【高考重难点小题专题练】专题九 数学文化与应用创新题-2021届高三数学二轮复习(含解析)
2021年中考数学专题九 传统数学文化(31PPT)
A. xy
y 3x
100
B. xx
y 3y
100
C.
x 1 3
x
y
100 3y 100
D.x1 3
y
y
100 3x 100
3.(2020·岳阳中考)我国古代数学名著《九章算术》上有这样一个问题:“今 有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒 各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价 值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x斗,行酒
x y 2
为y斗,根据题意,可列方程组为__5_0_x___10_y___3_0___.
4.(2019·张家界中考)《田亩比类乘除捷法》是我国古代数学家杨辉的著作, 其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几 何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问 它的长比宽多多少步?根据题意得,长比宽多___1_2___步.
如图1,☉O和☉I分别是△ABC的外接圆和内切圆,☉I与AB相切于点F,设☉O的半 径为R,☉I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三 条角平分线的交点)之间的距离OI=d,则有d2=R2-2Rr. 下面是该定理的证明过程(部分): 延长AI交☉O于点D,过点I作☉O的直径MN,连接DM,AN. ∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等). ∴△MDI∽△ANI.∴ IM=ID,
【题组过关】
1.(2020·临沂中考)《孙子算经》是中国古代重要的数学著作,成书大约在一
千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问
【重点突围】2023学年九年级数学上册重难点专题提优训练(人教版)-用二次函数解决实际问题(原卷版)
用二次函数解决实际问题考点一用二次函数解决增长率问题考点二用二次函数解决销售问题考点三用二次函数解决拱桥问题考点四用二次函数解决喷水问题考点五用二次函数解决投球问题考点六用二次函数解决图形问题考点七用二次函数解决图形运动问题考点一用二次函数解决增长率问题例题:(2022·全国·九年级课时练习)某工厂实行技术改造,产量年均增长率为x,已知2020年产量为1万件,那么2022年的产量y(万件)与x间的关系式为___________.【变式训练】1.(2022·江西萍乡·七年级期末)某厂有一种产品现在的年产量是2万件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y(万件)将随计划所定的x的值而确定,那么y与x之间的关系式应表示为________.2.(2022·全国·九年级专题练习)为积极响应国家“旧房改造”工程,该市推出《加快推进旧房改造工作的实施方案》推进新型城镇化建设,改善民生,优化城市建设.(1)根据方案该市的旧房改造户数从2020年底的3万户增长到2022年底的4.32万户,求该市这两年旧房改造户数的平均年增长率;(2)该市计划对某小区进行旧房改造,如果计划改造300户,计划投入改造费用平均20000元/户,且计划改造的户数每增加1户,投入改造费平均减少50元/户,求旧房改造申报的最高投入费用是多少元?考点二用二次函数解决销售问题例题:(2021·宁夏·吴忠市利通区扁担沟中心学校九年级期中)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件:(2)当每件商品降价多少元时,该商店每天销售利润最大?【变式训练】1.(2021·广东·陆丰市甲东镇钟山中学九年级期中)某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售单价是25元/件时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.求销售单价为多少元时,该文具每天的销售利润最大;最大利润为多少元?2.(2022·山东德州·九年级期末)某商厦灯具部投资销售一种进价为每件20元的护眼台灯,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并直接写出自变量x的取值范围.(2)如果想要每月获得的利润为2000元,那么每月的单价定为多少元?(3)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?考点三用二次函数解决拱桥问题例题:(2022·四川广安·中考真题)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降________米,水面宽8米.【变式训练】1.(2022·山东德州·九年级期末)如图是抛物线型拱桥,当拱顶高距离水面2m时,水面宽4m,如果水面上升1.5m ,则水面宽度为________.2.(2022·甘肃定西·模拟预测)有一个抛物线的拱形桥洞,桥洞离水面的最大高度为4m ,跨度为10m ,如图所示,把它的图形放在直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)如图,在对称轴右边1m 处,桥洞离水面的高是多少?考点四 用二次函数解决喷水问题例题:(2022·河南·中考真题)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P 距地面0.7m ,水柱在距喷水头P 水平距离5m 处达到最高,最高点距地面3.2m ;建立如图所示的平面直角坐标系,并设抛物线的表达式为()2y a x h k =-+,其中x (m )是水柱距喷水头的水平距离,y (m )是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m,身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【变式训练】1.(2022·四川南充·中考真题)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高_______________m时,水柱落点距O点4m.2.(2022·浙江台州·中考真题)如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系DE ,竖直高度为EF的中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度3m长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若 1.5h = 0.5m EF =①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC ;②求下边缘抛物线与x 轴的正半轴交点B 的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d 的取值范围;(2)若1m EF =.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h 的最小值.考点五 用二次函数解决投球问题例题:(2022·上海市张江集团中学八年级期末)如图,以地面为x 轴,一名男生推铅球,铅球行进高度y (单位:米)与水平距离x (单位:米)之间的关系是21251233y x x =-++.则他将铅球推出的距离是___米.【变式训练】 1.(2022·重庆实验外国语学校八年级期末)小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为21(3)9y x k =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离.已知该同学出手点A 的坐标为16(0,)9,则实心球飞行的水平距离OB 的长度为( )A .7mB .7.5mC .8mD .8.5m2.(2022·贵州安顺·九年级阶段练习)如图是小明站在点O 处长抛篮球的路线示意图,球在点A 处离手,且1m OA =.第一次在点D 处落地,然后弹起在点E 处落地,篮球在距O 点6m 的点B 处正上方达到最高点,最高点C 距地面的高度4m BC =,点E 到篮球框正下方的距离2m EF =,篮球框的垂直高度为3m .据试验,两次划出的抛物线形状相同,但第二次的最大高度为第一次的12,以小明站立处点O 为原点,建立如图所示的平面直角坐标系.(1)求抛物线ACD 的函数解析式;(2)求篮球第二次的落地点E 到点O 的距离.(结果保留整数)(3)若小明想一次投中篮球框,他应该向前走多少米?(结果精确到0.1m )(参考数据:36 2.45≈)考点六 用二次函数解决图形问题例题:(2021·江苏镇江·九年级期中)如图,利用一面墙(墙长26米),用总长度49米的栅栏(图中实线部分)围成一个矩形围栏ABCD ,且中间共留两个1米的小门,设栅栏BC 长为x 米.(1)AB = 米(用含x 的代数式表示);(2)若矩形围栏ABCD 面积为210平方米,求栅栏BC 的长;(3)能围成比210平方米更大的矩形围栏ABCD吗?如果能,请求出最大面积;如果不能,请说明理由.【变式训练】1.(2021·宁夏·吴忠市利通区扁担沟中心学校九年级期中)如图,利用一面墙(墙长10米)用20米的篱笆国成一个矩形场地.设垂直于墙的一边为x米.矩形场地的面积为s平方米.(1)求s与x的函数关系式,并求出x的取值范围;(2)若矩形场地的面枳最大,应该如何设计长与宽.2.(2022·山东烟台·九年级期中)某城门的截面由一段抛物线和一个正方形(OMNE为正方形)的三条边围成,已知城门宽度为4米,最高处距地面6米.如图1所示,现以O点为原点,OM所在的直线为x轴,OE所在的直线为y轴建立直角坐标系.(1)求上半部分抛物线的函数表达式,并写出其自变量的取值范围;(2)有一辆宽3米,高4.5米的消防车需要通过该城门,请问该消防车能否正常进入?(3)为营造节日气氛,需要临时搭建一个矩形“装饰门”ABCD,该“装饰门”关于抛物线对称轴对称,如图2所示,其中AB,AD,CD为三根承重钢支架,A、D在抛物线上,B,C在地面上,已知钢支架每米70元,问搭建这样一个矩形“装饰门”,仅钢支架一项,最多需要花费多少元?考点七 用二次函数解决图形运动问题例题:(2022·全国·九年级课时练习)如图1 在Rt ABC △中 90ABC ∠=︒ 已知点P 在直角边AB 上 以1cm/s的速度从点A 向点B 运动,点Q 在直角边BC 上,以2cm/s 的速度从点B 向点C 运动.若点P ,Q 同时出发,当点P 到达点B 时,点Q 恰好到达点C 处.图2是BPQ 的面积()2cm y 与点P 的运动时间()s t 之间的函数关系图像(点M 为图像的最高点),根据相关信息,计算线段AC 的长为( )A .35cmB .45cmC .55cmD .65cm【变式训练】 1.(2022·宁夏·银川唐徕回民中学二模)如图,在矩形ABCD 中,BC >CD ,BC 、CD 分别是一元二次方程x 2-7x +12=0的两个根,连接BD ,并过点C 作CN ⊥BD ,垂足为N ,点P 从B 出发,以每秒1个单位的速度沿BD 方向匀速运动到D 为止;点M 沿线段DA 以每秒1个单位的速度由点D 向点A 匀速运动,到点A 为止,点P 与点M 同时出发,设运动时间为t 秒(t >0).(1)求线段CN 的长;(2)在整个运动过程中,当t 为何值时△PMN 的面积取得最大值,最大值是多少?2.(2021·北京·九年级期中)如图,Rt ABCAC=8∠=︒6C∆中90BC=动点P,Q分别从A,C两点同时出发,点P沿边AC向C以每秒3个单位长度的速度运动,点Q沿边BC向B以每秒4个单位长度的速度t s.运动,当P,Q到达终点C,B时,运动停止.设运动时间为()(1)①当运动停止时,t的值为.②设P,C之间的距离为y,则y与t满足(选填“正比例函数关系”,“一次函数关系”,“二次函数关系” ).∆的面积为S,(2)设PCQ①求S的表达式(用含有t的代数式表示);②求当t为何值时,S取得最大值,这个最大值是多少?一、选择题1.(2022·黑龙江·鸡西市第一中学校九年级期末)某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元2.(2022·全国·九年级课时练习)如图,一抛物线型拱桥,当拱顶到水面的距离为2m时,水面宽度为4m.那么水位下降1m时,水面的宽度为()A 6mB .26mC .)64mD .()264m 3.(2022·全国·九年级课时练习)从某幢建筑物2.25米高处的窗口A 用水管向外喷水,水流呈抛物线,如果抛物线的最高点M 离墙1米,离地面3米,那么水流落点B 与墙的距离OB 是( )A .1米B .2米C .3米D .4米4.(2022·河南·辉县市城北初级中学一模)如果△ABC 和△DEF 都是边长为2的等边三角形,他们的边BC ,EF 在同一条直线l 上,点C ,E 重合,现将△ABC 沿着直线l 向右移动,直至点B 与点F 重合时停止移动,在此过程中,设点B 移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图像大致为( )A .B .C .D . 二、填空题5.(2022·上海宝山·九年级期末)据了解,某蔬菜种植基地2019年的蔬菜产量为100万吨,2021年的蔬菜x x ,那么y关于x的函数解析式为产量为y万吨,如果2019年至2021年蔬菜产量的年平均增长率为(0)_________.6.(2021·广东揭阳·九年级期末)用长12m的铝合金条制成矩形窗框(如图所示),那么这个窗户的最大透光面积是___________(中间横框所占的面积忽略不计)7.(2022·湖北襄阳·一模)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t-5t2,则小球飞出______s时,达到最大高度.8.(2022·山西·一模)某物理兴趣小组对一款饮水机的工作电路展开研究,将变阻器R的滑片从一端滑到另一端,绘制出变阻器R消耗的电功率P随电流I变化的关系图象如图所示,该图象是经过原点的一条抛物线的一部分,则变阻器R消耗的电功率P最大为__________W.三、解答题9.(2022·内蒙古北方重工业集团有限公司第一中学三模)北重一中计划利用一片空地建一个学生自行车车棚,其中一面靠墙,墙的最大可用长度为12米.另三边用总长为26米的木板材料围成.车棚形状如图中的矩形ABCD。
2023届高考二轮总复习试题 专题九 文化传承与文化创新(含解析)
专题九文化传承与文化创新一、选择题(本大题共16小题,每小题3分,共48分)1.(2022·湖南衡阳一模)中央广播电视总台《2022年元宵晚会》在央视综合频道、综艺频道、中文国际频道,以及文艺广播等平台隆重推出。
晚会聚焦北京冬奥、中国航天、中国女足等热点话题,以“欢乐闹元宵、浓浓中国风”为主题,通过科技与艺术、传统与现代相融合的创新呈现,为广大受众献上一台充满时代感、文化感、科技感的文化大餐。
这()①表明传统与现代相融合就能创作出优秀的文化作品②表明文化具有引领风尚、教育人民、服务社会、推动发展的功能③表明人民是文化发展的主体,是文化成果的最终享有者和受益者④创新了传统文化的基本内涵,有利于弘扬中华优秀传统文化A.①②B.①④C.②③D.③④2.2022年春节档某电影上映,该电影充满爱国主义的正能量和深沉浓厚的家国情怀,以高超的电影语言艺术再现了当年的壮烈情景,给人以强烈的视觉冲击和心灵震撼,成为春节档电影票房冠军。
材料表明()①文化对人的影响是深远持久的,该影片对观众的终身发展有影响②优秀文化能增强人的精神力量,该影片能激励我们不断奋勇前行③文化与经济相互交融,该影片做到了经济效益与社会效益的统一④文化促进经济社会的发展,该影片对经济社会产生了积极的影响A.①③B.①④C.②③D.②④3.(2022·湖南三湘名校联考)“鼎”最初是一种烹饪的容器,后来被视为立国重器,相传夏禹广聚天下之铜、兵器,熔铸九鼎代表九州,象征全国最高统治力,至高无上,视为立国重器。
直到现在,中国人仍然有一种鼎崇拜的意识,“鼎”字也被赋予“显赫”“尊贵”“盛大”等引申意义,如:一言九鼎、大名鼎鼎、鼎盛时期、鼎力相助,等等。
鼎又是旌功记绩的礼器。
周代的国君或王公大臣在重大庆典或接受赏赐时都要铸鼎,以旌表功绩,记载盛况。
下列选项对材料表述正确的是()①文化作为一种现象,需要一定的物质载体表现出来②鼎设计的目的就是为彰显至高无上的最高统治权力③文化是对政治经济的反映,又促进政治经济的发展④从时间和寓意中体现中华文化源远流长、博大精深A.①②B.①④C.②③D.①③4.(2022·湖南岳阳二模)创意舞蹈《金面》从三星堆文明中汲取新灵感、提取创意元素,展现了中华民族对幸福生活的美好向往。
2023年高考数学二轮复习讲练测专题09 排列组合高考常见小题全归类(解析版)
专题09排列组合高考常见小题全归类【命题规律】排列组合是高考重点考查的内容之一,今后在本节的考查形式依然以选择或者填空为主,以考查基本概念和基本方法为主,难度中等偏下,与教材相当.本节内容与生活实际联系紧密,考生可适当留意常见的排列组合现象,如体育赛事排赛、彩票规则等,培养数学应用的思维意识.【核心考点目录】核心考点一:两个计数原理的综合应用核心考点二:直接法核心考点三:间接法核心考点四:捆绑法核心考点五:插空法核心考点六:定序问题(先选后排)核心考点七:列举法核心考点八:多面手问题核心考点九:错位排列核心考点十:涂色问题核心考点十一:分组问题核心考点十二:分配问题核心考点十三:隔板法核心考点十四:数字排列核心考点十五:几何问题核心考点十六:分解法模型与最短路径问题核心考点十七:排队问题核心考点十八:构造法模型和递推模型核心考点十九:环排问题【真题回归】1.(2022·全国·统考高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有()A.12种B.24种C.36种D.48种【答案】B【解析】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式,故选:B2.(2021·全国·统考高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种【答案】C【解析】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有2 54!240C⨯=种不同的分配方案,故选:C.3.(2020·山东·统考高考真题)现从4名男生和3名女生中,任选3名男生和2名女生,分别担任5门不同学科的课代表,则不同安排方法的种数是()A.12B.120C.1440D.17280【答案】C【解析】首先从4名男生和3名女生中,任选3名男生和2名女生,共有3243C C种情况,再分别担任5门不同学科的课代表,共有55A种情况.所以共有3254351440C C A=种不同安排方法.故选:C4.(2020·海南·高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种B.3种C.6种D.8种【答案】C【解析】第一步,将3名学生分成两个组,有12323C C=种分法第二步,将2组学生安排到2个村,有222A=种安排方法所以,不同的安排方法共有326⨯=种故选:C5.(2020·海南·统考高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种【答案】C【解析】首先从6名同学中选1名去甲场馆,方法数有16C ; 然后从其余5名同学中选2名去乙场馆,方法数有25C ; 最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C6.(2020·全国·统考高考真题)如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称ai ,aj ,ak 为原位大三和弦;若k –j =4且j –i =3,则称ai ,aj ,ak 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( )A .5B .8C .10D .15【答案】C【解析】根据题意可知,原位大三和弦满足:3,4k j j i -=-=.∴1,5,8i j k ===;2,6,9i j k ===;3,7,10i j k ===;4,8,11i j k ===;5,9,12i j k ===. 原位小三和弦满足:4,3k j j i -=-=.∴1,4,8i j k ===;2,5,9i j k ===;3,6,10i j k ===;4,7,11i j k ===;5,8,12i j k ===. 故个数之和为10. 故选:C .7.(2022·全国·统考高考真题)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.【答案】635. 【解析】从正方体的8个顶点中任取4个,有48C 70n ==个结果,这4个点在同一个平面的有6612m =+=个,故所求概率1267035m P n ===. 故答案为:635. 8.(2020·全国·统考高考真题)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36【解析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C =现在可看成是3组同学分配到3个小区,分法有:336A =根据分步乘法原理,可得不同的安排方法6636⨯=种 故答案为:36.【方法技巧与总结】1、如图,在圆中,将圆分n 等份得到n 个区域1M ,2M ,3M ,,(2)n M n ,现取(2)k k 种颜色对这n 个区域涂色,要求每相邻的两个区域涂不同的两种颜色,则涂色的方案有(1)(1)(1)n n k k --+-种.2、错位排列公式1(1)(1)!!inn i D n n =-=+⋅∑ 3、数字排列问题的解题原则、常用方法及注意事项(1)解题原则:排列问题的本质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位子上,或某个位子不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子,若一个位子安排的元素影响到另一个位子的元素个数时,应分类讨论.4、定位、定元的排列问题,一般都是对某个或某些元素加以限制,被限制的元素通常称为特殊元素,被限制的位置称为特殊位置.这一类问题通常以三种途径考虑:(1)以元素为主考虑,这时,一般先解决特殊元素的排法问题,即先满足特殊元素,再安排其他元素; (2)以位置为主考虑,这时,一般先解决特殊位置的排法问题,即先满足特殊位置,再考虑其他位置; (3)用间接法解题,先不考虑限制条件,计算出排列总数,再减去不符合要求的排列数.5、解决相邻问题的方法是“捆绑法”,其模型为将n 个不同元素排成一排,其中某k 个元素排在相邻位置上,求不同排法种数的方法是:先将这k 个元素“捆绑在一起”,看成一个整体,当作一个元素同其他元素一起排列,共有11n k n k A -+-+种排法;然后再将“捆绑”在一起的元素“内部”进行排列,共有k k A 种排法.根据分步乘法计数原理可知,符合条件的排法共有11n k n k kk A A -+-+⋅种. 6、解决不相邻问题的方法为“插空法”,其模型为将n 个不同元素排成一排,其中某k 个元素互不相邻(1k n k ≤-+),求不同排法种数的方法是:先将(n k -)个元素排成一排,共有n k n k A --种排法;然后把k 个元素插入1n k -+个空隙中,共有1k n k A -+种排法.根据分步乘法计数原理可知,符合条件的排法共有n k n k A --·1k n k A -+种.7、解决排列、组合综合问题时需注意“四先四后”:(1)先分类,后分步:某些问题总体不好解决时,常常分成若干类,再由分类加法计数原理解决或分成若干步,再由分步乘法计数原理解决.常常既要分类,又要分步,其原则是先分类,再分步.(2)先特殊,后一般:解排列、组合问题时,常先考虑特殊情形(特殊元素,特殊位置等),再考虑其他情形.(3)先分组,后分配:对不同元素且较为复杂的平均分组问题,常常“先分组,再分配”. (4)先组合,后排列:对于既要选又要排的排列组合综合问题,常常考虑先选再排.【核心考点】核心考点一:两个计数原理的综合应用 【典型例题】例1.(2022·全国·高三专题练习)重庆九宫格火锅,是重庆火锅独特的烹饪方式.九宫格下面是相通的,实现了“底同火不同,汤通油不通”它把火锅分为三个层次,不同的格子代表不同的温度和不同的牛油浓度,其锅具抽象成数学形状如图(同一类格子形状相同):“中间格“火力旺盛,不宜久煮,适合放一些质地嫩脆、顷刻即熟的食物; “十字格”火力稍弱,但火力均匀,适合煮食,长时间加热以锁住食材原香;“四角格”属文火,火力温和,适合焖菜,让食物软糯入味.现有6种不同食物(足够量),其中1种适合放入中间格,3种适合放入十字格,2种适合放入四角格.现将九宫格全部放入食物,且每格只放一种,若同时可以吃到这六种食物(不考虑位置),则有多少种不同放法( )A .108B .36C .9D .6【答案】C【解析】由题可知中间格只有一种放法;十字格有四个位置,3种适合放入,所以有一种放两个位置,共有3种放法;四角格有四个位置,2种适合放入,可分为一种放三个位置,另一种放一个位置,有两种放法,或每种都放两个位置,有一种放法,故四角格共有3种放法;所以不同放法共有133=9⨯⨯种.