第十一讲 分数、百分数应用题初步
分数应用题初步
学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。
可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。
可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
学科培优数学“分数应用题初步”学生姓名授课日期教师姓名授课时长知识定位分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,例如a是b的几分之几,就把数b看作单位“1”.在几个量中,弄清哪一个是单位“1”很重要,否则容易出错误.而百分数应用题中所涉及的百分数,只是分母是100的分数,因而计算的方法和分数应用题是一样的,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系分数应用题有以下三种基本类型:求一个数是另一个数的几分之几;求一个数的几分之几是多少;已知一个数的几分之几是多少,求这个数。
分数应用题一方面是在整数应用题基础上的延伸和深化;另一方面,他有其自身的特点和解题规律。
在解分数应用题时,分析体中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键。
实际上分数应用题涉及的知识面广,数量关系变化多端,有时数量关系又比较隐蔽,我们必须仔细审题,通过分析推理,弄清量与分率的对应关系,将复杂的分数应用题转化为上述三种类型,然后依据有关的数量关系解答应用题。
知识梳理怎样找准分数应用题中单位“1”解分数应用题是学生的障碍物,原因归结于不能正确找准单位“1”。
小升初数学分数和百分数应用题解题技巧
小升初数学分数和百分数应用题解题技巧分数和百分数的基本应用题有三种,下面分别谈一谈每种应用题的特征和解题的规律。
(一)求一个数是另一个数的百分之几这类问题的结构特征是,已知两个数量,所求问题是这两个量间的百分率。
求一个数是另一个数的百分之几与求一个数是另一个数的几倍或几分之几的实质是一样的,只不过计算结果用百分数表示罢了,所以求一个数是另一数的百分之几时,要用除法计算。
●解题的一般规律:设a、b是两个数,当求a是b的百分之几时,列式是a÷b。
解答这类应用题时,关键是理解问题的含意。
●例题如下:养猪专业户李阿姨去年养猪350头,今年比去年多养猪60头,今年比去年多养猪百分之几?●思路分析:问题的含义是:今年比去年多养猪的头数是去年养猪头数的百分之几。
所以应用今年比去年多养猪的头数去÷去年养猪的头数,然后把所得的结果转化成百分数。
(二)求一个数的几分之几或百分之几●求一个数的几分之几或百分之几是多少,都用乘法计算。
●解答这类问题时,要从反映两个数的倍数关系的那个已知条件入手分析,先确定单位“1”,然后确定求单位“1”的几分之几或百分之几。
(三)已知一个数的几分之几或百分之几是多少,求这个数●这类应用题可以用方程来解,也可以用算术法来解。
用算术方法解时,要用除法计算。
●解答这类应用题时,也要反映两个数的倍数关系的已知条件入手分析:先确定单位“1”,再确定单位“1”的几分之几或百分之几是多少。
一些稍难的应用题,可以画图帮助分析数量关系。
(四)工程问题工程问题是研究工作效率、工作时间和工作总量的问题。
●这类题目的特点是:工作总量没有给出实际数量,把它看做“1”,工作效率用来表示,所求问题大多是合作时间。
●例题如下:一件工程,甲工程队修建需要8天,乙工程队修建需要12天,两队合修4天后,剩下的任务,有乙工程队单独修,还需几天?●思路分析:把一件工程的工作量看作“1”,则甲的工作效率是1/8,乙的工作效率是1/12。
北师大版 六年级上册数学讲义-《分数(百分数)应用题》
成都市六年级上期《分数(百分数)应用题》-复习课一、分数应用题主要讨论的是以下三者之间的关系。
1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
2、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。
(也叫单位“1”的数量)3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
(也叫分率对应的数量)三种数量有如下关系:标准量×分率=比较量,比较量÷标准量=分率,比较量÷分率=标准量。
二、找单位1:(1)当两种数量比较时,抓关键词找准单位“1”分数应用题,题目中经常出现“是”、“占”、“比”、“等于”、“相当于”这些词,一般来说,单位“1”的量就隐藏在这些关键字的后面的量就是单位“1”。
一般“的”前面是单位“1”(2)部分数和总数有些分数应用题,存在着整体和部分两个数量,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1” 。
(3)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
例如:水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。
象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。
其实我们只要看,原来的数量是谁?这个原来的数量就是单位“1”!三、分数应用题的分类。
(三类)1.1 直接求一个数是另一个数的百分之几一个数÷另一个数1.2 求一个数比另一个数多百分之几差量(多的部分)÷单位11.3 求一个数比另一个数少百分之几差量(少的部分)÷单位12.1直接求一个数的百分之几是多少单位1×分率2.2求比一个数多百分之几的数是多少单位1×(1+分率)2.3 求比一个数少百分之几的数是多少单位1×(1-分率)3.1已知一个数的百分之几是多少,求这个数。
五年级奥数学练习试卷思维培训资料分数、百分数应用题初步 (2)
第十一讲分数、百分数应用题初步教学说明:在课本上此章节应为小学六年级上半学期内容,也是整个小学的重难点,但各各学校的进度不一,有部分学校已经讲解过,在我们奥数的学习进度中也必须提前有所了解,所以教师在讲解时侧重于基础知识的理解应用提高,同时兼顾本班孩子的进度,进行适当补充,为我们以后的工程问题、经济浓度等问题打好基础!我们将“列方程解应用题”放在此讲之前,意在让学生多一种解决分数、百分数应用题的方法,增加他们的信心,但主体仍以算术方法为主,碰到个别例题教师可讲述方程思路.古希腊杰出的数学家丢番图的墓碑上有一段话:“他生命的六分之一是幸福的童年.再活十二分之一脸上长起了细细的胡须,他结了婚还没有孩子,又度过了七分之一.再过了五年,他幸福地得到了一个儿子.可这孩子光辉灿烂的寿命只有他父亲的一半.儿子死后,老人在悲痛中活了四年,也结束了尘世的生涯”.你能根据这段话推算出丢番图活了多少岁?多少岁结的婚吗?怎么样?你能根据大数学家丢番图的叙述找到答案么?呵呵!学习了今天的知识,你就可以在课后解决这个“数学趣题”了!好了,让我们开始今天的学习吧!内容概述类型Ⅰ:单位“1”不变【例1】 (1)(首师附入学测试题)(难度系数:★★)小强看一本书,每天看15页,4天后加快进度,又看了全书的25,还剩下30页,这本故事书有多少页? (2)(数学趣题)(难度系数:★★)古希腊杰出的数学家丢番图的墓碑上有一段话:“他生命的六分之一是幸福的童年.再活十二分之一脸上长起了细细的胡须,他结了婚还没有孩子,又度过了七分之一.再过了五年,他幸福地得到了一个儿子.可这孩子光辉灿烂的寿命只有他父亲的一半.儿子死后,老人在悲痛中活了四年,也结束了尘世的生涯”.你能根据这段话推算出丢番图活了多少岁?多少岁结的婚吗?分析:在讲解此题之前可先给学生巩固一下概念,可参看附加1.(1)教师可先讲解下题:小强看一本故事书,每天看20页,5天后还剩下全书的15没看,这本故事书有多少页?分析:1(205)(1)1255⨯÷-=(页). 回到原题:4天看了15×4=60(页),而60+30=90页占全书的:1-25=35,这本故事书有:90÷35=150(页).(2)活的岁数:1111(54)(1)8461272+÷----=(岁) ,结婚年龄:1184()21612⨯+=(岁).【例2】 (奥数网习题库)(难度系数:★★)甲、乙、丙三人共储蓄387元,甲比乙多存13元,丙是乙的75%,甲、乙、丙三人各存了多少元?分析:注意找关键字眼,确定单位“1”,把乙当作单位“1”,则(387-13)÷(1+1+75%)=136元,甲存了149元,丙存了102元.【例3】 (迎春杯刊赛)(难度系数:★★★)甲、乙、丙三人一起买了八个面包平分着吃,甲拿出五个面包的钱,乙付了三个面包的钱,丙没带钱,等吃完后一算,丙应该拿出四元钱,问:甲应收回多少钱?(以角为单位)分析:每人应付38个面包的钱,丙拿出的40角就是38个面包的钱,所以一个面包的价格应为:840153÷=(角),甲多付的钱为:8(5)15353-⨯=(角),所以甲应收回35角.【拓展】(奥数网习题库)(难度系数:★★★)有男女同学325人,新学年男生增加25人,女生减少 5%,总人数增加16人,那么现有男同学多少人?分析:男生增加25人,总人数只增加16人,说明女生减少9人,而女生减小5%,故9人对应的为5%,女生原人数为9÷5%=180人.【例4】 (奥数网习题库)(难度系数:★★★)好味多西饼屋推出一款新蛋糕,第一天卖出了全部的20%,第二天卖出了剩下的12,第二天比第一天多卖出40个,那么好味多西饼屋这次共推出新蛋糕多少个?分析:好味多西饼屋推出新蛋糕个数看作“1”,140(120%)20%2002⎡⎤÷⨯--=⎢⎥⎣⎦(个).【巩固】(迎春杯决赛)迎春农机厂计划生产一批插秧机,现已完成计划的56%,如果再生产5040台,总产量就超过计划产量的16%.那么,原计划生产插秧机台.分析:5400÷(1+16%一56%)=9000(台).【例5】 (小数报数学竞赛)(难度系数:★★★)某运输队运一批大米.第一天运走总数的15多60袋,第二天运走总数的14少60袋.还剩下220袋没有运走。
