过管道系统传导到蒸汽机。
管道系统通常由高温高压的金属材料构成,以确保蒸汽的安全传导。
2.2 管道绝热:为了减少能量损失,管道系统通常会进行绝热处理,以减少蒸汽在传导过程中的能量损失。
2.3 蒸汽调节:蒸汽的传导过程中,需要通过阀门进行调节,以确保蒸汽的流量和压力符合蒸汽机的要求。
三、蒸汽的扩张3.1 蒸汽进入汽缸:蒸汽通过传导后进入蒸汽机的汽缸。
汽缸是蒸汽机的关键部件,负责将蒸汽的热能转化为机械能。
3.2 活塞运动:蒸汽的进入使得汽缸内的活塞受到推力,从而产生运动。
活塞在汽缸内来回运动,将蒸汽的热能转化为机械能。
3.3 连杆传动:活塞的运动通过连杆传动到曲轴,进一步转化为旋转运动。
连杆和曲轴的设计使得蒸汽机能够产生连续的旋转动力。
四、蒸汽的排出4.1 排气阀:在活塞运动的过程中,蒸汽会被排气阀控制排出。
排气阀的开启和关闭时机需要精确控制,以确保蒸汽的排放顺序和时间。
4.2 冷却系统:排出的蒸汽需要通过冷却系统进行冷却,以转化为液态水再次进入锅炉,循环使用。
4.3 废气排放:在排出蒸汽的过程中,也会产生废气,需要通过排气管道排放。
五、蒸汽机的运转5.1 控制系统:蒸汽机的运转需要通过控制系统进行监控和调节。
气体动力学基础
连续介质 分子间隙
§1.2 流体的粘性
虚拟演示 粘性演示 PLAY
定义:在流动的流体中, 定义:在流动的流体中,如果各流体层的流速 不相等, 不相等,那么在相邻的两流体层之间的接触面 就会形成一对等值而反向的内摩擦力( 上,就会形成一对等值而反向的内摩擦力(或 粘性阻力)来阻碍两气体层作相对运动。 粘性阻力)来阻碍两气体层作相对运动。即流 体质点具有抵抗其质点作相对运动的性质, 体质点具有抵抗其质点作相对运动的性质,就 称为流体的粘性。 称为流体的粘性。
例2 续
于是作用在轴表面的阻力矩为 M= τAr= V/ δ πdl d/2 消耗的功率 N=Mω=V/δ πdld/2 2πn/60 ω δ π π =0.72 3.77/(0.2 10-3) π 0.36 1 0.36/2 2π π π 200/60 =57.9(kw)
第二阶段( 第二阶段(可压缩流体动力学 的发展阶段) 的发展阶段)
1908年普朗特和迈耶提出了激波和膨胀 年普朗特和迈耶提出了激波和膨胀 波理论 1910年瑞利和泰勒研究得出了激波的不 年瑞利和泰勒研究得出了激波的不 可逆性; 可逆性; 1933年泰勒和马科尔提出了圆锥激波的 年泰勒和马科尔提出了圆锥激波的 数值解
粘性举例
譬如看看河中的流水, 譬如看看河中的流水 , 观察水面上漂浮的树叶等物的 速度差别可以发现靠岸处的水流就比河中心的水流慢 这是典型的粘性影响. 些。这是典型的粘性影响 摩擦盘也是粘性力在起作用。 摩擦盘也是粘性力在起作用。
粘性产生的物理原因
分子不规则运动的动量 交换 分子间的吸引力
y
v≈v ∞ v ∞
=(F/A) (h/V)=0.004 N s/ m2
【例2】转轴直径d=0.36m,轴承长度l=1m,轴与轴承之间的缝 转轴直径d=0.36m,轴承长度l=1m, d=0.36m l=1m 隙宽度δ=0.2mm其中充满 =0.72Pas的油, 其中充满 s的油 隙宽度δ=0.2mm其中充满=0.72Pas的油,若轴的转速 n=200r/min, 求克服油的粘性阻力所消耗的功率。 n=200r/min, 求克服油的粘性阻力所消耗的功率。 【解】由驱动力矩=阻力力矩得到 由驱动力矩 阻力力矩得到 τ1(2πr1l)r1= τ2 (2πr2l)r2 π π 再由 τ=dV/dy (dV/dy)1=(dV/dy)2 (r2/r1)2 则得 因为缝隙很小,近似认为r 因为缝隙很小,近似认为 1=r2,速度成线性分布 即速度梯度为 dV/dy=V/ δ 其中,粘附于轴表面的油的运动速度V等于轴表面的周向速度 等于轴表面的周向速度, 其中,粘附于轴表面的油的运动速度 等于轴表面的周向速度, 即 V= πdn/60= π 0.36 200/60=3.77m/s
蒸汽动力原理
蒸汽动力原理
蒸汽动力原理是指利用蒸汽的压力和热能来驱动机械设备的原理。
这一原理被
广泛应用于工业生产、交通运输和能源领域,是现代工业化社会不可或缺的重要技术之一。
蒸汽动力原理的基本原理是利用水在受热后产生蒸汽,蒸汽的体积膨胀和压力
增加,从而产生动力。
在蒸汽机的发明之前,人们主要依靠人力和畜力来进行生产和运输,工作效率低下,生产成本高昂。
而蒸汽动力的出现极大地改变了这种局面,使得工业生产和交通运输得以大幅提高效率,从而推动了工业革命的进程。
蒸汽动力原理的应用范围非常广泛。
在工业生产中,蒸汽动力被用于驱动各种
机械设备,如发电机、泵、风机等,为工厂提供动力支持。
在交通运输领域,蒸汽动力被用于火车、船舶等交通工具的驱动,使得远距离的货物和人员运输变得更加便捷和高效。
此外,蒸汽动力还被广泛应用于能源领域,如利用蒸汽发电,利用蒸汽加热等。
随着科学技术的不断发展,蒸汽动力原理也在不断得到改进和完善。
例如,蒸
汽轮机的发明使得蒸汽动力的效率大幅提高,同时,新型材料的应用和工艺技术的进步也使得蒸汽动力设备更加安全可靠。
此外,随着清洁能源的发展,蒸汽动力也在逐渐向更加环保和可持续的方向发展。
总之,蒸汽动力原理作为一种重要的能源转换技术,对现代工业化社会的发展
起到了至关重要的作用。
随着科学技术的不断进步,相信蒸汽动力原理将会继续发挥重要作用,并为人类社会的可持续发展做出更大的贡献。
动力循环的基本原理有哪些
动力循环的基本原理有哪些动力循环是指在热机中,通过能量的转换和传递,将热能转化为机械能或电能的一种过程。
动力循环的基本原理涉及热力学和能量守恒等基础理论。
下面将详细介绍动力循环的基本原理。
1. 基本热力学循环基本热力学循环包括理想气体循环和理想蒸汽循环。
理想气体循环是指在一个封闭的系统内,通过各种过程(如等温膨胀、绝热膨胀等)使气体的温度、压力和体积发生变化,从而实现能量转换。
理想蒸汽循环是指水在锅炉中被加热并蒸发,蒸汽驱动汽轮机工作,产生功,然后蒸汽在凝汽器中冷凝成水,循环再次开始。
2. 几个关键过程理想气体循环通常包括等温膨胀、绝热膨胀、等温压缩和绝热压缩四个过程。
在等温膨胀过程中,气体从高温的热源得到热能,温度不变,体积增大;在绝热膨胀过程中,气体未与外界热源接触,在无散热的条件下膨胀,温度下降,体积进一步增大;在等温压缩过程中,气体与冷源接触,放出热量,温度不变,体积减小;最后,在绝热压缩过程中,气体未与外界热源接触,在无散热的条件下压缩,温度增加,体积进一步减小。
3. Carnot循环原理Carnot循环是一种理想的热力学循环,被认为是效率最高的循环。
Carnot循环利用等温和绝热过程,实现高温热源和低温热源之间的能量转化。
在Carnot循环中,气体在高温热源以恒定的温度接收热能,并在低温热源上以相同的温度释放热量。
中间的绝热过程用于提供功。
4. Rankine循环原理Rankine循环是一种常用于蒸汽动力装置中的循环。
在Rankine循环中,锅炉中的水被加热并蒸发,产生蒸汽驱动汽轮机工作。
蒸汽在汽轮机中经过膨胀,然后进入凝汽器中冷凝成水。
在循环的过程中,热量通过锅炉和冷凝器之间的传热过程转移,从而实现能量转化。
5. Brayton循环原理Brayton循环是一种常用于燃气轮机中的循环。
在Brayton循环中,燃烧室中的燃料与空气混合燃烧,产生高温高压的燃气。
燃气通过涡轮机膨胀产生功,然后通过压缩机再次提升压力。
水蒸汽动力循环基础
统
1.3 水蒸汽及其物性参数
1.3.4 水蒸气典型热力过程——2、汽轮机内的绝热流动过程 汽 轮 机 设 备 及 系
(1)与外界无热交换的绝热流动过程
①将蒸汽热能转变成机械功; ②对外所做的功等于工质的焓降。
wi h1 h2
(2)应用:
• 各种类型的汽轮机
统
1.3 水蒸汽及其物性参数
1.3.4 水蒸气典型热力过程——3、通过喷嘴的绝热流动 汽 轮 机 设 备 及 系
①由公式:h1↑、 h2 ↓、 h2’ ↓ → ηT ↑ ② p1 ↑、 t1 ↑ → h1 ↑ p2 ↓ → h2 ↓、 h2’ ↓ 总之:从循环的角度
• 提高初参数,降低终参数 • 提高平均吸热温度,降低平均放热温度 • 提高热源温度,降低冷源温度
(2)具体影响
o 系列化参数
• 在我国,经过多年的研究,对于特定容量的机组,所选用的水蒸汽参数 已形成系列化参数
o 由两个可逆定温过程和两个 可逆绝热过程所构成的动力 循环。温熵图:
• 1→2:定温吸热过程
q1 T1s12
• 2→3:绝热膨胀做功过程 • 3→4:定温放热过程
q2 T2 s34
统
• 4→1:绝热压缩耗功过程
o 循环净功
w0 q1 q2
1.2 卡诺循环
1.2.1 卡诺循环 汽 轮 机 设 备 及 系 3、结论
统
1.4 朗肯循环及其改进
1.4.2 再热循环 汽 轮 机 设 备 及 系
统
1.4 朗肯循环及其改进
汽 轮 机 设 备 及 系 1.4.2 再热循环 1.采用再热技术的目的:
o 增加吸热环节→ 提高吸热过程平均吸热温度 → 提高循环效率
电厂蒸汽的知识点总结
电厂蒸汽的知识点总结一、蒸汽的产生1.1 燃料燃烧和锅炉发电厂一般使用煤、燃气、石油等作为燃料,通过燃料的燃烧来产生热能,然后利用锅炉将热能转化为蒸汽。
锅炉是蒸汽的产生装置,通常分为水管锅炉和火管锅炉两种类型。
水管锅炉主要由水管和燃烧室组成,燃烧燃料产生的热能通过管壁传递给水,使水蒸发产生蒸汽。
火管锅炉则主要由火管和水包组成,燃烧燃料产生的热能直接传递给水包,使水蒸发产生蒸汽。
1.2 蒸汽发生系统蒸汽发生系统包括给水系统、蒸汽系统和排污系统。
给水系统主要用于将水送入锅炉进行蒸发,包括给水泵、给水加热器、除氧器等设备。
蒸汽系统主要用于将产生的蒸汽输送到发电机进行能量转换,包括汽包、汽门、主汽管道等设备。
排污系统主要用于将锅炉和汽包中的污水排出,以保证蒸汽质量和设备运行安全。
1.3 蒸汽的参数蒸汽的参数包括压力、温度、干度和质量等指标。
蒸汽的压力和温度是决定其能量大小和利用方式的重要参数,通常根据发电机的要求和锅炉的性能确定。
蒸汽的干度和质量则是表征蒸汽品质和适用范围的重要指标,对发电机和蒸汽轮机的安全稳定运行有重要影响。
二、蒸汽的输送2.1 主汽管道主汽管道是将锅炉产生的蒸汽输送到汽轮机组的重要设备,它承担着连接锅炉和汽轮机的功能。
主汽管道通常分为高压蒸汽管、中压蒸汽管和低压蒸汽管三个部分,各部分根据蒸汽参数和发电机要求确定。
主汽管道的设计和施工需要考虑蒸汽的流量、压力、温度和管道材料等因素,以保证蒸汽输送安全可靠。
2.2 辅助蒸汽系统辅助蒸汽系统包括加热蒸汽系统、再热蒸汽系统和回热蒸汽系统等,用于提高蒸汽的温度和压力,以满足汽轮机对蒸汽参数的要求。
加热蒸汽系统主要用于提高蒸汽的温度,通常采用超燃燃气加热或再热器加热的方式。
再热蒸汽系统主要用于提高蒸汽的干度和质量,通常采用再热器加热的方式。
回热蒸汽系统主要用于提高蒸汽的温度和压力,通常采用余热锅炉或排汽式余热器的方式。
2.3 蒸汽轮机组蒸汽轮机组是将蒸汽能量转化为机械能的装置,是发电厂的核心部件之一。
蒸汽系统原理
蒸汽系统原理
蒸汽系统原理是指利用热能将水转化为蒸汽,然后将蒸汽用于各种工业和生活领域的能源传递和转换过程。
蒸汽系统的原理基于一个基本的物理定律,即水在受热后会蒸发变成蒸汽。
这个过程需要一定的热源,通常是通过将燃料燃烧产生的热能传递给水来实现。
在蒸汽系统中,通常使用锅炉来加热水,并将水加热到沸腾点以上,使其转化为蒸汽。
