2019高中数学 第二章 基本初等函数(I)阶段质量检测 新人教A版必修1

合集下载

高中数学:新人教A版(必修1)第二章基本初等函数单元检测 答案

高中数学:新人教A版(必修1)第二章基本初等函数单元检测 答案
解得
(2) 在区间 上是增函数,
解得
又由函数 是减函数,得
21.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元,
(1)分别写出两类产品的收益与投资的函数关系;
14、已知 ,则 =______
【答案】
15、函11、已知函数 ,若 是该函数的最小值,则实数 的取值范围是_________
【答案】
16、给出下列4个结论:
①函数 与函数 的定义域相同
②函数 ( 为常数)图像可由 的图像平移得到
③函数 是奇函数且 是偶函数
④若幂函数 是奇函数,则 是定义域上的增函数
在R上是增函数, , ,
故选:B.
【点评】由题意利用指数函数的单调性和特殊点,得出结论.本题主要考查指数函数的单调性和特殊点,属于基础题.
2.已知 且 ,则函数 与函数 在同一坐标系中的图象可能是()
A. B. C. D.
【答案】B
【解析】解: 且 ,
所以函数 与函数 在同一坐标系中的图象可能是,
故选:B.
第二章基本初等函数单元测试
(满分150分,考试用时120分钟)
注意事项:
1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。
2.回答第I卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?