5年级秋季第11讲-工程问题(学生版)
第十一讲工程问题工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具.工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难.在教学中,让学生建立正确概念是解决工程应用题的关键.一.工程问题的基本概念定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题.工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:①具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;②在理解、掌握分数的意义和性质的前提下灵活运用;③学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.例题1【提高】一项工程,甲单独做需要30天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【精英】甲、乙两人共同加工一批零件,8小时可以完成任务.如果甲单独加工,便需要12小时完成.现在甲、乙两人共同生产了225小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务.问乙一共加工零件多少个?例题2【提高】一项工程,甲、乙合作需要20天完成,乙、丙合作需要15天完成,由乙单独做需要30天完成,那么如果甲、乙、丙合作,完成这项工程需要多少天?【精英】一池水,甲、乙两管同时开,5小时灌满;乙、丙两管同时开,4小时灌满.现在先开乙管6小时,还需甲、丙两管同时开2小时才能灌满.乙单独开几小时可以灌满?例题3【提高】【精英】有10根大小相同的进水管给A 、B 两个水池注水,原计划用4根进水管给A 水池注水,其余6根给B 水池注水,那么5小时可同时注满.因为发现A 水池以一定的速度漏水,所以改为各用5根进水管给水池注水,结果也是同时注满.(1)如果用10根进水管给漏水的A 水池注水,需要多少分钟注满?(2)如果增加4根同样的进水管,A 水池仍然漏水,并且要求在注水过程中每个水池的进水管的数量保持不变,那么要把两个水池注满最少需要多少分钟?(结果四舍五入到个位)例题4【提高】一项工程,甲单独完成需要12天,乙单独完成需要9天.若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?【精英】一项工程,甲单独做20天完成,乙单独做30天完成.甲、乙合作了几天后,乙因事请假,甲继续做,从开工到完成任务共用了16天.乙请假多少天?例题5【提高】【精英】有一项工程,甲单独做需要36天完成,乙单独做需要30天完成,丙单独做需要48天完成.现在由甲、乙、丙三人同时做,在工作期间,丙休息了整数天,而甲和乙一直工作至完成,最后完成这项工程也用了整数天.那么丙休息了 天.例题6【提高】甲、乙两个工程队修路,最终按工作量分配8400元工资.按两队原计划的工作效率,乙队应获5040元.实际上从第5天开始,甲队的工作效率提高了1倍,这样甲队最终可比原计划多获得960元.那么两队原计划完成修路任务要多少天?【精英】甲、乙合作一件工程,由于配合得好,甲的工作效率比单独做时提高110,乙的工作效率比单独做时提高15.甲、乙两人合作6小时,完成全部工作的25,第二天乙又单独做了6小时,还留下这件工作的1330尚未完成,如果这件工作始终由甲一人单独来做,需要多少小时?例题7【提高】【精英】甲、乙两人同时加工同样多的零件,甲每小时加工40个,当甲完成任务的12时,乙完成了任务的12还差40个.这时乙开始提高工作效率,又用了7.5小时完成了全部加工任务.这时甲还剩下20个零件没完成.求乙提高工效后每小时加工零件多少个?例题8【提高】甲、乙两队合作挖一条水渠要30天完成,若甲队先挖4天后,再由乙队单独挖16天,共挖了这条水渠的25.如果这条水渠由甲、乙两队单独挖,各需要多少天?【精英】几个同学去割两块草地的草,甲地面积是乙地面积的4倍,开始他们一起在甲地割了半天,后来留下12人割甲地的草,其余人去割乙地的草,这样又割了半天,甲、乙两地的草同时割完了,问:共有多少名学生?练习1某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?练习2某水池可以用甲、乙两个水管注水,单开甲管需12小时注满,单开乙管需24小时注满,若要求10小时注满水池,且甲、乙两管同时打开的时间尽量少,那么甲、乙最少要同时开放 小时.练习3一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?练习4一项工程,甲队单独做20天可以完成,甲队做了8天后,由于另有任务,剩下的工作由乙队单独做15天完成.问:乙队单独完成这项工作需多少天?练习5一些工人做一项工程,如果能调来16人,那么10天可以完成;如果只调来4人,就要20天才能完成,那么调走2人后,完成这项工程需要天.练习6甲、乙两项工程分别由一、二队来完成.在晴天,一队完成甲工作要12天,二队完成乙工程要15天;在雨天,一队的工作效率要下降40%,二队的工作效率要下降10%.结果两队同时完成工作,问工作时间内下了多少天雨?练习7有两个同样的仓库,搬运完其中一个仓库的货物,甲需要6小时,乙需要7小时,丙需要14小时.甲、乙同时开始各搬运一个仓库的货物,开始时,丙先帮甲搬运,后来又去帮乙搬运,最后两个仓库的货物同时搬完.则丙帮甲小时,帮乙小时.练习8一项工程,乙单独做要17天完成.如果第一天甲做,第二天乙做,这样交替轮流做,那么恰好用整天数完成;如果第一天乙做,第二天甲做,这样交替轮流做,那么比上次轮流的做法多用半天完工.问:甲单独做需要几天?元曲中的数学元曲是我国诗和词由“雅”转“俗”时产生的,它活泼生动,俏皮泼辣,更贴近生活。
分数和百分数应用题
在分数应用题中如何寻找单位“1”一、把分率作为突破口,找准单位“1”分数应用题存在着三种数量即比较量、标准量和分率,这三种数量有着如下的关系:标准量×分率=比较量,比较量÷标准量=分率,比较量÷分率=标准量,要正确找准单位“1”的量即标准量必须从题目中的分率着手,看这个分率是哪个量的分率,哪个量就是标准量;例如:幸福村有旱地300亩,水亩面积是旱地面积的3/5,水田面积有多少亩这道题中的分率3/5是旱地面积的3/5,所以旱地面积是单位“1”的量;二、部分数和总数有些分数应用题,存在着整体和部分两个数量,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”;例如:我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”;例如:食堂买来100千克白菜,吃了2/5,吃了多少千克在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”;例如:红星小学有学生1000人,男生占总人数的3/5,男生有多少人在这道应用题中,学生的总人数是标准量,男生人数量比较量;解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了;三、两种数量比较分数应用题中,两种数量相比的关键句非常多;有的是“比”字句,有的则没有“比”字,而是带指向性特征的“占”、“是”、“相当于”;在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”;例如:六2班男生比女生多1/2;就是以女生人数为标准单位“1”,男生比女生多的人数作为比较量;在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几;这个“占”,“相当于”,“是”后面的数量——谁就是单位“1”;例如,一个长方形的宽是长的5/12;在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”;又如,今年的产量相当于去年的4/3倍;那么相当于后面的去年的产量就是标准量,也就是单位“1”;四、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系;这类分数应用题的单位“1”比较难找;例如,水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12;象这样的水和冰两种数量到底谁作为单位“1”两句关键句的单位“1”是不是相同用上面讲过的两种方法不容易找出单位“1”;其实我们只要看,原来的数量是谁这个原来的数量就是单位“1”比如水结成冰,原来的数量就是水,那么水就是单位“1”;冰融化成水,原来的数量是冰,所以冰的体积就是单位“1”;五、抓关键词“是”、“比”、“等于”、“相当于”找准单位“1”分数应用题,题目中经常出现“是”、“占”、“比”、“等于”、“相当于”这些词,一般来说,单位“1”的量就隐藏在这些的后面,只要从这些词的后面寻找,就可以找出单位“1”的量,例如:1、