锅炉中的热能可以通过多种方式传递给水,如燃煤、燃气或核能等。
一旦水转化为蒸汽,它的体积会急剧扩大,产生巨大的压力。
为了控制和利用这种蒸汽能量,需要一个设备来收集、储存和分发蒸汽。
这个设备通常被称为蒸汽发生器或发生器。
蒸汽系统的发生器通常由一系列管道和阀门组成,用于控制蒸汽的流动和分配。
蒸汽可以通过管道输送到需要能源的地方,如发电厂的涡轮机、工业生产设备或住宅建筑中的暖气系统等。
在蒸汽系统中,蒸汽的压力和温度是非常重要的参数。
通过控制锅炉的供热能力、调节阀门的开关和调整管道的大小,可以精确地控制蒸汽的压力和温度,以满足不同应用的需求。
总的来说,蒸汽系统的原理是通过加热水将其转化为蒸汽,并利用蒸汽的高压和高温能量传输和转换能源。
在实际应用中,根据需求的不同,蒸汽系统可以有各种构造和工作方式,但基本的原理是相同的。
蒸汽动力原理
蒸汽动力原理蒸汽动力是一种利用蒸汽来驱动机械运转的原理,是工业革命时期推动工业发展的重要动力源。
蒸汽动力原理的核心在于将水加热成蒸汽,利用蒸汽的压力和热能来驱动机械运转。
蒸汽动力的应用范围非常广泛,涵盖了从轮船、火车到工厂机械的各个领域。
蒸汽动力的原理可以简单地分为三个步骤,蒸汽的生成、蒸汽的扩张和蒸汽的冷凝。
首先,水被加热至沸点,形成蒸汽。
在这个过程中,水分子受热能激发,形成气态的水蒸汽。
其次,蒸汽被引入到活塞或涡轮机中,蒸汽的压力推动活塞或涡轮机的运动,从而完成对机械的驱动。
最后,蒸汽在机械运转结束后被冷却凝结成水,重新回到循环中。
蒸汽动力的原理是基于热力学的基本规律。
根据理想气体状态方程,蒸汽在受热后温度和压力成正比,蒸汽的体积与温度成反比。
因此,通过控制蒸汽的温度和压力,可以实现对蒸汽动力的有效控制。
在蒸汽动力系统中,锅炉是蒸汽的主要产生设备,它通过燃烧燃料将水加热至沸点,产生高温高压的蒸汽。
而蒸汽机或蒸汽涡轮则是蒸汽的主要利用设备,它将蒸汽的能量转化为机械运动的能量。
蒸汽动力的应用在工业生产中起到了举足轻重的作用。
在18世纪的工业革命时期,蒸汽动力被广泛应用于纺织、矿山、铁路等领域,大大提高了生产效率和交通运输的速度。
随着科技的发展,蒸汽动力逐渐被内燃机、电力等新能源所取代,但在某些特定领域,如核电站、船舶等,蒸汽动力仍然发挥着重要作用。
总的来说,蒸汽动力原理是工业革命时期的重要动力源,它利用水蒸汽的热能和压力来驱动机械运转。
蒸汽动力的原理是基于热力学的基本规律,通过控制蒸汽的温度和压力来实现对蒸汽动力的有效控制。
蒸汽动力在工业生产中起到了举足轻重的作用,虽然在一些领域被新能源所取代,但在特定领域仍然发挥着重要作用。
2011.8.14全厂蒸汽动力平衡以及系统优化节能
b. 传统的线性和非线性规划方法
(2)非线性规划法: 发展原因: 热力系统部件的特性往往是非线
性的,在很多情况下采用线性模型计算往 往与实际相差很大,因此必须建立相应的 非线性算法。 非线性算法 :转动坐标轴直接搜索(DSFD) 法、罚函数法等 。
b. 传统的线性和非线性规划方法
(2)非线性规划法: 应用情况:A T Clary在1996年对Tennessee
Eastman Division of Eastman化工公司24台 锅炉、19台汽轮机构成的复杂系统使用非 线性算法进行了计算。 不足:这些算法虽然已经比较成熟,但无法 保证对于任意的非线性规划问题都能准确 地收敛到全局最优解。
c. 启发式算法
基础:蒸汽动力系统的热力学分析 目的:推导出针对能量使用优化的总体原则
方式。 D、平衡各产汽单位的发汽量,利用足低价燃料的
锅炉蒸发量。
蒸汽管网运行的安全运行
• 蒸汽系统无缓冲裕量,必须时刻保持产耗
的动态平衡。
• 蒸汽动力系统运行必须有调节裕量。 • 所有运行的蒸汽管路必须保持最低流通量,
以保证蒸汽温度。
• 未投用蒸汽管路或运行蒸汽管路的盲端必
须疏水,防止水击的发生。
法又针对混合整数线性规划问题发展了分枝限界 反向跟踪法、隐枚举法等,这些方法都可以准确 地求解全局最优解。
应用情况:R T Couch等对6台锅炉、25台汽 轮机和1台备用汽轮机构成的供电系统进行了研究, 采用线性混合整数规划的方法在技术上解决了较 为复杂的能量系统的负荷分配问题,其中涉及到 了部分机组启停的情况。
网络热力学模型、网络流体力学模型三个 部分组成,而网络拓扑模型又包括:用于 描述网络节点与管段关系的关联矩阵和描 述网络回路信息的圈矩阵以及描述网络通 路信息的割矩阵等部分。
蒸汽动力模型飞机教案
蒸汽动力模型飞机教案蒸汽动力模型飞机是一种传统的模型飞机,由于它不需要电动机或其他先进的技术,因此成为了很多模型飞行爱好者的选择。
对于初学者来说,一款蒸汽动力模型飞机可能是一种非常好的入门选择。
那么如何进行蒸汽动力模型飞机的制作呢?下面我们就来介绍一下蒸汽动力模型飞机的教学方法。
一、材料准备蒸汽动力模型飞机通常由木质材料制成,所以我们首先需要准备的就是一些木材,通常可以选择五层或七层的材料。
另外还需要准备一些钢丝、蒸汽机、锂电池和遥控器等零部件。
二、气球囊铺胶纸我们需要将气球囊放在一个空旷的地方,然后将纸铺在其中,并用适量的胶水将纸固定在纸囊上。
不过需要注意的是,胶水不要太多,否则会使纸囊的重量增加。
三、制作翅膀随后,我们需要开始制作蒸汽动力模型飞机的翅膀。
制作方法如下:1.从木板中用锯子将翅膀的轮廓切出,同时留出安装轴心的位置。
2.使用钢丝将两块翅膀连接一起,并用钳子将钢丝固定在轮廓上。
3.将五层和七层木质材料交替使用,用胶水和夹子将翅膀板粘合到钢丝上。
4.在翅膀边缘切出一条细缝,然后将电线穿过细缝并固定。
5.将翅膀安装在飞机机身上,然后用钳子将钢丝切穿,使其紧贴机身。
四、安装蒸汽机将蒸汽机沿用压缩管安装在机身内部,然后通过电线连接锂电池。
此时我们可以使用遥控器来操控控制面板,将飞机升空。
五、结语蒸汽动力模型飞机是一种很好的模型飞机,具有古老魅力的同时也是一种极具挑战的飞行方式。
它需要的技术并不高,适合初学者进行学习。
只要仔细准备材料,并按照教学方法逐步制作,你就可以制作出一架漂亮的蒸汽动力模型飞机了。
蒸汽发动机原理
蒸汽发动机原理
蒸汽发动机是一种利用蒸汽能量来产生动力的设备。
它的原理是将液体燃料(如煤、石油或天然气)燃烧产生的热能转化为蒸汽能量,再利用蒸汽的压力和流速来推动发动机工作。
蒸汽发动机主要包括锅炉、汽缸、活塞和曲柄轴等部件。
首先,在锅炉中将液体燃料加热,使其变为高温高压的蒸汽。
然后,蒸汽进入汽缸中,推动活塞沿着曲柄轴的往复运动。
这个过程中,蒸汽的压力将活塞推向一个方向,然后再通过连杆和曲柄机构将往复运动转化为旋转运动,最终带动输出轴工作。
蒸汽发动机的工作原理可以用几个关键步骤来描述。
首先,在燃烧室中,液体燃料被加热并燃烧,产生高温废气。
然后,这些废气通过锅炉中的管道,使锅炉中的水加热并转化为蒸汽。
接着,蒸汽进入汽缸,压力推动活塞向前移动。
在活塞的行进过程中,蒸汽被释放,并通过排气阀排出。
同时,新鲜的蒸汽又通过阀门进入汽缸,从而推动下一次活塞运动。
蒸汽发动机的优点是可以利用各种液体燃料进行工作,并且产生的动力较大。
然而,它也存在一些缺点。
首先,它需要大量的水资源来产生蒸汽,对水的消耗较大。
其次,由于蒸汽的输出是间歇性的,所以需要一种机制来控制蒸汽的供应和停止。
此外,蒸汽发动机的噪音和振动较大,对环境造成一定的污染。
总之,蒸汽发动机通过利用蒸汽能量来产生动力,是一种常见的机械设备。
它的工作原理是将液体燃料燃烧后产生的热能转化为蒸汽能量,并利用蒸汽的压力和流速来推动发动机工作。
蒸汽发动机在各个领域都有广泛的应用,但由于技术的进步,电动机等新型动力设备正在逐渐取代蒸汽发动机。
火车的蒸汽原理图
火车的蒸汽原理图一. 蒸汽机构蒸汽机构是火车蒸汽原理的核心部分,它将燃烧室的高温高压蒸汽转化为动力能源。
蒸汽机构包括锅炉、汽缸、曲轴和连杆等。
1. 锅炉锅炉是蒸汽机构中的核心部件,它通过燃烧燃料产生高温高压蒸汽。
锅炉分为水管锅炉和火管锅炉两种类型。
2. 汽缸汽缸是蒸汽机构中将蒸汽能量转化为机械能的部件。
它将高压蒸汽进入汽缸内,推动活塞运动产生动力。
3. 曲轴曲轴是蒸汽机构中的关键部件,它将往复运动的活塞转化为旋转运动,从而驱动火车前进。
曲轴通常与连杆紧密结合。
4. 连杆连杆是蒸汽机构中活塞与曲轴之间的连接部件,它将活塞的往复直线运动转化为曲轴的旋转运动。
二. 蒸汽循环蒸汽循环是蒸汽机构中的重要环节,它保证了蒸汽的连续供应和循环利用。
1. 进水口进水口是蒸汽循环的起点,它将水引入锅炉,被加热转化为蒸汽。
2. 主汽阀主汽阀是控制蒸汽流入机构的关键部件,它根据需要开启或关闭,调节蒸汽流量。
3. 排汽阀排汽阀是蒸汽循环中的出口,它用于排出使用过的蒸汽和冷却后的凝汽水。
4. 泵泵是蒸汽循环中用于水循环的设备,它将冷凝水抽回锅炉进行二次加热再转化为蒸汽。
三. 辅助装置辅助装置在火车蒸汽原理中起到补充和提高效能的作用,包括给水装置、空气压缩机和润滑系统等。
1. 给水装置给水装置负责向锅炉提供水源补给,确保持续的蒸汽产生。
2. 空气压缩机空气压缩机将大气中的空气进行压缩,用于蒸汽制动和各种操作装置的动力。
3. 润滑系统润滑系统为蒸汽机构的各个部件提供润滑,减少磨擦和磨损,提高机械效率。
四. 蒸汽排放和余热利用蒸汽机构产生的烟气和废热需要得到合理处理和利用,以提高能源利用效率和环境保护。
1. 烟囱烟囱用于排放烟气,防止污染环境。
同时,烟囱的高度和形状也会影响燃烧效率和锅炉的工作效果。
2. 烟气余热回收装置烟气余热回收装置可以对烟气中的热能进行回收利用,提高能源利用效率。
3. 冷凝水回收装置冷凝水回收装置用于回收锅炉排出的冷凝水,并进行适当的处理和再利用。
蒸汽动力原理范文
蒸汽动力原理范文首先是蒸汽的产生。
蒸汽通常是通过将水加热至其沸点以上得到的。
在工业上,常用的加热方式包括燃煤、燃油、燃气和核能等。
在蒸汽锅炉中,通过供给足够的热量使水逐渐加热,水分子的热运动速度增加,渐渐达到沸腾的状态,形成蒸汽。
其次是蒸汽的输送和利用。
蒸汽通常通过管道输送到需要使用的地方,例如蒸汽机、蒸汽涡轮机等。
在蒸汽机中,蒸汽通过进气阀进入气缸,推动活塞运动,从而驱动机器工作。
而在蒸汽涡轮机中,蒸汽则作用于涡轮叶片,由于蒸汽的压力和流速对涡轮的冲击力,使涡轮旋转,进而驱动发电机或其他机械装置。
最后是蒸汽的冷凝排除。
在蒸汽机或蒸汽涡轮机使用后,产生的废气一般是剩下的蒸汽。
为了重新利用这些废气,一般都会进行冷却处理,使其沉积成液体,然后排除。
这一过程中,常用的方式有将废气冷却为水蒸汽后再排除,或者直接冷却为水后排除。
蒸汽动力原理的优势之一是废气利用率高。
由于燃煤、燃油等方式会在燃烧过程中产生大量的废气,通过蒸汽动力原理,可以将这些废气再次利用,使废气排放量大幅减少,对环境造成的污染也较少。
此外,蒸汽动力原理具有高转化效率,可以将燃料的热能转化为机械能的比例较高,达到更好的能源利用效果。
然而,蒸汽动力原理也存在一些局限性。
首先是能源的局限性,蒸汽的产生需要大量的能源供应,如煤炭、石油等资源,而这些能源的供应有一定限制,不能无限制地增加。
其次是机械部件的维护和运转问题,蒸汽机和蒸汽涡轮机是复杂的机械装置,需要定期的维护和保养,对于人力和物力的需求较高。
总体而言,蒸汽动力原理是工业革命时期对于推动机械工业化进程做出的重要贡献,为社会进步和经济发展提供了强大的动力支持。
虽然在现代工业中,蒸汽动力已逐渐被电力、液体燃料等新型能源所替代,但蒸汽动力原理的基本原理和技术仍然是历史上重要的里程碑,有着重要的历史价值和科学意义。