2019-2020年高中数学 第二章 基本初等函数(Ⅰ)综合测评(含解析)新人教A版必修1

2019-2020年高中数学 第二章 基本初等函数(Ⅰ)综合测评(含解析)新人教A版必修1

2019-2020年高中数学 第二章 基本初等函数(Ⅰ)综合测评(含解析)新人教A 版必修1一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(xx·蚌埠高一检测)指数函数y =a x 的图象经过点(2,16),则a 的值是( )A.14B.12C .2D .4 【解析】 依题意16=a 2,∴a =4或a =-4(舍去).【答案】 D2.若log 32=a ,则log 38-2log 36用a 表示为( )A .a -2B .a -1-a 2C .5a -2D .3a -2-a 2【解析】 log 38-2log 36=log 323-2(1+log 32)=3a -2-2a =a -2.【答案】 A3.设a =log 123,b =⎝ ⎛⎭⎪⎫130.2,c =213,则( ) A .a <b <cB .c <b <aC .c <a <bD .b <a <c【解析】 ∵a =log 123<log 121=0,0<b =⎝ ⎛⎭⎪⎫130.2<⎝ ⎛⎭⎪⎫130=1, c =213>20=1,∴c >b >a .【答案】 A4.已知f (x 6)=log 2x ,那么f (8)等于( )A.43 B .8C .18 D.12 【解析】 令x 6=8可知x =± 2.又∵x >0,∴x =2,∴f (8)=log 22=log 2212=12. 【答案】 D5.(xx·北京高考)下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1) 【解析】 A 项,函数y =x +1在[-1,+∞)上为增函数,所以函数在(0,+∞)上为增函数,故正确;B 项,函数y =(x-1)2在(-∞,1)上为减函数,在[1,+∞)上为增函数,故错误;C 项,函数y =2-x =⎝ ⎛⎭⎪⎫12x在R 上为减函数,故错误;D 项,函数y =log 0.5(x +1)在(-1,+∞)上为减函数,故错误.【答案】 A6.函数y =⎩⎪⎨⎪⎧x 2(x <0),2x -1(x ≥0)的图象大致是( ) 【解析】 当x <0时,函数的图象是抛物线的一部分,当x ≥0时,只需把y =2x (x ≥0)的图象向下平移1个单位即可,故大致图象为B.【答案】 B7.函数f (x )=log 12(1+2x -x 2)的值域为( ) A .[-1,0)B .[-1,+∞)C .(0,1)D .[1,+∞)【解析】 f (x )=log 12(1+2x -x 2)=log 12[-(x -1)2+2],因为0<-(x -1)2+2≤2,且y =log 12x 为减函数,因此有f (x )=log 12[-(x -1)2+2]≥log 122=-1,即其值域为[-1,+∞). 【答案】 B8.已知函数f (x )是奇函数,当x >0时,f (x )=a x (a >0且a ≠1),且f (log 124)=-3,则a 的值为( ) A. 3 B .3 C .9 D.32【解析】 ∵f (log 124)=f (log 214)=f (-2)=-f (2)=-a 2=-3,∴a 2=3,解得a =±3,又a >0,∴a = 3.【答案】 A9.(xx·山东高考)图1已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图1,则下列结论成立的是( ) A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1【解析】由对数函数的图象和性质及函数图象的平移变换知0<a<1,0<c<1.【答案】 D10.(xx·湖南高考)函数f(x)=ln x的图象与函数g(x)=x2-4x+4的图象的交点个数为( ) A.0 B.1 C.2 D.3【解析】 g (x )=x 2-4x +4=(x -2)2,在同一平面直角坐标系内画出函数f (x )=ln x 与g (x )=(x -2)2的图象(如图).由图可得两个函数的图象有2个交点.【答案】 C11.设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=( )A .-3B .-1C .1D .3【解析】 ∵f (x )是R 上的奇函数,∴f (0)=0.又x ≥0时,f (x )=2x +2x +b ,∴20+b =0,b =-1.∴当x ≥0时,f (x )=2x+2x -1.∴f (1)=21+2×1-1=3.∵f (x )是R 上的奇函数,∴f (-1)=-f (1)=-3.【答案】 A 12.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝ ⎛⎭⎪⎫12x -1,x <2,满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2)B.⎝ ⎛⎦⎥⎤-∞,138 C .(-∞,2] D.⎣⎢⎡⎭⎪⎫138,2【解析】 由题意知函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,(a -2)×2≤⎝ ⎛⎭⎪⎫122-1,由此解得a ≤138,即实数a 的取值范围为⎝ ⎛⎦⎥⎤-∞,138,选B. 【答案】 B二、填空题(本大题共4小题,每小题5分共20分,将答案填在题中的横线上)13.已知幂函数y =f (x )的图象经过点(2,2),则f (9)=________.【解析】 幂函数y =f (x )的图象经过点(2,2),可得y =f (x )=x 12,所以f (9)=3. 【答案】 314.函数y =log 12(3x -a )的定义域是⎝ ⎛⎭⎪⎫23,+∞,则a =________. 【解析】 由3x -a >0得x >a 3.因此,函数y =log 12(3x -a )的定义域是⎝ ⎛⎭⎪⎫a 3,+∞,所以a 3=23,a =2. 【答案】 215.(xx·天津高考)函数f (x )=lg x 2的单调递减区间是________.【解析】函数f (x )是定义域为{x |x ≠0}的偶函数,且f (x )=lg x 2=⎩⎪⎨⎪⎧2lg x ,x >0,2lg (-x ),x <0. 