甲有人民币100元,乙的钱数是甲的1/2,求乙有人民币多少元在这道题中,甲的钱数是单位“1”的量;2、甲有人民币100元,乙的钱数占甲的1/2,求乙有人民币多少元在这道题中,甲的钱数是单位“1”的量;3、甲有人民币100元,乙的钱数比甲多1/2,求乙有人民币多少元在这道题中,甲的钱数是单位“1”的量;4、甲有人民币100元,乙的钱数等于甲的1/2,求乙有人民币多少元在这道题中,甲的钱数是单位“1”的量;5、甲有人民币100元,乙的钱数相当于甲的1/2,求乙有人民币多少元在这道题中,甲的钱数是单位“1”的量;典型题型如下:1工程队计划修公路12千米,已经修了千米,还剩多少千米没修2工程队计划修公路12千米,已经修了,已经修了多少千米3工程队计划修公路12千米,实际修的比原计划多,实际比原计划多修几千米4一堆货物60吨,第一次用去总数的,第二次用去总数的,两次共用去多少吨货物5一堆货物60吨,第一次用去总数的,第二次用去余下的,两次共用去多少吨货物6饭店买来面粉吨,第一天用去这面粉的,第二天又用去吨,共用去面粉多少吨7一根绳子长米,先剪下它的一半,再把剩下的剪下一半……剪3次后,剩下的部分长多少米8有一批水果,共360千克,第一天卖出了它的,第二天卖出它的,第二天比第一天少卖这批水果的几分之几少卖多少千克9一堆货物120吨,5天运走了它的,平均每天运走多少吨10一辆汽车从甲地开往乙地,每小时行60千米,小时刚好行到全程的中点处,甲、乙两地相距多少千米11甲乙两筐水果共重35千克,如果各吃掉,甲筐还余下12千克,乙筐还余下多少千克12在一次测验中,小明做对的题数是11道,错了4道,小明在这次测验中正确率是百分之几13大米加工厂用2000千克的稻谷加工成大米时,共碾出大米1600千克,求大米的出米率;14林场春季植树,成活了24570棵,死了630棵,求成活率;15家具厂有职工1250人,有一天缺勤15人,求出勤率;16王师傅生产了一批零件,经检验合格的485只,不合格的有15只,求这一批新产品的合格率;17用一批玉米种子做发芽试验,结果发芽的有192粒,没有发芽的有8粒,求这一批种子的发芽率;18六1班今天有48人来上课,有2人请事假,求这一天六1班的出勤率;19六1班有50人,期中考试有5人不及格,求这个班的及格率;20在一次射击练习中,小王命中的子弹是200发,没命中的是50发,命中率是多少21大豆的出油率是54%,用40千克大豆可以榨油多少千克22杉树的成活率是95%,今年植树节植树成活了285棵,求一共植了多少棵树23一本书360页,第一天看了全书的40%,第二天看了全书的25%,这时还剩多少页没有看24一块地用40%种冬瓜,其余的按3:2分别种西红柿和茄子,已知茄子种了0.6公顷,这块地有多少公顷25小军读一本故事书,第一天读了42页,第二读了43页,还余下全书的83%没有读,这本故事书一共多少页26一堆煤,用去了20吨,余下的是用去的25%,这一堆煤一共多少吨27青年农场第一天割麦8.5公顷,第二天比第一天多割20%,第二天割多少公顷28某养猪场,今年养猪400头,比去年多养25%,去年养猪多少头29育华小学六年级有学生120人,其中70人已达到国家体育锻炼标准,要使六年级“达标率”达到85%,还应有多少人达标30一条绳子,剪去全长的60%,还剩下12米,原来绳子长多少米31一根电线长1.2米,截去20%后,再截去0.2米,还剩多少米32一条公路修了60千米,正好是全长的70%,求这条公路剩下多少千米33一辆汽车从甲地到乙地,第一小时行了全程的25%,第二小时行了全程的30%,两小时一共行了220千米,甲乙两地全长多少千米34一种化工原料,原来每吨生产成本是1250元,现在成本降低了20%;现在每吨成本是多少元35有一条水渠,两星期修好,第一星期修了全长的55%,比第二星期多修480米,这条水渠全长多少米36车站有一批货物,如果运走它的25%,剩下156吨,如果运走它的9/16,运走多少吨37农场今年收小麦150万吨,比去年增产20%,今年比去年增产小麦多少万吨38小刚读一本书,第一天读了全书的30%,第二天比第一天少读15页,这时还有一半没有读,这本书共有多少页39某厂共有三个车间,第一车间月产机床330台,正好占全厂月产量台数的30%;第二车间的月产量是第三车间月产量的3/4,第三车间月产机器多少台40某化肥厂今年产值比去年增加了20%,比去年增加了500万元,今年道值是多少万元41果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10,这时有苹果多少箱42一件商品,原价比现价少百分之20,现价是1028元,原价是多少元43教育储蓄所得的利息不用纳税;爸爸为笑笑存了三年期的教育储蓄基金,年利率为5.40%,到期后共领到了本金和利息22646元;爸爸为笑笑存的教育储蓄基金的本金是多少44服装店同时买出了两件衣服,每件衣服各得120元,但其中一件赚20%,另一件陪了20%,问服装店卖出的两件衣服是赚钱了还是亏本了45爸爸今年43岁,女儿今年11岁,几年前女儿年龄是爸爸的20%46比5分之2吨少20%是几吨吨的30%是60吨47一本200页的书,读了20%,还剩下几页没读甲数的40%与乙数的50%相等,甲数是120,乙数是多少48张平有500元钱,打算存入银行两年.可以有两种储蓄办法,一种是存两年期的,年利率是2.43%;一种是先存一年期的,年利率是2.25%,第一年到期时再把本金和税后利息取出来合在一起,再存入一年.选择哪种办法得到的税后利息多一些49小丽的妈妈在银行里存入人民币5000元,存期一年,年利率2.25%,取款时由银行代扣代收20%的利息税,到期时,所交的利息税为多少元一种小麦出粉率为85%,要磨13.6吨面粉,需要这样的小麦多少吨51某工厂四月份下半月用水5400吨,比上半月节约20%,上半月用水多少吨52电视机厂五月份计划生产电视机5000台,实际生产了6000台,超额完成百分之几一种电脑原价6800元,现降价1700元,降价百分之几54一段路,甲走完全程需20分钟,乙走完全成需15分钟,甲的速度是乙速度的百分之几55一份稿件,原计划5天抄完,结果只用4天就抄完了,实际工作效率比计划提高了百分之几56从甲堆煤中,取出1/5给乙堆,这时两堆煤重量就相等了,原来乙堆煤的重量比甲堆煤的重量少百分之几57六1班有男生32人,女生28人;六2班人数是六1班的95%,六2班有多少人一条围巾,如果卖100元,可赚25%,如果卖120元,可赚百分之几买来足球55个,买来的篮球比足球少20%,买来篮球多少个60一堆沙子,第一次运走40%;第二次运走30%,还剩下48吨;这堆沙子有多少吨一个面粉厂,用20吨小麦能磨出13000千克的面粉;求小麦的出粉率在100克水中,加入25克盐;这盐水的含盐率是多少63某种菜籽出油率为33%,要想榨出100千克菜籽油;至少要多少千克菜籽;李师傅加工200个零件,经检验4个是废品,合格率是多少照这样计算,加工700个零件,不合格的有多少个;小红的爸爸将5000元钱存入银行活期储蓄,月利率是0.60%,4个月后,他可得税后利息多少元可取回本金和利息共有多少元王老师每月工资1450元,超出1200元的部分按5%交纳个人所得税;王老师每月税后工资是多少元一种篮球原价180元,现在按原价的七五折出售;这种篮球现价每只多少元每只便宜了多少元李丹家去年收玉米300千克,前年收玉米249千克,去年比前年的玉米增产了几成68明明在商店里买了一个计算器,打八五折,花了68元,这个计算器原价多少元69小华家前年收了4000千克稻谷,去年因为虫害,比前年减产三成五,去年小华家收稻谷多少千克70某商品现价18元,亏了25%,亏了多少元如果想赢利25%,应按多少元出售该商品含盐率10%的盐水30千克,加入多少千克盐后,才能制成含盐率25%的盐水某件皮衣原价1800元,现降价270元该商品是打了几折出售的73保险公司有员工120人,其中男职工是女职工人的50%,这个保险公司有男职工多少人74某工程队,第一天修600米,第二天修全长的20%,第三天修了全长的25%,这时修了的占全长的75%,这条公路全长多少米 75小军以每套72元的价格买了一套打折服装,比原价便宜8元;这套服装打了几折出售的761520千克的盐水中,含盐率为25%,要使这些盐水变为含盐率为50%的盐水,需蒸发掉多少千克水77玩具商店同时出售两种玩具售价都是120元,一件可赚25%,另一件赔25%;如果同时出售这两件玩具,算下来是赔还是赚,如赔,赔多少元,如赚,赚多少元78一批化肥先运走25%,又运走18吨,这时还剩45%没有运,这批化肥共有多少吨79小明每天看12页故事书,看了5天,还剩下全书的40%,这本故事书共有多少页80工人修一条公路,第一天修了全长的10%,第二天修了63米,还剩下全长的70%,求全长81一块铜和银的合金有290克,其中铜的质量比银的25%少10克,这块合金中银和铜各有多少克82某校新建一幢教学楼,实际投资了126万元,比计划节约了10%,计划投资是实际投资的百分几百分号前面的数保留一位小数83哥哥体重45千克,比弟弟重,哥哥比弟弟重多少千克84汽车开往某地,行驶2.5小时,距目的地还有全程的,如果速度不变,全程共需行驶多少小时85小刚的爸爸参与一项研究活动,得到劳务费3600元,按照国家规定,个人劳务收入1000元以内的,要按照3%缴纳个人所得税;1000元以上的部分,缴纳20%的个人所得税;小刚的爸爸缴纳个人所得税以后,实际得到多少元86小红看了一本书的,还剩30页,这本书共有多少页87一根电线,用去75%,还剩42米,这根电线原来长多少米88一批树苗,第一次种了146棵,第二次种了154棵,两次共种了总数的37.5%,这批树苗共