故选:C .例2.(2022春·黑龙江哈尔滨·高三哈尔滨七十三中校考阶段练习)某市抽调5位医生分赴4所医院支援抗疫,要求每位医生只能去一所医院,每所医院至少安排一位医生.由于工作需要,甲、乙两位医生必须安排在不同的医院,则不同的安排种数是( )A .90B .216C .144D .240【答案】B【解析】完成这件事情,可以分两步完成,第一步,先将5为医生分为四组且甲、乙两位医生不在同一组,共有2519C -=种方案;第二步,再将这四组医生分配到四所医院,共有4424A =种不同方案,所以根据分步乘法计数原理得共有249216⨯=种不同安排方案. 故选:B .例3.(2022春·山东聊城·高三山东聊城一中校考期末)某大型联欢会准备从含甲、乙的6个节目中选取4个进行演出,要求甲、乙2个节目中至少有一个参加,且若甲、乙同时参加,则他们演出顺序不能相邻,那么不同的演出顺序的种数为( )A .720B .520C .600D .264【答案】D【解析】若甲、乙两节目只有一个参加,则演出顺序的种数为:134244192C C A =, 若甲、乙两节目都参加,则演出顺序的种数为:22242372C A A =;因此不同的演出顺序的种数为19272264+=. 故选:D .核心考点二:直接法 【典型例题】例4.甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军.”对乙说:“你当然不会是最差的.”从这两个回答分析,5人的名次排列方式共有( )种A .54B .72C .96D .120【答案】A【解析】根据题意,甲乙都没有得到冠军,而乙不是最后一名, 分2种情况讨论:①甲是最后一名,则乙可以为第二、三、四名,即乙有3种情况,剩下的三人安排在其他三个名次,有336A =种情况,此时有1863=⨯种名次排列情况;②甲不是最后一名,甲乙需要排在第二、三、四名,有236A =种情况,剩下的三人安排在其他三个名次,有336A=种情况,此时有6636⨯=种名次排列情况;则一共有361854+=种不同的名次情况,故选:A.例5.某校开展研学活动时进行劳动技能比赛,通过初选,选出,,,,,A B C D E F共6名同学进行决赛,决出第1名到第6名的名次(没有并列名次),A和B去询问成绩,回答者对A说“很遗㙳,你和B都末拿到冠军;对B说“你当然不是最差的”.试从这个回答中分析这6人的名次排列顺序可能出现的结果有()A.720种B.600种C.480种D.384种【答案】D【解析】由题意,,A B不是第一名且B不是最后一名,B的限制最多,故先排B,有4种情况,再排A,也有4种情况,余下4人有44432124A=⨯⨯⨯=种情况,利用分步相乘计数原理知有4424384⨯⨯=种情况.故选:D.例6.甲、乙、丙、丁四人站成一列,要求甲站在最前面,则不同的排法有()A.24种B.6种C.4种D.12种【答案】B【解析】甲、乙、丙、丁四人站成一列,要求甲站在最前面,则只需对剩下3人全排即可,则不同的排法共有333216A=⨯⨯=,故选:B.核心考点三:间接法【典型例题】例7.将7个人从左到右排成一排,若甲、乙、丙3人中至多有2人相邻,且甲不站在最右端,则不同的站法有().A.1860种B.3696种C.3600种D.3648种【答案】D【解析】7个人从左到右排成一排,共有775040A=种不同的站法,其中甲、乙、丙3个都相邻有3535720A A=种不同的站法,甲站在最右端有66720A=种不同的站法,甲、乙、丙3个相邻且甲站最右端有242448A A=种不同的站法,故甲、乙、丙3人中至多有2人相邻,且甲不站在最右端,不同的站法有5040720720483648--+=种不同的站法.故选:D例8.某学校计划从包含甲、乙、丙三位教师在内的10人中选出5人组队去西部支教,若甲、乙、丙三位教师至少一人被选中,则组队支教的不同方式共有()A .21种B .231种C .238种D .252种【答案】B【解析】10人中选5人有510C 252=种选法,其中,甲、乙、丙三位教师均不选的选法有57C 21=种,则甲、乙、丙三位教师至少一人被选中的选法共有55107C C 231-=种.故选:B例9.中园古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”主要指德育;“乐”主要指美育;“射”和“御”就是体育和劳动;“书”指各种历史文化知识;“数”指数学.某校国学社团开展“六艺”讲座活动,每周安排一次讲座,共讲六次.讲座次序要求“射”不在第一次,“数”和“乐”两次不相邻,则“六艺”讲座不同的次序共有( )A .408种B .240种C .1092种.D .120种【答案】A【解析】每周安排一次,共讲六次的“六艺”讲座活动,“射”不在第一次的不同次序数为1555A A ,其中“射”不在第一次且“数”和“乐”两次相邻的不同次序数为142442A A A , 于是得1514255442A A A A A 51204242408-=⨯-⨯⨯=,所以“六艺”讲座不同的次序共有408种. 故选:A核心考点四:捆绑法 【典型例题】例10.(2022·四川自贡·统考一模)在某个单位迎新晚会上有A 、B 、C 、D 、E 、F 6个节目,单位为了考虑整体效果,对节目演出顺序有如下具体要求,节目C 必须安排在第三位,节目D 、F 必须安排连在一起,则该单位迎新晚会节目演出顺序的编排方案共有( )种A .36B .48C .60D .72【答案】A【解析】由题意D 、F 在一二位或四五位、五六位,C 是固定的,其他三个节目任意排列,因此方法数为23233A A 36=.故选:A .例11.(2022·四川宜宾·统考模拟预测)“四书” “五经”是我国9部经典名著《大学》《论语》《中庸》《孟子》《周易》《尚书》《诗经》《礼记》《春秋》的合称.为弘扬中国传统文化,某校计划在读书节活动期间举办“四书”“五经”知识讲座,每部名著安排1次讲座,若要求《大学》《论语》相邻,但都不与《周易》相邻,则排法种数为( )A .622622A A AB .6262A AC .622672A A A D .622662A A A【答案】C【解析】先排除去《大学》《论语》《周易》之外的6部经典名著的讲座,共有66A 种排法,将《大学》《论语》看作一个元素,二者内部全排列有22A 种排法, 排完的6部经典名著的讲座后可以认为它们之间包括两头有7个空位,从7个空位中选2个,排《大学》《论语》捆绑成的一个元素和《周易》的讲座,有27A 种排法,故总共有622627A A A 种排法,故选:C .例12.(2022春·四川内江·高三威远中学校校考期中)某一天的课程表要排入语文、数学、英语、物理、化学、生物六门课,如果数学只能排在第一节或者最后一节,物理和化学必须排在相邻的两节,则共有( )种不同的排法A .24B .144C .48D .96【答案】D【解析】若数学只能排在第一节或者最后一节,则数学的排法有2种, 物理和化学必须排在相邻的两节,将物理和化学捆绑,与语文、英语、生物三门课程进行排序,有2424A A 48=种排法.由分步乘法计数原理可知,共有24896⨯=种不同的排法. 故选:D .核心考点五:插空法 【典型例题】例13.(2022·全国·高三专题练习)电视台在电视剧开播前连续播放6个不同的广告,其中4个商业广告2个公益广告,现要求2个公益广告不能连续播放,则不同的播放方式共有( ).A .5424A A ⋅B .5424C C ⋅ C .4267A A ⋅D .4267C C ⋅【答案】A【解析】先排4个商业广告,则44A ,即存在5个空,再排2个公益广告,则25A ,故总排法:4245A A , 故选:A .例14.(2022·全国·高三专题练习)五声音阶是中国古乐的基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徽、羽,如果用上这五个音阶,排成一个五音阶音序,且商、角不相邻,徽位于羽的左侧,则可排成的不同音序有( )A .18种B .24种C .36种D .72种【答案】C【解析】先将宫、徽、羽三个音节进行排序,且徽位于羽的左侧,有33A 32=,再将商、角插入4个空中,共有243A 36=种.故选:C .例15.(2022·全国·高三专题练习)A ,B ,C ,D ,E ,F 这6位同学站成一排照相,要求A 与C 相邻且A 排在C 的左边,B 与D 不相邻且均不排在最右边,则这6位同学的不同排法数为( )A .72B .48C .36D .24【答案】C【解析】首先将A 与C 捆绑到一起,与除B 、D 以外的其他2位同学共3个元素进行排列,有33A 6=种排法,再将B 、D 插空到除最右边的3个位置中,有23A 6= 种排法,因此共有6636⨯=种排法,故选:C核心考点六:定序问题(先选后排) 【典型例题】例16.满足*(1,2,3,4)i x i ∈=N ,且123410x x x x <<<<的有序数组()1234,,,x x x x 共有( )个.A .49CB .49PC .410CD .410P【答案】A【解析】∵数组中数字的大小确定,从1到9共9个数任取4个数得一个有序数组,所有个数为49C . 故选:A .例17.某次演出有5个节目,若甲、乙、丙3个节目间的先后顺序已确定,则不同的排法有( ) A .120种 B .80种 C .20种 D .48种【答案】C【解析】在5个位置中选两个安排其它两个节目,还有三个位置按顺序放入甲、乙、丙,方法数为2520A =.故选:C .例18.花灯,又名“彩灯”“灯笼”,是中国传统农业时代的文化产物,兼具生活功能与艺术特色.如图,现有悬挂着的8盏不同的花灯需要取下,每次取1盏,则不同取法总数为 ( )A .2520B .5040C .7560D .10080【答案】A【解析】由题意,对8盏不同的花灯进行取下, 先对8盏不同的花灯进行全排列,共有88A 种方法, 因为取花灯每次只能取一盏,而且只能从下往上取, 所以须除去重复的排列顺序,即先取上方的顺序,故一共有8822222222=2520A A A A A 种,故选:A核心考点七:列举法【典型例题】例19.(2022春·河南南阳·高三统考期末)2021年8月17日,国家发改委印发的《2021年上半年各地区能耗双控目标完成情况晴雨表》显示,青海、宁夏、广西、广东、福建、新疆、云南、陕西、江苏、浙江、安徽、四川等12个地区能耗强度同比不降反升,全国节能形势十分严峻.某地市为响应节能降耗措施,决定对非繁华路段路灯在晚高峰期间实行部分关闭措施.如图,某路段有十盏路灯(路两边各有五盏),现欲在晚高峰期关闭其中的四盏灯,为保证照明的需求,要求相邻的路灯不能同时关闭且相对的路灯也不能同时关闭,则不同的关闭方案有()A.15种B.16种C.17种D.18种【答案】B【解析】因为在晚高峰期关闭其中的四盏灯,为保证照明的需求,要求相邻的路灯不能同时关闭且相对的路灯也不能同时关闭,所以不同的关闭方案如下:''''''''''''ACEB ACED ACB D ACB E ADB E ADC E AEB D,,,,,,,'''''''''''''''''''',,,,,,,,BDAC BDA E BDC E BEAC BEA D CEA D CEB D BAC E DAC E,共16种方案,故选:B例20.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中,则不同的传球方式共有()A.6种B.8种C.10种D.16种【答案】C【解析】根据题意,作出树状图,第四次球不能传给甲,由分步加法计数原理可知:经过5次传球后,球仍回到甲手中,则不同的传球方式共有10种,故选:C .例21.(2022·上海浦东新·上海市实验学校校考模拟预测)定义“规范01数列”{an }如下:{an }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有A .18个B .16个C .14个D .12个【答案】C【解析】由题意,得必有10a =,81a =,则具体的排法列表如下:,01010011;010101011,共14个核心考点八:多面手问题 【典型例题】例22.我校去年11月份,高二年级有10人参加了赴日本交流访问团,其中3人只会唱歌,2人只会跳舞,其余5人既能唱歌又能跳舞.现要从中选6人上台表演,3人唱歌,3人跳舞,有种不同的选法.A .675B .575C .512D .545【答案】A【解析】分析:根据题意可按照只会左边的2人中入选的人数分类处理,分成三类,即可求解. 详根据题意可按照只会左边的2人中入选的人数分类处理.第一类2个只会左边的都不选,有3355100C C ⋅=种;第二类2个只会左边的有1人入选,有123256400C C C ⋅=种;第三类2个只会左边的全入选,有213257175C C C ⋅=种,所以共有675种不同的选法,故选A .例23.某国际旅行社现有11名对外翻译人员,其中有5人只会英语,4人只会法语,2人既会英语又会法语,现从这11人中选出4人当英语翻译,4人当法语翻译,则共有( )种不同的选法A .225B .185C .145D .110【答案】B【解析】根据题意,按“2人既会英语又会法语”的参与情况分成三类. ①“2人既会英语又会法语”不参加,这时有4454C C 种; ②“2人既会英语又会法语”中有一人入选, 这时又有该人参加英文或日文翻译两种可能,因此有134413254524C C C C C C +种; ③“2人既会英语又会法语”中两个均入选,这时又分三种情况:两个都译英文、两个都译日文、两人各译一个语种,因此有22442213132545242514C C C C C C C C C C ++种. 综上分析,共可开出441344132244221313542545242545242514185C C C C C C C C C C C C C C C C C C +++++=种. 故选:B .例24.“赛龙舟”是端午节的习俗之一,也是端午节最重要的节日民俗活动之一,在我国南方普遍存在端午节临近,某单位龙舟队欲参加今年端午节龙舟赛,参加训练的8名队员中有3人只会划左桨,3人只会划右桨,2人既会划左桨又会划右桨.现要选派划左桨的3人、划右桨的3人共6人去参加比赛,则不同的选派方法共有( )A .26种B .30种C .37种D .42种【答案】C【解析】根据题意,设{A =只会划左桨的3人},{B =只会划右桨的3人},{C =既会划左桨又会划右桨的2人},据此分3种情况讨论:①从A 中选3人划左桨,划右桨的在(B C ⋃)中剩下的人中选取,有35C 10=种选法,②从A 中选2人划左桨,C 中选1人划左桨,划右桨的在(B C ⋃)中选取,有213324C C C 24=种选法,③从A 中选1人划左桨,C 中2人划左桨,B 中3人划右桨,有13C 3=种选法,则有1024337++=种不同的选法. 故选:C .核心考点九:错位排列 【典型例题】例25.编号为1、2、3、4、5的5个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个人的编号与座位号一致的坐法有( )A .10种B .20种C .30种D .60种【答案】B【解析】先选择两个编号与座位号一致的人,方法数有2510C =,另外三个人编号与座位号不一致,方法数有2, 所以不同的坐法有10220⨯=种. 故选:B例26.将编号为1、2、3、4、5、6的小球放入编号为1、2、3、4、5、6的六个盒子中,每盒放一球,若有且只有两个盒子的编号与放入的小球的编号相同,则不同的放法种数为( )A .90B .135C .270D .360【答案】B【解析】根据题意,分以下两步进行:(1)在6个小球中任选2个放入相同编号的盒子里,有2615C =种选法,假设选出的2个小球的编号为5、6;(2)剩下的4个小球要放入与其编号不一致的盒子里,对于编号为1的小球,有3个盒子可以放入,假设放入的是2号盒子. 则对于编号为2的小球,有3个盒子可以放入, 对于编号为3、4的小球,只有1种放法.综上所述,由分步乘法计数原理可知,不同的放法种数为1533135⨯⨯=种. 故选:B .例27.若5个人各写一张卡片(每张卡片的形状、大小均相同),现将这5张卡片放入一个不透明的箱子里,并搅拌均匀,再让这5人在箱子里各摸一张,恰有1人摸到自己写的卡片的方法数有( )A .20B .90C .15D .45【答案】D【解析】根据题意,分2步分析:①先从5个人里选1人,恰好摸到自己写的卡片,有15C种选法,②对于剩余的4人,因为每个人都不能拿自己写的卡片,因此第一个人有3种拿法,被拿了自己卡片的那个人也有3种拿法,剩下的2人拿法唯一,所以不同的拿卡片的方法有11153345C C C⋅⋅=种.故选:D.核心考点十:涂色问题【典型例题】例28.(2022春·陕西宝鸡·高三校考开学考试)某儿童游乐园有5个区域要涂上颜色,现有四种不同颜色的油漆可供选择,要求相邻区域不能涂同一种颜色,则符合条件的涂色方案有()种A.36B.48C.54D.72【答案】D【解析】如图:将五个区域分别记为∴,∴,∴,∴,∴,则满足条件的涂色方案可分为两类,第一类区域∴,∴涂色相同的涂色方案,第二类区域∴,∴涂色不相同的涂色方案,其中区域∴,∴涂色相同的涂色方案可分为5步完成,第一步涂区域∴,有4种方法,第二步涂区域∴,有3种方法,第三步涂区域∴,有2种方法,第四步涂区域∴,有1种方法,第五步涂区域∴,有2种方法,由分步乘法计数原理可得区域∴,∴涂色相同的涂色方案有43212⨯⨯⨯⨯种方案,即48种方案;区域∴,∴涂色不相同的涂色方案可分为5步完成,第一步涂区域∴,有4种方法,第二步涂区域∴,有3种方法,第三步涂区域∴,有2种方法,第四步涂区域∴,有1种方法,第五步涂区域∴,有1种方法,由分步乘法计数原理可得区域∴,∴涂色不相同的涂色方案有43211⨯⨯⨯⨯种方案,即24种方案;所以符合条件的涂色方案共有72种,故选:D.。
2021年高考数学真题试题(新高考Ⅱ卷)(Word版+答案+解析)
2021年高考数学真题试题(新高考Ⅱ卷)(Word版+答案+解析)2021年高考数学真题试卷(新高考Ⅱ卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(共8题;共40分)1.复数frac{2- i}{1-3i}$$在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.设集合 $U=\{1,2,3,4,5,6\}$,$A=\{1,3,6\}$,$B=\{2,3,4\}$,则$A∩(\complement_U B)=()$A。
$\{3\}$ B。
$\{1,6\}$ C。
$\{5,6\}$ D。
$\{1,3\}$3.抛物线 $y^2=2px(p>0)$ 的焦点到直线 $y=x+1$ 的距离为 $\sqrt{2}$,则 $p=$()A。
1 B。
2 C。
$2\sqrt{2}$ D。
44.北斗三号全球卫星导航系统是我国航天事业的重要成果。
在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为km(轨道高度是指卫星到地球表面的距离)。
将地球看作是一个球心为O,半径$r$ 为6400km的球,其上点A的纬度是指$\angle OAB$ 与赤道平面所成角的度数。
地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为 $\alpha$,记卫星信号覆盖地球表面的表面积为$S=2\pi r^2(1-\cos\alpha)$(单位:$km^2$),则 $S$ 占地球表面积的百分比约为()A。
26% B。
34% C。
42% D。
50%5.正四棱台的上底面和下底面的边长分别为2,4,侧棱长为2,则其体积为()A。
$20+12\sqrt{3}$ B。
$28\sqrt{2}$ C。
$\frac{28\sqrt{2}}{3}$ D。
$56$6.某物理量的测量结果服从正态分布 $N(10,\sigma^2)$,下列结论中不正确的是()A。
届高三数学二轮复习专题训练-以数列为载体的情景问题
以数列为载体的情景问题一、单项选择题1.小方计划从4月1日开始存储零钱,4月1日到4月4日每天都存储1元,从4月5日开始,每天存储的零钱比昨天多1元,则小方存钱203天(4月1日为第1天)的储蓄总额为()A .19903元B .19913元C .20103元D .20113元2.《张丘建算经》曾有类似记载:“今有女子善织布,逐日织布同数递增(即每天增加的数量相同).”若该女子第二天织布一尺五寸,前十五日共织布六十尺,按此速度,该女子第二十日织布()A .七尺五寸B .八尺C .八尺五寸D .九尺3.现有17匹善于奔驰的马,它们从同一个起点出发,测试它们一日可行的路程.已知第i (i =1,2,…,16)匹马的日行路程是第i +1匹马日行路程的1.05倍,且第16匹马的日行路程为315里,则这17匹马的日行路程之和约为(取1.0517=2.292)()A .7750里B .7752里C .7754里D .7756里4.[2022·全国乙卷]嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星.为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{b n }:b 1=1+1α1,b 2=1+1α1+1α2,b 3=1+1α1+1α2+1α3,…,依此类推,其中αk ∈N *(k =1,2,…).则()A .b 1<b 5B .b 3<b 8C .b 6<b 2D .b 4<b 75.[2022·新高考Ⅱ卷]图1是中国古代建筑中的举架结构,AA ′,BB ′,CC ′,DD ′是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图,其中DD 1,CC 1,BB 1,AA 1是举,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB 1CB 1=k 2,AA1BA 1=k 3.已知k 1,k 2,k 3成公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3=()A .0.75B .0.8C .0.85D .0.96.[2023·河北秦皇岛模拟]中国古代许多著名数学家对推导高阶等差数列的求和公式很感兴趣,创造并发展了名为“垛积术”的算法,展现了聪明才智.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,所讨论的二阶等差数列与一般等差数列不同,前后两项之差并不相等,但是后项减前项之差组成的新数列是等差数列.现有一个“堆垛”,共50层,第一层2个小球,第二层5个小球,第三层10个小球,第四层17个小球,…,按此规律,则第50层小球的个数为()A .2400B .2401C .2500D .25017.[2023·安徽马鞍山模拟]风筝由中国古代劳动人民发明于东周春秋时期,距今已2000多年.龙被视为中华古老文明的象征,大型龙类风筝放飞场面壮观,气势磅礴,因而广受喜爱.某团队耗时4个多月做出一长达200米、重约25公斤,“龙身”共有180节“鱗片”的巨龙风筝.制作过程中,风筝骨架可采用竹子制作,但竹子易断,还有一种耐用的碳杆材质也可做骨架,但它比竹质的成本高.最终团队决定骨架材质按图中规律排列(即相邻两碳质骨架之间的竹质骨架个数成等差数列),则该“龙身”中竹质骨架个数为()A .161B .162C .163D .1648.[2023·湖北武汉模拟]为平衡城市旅游发展和生态环境保护,某市计划通过五年时间治理城市环境污染,预计第一年投入资金81万元,以后每年投入资金是上一年的43倍;第一年的旅游收入为20万元,以后每年旅游收入比上一年增加10万元,则这五年的投入资金总额与旅游总收入差额为()A .325万元B .581万元C .721万元D .980万元二、多项选择题9.[2023·山西大同模拟]《庄子·天下》中有:“一尺之棰,日取其半,万世不竭”,其大意为:一根一尺长的木棰每天截取一半,永远都取不完,设第一天这根木棰截取一半后剩下a 1尺,第二天截取剩下的一半后剩下a 2尺,…,第五天截取剩下的一半后剩下a 5尺,则下列说法正确的是()A.a 5a 2=14B .a 3=18C .a 3-a 4=116D .a 1+a 2+a 3+a 4+a 5=313210.某企业2021年年初有资金5千万元,由于引进了先进生产设备,资金年平均增长率可达到50%.每年年底扣除下一年的消费基金1.5千万元后,剩余资金投入再生产.设从2021年的年底起,每年年底企业扣除消费基金后的剩余资金依次为a 1,a 2,a 3,…,则下列说法正确的是(lg 2≈0.3010,lg 3≈0.4771)()A .a 1=6千万元B .{a n -3}是等比数列C .{a n -3}是等差数列D .至少到2026年的年底,企业的剩余资金会超过21千万元三、填空题11.《周髀算经》是中国十部古算经之一,其中记载有:阴阳之数,日月之法,十九岁为一章,四章为一蔀,二十蔀为一遂……若32个人的年龄(都为整数)依次成等差数列,他们的年龄之和恰好为“一遂”,其中年龄最小者不超过30岁,则年龄最大者为________岁.12.三潭印月被誉为“西湖第一胜境”,所谓三潭,实际上是3个石塔和其周围水域,石塔建于宋代元四年(公元1089年),每个高2米,分别矗立在水光潋滟的湖面上,形成一个等边三角形,记为△A 1B 1C 1,设△A 1B 1C 1的边长为a 1,取△A 1B 1C 1每边的中点构成△A 2B 2C 2,设其边长为a 2,依此类推,由这些三角形的边长构成一个数列{a n },若{a n }的前6项和为195316,则△A 1B 1C 1的边长a 1=________.13.[2023·山东烟台模拟]欧拉是瑞士数学家和物理学家,近代数学先驱之一,在许多数学的分支中经常可以见到以他的名字命名的重要函数、公式和定理.