函数大致图象如图所示,所以函数的单调递减区间是(-∞,0).【答案】 (-∞,0)16.下列说法中,正确的是________.(填序号)①任取x >0,均有3x >2x ;②当a >0,且a ≠1时,有a 3>a 2;③y =(3)-x 是增函数;④y =2|x |的最小值为1;⑤在同一坐标系中,y =2x 与y =2-x 的图象关于y 轴对称.【解析】 对于①,可知任取x >0,3x >2x一定成立.对于②,当0<a <1时,a 3<a 2,故②不一定正确.对于③,y =(3)-x =⎝ ⎛⎭⎪⎫33x,因为0<33<1,故y =(3)-x 是减函数,故③不正确.对于④,因为|x |≥0,∴y =2|x |的最小值为1,正确.对于⑤,y =2x 与y =2-x 的图象关于y 轴对称是正确的.【答案】 ①④⑤三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)化简:(1)(32×3)6+(22)43-4⎝ ⎛⎭⎪⎫1649-12-42×80.25-(-2 005)0. (2)log 2.56.25+lg 1100+ln(e e)+log 2(log 216). 【解】 (1)原式=(213×312)6+(212×214)43-4×74-214×234-1 =22×33+2-7-2-1=100.(2)原式=2-2+32+log 24=72. 18.(本小题满分12分)(xx·苏州高一检测)已知a >0,且a ≠1,若函数f (x )=2a x-5在区间[-1,2]的最大值为10,求a 的值.【解】 当0<a <1时,f (x )在[-1,2]上是减函数,当x =-1时,函数f (x )取得最大值,则由2a -1-5=10,得a =215, 当a >1时,f (x )在[-1,2]上是增函数,当x =2时,函数取得最大值,则由2a 2-5=10,得a =302或a =-302(舍), 综上所述,a =215或302. 19.(本小题满分12分)已知函数f (x )=log a (x 2-2),f (2)=1.(1)求a 的值;(2)求f (32)的值;(3)解不等式f (x )<f (x +2).【解】 (1)∵f (2)=1,∴log a (22-2)=1,即log a 2=1,解得a =2.(2)由(1)得函数f (x )=log 2(x 2-2),则f (32)=log 2[(32)2-2]=log 216=4.(3)不等式f (x )<f (x +2),即log 2(x 2-2)<log 2[(x +2)2-2],化简不等式得log 2(x 2-2)<log 2(x 2+4x +2).∵函数y =log 2x 在(0,+∞)上为增函数, ∴⎩⎪⎨⎪⎧x 2-2>0,x 2+4x +2>0,x 2-2<x 2+4x +2,解得x >2, ∴原不等式的解集为(2,+∞).20.(本小题满分12分)已知函数f (x )=m -22x +1是R 上的奇函数, (1)求m 的值;(2)先判断f (x )的单调性,再证明之.【解】 (1)据题意有f (0)=0,则m =1.(2)f (x )在R 上单调递增,以下证明之:任取x 1,x 2∈R ,且x 1<x 2,f (x 2)-f (x 1)=-22x 2+1+22x 1+1=2(2x 2-2x 1)(2x 2+1)(2x 1+1). ∵x 2>x 1,∴2x 2>2x 1,∴f (x 2)-f (x 1)>0⇒f (x 2)>f (x 1),故f (x )在R 上单调递增.21.(本小题满分12分)牛奶保鲜时间因储藏时温度的不同而不同,假定保鲜时间与储藏温度之间的函数关系是一种指数型函数,若牛奶放在0 ℃的冰箱中,保鲜时间是200 h ,而在1 ℃的温度下则是160 h.(1)写出保鲜时间y 关于储藏温度x 的函数解析式.(2)利用(1)的结论,指出温度在2 ℃和3 ℃的保鲜时间.【解】 (1)由于保鲜时间与储藏温度之间的函数关系是一种指数型函数,可设为y =t ·a x,由题意可得: ⎩⎪⎨⎪⎧200=t ·a 0,160=t ·a 1,解得⎩⎪⎨⎪⎧t =200,a =45,故函数解析式为y =200·⎝ ⎛⎭⎪⎫45x. (2)当x =2 ℃时,y =200×⎝ ⎛⎭⎪⎫452=128(h). 当x =3 ℃时,y =200×⎝ ⎛⎭⎪⎫453=102.4(h). 故温度在2 ℃和3 ℃的保鲜时间分别为128小时和102.4小时.22.(本小题满分12分)已知函数f (x )=log a (x -1),g (x )=log a (3-x )(a >0且a ≠1). (1)求函数h (x )=f (x )-g (x )的定义域;(2)利用对数函数的单调性,讨论不等式f (x )≥g (x )中x 的取值范围.【解】 (1)由⎩⎪⎨⎪⎧x -1>0,3-x >0,得1<x <3.∴函数h (x )的定义域为(1,3). (2)不等式f (x )≥g (x ),即为log a (x -1)≥log a (3-x ).(*)①当0<a <1时,不等式(*)等价于⎩⎪⎨⎪⎧1<x <3,x -1≤3-x ,解得1<x ≤2.②当a >1时,不等式(*)等价于⎩⎪⎨⎪⎧1<x <3,x -1≥3-x ,解得2≤x<3.综上,当0<a<1时,原不等式解集为(1,2];当a>1时,原不等式解集为[2,3).2019-2020年高中数学 第二章 基本初等函数(Ⅰ)阶段质量评估 新人教A 版必修1一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(xx·重庆高考)函数y =1log 2x -的定义域是( ) A .(-∞,2) B .(2,+∞) C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)解析:利用函数有意义的条件直接运算求解.由⎩⎪⎨⎪⎧log 2x -,x -2>0,得x >2且x ≠3,故选C.答案:C2.下列关于函数f (x )=x 3的性质表述正确的是( ) A .奇函数,在(-∞,+∞)上单调递增 B .奇函数,在(-∞,+∞)上单调递减 C .偶函数,在(-∞,+∞)上单调递增 D .偶函数,在(-∞,+∞)上单调递减解析:本题主要考查幂函数的性质.函数f (x )=x 3是奇函数,且在(-∞,+∞)上单调递增,故选A.答案:A3.设集合S ={y |y =3x,x ∈R },T ={(x ,y )|y =x 2-1,x ∈R },则S ∩T 是( ) A .