多少棵89一桶油用去一半后,又倒进30千克,这样桶内油的重量是原来的,原来有油多少千克90一袋水泥,用去20%,剩下的比用去的多30千克,这袋水泥共重多少千克13、李阿姨月工资是4100元;按规定,扣除2600元以外的部分,要缴纳5%的个人所得税;李阿姨税后工资是多少元91一根绳子,第一次用去它的37.5%,第二次用去,还剩33米,这根电线原来长多少米92某校高年级学生占全校人数的25%,中年级学生占全校人数的,低年级有学生375人,全校共有学生多少人93李明看一本书,第一天看了全书的25%,第二天看了全书的,还剩60页没看,这本书共有多少页94小红看一本书,第一天看了全书的10%,第二天看了12页,还剩全书的,全书多少页95修一段公路,第一天修了5千米,第二天修了7千米,两天共修了这段路的40%,这段公路全长多少米96一根电线,用去10米,余下的比全长的40%多5米,这根电线原有多少米97一桶油用去又3千克,剩下9千克,这桶油原有多少千克98甲厂有工人400名,比乙厂的多100人,乙厂有多少人99有桃树96棵,比李树的少3棵,李树有多少棵100学校今年种树300棵,比去年多种,今年比去年多种树多少棵101有黑兔25只,比白兔少,黑兔比白兔少多少只102有科技书100本,比文艺书少20%,文艺书比科技书多多少本103一袋米,吃了还多3千克,剩下的比吃去的多4千克,这袋米原有多少千克104一桶油,吃了还多4千克,剩下的比吃去的多5千克,这桶油原有多少千克105一本书分两天看完,第一天看了60页,恰好占全书的是40%,第二天看了多少页106定期一年,年利率是3.5%;李叔叔存款一年后得到的本金和利息一共是41400元;李叔叔存入的本金是多少元107一桶油,吃了20千克,正好吃了这桶油的,还剩多少千克108某时装店同时卖出两件衣服,每件各卖200元,其中一件赚了20%,另一件亏了20%,这家店卖出这两件衣服是赚了还是亏了109某班男生人数占全班人数的,女生比男生少10人,全班多少人110某班男生人数占全班人数的,女生比男生少10人,男、女生各多少人111一辆汽车从甲地开往乙地,行了全程的,距乙地还有60千米,已行了多少千米112修一段800米长的水渠,第一次修了全长的,第二次修的是第一次的80%,剩下的第三次修完,第三次修多少米113商店运进50千克糖果,其中水果糖占60%,其余的是奶糖,水果糖比奶糖多多少千克小红看一本书,第一天看了20页,比第二天多看25%,第二天看的页数是全书是,这本书有多少页小红看一本书,上午看了8页,恰好占全书的20%,下午又看了全书的,还剩几页一桶油,两次共取出90%,还剩10千克,两次共取出多少千克一桶油,两次共取出90%,还剩10千克,第一次取出20千克,第二次取出多少千克一批柴油,运走40桶,剩下的占总数的60%,剩下的比运走的多多少桶119修一段公路,第一天修了全长的,第二天修了全长的25%,第三天修的是前两天的和,还剩100米,这段公路全长多少米120把80分米的缎带剪去,再剪去分米,还剩多少分米121学校买来一批墨水,其中是红墨水,其余是黑墨水,红墨水比黑墨水多12瓶,这批墨水共多少瓶122小红看一本120页的书,第一天看了全书的,第二天看了余下的25%,两天共看了几页123一个果园长850米,宽600米,用来种梨树和苹果树,梨树所占面积是苹果树的50%,苹果树占多少平方米果园里有苹果树和梨树两种,苹果树占总棵数的70%,比梨树多240棵,两种树各多少棵一根绳子,截下9米,剩下的比全长的短3米,这根绳子全长多少米126服装厂一月份计划生产一批衬衫,上半月完成计划的62.5%,下半月生产的与上半月同样多,结果超产10000件,这个月计划生产衬衫多少件从甲城到乙城,行了全程的,离中点还有2.5千米,两城相距多少千米一套衣服,原价120元,现在降价40%,现在每套售价多少元129一本书,第一天看了180页,第二天比第一天少看25%,两天共看了全书的,这本书共有多少页130一件工程甲乙两队合做6小时完成,甲乙两队的效率比是3:2;甲乙单独做,各需要多少天131修一条水渠,第一天修了150米,比第二天少修25米,两天修的正好占这条水渠的,这条水渠的全长是多少米134一本小说书,小芳已经看的与未看的页数比是2:5,如果再看27页,正好占这本小说书的一半,这本书共有多少页135七月份用水360吨,比六月份节约40吨,比六月份节约百分之几136王师傅要加工720只零件,其中有36只不合格,求合格率;137修一条公路,第一天修了全长的10%,第二天修了全长的15%,还剩下360米没有修,这条路全长多少米138某工程队修一条3500米的高速公路,第一个月修了全长的20%,第二个月修的是第一个月的80%,第二个月修了多少米139实验小学六年级的女生人数占全年级的48.75%,男生占全年级人数的百分之几如果男生人数比女生人数多12人,那么实验小学六年级人数共有多少人140有山羊120只,绵羊的只数比山羊多30%,绵羊有多少只141一台洗衣机售价1900元,比原价降低了300元,降价百分之几142某班有男生30人,女生人数比男生少10%,全班有多少人143某班有男生30人,是女生人数的125%,全班有多少人144某班有男生30人,占全班人数的60%,这个班有女生多少人145一台电脑打九折后售价5040元,原价是多少元降价了多少元146甲乙两地相距130千米,一辆汽车从甲地开往乙地,行了全程的55%,离乙地还有多少千米147一项工程,甲独做需20天完成,乙独做需25天完成;甲的工作效率比乙的工作效率高百分之几148甲、乙、丙三人,甲的年龄比乙的年龄大20%,乙的年龄比丙的年龄大20%,甲比丙的年龄大百分之几149妈妈把5万元钱存入银行,定期两年,年利率是4.4%;到期后扣除5%的利息税,实得利息够买一台3600元的彩电吗150有两堆煤共136吨,某厂从甲堆中取走30%,从乙堆中取走,这时乙堆剩下的煤恰好比原来总数的62.5%少13吨,这个厂从甲堆中取走多少吨煤151兴趣小组四年级学生比三年级多25%,五年级学生比四年级少10%,六年级学生比五年级多10%,如果六年级学生比三年级多38人,那么三至六年级共有学生多少人1524吨葡萄在新疆测得含水量99%,运抵南京后测得含水量是98%,问葡萄运抵南京后还剩几吨153某商品先后两次降价,第一次降价10%,第二次降价20%,现价相当于原价的百分之几154甲数比乙数多20%,乙数比丙数少20%,甲数相当于丙数的百分之几155甲、乙两人每人都有10张纸,甲给乙多少张纸可以使乙的纸张数比甲多50%156甲、乙两人有人民币若干元,其中甲占60%,若乙给甲12元后,乙余下的钱比总数的25%少3元,甲、乙两人共有人民币多少元157有一堆沙子,第一次用去35%,第二次用去余下的20%,第三次用去第二次剩下的75%,还剩下15.6立方米,这堆沙子原来有多少立方米158有浓度为8%的盐水200克,需加入多少克水,才能成为浓度为5%的盐水159用4吨大豆榨油600千克,出油率是多少160六年级有学生180人,今天出勤的男生有91人,女生有85人,今天的出勤率是多少161杨师傅3小时生产零件225个,技术革新后,2小时生产180个,生产效率提高了百分之几162某印刷厂有工人980人,其中男工占全厂职工人数的80%,后又调进一部分女工,这时女工占全厂职工总数的30%,又调进女工多少人163有一堆糖果,其中奶糖占,再放入16块水果糖后,奶糖就只占;那么,这堆糖中有奶糖多少块164一批零件按5:4分给师徒两人加工;师傅比所给任务多加工,而徒弟因病只完成了任务的,问师徒两人实际完成任务数的几分之几165一种耳机原来一副80元,现在按原价的八折销售,现在每副售价多少元166王大爷家今年收稻谷4800千克,比去年增产二成五,去年收稻谷多少千克167修一条公路,第一天修了全长的,第二天修了全长的30%,还剩下360米没有修,这条路全长多少米168某工程队修一条3500米的高速公路,第一个月修了全长的,第二个月修的是第一个月的80%,第二个月修了多少米169化肥厂今年七个月完成全年生产的75%,再生产2000吨就可超产200吨,该厂全年生产化肥多少吨170工地上的水泥用去25%,又运进250吨,这时工地水泥是原来的90%,工地原有水泥多少吨171一辆汽车从甲地开往乙地,行了全程约40%,离中点还有10千米,甲乙两地相距多少千米172三五大酒店去年的营业额是480万元,如果按5%缴纳营业税,这个酒店去年应缴纳的营业税款是多少元173有含糖6%的糖水1800克,要使其含量加大到10%,需加糖多少克174有含盐25%的盐水30千克,现加入清水,要使其含量降低为15%,需加清水多少千克175笑笑看一本书,第一天看了15%,第二天看了10%,还剩90页没看,这本书共多少页176笑笑看一本书,第一天看了45页,第二天看了10%,还剩50页,这本书共多少页177笑笑看一本书,第一天看了36页,第二天看了19页,还剩全书的45%,这本书共多少页178一辆汽车从甲地开往乙地,行了全程的70%,正好行了35千米,甲乙两地相距多少千米179笑笑看一本书,看了50页,正好看了这本书的25%,这本书共多少页还剩多少页没有看180笑笑看一本书,看了全书的40%,还剩120页没看,这本书共多少页181笑笑看一本书,看了全书的25%,还剩120页没看,这本书共多少页182笑笑看一本书,看了48页,还剩全书的40%,这本书共多少页183笑笑看一本书,看了180页,还剩全书的40%没看,这本书共多少页184笑笑看一本书,第一天看了25%,第二天看了20%,两天共看了90页,这本书共多少页185一块稻田,前年收稻谷1500千克,去年比前年增产15%,去去年收稻谷多少千克186一块麦地,去年收小麦780千克,比前年增产