如著名的欧拉函数φ(n ):对于正整数n ,φ(n )表示小于或等于n 的正整数中与n 互质的数的个数,如φ(5)=4,φ(9)=6.那么,数列{nφ(5n )}的前n 项和为________.14.[2021·新高考Ⅰ卷]某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm×12dm 的长方形纸,对折1次共可以得到10dm×12dm ,20dm×6dm 两种规格的图形,它们的面积之和S 1=240dm 2,对折2次共可以得到5dm×12dm ,10dm×6dm ,20dm×3dm 三种规格的图形,它们的面积之和S 2=180dm 2.以此类推,则对折4次共可以得到不同规格图形的种数为________;如果对折n 次,那么.1.解析:设小方第n天存钱a n元,则数列{a n}从第4项起成等差数列,且该等差数列的首项为1,公差为1,所以小方存钱203天的储蓄总额为1+1+1+200×1+200×1992×1=203+19900=20103元.故选C.答案:C2.解析:由题意知:该女子每天织布的尺寸成等差数列,记为{a n},其前n项和为S n,则a2=1.5,S15=60,∵S15=15(a1+a15)2=15a8=60,∴a8=4,∴数列{a n}的公差d=a8-a26=4-1.56=512,∴a20=a8+12d=4+12×512=9,即该女子第二十日织布九尺.故选D.答案:D3.解析:3151.05=300,依题意可得,第17匹马、第16匹马……第1匹马的日行路程里数依次成等比数列,且首项为300,公比为1.05,故这17匹马的日行路程之和为300×(1-1.0517)1-1.05=6000×(1.0517-1)=6000×(2.292-1)=7752(里).故选B.答案:B4.解析:方法一因为αk∈N*(k=1,2,…),所以0<1αk ≤1,所以α1<α1+1α2+1α3+1α4+1α5,所以b1>b5,所以A错误.同理α3<α3+1α4+1α5+1α6+1α7+1α8.设1α4+1α5+1α6+1α7+1α8=t1,所以α2+1α3>α2+1α3+t1,则α1+1α2+1α3<α1+1α2+1α3+t1,所以b3>b8,所以B错误.同理α2<α2+1α3+1α4+1α5+1α6.设1α3+1α4+1α5+1α6=t2,所以α1+1α2>α1+1α2+t2,所以b2<b6,所以C错误.同理α4<α4+1α5+1α6+1α7.设1α5+1α6+1α7=t3,所以α3+1α4>α3+1α4+t 3,则α2+1α3+1α4<α2+1α3+1α4+t 3,所以α1+1α2+1α3+1α4>α1+1α2+1α3+1α4+t 3,所以b 4<b 7,所以D 正确.故选D.方法二此题可赋特殊值验证一般规律,不必以一般形式做太多证明,以节省时间.由αk ∈N *,可令αk =1,则b 1=2,b 2=32,b 3=53,b 4=85.分子、分母分别构成斐波纳契数列,可得b 5=138,b 6=2113,b 7=3421,b 8=5534.对比四个选项,可知选D.答案:D5.解析:设OD 1=DC 1=CB 1=BA 1=1,则CC 1=k 1,BB 1=k 2,AA 1=k 3,依题意,有k 3-0.2=k 1,k 3-0.1=k 2,且DD 1+CC 1+BB 1+AA 1OD 1+DC 1+CB 1+BA 1=0.725,所以0.5+3k 3-0.34=0.725,故k 3=0.9,故选D.答案:D6.解析:不妨设第n 层小球个数为a n ,由题意,a 2-a 1=3,a 3-a 2=5,…,即各层小球之差是以3为首项,2为公差的等差数列.所以a n -a n -1=3+2(n -2)=2n -1(n ≥2,n ∈N *).50-a 49=9949-a 48=972-a 1=3,累加可得:a 50-a 1=49×(3+99)÷2=2499,故a 50=2499+2=2501.故选D.答案:D7.解析:设有n 个碳质骨架,n ∈N *,由已知可得n +1+2+3+…+(n -1)+n ≥180,如果只有n -1个碳质骨架,则骨架总数少于180,所以(n -1)+1+2+3+…+(n -1)<180,所以n 2+3n ≥360,且n 2+n <362,又n ∈N *解得n =18,所以共有碳质骨架18个,故竹质骨架有162个.故选B.答案:B8.解析:根据题意可知,这五年投入的金额构成首项为81,公比为43的等比数列,所以这五年投入的资金总额是81×[1-(43)5]1-43=781(万元);由题意可知,这五年的旅游收入构成首项为20,公差为10的等差数列,所以这五年的旅游总收入是20×5+5×42×10=200(万元),所以这五年的投入资金总额与旅游总收入差额为781-200=581(万元).故选B.答案:B9.解析:根据题意可得{a n }是首项为12,公比为12的等差数列,则a n =(12)n (n ∈N *),a 5a 2=q 3=18,故A 错误;a 3=18,故B 正确;a 3=18,a 4=116,则a 3-a 4=116,故C 正确;a 1+a 2+a 3+a 4+a 5=12(1-125)1-12=3132,故D 正确.故选BCD.答案:BCD10.解析:对于A ,由题意可知,a 1=5×1.5-1.5=6(千万元),A 正确;对于B ,因为由题意可得a n +1=1.5a n -1.5,所以a n +1-3=1.5(a n -3),又因为a 1-3=3,则a n -3≠0,故a n +1-3a n -3=1.5,所以{a n -3}是首项为3,公比为1.5的等比数列,B 正确,则C 错误;对于D ,由C 的分析可得a n -3=3×1.5n -1,所以a n =3+3×1.5n -1,令3+3×1.5n -1>21,解得n -1>lg 6lg 1.5=lg 3+lg 2lg 3-lg 2≈4.42,所以n >5.42,所以至少到2026年的年底,企业的剩余资金会超过21千万元,D 正确.故选ABD.答案:ABD11.解析:根据题意可知这32个人年龄之和为19×4×20=1520,设年纪最小者年龄为n ,年纪最大者年龄为m ,则n +m2×32=1520⇒n +m =95,设等差数列的首项为n ,公差为d ,则n ,m ,d ∈N *,则32n +32×312d =1520⇒2n +31d =95⇒2n =95-31d ,因为1≤n ≤30⇒2≤2n ≤60,则2≤95-31d ≤60,解得3531≤d ≤3,d =2时,n =332不满足题意,所以d =3,2n =95-31×3=2⇒n =1,则m =95-1=94.答案:9412.解析:根据题意,取△A 1B 1C 1每边的中点构成△A 2B 2C 2,则△A 2B 2C 2的各边均为△A 1B 1C 1对应的中位线,长度减半,由此a 2=12a 1,依次类推可得a n =12a n -1,所以{a n }是首项为a 1,公比q =12的等比数列,故其前6项和S 6=a 1(1-q 6)1-q =2a 11-(12)6=195316,则a 1=62.答案:6213.解析:在[1,5n ]中,与5n 不互质的数有5×1,5×2,5×3,…,5×5n -1,共有5n -1个,所以φ(5n )=5n -5n -1=4·5n -1,所以nφ(5n )=(4n )·5n -1,设数列{nφ(5n )}的前n 项和为S n ,所以S n =4×50+8×51+12×52+…+4n ×5n -1,5S n =4×51+8×52+12×53+…+4n ×5n ,两式相减可得-4S n =4+4×(51+52+…+5n -1)-4n ·5n ,所以S n =-1-(51+52+…+5n -1)+n ·5n=-1-5(1-5n -1)1-5+n ·5n ,即S n =(n -14)·5n +14.答案:(n -14)·5n +1414.解析:(1)由对折2次共可以得到5dm×12dm ,10dm×6dm ,20dm×3dm 三种规格的图形,所以对折三次的结果有:52×12,5×6,10×3,20×32,共4种不同规格(单位dm 2);故对折4次可得到如下规格:54×12,52×6,5×3,10×32,20×34,共5种不同规格.(2)由于每次对折后的图形的面积都减小为原来的一半,故各次对折后的图形,不论规格如何,其面积成公比为12的等比数列,首项为120(dm 2),第n 次对折后的图形面积为n -1,对于第n 次对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为n +1种(证明从略),故得猜想S n =120(n +1)2n -1,设S =错误!k =120×220+120×321+120×422+…+120(n +1)2n -1,则12S=120×221+120×322+…+120n2n-1+120(n+1)2n,两式作差得:1 2S=240+120(12+122+…+12n-1)-120(n+1)2n=2401-12-120(n+1)2n=360-1202n-1-120(n+1)2n=360-120(n+3)2n,因此,S=720-240(n+3)2n=720-15(n+3)2n-4.答案:5720-15(n+3) 2n-4。
专题九 文化传承与文化创新 专题提升训练-2022届高考政治二轮复习统编版必修四哲学与文化(解析版)
专题九文化传承与文化创新(满分:100分)一、选择题:本题共15小题,每小题3分,共45分。
每小题只有一个选项符合题目要求。
1.2021年是农历辛丑牛年,对中华民族来说,牛是刻苦、踏实、坚韧的象征,深受中国人民喜爱。
人无精神则不立,国无精神则不强。
在全国政协新年茶话会上,习近平总书记用三种“牛”的精神,为中国今年的奋斗状态奠定了基调“发扬为民服务孺子牛、创新发展拓荒牛、艰苦奋斗老黄牛的精神”。
发扬“三牛精神”有利于()①直接为人们认识和改造世界提供物质力量②丰富人的精神世界,增强人的精神力量③实现中华优秀传统文化的完全更新④弘扬和培育伟大的中华民族精神A.①③B.②③C.①④D.②④2.2021年春节期间,河南卫视的歌舞节目《唐宫夜宴》,成功运用了5G+AR的技术,让虚拟场景和现实舞台结合,穿插妇好鸮尊、《簪花仕女图》等国宝的展示,再现了唐朝少女们夜宴的演奏过程,该节目获得广大观众的好评。
这表明()①优秀传统文化只有不断创新才能更好地传承和发展②满足人民大众需要的优秀传统文化才有强大的生命力③与现代科学技术融合是增强传统文化影响力的根本途径④现代传播手段与传播形式的创新是文化创新的重要基础A.①②B.①④C.②③D.③④3.《典籍里的中国》是央视在2021牛年新春之季重点打造的大型原创文化节目。
节目聚焦中华优秀文化典籍中的经典名篇,讲述感人至深的传承故事,综合运用环幕投屏、实时跟踪等新科技手段,创新设计出“历史空间”“现实空间”,并以跨越时空对话的形式营造了“故事讲述场”。
该节目的创作和播出()①根本动力在于现代传播技术的发展与应用②能增强人们对中华文化的认同感和归属感③说明科学技术是影响文化创新的重要因素④能够直接推动社会实践和民族文化的发展A.①②B.①④C.②③D.③④4.2021年,辛丑牛年。
牛在先民告别“刀耕火种”进入“有史以来”的文明社会过程中,助过一臂之力,人们遂称牛为“仁畜”,牛文化也随之产生。
专题02 乘法公式重难点题型专训(11大题型+15道拓展培优)(原卷版)
专题02 乘法公式重难点题型专训(11大题型+15道拓展培优)【题型目录】题型一 运用平方差公式进行运算题型二 平方差公式与几何图形题型三 运用完全平方公式进行运算题型四 通过完全平方公式变形求值题型五 求完全平方公式中的字母系数题型六 完全平方式在几何图形中的应用题型七 整式的混合运算题型八 乘法公式中的多结论问题题型九 乘法公式的相关计算题型十 乘法公式中的“知二求三”题型十一 乘法公式与几何图形的综合应用【知识梳理】知识点一、平方差公式平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.特别说明:在这里,既可以是具体数字,也可以是单项式或多项式.抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:(1)位置变化:如利用加法交换律可以转化为公式的标准型(2)系数变化:如(3)指数变化:如(4)符号变化:如(5)增项变化:如(6)增因式变化:如知识点二、完全平方公式完全平方公式:两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.特别说明:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:22()()a b a b a b +-=-b a ,()()a b b a +-+(35)(35)x y x y +-3232()()m n m n +-()()a b a b ---()()m n p m n p ++-+2244()()()()a b a b a b a b -+++()2222a b a ab b +=++2222)(b ab a b a +-=-【经典例题一【例1A.【变式训练】1.(2023(+(21)4.(2024上·广东湛江·八年级校考期末)观察下列计算∶()()22a b a b a b -+=-()()2233a b a ab b a b -++=-()()322344a ab ab a b b b a +++=--(1)猜想∶ ()()1211n n a a a a ---++++=L _______________________.(其中n 为正整数,且2n ³);(2)利用(1)猜想的结论计算∶ 109873222222221++++++++L ;【经典例题二 平方差公式与几何图形】【例2】(2023下·甘肃兰州·七年级统考期中)下面给出的三幅图都是将阴影部分通过割,拼,形成新的图形,其中不能验证平方差公式的是( )A .①B .②③C .①③D .③【变式训练】1.(2023上·吉林白城·八年级统考期末)如图,从边长为()3a +的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线剪开后又拼成如图的长方形(不重叠,无缝隙),则拼成的长方形的另一边的长为( )A .26a +B .22a +C .6a +2.(2023上·河南周口·八年级校联考阶段练习)有正方形纸片A 3.(2024上·云南玉溪·八年级统考期末)如图甲所示,边长为乙是由图甲中阴影部分拼成的一个长方形,设图甲中阴影部分面积为(1)请直接用含a 和b 的代数式表示达).(2)试利用这个公式计算:112æ-çè(1)上述操作能验证的等式是_______.(请选择正确的一个)A .()()22=a b a b a b -+-;B .22a ab -+(2)请应用(1)中的等式完成下列各题:①2202320242022-´;【经典例题三【例则2a +【变式训练】1.(2023·A .(1)如图所示图形可验证的等式是:(2)计算:2+´+2.23 4.463.77(3)运用(1)中的等式,若x【经典例题四【例4【变式训练】1.(2024(1)观察图2,请你直接写出下列三个代数式:(a+(2)晓晓同学利用上面的纸片拼出了一个面积为2a _______.(3)根据(1)题中的等量关系,解决如下问题:数学思考:利用图形推导的数学公式解决问题(1)已知7a b +=,12ab =,求22a b +的值;(2)已知()()202420222023x x --=,求()()2220242022x x -+-的值.拓展运用:如图3,点C 是线段AB 上一点,以AC ,BC 为边向两边作正方形【经典例题五【例5( )【变式训练】1.(2024整式B ,使得2A B =,则称A 完全平方式.例如()242a a =,()242a a =,()2244121a a a -+=-,则4a ,2441a a -+均为完全平方式.(1)下列各式中是完全平方式的是 (只填序号).①6a ;②22a ab b ++;③21025x x --;④269m m ++(2)将(1)中所选的完全平方式写成一个整式的平方的形式.(3)若2x x m ++是完全平方式,求m 的值.4.(2023上·山西晋中·九年级统考期中)阅读与思考如果一个多项式()20,0ax bx c a c ++>>是完全平方式,那么它的各项系数a ,b ,c 之间存在着怎样的关系呢?围绕这个问题,小丽同学所在的小组进行了如下探究,请你加入他们的探究并补全探究过程:探究完全平方式各项系数的关系举例探究:将下列各式因式分解:()22211x x x ++=+;2816x x -+= ;24129x x -+= ;观察发现:观察以上三个多项式的系数,我们发现:224110-´´=;()2841160--´´=;()2124490--´´=;归纳猜想:若多项式()200,0ax bx c a c ++=>>是完全平方式,猜想:系数a ,b ,c 之间存在的关系式为 ;验证结论:请你写出一个不同于上面出现的完全平方式,并用此式验证你猜想的结论:解决问题:若多项式()()()26261n x n x n +++++是一个完全平方式,利用你猜想的结论求出n 的值.【经典例题六【例6已知大正方形的面积是【变式训练】1.(2021划出长方形(1)你认为图②中阴影部分的正方形的边长等于_______.(2)请用两种不同的方法列代数式表示图②中阴影部分的面积方法①___________;方法②__________.(3)观察图②,试写出()2m n +,()2m n -,mn 这三个代数式之间的等量关系(1)代数式241x x -+有最 (填大或小)值,这个值(2)解决实际问题:在紧靠围墙的空地上,利用围墙及一段长为计一个尽可能大的花圃,如图设长方形一边长度为【经典例题七【例7A .2b a =B .3b a =【变式训练】1.(2022上·重庆北碚·九年级西南大学附中校考开学考试)设()()22@x y x y x y =+--,则下列结论:①若@0x y =,则x ,y 均为0;②()@@@x y z x y x z +=+;③存在实数x ,y ,满足22@5x y x y =+;④设x ,y 是矩形的长和宽,若矩形的周长固定,则当x y =时,@x y 最大.其中正确的个数( )A .4个B .3个C .2个D .1个2.(2022·河北保定·校考模拟预测)已知222810x x -=,则()()()212111x x x ---++= 3.(2024上·四川成都·八年级校考期末)(1)先化简,再求值:2()()()()x y x x y x y x y +-++-+,其中2x =-,1y =-.(2)已知260m m --=,求2(2)(2)(4)m n m n n m +-+-的值.4.(2024上·福建莆田·八年级统考期末)庆祝元旦期间,张老师出了一道“年份题”:计算22222023202320242024+´+的算术平方根.张老师提示可将上述问题一般化为:计算2222(1)(1)n n n n ++++的算术平方根(n 为正整数),然后对n 进行特殊化:当1n =时,222221122(121)+´+=´+,当2n =时,222222233(231)+´+=´+,当3n =时,222223344(341)+´+=´+,……(1)根据以上规律,请直接写出22222023202320242024+´+的算术平方根;(按规律写出结果即可,不必计算)(2)根据以上等式规律,请写出第n 个等式,并验证其正确性;(3)某同学将上述问题更一般化为:计算2222n n m m ++的算术平方根,并猜想22222()n n m m nm m n ++=+-,【经典例题八【例82x,第二项是【变式训练】1.(2023①不存在这样的实数【经典例题九【例9(1)(x【变式训练】1.(2023【经典例题十【例10(1)2x【变式训练】1.(20233ab =Q ,2225225619a b ab \+=-=-=.()2222a b a b ab \+=+-.5a b +=Q ,3ab =,2225619a b \+=-=.请你参照上面两种解法中的一种,解答以下问题.(1)已知1a b -=,229a b +=,求ab 的值;(2)已知14a a +=,求21a a æö-ç÷èø的值.3.(2023上·福建厦门·八年级厦门市第十中学校考期中)已知4m n -=-,2mn =,求下列代数式的值.(1)22m n +(2)()()11m n +-4.(2023上·广西南宁·八年级广西大学附属中学校考期中)阅读下列材料并解答下面的问题:利用完全平方公式()2222a b a ab b ±=±+,通过配方可对22a b +进行适当的变形,如:()2222a b a b ab +=+-或()2222a b a b ab +=-+,从而使某些问题得到解决.例:已知5,3+==a b ab ,求22a b +的值.解:()2222252319a b a b ab +=+-=-´=.通过对例题的理解解决下列问题:(1)已知2,3a b ab -==,求22a b +的值;(2)若16a a +=,求221a a+的值;(3)若n 满足()()22202420231n n -+-=,求式子()()20242023n n --的值.【经典例题十一【例11A 种纸片是边长为【发现】(1)根据图2,写出一个我们熟悉的数学公式 ;【应用】(2)根据(1)中的数学公式,解决如下问题:①已知:7a b +=,22a b 29+=,求ab 的值;【变式训练】1.(2023的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由(1)若用不同的方法计算这个边长为(2)若实数a,b,c满足3.(2023上·湖北武汉·七年级统考期中)问题呈现数学运用:如图,分别以a ,b ,m ,n 为边长作正方形,已知m n >且满足①222224a m abmn b n -+=与②2222216b m abmn a n ++=.若图4中阴影部分的面积为3,图5中梯形ABCD 的面积为5,则图5阴影部分的面积是______.(直接写出结果).【拓展培优】1.(2024A .①②B .①③C .①②③D .①②④6.(2023·江苏泰州·统考一模)已知()()2022202448x x --=,则代数式2(2023)x -的值为 7.(2024上·湖北随州·八年级统考期末)如果()2221914a b a b +=+=,,则()2a b -= .9.(2023上·江苏南通·八年级统考期中)请同学们运用公式题:已知,,a b c 满足2226a b c ++=10.(2024上·湖南湘西·八年级统考期末)完全平方公式(2)利用等量关系解决下面的问题:①5a b -=,6ab =-,求()2a b +和22a b +的值;②已知13x x -=,求441x x +的值.根据上面灰太狼的解题思路与方法,请解决下列问题:(1)①若4mn =,22m n +②若6x y +=,22x y +=③若6a b +=,4ab =,则。
2021年普通高等学校招生全国统一考试数学试题(新高考Ⅱ)(附答案详解)