(0,+∞) B .(-1,+∞) C .∅D .R解析:本题主要考查指数函数的值域及集合运算,集合S 是指数函数y =3x的值域,而集合T 表示函数y =x 2-1图象上的点,两个集合中的元素不相同,所以交集是空集,故选C.答案:C4.已知函数f (x )=⎩⎪⎨⎪⎧log 3x x >⎝ ⎛⎭⎪⎫12xx ,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫127=( )A .-18B .18C .-8D .8解析:本题主要考查与指数和对数有关的分段函数的求值.因为f ⎝ ⎛⎭⎪⎫127=log 3127=-3,所以f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫127=f (-3)=⎝ ⎛⎭⎪⎫12-3=8,故选D.答案:D5.若P =log 23·log 34,Q =lg 2+lg 5,M =e 0,N =ln 1,则正确的是( ) A .P =Q B .Q =M C .M =ND .N =P解析:P =lg 3lg 2·lg 4lg 3=lg 4lg 2=2,Q =lg (2×5)=lg 10=1,M =e 0=1, N =ln 1=0.故选B.答案:B6.已知函数f (x )=⎝ ⎛⎭⎪⎫12x,则函数f (x +1)的反函数的图象可能是( )解析:∵f (x )=⎝ ⎛⎭⎪⎫12x ,∴f (x +1)=⎝ ⎛⎭⎪⎫12x +1,f (x +1)的反函数为y =log 12x -1.故选D.答案:D7.设f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x+2x +b (b 为常数),则f (-1)=( )A .1B .-1C .3D .-3解析:本题主要考查函数奇偶性的应用以及函数值的求解.因为f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x+2x +b (b 为常数),所以f (0)=20+b =1+b =0,解得b =-1,所以f (-1)=-f (1)=-(2+2-1)=-3,故选D.答案:D8.(xx·北京高考)函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )=( )A .ex +1B .ex -1C .e-x +1D .e-x -1解析:利用两曲线关于y 轴对称的性质,逆用函数图象的平移变换规则求解. 曲线y =e x 关于y 轴对称的曲线为y =e -x ,将y =e -x 向左平移1个单位长度得到y =e-(x +1),即f (x )=e -x -1.答案:D9.函数f (x )=log 2(x +x 2+1)(x ∈R )的奇偶性为( ) A .奇函数而非偶函数 B .偶函数而非奇函数 C .非奇非偶函数D .既是奇函数又是偶函数解析:易知f (x )的定义域为R ,关于原点对称,f (-x )=log 2(x 2+1-x )=log 2⎝⎛⎭⎪⎫1x 2+1+x =-log 2(x +x 2+1)=-f (x ),∴f (x )是奇函数. 答案:A10.若log (a -1)(2x -1)>log (a -1)(x -1),则有( ) A .a >1,x >0 B .a >1,x >1 C .a >2,x >0D .a >2,x >1解析:由题意知⎩⎪⎨⎪⎧2x -1>0,x -1>0,得x >1.因为当x >1时,2x -1>x -1,所以由对数函数性质知a -1>1,即a >2,故选D. 答案:D11.关于x 的方程a x=log 1ax (a >0,且a ≠1)( )A .无解B .必有唯一解C .仅当a >1时有唯一解D .仅当0<a <1时有唯一解解析:在同一平面直角坐标系中分别画出函数y =a x,y =log 1ax 的图象,由图象可知,必有唯一的交点.答案:B12.设函数f (x )定义在R 上,f (2-x )=f (x ),且当x ≥1时,f (x )=log 2x ,则有( )A .f (-3)<f (2)<f ⎝ ⎛⎭⎪⎫12B .f ⎝ ⎛⎭⎪⎫12<f (2)<f (-3)C .f ⎝ ⎛⎭⎪⎫12<f (-3)<f (2)D .f (2)<f ⎝ ⎛⎭⎪⎫12<f (-3) 解析:本题主要考查对数函数的单调性.由f (x )=f (2-x ),得f (-3)=f (5),f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32.当x ≥1时,函数f (x )=log 2x 为增函数,可知f ⎝ ⎛⎭⎪⎫32<f (2)<f (5),即f ⎝ ⎛⎭⎪⎫12<f (2)<f (-3),故选B.答案:B第Ⅱ卷(非选择题)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.若x 12 +x -12 =3则x +x -1=______.解析:本题主要考查指数式的运算.对x 12 +x -12 =3两边平方得x +x -1+2=9,所以x +x -1=7.答案:714.函数y =(2)1x 的单调递减区间是______.解析:本题主要考查指数函数与反比例函数的复合函数的单调性,函数y =(2)1x 的单调递减区间即为y =1x的单调递减区间,也即为(-∞,0),(0,+∞).答案:(-∞,0),(0,+∞) 15.已知函数f (x )=a2x -4+n (a >0且a ≠1)的图象恒过定点P (m,2),则m +n =______.解析:本题主要考查指数函数的图象及图象变换,当2x -4=0,即x =2时,f (x )=1+n ,函数图象恒过点(2,1+n ),所以m =2,1+n =2,即m =2,n =1,所以m +n =3.答案:316.定义在R 上的偶函数f (x )在[0,+∞)上单调递减,且f ⎝ ⎛⎭⎪⎫12=0,则满足f (log 14x )<0的集合为______.解析:本题主要考查函数的奇偶性、单调性的应用和对数不等式的解法.因为定义在R上的偶函数f (x )在[0,+∞)上单调递减,所以在(-∞,0]上单调递增.又f ⎝ ⎛⎭⎪⎫12=0,所以f ⎝ ⎛⎭⎪⎫-12=0,由f ⎝⎛⎭⎪⎫log 14x <0可得log 14x <-12,或log 14x >12,解得x ∈(0,12)∪(2,+∞).