20%,前年收小麦多少千克187一块地去年收马铃薯450千克,比前年增产10%,前年收马铃薯多少千克188一块菜地,前年收白菜1500千克,去年收白菜1350千克,减产百分之几189有一块菜地,前年收萝卜200千克,去年收萝卜220千克,增产百分之几190一套衣服,原价160元,现在降价20%,现价多少元191一套衣服售价160元,比原价降低20%,原价多少元192一种收录机原价250元,现价是原价的60%,现价多少元193一部手机原价4600元,现价比原价降低30%,降价多少元194一种电视机原价3800元,现价比原价降低405元,降价百分之几195何家庄前年收油菜籽35吨,去年比前年增产12%,去年收油菜籽多少吨196面粉做成面包,重量增加,501千克面粉可做成多少千克的面包198兄弟俩岁数的和是25,弟弟的年龄是哥哥的,弟弟多少岁199一套课桌椅49元,椅子的价钱是桌子的,椅子每把多少钱200一套衣服120元,裤子的价格是上衣价格的,上衣的价格是多少元201洗衣机厂去年生产洗衣机1367台,比计划的1.5倍还多17台,计划生产多少台202商店运来白糖2100吨,相当于红糖的80%,白、红糖共多少千克203南阳村去年计划产粮30万吨,实际比计划超产15%,去年产粮多少万吨204一台录音机原价250元,现在降价,现在售价多少元205糖厂生产白糖2100吨,红糖比白糖多,生产红糖多少吨206在股票交易中,每买进或卖出一种股票,都必须按成交额的0.1%缴纳印花税手续费,王叔叔去年以每股15元的价格买进一种科技股票2000股,今年又以每股18元的价格全部卖出,王叔叔买卖这种股票赚了多少钱207某时装店同时卖出两件衣服,每件各卖200元,其中一件赚了20%,另一件亏了20%,这家店卖出这两件衣服是赚了还是亏了。
第十一讲 对应法解题
第十一讲对应法解题【知识概述】有些应用题之间的数量关系存在着对应关系,如:总数量与总份数的对应,总价与数量的对应,分数与百分数应用题中量与分率的对应等。
解答这一类应用题时要通过观察、比较题目中的已知条件研究对应数量的变化,找准数量之间的对应关系,寻找答案,这种解题的思维方法叫对应法。
这种方法也是解题的常用方法。
【例题精学】例1 体育老师去买乒乓球,如果买7盒,就少64元;如果买5盒,就少16元。
每盒乒乓球多少元?体育老师带了多少钱?【同步精炼】1、一个植树小组,如果每人栽5棵,则还剩14棵,如果每人栽7棵,则少4棵,这个小组共有多少人,一共在地上棵树?2、幼儿园大班的老师拿出一包糖,分给小朋友,如果每人分4块,就多出48块,如果每人分6块,则又少8块,这个班有多少小朋友,这包糖有多少块?3、王老师下班前批改两组作业,如果每分钟批5道题,就要下班后4分钟批完,如果每分钟批8道题,在下班前5分钟批完,这两组学生的作业共有多少道题?例2 买3千克茶叶和5千克糖,一共用去420元,买同样的3千克茶叶和3千克糖,一共用去384元。
每千克茶叶和每千克糖各多少元?【同步精炼】1、30辆小车和6辆卡车一次运货90吨,45辆小车和6辆卡车一次运货120吨。
每辆卡车和每辆小车每次各运货分别多少吨?2、育新小学买了8个足球和12个篮球,一共用去了984元;青山小学买了同样的16个足球和 10个篮球,一共用去1240元。
每个足球和每个篮球各多少元?3、买15张桌子和25把椅子共用去3050元;买同样的 5张桌子和20张椅子,需要1600元。
买一张桌子和一把椅子需要多少元?4、甲买了8盒糖和5盒蛋糕共用去171元;乙买了5盒糖和2盒蛋糕共用去90元。
每盒糖和每盒蛋糕各多少元?5、三头牛和8只羊每天共吃青草93千克,5头牛和15只羊每天吃青草165千克。
一头牛和一只羊每天各吃青草多少千克?例3 工程队挖一条水渠,第一天挖了全长的3/8多28米,第二天挖了全长的4/7少20米,这时还剩下22米没有挖,这条水渠长多少米?【同步精炼】1、小明读一本书,已读的页数比全书的40%还多28页,未读的页数比全书的4/9少14页,全书有多少页?2、参加课外活动的有25人,比全班人数的60%还多1人,全班有多少人?【例题精学】例4 两块地共4.8公顷。
分数百分数应用题
分数百分数应用题分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=.【例 1】 (小数报数学竞赛初赛)甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是86元.在人民市场,甲买一双运动鞋花去了所带钱的49,乙买一件衬衫花去了人民币16元.这样两人身上所剩的钱正好一样多.问甲、乙两人原先各带了多少钱?【解析】 方法一:把甲所带的钱视为单位“1”,由题意,乙花去16元后所剩的钱与甲所带钱的59一样多,那么8616-元钱正好是甲所带钱的519+,那么甲原来带了5(8616)(1)459-÷+=(元),乙原来带了864541-=(元).方法二:乙甲86元16元4份设甲所带的钱数为9份,则甲和乙都还剩5份,所以每份是(8616(95)5-÷+=(元),则甲原来带了5945⨯=(元),乙原来带了551641⨯+=(元).【巩固】 一实验五年级共有学生152人,选出男同学的111和5名女同学参加科技小组,剩下的男、女人数正好相等。
五年级男、女同学各有多少人?【巩固】 五年级有学生238人,选出男生的14和14名女生参加团体操,这时剩下的男生和女生人数一样多,问:五年级女生有多少人?【例 2】 甲、乙两个书架共有1100本书,从甲书架借出13,从乙书架借出75%以后,甲书架是乙书架的2倍还多150本,问乙书架原有多少本书?【解析】 这个题目的难点就在于甲乙的数目同时发生了变化,变化之后的关系是两倍还多150本,也就是说:甲的23比乙的14的两倍还多150本,如果能够正确地理解和转化这个条件,这道题也就迎刃而解了,从上图中不难看出,“甲的23比乙的14的两倍还多150本”其实也就是“甲的23比乙的12多150本”,如果同时扩大两倍,他们之间的关系就变成了“甲的43比乙多300本”,结合“甲乙的和为1100本”这个条件,这个问题就变成了一个简单的和倍问题了。
分数、百分数培优讲义(精品)
小学数学培优讲义:分数、百分数应用题阅读与思考分数、百分数应用题是小学数学的重点内容,它是整数应用题的加深和扩展。
同时,它也有其独有的特点和规律,它的数量关系与“量”、“率”相联系。
它的最基本类型有三种:1.求一个数是另一个数的几分之几(或百分之几); 2.求一个数的几分之几(百分之几)是多少;3.已知一个数的几分之几(百分之几)是多少,求这个数。
解答分数、百分数应用题的关键是:首先要分清哪个量是标准量单位“1”,哪个量是比较量(或部分量),然后找出与之相对应的分率。
典型例题例1 乙数是甲数的43,丙数是乙数的54,丙数是甲数的几分之几? 【分析与解】如下图所示,把甲数看作“1”,用长方形表示。
乙数是甲数的43,画斜线表示,丙数是乙数的4,画网线表示。
(1) (2)从图看出:丙数是甲数的43和54,即535443=⨯。
把甲数看作单位“1”,丙数就对应着53。
解:535443=⨯答:丙数是甲方数53。
训练快餐1一根水管,第一次截去全长的41,第二次截去余下的32,两次共截去全长的几分之几?例2 甲数的53等于乙数的32,甲数是乙数的几分之几?乙数是甲数的几分之几?【分析与解】根据题中的条件可写出数量关系式:3253⨯⨯=乙甲,把“甲”、“53”看作两个因数,32⨯乙看作积,则5332÷⨯甲=乙。
910⨯甲=乙,所以,求甲数是乙数的几分之几用:9105332=÷。
同理,求乙数是甲数的几分之几用:1093253=÷。
解 9105332=÷ 1093253=÷答:甲数是乙数的910,乙数是甲数的109。
训练快餐2六年级学生人数的43等于五年级学生人数的65,六年级学生人数是五年级的几分之几?五年级学生人数是六年级的几分之几?令五年级165143⨯⨯=六年级9534654365==六年级=⨯÷例3 红光村修一条水渠,第一周修了全长的41,第二周修了余下的52,第二周比第一周多修了15米。
【小升初】数学总复习之【分数、百分数、比和比例应用题】专项复习课件ppt
【解】 5000+5000×2.75%×2 =5000+275 =5275(元)
答:到期后,王伯伯可取出 5275 元。
【例 4】 现有浓度为 10%的盐水 20 千克,再加入多
少千克浓度为 30%的盐水,可得到浓度为 22%的盐水? ☞思路点拨 本题考查生活中有关浓度的百分数问题,可以
1.几折、几成表示十分之几,也就是百分之几十。 2.存入银行的钱叫本金。取款时银行多支付的钱叫利息。利 息与本金的比值叫利率。以 1 个月为期的利率叫月利率,以 1 年 为期的利率叫年利率。
3.常用的基本公式 出勤人数
出勤率= 总人数 ×100% 发芽种子数
发芽率= 种子总数 ×100% 溶质质量
调来女职工人数: 38- 36= 2(名 ) 答:调来 2 名女职工。
课时训练
一、填空。(每空 2 分,共 24 分) 1.2015 年 7 月 31 日,2022 年冬奥会主办地结果揭晓,北京 最终以 44 票成功当选,哈萨克斯坦阿拉木图获得 40 票。北京的 得票数比阿拉木图多( 10 )%。 2.“经典诵读”兴趣小组有 25 人,昨天因事请假 2 人,今 天 全 部到 齐 ,昨 天的 出 勤率 是 ( 92% ), 今 天的 出勤 率 是 ( 100% )。 3.豆腐中蛋白质含量约占 40%,要想获得 8 克蛋白质需要进 食( 20 )克豆腐。
确定单位 “1”的量和 与单位 “1”的量相比较的量 。与单位 “1”相 比较的量 ÷单位 “1”的量=几分之几 (百分之几 )。