2021年普通高等学校招生全国统一考试数学试题(新高考Ⅱ)一、单选题(本大题共8小题,共40.0分)1.(2021·全国·历年真题)复数2−i1−3i在复平面内对应的点所在的象限为()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.(2021·全国·历年真题)设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A⋂(∁U B)=()A. {3}B. {1,6}C. {5,6}D. {1,3}3.(2021·全国·历年真题)抛物线y2=2px(p>0)的焦点到直线y=x+1的距离为√2,则p=()A. 1B. 2C. 2√2D. 44.(2021·全国·历年真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为6400km的球,其上点A的纬度是指OA与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为S=2πr2(1−cosα)(单位:km2),则S占地球表面积的百分比约为()A. 26%B. 34%C. 42%D. 50%5.(2021·全国·历年真题)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A. 20+12√3B. 28√2C. 563D. 28√236.(2021·全国·历年真题)某物理量的测量结果服从正态分布N(10,σ2),下列结论中不正确的是()A. σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B. σ越小,该物理量在一次测量中大于10的概率为0.5C. σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D. σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等7.(2021·全国·历年真题)已知a=log52,b=log83,c=1,则下列判断正确的是2()A. c<b<aB. b<a<cC. a<c<bD. a<b<c8.(2021·全国·历年真题)已知函数f(x)的定义域为R,f(x+2)为偶函数,f(2x+1)为奇函数,则()A. f(−1)=0 B. f(−1)=0 C. f(2)=0 D. f(4)=02二、多选题(本大题共4小题,共20.0分)9.(2021·全国·历年真题)下列统计量中,能度量样本x1,x2,⋯,x n的离散程度的是()A. 样本x1,x2,⋯,x n的标准差B. 样本x1,x2,⋯,x n的中位数C. 样本x1,x2,⋯,x n的极差D. 样本x1,x2,⋯,x n的平均数10.(2021·全国·历年真题)如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点,则满足MN⊥OP的是()A. B.C. D.11.(2021·全国·历年真题)已知直线l:ax+by−r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法正确的是()A. 若点A在圆C上,则直线l与圆C相切B. 若点A在圆C内,则直线l与圆C相离C. 若点A在圆C外,则直线l与圆C相离D. 若点A在直线l上,则直线l与圆C相切12.(2021·全国·历年真题)设正整数n=a0⋅20+a1⋅2+⋯+a k−1⋅2k−1+a k⋅2k,其中a i∈{0,1},记ω(n)=a0+a1+⋯+a k,则()三、单空题(本大题共4小题,共20.0分)13.(2021·全国·历年真题)已知双曲线x2a2−y2b2=1(a>0,b>0)的离心率为2,则该双曲线的渐近线方程为_______.14.(2021·全国·历年真题)写出一个同时具有下列性质①②③的函数f(x):_______.①f(x1x2)=f(x1)f(x2);②当x∈(0,+∞)时,f′(x)>0;③f′(x)是奇函数.15.(2021·全国·历年真题)已知向量a⃗+b⃗ +c⃗=0⃗,|a⃗|=1,|b⃗ |=|c⃗|=2,a⃗⋅b⃗ +b⃗ ⋅c⃗+c⃗⋅a⃗=_______.16.(2021·全国·历年真题)已知函数f(x)=|e x−1|,x1<0,x2>0,函数f(x)的图象在点A(x1,f(x1))和点B(x2,f(x2))的两条切线互相垂直,且分别交y轴于M,N两点,则|AM||BN|取值范围是_______.四、解答题(本大题共6小题,共70.0分)17.(2021·全国·历年真题)记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.(1)求数列{a n}的通项公式a n;(2)求使S n>a n成立的n的最小值.18.(2021·全国·历年真题)在▵ABC中,角A、B、C所对的边长分别为a、b、c,b=a+1,c=a+2.(1)若2sinC=3sinA,求▵ABC的面积;(2)是否存在正整数a,使得▵ABC为钝角三角形?若存在,求出a的值;若不存在,说明理由.19.(2021·全国·历年真题)在四棱锥Q−ABCD中,底面ABCD是正方形,若AD=2,QD=QA=√5,QC=3.(1)证明:平面QAD⊥平面ABCD;(2)求二面角B−QD−A的平面角的余弦值.20.(2021·全国·历年真题)已知椭圆C的方程为x2a2+y2b2=1(a>b>0),右焦点为F(√2,0),且离心率为√63.(2)设M,N是椭圆C上的两点,直线MN与曲线x2+y2=b2(x>0)相切.证明:M,N,F三点共线的充要条件是|MN|=√3.21.(2021·全国·历年真题)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,P(X=i)=p i(i=0,1,2,3).(1)已知p0=0.4,p1=0.3,p2=0.2,p3=0.1,求E(X);(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:p0+p1x+p2x2+p3x3=x的一个最小正实根,求证:当E(X)≤1时,p=1,当E(X)>1时,p<1;(3)根据你的理解说明(2)问结论的实际含义.22.(2021·全国·历年真题)已知函数f(x)=(x−1)e x−ax2+b.(1)讨论f(x)的单调性;①12<a≤e22,b>2a;②0<a<12,b≤2a.答案和解析1.【答案】A【知识点】复数的代数表示及其几何意义【解析】【分析】本题考查了复数的除法以及代数表示及其几何意义,属于基础题.利用复数的除法可化简2−i1−3i,从而可求对应的点的位置.【解答】解:,所以该复数对应的点为(12,12 ),该点在第一象限,故选A.2.【答案】B【知识点】交、并、补集的混合运算【解析】【分析】本题考查了集合交集与补集的混合运算,属于基础题.先根据补集的定义求出∁U B={1,5,6},再由交集的定义可求A∩(∁U B).【解答】解:由题设可得∁U B={1,5,6},故A∩(∁U B)={1,6}.故选B.3.【答案】B【知识点】抛物线的性质及几何意义 【解析】 【分析】本题考查了抛物线的基础知识和点到直线的距离公式,题目较易. 首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【解答】解:抛物线的焦点坐标为(p2,0),其到直线x −y +1=0的距离为d =|p 2−0+1|√1+1=√2,解得p =2(p =−6舍去). 故选B .4.【答案】C【知识点】球的表面积和体积 【解析】 【分析】本题重在考查学生对数学知识的理解运用能力和直观想象能力,属于中档题. 由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果. 【解答】 解:如图所示,由题意可得,S 占地球表面积的百分比约为:2πr 2(1−cosα)4πr 2=1−cosα2=1−64006400+360002≈0.42=42%.故选C .5.【答案】D【知识点】棱柱、棱锥、棱台的侧面积、表面积和体积【解析】【分析】本题考查了棱台的结构特征与体积的求法,考查了数形结合思想.由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解.【解答】解:作出图形,连接该正四棱台上下底面的中心,如图所示,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高ℎ=√22−(2√2−√2)2=√2,下底面面积S1=16,上底面面积S2=4,所以该棱台的体积V=13ℎ(S1+S2+√S1S2)=13×√2×(16+4+√64)=283√2.故选D.6.【答案】D【知识点】正态分布的概率计算【解析】【分析】本题考查了正态分布的相关知识,属于中档题.由正态分布密度曲线的特征逐项判断即可得解.【解答】解:对于A,σ2为数据的方差,所以σ越小,数据在μ=10附近越集中,所以测量结果落在(9.9,10.1)内的概率越大,故A正确;对于C,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C正确;对于D,因为该物理量一次测量结果落在(9.9,10.0)的概率与落在(10.2,10.3)的概率不同,所以一次测量结果落在(9.9,10.2)的概率与落在(10,10.3)的概率不同,故D错误.故选D.7.【答案】C【知识点】对数与对数运算【解析】【分析】本题考查了对数的单调性与大小比较,合理转化是关键.利用对数函数的单调性可比较a、b与c的大小关系,由此可得出结论.【解答】=log82√2<log83=b,即a<c<b.解:a=log52<log5√5=12故选C.8.【答案】B【知识点】函数的奇偶性【解析】【分析】本题是对函数奇偶性和周期性的综合考查,属于拔高题.推导出函数f(x)是以4为周期的周期函数,由已知条件得出f(1)=0,结合已知条件可得出结论.【解答】解:因为函数f(x+2)为偶函数,则f(2+x)=f(2−x),可得f(x+3)=f(1−x),因为函数f(2x+1)为奇函数,则f(1−2x)=−f(2x+1),所以,f(1−x)=−f(x+1),所以,f(x+3)=−f(x+1)=f(x−1),即f(x)=f(x+4),故函数f(x)是以4为周期的周期函数,因为函数F(x)=f(2x+1)为奇函数,则F(0)=f(1)=0,故f(−1)=−f(1)=0,其它三个选项未知.故选B.9.【答案】AC【知识点】简单随机抽样【解析】【分析】本题考查了离散程度与集中趋势的相关知识,属于基础题.判断所给的选项哪些是考查数据的离散程度,哪些是考查数据的集中趋势即可确定正确选项.【解答】解:由标准差的定义可知,标准差考查的是数据的离散程度;由中位数的定义可知,中位数考查的是数据的集中趋势;由极差的定义可知,极差考查的是数据的离散程度;由平均数的定义可知,平均数考查的是数据的集中趋势;故选AC.10.【答案】BC【知识点】简单多面体(棱柱、棱锥、棱台)及其结构特征【解析】【分析】本题考查了空间中两直线的位置关系以及垂直的判定,考查了数形结合思想和直观想象能力.根据线面垂直的判定定理可得BC的正误,平移直线MN构造所考虑的线线角后可判断AD的正误.【解答】解:设正方体的棱长为2,对于A,如图(1)所示,连接AC,易知MN//AC,且MN、AC、OP在同一平面内,由图可知直线OP与AC相交且不垂直,故MN⊥OP不成立,故A错误.对于B,如图(2)所示,取NT的中点为Q,连接PQ,OQ,则OQ⊥NT,PQ⊥MN,由正方体SBCM−NADT可得SN⊥平面NADT,而OQ⊂平面NADT,故SN⊥OQ,而SN∩NT=N,故OQ⊥平面SNTM,又MN⊂平面SNTM,所以OQ⊥MN,而OQ⋂PQ=Q,所以MN⊥平面OPQ,而PO⊂平面OPQ,故MN⊥OP,故B正确.对于C,如图(3),连接BD,则BD//MN,由B的判断可得OP⊥BD,故OP⊥MN,故C正确.对于D,如图(4),取AM′的中点G,连接PG,OG,M′N′,则MN//M′N′,PG=√2,OG=√3,PO=√5,则PO2=PG2+OG2,PG⊥OG,根据三角形的性质可知PO与PG不垂直,故PO,MN不垂直,故D错误.故选BC.11.【答案】ABD【知识点】直线与圆的位置关系及判定【解析】【分析】本题考查了直线与圆的位置关系,属于中档题.转化点与圆、点与直线的位置关系为a2+b2,r2的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.【解答】解:圆心C(0,0)到直线l的距离d=r 2√a2+b2,若点A(a,b)在圆C上,则a2+b2=r2,所以d=r2√a2+b2=|r|,则直线l与圆C相切,故A正确;若点A(a,b)在圆C内,则a2+b2<r2,所以,则直线l与圆C相离,故B正确;若点A(a,b)在圆C外,则a2+b2>r2,所以,则直线l与圆C相交,故C错误;若点A(a,b)在直线l上,则a2+b2−r2=0即a2+b2=r2,所以d=2√a2+b2=|r|,直线l与圆C相切,故D正确.故选ABD.12.【答案】ACD【知识点】分组转化求和法【解析】【分析】本题重在对新定义进行考查,合理分析所给条件是关键,属于拔高题.利用ω(n)的定义可判断ACD选项的正误,利用特殊值法可判断B选项的正误.【解答】解:对于A选项,n=a0⋅20+a1⋅2+⋯+a k−1⋅2k−1+a k⋅2k,ω(n)=a0+a1+⋯+a k,则2n=a0⋅21+a1⋅22+⋯+a k−1⋅2k+a k⋅2k+1,ω(2n)=a0+a1+⋯+a k=ω(n),A选项正确;对于B选项,取n=2,2n+3=7=1⋅20+1⋅21+1⋅22,∴ω(7)=3,而2=0⋅20+1⋅21,则ω(2)=1,即ω(7)≠ω(2)+1,B选项错误;对于C选项,8n+5=a0⋅23+a1⋅24+⋯+a k⋅2k+3+5=1⋅20+1⋅22+a0⋅23+ a1⋅24+⋯+a k⋅2k+3,所以,ω(8n+5)=2+a0+a1+⋯+a k,4n+3=a0⋅22+a1⋅23+⋯+a k⋅2k+2+3=1⋅20+1⋅21+a0⋅22+a1⋅23+⋯+a k⋅2k+2,所以,ω(4n+3)=2+a0+a1+⋯+a k,因此,ω(8n+5)=ω(4n+3),C选项正确;对于D选项,2n−1=20+21+⋯+2n−1,故ω(2n−1)=n,D选项正确.故选ACD.13.【答案】y=±√3x【知识点】双曲线的性质及几何意义【解析】【分析】本题考查了双曲线离心率的应用及渐近线的求解,考查了运算求解能力,属于基础题.由双曲线离心率公式可得b2a2=3,再由渐近线方程即可得解.【解答】解:因为双曲线x2a2−y2b2=1(a>0,b>0)的离心率为2,所以e=√c2a2=√a2+b2a2=2,所以b2a2=3,x=±√3x.所以该双曲线的渐近线方程为y=±ba故答案为:y=±√3x.14.【答案】f(x)=x4(答案不唯一,f(x)=x2n(n∈N∗)均满足)【知识点】函数的奇偶性【解析】【分析】本题是开放性问题,合理分析所给条件找出合适的函数是关键,属于中档题.根据幂函数的性质可得所求的f(x).【解答】解:取f(x)=x4,则f(x1x2)=(x1x2)4=x14x24=f(x1)f(x2),满足①,f′(x)=4x3,x>0时有f′(x)>0,满足②,f′(x)=4x3的定义域为R,又f′(−x)=−4x3=−f′(x),故f′(x)是奇函数,满足③.故答案为:f(x)=x4(答案不唯一,f(x)=x2n(n∈N∗)均满足)15.【答案】−92【知识点】向量的数量积【解析】【分析】本题考查了向量数量积的运算,合理转化是关键,属于中档题.由已知可得(a⃗+b⃗ +c⃗ )2=0,展开化简后可得结果.【解答】解:由已知可得(a⃗+b⃗ +c⃗ )2=a⃗2+b⃗ 2+c⃗2+2(a⃗⋅b⃗ +b⃗ ⋅c⃗+c⃗⋅a⃗ )=9+2(a⃗⋅b⃗ +b⃗ ⋅c⃗+c⃗⋅a⃗ )=0,因此,a⃗⋅b⃗ +b⃗ ⋅c⃗+c⃗⋅a⃗=−92.故答案为:−92.16.【答案】(0,1)【知识点】导数的几何意义【解析】【分析】本题考查学生利用导数研究函数的能力,考查了直线的方程和斜率以及两点距离问题,属于拔高题.结合导数的几何意义可得x1+x2=0,结合直线斜率及两点间距离公式可得|AM|=√1+e2x1⋅|x1|,|BN|=√1+e2x2⋅|x2|,化简即可得解.【解答】解:由题意,f(x)=|e x−1|={1−e x,x<0e x−1,x≥0,则f′(x)={−e x,x<0e x,x⩾0,所以点A(x1,1−e x1)和点B(x2,e x2−1),k AM=−e x1,k BN=e x2,所以−e x1⋅e x2=−1,x1+x2=0,所以AM:y−1+e x1=−e x1(x−x1),M(0,e x1x1−e x1+1),所以|AM|=√x12+(e x1x1)2=√1+e2x1⋅|x1|,同理|BN|=√1+e2x2⋅|x2|,所以|AM||BN|=√1+e2x1⋅|x1|√1+e2x2⋅|x2|=√1+e2x11+e2x2=√1+e2x11+e−2x1=e x1∈(0,1)故答案为:(0,1).17.【答案】解:(1)由等差数列的性质可得:S5=5a3,则a3=5a3,∴a3=0,设等差数列的公差为d,从而有a2a4=(a3−d)(a3+d)=−d2,S4=a1+a2+a3+a4=(a3−2d)+(a3−d)+a3+(a3+d)=−2d,从而−d2=−2d,由于公差不为零,故:d=2,数列的通项公式为:a n=a3+(n−3)d=2n−6(n∈N∗).(2)由数列的通项公式可得a1=2−6=−4,则S n=n×(−4)+n(n−1)2×2=n2−5n,则不等式S n>a n即n2−5n>2n−6,整理可得(n−1)(n−6)>0,解得n<1或n>6,又n为正整数,故n的最小值为7.【知识点】等差数列的通项公式【解析】本题考查等差数列基本量的求解,是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.(1)由题意首先求得a3的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n项和的表达式,然后求解二次不等式即可确定n的最小值.18.【答案】解:(1)因为2sinC=3sinA,根据正弦定理可知2c=2(a+2)=3a,则a=4,故b=5,c=6,cosC=a2+b2−c22ab =18>0,所以C为锐角,则sinC=√1−cos2C=3√78,因此,S▵ABC=12absinC=12×4×5×3√78=15√74.(2)显然c>b>a,若▵ABC为钝角三角形,则C为钝角,由余弦定理可得cosC=a 2+b2−c22ab=a2+(a+1)2−(a+2)22a(a+1)=a2−2a−32a(a+1)<0,又a>0,则a2−2a−3<0,即(a+1)(a−3)<0,解得−1<a<3,则0<a<3,由三角形三边关系可得a+a+1>a+2,可得a>1,∵a∈Z,故a=2.【知识点】三角形面积公式、余弦定理、正弦定理【解析】本题考查了正余弦定理与同角三角函数的基本关系,考查了一元二次不等式的解法,属于中档题.(1)由正弦定理可得出2c=3a,结合已知条件求出a的值,进一步可求得b、c的值,利用余弦定理以及同角三角函数的基本关系求出sin C,再利用三角形的面积公式可求得结果;(2)分析可知,角C为钝角,由cosC<0结合三角形三边关系可求得整数a的值.19.【答案】(1)证明:取AD的中点为O,连接QO,CO.因为QA=QD,OA=OD,则QO⊥AD,而AD=2,QA=√5,故A O=DO=1,QO=√5−1=2.在正方形ABCD中,AD=CD=2,DO=1,故CO=√5,因为QC=3,故QC2=QO2+OC2,故▵QOC为直角三角形且QO⊥OC,因为OC⋂AD=O,故QO⊥平面ABCD,因为QO⊂平面QAD,故平面QAD⊥平面ABCD.(2)解:在平面ABCD内,过O作OT//CD,交BC于T,则OT⊥AD,结合(1)中的QO ⊥平面ABCD ,故可建如图所示的空间直角坐标系.则D (0,1,0),Q (0,0,2),B (2,−1,0),故BQ ⃗⃗⃗⃗⃗⃗ =(−2,1,2),BD⃗⃗⃗⃗⃗⃗ =(−2,2,0). 设平面QBD 的法向量n⃗ =(x,y,z ), 则即{−2x +y +2z =0−2x +2y =0,取x =1,则y =1,z =12, 故n⃗ =(1,1,12). 而平面QAD 的法向量为m ⃗⃗⃗ =(1,0,0),故cos ⟨m ⃗⃗⃗ ,n ⃗ ⟩=11×32=23. 又二面角B −QD −A 的平面角为锐角,故其余弦值为23.【知识点】利用空间向量求线线、线面和面面的夹角、面面垂直的判定【解析】本题考查了面面垂直的判定和运用空间向量求解二面角的问题,注意数形结合思想的运用.(1)取AD 的中点为O ,连接QO,CO ,可证QO ⊥平面ABCD ,从而得到平面QAD ⊥平面ABCD .(2)在平面ABCD 内,过O 作OT//CD ,交BC 于T ,则OT ⊥AD ,建如图所示的空间直角坐标系,求出平面QAD 、平面BQD 的法向量后可求二面角的余弦值.20.【答案】(1)解:由题意,椭圆半焦距c =√2且e =c a =√63,所以a =√3,又b 2=a 2−c 2=1,所以椭圆方程为x 23+y 2=1;(2)证明:由(1)得,曲线为x 2+y 2=1(x >0),当直线MN的斜率不存在时,直线MN:x=1,不满足M,N,F三点共线;当直线MN的斜率存在时,设M(x1,y1),N(x2,y2),必要性:若M,N,F三点共线,可设直线MN:y=k(x−√2)即kx−y−√2k=0,由直线MN与曲线x2+y2=1(x>0)相切可得√2k|√k2+1=1,解得k=±1,联立{y=±(x−√2)x23+y2=1可得4x2−6√2x+3=0,Δ>0,所以x1+x2=3√22,x1⋅x2=34,所以|MN|=√1+1⋅√(x1+x2)2−4x1⋅x2=√3,所以必要性成立;充分性:设直线MN:y=kx+b,(kb<0)即kx−y+b=0,由直线MN与曲线x2+y2=1(x>0)相切可得√k2+1=1,所以b2=k2+1,联立{y=kx+bx23+y2=1可得(1+3k2)x2+6kbx+3b2−3=0,Δ=12(3k2−b2+1)=24k2>0,所以x1+x2=−6kb1+3k2,x1⋅x2=3b2−31+3k2,所以|MN|=√1+k2⋅√(x1+x2)2−4x1⋅x2=√1+k2√(−6kb1+3k2)2−4⋅3b2−31+3k2=√1+k2⋅√24k21+3k2=√3,化简得3(k2−1)2=0,所以k=±1,所以{k=1b=−√2或{k=−1b=√2,所以直线MN:y=x−√2或y=−x+√2,所以直线MN过点F(√2,0),M,N,F三点共线,充分性成立;所以M,N,F三点共线的充要条件是|MN|=√3.【知识点】直线与椭圆的位置关系、椭圆的性质及几何意义【解析】本题考查了直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.(1)由离心率公式可得a=√3,进而可得b2,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证|MN|=√3;充分性:设直线MN:y=kx+b,(kb<0),由直线与圆相切得b2=k2+1,联立直线与椭圆方程结合弦长公式可得√1+k2⋅√24k2=√3,进而可得k=±1,即可得解.1+3k221.【答案】(1)E(X)=0×0.4+1×0.3+2×0.2+3×0.1=1.(2)设f(x)=p3x3+p2x2+(p1−1)x+p0,因为p3+p2+p1+p0=1,故f(x)=p3x3+p2x2−(p2+p0+p3)x+p0,若E(X)≤1,则p1+2p2+3p3≤1,故p2+2p3≤p0.f′(x)=3p3x2+2p2x−(p2+p0+p3),因为f′(0)=−(p2+p0+p3)<0,f′(1)=p2+2p3−p0≤0,故f′(x)有两个不同零点x1,x2,且x1<0<1≤x2,且x∈(−∞,x1)∪(x2,+∞)时,f′(x)>0;x∈(x1,x2)时,f′(x)<0;故f(x)在(−∞,x1),(x2,+∞)上为增函数,在(x1,x2)上为减函数,若x2=1,因为f(x)在(x2,+∞)为增函数且f(1)=0,而当x∈(0,x2)时,因为f(x)在(x1,x2)上为减函数,故f(x)>f(x2)=f(1)=0,故1为p0+p1x+p2x2+p3x3=x的一个最小正实根,若x2>1,因为f(1)=0且在(0,x2)上为减函数,故1为p0+p1x+p2x2+p3x3=x的一个最小正实根,综上,若E(X)≤1,则p=1.若E(X)>1,则p1+2p2+3p3>1,故p2+2p3>p0.此时f′(0)=−(p2+p0+p3)<0,f′(1)=p2+2p3−p0>0,故f′(x)有两个不同零点x3,x4,且x3<0<x4<1,且x∈(−∞,x3)⋃(x4,+∞)时,f′(x)>0;x∈(x3,x4)时,f′(x)<0;故f(x)在(−∞,x3),(x4,+∞)上为增函数,在(x3,x4)上为减函数,而f(1)=0,故f(x4)<0,又f(0)=p0>0,故f(x)在(0,x4)存在一个零点p,且p<1.所以p为p0+p1x+p2x2+p3x3=x的一个最小正实根,此时p<1,故当E(X)>1时,p<1.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代后必然临近灭绝,若繁殖后代的平均数超过1,则若干代后还有继续繁殖的可能.【知识点】离散型随机变量的期望与方差、利用导数研究函数的单调性【解析】本题是对离散型随机变量和导数的综合考查,属于拔高题.(1)利用公式计算可得E(X).(2)利用导数讨论函数的单调性,结合f(1)=0及极值点的范围可得f(x)的最小正零点.(3)利用期望的意义及根的范围可得相应的理解说明.22.【答案】解:(1)由函数的解析式可得:f′(x)=x(e x−2a),当a≤0时,若x∈(−∞,0),则f′(x)<0,f(x)单调递减,若x∈(0,+∞),则f′(x)>0,f(x)单调递增;当0<a<12时,若x∈(−∞,ln(2a)),则f′(x)>0,f(x)单调递增,若x∈(ln(2a),0),则f′(x)<0,f(x)单调递减,若x∈(0,+∞),则f′(x)>0,f(x)单调递增;当a=12时,f′(x)≥0,f(x)在R上单调递增;当a>12时,若x∈(−∞,0),则f′(x)>0,f(x)单调递增,若x∈(0,ln(2a)),则f′(x)<0,f(x)单调递减,若x∈(ln(2a),+∞),则f′(x)>0,f(x)单调递增;(2)若选择条件①:由于12<a≤e22,故1<2a≤e2,则b>2a>1,f(0)=b−1>0,又f(−√ba )=(−√ba−1)e−√ba<0,由(1)可知函数在区间(−∞,0)上单调递增,故函数在区间(−∞,0)上有一个零点.f(ln(2a))=2a[ln(2a)−1]−a[ln(2a)]2+b>2a[ln(2a)−1]−a[ln(2a)]2+2a=2aln(2a)−a[ln(2a)]2=aln(2a)[2−ln(2a)],由于1<2a≤e2,故aln(2a)[2−ln(2a)]≥0,结合函数的单调性可知函数在区间(0,+∞)上没有零点.综上可得,f(x)有一个零点.若选择条件②:,故0<2a<1,则f(0)=b−1≤2a−1<0,由于0<a<12当b≥0时,e2>4,4a<2,f(2)=e2−4a+b>0,而函数在区间(0,+∞)上单调递增,故函数在区间(0,+∞)上有一个零点.当b<0时,构造函数H(x)=e x−x−1,则H′(x)=e x−1,当x∈(−∞,0)时,H′(x)<0,H(x)单调递减,当x∈(0,+∞)时,H′(x)>0,H(x)单调递增,注意到H(0)=0,故H(x)≥0恒成立,从而有:e x≥x+1,此时:f(x)=(x−1)e x−ax2+b⩾(x−1)(x+1)−ax2+b=(1−a)x2+(b−1),时,(1−a)x2+(b−1)>0,当x>√1−b1−a+1,则f(x0)>0,取x0=√1−b1−a+1)>0,即:f(0)<0,f(√1−b1−a而函数在区间(0,+∞)上单调递增,故函数在区间(0,+∞)上有一个零点.f(ln(2a))=2a[ln(2a)−1]−a[ln(2a)]2+b≤2a[ln(2a)−1]−a[ln(2a)]2+2a=2aln(2a)−a[ln(2a)]2=aln(2a)[2−ln(2a)],,0<2a<1,故aln(2a)[2−ln(2a)]<0,由于0<a<12结合函数的单调性可知函数在区间(−∞,0)上没有零点.综上可得,f(x)有一个零点.【知识点】导数中的零点问题、利用导数研究函数的单调性【解析】本题主要考查了利用导数研究函数的单调性以及零点问题,属于拔高题.(1)首先求得导函数的解析式,然后分类讨论确定函数的单调性即可;(2)由题意结合(1)中函数的单调性和函数零点存在定理即可证得题中的结论.。