答案:⎝ ⎛⎭⎪⎫0,12∪()2,+∞ 三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)计算:(1)2723 -2log 23×log 2 18+2lg (3+5+3-5);(2)810+41084+411. 解:(1)2723 -2log 23×log 218+2lg(3+5+3-5)(3分)=(33) 23 -3×log 22-3+lg(3+5+3-5)2=9+9+lg 10 =19.(7分) (2)810+41084+411=230+220212+222=22010+21210+=28=16.(12分)18.(本小题满分12分)设y 1=log a (3x +1),y 2=log a (-3x ),其中0<a <1. (1)若y 1=y 2,求x 的值; (2)若y 1>y 2,求x 的取值范围. 解:(1)∵y 1=y 2,∴log a (3x +1)=log a (-3x ), ∴3x +1=-3x .解得x =-16,(3分) 经检验x =-16在函数的定义域内,∴x =-16.(4分) (2)y 1>y 2,即log a (3x +1)>log a (-3x )(0<a <1),(6分)∴⎩⎪⎨⎪⎧3x +1>0-3x >03x +1<-3x,解得-13<x <-16,(10分)∴x 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13<x <-16.(12分)19.(本小题满分12分)已知函数f (x )=b ·a x(其中a ,b 为常量且a >0,a ≠1)的图象经过点A (1,6),B (3,24).(1)试确定f (x );(2)若不等式⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1bx-m ≥0,在x ∈(-∞,1]时恒成立,求实数m 的取值范围.解:(1)把A (1,6),B (3,24)代入f (x )=b ·ax得⎩⎪⎨⎪⎧6=ab24=b ·a 3,结合a >0,且a ≠1解得⎩⎪⎨⎪⎧a =2,b =3∴f (x )=3×2x. (6分)(2)要使⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x ≥m 在x ∈(-∞,1]时恒成立,只需保证函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上的最小值不小于m 即可.∵函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上为减函数,∴当x =1时,y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x有最小值56,∴只需m ≤56即可.(12分)20.(本小题满分12分)设函数f (x )=(log 2x +log 24)(log 2x +log 22)的定义域为⎣⎢⎡⎦⎥⎤14,4. (1)若t =log 2x ,求t 的取值范围;(2)求y =f (x )的最大值与最小值,并求出取最值时对应的x 的值.解:(1)∵t =log 2 x 为单调递增函数,而x ∈⎣⎢⎡⎦⎥⎤14,4, ∴t 的取值范围为⎣⎢⎡⎦⎥⎤log 214,log 24,即[-2,2].(4分)(2)记t =log 2x ,则y =f (x )=(log 2x +2)(log 2x +1)=(t +2)(t +1)(-2≤t ≤2).(5分)∵y =⎝ ⎛⎭⎪⎫t +322-14在⎣⎢⎡⎦⎥⎤-2,-32上是减函数,在⎣⎢⎡⎦⎥⎤-32,2上是增函数,(6分)∴当t =log 2 x =-32,即x =2-32 =24时,y =f (x )有最小值f ⎝ ⎛⎭⎪⎫24=-14; (9分)当t =log 2x =2,即x =22=4时,y =f (x )有最大值f (4)=12. (12分)21.(本小题满分12分)若点()2,2在幂函数f (x )的图象上,点⎝ ⎛⎭⎪⎫2,12在幂函数g (x )的图象上,定义h (x )=⎩⎪⎨⎪⎧fx ,f x g xg x ,f x >g x,求函数h (x )的最大值以及单调区间.解:设f (x )=x α,因为点(2,2)在幂函数f (x )的图象上,所以(2)α=2,解得α=2,所以f (x )=x 2.(2分)又设g (x )=x β,由点⎝ ⎛⎭⎪⎫2,12在幂函数g (x )的图象上,所以 2β=12,解得β=-1,所以g (x )=x -1.(4分)在同一坐标系中画出函数f (x )=x 2和g (x )=x -1的图象,由题意及图可知h (x )=⎩⎪⎨⎪⎧x -1,x <0或x >1x 2,0<x ≤1, (7分) 根据函数h (x )的解析式及图象可知函数h (x )的最大值为1,(9分)所以h (x )的单调递增区间是(0,1],单调递减区间是(-∞,0)和(1,+∞).(12分) 22.(本小题满分14分)已知定义域为R 的函数f (x )=-2x+b 2x +1+2是奇函数.(1)求实数b 的值;(2)判断并证明函数f (x )的单调性;(3)若关于x 的方程f (x )=m 在x ∈[0,1]上有解,求实数m 的取值范围. 解:(1)∵f (x )为奇函数,∴f (0)=0,此时有f (0)=-1+b4=0,解得b =1.经检验,满足题意. (4分)(2)由(1)知:f (x )=12⎝ ⎛⎭⎪⎫-1+22x +1=-2x +12x +1+2.(6分)任取x 1,x 2∈R ,且x 1<x 2,则f (x 2)-f (x 1) =-12⎝ ⎛⎭⎪⎫-1+22x 1+1+12⎝ ⎛⎭⎪⎫-1+22 x 2+1 =12⎝ ⎛⎭⎪⎫22 x 2+1-22 x 1+1=2 x 1-2x2 x 1+x2+∵x 1<x 2,∴2 x 1-2 x 2<0,2 x 1+1>0,2 x2+1>0, ∴f (x 2)-f (x 1)<0,∴f (x 2)<f (x 1). ∴f (x )为R 上的减函数;(10分)(3)由(2)知:f (x )为R 上的减函数.x ∈[0,1]时,f (x )max =f (0)=0,f (x )min =f (1)=-16;故f (x )∈⎣⎢⎡⎦⎥⎤-16,0.∵关于x 的方程f (x )=m 在x ∈[0,1]上有解,所以只需要m ∈⎣⎢⎡⎦⎥⎤-16,0. (14分)。