蒸汽机工作原理
蒸汽机工作原理标题:蒸汽机工作原理引言概述:蒸汽机是一种利用蒸汽压力来产生动力的机械装置,是工业革命时代的重要发明之一。
蒸汽机的工作原理是通过蒸汽的膨胀和压缩来驱动活塞运动,从而产生动力。
下面将详细介绍蒸汽机的工作原理。
一、蒸汽的产生1.1 燃烧燃料:蒸汽机的运行需要燃料来产生热能,通常使用煤、石油、天然气等燃料进行燃烧。
1.2 加热水:燃料的燃烧产生的热能被传递给水,使水变成蒸汽。
1.3 调节压力:通过控制燃料的燃烧速度和水的加热温度,可以调节蒸汽的压力和温度。
二、蒸汽的扩张2.1 进气阀开启:当蒸汽达到一定压力时,进气阀打开,将高压蒸汽进入活塞腔。
2.2 活塞向前运动:高压蒸汽推动活塞向前运动,产生动力。
2.3 排气阀关闭:当活塞运动到一定位置时,排气阀关闭,防止蒸汽泄漏。
三、蒸汽的压缩3.1 进气阀关闭:当活塞运动到前进的极限位置时,进气阀关闭,阻止新的蒸汽进入活塞腔。
3.2 排气阀打开:同时,排气阀打开,将残余的蒸汽排出活塞腔。
3.3 活塞向后运动:排出蒸汽后,活塞受到外部压力的作用向后运动,完成一个工作循环。
四、功率输出4.1 连杆机构:活塞通过连杆机构连接转动轴,将直线运动转换为旋转运动。
4.2 飞轮调节:飞轮的作用是调节转动轴的速度和平稳性。
4.3 输出动力:转动轴通过传动装置输出动力,驱动其他机械设备运行。
五、循环往复5.1 持续运行:蒸汽机通过不断地产生、扩张、压缩蒸汽,实现持续运行。
5.2 能量转换:蒸汽机将热能转化为机械能,实现能量转换。
5.3 应用广泛:蒸汽机曾是工业革命时代的主要动力来源,如今仍广泛应用于发电、船舶、火车等领域。
总结:蒸汽机的工作原理是基于热力学原理和机械传动原理,通过蒸汽的产生、扩张、压缩和功率输出实现动力传递。
蒸汽机的发明和运用推动了工业革命的发展,至今仍在一些特定领域发挥重要作用。
热效率计算101蒸汽动力基本循环
对于一般的汽油机, 7-9。
v1 v 2 称为压缩
比,>1,表示工 质在燃烧前被压
缩的程度。
定容燃烧汽油柴油机压缩比的提高受到限制, 因而限制了其热效率的提高。
压缩比↑,
发展了空气和燃料分别压缩的 压燃式内燃机(柴油机)。
以柴油为燃料,定压加热 理想循环是柴油机实际工 作循环的理想化,常称狄
目的:克服汽轮机尾部蒸 汽湿度过大造成的危害。
2、再热循环
高压汽轮 机
低压汽轮机
相当于在朗肯循环的基础上
增加了新的循环:61' 2' 26。
一般而言,采用一次再热循环以后,循 环热效率可提高2%~ 4%左右。 实际应用的再热次数一般不超过两次。
②
q 1(h 1h 3)(h 1 ' h 6)
q2 h2' h3
塞尔(Diesel)循环
2、定压加热循环
实际工作原理图
⑴实际循环工作原理
➢吸气冲程0-1;
➢压缩冲程1-2;(空气被绝热压 缩到燃料的着火点以上)
➢燃烧过程2-3;
由装在气缸顶部的喷嘴将燃料喷入汽缸,燃 料的微粒遇到空气着火燃烧。随着活塞的移 动,燃料不断喷入、不断燃烧,这一燃烧过 程2-3的压力基本保持不变。 ➢工作过程3-4;
燃料喷射停止后,燃烧随即结束,这时活 塞靠高温高压燃烧产物的绝热膨胀而继续 被推向右方而形成工作过程3-4; ➢排气过程4-0;
排气阀们打开,废气迅速排出,最后活塞 反向移动,继续将废气排出,排气过程为 4-0,从而完成一个实际循环。
(2)汽油机实际循环理想化
(3)能量分析及热效率的计算
(3)能量分析及热效率的计算
热效率计算101蒸汽动力基本 循环
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C H A P T E R T W OFundamentals ofSteam Power2.1 IntroductionMuch of the electricity used in the United States is produced in steam power plants. Despite efforts to develop alternative energy converters, electricity from steam will continue, for many years, to provide the power that energizes the United States and world economies. We therefore begin the study of energy conversion systems with this important element of industrial society.Steam cycles used in electrical power plants and in the production of shaft power in industry are based on the familiar Rankine cycle, studied briefly in most courses in thermodynamics. In this chapter we review the basic Rankine cycle and examine modifications of the cycle that make modern power plants efficient and reliable.2.2 A Simple Rankine-Cycle Power PlantThe most prominent physical feature of a modern steam power plant (other than its smokestack) is the steam generator, or boiler, as seen in Figure 2.1. There the combustion, in air, of a fossil fuel such as oil, natural gas, or coal produces hot combustion gases that transfer heat to water passing through tubes in the steam generator. The heat transfer to the incoming water (feedwater) first increases its temperature until it becomes a saturated liquid, then evaporates it to form saturated vapor, and usually then further raises its temperature to create superheated steam.Steam power plants such as that shown in Figure 2.1, operate on sophisticated variants of the Rankine cycle. These are considered later. First, let’s examine the simple Rankine cycle shown in Figure 2.2, from which the cycles of large steam power plants are derived.In the simple Rankine cycle, steam flows to a turbine, where part of its energy is converted to mechanical energy that is transmitted by rotating shaft to drive an electrical generator. The reduced-energy steam flowing out of the turbine condenses to liuid water in the condenser. A feedwater pump returns the condensed liquid (condensate) to the steam generator. The heat rejected from the steam entering the condenser is transferred to a separate cooling water loop that in turn delivers the rejected energy to a neighboring lake or river or to the atmosphere.As a result of the conversion of much of its thermal energy into mechanical energy, or work, steam leaves the turbine at a pressure and temperature well below the turbine entrance (throttle) values. At this point the steam could be released into the atmosphere. But since water resources are seldom adequate to allow the luxury of one-time use, and because water purification of a continuous supply of fresh feedwater is costly, steam power plants normally utilize the same pure water over and over again. We usually say that the working fluid (water) in the plant operates in a cycle or undergoes of cyclic process, as indicated in Figure 2.2. In order to return the steam to the high-pressure of the steam generator to continue the cycle, the low- pressure steam leaving the turbine at state 2 is first condensed to a liquid at state 3 and then pressurized in a pump to state 4. The high pressure liquid water is then ready for its next pass through the steam generator to state 1 and around the Rankine cycle again.The steam generator and condenser both may be thought of as types of heat exchangers, the