高考数学-数学新文化问题考前专题练习
数学新文化问题考前专题练习考前模拟练习:1.(2021·山东高三月考)窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一.每年新春佳节,我国许多地区的人们都有贴窗花的习俗,以此达到装点环境、渲染气氛的目的,并寄托着辞旧迎新、接福纳祥的愿望.图一是一张由卷曲纹和回纹构成的正六边形剪纸窗花,已知图二中正六边形ABCDEF 的边长为4,圆O 的圆心为正六边形的中心,半径为2,若点P 在正六边形的边上运动,MN 为圆O 的直径,则PM PN ⋅的取值范围是( )A .[]6,12B .[]6,16C .[]8,12D .[]8,162.(2021·山东高三专题练习)数独是源自18世纪瑞士的一种运用纸、笔进行演算的逻辑游戏.玩家需要根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫(3×3)内的数字均含1-9.2020年中国数独锦标赛决赛作为2020数独大会重要赛事之一于10月18日在国家体育总局举行.某选手在解决如图所示的标准数独题目时,正确完成后,记第i 行的数字分别为1i a ,2i a ,3i a ,⋅⋅⋅,9i a ,令123456782345678i i i i i i i i i b a a a a a a a a =-+-+-+-+99i a -,1,2,3,,8,9i =,则129b b b +++=( )A .45-B .45C .225-D .2253.(2021·山东高三专题练习)密位制是度量角的一种方法.把一周角等分为6000份,每一份叫做1密位的角.以密位作为角的度量单位,这种度量角的单位制,叫做角的密位制.在角的密位制中,采用四个数码表示角的大小,单位名称密位二字可以省去不写.密位的写法是在百位数与十位数字之间画一条短线,如密位7写成“007-”,478密位写成“478-”,1周角等于6000密位,记作1周角6000=-,1直角1500=-.如果一个半径为2的扇形,它的面积为76π,则其圆心角用密位制表示为( ) A .1250- B .1750- C .2100- D .3500-4.(2021·山东高三专题练习)九连环是我国从古至今广泛流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合面为一”.在某种玩法中,用n a 表示解下()9,n n n *≤∈N 个圆环所需的移动最少次数,若11a =,且1121,22,n n n a n a a n ---⎧=⎨+⎩为偶数为奇数,则解下5个环所需的最少移动次数为( )A .7B .13C .16D .225.(2021·山东菏泽市·高三一模)在地球公转过程中,太阳直射点的纬度随时间周而复始不断变化,太阳直射点回归运动的一个周期就是一个回归年.某科研小组以某年春分(太阳直射赤道且随后太阳直射点逐渐北移的时间)为初始时间,统计了连续400天太阳直射点的纬度值(太阳直射北半球时取正值,直射南半球时取负值).设第x 天时太阳直射点的纬度值为,y 该科研小组通过对数据的整理和分析.得到y 与x 近似满足23.43929110.01720279y sin x =.则每400年中,要使这400年与400个回归年所含的天数最为接近.应设定闰年的个数为(精确到1)( ) 参考数据182.62110.01720279π≈ A .95 B .96 C .97D .98考前押题练习:1.小李在某大学测绘专业学习,节日回家,来到村头的一个池塘(如图阴影部分),为了测量该池塘两侧C ,D 两点间的距离,除了观测点C ,D 外,他又选了两个观测点1P ,2P ,且12PP a =,已经测得两个角12PP D α∠=,21PPD β∠=,由于条件不足,需要再观测新的角,则利用已知观测数据和下面三组新观测的角的其中一组,就可以求出C ,D 间距离的是( )①1DPC ∠和1DCP ∠;②12PP C ∠和12PCP∠;③1PDC ∠和1DCP ∠.A .①和②B .①和③C .②和③D .①和②和③2.第24届冬季奥林匹克运动会,将在2022年2月4日在中华人民共和国北京市和张家口市联合举行.这是中国历史上第一次举办冬季奥运会,北京成为奥运史上第一个举办夏季奥林匹克运动会和冬季奥林匹克运动会的城市.同时中国也成为第一个实现奥运“全满贯”(先后举办奥运会、残奥会、青奥会、冬奥会、冬残奥会)国家.根据规划,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD (如图),且两切线斜率之积等于916-,则椭圆的离心率为( )A .34B 7C .916D .323.天干地支纪年法源于中国,中国自古便有十天干与十二地支,十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即子、丑、寅、卯、辰、已、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,例如,第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,然后地支回到“子”重新开始,即“丙子”,以此类推.今年是辛丑年,也是伟大、光荣、正确的中国共产党成立100周年,则中国共产党成立的那一年是( )A .辛酉年B .辛戊年C .壬酉年D .壬戊年4.黄金分割点是指将一条线段分为两部分,使得较长部分与整体线段的长的比值为512-的点.利用线段上的两个黄金分割点可以作出正五角星,如图所示,已知C ,D 为AB 的两个黄金分割点,研究发现如下规律:512AC BD CD AB AB BC -===.若CDE △是顶角为36°的等腰三角形,则cos216︒=( )A .514+-B .51--C .512+-D .512-- 5.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和dc (,,,a b cd N +∈),则b d a c++是x 的更为精确的不足近似值或过剩近似值.我们知道 2.71828e =⋅⋅⋅,若令2714105e <<,则第一次用“调日法”后得4115是e 的更为精确的过剩近似值,即27411015e <<,若每次都取最简分数,那么第二次用“调日法”后可得e 的近似分数为( )A .6825B .4115C .2710D .1456.哥隆尺是一种特殊的尺子.图1的哥隆尺可以一次性度量的长度为1,2,3,4,5,6.图2的哥隆尺不能一次性度量的长度为( )A .11B .13C .15D .177.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的 “弓”,掷铁饼者的手臂长约4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为(参考数据:2 1.414≈,3 1.732≈)( )A .1.012米B .2.043米C .1.768米D .2.945米8.“中国剩余定理”又称“孙子定理”,讲的是关于整除的问题.现有这样一个整除问题:将1到2021这2021个正整数中能被3除余1且被5除余1的数按从小到大的顺序排成一列,构成数列{}n a ,则数列{}n a 各项的和为( )A .137835B .137836C .135809D .1358109.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设,x R =用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[][]3.74,2.32-=-=.已知()1112x x e f x e -=-+,则函数()y f x ⎡⎤=⎣⎦的值域为( ) A .{}0 B .{}1,0- C .{}2,1,0-- D .{}1,0,1-10.《周髀算经》是中国最古老的天文学和数学著作,书中提到:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列.若冬至、大寒、雨水的日影子长的和是40.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为( )A .6.5尺B .13.5尺C .14.5尺D .15.5尺11.英国数学家泰勒(B . Taylor ,1685-1731)以发现泰勒公式和泰勒级数闻名于世。由泰勒公式,我们能得到111111!2!3!!(1)!e e n n θ=+++++++(其中e 为自然对数的底数,()()01,!12...21n n n n θ<<=⨯-⨯-⨯⨯⨯),其拉格朗日余项是.(1)!n e R n θ=+可以看出,右边的项用得越多,计算得到的e的近似值也就越精确。若3(1)!n+近似地表示e的泰勒公式的拉格朗日余项,n R n R不超过11000时,正整数n的最小值是()A.5 B.6 C.7 D.812.攒尖是古代中国建筑中屋顶的一种结构形式依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,多见于亭阁式建筑如图所示,某园林建筑为六角攒尖,它的主要部分的轮廓可近似看作一个正六棱锥,设正六棱锥的侧面等腰三角形的顶角为2θ,则侧棱与底面内切圆半径的比为()A.3B.3C.12sinθD.12cosθ13.我国古代以天为主,以地为从,天和干相连叫天干,地和支相连叫地支,合起来叫天干地支.天干有十个,就是甲、乙,丙、丁、戊、己、庚、辛、王、癸,地支有十二个,依次是子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.古人把它们按照甲子、乙丑、丙寅……的顺序而不重复地搭配起来,从甲子到癸亥共六十对,叫做一甲子.我国古人用这六十对干支来表示年、月、日、时的序号,周而复始,不断循环,这就是干支纪年法(即农历).干支纪年历法,是屹立于世界民族之林的科学历法之一.今年(2020年)是庚子年,小华的爸爸今年10月10日是56周岁生日,小华爸爸出生那年的农历是()A.庚子B.甲辰C.癸卯D.丙申14.“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,为探究下面“瓦当”图案的面积,向半径为10的圆内投入1000粒芝麻,落入阴影部分的有400粒.则估计“瓦当”图案的面积是()A.40 B.40πC.4 D.4π15.明朝早期,郑和在七下西洋的过程中,将中国古代天体测量方面所取得的成就创造性应用于航海,形成了一套自成体系且行之有效的先进航海技术——“过洋牵星术”.简单地说,就是通过观测不同季节、时辰的日月星辰在天空运行的位置和测量星辰在海面以上的高度来判断方位,其采用的主要工具为牵星板,由12块正方形木板组成,最小的一块边长约为2厘米(称一指).观测时,将木板立起,一手拿着木板,手臂垂直,眼睛到木板的距离大约为72厘米,使牵星板与海平面垂直,让板的下边缘与海平面重合,上边缘对着所观测的星辰,与其相切,依高低不同替换、调整木板,木板上边缘与被观测星辰重合时所用的是几指板,观测的星辰离海平面的高度就是几指,然后就可以推算出船在海中的地理纬度.如图所示,若在一次观测中,所用的牵星板为九指板,则sin2α=()A.1235B.1717C.817D.815。
2021届高考数学大二轮专题复习讲义(新高考)专题8第1讲数学文化及核心素养类试题
第1讲数学文化及核心素养类试题「考情研析」数学文化与数学知识相结合,有效考查考生的阅读理解能力、抽象概括能力、转化与化归能力,既体现了对数学应用性的考查,也体现了我国数学文化的源远流长.高考中多以选择题的形式出现,难度中等.热点考向探究考向1三角函数中的数学文化例1(2020·河北省衡水中学第九次调研考试)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在△ABC中,角A,B,C所对的边分别为a,b,c,则△ABC的面积S=14⎣⎢⎡⎦⎥⎤(ab)2-⎝⎛⎭⎪⎫a2+b2-c222.根据此公式,若a cos B+(b+3c)cos A=0,且a2-b2-c2=2,则△ABC的面积为()A. 2 B.2 2C. 6 D.2 3我国南宋数学家秦九韶发现的“三斜求积术”虽然与海伦公式(S=p(p-a)(p-b)(p-c),其中p=12(a+b+c))在形式上不一样,但两者完全等价,它填补了我国传统数学的一项空白.(2020·湖南省长郡中学高三第三次适应性考试)上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”“夏(冬)至”的示意图.图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如表:黄赤交角23°41′23°57′24°13′24°28′24°44′正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年A.早于公元前6000年B.公元前2000年到公元元年C.公元前4000年到公元前2000年D.公元前6000年到公元前4000年考向2数列中的数学文化例2(多选)(2020·山东省青岛市高三三模)在悠久灿烂的中国古代文化中,数学文化是其中的一朵绚丽的奇葩.《张丘建算经》是我国古代有标志性的内容丰富的众多数学名著之一,大约创作于公元五世纪.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈,问日益几何?”其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织5尺,一个月共织了九匹三丈,问从第二天起,每天比前一天多织多少尺布?”已知1匹=4丈,1丈=10尺,若这一个月有30天,记该女子这一个月中的第n 天所织布的尺数为a n ,b n =2an ,对于数列{a n },{b n },下列选项中正确的为( )A .b 10=8b 5B .{b n }是等比数列C .a 1b 30=105D .a 3+a 5+a 7a 2+a 4+a 6=209193本题以传统数学文化为载体考查数列的实际应用问题.解题的关键是将古代实际问题转化为现代数学问题,建立等差、等比数列的模型,探索并掌握它们的一些基本数量关系,利用方程思想求解.(2020·福建省宁德市二模)著名物理学家李政道说:“科学和艺术是不可分割的”.音乐中使用的乐音在高度上不是任意定的,它们是按照严格的数学方法确定的.我国明代的数学家、音乐理论家朱载堉创立了十二平均律,是第一个利用数学使音律公式化的人.十二平均律的生律法是精确规定八度的比例,把八度分成13个半音,使相邻两个半音之间的频率比是常数,如表所示,其中a 1,a 2,…,a 13表示这些半音的频率,它们满足log 2⎝ ⎛⎭⎪⎫a i +1a i 12=1(i =1,2,…,12).若某一半音与D #的频率之比为32,则该半音为( ) 频率 a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 a 11 a 12 a 13 半音CC #DD #EFF #G G #AA #BC (八度)C .G #D .A考向3 立体几何中的数学文化例3我国齐梁时代的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为2b,高皆为a的椭半球体和已被挖去了圆锥体的圆柱放置于同一平面β上,用平行于平面β且与平面β任意距离d处的平面截这两个几何体,可横截得到S圆及S环两截面.可以证明S圆=S环总成立.据此,半短轴长为1,半长轴长为3的椭球体的体积是________.依托立体几何,传播数学文化.立体几何是中国古代数学的一个重要研究内容,从中国古代数学中挖掘素材,考查立体几何的线面的位置关系、几何体的体积等知识,既符合考生的认知水平,又可以引导学生关注中华优秀传统文化.(2020·山东省潍坊市模拟)唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R,酒杯内壁表面积为143πR2.设酒杯上部分(圆柱)的体积为V1,下部分(半球)的体积为V2,则V1V2=()A.2 B.3 2C.1 D.3 4考向4概率中的数学文化例4(2020·河北省张家口高三5月模拟)角谷猜想,也叫3n+1猜想,是由日本数学家角谷静夫发现的,是指对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2,如此循环最终都能够得到1.如:取n=6,根据上述过程,得出6,3,10,5,16,8,4,2,1,共9个数.若n=5,从根据上述过程得出的整数中,随机选取两个不同的数,则这两个数都是偶数的概率为()A.37B.715C.25D.35数学文化渗透到概率数学中去,不但丰富了数学的概率知识,还提高了学生的文化素养.解决此类问题的关键是构建合理的概率模型,利用相应的概率计算公式求解.(2020·河南省六市高三一模)五行学说是华夏民族创造的哲学思想,是华夏文明的重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为()A.12B.13C.14D.15考向5数学文化与现代科学例52016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c1和2c2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:①a1+c1=a2+c2;②a1-c1=a2-c2;③c1a1<c2a2;④c1a2>a1c2.其中正确式子的序号是()A.①③B.①④C.②③D.②④.(1)命题者抓住“嫦娥奔月”这个古老而又现代的浪漫话题,以探测卫星轨道为背景,抽象出共一条对称轴、一个焦点和一个顶点的两个椭圆的几何性质,并以加减乘除的方式构造两个等式和两个不等式,考查椭圆的几何性质,可谓匠心独运.(2)注意到椭圆轨道Ⅰ和Ⅱ共一个顶点P和一个焦点F,题目所给四个式子涉及长半轴长和半焦距,从焦距入手,这是求解的关键,本题对考生的数学能力进行了比较全面的考查,是一道名副其实的小中见大、常中见新、蕴文化于现代科学技术应用之中的好题.(2020·北京市东城区模拟)标准对数远视力表(如图)采用的“五分记录法”是我国独创的视力记录方式,标准对数远视力表各行为正方形“E”形视标,且从视力5.2的视标所在行开始往上,每一行“E”的边长都是下方一行“E”边长的1010倍,若视力4.1的视标边长为a,则视力4.9的视标边长为()A.104 5aB.109 10aC.D.真题押题『真题检验』1.(2020·新高考卷Ⅰ) 日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°2.(2020·全国卷Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块3. (2019·全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.『押题』4.天干地支纪年法(简称干支纪年法)是中国历法上自古以来就一直使用的纪年方法.天干有十,即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;地支有十二,即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.干支纪年法中,天干地支对应的规律如表:2049年是新中国成立100周年.这一百年,中国逐步实现中华民族的伟大复兴.使用干支纪年法,2049年是己巳年,则2059年是________年;使用干支纪年法可以得到________种不同的干支纪年.专题作业一、选择题1.(2020·山东省烟台市模拟)《九章算术》是我国古代的一本数学名著.全书为方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章,收有246个与生产、生活实践有联系的应用问题.在第六章“均输”中有这样一道题目:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为:“现有五个人分5钱,每人所得成等差数列,且较多的两份之和等于较少的三份之和,问五人各得多少?”在此题中,任意两人所得的最大差值为()A.13B.23C.16D.562.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”.其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人第五天走的路程为()A.48里B.24里C.12里D.6里3. (2020·河北六校联考)玉琮是中国古代玉器中重要的礼器,神人纹玉琮王是新石器时代良渚文化的典型玉器,1986年出土于浙江省余杭县反山文化遗址.如图,玉琮王通高8.8 cm,孔径4.9 cm,外径17.6 cm,琮体四面各琢刻一完整的兽面神人图象,兽面的两侧各浅浮雕鸟纹,器形呈扁矮的方柱体,内圆外方,上下端为圆面的射,中心有一上下垂直相透的圆孔.估计该神人纹玉琮王的体积为(单位:cm3)()A.6250 B.3050C.2850 D.23504.中国是发现和研究勾股定理最古老的国家之一,古代数学家称直角三角形较短的直角边为勾,另一直角边为股,斜边为弦,其三边长组成的一组数据称为勾股数.现从1~15这15个数中随机抽取3个数,则这三个数为勾股数的概率为()A.1910B.3910C.4455D.64555.阿基米德(公元前287年~公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆的离心率为74,面积为12π,则椭圆C的方程为()A.x29+y216=1 B.x23+y24=1C.x218+y232=1 D.x24+y236=16.(2020·山东省泰安市模拟)我国古代数学名著《九章算术》中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”今有底面为正方形的屋脊形状的多面体(如图所示),下底面是边长为2的正方形,上棱EF=32,EF ∥平面ABCD,EF与平面ABCD的距离为2,该刍甍的体积为()A.6 B.11 3C.314D.127.(2020·江西省九江市二模)算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百、千位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字大于200的概率为()A.38B.12C.23D.348.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年.例如堑堵指底面为直角三角形,且侧棱垂直于底面的三棱柱;阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵ABC-A1B1C1中,AC⊥BC,若A1A=AB=2,当阳马B-A1ACC1体积最大时,堑堵ABC-A1B1C1的体积为()A.83B. 2C.2 D.2 29.(2020·四川省达州市模拟)斗拱是中国古典建筑最富装饰性的构件之一,并为中国所特有.图1、图2是斗拱实物图,图3是斗拱构件之一的“斗”的几何体.本图中的斗由棱台与长方体形凹槽(长方体去掉一个小长方体)组成.若棱台两底面面积分别是400 cm2,900 cm2,高为9 cm,长方体形凹槽的体积为4300 cm3,那么这个斗的体积是()注:台体体积公式是V=13(S′+S′S+S)h.A.5700 cm3B.8100 cm3C.10000 cm3D.9000 cm310. (2020·辽宁省葫芦岛市模拟)地球的公转轨道可以看作是以太阳为一个焦点的椭圆,根据开普勒行星运动第二定律,可知太阳和地球的连线在相等的时间内扫过相等的面积.某同学结合物理和地理知识得到以下结论:①地球到太阳的距离取得最小值和最大值时,地球分别位于图中A点和B点;②已知地球公转轨道的长半轴长约为149600000千米,短半轴长约为149580000千米,则该椭圆的离心率约为1,因此该椭圆近似于圆形;③已知我国每逢春分(3月21日前后)和秋分(9月23日前后),地球会分别运行至图中C点和D点,则由此可知我国每年的夏半年(春分至秋分)比冬半年(当年秋分至次年春分)要少几天.以上结论正确的是()A.①B.①②C.②③D.①③二、填空题11.数学与文化有许多奇妙的联系,如诗中有回文诗:“儿忆父兮妻忆夫”,既可以顺读也可以逆读.数学中有回文数,如343,12521等,两位数的回文数有11,22,33,…,99共9个,则三位数的回文数中,偶数的概率是________.12.《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问:五人各得几何?”其意思为“有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少橘子.”这个问题中,得到橘子最少的人所得的橘子个数是________.13.(2020·山东省泰安市高三一模)《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成,“”表示一根阳线,“”表示一根阴线,从八卦中任取两卦,这两卦的六根线中恰有两根阳线、四根阴线的概率为________.14.我国《物权法》规定:建造建筑物,不得违反国家有关工程建设标准,妨碍相邻建筑物的通风、采光和日照.已知某小区的住宅楼的底部均在同一水平面上,且楼高均为45 m,依据规定,该小区内住宅楼楼间距应不小于52 m.