高中数学 第二章基本初等函数(I)综合测试(一) 新人教A版版必修1

高中数学 第二章基本初等函数(I)综合测试(一) 新人教A版版必修1

基本初等函数(I )综合测试(一)一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的.1.对任意实数x ,下列等式恒成立的是( ).A .211332()x x = B .211332()x x = C .311535()x x = D .131355()x x --=2.函数()log (0,1)a f x x a a =>≠且对任意正实数,x y 都有( ). A .()()()f xy f x f y = B .()()()f xy f x f y =+ C .()()()f x y f x f y += D .()()()f x y f x f y +=+ 3.设11112511(log )(log )33x --=+,则x 属于区间( ). A .(2,1)-- B .(1,2) C .(3,2)-- D .(2,3) 4.如果幂函数222(33)mm y m m x --=-+的图象不过原点,则m 取值是( ).A .12m -≤≤B .1m =或2m =C .2m =D .1m =5.化简11410104848++的值等于( ). A .4 B .8 C .12 D .16 6.已知111222log log log b a c <<,则( ).A .222b a c >>B .222a b c >> B .222c b a >> D .222c a b>> 7.已知函数2(3)log f x =(1)f 的值为( ). A.2log .2 C .1 D .128.设11132a ⎧⎫∈-⎨⎬⎩⎭,,,,则使函数ay x =的定义域为R 且为奇函数的所有a 值为( ).A .1,3B .1-,1C .1-,3D .1-,1,39.已知1()lg1xf x x-=+,且()()()f x f y f z +=,则z =( ). A .xy x y + B .1x y xy ++ C .1x y xy-+ D .xy x y +10.下列函数中,是偶函数且在区间(0,)+∞上单调递减的是( ).A .||3x y =- B .13y x = C .23log y x = D .2y x x =-11.函数212()log (25)f x x x =-+的值域是( ).A .[2,)-+∞B .(,2]-∞-C .(0,1)D .(,2]-∞12.函数()log 1a f x x =-在(0,1)上递减,那么()f x 在(1,)+∞上( ).A .递增且无最大值B .递减且无最小值C .递增且有最大值D .递减且有最小值二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. 13.若集合{|2}xM y y ==,2{|}N y y x ==,则下列结论①{2,4}M N =I ; ②{4,16}M N =I ;③[0,)M N =+∞U ;④M N =;⑤M N ,其中正确的结论的序号为_____________. 14.若1,0a b >>,且22bb a a-+=b b a a --=__________.15.函数2()lg(21)12f x x x=+-的定义域是__________. 16.若函数2()(1)()21x F x f x =+-是偶函数,且()f x 不恒为0,则()f x 是_____函数 (填奇或偶).三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)321lg5(lg8lg1000)(lg 2lg lg 0.066++++;18.(本小题满分12分)比较下列各组数的大小:(1)0.17-和 0.27(-; (2)163()4和154()3-; (3)2(0.8)-和125()3-. 19.(本小题满分12分) 已知函数221()(2)mm f x m m x +-=+,m 为何值时,()f x 是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.20.(本小题满分12分)已知2562≤x且21log 2≥x ,求函数2log2log )(22xx x f ⋅=的最大值和最小值. 21.(本小题满分12分)解方程:(1)192327xx ---⋅= (2)649x x x +=.22.(本小题满分12分) 已知函数()log ax bf x x b+=-(01,0)a a b >≠>且. (1)求()f x 的定义域; (2)讨论()f x 的奇偶性;(3)讨论()f x 在b ∞(,+)上的单调性.答案与解析: 一、选择题1.C 对于A .211332()x x =的左边恒为非负,而右边为一切实数;对于B .211332()x x =的左边恒为非负,而右边为一切实数;对于D .131355()x x --=的左边的0x ≠.2.B ()log ()log log ()()a a a f xy xy x y f x f y ==+=+.3.D 1125333(log 3)(log 3)log 2log 5log 10x --=+=+=,333log 9log 10log 27<<.4.B 2331m m -+=,得1m =或2m =,再验证220m m --≤.5.16====. 6.A 由已知b a c >>,因为2xy =在定义域内是单调递增的,所以222b a c>>.7.C 由2(3)log f x =222()log (1)log log 21f x f ====.8.A 函数ay x =的定义域为R ,而当1a =-时,11y x x-==的定义域不为R ,即1a ≠-. 9.B 111lglg lg 111x y z x y z ---+=+++,111111x y z x y z ---⋅=+++,即(1)(1)1(1)(1)1x y zx y z ---=+++, (1)(1)(1)(1)(1)(1)x y z x y z --+=++-,(1)(1)(1)(1)(1)(1)(1)(1)x y x y z x y x y z --+--=++-++(1)(1)(1)(1)22(1)(1)(1)(1)221x y x y x y x y z x y x y xy xy++---++===+++--++.10.A 是偶函数排除了B ,D ;在区间(0,)+∞上单调递减排除了C .11.B 2225(1)44,x x x -+=-+≥而101,2<<21122log (25)log 42x x -+≤=-. 12.A 令1u x =-,(0,1)是u 的递减区间,即1a >,(1,)+∞是u 的递增区间,即()f x 递增且无最大值. 二、填空题13.③,⑤ {|20}(0,)xM y y ==>=+∞;2{|0}[0,)N y y x ==≥=+∞.14.2 22()()44bb bb a a a a ---=+-=,而b b a a ->,即0b ba a -->.15.11(,)22- 由1201121022x x x ->⎧⇒-<<⎨+>⎩.16.奇 令221()12121x x x g x +=+=--,2112()()2112x xxxg x g x --++-===---. 三、解答题17.解:原式2lg 5(3lg 23)2)lg 0.01=+++23lg 2lg53lg53lg 22=⋅++-3lg 2(lg5lg 2)3lg52=++-32=- 1=18.解:(1)4xy =在(,)-∞+∞上是减函数,又0.10.2->-,故0.10.244--<; (2)116634()()43-=,由4()3x y =的单调性可得,116544()()33-->,即 116534()()43->;(3)由2(0.8)1-> 而125()13-<,可知1225(0.8)()3-->.19.解:(1)当211m m +-=,且220m m +≠时,即1m =,()f x 是正比例函数;(2)当211m m +-=-,且220m m +≠时,即1m =-,()f x 是反比例函数;(3)当212m m +-=,且220m m +≠时,即m =,()f x 是二次函数; (4)当221m m +=时,即1m =-±()f x 是幂函数.20.解:由2256x≤得8x ≤,2log 3x ≤,即21log 32x ≤≤, 222231()(log 1)(log 2)(log )24f x x x x =-⋅-=--.当23log ,2x =min 1()4f x =-,当2log 3,x =max ()2f x =.21.解:(1)2(3)63270x x---⋅-=,(33)(39)0x x --+-=,330x -+≠Q , 2390,33x x ---==,2x =-. (2)24()()139x x+=,222()()1033x x +-=, 2()03x>,21()32x=,231log 2x =. 22.解:(1)0x bx b+>-,即()()0x b x b +->,而0b >, 得x b >,或x b <-,即()f x 的定义域,b b ∞-∞U (-)(,+); (2)1()log log log ()aa a xb x b x b f x x b x b x b--+-+-===--+-,即()log ()ax bf x f x x b+-=-=--, 得()f x 为奇函数;(3)2()log log(1)a ax b bf xx b x b+==+--,令21tx b=+-,在b∞(,+)上,t是减函数,当1a>时,()f x在b∞(,+)上是减函数,当01a<<时,()f x在b∞(,+)上是增函数.。