former with hot combustion gases flowing on the outside of water-filled tubes, and the latter with external cooling water passing through tubes on which the low- pressure turbine exhaust steam condenses. In a well-designed heat exchanger, both fluids pass through with little pressure loss. Therefore, as an ideal, it is common to think of steam generators and condensers as operating with their fluids at unchanging pressures.It is useful to think of the Rankine cycle as operating between two fixed pressure levels, the pressure in the steam generator and pressure in the condenser. A pump provides the pressure increase, and a turbine provides the controlled pressure drop between these levels.Looking at the overall Rankine cycle as a system (Figure 2.2), we see that work is delivered to the surroundings (the electrical generator and distribution system) by the turbine and extracted from the surroundings by a pump (driven by an electric motor or a small steam turbine). Similarly, heat is received from the surroundings (combustiongas) in the steam generator and rejected to cooling water in the condenser.At the start of the twentieth century reciprocating steam engines extracted thermal energy from steam and converted linear reciprocating motion to rotary motion, to provide shaft power for industry. Today, highly efficient steam turbines, such as shown in Figure 2.3, convert thermal energy of steam directly to rotary motion. Eliminating the intermediate step of conversion of thermal energy into the linear motion of a piston was an important factor in the success of the steam turbine in electric power generation. The resulting high rotational speed, reliability, and power output of the turbine and the development of electrical distribution systems allowed the centralization of power production in a few large plants capable of serving many industrial and residential customers over a wide geographic area.The final link in the conversion of chemical energy to thermal energy to mechanical energy to electricity is the electrical generator. The rotating shaft of the electrical generator usually is directly coupled to the turbine drive shaft. Electrical windings attached to the rotating shaft of the generator cut the lines of force of the stator windings, inducing a flow of alternating electrical current in accordance with Faraday's Law. In the United States, electrical generators turn at a multiple of the generation frequency of 60 cycles per second, usually 1800 or 3600 rpm. Elsewhere, where 50 cycles per second is the standard frequency, the speed of 3000 rpm is common. Through transformers at the power plant, the voltage is increased to several hundred thousand volts for transmission to distant distribution centers. At the distribution centers as well as neighborhood electrical transformers, the electrical potential is reduced, ultimately to the 110- and 220-volt levels used in homes and industry.Since at present there is no economical way to store the large quantities ofelectricity produced by a power plant, the generating system must adapt, from moment to moment, to the varying demands for electricity from its customers. It is therefore important that a power company have both sufficient generation capacity to reliably satisfy the maximum demand and generation equipment capable of adapting to varying load.2.3 Rankine-Cycle AnalysisIn analyses of heat engine cycles it is usually assumed that the components of theengine are joined by conduits that allow transport of the working fluid from the exit of one component to the entrance of the next, with no intervening state change. It will be seen later that this simplification can be removed when necessary.It is also assumed that all flows of mass and energy are steady, so that the steady state conservation equations are applicable. This is appropriate to most situations because power plants usually operate at steady conditions for significant lengths of time. Thus, transients at startup and shutdown are special cases that will not be considered here.Consider again the Rankine cycle shown in Figure 2.2. Control of the flow can be exercised by a throttle valve placed at the entrance to the turbine (state 1). Partial valve closure would reduce both the steam flow to the turbine and the resulting poweroutput. We usually refer to the temperature and pressure at the entrance to the turbine as throttle conditions . In the ideal Rankine cycle shown, steam expands adiabatically and reversibly, or isentropically, through the turbine to a lower temperature andpressure at the condenser entrance. Applying the steady-flow form of the First Law of Thermodynamics [Equation (1.10)] for an isentropic turbine we obtain:q = 0 = h 2 – h 1 + w t [Btu/lb m | kJ/kg]where we neglect the usually small kinetic and potential energy differences between the inlet and outlet. This equation shows