在 较复杂的 题中,如 果是求甲 量比乙量 多 (少 )几分之 几 (百分 之几 )。甲量与乙 量的差 ÷单位 “1”的量=甲 量比乙量 多(少)几分之 几 (百分之几 )。
分数、百分数应用题的一般解题方法
分数、百分数应用题的一般解题方法(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分数、百分数应用题的一般解题方法一、解决分数乘法问题1、求一个数的几分之几是多少(单位“1”已知)单位“1”×分率=分率所对应的量2、求一个数比单位“1”多几分之几是多少(单位“1”已知)单位“1”×(1+分率)=分率所对应的量3、求一个数比单位“1”少几分之几是多少(单位“1”已知)单位“1”×(1-分率)=分率所对应的量二、解决分数除法问题1、已知一个数的几分之几是多少,求这个数(单位“1”未知)数量÷数量所对应的分率=单位“1”2、已知一个数比另一个数多几分之分,求这个数(单位“1”未知)数量÷(1+分率)=单位“1”3、已知一个数比另一个数少几分之分,求这个数(单位“1”未知)数量÷(1-分率)=单位“1”三、解决百分数问题1、求百分率的问题:一个数是另一个数的百分之几。
另一个数一个数×100%=百分率2、求一个数比另一个数多(少)百分之几。
相差数÷单位“1”=多(少)百分之几 对应量÷单位“1”-13、求一个数的百分之几是多少(单位“1”已知)单位“1”×百分率=分率所对应的量已知一个数的百分之几是多少,求这个数。
(单位“1”未知)数量÷数量所对应的百分率=单位“1”4、求比一个数多(少)百分之几的数是多少单位“1”×(1+百分率)=分率所对应的数量5、已知比一个数多(少)百分之几的数是多少,求这个数。
数量÷(1+对应分率)=单位“1”6、折扣问题原价×折扣=现价7、纳税问题收入×税率=应纳税额8、利息问题本金×利率×时间=利息利息×税率=利息税利息—利息税=税后利息本息=本金+税后利息。
百分数、分数小数的互化方法-第十一讲分数、百分数小数的互化方法
第五单元百分数第十二讲分数、百分数小数的互化方法一.教法建议【抛砖引玉】(一).熟练地进行百分数、分数、小数的互化。
百分数的计算,通常要化为分数、小数来计算。
学生必须熟练地掌握它的简便化法。
如:0.58=58%,小数化百分数,只要把小数的小数点向右移两位,同时在后面添上百分号。
137%=1.37,百分数化小数,只要去掉百分号,同时把小数点向左移两位。
,分数化百分数通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
,百分数化成分数先把百分数改写成分数,能约分的要约成最简分数。
为了提高计算的速度和正确率,常用的分数、百分数、小数的互化要背下来。
等。
(二)理解和掌握分数、百分数、小数的互化方法比较熟练地进行分数、小数和百分数的互化是本单元教学的重点。
它是在学生学过百分数的意义,明确了百分数、分数和小数的联系的基础上教学的。
由于百分数的计算,通常要化成分数或小数进行,而求百分率的题,一般又要先算出小数然后再化成百分数。
因此学好这部分知识是为后面的应用打基础我们要给予重视。
教学这部分知识要注意:1.展示思维过程明白化法。
学生已经学过分数和小数的互化。
百分数又可以看成是分母是100的分数,所以教学小数和百分数互化时,要引导学生利用已有的基础知识,先把小数转化成分母是100的分数,再改写成百分数;先把百分数转化成分母是100的分数,再按照分数和小数互化的方法去做。
教学时不仅要表示出转化的过程,还要让学生展示出思维的过程,理解互化的方法。
例如:0.25表示百分之二十五,按照分数的意义就可以直接写成,根据百分数和分数的关系又可以直接改写成百分数。
2.归纳概括掌握简便化法。
学生明白化法基本掌握了互化的方法后,还要再启发学生对所完成的题目进行观察比较,提出:“怎样能很快地把小数化成百分数?”例:0.25→25% 1.4→140%0.123→12.3%学生通过对比很快就会发现把小数化成百分数,只要把小数点向右移动两位(扩大100倍),同时在后面添上百分号(缩小100倍)就可以了。
分数百分数应用题-PPT课件
单 1、1某班有 女生20名,男生比女生
位 “
多4
,男生 有多少人?20 20 1 4
20 1 14
1 2、1某班有 男生25名,女生比男生
”
少 , 女生有多少人? 已
知
5
25 25 1 5
25
1
1 5
求 单 位
3、1某班有 男生25名,男生比女生
多 , 女生有多少人? 4
25
1
1 4
1 25
20
1
1 4
25 1 15
25
1
1 4
20 1- 15
20 1 25% 25 1 20%
25 1 25% 20 1- 20%
想一想:分数应用题 和百分数应用题数量 关系相同吗?解答方 法呢?
百分数应用题和分数 应用题的表现形式虽 然不同,但数量关系 相同,所以解答方法 也相同。
尝试练习:
1、男生比女生多几分之几?
1 (25-20)÷20=
4 2、女生比男生少几分之几?
1 (25-20)÷25= 5
1、男生比女生多 1
4
单位“1”:女生人
数 2、女生比男生少
1
5
单位“1”:男生人
数
你能把“某班男生25名,女生20名” 这两个条件 和 “女男生比男女生少多1 ”
编成单位“1”是已知的应用题吗?54
1.仓库里有15吨钢材,第一次用去总数的
20%,第二次用去总数的 1,还剩下多少吨
钢材?
2
15 ×(1-20%-
1 2
)
2.仓库里有一些钢材,第一次用去总数的20 %,第二次用去总数的 1 ,还剩下15吨,仓 库里有多少吨钢材? 2
分数和百分数应用题典型解法
分数和百分数应用题典型解法一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。
画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。
【例1】一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。
原来这桶油有多少千克?[分析与解]从图中可以清楚地看出:这桶油的千克数×(1-51-51)=20+22则这桶油的千克数为:(20+22)÷(1-51-51)=70(千克)【例2】一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?[分析与解]显然,这堆煤的千克数×(1-20%-50%)=290+10则这堆煤的千克数为:(290+10)÷(1-20%-50%)=1000(千克)二、对应思想量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。
(量率对应常常和画线段图结合使用,效果极佳。
)【例3】缝纫机厂女职工占全厂职工人数的207,比男职工少144人,缝纫机厂共有职工多少人?[分析与解]解题的关键是找到与具体数量144人的相对应的分率。
从线段图上可以清楚地看出女职工占207,男职工占1-207=2013,女职工比男职工少占全厂职工人数的2013-207=103,也就是144人与全厂人数的103相对应。
全厂的人数为: 144÷(1-207-207)=480(人)【例4】菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克?[分析与解]从线段图上可以清楚地看出240千克的对应分率是第一天卖出31后余下的(1-52)。
百分数应用题知识点归纳
分数(百分数)应用题知识点归纳
注意点:做这类应用题关键永远是找单位“1”,判断单位“1”已知还是未知,已知用乘法,未知用除法或者方程。
(能够在脑子里列方程,转化成除
法算式后在列出算式)
百分数的意义:百分数表示一个数另一个数的百分之几。
百分数也叫百分比、百分率。
百分数后不能有单位。
1、求一个数的百分之几是多少一个数(单位“1”)×百分率
2、已知一个数的百分之几是多少,求这个数局部量÷百分率=一个数(单位“1”)
3、求常见的百分率如:达标率、及格率、成活率、发芽率、出勤率等
a率=a的数量÷总量×100%
4、比多比少型:(多的 - 少的)÷单位“1”
求甲比乙多百分之几(甲-乙)÷乙×100%
求乙比甲少百分之几(甲-乙)÷甲×100%
例如:某班有男生25人,女生20人
(1)男生是女生的几分之几?25÷20
(2)女生是男生的几分之几?20÷25
(3)男生比女生多几分之几?(25-20)÷20
(4)女生比男生少几分之几?(25-20)÷25
5、折扣几折就是十分之几也就是百分之几十
现价=原价×折扣原价=现价÷折扣折扣=现价÷原价×100%
几成就是指十分之几
6、利率存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。
利息=本金×利率×时间。
最新小升初奥数分数百分数应用题--单位“1”转换
+
= 10.8元
=
80%
解 析
哥哥的钱× (1-75%)=弟弟的钱× (1-80%) 哥哥的钱× 25%=弟弟的钱× 20% 哥哥的钱:弟弟的钱=4:5 哥哥:10.8÷ (4+5)× 4=4.8(元) 弟弟:10.8-4.8=6(元) 答:哥哥原来有4.8元钱。
课后作业
黄红两种颜色的球共120个,如果拿出红球的 ,再拿出8 个黄球,剩下的红球和黄球正好一样多,原来黄球和红球 各有多少个?
答:甲户养鸡1500只,乙户养鸡1200只。
例6. 兄弟四人合修一条路,结果老大修了另外三人总数的一半,老 二修了另外三人总数的 1 ,老三修了另外三人总数的 1 ,老四 修了91米,问这条路长多少米?