若该小区内某居民在距离楼底27 m高处的某阳台观测点,测得该小区内正对面住宅楼楼顶的仰角与楼底的俯角之和为45°,则该小区的住宅楼楼间距实际为________ m.第1讲数学文化及核心素养类试题「考情研析」数学文化与数学知识相结合,有效考查考生的阅读理解能力、抽象概括能力、转化与化归能力,既体现了对数学应用性的考查,也体现了我国数学文化的源远流长.高考中多以选择题的形式出现,难度中等.热点考向探究考向1三角函数中的数学文化例1(2020·河北省衡水中学第九次调研考试)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在△ABC中,角A,B,C所对的边分别为a,b,c,则△ABC的面积S=14⎣⎢⎡⎦⎥⎤(ab)2-⎝⎛⎭⎪⎫a2+b2-c222.根据此公式,若a cos B+(b+3c)cos A=0,且a2-b2-c2=2,则△ABC的面积为()A . 2B .2 2C . 6D .2 3答案 A解析 由a cos B +(b +3c )cos A =0,可得sin A cos B +cos A sin B +3sin C cos A =0,即sin(A +B )+3sin C cos A =0,即sin C (1+3cos A )=0,因为sin C ≠0,所以cos A =-13,由余弦定理可得a 2-b 2-c 2=-2bc cos A =23bc =2,所以bc =3,由△ABC 的面积公式可得S =14⎣⎢⎡⎦⎥⎤(bc )2-⎝ ⎛⎭⎪⎫c 2+b 2-a 222=14×(32-12)= 2.故选A .我国南宋数学家秦九韶发现的“三斜求积术”虽然与海伦公式(S =p (p -a )(p -b )(p -c ),其中p =12(a +b +c ))在形式上不一样,但两者完全等价,它填补了我国传统数学的一项空白.(2020·湖南省长郡中学高三第三次适应性考试)上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”“夏(冬)至”的示意图.图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如表:黄赤交角23°41′23°57′24°13′24°28′24°44′正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是()A.早于公元前6000年B.公元前2000年到公元元年C.公元前4000年到公元前2000年D.公元前6000年到公元前4000年答案 A解析由题意,可设冬至日光与垂直线夹角为α,春秋分日光与垂直线夹角为β,则α-β即为冬至日光与春秋分日光的夹角,即黄赤交角,由图3近似画出如图平面几何图形,则tanα=1610=1.6,tanβ=16-9.410=0.66,tan(α-β)=tanα-tanβ1+tanαtanβ= 1.6-0.661+1.6×0.66≈0.457.∵0.455<0.457<0.461,∴估计该骨笛的大致年代早于公元前6000年.考向2数列中的数学文化例2(多选)(2020·山东省青岛市高三三模)在悠久灿烂的中国古代文化中,数学文化是其中的一朵绚丽的奇葩.《张丘建算经》是我国古代有标志性的内容丰富的众多数学名著之一,大约创作于公元五世纪.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈,问日益几何?”其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织5尺,一个月共织了九匹三丈,问从第二天起,每天比前一天多织多少尺布?”已知1匹=4丈,1丈=10尺,若这一个月有30天,记该女子这一个月中的第n 天所织布的尺数为a n ,b n =2an ,对于数列{a n },{b n },下列选项中正确的为( )A .b 10=8b 5B .{b n }是等比数列C .a 1b 30=105D .a 3+a 5+a 7a 2+a 4+a 6=209193答案 BD解析 由题意可知,数列{a n }为等差数列,设数列{a n }的公差为d ,a 1=5,由题意可得30a 1+30×29d 2=390,解得d =1629,∴a n =a 1+(n -1)d =16n +12929,∵b n =2an ,∴b n +1b n =2an +12an =2an +1-an =2d (非零常数),则数列{b n }是等比数列,B 正确;∵5d =5×1629=8029≠3,b 10b 5=(2d )5=25d ≠23,∴b 10≠8b 5,A 错误;a 30=a 1+29d =5+16=21,∴a 1b 30=5×221>105,C 错误;a 4=a 1+3d =5+3×1629=19329,a 5=a 1+4d =5+4×1629=20929,∴a 3+a 5+a 7a 2+a 4+a 6=3a 53a 4=a 5a 4=209193,D 正确.故选BD.本题以传统数学文化为载体考查数列的实际应用问题.解题的关键是将古代实际问题转化为现代数学问题,建立等差、等比数列的模型,探索并掌握它们的一些基本数量关系,利用方程思想求解.(2020·福建省宁德市二模)著名物理学家李政道说:“科学和艺术是不可分割的”.音乐中使用的乐音在高度上不是任意定的,它们是按照严格的数学方法确定的.我国明代的数学家、音乐理论家朱载堉创立了十二平均律,是第一个利用数学使音律公式化的人.十二平均律的生律法是精确规定八度的比例,把八度分成13个半音,使相邻两个半音之间的频率比是常数,如表所示,其中a 1,a 2,…,a 13表示这些半音的频率,它们满足log 2⎝ ⎛⎭⎪⎫a i +1a i 12=1(i =1,2,…,12).若某一半音与D #的频率之比为32,则该半音为( ) 频率 a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 a 11 a 12 a 13 半音CC #DD #EFF #G G #AA #BC (八度)C .G #D .A答案B解析 由题意知log 2⎝ ⎛⎭⎪⎫a i +1a i 12=1(i =1,2,…,12), ∴a i +1a i=2112,故数列{a n }是公比q =2112的等比数列. ∵a 4=D #,a 8=a 4q 4=D #×(2112)4=D #×32=G ,∴G D #=32.故选B.考向3 立体几何中的数学文化例3 我国齐梁时代的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为2b ,高皆为a 的椭半球体和已被挖去了圆锥体的圆柱放置于同一平面β上,用平行于平面β且与平面β任意距离d 处的平面截这两个几何体,可横截得到S 圆及S 环两截面.可以证明S 圆=S 环总成立.据此,半短轴长为1,半长轴长为3的椭球体的体积是________.答案 4π解析 因为S 圆=S 环总成立,则半椭球体的体积为πb 2a -13πb 2a =23πb 2a , 所以椭球体的体积为V =43πb 2a ,因为椭球体的半短轴长为1,半长轴长为3, 所以椭球体的体积为V =43πb 2a =43π×12×3=4π, 故答案是4π.依托立体几何,传播数学文化.立体几何是中国古代数学的一个重要研究内容,从中国古代数学中挖掘素材,考查立体几何的线面的位置关系、几何体的体积等知识,既符合考生的认知水平,又可以引导学生关注中华优秀传统文化.(2020·山东省潍坊市模拟)唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R ,酒杯内壁表面积为143πR 2.设酒杯上部分(圆柱)的体积为V 1,下部分(半球)的体积为V 2,则V 1V 2=( )A .2B .32C.1 D.3 4答案 A解析由球的半径为R,得半球的内部表面积为2πR2,又酒杯内壁表面积为143πR2,∴圆柱的侧面积为83πR2.设圆柱的高为h,则2πR·h=83πR2,即h=43R.∴V1=πR2·43R=43πR3,V2=23πR3,∴V1V2=43πR323πR3=2.故选A.考向4概率中的数学文化例4(2020·河北省张家口高三5月模拟)角谷猜想,也叫3n+1猜想,是由日本数学家角谷静夫发现的,是指对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2,如此循环最终都能够得到1.如:取n=6,根据上述过程,得出6,3,10,5,16,8,4,2,1,共9个数.若n=5,从根据上述过程得出的整数中,随机选取两个不同的数,则这两个数都是偶数的概率为() A.37B.715C.25D.35答案 C解析若n=5,根据上述过程得出的整数有5,16,8,4,2,1,随机选取两个不同的数,基本事件总数n=C26=15,这两个数都是偶数包含的基本事件个数m=C24=6,则这两个数都是偶数的概率为P=mn=615=25.故选C.数学文化渗透到概率数学中去,不但丰富了数学的概率知识,还提高了学生的文化素养.解决此类问题的关键是构建合理的概率模型,利用相应的概率计算公式求解.(2020·河南省六市高三一模)五行学说是华夏民族创造的哲学思想,是华夏文明的重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为()A.12B.13C.14D.15答案 A解析金、木、水、火、土彼此之间存在相生相克的关系.从5类元素中任选2类元素,基本事件总数n=C25=10,2类元素相生包含的基本事件有5个,则2类元素相生的概率为P=510=12.故选A.考向5数学文化与现代科学例52016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c1和2c2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:①a1+c1=a2+c2;②a1-c1=a2-c2;③c1a1<c2a2;④c1a2>a1c2.其中正确式子的序号是( ) A .①③ B .①④ C .②③ D .②④答案 D解析 观察题图可知a 1>a 2,c 1>c 2,∴a 1+c 1>a 2+c 2,即①式不正确;a 1-c 1=a 2-c 2=|PF |,即②式正确;由a 1-c 1=a 2-c 2>0,c 1>c 2>0,知a 1-c 1c 1<a 2-c 2c 2,即a 1c 1<a 2c 2,从而c 1a 2>a 1c 2,c 1a 1>c 2a 2.即④式正确,③式不正确.(1)命题者抓住“嫦娥奔月”这个古老而又现代的浪漫话题,以探测卫星轨道为背景,抽象出共一条对称轴、一个焦点和一个顶点的两个椭圆的几何性质,并以加减乘除的方式构造两个等式和两个不等式,考查椭圆的几何性质,可谓匠心独运.(2)注意到椭圆轨道Ⅰ和Ⅱ共一个顶点P 和一个焦点F ,题目所给四个式子涉及长半轴长和半焦距,从焦距入手,这是求解的关键,本题对考生的数学能力进行了比较全面的考查,是一道名副其实的小中见大、常中见新、蕴文化于现代科学技术应用之中的好题.(2020·北京市东城区模拟)标准对数远视力表(如图)采用的“五分记录法”是我国独创的视力记录方式,标准对数远视力表各行为正方形“E”形视标,且从视力5.2的视标所在行开始往上,每一行“E”的边长都是下方一行“E”边长的1010倍,若视力4.1的视标边长为a ,则视力4.9的视标边长为( )。
2023版高考政治一轮复习真题精练专题九文化传承与文化创新课件
7. [2021福建·8,3分,难度★★★☆☆] 近年来,中国杂技将“木兰从军”的感人故事、《西游记》的奇妙情节、《梁祝》的经典绝唱等融入表演中,实现从“技” 到“剧”的转化,又借助现代舞美音乐,把形象美、动作美、情感美、精神美集于一身,摆脱了“单一技巧表演”的刻板印 象,深受国内外观众的喜爱,在国际比赛中屡获大奖。中国杂技成功的秘诀在于 ( ) ①继承传统,提高了技巧的难度系数 ②古为今用,汲取了传统文化的精华 ③锐意创新,丰富了节目的表现形式 ④面向世界,博采各国优秀文化成果 A.①② B.①④ C.②③ D.③④
答案
2.D 毛泽东在长征途中写下“不到长城非好汉”,借助长城表达长征精神,③正确。该词表达了“共产党人不畏艰险的 英雄气概”,④正确。中国共产党始终代表先进文化的前进方向,①错误。材料并没有涉及革命文化的交流与传播,② 不选。
3. [2022全国甲·19,4分,难度★★☆☆☆] 2022 年2月举办的北京第二十四届冬季奥林匹克运动会被誉为一届“无与伦比”的冬奥会,近3 000名中外运动健儿闪 耀赛场,18 000多名赛会志愿者默默奉献,2项世界纪录和17项冬奥会纪录被刷新,带动中国3亿多人参与冰雪运动,是 迄今收视率最高的一届冬奥会,完美演绎了“更快、更高、更强——更团结”的奥林匹克格言。这表明 ( ) ①体育运动以彰显文化自信为根本价值追求 ②人民是体育运动的价值创造者和价值享受者 ③体育运动具有塑造人生、促进全面发展的育人功能 ④体育运动是消弭文化差异、促进文化融合的重要手段 A.①② B.①④ C.②③ D.③④
劳模精神是
()
①衡量优秀传统文化的价值尺度
②不同劳模独特个性的集中体现
③推动创新创造的强大精神力量
④社会主义核心价值观的生动诠释
最新-2021届高三数学理二轮复习课件:第二部分 专题二 数学传统文化的创新应用问题 精品
[考情分析] 年份
2017 年高考全国卷Ⅱ 2016 年高考全国卷Ⅱ 2015 年高考全国卷Ⅰ
2015 年高考全国卷Ⅱ
题型 选择题第 3 题 选择题第 8 题 选择题第 6 题
选择题第 8 题
考查角度
考情分析
数列求和
数学文化题是近几年课标全
秦九韶算法
国卷中出现的新题型.预计
九章算术、圆锥体积 在高考中,数学文化题仍会
考点二 数列中的数学文化题
[体会领悟] 该题的命制以人民教育出版社《数学必修 5》(A 版)第 32 页“阅读与思考”中的“斐波那契数列”为背景,考 查考生灵活处理递推数列问题的能力和转化与化归能力.斐波 那契数列有很多有趣的性质,在实际生活中也有广泛应用.在 高考中,也曾经很多次考查斐波那契数列问题.
2a1+d=3a1+9d, 2a1+d=52, 答案:D
解得a1=43, d=-16,
故选 D.
考点二 数列中的数学文化题
[体会领悟] 我国古代数学强调“经世济用”,注重算理算法, 其中很多问题可转化为等差数列问题.
考点二 数列中的数学文化题
[例 5] 中国古代数学著作《算法统宗》中有这样一个问题:“三
考点三 算法中的数学文化题
[例 7] 如图所示程序框图的算法思路源于我国古代数学名著 《九章算术》中的“更相减损术”.执行该程序框图,若输入 的 a,b 分别为 8,12,则输出的 a=( )
A.4
B.2 C.0 D.14
考点三 算法中的数学文化题
[思路分析] 读懂程序框图,按程序框图依次执行即可. 解析:由程序框图输入的 a=8,b=12,按程序框图所示依次 执行,可得 b=12-8=4,a=8;a=8-4=4,b=4,a=b, 所以输出 a=4.故选 A. 答案:A
2021年山东省高三数学高考二模试题卷二附答案解析
2021年山东省高三数学高考二模试题卷二第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知,均为的子集,且,则( ) A .B .C .D .2.若复数满足,则( )A .B .C .D .3.中,A ,B ,C 是的内角,则“”是“”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.实数x 、y 满足,则的最大值为( )A .B .4C .D .55.若过点的直线与曲线有公共点,则直线的斜率的取值范围为( ) A .B .C .D . 6.在中,,,点满足,,则的长为( )A .B .C .D .67.设等差数列的前n 项和为,且,()()320152015120191a a -+-1=-,则下列结论正确的是( )A .,B .,C .,D .,8.在探索系数,,,对函数图象的影响时,我们发现,系数对其影响是图象上所有点的纵坐标伸长或缩短,通常称为“振幅变换”;系数对其影响是图象上所有点的横坐标伸长或缩短,通常称为“周期变换”;系数对其影响是图象上所有点向左或向右平移,通常称为“左右平移变换”;系数对其影响是图象上所有点向上或向下平移,通常称为“上下平移变换”.运用上述四种变换,若函数的图象经过四步变换得到函数的图象,且已知其中有一步是向右平移个单位,则变换的方法共有( )A .种B .种C .种D .种二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,正四棱锥底面边长与侧棱长均为a ,正三棱锥底面边长与侧棱长均为a ,则下列说法正确的是( )N R MN⊆RM N =R∅M N R z 12i i 2z⋅=z =1212-1i 2-1i 2ABC △ABC △π3A =1cos 2A =22326xy x +=22x y +7292()4,3A l 22231x y l ⎡⎣(⎡⎢⎣⎦,33⎛-⎝⎭ABC △9AC =60A ∠=︒D 2CD DB =AD =BC {}n a n S ()()3661201911a a -+-=20202020S =20156a a <20202020S =20156a a >20202020S =-20156a a ≤20202020S =-20156a a ≥A ωϕb ()()sin 0,0y A x b A ωϕω=++>>A ωϕb ()sin f x x =()π2sin 213gx x ⎛⎫=-+ ⎪⎝⎭π36121624S BCDE -A SBE -A .B .正四棱锥的外接球半径为C .正四棱锥的内切球半径为D .由正四棱锥与正三棱锥拼成的多面体是一个三棱柱10.一个等腰直角三角形内有一个内接等腰直角三角形,(即,,三点分别在三角形三边或顶点上),则两三角形面积比的值可能为( )A .B .C .D .11.已知双曲线,、分别为双曲线的左、右顶点,、为左、右焦点,,且,,成等比数列,点是双曲线的右支上异于点的任意一点,记,的斜率分别为,,则下列说法正确的是( ) A .当轴时,B .双曲线的离心率C .D .若为的内心,满足,则12.若存在实常数和,使得函数和对其公共定义域上的任意实数x 都满足:()F x ≥kx b+和恒成立,则称此直线为和的“隔离直线”,已知函数,,(为自然对数的底数),则( )A .在内单调递增B .和之间存在“隔离直线”,且的最小值为C .和之间存在“隔离直线”,且的取值范围是D .和之间存在唯一的“隔离直线”第Ⅱ卷三、填空题:本大题共4小题,每小题5分.13.的展开式的常数项是________.14.2020年新冠肺炎肆虐,全国各地千千万万的医护者成为“最美逆行者”,医药科研工作者积极研制有效抗疫药物,中医药通过临床筛选出的有效方剂“三药三方”(“三药”是指金花清感颗粒、连花清瘟颗粒(胶囊)和血必净注射液;“三方”是指清肺排毒汤、化湿败毒方和宜肺败毒方)发挥了重要的作用.甲因个人原因不能选用血必净注射液,甲、乙两名患者各自独立自主的选择一药一方进行治疗,则两人选取药方完全不同的概率是______.15.已知三棱锥,,,,则以点为球心, AS CD ⊥S BCDE -2a S BCDE -12a ⎛⎫- ⎪ ⎪⎝⎭S BCDE -A SBE -ABC PQR P Q R ABC PRQABCS S △△14151617()2222:10,0x y C a b a b-=>>A B 1F 2F 122F F c =a b c P C B PA PB 1k 2k 2PF x ⊥1230PF F ∠=︒e =12k k I 12PF F △()1212IPFIPF IF F S S xS x =+∈R △△△12x =k b ()F x ()G x ()G x kx b≤+y kx b=+()F x ()G x ()()2f x x x =∈R ()()10g x x x=<()2ln h x e x =e ()()()m x f x g x =-x ⎛⎫∈ ⎪⎝⎭()f x ()g x b 4-()f x ()g x k []4,1-()f x ()h x y e =-()522121x x ⎛⎫+- ⎪⎝⎭A BCD -5AB AD BC CD ====8BD =3AC =C为半径的球面与侧面的交线长为______.16.任取一个正整数m ,若m 是奇数,就将该数乘3再加上1;若m 是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1,这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”等),若,则经过________次步骤后变成1;若第5次步骤后变成1,则m 的可能值之和为________.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)在①;②;③,这三个条件中任选一个,补充在下面问题中并作答. 问题:的内角的对边分别为,若,______,求和.注:若选择多个条件作答,按第一个解答计分.18.(12分)某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不做广告宣传且每件获利元的前提下,可卖出件,若作广告宣传,广告费为千元时比广告费为千元时多卖出件..(1)求当时,销售量;当时,销售量;(2)试写出当广告费为千元时,销售量;(3)当,时,厂家生产多少件这种产品,做几千元广告才能获利最大?19.(12分)如图,在几何体中,四边形为等腰梯形,且,,四边形为矩形,且,M ,N 分别为,的中点. (1)求证:平面;(2)若直线与平面所成的角为60°,求平面与平面所成锐二面角的余弦值.20.(12分)《中华人民共和国道路交通安全法》第条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,即“礼让行人”.下表是某十字路口监控设备所抓拍的个月内驾驶员不“礼让行人”行为的统计数据:月份123456不“礼让行人”驾驶员人数120 105 100 85 90 80(1)请根据表中所给前个月的数据,求不“礼让行人”的驾驶员人数与月份之间的回归直线方程; (2)若该十字路口某月不“礼让行人”驾驶员人数的实际人数与预测人数之差小于,则称该十字路口“礼让行人”情况达到“理想状态”.试判断月份该十字路口“礼让行人”情况是否达到“理想状态”?(3)自罚单日起天内需完成罚款缴纳,记录月不“礼让行人”驾驶员缴纳罚款的情况,缴纳日距罚单日天数记为,若服从正态分布,求该月没能在天内缴纳人数.参考公式:,. ,,22ABD 5m =22(sin sin )sin sin sin B C A B C -=-sinsin 2B C b a B +=sin cos(π)6a Bb A =-ABC △,,A B C ,,a bc 22a b c +=A C a b n ()1n -2nb ()*n ∈N 1n =1a 2n=2a n n a 10a =4000b =ABCDEF ABCD 22AB CD ==60ABC∠=︒ACFE 2FB =EF AB MN ∥FCB AF FCB MAB MAC 476x y 5y ˆˆˆybx a =+56155XX()~8,9X N 14()()()112211ˆnniii ii i nnii i i x x y y x y nxyb x x x nx====---==--∑∑∑∑ˆˆay bx=-()0.6826P Z μσμσ-<<+=()220.9544P Z μσμσ-<<+=.21.(12分)已知函数,.(1)若对任意给定的,总存在唯一一个,使得成立,求实数的取值范围; (2)若对任意给定的,在区间上总存在两个不同的,使得成立,求实数的取值范围.22.(12分)已知椭圆的左、右顶点分别为,,上顶点为,过右焦点的直线交椭圆于,两点,点在轴上方,当轴时,(为坐标原点). (1)求椭圆的标准方程;(2)设直线交直线于点,直线交直线于点,则是否为定值?若是,求出该定值;若不是,请说明理由.数 学答 案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目 要求的.1.【答案】C 【解析】用图示法表示题意,如下图,故,故选C .2.【答案】C 【解析】因为,所以,所以,故选C . 3.【答案】C 【解析】若,则成立,所以“”是“”的充分条件; 若,因为,所以,所以“”是“”的必要条件,所以“”是“”的充分必要条件,故选C . 4.【答案】B 【解析】由题意得,,因此,令,的对称轴为,开口向下,则在区间单调递增,所以当时,取得最大值4,故的最大值为,故选B .5.【答案】C 【解析】由题意,易知,直线的斜率存在,设直线的方程为,即,曲线表示圆心,半径为1的圆,圆心到直线的距离应小于等于半径,,即,解得,故选C . 6.【答案】A 【解析】因为,所以,()330.9974P Z μσμσ-<<+=()32231f x ax ax =-+()()3042a g x x a =-+<051,4x ⎡⎤∈-⎢⎥⎣⎦151,4x ⎡⎤∈-⎢⎥⎣⎦()()10f x g x =a 051,4x ⎡⎤∈-⎢⎥⎣⎦51,4⎡⎤-⎢⎥⎣⎦(1,2)i x i =()()()120f x f x g x ==a 2222:1(0)x y C a b a b+=>>A B D (1,0)F C P Q P x PQ x ⊥//OP AD O C AP BQ M BP AQ N MFN ∠M N N =R13i 12+=2i 1z ⋅=11i 2i 2z ==-π3A =1cos 2A =π3A =1cos 2A =1cos 2A =(0,π)A ∈π3A =π3A =1cos 2A =π3A =1cos 2A =223302y x x =-≥02x ∴≤≤()222211933222x y x x x +=-=--+()()219322x f x --+=()f x 3x =()f x []0,22x =22x y +22xy +4l l ()34y k x -=-340kx y k -+-=22231x y ()2,3()2,3340kx y k -+-=2233411k kk-+-∴≤+221k k -≤+33k -≤≤2CD DB =1121()3333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+设,则,得,即,因为,故解得,即,所以,故选A .7.