that the turbine work per unit mass passing through the turbine is simply the difference between the entrance enthalpy and the lower exit enthalpy:w t = h 1 – h 2[Btu/lb m | kJ/kg] (2.1)The power delivered by the turbine to an external load, such as an electrical generator,is given by the following:Turbine Power = m s w t = m s (h 1 – h 2) [Btu/hr | kW]where m s [lb m /hr | kg/s] is the mass flow of steam though the power plant.Applying the steady-flow First Law of Thermodynamics to the steam generator,we see that shaft work is zero and thus that the steam generator heat transfer isq a = h 1 – h 4[Btu/lb m | kJ/kg](2.2)The condenser usually is a large shell-and-tube heat exchanger positioned below or adjacent to the turbine in order to directly receive the large flow rate of low-pressure turbine exit steam and convert it to liquid water. External cooling water is pumped through thousands of tubes in the condenser to transport the heat of condensation of the steam away from the plant. On leaving the condenser, the condensed liquid (called condensate ) is at a low temperature and pressure compared with throttle conditions.Continued removal of low-specific-volume liquid formed by condensation of the high-specific-volume steam may be thought of as creating and maintaining the low pressure in the condenser. The phase change in turn depends on the transfer of heat released to the external cooling water. Thus the rejection of heat to the surroundings by thecooling water is essential to maintaining the low pressure in the condenser. Applying the steady-flow First Law of Thermodynamics to the condensing steam yields:q c = h 3 – h 2[Btu/lb m | kJ/kg](2.3)The condenser heat transfer q c is negative because h 2 > h 3. Thus, consistent with sign convention, q c represents an outflow of heat from the condensing steam. This heat is absorbed by the cooling water passing through the condenser tubes. The condenser-cooling-water temperature rise and mass-flow rate m c are related to the rejected heat by:m s |q c | = m c c water (T out - T in )[Btu/hr | kW]where c water is the heat capacity of the cooling water [Btu/lb m -R | kJ/kg-K]. The condenser cooling water may be drawn from a river or a lake at the temperature T in and returned downstream at T out , or it may be circulated through cooling towers where heat is rejected from the cooling water to the atmosphere.We can express the condenser heat transfer in terms of an overall heat transfer coefficient, U , the mean cooling water temperature, T m = (T out + T in )/2, and the condensing temperature T 3:m s |q c | = UA (T 3 - T m )[Btu/hr | kJ/s]It is seen for given heat rejection rate, the condenser size represented by the tube surface area A depends inversely on (a) the temperature difference between thecondensing steam and the cooling water, and (b) the overall heat-transfer coefficient.For a fixed average temperature difference between the two fluids on opposite sides of the condenser tube walls, the temperature of the available cooling watercontrols the condensing temperature and hence the pressure of the condensing steam.Therefore, the colder the cooling water, the lower the minimum temperature and pressure of the cycle and the higher the thermal efficiency of the cycle.A pump is a device that moves a liquid from a region of low pressure to one of high pressure. In the Rankine cycle the condenser condensate is raised to the pressure of the steam generator by boiler feed pumps, BFP. The high-pressure liquid water entering the steam generator is called feedwater . From the steady-flow First Law of Thermodynamics, the work and power required to drive the pump are:w p = h 3 – h 4[Btu/lb m | kJ/kg](2.4)andPump Power = m s w p = m s (h 3 – h 4)[Btu/hr | kW]where the negative values resulting from the fact that h 4 > h 3 are in accordance with the thermodynamic sign convention, which indicates that work and power must be supplied to operate the pump.The net power delivered by the Rankine cycle is the difference between the turbine power and the magnitude of the pump power. One of the significant advantages of the Rankine cycle is that the pump power is usually quite small compared with the turbine power. This is indicated by the work ratio , w t / w p , which is large compared with one for Rankine cycle. As a result, the pumping power is sometimes neglected inapproximating the Rankine cycle net power output.It is normally assumed that the liquid at a pump entrance is saturated liquid. This is usually the case for power-plant feedwater pumps, because on the one handsubcooling would increase the heat edition required in the steam generator, and on the other the introduction of steam into the pump would cause poor performance and destructive, unsteady operation. The properties of the pump inlet or condenser exit (state 3 in Figure 2.2) therefore may be obtained directly from