高中数学 第二章 基本初等函数(Ⅰ)单元测试(二)新人教A版必修1-新人教A版高一必修1数学试题

高中数学 第二章 基本初等函数(Ⅰ)单元测试(二)新人教A版必修1-新人教A版高一必修1数学试题

word1 / 7第二章 基本初等函数(Ⅰ)注意事项:1.答题前,先将自己的某某、某某号填写在试题卷和答题卡上,并将某某号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.()0a a >可以化简为( )A .32aB .18a C .34aD .38a2.三个数21log 5,0.12,0.22的大小关系是( )A .0.10.221log <2<25B .0.20.121log <225<C .0.10.2212<2log 5< D .0.10.2212<log 25< 3.设集合2R {|}x A y y x ∈==,,21{|}0B x x <=-,则A B =( )A .()1,1-B .()0,1C .()1-∞,+D .(0)∞,+4.已知23xy=,则xy=( )A .lg 2lg 3B .lg 3lg 2C .2lg 3D .3lg 25.函数()ln f x x x =的图象大致是( )6.若函数()33x x f x -=+与()33x x g x -=-的定义域均为R ,则( ) A .()f x 与()g x 均为偶函数 B .()f x 为奇函数,()g x 为偶函数 C .()f x 与()g x 均为奇函数 D .()f x 为偶函数,()g x 为奇函数 7.函数121(22)m y m m x -=+-是幂函数,则m =( )A .1B .3-C .3-或1D .28.下列各函数中,值域为(0)∞,+的是( ) A .22x y -=B .12y x =-C .21y x x =++D .113x y +=9.已知函数:①2xy =;②2log y x =;③1y x -=;④12y x =;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是( )A .②①③④B .②③①④C .④①③②D .④③①②10.设函数()()211log 2121x x x f x x -⎧+-<⎪=⎨≥⎪⎩,则()22log ()12f f -+=( )A .3B .6C .9D .1211.已知函数()22()1122xa xx f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠都有word2 / 7()()1212f x f x x x -<0-成立,则实数a 的取值X 围为( )A .()2-∞,B .13,8⎛⎤-∞ ⎥⎝⎦C .(2]-∞,-D .13,28⎡⎫⎪⎢⎣⎭12.如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点()1,1M ,()1,2N ,()2,1P ,()2,2Q ,1G 2,2⎛⎫⎪⎝⎭中,可以是“好点”的个数为( ) A .0个 B .1个C .2个D .3个二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知124(0)9a a =>,则23log a =________.14.已知函数2log 0()30xxx f x x >⎧⎪⎨≤⎪⎩,则14f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________. 15.若函数212log (35)y x ax =-+在[)1-∞,+上是减函数,则实数a 的取值X 围是________.16.如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数22logy x =,12y x =,22xy ⎛⎫= ⎪ ⎪⎝⎭的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2, 则点D 的坐标为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)()31320.5log 511lg3lg91lg 812730.25-⎛⎫++-+-+ ⎪⎝⎭.18.(12分)已知函数1()=2axf x ⎛⎫⎪⎝⎭,a 为常数,且函数的图象过点()1,2-.(1)求a 的值;(2)若()42x g x --=,且g (x )=f (x ),求满足条件的x 的值.word3 / 719.(12分)已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求f (x )的最值; (2)求使f (x )-g (x )>0的x 的取值X 围.20.(12分)求使不等式2821x x a a --⎛⎫> ⎪⎝⎭成立的x 的集合(其中a >0,且a ≠1).word4 / 721.(12分)已知函数f (x )=2x的定义域是[0,3],设g (x )=f (2x )-f (x +2), (1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.(12分)若函数f (x )满足21(log )1a a f x x x a ⎛⎫=⋅- ⎪-⎝⎭ (其中a >0且a ≠1).(1)求函数f (x )的解析式,并判断其奇偶性和单调性;(2)当x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值X 围.word1 / 72018-2019学年必修一第二章训练卷基本初等函数(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】因为0a >,所以B .2.【答案】A【解析】∵21log <05,0.10.2022<<,∴0.10.221log <2<25,故选A .3.【答案】C【解析】{}2R {|}0|x A y y x y y ∈>==,=.2{|}{1011|}B x x x x <<<=-=-, ∴{}0111|{|}{|}AB x x x x x x ><<>=-=-,故选C .4.【答案】B【解析】由23x y =得lg 2lg3x y =,∴lg2lg3x y =,∴lg3lg 2x y =,故选B . 5.【答案】A【解析】由()ln l ()n ||f x x x x x f x --=-=-=-知,函数()f x 是奇函数,故排除C ,D ,又110f e e ⎛⎫=-< ⎪⎝⎭,从而排除B ,故选A .6.【答案】D【解析】因为()()33x x f x f x --=+=,()()33x x g x g x ---==-,所以()f x 是偶函数, ()g x 为奇函数,故选D .7.【答案】B【解析】因为函数121(22)m y m m x -=+-是幂函数,所以2221m m -+=且1m ≠,解得3m =-.故选B .8.【答案】A 【解析】A,22xy x -==⎝⎭的值域为(0)∞,+. B ,因为120x -≥,所以21x ≤,0x ≤,y =(0],-∞, 所以021x <≤,所以0121x ≤-<,所以y =[)0,1. C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是3,4⎡⎫+∞⎪⎢⎣⎭,D ,因为()()1,00,1x ∈-∞+∞+,所以113x y +=的值域是()0,11()∞,+.故选A .9.【答案】D【解析】根据幂函数、指数函数、对数函数的图象可知选D . 10.【答案】C【解析】221log ()(())223f -+--==,()221216log log 2log 12226f -===, ∴()22log (19)2f f -+=,故选C .11.【答案】B【解析】由题意知函数()f x 是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤-⎪ ⎪⎝⎭⎩由此解得138a ≤,即实数a 的取值X 围是13,8⎛⎤-∞ ⎥⎝⎦,选B .12.【答案】C【解析】设指数函数为()01x y a a a >≠=,,显然不过点M 、P ,若设对数函数为()log 01b y x b b >≠=,,显然不过N 点,故选C .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)word2 / 713.【答案】4【解析】∵124(0)9a a =>,∴2221223a ⎡⎤⎛⎫⎛⎫=⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦,即423a ⎛⎫= ⎪⎝⎭,∴422332log log 4.3a ⎛⎫== ⎪⎝⎭14.【答案】19【解析】∵14>0,∴211log 244f ⎛⎫==- ⎪⎝⎭.则104f ⎛⎫< ⎪⎝⎭,∴211349f f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.15.【答案】(]86-,-【解析】令()235g x x ax =-+,其对称轴为直线6a x =,依题意,有()1610ag ⎧≤-⎪⎨⎪->⎩,即68a a ≤-⎧⎨>-⎩,∴86(]a ∈-,-. 16.【答案】11,24⎛⎫⎪⎝⎭【解析】由图象可知,点(),2A A x在函数y x =的图象上,所以2A x =,212A x ==⎝⎭, 点(),2B B x 在函数12y x =的图象上,所以122B x =,4B x =. 点()4C C y ,在函数xy =⎝⎭的图象上,所以414C y ==⎝⎭. 又12D A x x ==,14D C y y ==,所以点D 的坐标为11,24⎛⎫⎪⎝⎭.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析. 【解析】原式3310.5log 5253log 1431(3)231lg3lg3lg3(3()03).5---++=++-++325log 6362531=+=+=.18.【答案】(1)1;(2)-1. 【解析】(1)由已知得122a-⎛⎫= ⎪⎝⎭,解得a =1.(2)由(1)知1()2xf x ⎛⎫= ⎪⎝⎭,又g (x )=f (x ),则1422xx -⎛⎫-= ⎪⎝⎭,即112=42xx⎛⎫⎛⎫--0 ⎪ ⎪⎝⎭⎝⎭,即2112022x x ⎡⎤⎛⎫⎛⎫--=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,令12xt ⎛⎫= ⎪⎝⎭,则t 2-t -2=0,即(t -2)(t +1)=0,又t >0,故t =2,即122x⎛⎫= ⎪⎝⎭,解得x =-1.19.【答案】(1)最小值为2,最大值为6;(2)见解析.【解析】(1)当a =2时,f (x )=log 2(1+x ),在[3,63]上为增函数,因此当x =3时,f (x )最小值为2.当x =63时f (x )最大值为6. (2)f (x )-g (x )>0即f (x )>g (x )当a >1时,log a (1+x )>log a (1-x ),满足111010x xx x +>-⎧⎪+>⎨⎪->⎩∴0<x <1当0<a <1时,log a (1+x )>log a (1-x ),满足111010x x x x +<-⎧⎪+>⎨⎪->⎩∴-1<x <0综上a >1时,解集为{x |0<x <1},0<a <1时解集为{x |-1<x <0}. 20.【答案】见解析. 【解析】∵22881x x a a --⎛⎫= ⎪⎝⎭,∴原不等式化为282x x a a -->,当a >1时,函数y =a x是增函数,∴8-x 2>-2x ,解得-2<x <4; 当0<a <1时,函数y =a x是减函数,∴8-x 2<-2x ,解得x <-2或x >4.故当a >1时,x 的集合是{x |-2<x <4};当0<a <1时,x 的集合是{x |x <-2或x >4}.word3 / 721.【答案】(1)g (x )=2222x x -+,{x |0≤x ≤1}(2)-3,-4. 【解析】(1)∵f (x )=2x,∴g (x )=f (2x )-f (x +2)=2222x x -+.因为f (x )的定义域是[0,3],所以0≤2x ≤3,0≤x +2≤3,解得0≤x ≤1. 于是g (x )的定义域为{x |0≤x ≤1}. (2)设g (x )=(2x )2-4×2x=(2x-2)2-4.∵x ∈[0,1],∴2x∈[1,2],∴当2x=2,即x =1时,g (x )取得最小值-4; 当2x=1,即x =0时,g (x )取得最大值-3. 22.【答案】(1)2()()1x x a f x a a a -=-- (x ∈R ),见解析;(2))(21,23⎡+⎣.【解析】(1)令log a x =t (t ∈R ),则x =a t,∴2()()1t ta f t a a a -=--. ∴2()()1x xa f x a a a -=-- (x ∈R ). ∵()22()()()11x xx x a a f x a a a a f x a a ---=-=--=---,∴f (x )为奇函数. 当a >1时,y =a x为增函数,x y a -=-为增函数,且201aa >-,∴f (x )为增函数.当0<a <1时,y =a x为减函数x y a -=-为减函数,且201aa <-, ∴f (x )为增函数.∴f (x )在R 上为增函数.(2)∵f (x )是R 上的增函数,∴y =f (x )-4也是R 上的增函数. 由x <2,得f (x )<f (2),要使f (x )-4在(-∞,2)上恒为负数, 只需f (2)-4≤0,即2224()1a a a a --≤-,∴422141a a a a ⎛⎫-≤ ⎪-⎝⎭,∴a 2+1≤4a ,∴a 2-4a+1≤0,∴22a ≤≤a ≠1, ∴a的取值X 围为)(21,23⎡+⎣.。