3
4
解 析
统一单位:以总路程为单位“1” 老大修了总路程的 老二修了总路程的 老三修了总路程的
第十一讲 分数百分数应用题--单位“1”转换
知识点梳理
基本步骤:1、确定单位“1”, 2、准确找出“量”与“率”之间的对应关系, 3、确定乘除法, 4、统一单位“1”。 在题目中常常出现几个不同的单位“1”,这时需要将它们转化
为统一的单位“1”,以便于比较和发现数量关系。
典型例题精讲
例1. 妈妈买来一桶油,第一次倒出全部的
58人
2 5
3 ,体育班 7
2 ( 5
+
)=
3 ( 7
+
)=
解 析
2+5=7 3+7=10 解答:58÷(1 3 2 )=140(人) 10 7 2 140× =40(人) 140× 3 =42(人) 7 10
答:音乐班40人,美术班42人。
【小升初】小学数学《分数、百分数问题专题课程》含答案
15.分数、百分数问题知识要点梳理一、数量关系式在分数(百分数)应用题中存在着三个量,即标准量(单位“1”的量)、比较量(部分量)和分率(百分率)。
分数(百分数)应用题基本的数量关系式:标准量(单位“1”的量)×分率(百分率)=比较量(部分量)比较量(部分量)÷标准量(单位“1”的量)=分率(百分率)比较量(部分量)÷分率(百分率)=标准量(单位“1”的量)二、基本类型解题思路和方法:一般有三种基本类型:1.求一个数是另一个数的几分之几(百分之几);2.已知一个数,求它的几分之几(百分之几)是多少;3.已知一个数的几分之几(百分之几)是多少,求这个数。
解答分数、百分数应用题的关键是:首先要分清哪个量是标准量(单位“1”的量),哪个是比较量(部分量),然后找出与之相对的分率。
三、出勤率与发芽率出勤率=出勤人数÷总人数×100%发芽率=发芽粒数÷总的粒数×100%考点精讲分析典例精讲考点1 求分率(百分率)【例1】一本书100页,读了60页,剩下这本书的百分之几没看?【精析】根据已知条件,把这本书的总页数看作单位“1”,先计算出剩下的页数,再用剩下的页数除以总页数。
【答案】(100-60)÷100×100%=40%答:剩下这本书的40%没看。
【归纳总结】先确定单位“1”,再根据部分量除以单位“1”的量计算对应的百分率。
考点2 求部分量【例2】参加“六一”儿童节联欢活动的少先队员中,女队员占全体少先队员的,男队员比女队员的多40人,问女队员有多少人?【精析】以全体少先队员为单位“1”。
男队员占全体少先队员的1-=,男队员比全体少先队员的×=多40人。
那么全体少先队员的(-)是40人,全体少先队员是40÷(-)=840(人),女队员有840×=480(人)。
【答案】×=40÷(-)=840(人)840×=480(人)。
超市中的数学问题分数百分数应用题的整理
超市中的数学问题分数、百分数应用题的整理教学目标1.梳理学生已有的知识,使学生理解分数、百分数应用题的解题思路和解题方法,在此基础上形成一定的知识网络和数学技能。
2.培养学生“用数学”的意识和解决实际问题的能力。
3.培养学生灵活运用知识解决实际问题的能力,体验数学知识来源于实践的新理念教学重点掌握三类应用题的数量关系和解题规律。
教学难点三类应用题的梳理与归纳整理。
教学过程一. 谈话引入师:同学们都逛过超市吧,超市里不仅有美味的食品,可口的饮料,其实还蕴藏着丰富的学习资源。
今天这节课让我们一起到华联超市转一圈,了解信息,并且用我们学过的分数、百分数知识来解决超市里面的一些实际问题1.先请同学们阅读这样三条信息,说一说你知道了什么,又联想到了什么(1)食品类营业额占总营业额的85% ;(2)双休日到华联超市购物的人数比平时多三成;(3)国庆节期间微波炉让利5%出售。
2.师生共同小结通过阅读这些含有分率的句子,我们可以知道把一个量看作单位“ 1”,并能联想到另一个量是单位“ 1”的几(百)分之几。
还可以写出基本的数量关系式:单位“1”×分率=对应数量。
而利用这个数量关系式,我们可以解决许多的实际问题。
(板书)单位“ 1”×分率= 对应数量二. 整理归纳1.整理求一个数是另一个数的百分之几的应用题师:我在超市的玩具区发现有这样两条信息,你能提出哪些有关分数、百分数的数学问题?(根据学生的回答书写问题)每只足球的售价120 元每只篮球的售价200 元1)让学生自由提出问题,教师书写出示①每只篮球的售价是每只足球售价的百分之几?②每只足球的售价是每只篮球售价的百分之几?③每只篮球的售价比每只足球的售价多百分之几?④每只足球的售价比每只篮球的售价少百分之几?⑤每只足球的售价是足球和篮球总数的百分之几?⑥每只篮球的售价是足球和篮球总数的百分之几?(2)挑选其中典型的两个问题让学生在本子上列出算式,其余指名由学生口答只列式不计算(3)思考总结:以上几个问题在解答的时候有什么共同点?这几个问题的数量关系有什么共同点?可以归纳为什么类型的应用题?(师生共同小结:求一个数是另一个数的百分之几的应用题,我们一定要先搞清楚是哪两个量相比,认准单位“ 1”的量再列式计算。
小学六年级奥数课件:分数百分百问题
下的 1 ,还剩下6千克,求这桶油原来共有多少千克?
4
解析
整体对应式:6千克+第一次倒的 1 + 余下的 1 → “1”
3
4
第一次倒出 1 ,单位“1”是这桶油
3
第二次倒出余下的 1 ,单位“1”是(1- 1 )= 2 的 1
4
334
即是全部的 2 × 1= 1
346
解:6÷ [1-1 -(1-1 )×1 ]=12(千克)
3
34
答:这桶油原来12千克。
例2. 甲校人数是乙校人数的
4 ,乙校人数是丙校人数的5 ,甲
5
7
校比丙校少450人,求三校各有多少人?
甲
乙
丙
甲=4/5乙
乙=5/7丙
甲+450=丙
解析
统一单位“1”,抓住中间量“乙”。
4
甲校人数是乙校人数的 5,单位“1”是“乙”,
乙校人数是丙校人数的 5 ,单位“1”是“丙”,
例6. 兄弟四人合修一条路,结果老大修了另外三人总数的一半,老
二修了另外三人总数的 1 ,老三修了另外三人总数的 1 ,老四
3
4
修了91米,问这条路长多少米?
解析
统一单位:以总路程为单位“1”
老大修了总路程的
1 1 1 2 3
老二修了总路程的
1 1 13 4
老三修了总路程的
1 1 1 4 5
答:哥哥原来有4.8元钱。
课后作业
黄红两种颜色的球共120个,如果拿出红球的 1,再拿出8
4
个黄球,剩下的红球和黄球正好一样多,原来黄球和红球
各有多少个?