the saturated-liquid curve at the (usually) known condenser pressure.The properties for an isentropic pump discharge at state 4 could be obtained from a subcooled-water property table at the known inlet entropy and the throttle pressure. However, such tables are not widely available and usually are not needed. The enthalpy of a subcooled state is commonly approximated by the enthalpy of thesaturated-liquid evaluated at the temperature of the subcooled liquid. This is usually quite accurate because the enthalpy of a liquid is almost independent of pressure. An accurate method for estimating the pump enthalpy rise and the pump work is given later (in Example 2.3).A measure of the effectiveness of an energy conversion device is its thermalefficiency, which is defined as the ratio of the cycle net work to the heat supplied from external sources. Thus, by using Equations (2.1), (2.2), and (2.4) we can express the ideal Rankine-cycle thermal efficiency in terms of cycle enthalpies as:th = (h1 – h2 + h3 – h4)/(h1 – h4)[dl](2.5)In accordance with the Second Law of Thermodynamics, the Rankine cycle efficiency must be less than the efficiency of a Carnot engine operating between the same temperature extremes. As with the Carnot-cycle efficiency, Rankine-cycle efficiency improves when the average heat-addition temperature increases and the heat-rejection temperature decreases. Thus cycle efficiency may be improved by increasing turbine inlet temperature and decreasing the condenser pressure (and thus the condenser temperature).Another measure of efficiency commonly employed by power plant engineers is the heat rate, that is, the ratio of the rate of heat addition in conventional heat units to the net power output in conventional power units. Because the rate of heat addition is proportional to the fuel consumption rate, the heat rate is a measure of fuel utilization rate per unit of power output. In the United States, the rate of heat addition is usually stated in Btu/hr, and electrical power output in kilowatts, resulting in heat rates being expressed in Btu/kW-hr. The reader should verify that the heat rate in English units is given by the conversion factor, 3413 Btu/kW-hr, divided by the cycle thermal efficiency as a decimal fraction, and that its value has a magnitude of the order of 10,000Btu/kW-hr. In the SI system of units, the heat rate is usually expressed in kJ/kW-hr, is given by 3600 divided by the cycle efficiency as a decimal fraction, and is of the same order of magnitude as in the English system. It is evident that a low value of heat rate represents high thermal efficiency and is therefore desirable.EXAMPLE 2.1An ideal Rankine cycle (see Figure 2.2) has a throttle state of 2000 psia/1000°F and condenser pressure of 1 psia. Determine the temperatures, pressures, entropies, and enthalpies at the inlets of all components, and compare the thermal efficiency of the cycle with the relevant Carnot efficiency. Neglect pump work. What is the quality of the steam at the turbine exit?SolutionThe states at the inlets and exits of the components, following the notation of Figure 2.2, are listed in the following table. The enthalpy and entropy of state 1 may be obtained directly from tables or charts for superheated steam (such as those in Appendices B and C) at the throttle conditions. A Mollier chart is usually more convenient than tables in dealing with turbine inlet and exit conditions.For an ideal isentropic turbine, the entropy is the same at state 2 as at state 1. Thusstate 2 may be obtained from the throttle entropy (s2 = s1= 1.5603 Btu/lbm-R) and thecondenser pressure (1 psia). In general, this state may be in either the superheated-steam region or the mixed-steam-and-liquid region of the Mollier and T-s diagrams. In the present case it is well into the mixed region, with a temperature of 101.74°F and an enthalpy of 871 Btu/lbm.The enthalpy, h 3 = 69.73 Btu/lb m , and other properties at the pump inlet are obtained from saturated-liquid tables, at the condenser pressure. The steady-flow First Law of Thermodynamics, in the form of Equation (2.4), indicates that neglecting isentropic pump work is equivalent to neglecting the pump enthalpy rise. Thus in this case Equation (2.4) implies that h 3 and h 4 shown in Figure (2.2) are almost equal. Thus we take h 4 = h 3 as a convenient approximation.StateTemperature (°F) Pressure (psia) Entropy (Btu/lb m -°R) Enthalpy (Btu/lb m )11000.0 2000 1.5603 1474.12101.74 1 1.5603 871.03101.74 1 0.1326 69.734 101.74 2000 0.1326 69.73The turbine work ish 1 – h 2 = 1474.1 – 871 = 603.1 Btu/lb m .The heat added in the steam generator ish 1 – h 4 = 1474.1 – 69.73 = 1404.37 Btu/lb m .The thermal efficiency is the net work per heat added = 603.1/1404.37 = 0.4294(42.94%). This corresponds to a heat rate of 3413/0.4294 = 7946 Btu/kW-hr. Asexpected, the efficiency is significantly below the value of the Carnot efficiency of 1 – (460 + 101.74)/(460 + 1000) = 0.6152 (61.52%), based on a sourcetemperature of T 1 and a sink temperature of T 3.The quality of the steam at the turbine exit is(s 2 – s l )/(s v – s l ) = (1.5603 – 0.1326)/(1.9781 – 0.1326) = 0.7736Here v and l indicate saturated vapor and liquid states, respectively, at pressure p 2.Note that the quality could also have been obtained from the Mollier chart for steam as 1 - M , where M is the steam moisture fraction at entropy s 2 and pressure p 2.