【答案】A 【解析】令,知在定义域内为递增函数,∴由题意知,即,又,知,关于原点对称,∴,而,故选A .8.【答案】B 【解析】根据题意,该图象变换的过程有振幅变换、周期变换、左右平移变换和上下平移变换共四步,因为左右平移变换是向右平移个单位,所以要求左右平移变换在周期变换之前,所以变换的方法共有种,故选B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.【答案】ABD 【解析】如图所示:A 选项:取中点连接,正三棱锥中,,,又,所以平面,则,又,所以,故A 正确;B 选项:设底面中心为,球心为半径为,因为正四棱锥S -BCDE 外接球球心在上,所以, 因为,正四棱锥S -BCDE 底面边长与侧棱长均为a ,所以, 由,得,解得,故B 正确;C 选项:设内切球半径为,易求得侧面面积为, 由等体积法得,解得,故C 错;D 选项:取中点,连接,,,则和分别是和的二面角的平面角, 由,,故与互补,所以共面, 又因为,则为平行四边形,故,故正四棱锥与正三棱锥AB x =222133AD AB AC ⎛⎫=+ ⎪⎝⎭22441379cos609999x x =+⨯⨯︒+⨯2291260x x +-=0x >6x =6AB =222212cos 6069269372BC AB AC AB AC =+-⋅︒=+-⨯⨯⨯=3()2019f x x x =+()f x 6201511a a ->-20156a a <()()0f x f x 61a -20151a -620152a a +=20201202012020620151010()1010()2020S a a a a a a =++=+=+=π34422A 12A =BE H ,AH SHA SBE -AH BE ⊥SH BE ⊥AH SH H =BE ⊥SAH BE AS ⊥//BE CD AS CD ⊥1O O R 1O S OS OB R ==112O BO S a ==()22211OB O B O S OS =+-2222222R a a R ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22Ra =r 221π3sin 23Sa a =⋅=22212113432334a a a r a r ⋅=⋅+⋅⋅⋅()624a r -=SE F AF DF BF BFD ∠BFA ∠D SE B --A SE B --()22222223321cos 2332a a aBF DF BDBFD BF DF a ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭∠===-⋅⎛⎫⎪⎝⎭222222233221cos 2332a a a AF BF BA AFD AF BF a ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭∠===⋅⎛⎫⎪⎝⎭BFD ∠BFA ∠ASDE AS AE ED SD ===ASDE////AS ED BC S BCDE -拼成的多面体是一个三棱柱,所以D 正确,故选ABD .10.【答案】AB 【解析】如图,有两种方式:(1)左图中为中点,设的直角边长,为的直角边长为,,在中,由正弦定理得,所以, 所以, 所以,所以. (2)右图中,在中,由正弦定理得,所以,,所以,所以,综上:最小值为,最大值显然为1,故选AB . 11.【答案】BCD 【解析】∵a ,b ,c 成等比数列,∴,如图,对于A ,当轴时,点P 为,,显然,即选项A 错误;对于B ,,, ∴,解得(负值舍去),即选项B 正确;对于C ,设,则,,所以,由点在双曲线上可得,代入,故C 正确;A SBE -R AB ABC △a PQR △x PQC α∠=QBR △πsin sin 4QR QB α=sin πsin 4x QB α=()sin cos cos sin πsin 4x a CQ QB αααα=+=+=+1π2sin 4x a α==⎛⎫+ ⎪⎝⎭214PRQ ABC S x S a ⎛⎫=≥ ⎪⎝⎭△△QBR △ππsin sin 44QR QB α=⎛⎫+ ⎪⎝⎭πsin 4πsin 4x QB α⎛⎫+ ⎪⎝⎭=()πsin 4cos 2cos sin πsin 4x a CQ QB x x αααα⎛⎫+ ⎪⎝⎭=+=+=+()1tan 22cos sin x a ϕαα===+215PRQ ABCS x S a ⎛⎫=≥ ⎪⎝⎭△△152b ac =2PF x ⊥2,b c a ⎛⎫⎪⎝⎭221212||1tan ||222b PF ac a PF F F F c ac ∠====1230PF F ∠≠︒222ac a b c ==-∴1ce a=>210e e --=12e ±=(,)P x y 1y k x a =+2y k x a =-21222+y y y k k x a x a x a =⋅=--(,)P x y 22222x a y a b-=22222212222222111212y b y b c k k x a a y a a ⎛====-=-= -⎝⎭对于D ,设圆I 的半径为r ,,, 即,由双曲线的定义知,,即,故选项D 正确,故选BCD . 12.【答案】ABD 【解析】对于A ,, ,, 当时,,单调递增, ,在内单调递增,A 正确;对于B 、C ,设,的隔离直线为,则对任意恒成立,即对任意恒成立. 由对任意恒成立,得.①若,则有符合题意;②若,则有对任意恒成立,的对称轴为,,;又的对称轴为,,即,,,同理可得,,综上所述:,,B 正确,C 错误;对于D ,函数和的图象在处有公共点,若存在和的隔离直线,那么该直线过这个公共点.设隔离直线的斜率为,则隔离直线方程为,即,则恒成立,若,则不恒成立;若,令,对称轴为,在上单调递增, 又,故时,不恒成立;若,对称轴为, 若恒成立,则,解得1212IPF IPF IF F S xS S =+△△△212111||||||222r PF r PF x r F F ∴⋅=⋅+⋅⋅⋅1212||||||PF PF x F F =+12||||2PF PF a -=22a x c ∴=⋅1a x c e ===()()()21m x f x g x x x=-=-()212m x x x '∴=+()3321221m x x x ⎛⎫''=-=- ⎪⎝⎭x ⎛⎫∈ ⎪⎝⎭()0m x ''>()m x '∴()2233220m x m ⎛'∴>=+=-+= ⎝()m x ∴x ⎛⎫∈ ⎪⎝⎭()f x ()g x y kx b =+21x kx b kx b x⎧≥+⎪⎨≤+⎪⎩(),0x ∈-∞2210x kx b kx bx ⎧--≥⎨+-≤⎩(),0x ∈-∞210kx bx +-≤(),0x ∈-∞0k ≤0k =0b =0k<20x kx b --≥(),0x ∈-∞2y x kx b =--02kx =<2140k Δb +∴=≤0b ∴≤21y kx bx =+-02b x k =-≤2240Δb k ∴=+≤2244k b b k⎧≤-⎨≤-⎩421664k b k ∴≤≤-40k ∴-≤<421664b k b ≤≤-40b ∴-≤<40k -≤≤40b -≤≤()f x ()h x x =∴()f x ()h x k(y e k x -=y kx e=-()()0f x kx e x ≥->0k =()200x e x -≥>0k<()()20u x x kx e x =-+>02kx =<()2u x x kx e ∴=-+(0u e e =-=0k <()()0f x kx e x ≥->0k >()u x 02kx =>()0ux ≥()(22340Δke k =-=-≤k =此时直线方程为,下面证明,令,则,当时,;当时,;当时,,当时,取到极小值,也是最小值,即, ,即,函数和存在唯一的隔离直线,D 正确,故选ABD .三、填空题:本大题共4小题,每小题5分. 13.【答案】【解析】,的展开式通项为,所以,的展开式通项为,由,可得,因此,的展开式的常数项为,故答案为. 14.【答案】【解析】将三药分别记为,,,三方分别记为,,,选择一药一方的基本事件如表所示,共有9个组合,则两名患者选择药方完全不同的情况有(种),两名患者可选择的药方共有(种),所以,故答案为. 15.【答案】,【解析】作的中点,连接,,作的中点,连接,因为,所以,,所以,又,则, 设到边的距离为,则,解得, 2y ex e =-()2h x ex e ≤-()()222ln G x ex e h x ex e e x =--=--()()2e x eG x x-'=xe=()0G x '=0x e <<()0G x '<x e >()0G x '>∴x e =()G x ()()min 0G x G e ==()()20G x ex e h x ∴=--≥()2h x ex e ≤-∴()f x ()h x 2y ex e =-3()5552222211121121x x x x x ⎛⎫⎛⎫⎛⎫+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭5211x ⎛⎫- ⎪⎝⎭()()521015521C 1C 1rrrr rr r R x x --+⎛⎫=⋅⋅-=⋅-⋅ ⎪⎝⎭()522121x x ⎛⎫+- ⎪⎝⎭()()22102101,155C 12C 1k rk k rr k r T x x x --++=⋅-⋅+⋅-⋅()()2821055C 12C 1krk k rr x x--=⋅-⋅+⋅-⋅2802100k r -=⎧⎨-=⎩45k r =⎧⎨=⎩()522121x x ⎛⎫+- ⎪⎝⎭()()454555C 12C 13⋅-+⋅-=349A B C a b c A B C a {},A a {},B a {},C a b {},A b {},B b {},C b c {},A c {},B c {},C c 1164C C 24=1196C C 54=244549P ==495πBD E AE CE AE F CF AB AD BC CD ===AE BD ⊥CE BD ⊥223CE AE BC BE AC ==-==AF EF =333cos3032222CF CE =︒=⨯=<C AB h 2211222ABCAC S AB h AC AB ⎛⎫=⋅=- ⎪⎝⎭△39122h =>所以以点为球心,为半径作球与面相交构成一个圆,圆心为,设半径为,设球的半径为,所以,所以圆的周长为,.16.【答案】5,41【解析】(1)当时,,,,,,,所以需5次步骤后变成1; (2)若第5次步骤后变成1,则,,,或,当,,或;当时,,,所以的可能值是,的可能值的和是,故答案为5,41.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】选择见解析,,.【解析】(1)选择条件①,由及正弦定理知,,整理得,由余弦定理可得,又因为,所以,由,整理得, 因为,所以,从而,解得. (2)选择条件②,因为,所以, 由,得, 由正弦定理知. 又,,可得,又因为,所以,,故.,由,整理得, 因为,所以,从而,解得. (3)选择条件③,由及正弦定理知,,C ABD Fr R =2r===2πr =5m =15a =253116a =⨯+=38a =44a =52a =61a =61a =52a =44a =38a =138a =216a =132a =15a =31a =22a =14a =m {}4,5,32m 453241++=π3A =5π12C=()22sin sin sin sin sin B C A B C-=-()22b c a bc -=-222b c a bc +-=2221cos 222b c a bc A bc bc +-===()0,πA ∈π3A =2b c +=sin 2sin A B C +=23πB C =-2πsin 2sin 33πC C ⎛⎫+-= ⎪⎝⎭sin 2π6C ⎛⎫-= ⎪⎝⎭2π0,3C ⎛⎫∈ ⎪⎝⎭πππ,662C ⎛⎫-∈- ⎪⎝⎭4ππ6C -=5π12C =πA B C ++=π222B C A+=-sin sin 2B C b a B +=cos sin 2Ab a B =sin cos sin sin 2sin cos sin 222A A AB A B B ==sin 0B >sin 02A >1sin 22A =()0,πA ∈π26A =π3A =2b c +=sin 2sin ABC +=23πB C =-2πsin 2sin 33πC C ⎛⎫+-= ⎪⎝⎭sin 2π6C ⎛⎫-= ⎪⎝⎭2π0,3C ⎛⎫∈ ⎪⎝⎭πππ,662C ⎛⎫-∈- ⎪⎝⎭4ππ6C -=5π12C =sin cos 6πa B b A ⎛⎫=- ⎪⎝⎭sin sin sin c πos 6A B B A ⎛⎫=- ⎪⎝⎭又,从而,解得.又因为,所以.又由,得,由,得,整理得, 因为,所以,从而,解得. 18.【答案】(1),;(2);(3)厂家应生产7875件产品,做5千元的广告,能使获利最大. 【解析】(1)设表示广告费为0千元时的销售量,则,,所以;,所以. (2)设表示广告费为0千元时的销售量,则,由题:,相加得,即.(3)时,,设获利为,则有,欲使最大,则,,解得,故,此时,即该厂家应生产7875件产品,做5千元的广告,能使获利最大. 19.【答案】(1)证明见解析;(2).【解析】(1)取的中点Q ,连接,,则,且,又,且,所以且,所以四边形为平行四边形,所以,因为平面,平面,所以平面.(2)由四边形为等腰梯形,且,, 可得,,所以,所以.sin 0B >31sincos cos sin 6π2A A A A ⎛⎫=-=+ ⎪⎝⎭tan 3A =()0,πA ∈π3A =22a b c +=2sin sin 2sin A B C +=23πB C =-2π2sin sin 2sin 33πC C ⎛⎫+-= ⎪⎝⎭2sin 2π6C ⎛⎫-= ⎪⎝⎭2π0,3C ⎛⎫∈ ⎪⎝⎭πππ,662C ⎛⎫-∈- ⎪⎝⎭4ππ6C -=5π12C =132b a =274b a =1(2)2n n a b =-0a 0a b =102b a a -=132a b =2122b a a -=274a b =0a 0a b =102121222n n n b a a b a a b a a -⎧-=⎪⎪⎪-=⎪⎨⎪⋯⎪⎪-=⎪⎩0232222n nb b b b a a -=++++231(2)22222n n n b b b b a b b =+++++=-4000b =14000(2)2n n a =-n T 110100040000(2)10002n n n T a n n =⋅-=--n T 11n n nn T T T T +-≥≥⎧⎨⎩11114000(2)10004000(2)1000(1)22114000(2)10004000(2)1000(1)22n n n n n n n n +-⎧--≥--+⎪⎪∴⎨⎪--≥---⎪⎩55n n ≥⎧⎨≤⎩5n =7875n a =25719BC NQ FQ 12NQ AC ∥12NQ AC =12MF AC ∥12MF AC =MF NQ ∥MF NQ =MNQF MN FQ ∥FQ ⊂FCB MN ⊄FCB MN ∥FCB ABCD 22AB CD ==60ABC ∠=︒1BC =3AC =90ACB ∠=︒AC BC ⊥因为四边形为矩形,所以,所以平面,所以为直线与平面所成的角,即,所以. 因为,所以,所以.则可建立如图所示的空间直角坐标系,∵,,,∴,, 设为平面的法向量,则,即,取,则为平面的一个法向量; 又为平面的一个法向量,所以, 故平面与平面所成锐二面角的余弦值为.20.【答案】(1);(2)达到“理想状态”;(3)2人. 【解析】(1)请根据表中所给前5个月的数据,计算,,,,与之间的回归直线方程. (2)由(1)知,当时,,且,月份该十字路口“礼让行人”情况达到“理想状态”.(3)因为服从正态分布,所以, 该月没能在天内缴纳人数为人.21.【答案】(1);(2). 【解析】(1)由题意知,,因为,所以由,解得或;由,解得, 故的单调递增区间为,单调递减区间为和,ACFE AC CF ⊥AC ⊥FCB AFC ∠AF FCB 60AFC ∠=︒1FC =2FB =222FB FC CB =+FC BC ⊥C xyz -(3,0,0)A (0,1,0)B 3(,0,1)2M 3(,0,1)2MA =-(3,1,0)AB =-(,,)x y z =m MAB 00MA AB ⎧⋅=⎪⎨⋅=⎪⎩m m 30230x z x y ⎧-=⎪⎨⎪-+=⎩23x =(23,6,3)=m MAB (0,1,0)=n MAC 657257cos ,||||571⋅〈〉====⨯m n m n m n MAB MAC 25719ˆ8124yx =-+1(12345)35x =⨯++++=1(1201051008590)1005y =⨯++++=12222221()()(2)20(1)5001(15)2(10)ˆ8(2)(1)012()niii nii x x y y bx x ==---⨯+-⨯+⨯+⨯-+⨯-===--+-+++-∑∑ˆˆ100(8)3124ay bx =-=--⨯=y ∴x ˆ8124yx =-+ˆ8124yx =-+6x =ˆ8612476y =-⨯+=807645-=<6∴X ()~8,9X N ()2140.9544P X <<=1410.95449022-⨯=28,575⎛⎤-- ⎥⎝⎦162,15⎛⎫-- ⎪⎝⎭()()61f x ax x -='514x -≤≤()0f x '<10x -≤<514x <≤()0f x '>01x <<()f x 0,1[)1,0-51,4⎛⎤⎥⎝⎦,,,,所以的值域为.又因为在上单调递增,所以的值域为. 问题转化为直线和曲线的图象只有一个交点, 结合图象,有,解得a 的取值范围是. (2)由(1)可知,问题转化为与曲线,二者的图象有两个不同的交点,结合图象,有,解得a 的取值范围是.22.【答案】(1);(2)是,定值为.【解析】(1)当轴时,点的横坐标代入椭圆的方程,可得点的纵坐标,由题意知,,, 又当轴时,,,得,且,,∴椭圆的标准方程为.(2)为定值,且定值为,理由如下:由(1)得,,,设,,,直线的方程为,联立方程可得,整理得,则,, 由,,三点共线可得,①,,,②5(11)f a -=-()01f =()11f a =-5251432a f ⎛⎫=- ⎪⎝⎭()f x []1,15a -()g x 51,4⎡⎤-⎢⎥⎣⎦()g x 335,24216a a ⎡⎤+-⎢⎥⎣⎦335,,24216a a y t t ⎡⎤=∈+-⎢⎥⎣⎦()51,4y f x x ⎡⎤∈-⎢⎥⎛⎫= ⎪⎝⎣⎭⎦31243515216a a aa ⎧-<+⎪⎪⎨⎪-≥-⎪⎩28,575⎛⎤-- ⎥⎝⎦335,,24216a a y t t ⎡⎤=∈+-⎢⎥⎣⎦()y f x =51,4x ⎛⎫⎡⎤∈- ⎪⎢⎥⎣⎦⎝⎭31242535132216a a a ⎧<+⎪⎪⎨⎪->-⎪⎩162,15⎛⎫-- ⎪⎝⎭2212x y +=π2PQ x ⊥P P x c =C P 2P b y a=1c =(,0)A a -(0,)D b OP x ⊥//OP AD 2b b a a∴=1b =222a cb -=2a ∴=C 2212x y +=MFN∠π2()2,0A -(0,1)D ()2,0B()11,Px y ()22,Q x y ()3,M t y PQ 1x my =+221220x my x y =+⎧⎨+-=⎩()222210m y my ++-=12222my y m -+=+12212y y m -=+A P M 31122t x =++221112x y +=()()2211112222y x x x ∴=-=-+111122x x -∴=+③由,,④,,分别将,,将,, 设,同理可得,由,,,⑤由③⑤得,,为定值.112x y =B Q M =)(12122x xy y =111x my =+221x my =+)()2121212132m y y my y y y -++-+=12222m y y m -+=+12212y y m -=+3=-2t ∴=()4,N t y '2t '=B P N =341y y =-()()343421,21,10FM FN y y y y ∴⋅=-⋅-=+=2πMFN ∴∠=。
2021年高三第二次调研考试数学(文)试题 含解析
2021年高三第二次调研考试数学(文)试题含解析【试卷综评】本试卷试题主要注重基本知识、基本能力、基本方法等当面的考察,覆盖面广,注重数学思想方法的简单应用,试题有新意,符合课改和教改方向,能有效地测评学生,有利于学生自我评价,有利于指导学生的学习,既重视双基能力培养,侧重学生自主探究能力,分析问题和解决问题的能力,突出应用,同时对观察与猜想、阅读与思考等方面的考查。
一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项.【题文】1.设集合,集合,则= ( )A. B. C. D.【知识点】集合及其运算。
A1【答案解析】A 解析:方程解得,则,故选A.【思路点拨】先解出集合B,再求交集。
【题文】2.复数(为虚数单位)在复平面上对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【知识点】复数的乘法运算;复数的几何意义。
L4【答案解析】B 解析:∵∴复数z在复平面上对应的点的坐标为,位于第二象限.故选B.【思路点拨】先利用复数的乘法运算求出Z,再判断即可。
【题文】3.已知命题,则为( )A.B.C.D.【知识点】全称命题、特称命题.A2【答案解析】B 解析:根据全称命题的否定是特称命题,故选B。
【思路点拨】将全称命题改为特称命题即可。
【题文】4.已知向量,,则( )A. B. C. D.【知识点】平面向量的坐标运算.F2【答案解析】C 解析:,则,故选C.【思路点拨】先求出向量的坐标,再计算即可。
【题文】5.下列函数中,在区间上为增函数的是( )A.B.C.D.【知识点】函数的单调性;利用导数研究函数的单调性。
B3 B12【答案解析】D 解析:在为增函数,故A错误;在上是减函数,在为增函数,故B错误;是R上的减函数;,所以在区间上为增函数. 故选D.【思路点拨】利用函数的单调性依次判断即可。
【题文】6.若变量满足约束条件,则的最小值为( )A.B.C.D.【知识点】简单的线性规划.E5【答案解析】C 解析:由约束条件画出可行域如图所示,则根据目标函数画出直线,由图形可知将直线平移至点取得的最小值,解方程组,得,即代入可得.故选C【思路点拨】先由线性约束条件画出可行域,再由线性目标函数求得最值。
2021年高三第二次高考模拟试题 数学理 含答案
2021年高三第二次高考模拟试题数学理含答案注意事项:1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第I卷时.选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效,第I卷一、选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.定义运算(a,b)※((c,d) =ac-bd,则符合条件(z,1+2i)※(1+i,1-i)=0的复数z所对应的点在A.第四象限B.第三象限C.第二象限D.第一象限2.一算法的程序框图如图,若输出的y=,则输入的x的值可能为A. -1B.0C.1 D.53.把函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再把所得函数的图象向右平移个单位,得到图象的解析式为A. y=5cosx B.y=5cos4xC.y=-5 cosx D.y=-5 cos4x4.已知直线a,b,平画,且a⊥,,则“a⊥b”是“∥”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.三个实数a、b、c成等比数列,若a+-b+c=l成立,则b的取值范围是A.(0,] B.[-1,] c.[-,0) D.6.如图,矩形ABCD 的四个顶点的坐标分别为 A(0,-1),B(,-1),C (,1),D(0,1),正弦曲线 和余弦曲线在矩形ABCD内交于点F ,向矩形ABCD 区域内随机投掷一点, 则该点落在阴影区域内的概率是 A . B . C . D . 7.设为非零向量,,两组向量和均由2个和2个排列而成.若.的所有可能取值中的最小值为,则与的夹角为 A . B . C . D . 8.已知点E 、F 、G 分别是正方体ABCD —A 1B 1C 1D 1的棱AA 1、CC 1、 DD 1的中点,点M 、N 、Q 、P 分别在线段DF 、AG 、BE-、C 1B 1上.以 M 、N 、Q 、P 为顶点的三棱锥P-MNQ 的俯视图不可能是9.对于任意的x ∈R ,不等式恒成立.则实数a 的取值范围是 A. a<2 B .a≤2 C .a≤3D .a<310.已知O 为坐标原点,向量.若平面区域D 由所有满足(22,11)OC OA OB λμλμ=+-≤≤-≤≤的点C 组成,则能够把区域D 的周长和面积同时分为相等的两部分的曲线是 A . B. C . D .11.已知双曲线是实轴顶点,F 是右焦点,B(0,b)是虚轴端点,若在线段BF 上(不含端点)存在不同的两点P i (i=1,2),使得△P i A 1A 2 (i=l ,2)构成以A 1A 2为斜边的直角三角形,则双曲线离心率e 的取值范围是 A . B . C . D .12.斜率为k (k≠0)的两条直线分别切函数的图象于A ,B 两点.若直线AB 的方程为y=2x -l ,则t 十k 的值为 A.8 B .7 C .6 D .5第Ⅱ卷本卷包括必考题和选考题两个部分。