+
= 120
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一讲分数、百分数应用题初步教学说明:在课本上此章节应为小学六年级上半学期内容,也是整个小学的重难点,但各各学校的进度不一,有部分学校已经讲解过,在我们奥数的学习进度中也必须提前有所了解,所以教师在讲解时侧重于基础知识的理解应用提高,同时兼顾本班孩子的进度,进行适当补充,为我们以后的工程问题、经济浓度等问题打好基础!我们将“列方程解应用题”放在此讲之前,意在让学生多一种解决分数、百分数应用题的方法,增加他们的信心,但主体仍以算术方法为主,碰到个别例题教师可讲述方程思路.古希腊杰出的数学家丢番图的墓碑上有一段话:“他生命的六分之一是幸福的童年.再活十二分之一脸上长起了细细的胡须,他结了婚还没有孩子,又度过了七分之一.再过了五年,他幸福地得到了一个儿子.可这孩子光辉灿烂的寿命只有他父亲的一半.儿子死后,老人在悲痛中活了四年,也结束了尘世的生涯”.你能根据这段话推算出丢番图活了多少岁?多少岁结的婚吗?怎么样?你能根据大数学家丢番图的叙述找到答案么?呵呵!学习了今天的知识,你就可以在课后解决这个“数学趣题”了!好了,让我们开始今天的学习吧!内容概述在解有关分数的应用题时,首先要弄清以下几个基本问题:(1)如何求一个数的几分之几(或百分之几)?求一个数的几分之几,只需要将这个数乘以几分之几就得到.例如:5的24%是多少?解答:5×24%=1.2 .(2)如何求一个数是另一个数的几分之几(或百分之几)?求一个数是另一个数的几分之几,只需要将前一个数除以后一个数就得到.例如:23是34的几分之几?解答:2324834339÷=⨯=.(3)已知一个数的几分之几(或百分之几),如何求这个数?已知一个数的几分之几,要求这个数,只需要将这个几分之几的数除以几分之几.例如:一个数的23等于18,那么这个数等于多少?解答:2318182732÷=⨯=.分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,例如a是b的几分之几,就把数b看作单位“1”.在几个量中,弄清哪一个是单位“1”很重要,否则容易出错误.而百分数应用题中所涉及的百分数,只是分母是100的分数,因而计算的方法和分数应用题是一样的,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系类型Ⅰ:单位“1”不变【例1】(奥数网习题库)(难度系数:★)六年级男生有50人,女生有40人,(1)女生人数是男生人数的几分之几?(2)男生人数比女生人数多百分之几?(3)女生人数比男生人数少百分之几?(4)女生比男生少的人数是全班人数的百分之几?分析:此题四个问题都是求一个数是另一个数的百分之几,解答的关键是找准单位“1”,要注意帮助学生找一些典型字眼如:“…的”、“…占…”、“…是…”、“…比…”等.(1)男生人数为单位“1”,40÷50=4/5;(2)女生人数为单位“1”,(50-40)÷40=25%;(3)男生人数为单位“1”,(50-40)÷50=20%;(4)全班人数为单位“1”,(50-40)÷(50+40)≈11.1% .【巩固】一个机关精简机构后有工作人员120人,比原来工作人员少40人,精简了百分之几?分析:“精简了百分之几”是在说“现在比原来少的人数是原来工作人员的百分之几”单位“1”就是“原来工作人数”,40÷(120+40)=25%.【例2】(1)(首师附入学测试题)(难度系数:★★)小强看一本书,每天看15页,4天后加快进度,又看了全书的25,还剩下30页,这本故事书有多少页?(2)(数学趣题)(难度系数:★★)古希腊杰出的数学家丢番图的墓碑上有一段话:“他生命的六分之一是幸福的童年.再活十二分之一脸上长起了细细的胡须,他结了婚还没有孩子,又度过了七分之一.再过了五年,他幸福地得到了一个儿子.可这孩子光辉灿烂的寿命只有他父亲的一半.儿子死后,老人在悲痛中活了四年,也结束了尘世的生涯”.你能根据这段话推算出丢番图活了多少岁?多少岁结的婚吗?分析:(1)教师可先讲解下题:小强看一本故事书,每天看20页,5天后还剩下全书的15没看,这本故事书有多少页?分析:1(205)(1)1255⨯÷-=(页). 回到原题:4天看了15×4=60(页),而60+30=90页占全书的:1-25=35,这本故事书有:90÷35=150(页). (2)活的岁数:1111(54)(1)8461272+÷----=(岁) ,结婚年龄:1184()21612⨯+=(岁).【例3】 (奥数网习题库)(难度系数:★★★)有男女同学325人,新学年男生增加25人,女生减少5%,总人数增加16人,那么现有男同学多少人?分析:男生增加25人,总人数只增加16人,说明女生减少9人,而女生减小5%,故9人对应的为5%,女生原人数为9÷5%=180人.【例4】 (迎春杯刊赛)(难度系数:★★★)甲、乙、丙三人一起买了八个面包平分着吃,甲拿出五个面包的钱,乙付了三个面包的钱,丙没带钱,等吃完后一算,丙应该拿出四元钱,问:甲应收回多少钱?(以角为单位)分析:每人应付38个面包的钱,丙拿出的40角就是38个面包的钱,所以一个面包的价格应为:340158÷=(角),甲多付的钱为:8(5)15353-⨯=(角),所以甲应收回35角.【例5】 (奥数网习题库)(难度系数:★★★)好味多西饼屋推出一款新蛋糕,第一天卖出了全部的20%,第二天卖出了剩下的12,第二天比第一天多卖出40个,那么好味多西饼屋这次共推出新蛋糕多少个? 分析:好味多西饼屋推出新蛋糕个数看作“1”,140(120%)20%2002⎡⎤÷⨯--=⎢⎥⎣⎦(个).【巩固】(迎春杯决赛)迎春农机厂计划生产一批插秧机,现已完成计划的56%,如果再生产5040台,总产量就超过计划产量的16%.那么,原计划生产插秧机台.分析:5400÷(1+16%一56%)=9000(台).【例6】 (小数报数学竞赛)(难度系数:★★★)某运输队运一批大米.第一天运走总数的15多60袋,第二天运走总数的14少60袋.还剩下220袋没有运走。
这批大米原来一共有多少袋?分析:可画图帮助学生理解,(220-60+60)÷(1-15-14)=400(袋).此题也可使用倒推法解决.【巩固】小强看一本故事书,第一天看了全书的18还多21页,第二天看了全书的16少6页,还剩172页,这本故事书一共有多少页?分析:如右图,11 (172621)(1)264().86-+÷--=页【例7】(奥数网习题库)(难度系数:★★★)奥数网派出60名选手参加2008年“华罗庚金杯小学数学邀请赛”,其中女选手占14.正式比赛时有几名女选手因故缺席,这样就使女选手人数变为参赛选手总数的211.正式参赛的女选手有多少名?分析:因为女选手人数有变化,男选手人数未变,所以抓住男选手人数不变求解.把总人数视为“1”,男选手人数是60×(1-14)=45(人),男选手人数占正式参赛选手总数的1-211,所以正式参赛选手总数是:45÷(1-211)=55(人),正式参赛的女选手人数是55×211=10(人).【例8】(小数报数学竞赛初赛)(难度系数:★★★)甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是86元.在人民市场,甲买一双运动鞋花去了所带钱的49,乙买一件衬衫花去了人民币16元.这样两人身上所剩的钱正好一样多.问甲、乙两人原先各带了多少钱?分析:把甲所带的钱视为单位“1”,那么甲原来带了45(8616)(2)4599-÷+⨯=(元),乙原来带了41元.类型Ⅱ:单位“1”变化【例9】(小数报数学竞赛二试)(难度系数:★)专业户王老伯养了许多鸡鸭,鸡的只数是鸭的只数的1 1 4倍.鸭比鸡少几分之几?分析:把鸭看成1,那么鸡就是114,鸭比鸡少:(114-1)÷114=15.(此时的单位“1”是鸡的只数)【巩固】某校男生比女生多37,女生比男生少几分之几?分析:男生比女生多37,则男生有1+37=107,女生比男生少37÷107=310.【例10】(1)(十一中学入学考试题)(难度系数:★★)某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比元月份增产了还是减产了?(2)一件商品先涨价15%,然后再降价15%,问现在的价格和原价格比较升高、降低还是不变?分析:(1)一定会有同学认为三月份比元月份不增不减,这对吗?工厂二月份比元月份增产10%,我们就要将元月份产量看作1,将元月份产量看作1,则二月份产量为:111(110%)10⨯+=,三月比二月减产10%,则三月份产量为:1199(110%)110100⨯-=p,所以三月份比元月份减产了 .(2)1×(1+15%)×(1-15%)=0.9775<1,所以现在的价格比原价降低了.【例11】(迎春杯决赛)(难度系数:★★)—路铁水凝成铁块,其体积缩小了134,那么这个铁块又熔化成铁水(不计损耗),其中体积增加了几分之几?分析:设铁水的体积为1,则铁块为1-134=3334.现在变回来,那么铁块的体积就要变为单位1,则铁水的体积就为l÷3334=3433,故体积增加了:341(1)13333-÷=.【例12】(07年希望杯培训试题)(难度系数:★★★)某校学生参加大扫除的人数是未参加大扫除人数的14,后来又有20名同学参加大扫除,实际参加的人数是未参加人数的13,这个学校有多少人?分析:11204003141⎛⎫÷-=⎪++⎝⎭(人).【巩固】(迎春杯决赛)(难度系数:★★★)小刚给王奶奶运蜂窝煤,第一次运了全部的38,第二次运了50块,这时已运来的恰好是没运来的57.问还有多少块蜂窝煤没有运来?分析:运完第一次后,还剩下58没运,再运来50块后,已远来的恰好是没运来的57,也就是说没运来的占全部的712,所以,第二次运来的50块占全部的:57181224-=,全部蜂窝煤有:150120024÷=(块),没运来的有:7120070012⨯=(块).【例13】(华杯赛口试)(难度系数:★★★)一根木杆,第一次截去了全长的12,第二次截去所剩木杆的13,第三次截去所剩木杆的14,第四次截去所剩木杆的15,这时量得所剩木杆长为6厘米.问:木杆原来的长是多少厘米?分析:法1:设木杆原长为1,第一次截后所剩为原长的12;第二次截后所剩为12×(1一13)=13;第三次截后所剩为13×(1一14)=14;第四次截后所剩为14×(1一15)=15,即原长的15等于6厘米,由部分求整体得:木杆原长=6÷15=6×5=30(厘米).法2: 倒推法!注意单位“1”的不断变化.此法方便学生解答出类似附加8的题目.【巩固】建筑工地需要一批水泥,从仓库第一次运走全部的25,第二次运走余下的13,第三次运走(前两次运后)又余下的34,这时还剩下15吨水泥没运走.这批水泥共是多少吨?分析:法1:把这批水泥视为单位“1”,第一次远走后所剩为:23155-=,第二次远走后所剩为:312(1)535⨯-=,第二次远走后所剩为:231(1)5410⨯-=,即原来的110即为15吨,原来有水泥=11515010÷=(吨)法2:画线段图帮助分析,依据逆向思路可以得出,最后剩下的15吨对应的是“又余下”的14,因此求出“又余下”为60吨,这时60吨对应得恰好是“余下”的23,这样可以求出“余下”的吨数为90吨,即全部的35,所以原有水泥150吨.附加题目【附1】(华杯赛初赛)(难度系数:★★★)右图是一个园林的规划图,其中,正方形的34是草地;圆的67是竹林;竹林比草地多占地450平方米. 问:水池占多少平方米?分析:把水池的面积作为1个单位,那么草地的面积便是3个单位,而竹林的面积是6个单位。