__________________________________________________________________Example 2-2If the throttle mass-flow is 2,000,000 lb m /hr and the cooling water enters the condenser at 60°F, what is the power plant output in Example 2.1? Estimate the cooling-water mass-flow rate.Solution: The power output is the product of the throttle mass-flow rate and the power plant net work. ThusPower = (2 × 106)(603.1) = 1.206 × 109 Btu/hrorPower = 1.206 × 109 / 3413 = 353,413 kW.The condenser heat-transfer rate ism s q c = m s ( h 3 – h 2 ) = 2,000,000 × (69.73 – 871) = – 1.603×109 Btu/hrThe condensing temperature, T 3 = 101.74 °F, is the upper bound on the cooling water exit temperature. Assuming that the cooling water enters at 60°F and leaves at 95°F, the cooling-water flow rate is given bym c = m s |q c | / [ c water (T out – T in )] = 1.603×109 /[(1)(95 - 60)] = 45.68×106 lb m /hrA higher mass-flow rate of cooling water would allow a smaller condenser cooling-water temperature rise and reduce the required condenser-heat-transfer area at the expense of increased pumping power.____________________________________________________________________2.4 Deviations from the Ideal – Component EfficienciesIn a power plant analysis it is sometimes necessary to account for non-ideal effects such as fluid friction, turbulence, and flow separation in components otherwise assumed to be reversible. Decisions regarding the necessity of accounting for these effects are largely a matter of experience built on familiarity with the magnitudes of the effects,engineering practices, and the uses of the calculated results.TurbineIn the case of an adiabatic turbine with flow irreversibilities, the steady-flow First Law of Thermodynamics gives the same symbolic result as for the isentropic turbine in Equation (2.1), i.e.,w t = h 1 – h 2[Btu/lb | kJ/kg](2.6)except that here h 2 represents the actual exit enthalpy and w t is the actual work of an adiabatic turbine where real effects such as flow separation, turbulence, irreversible internal heat transfers, and fluid friction exist.An efficiency for a real turbine, known as the isentropic efficiency, is defined as the ratio of the actual shaft work to the shaft work for an isentropic expansion between the same inlet state and exit pressure level. Based on the notation of Figure 2.4, we see that the turbine efficiency is:turb = (h 1 – h 2 )/(h 1 – h 2s )[dl](2.7)where h 2s , the isentropic turbine-exit enthalpy, is the enthalpy evaluated at the turbine inlet entropy and the exit pressure. For the special case of an isentropic turbine, h 2 = h 2s and the efficiency becomes 1. Note how state 2 and the turbine work change in Figure 2.4 as the efficiency increases toward 1. The diagram shows that the difference between the isentropic and actual work, h 2 – h 2s , represents work lost due to irreversibility. Turbine isentropic efficiencies in the low 90% range are currently achievable in well-designed machines.Normally in solving problems involving turbines, the turbine efficiency is known from manufacturers’ tests, and the inlet state and the exhaust pressure are specified.State 1 and p 2 determine the isentropic discharge state 2s using the steam tables. The actual turbine-exit enthalpy can then be calculated from Equation (2.7). Knowing both p 2 and h 2, we can then fully identify state 2 and account for real turbine behavior in any cycle analysis.PumpWork must be supplied to a pump to move liquid from a low pressure to a highpressure. Some of the work supplied is lost due to irreversibilities. Ideally the remaining effective work to raise the pressure is necessarily less than that supplied. In order forthe efficiency of a pump to be less than or equal to 1, it is defined in inverse fashion to turbine efficiency. That is, pump efficiency is the ratio of the isentropic work to the actual work input when operating between two given pressures. Applying Equation (2.4) and the notation of Figure (2.5), the isentropic pump work, w ps = h 3 – h 4s , and the pump isentropic efficiency ispump = w ps /w p = (h 4s – h 3)/(h 4 – h 3)[dl](2.8)Note the progression of exit states that would occur in Figure 2.5 as pump efficiency increases for a fixed inlet state and exit pressure. It is seen that the pump lost work,given by h 4 – h 4s decreases and that the actual discharge state approaches the isentropic