2021年高三第二次调研考试数学(文)试卷 含答案
2021年高三第二次调研考试数学(文)试卷含答案数学(文科)xx.4本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.参考公式:用最小二乘法求线性回归方程的系数公式:,,其中,是数据的平均数.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.是虚数单位,复数在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2.平面向量,,若,则等于A .B .C .D .3.已知集合,,则A .B .C .D . 4.命题,,则为 A ., B ., C .,D .,5.已知直线,平面,则下列能推出的条件是 A., B., C., D.,6.已知某路口最高限速,电子监控测得连续辆汽车的速 度如图1的茎叶图(单位:).若从中任取辆, 则恰好有辆汽车超速的概率为A. B. C. D. 7.将函数的图象向右平移个单位,得到的图象关于原点对称,则的 最小正值为A .B .C .D .8.已知双曲线的中心在原点,焦点在轴上,若其渐近线与圆相切,则 此双曲线的离心率等于A . B. C. D . 9.如图2所示的程序框图的功能是求的值,则框图中的①、②两处应 分别填写A .,B .,C .,D .,10.定义在上的函数,单调递增,,若对任意,存在,使得成立,则称是在上的“追逐函数”.已知,下列四个函数:①;②;③;④.其中是在上的“追逐函数”的有 A .个 B.个 C .个 D .个(图1)二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.本大题分为必做题和选做题两部分.(一)必做题:第11、12、13题为必做题,每道试题考生都必须做答. 11.等差数列中,,则 .12.若实数满足,则的最小值为 .13.某几何体的三视图如图3所示,其中俯视图为半径为的四分之一个圆弧,则该几何体的体积为 .(二)选做题:第14、15分.14.(坐标系与参数方程选做题)在直角坐标系中,已知直线:(为参数)与曲线:(为参数)相交于、两点,则_________. 15.(几何证明选讲选做题)如图4,、是⊙的两条切线,切点分别为、.若,, 则⊙的半径为 .三、解答题:本大题6小题,满分80分.16.(本小题满分12分) 在中,已知,. (1)求与的值;(2)若角,,的对边分别为,,,且,求,的值.17.(本小题满分12分)A是指空气中直径小于或等于微米的颗粒物(也称可入肺颗粒物).为了探究车流量与的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与的数据如下表:(1)根据上表数据,请在下列坐标系中画出散点图;(2)根据上表数据,用最小二乘法求出关于的线性回归方程;(3)若周六同一时间段车流量是万辆,试根据(2)求出的线性回归方程预测,此时的浓度为多少(保留整数)?18.(本小题满分14分)如图5,是边长为的等边三角形,是等腰直角三角形,,平面平面,且平面,. (1)证明:平面; (2)证明:.DCABE(图5)19.(本小题满分14分)已知数列的前项和为,且满足,().(1)求,的值;(2)求数列的通项公式;(3)是否存在整数对,使得等式成立?若存在,请求出所有满足条件的;若不存在,请说明理由.20.(本小题满分14分)已知平面上的动点与点连线的斜率为,线段的中点与原点连线的斜率为,(),动点的轨迹为.(1)求曲线的方程;(2)恰好存在唯一一个同时满足以下条件的圆:①以曲线的弦为直径;②过点;③直径.求的取值范围.21.(本小题满分14分)已知函数,且对任意,都有.(1)求,的关系式;(2)若存在两个极值点,,且,求出的取值范围并证明;(3)在(2)的条件下,判断零点的个数,并说明理由.xx年深圳市高三年级第二次调研考试文科数学参考答案及评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数,选择题和填空题不给中间分数.一、选择题:本大题每小题5分,满分50分.二、填空题:本大题每小题5分;第14、15两小题中选做一题,如果两题都做,以第14题的得分为最后得分),满分20分.11.. 12.. 13. 14.. 15. .三、解答题:本大题6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)在中,已知,.(1)求与的值;(2)若角,,的对边分别为,,,且,求,的值. 解:(1),,…………………………………………………………………………………2分 又,………………………………………………………………………………3分 .………………………………………………………………………………4分 ,且,.………………………………………………………………………………………6分 (2)法一:由正弦定理得,,…………………………………………………………………………8分 另由得,解得或(舍去),………………………………………………………………11分 ,.………………………………………………………………………………12分 法二:由正弦定理得,,…………………………………………………………………………8分 又()cos cos cos()C A B A B π=--=-+,1111sin sin cos cos 1427A B A B =-=⨯=,……………………10分 得,即,………………………………………………………………………………………11分 ,.………………………………………………………………………………12分【说明】本题主要考查解三角形的基础知识,正、余弦定理,诱导公式,同角三角函数的基本关系,两角和与差的余弦公式等知识,考查了考生运算求解的能力.17.(本小题满分12分)是指空气中直径小于或等于微米的颗粒物(也称可入肺颗粒物).为了探究车流量与的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与的数据如下表:(1(2)根据上表数据,用最小二乘法求出关于的线性回归方程;(3)若周六同一时间段的车流量是万辆,试根据(2)求出的线性回归方程预测,此时的浓度为多少(保留整数)?解:(1)散点图如下图所示. ………………………………………………………………2分(2),,………6分51()()4534344564iii x x y y =--=⨯+⨯+⨯+⨯=∑,5222221()(4)(3)3450ii x x =-=-+-++=∑,,, …………………………………………………9分故关于的线性回归方程是:.…………………………………10分 (3)当时,所以可以预测此时的浓度约为.…………………………………………12分【说明】本题主要考查了线性回归分析的方法,包括散点图,用最小二乘法求参数,以及用回归方程进行预测等知识,考查了考生数据处理和运算能力.18.(本小题满分14分)如图,是边长为的等边三角形,是等腰直角三角形,,平面平面,且平面,. (1)证明:平面; (2)证明:.证明:(1)取的中点,连结、,…………1分 是等腰直角三角形,, ,,………………2分 又平面平面,平面平面,平面,………………………………3分 由已知得平面,,…………………………………………………………………………………4分 又,四边形为平行四边形,……………………………………………………………5分 ,…………………………………………………………………………………6分 而平面,平面,平面.……………………………………………………………………………7分 (2)为的中点,为等边三角形,,…………………………………………………………………………………8分 由(1)知平面,而平面,可得,………………………………………………………………………………9分 ,平面,…………………………………………………………………………10分 而平面,,………………………………………………………………………………11分 又,,………………………………………………………………………………12分 而,,DCABE平面,…………………………………………………………………………13分 又平面,.…………………………………………………………………………………14分【说明】本题主要考察空间点、线、面的位置关系,考查空间想象能力、运算能力和逻辑推理能力.19.(本小题满分14分)已知数列的前项和为,且满足,(). (1)求,的值; (2)求数列的通项公式;(3)是否存在整数对,使得等式成立?若存在,请求出所有满足条件的;若不存在,请说明理由.解:(1)当得,解得,………………………………………1分 当得,,解得,…………………………………………………………………………………3分 (2)当时,, 即,(),…………………………………………4分 另由得,所以数列是首项为,公比为的等比数列,……………………………………5分 .…………………………………………………………………………………6分 (2)把代入中得,即,……………………………………………………………………………7分2(2)1688(2)4(2)4(2)4n nn nm --+∴==--+-+-+,…………………………………………8分 要使是整数,则须有是整数,能被整除,……………………………………………………………………9分 当时,,,此时,……………………………10分 当时,,,此时,………………………………11分 当时,,,此时,………………………12分 当,,不可能是整数,…………………………………13分 综上所求,所求满足条件的整数对有,,.………………………14分【说明】本题主要考查等比数列的定义,会根据数列的递推关系求数列的前几项以及通项公式,考查考生运算求解、推理论证、处理变形的能力.20.(本小题满分14分)已知平面上的动点与点连线的斜率为,线段的中点与原点连线的斜率为, (),动点的轨迹为.(1)求曲线的方程;(2)恰好存在唯一一个同时满足以下条件的圆:①以曲线的弦为直径;②过点;③直径.求的取值范围.解:(1)设,记的中点为,所以.由题意 (), (),由可得:(),化简整理可得:(),曲线的方程为().……………………………………………6分(2)由题意,若存在以曲线的弦为直径的圆过点,则有,所以直线、的斜率都存在且不为,设直线的斜率为(不妨设),所以直线的方程为,直线的方程为,将直线和曲线的方程联立,得,消整理可得,解得,所以,以替换,可得222222221m k m NB m k m k==++, 又因为,即有,所以,所以,即,(1)当时,,解得;(2)当 时,方程有,所以方程有唯一解;(3)当时,方程有,且,所以方程有三个不等的根.综上,当 时,恰有一个圆符合题意.21.(本小题满分14分)已知函数,且对任意,都有.(1)用含的表达式表示;(2)若存在两个极值点,,且,求出的取值范围,并证明;(3)在(2)的条件下,判断零点的个数,并说明理由.解:(1)法一:根据题意:令,可得,∴,…………………………………………………………………………1分经验证,可得当时,对任意,都有,∴.………………………………………………………………………………………2分 法二:1()()ln ln b a f x f x ax x bx x x x+=-+--+ ,,………………………………………………1分∴要使上式对任意恒成立,则须有,即.……………………………2分(2)由(1)可知,且,,………………………………………………………3分令,要使存在两个极值点,,则须有有两个不相等的正数根,20102140(0)0a a a g a >⎧⎪⎪>⎪∴⎨⎪∆=->⎪=-<⎪⎩或20102140(0)0a aa g a <⎧⎪⎪>⎪⎨⎪∆=->⎪=->⎪⎩,解得或无解,………………………5分 的取值范围,可得, 由题意知2ln 22ln 2222ln )2(3322--+=+-=a a a a a a a f , 令,则,而当时,,即,在上单调递减, ∴1163()()2ln 24ln 23ln e 021616h x h >=-+-->->, 即时,.……………………………………………………………7分(3)∵,,令得:,,由(2)知时,的对称轴,,,∴,又,可得,此时,在上单调递减,上单调递增,上单调递减,所以最多只有三个不同的零点,…………………………………………………10分又∵,∴在上递增,即时,恒成立,根据(2)可知且所以,即∴,使得,……………………………………………………12分由,得,又,∴恰有三个不同的零点:.综上所述,恰有三个不同的零点.………………………………………………14分【说明】本小题主要考查函数、导数、不等式证明等知识,包括函数的极值、零点,二次方程根的分布等知识,考查考生综合运用数学知识解决问题的能力,同时也考查函数与方程思想、化归与转化思想.殷木森、蔡俊杰、李勇魏显峰q26079 65DF 旟332330 7E4A 繊29566 737E 獾24293 5EE5 廥35286 89D6 觖22869 5955 奕21167 52AF 劯W34562 8702 蜂^P20721 50F1 僱39389 99DD 駝。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题九 数学文化与应用创新题建议用时:45分钟一、选择题1、数学与建筑的结合造就建筑艺术品,2018年南非双曲线大教堂面世便惊艳世界,如图.若将此大教堂外形弧线的一段近似看成焦点在y 轴上的双曲线y 2a 2-x 2b 2=1(a >0,b >0)上支的一部分,且上焦点到上顶点的距离为2,到渐近线距离为22,则此双曲线的离心率为( )A .2B .3C .2 2D .2 32、数学家华罗庚倡导的“0.618优选法”在各领域都应用广泛,0.618就是黄金分割比512m -=的近似值,黄金分割比还可以表示成2sin18︒,则2242cos 271m m-=︒-( ). A .4B .51+C .2D .51-3、达芬奇的经典之作《蒙娜丽莎》举世闻名.如图,画中女子神秘的微笑,数百年来让无数观赏者入迷.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角A ,C 处作圆弧的切线,两条切线交于B 点,测得如下数据:AB =6 cm ,BC =6 cm ,AC =10.392 cm(其中32≈0.866).根据测量得到的结果推算:将《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角大约等于( )A.π3B.π4C.π2D.2π34、我国古代数学家提出的“中国剩余定理”又称“孙子定理”,它在世界数学史上具有光辉的一页,堪称数学史上名垂百世的成就,而且一直启发和指引着历代数学家们.定理涉及的是数的整除问题,其数学思想在近代数学、当代密码学研究及日常生活都有着广泛应用,为世界数学的发展做出了巨大贡献,现有这样一个整除问题:将1到2020这2020个整数中能被3除余2且被5除余2的数按从小到大的顺序排成一列,构成数列{}n a ,那么此数列的项数为( ) A .133B .134C .135D .1365、“干支纪年法”是我国历法的一种传统纪年法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.地支又与十二生肖“鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪”依次对应,“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅……癸酉;甲戌、乙亥、丙子……癸未;甲申、乙酉、丙戌……癸巳;……,共得到60个组合,称六十甲子,周而复始,无穷无尽.2020年是“干支纪年法”中的庚子年,那么2086年出生的孩子属相为( ) A .猴B .马C .羊D .鸡6、Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A .60B .63C .66D .697、“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为A .32fB .322fC .1252fD .1272f8、几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是A .440B .330C .220D .1109、学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为在圆锥底部挖去一个正方体后的剩余部分(正方体四个顶点在圆锥母线上,四个顶点在圆锥底面上),圆锥底面直径为10 2 cm ,高为10 cm.打印所用原料密度为1 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为(取π=3.14,精确到0.1)( )A .609.4 gB .447.3 gC .398.3 gD .357.3 g10、历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得π的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种π值的表达式纷纷出现,使得π值的计算精度也迅速增加.华理斯在1655年求出一个公式:π2=2×2×4×4×6×6×…1×3×3×5×5×7×…,根据该公式绘制出了估计圆周率π的近似值的程序框图,如下图所示,执行该程序框图,已知输出的T >2.8,若判断框内填入的条件为k ≥m ?,则正整数m 的最小值是( )A .2B .3C .4D .511、陀螺是中国民间最早的娱乐工具,也称陀罗. 如图,网格纸上小正方形的边长为1,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )A .(7+22)πB .(10+22)πC .(10+42)πD .(11+42)π12、埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .51- B .51- C .51+ D .51+ 二、填空题13、中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a 、b 、c ,三角形的面积S 可由公式()()()S p p a p b p c =---求得,其中p 为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足()6a b cm +=,()4c cm =,则此三角形面积的最大值为________2cm .14、如图所示,边长为1的正三角形ABC 中,点M ,N 分别在线段AB ,AC 上,将△AMN沿线段MN 进行翻折,得到如图所示的图形,翻折后的点A 在线段BC 上,则线段AM 的最小值为________.15、现代足球运动是世界上开展得最广泛、影响最大的运动项目,有人称它为“世界第一运动”.早在2000多年前的春秋战国时代,就有了一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球.1863年10月26日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为_____条.16、《九章算术》言:“勾股以御高深广远,今有弦五尺,勾三尺,问股为几何?其中弦代表直角三角形的斜边,勾、股代表两条直角边,则股为______尺,若今有弦t 尺,勾()1t -尺,股32t -尺,则弦为______尺.答案解析一、选择题1、B [双曲线y 2a 2-x 2b 2=1(a >0,b >0)的上焦点到上顶点的距离为2,到渐近线距离为22,可得:⎩⎪⎨⎪⎧c -a =2|bc |a 2+b 2=22c 2=a 2+b 2,解得a =1,c =3,b =22,所以双曲线的离心率为:e =ca =3.故选B.]2、【答案】C【详解】由题可知512sin182m -︒==,所以24sin18m =︒. 则222242sin1844sin 182cos 2712cos 271m m -︒-︒=︒-︒-2sin182cos18cos54︒•︒=︒2sin 36cos54︒=︒2=. 故选:C. 3、A [∵AB =6 cm ,BC =6 cm ,AC =10.392 cm(其中32≈0.866). 设∠ABC =2θ.∴sin θ=10.39226=0.866≈32, ∵ 由题意θ必为锐角,可得θ≈π3,设《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角为α. 则α+2θ=π, ∴α=π-2π3=π3.故选A.]4、【答案】C【详解】由数能被3除余2且被5除余2的数就是能被15除余2的数, 故()21151513n a n n =+-=-,由15132020n a n =-≤,得813515n ≤+,*n ∈N , 故此数列的项数为:135. 故选:C .5、【答案】B【详解】六十甲子,周而复始,无穷无尽,即周期是60,2086年与2026年一样,2020年是庚子年,2021年是辛丑年,2022年是壬寅年,2023年是癸卯年,2024年是甲辰年,2025年是乙巳年,2026年是丙午年,午对应属相为马。
则2086年出生的孩子属相为马. 故选:B 6、【答案】C 【详解】()()0.23531t K I t e--=+,所以()()0.23530.951t K I t K e**--==+,则()0.235319t e*-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈.故选:C. 7、【答案】D【详解】因为每一个单音与前一个单音频率比为1(2,)n n a n n N -+=≥∈,又1a f=,则7781a a q f === 故选D. 8、【答案】A【详解】由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -则该数列的前(1)122k k k ++++=项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=-,所以2314t k =-≥,则5t ≥,此时52329k =-=,所以对应满足条件的最小整数293054402N ⨯=+=,故选A. 9、C [如图,是几何体的轴截面,设正方体的棱长为a ,则22a 52=10-a10,解得a =5, ∴该模型的体积为:V =13π×(52)2×10-53=500π3-125≈398.33(cm3). ∴制作该模型所需原料的质量为398.33×1≈398.3(g). 故选C.10、B [初始:k =1,T =2,第一次循环:T =2×21×23=83<2.8,k =2,继续循环;第二次循环:T =83×43×45=12845>2.8,k =3,此时T >2.8,满足条件,结束循环, 所以判断框内填入的条件可以是k ≥3?,所以正整数m 的最小值是3,故选B11、C [由题意可知几何体的直观图如图,上部是底面半径为1,高为3的圆柱,下部是底面半径为2,高为2的圆锥,几何体的表面积为:4π+12×4π×22+2π×3=(10+42)π,故选C12、【答案】C【详解】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-,由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得154b a +=(负值舍去).故选:C.二、填空题 13、【答案】25【详解】由已知条件可得()52a b cp cm ++==,))2552a b cm S -∴+-=≤==.当且仅当()3a b cm==时,等号成立. 因此,该三角形面积的最大值为2.故答案为:14、23-3 设AM =x ,∠AMN =α,则BM =1-x ,∠AMB =180°-2α,∴∠BAM =2α-60°,在△ABM 中,由正弦定理可得AM sin ∠ABM =BMsin ∠BAM , 即x32=1-x sin (2α-60°),∴x =3232+sin (2α-60°), ∴当2α-60°=90°,即α=75°时, x 取得最小值3232+1=23-3.15、 12 90 [简单多面体的顶点数V ,面数F 与棱数E 间有关系式V +F -E =2,设该足球表面中的正五边形的面为x 个,正六边形的面为y 个, 则F =x +y ,V =5x ,E =5x +32y , ∴5x +(x +y)-⎝ ⎛⎭⎪⎫5x +32y =2, 化简,得2x -y =4, 正五边形的边有两种算法:单从正五边形看,这x 个正五边形共有5x 条边,从正六边形的角度看,每个正六边形有3条边是正五边形的边, y 个正六边形有6y 条边,其中正五边形的边的总数为:6y ×36=3y ,∴ 5x =3y.联立⎩⎪⎨⎪⎧2x -y =45x =3y ,解得x =12,y =20,∴该足球表面中的正五边形的面为12个, 该足球表面的棱为E =5x +32y =90个. 16、【答案】4 134=;当弦t 尺,勾()1t -尺,股32t -尺,则()222312t t t -⎛⎫-+= ⎪⎝⎭,且3t > 整理可得214130t t -+=, 3t >, 解得13t =.故弦为13尺 故答案为:4;13。