discharge state.States 4 and 4s are usually subcooled liquid states. As a first approximation their enthalpies may be taken to be the saturated liquid enthalpy at T 3. More accurateapproximations for these enthalpies may be obtained by applying the First Law for a closed system undergoing a reversible process, Equation (1.8): Tds = dh - vdp . For an isentropic process it follows that dh = vdp . Because a liquid is almost incompressible,its specific volume, v , is almost independent of pressure. Thus, using the notation of Figure 2.5, integration with constant specific volume yieldsh 4s = h 3 + v 3 ( p 4 – p 3 )[Btu/lb m | kJ/kg]where a knowledge of state 3 and p 4 determines h 4s .Using Equation (2.8), and without consulting tables for subcooled water, we can then calculate the pump work fromw p = v 3(p 3 – p 4)/ p [ft-lb f /lb m | kN-m/kg](2.9)Note that the appropriate conversion factors must be applied for dimensionalconsistency in Equation (2.9).EXAMPLE 2.3Calculate the actual work and the isentropic and actual discharge enthalpies for an 80%efficient pump with an 80°F saturated-liquid inlet and an exit pressure of 3000 psia. SolutionFrom the saturated-liquid tables, for 80°F, the pump inlet conditions are 0.5068 psia,48.037 Btu/lb m , and 0.016072 ft 3/lb m .Using Equation (2.9), we find that the pump work isw p = [0.016072(0.5068 – 3000)(144)]/0.8 = – 8677 ft-lb f / lb mor w p = – 8677/778 = – 11.15 Btu/lb m.Note the importance of checking units here.The actual discharge enthalpy ish 4 = h 3 – w p = 48.037 – (–11.15) = 59.19 Btu/lb m.and the isentropic discharge enthalpy ish 4s = h 3 – p w p = 48.037 – (0.8)(– 11.15) = 56.96 Btu/lb m. ____________________________________________________________________EXAMPLE 2.4What is the turbine work, the net work, the work ratio, and the cycle thermal efficiency for the conditions of Example 2.1 if the turbine efficiency is 90% and the pump efficiency is 85%? What is the turbine exit quality?SolutionBy the definition of isentropic efficiency, the turbine work is 90% of the isentropic turbine work = (0.9)(603.1) = 542.8 Btu/lb m.By using Equation (2.9), the isentropic pump work is[(0.01614)(1 – 2000)(144)] / 778 = – 5.97 Btu/lb m.The actual pump work is then – 5.97/.85 = – 7.03 Btu/lb m and the work ratio is 542.8/| – 7.03| = 77.2The cycle net work is w t + w p = 542.8 – 7.03 = 535.8 Btu/lb m..Applying the steady-flow First Law of Thermodynamics to the pump, we get the enthalpy entering the steam generator to beh 4 = h 3 – w p = 69.73 – (– 7.03) = 76.76 Btu/lb m.The steam-generator heat addition is then reduced to 1474.1 – 76.76 = 1397.3Btu/lb m. and the cycle efficiency is 535.8/1397.3 = 0.383. Study of these examplesshows that the sizable reduction in cycle efficiency from that in Example 2.1 is largely due to the turbine inefficiency, not to the neglect of pump work.From Equation (2.6), the true turbine exit enthalpy is the difference between the throttle enthalpy and actual turbine work = 1474.1 - 542.8 = 931.3 Btu/lb m. The quality is then x = (h 2 – h l )/(h v – h l ) = (931.3 – 69.73)/(1105.8 – 69.73) =0.832.Thus the turbine inefficiency increases the turbine exhaust quality over theisentropic turbine value of 0.774.____________________________________________________________________2.5 Reheat and Reheat CyclesA common modification of the Rankine cycle in large power plants involvesinterrupting the steam expansion in the turbine to add more heat to the steam before completing the turbine expansion, a process known as reheat . As shown in Figure 2.6,steam from the high-pressure (HP) turbine is returned to the reheat section of the steam generator through the "cold reheat" line. There the steam passes through heated tubes which restore it to a temperature comparable to the throttle temperature of the high pressure turbine. The reenergized steam then is routed through the "hot reheat" line to a low-pressure turbine for completion of the expansion to the condenser pressure.Examination of the T-s diagram shows that reheat increases the area enclosed by the cycle and thus increases the net work of the cycle by virtue of the cyclic integral,Equation (1.3). This is significant, because for a given design power output higher net work implies lower steam flow rate. This, in turn, implies that smaller plant components may be used, which tends to reduce the initial plant cost and to compensate for added costs due to the increased complexity of the cycle.Observe from Figure 2.6 that the use of reheat also tends to increase the average temperature at which heat is added. If the low-pressure turbine exhaust state issuperheated, the use of reheat may also increase the average temperature at which heat is rejected. The thermal efficiency may therefore increase or decrease, depending on specific cycle conditions. Thus the major benefits of reheat are increased net work,。