2019秋高中数学第二章基本初等函数(Ⅰ)单元评估验收(二)(含解析)新人教A版必修1

2019秋高中数学第二章基本初等函数(Ⅰ)单元评估验收(二)(含解析)新人教A版必修1

单元评估验收(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列函数与y =x 有相同图象的一个函数是( ) A .y =x 2B .y =x 2xC .y =a log a x (a >0有a ≠1)D .y =log a a x解析:y =x 2=|x |,对应关系不同:y =x 2x=x (x ≠0),定义域不同.y =a log a x =x (x >0),定义域不同;y =log a a x=x (x ∈R).答案:D2.下列函数中,既是单调函数,又是奇函数的是( ) A .y =x 5B .y =5xC .y =log 2xD .y =x -1解析:B ,C 不具有奇偶性,D 不具有单调性. 答案:A3.已知⎝ ⎛⎭⎪⎫12m <⎝ ⎛⎭⎪⎫12n<1,则有( ) A .0<n <mB .n <m <0C .0<m <nD .m <n <0解析:因为指数函数y =⎝ ⎛⎭⎪⎫12x在R 上递减,所以由⎝ ⎛⎭⎪⎫12m<⎝ ⎛⎭⎪⎫12n<1= ⎝ ⎛⎭⎪⎫120,得m >n >0.答案:A4.函数y =2|x |的大致图象是( )解析:易知函数y =2|x |是偶函数,其图象关于y 轴对称,最低点为(0,1),在区间(0,+∞)上是下凹增函数,观察图象知B选项正确.答案:B5.化简(36a9)4·(63a9)4的结果等于( )A.a16B.a8 C.a4D.a2解析:因为(36a9)4=(((a9)16)13)4=a9×16×13×4=a2,(36a9)4=a9×13×16×4=a2,所以(36a9)4·(36a9)4=a2·a2=a4.答案:C6.设f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=( )A.1 B.-1C.3 D.-3解析:因为f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),所以f(0)=20+b=1+b=0,解得b=-1,所以f(-1)=-f(1)=-(2+2-1)=-3.答案:D7.函数y=2+log a x(a>0,且a≠1),不论a取何值必过定点( )A.(1,0) B.(3,0)C.(1,2) D.(2,3)解析:因为y=log a x(a>0,且a≠1)不论a取何值,必过定点(1,0),所以函数y=2+log a x必过定点(1,2).答案:C8.函数y=ln(1-x)的图象大致为( )解析:函数的定义域为(-∞,1),且函数在定义域上单调递减.答案:C9.函数y =log 0.6(-x 2+2x )的值域是( ) A .[0,1] B .[0,+∞) C .(- ∞,0]D .[1,+∞)解析:-x 2+2x =-(x -1)2+1≤1,又-x 2+2x >0,则0<-x 2+2x ≤1.函数y =log 0.6x 为(0,+∞)上的减函数,则y =log 0.6(-x 2+2x )≥log 0.61=0,所以函数的值域为[0,+∞).答案:B10.已知0<a <1,x =log a 2+log a 3,y =12log a 5,z =log a 21-log a 3,则( )A .x >y >zB .z >y >xC .y >x >zD .z >x >y解析:x =log a 2+log a 3=log a 6=12log a 6,z =log a 21-log a 3=log a 7=12log a 7.因为0<a <1,所以12log a 5>12log a 6>12log a 7,即y >x >z .答案:C11.若对于任意x ∈(-∞,-1],都有(3m -1)2x<1成立,则m 的取值范围是( ) A.⎝⎛⎭⎪⎫-∞,13B.⎝⎛⎦⎥⎤-∞,13 C .(-∞,1)D .(-∞,1]解析:因为2x>0,所以不等式(3m -1)2x<1对于任意x ∈(-∞,-1]恒成立,等价于3m -1<12x =⎝ ⎛⎭⎪⎫12x对于任意x ∈(-∞,-1]恒成立.因为x ≤-1,所以⎝ ⎛⎭⎪⎫12x≥⎝ ⎛⎭⎪⎫12-1=2.所以3m-1<2,解得m <1,所以m 的取值范围是(-∞,1).答案:C12.若函数f (x ),g (x )分别是R 上的奇函数和偶函数,且满足f (x )-g (x )=2x,则有( )A .f (2)<f (3)<f (0)B .f (0)<f (3)<f (2)C .f (2)<f (0)<f (3)D .f (0)<f (2)<f (3)解析:因为函数f (x ),g (x )分别是R 上的奇函数和偶函数.所以f (-x )=-f (x ),g (-x )=g (x ).由f (x )-g (x )=2x ,得f (-x )-g (-x )=2-x,所以-f (x )-g (x )=2-x,即f (x )+g (x )=-2-x,与f (x )-g (x )=2x联立,得f (x )=2x -2-x 2,所以f (0)=0,f (2)=22-2-22=158,f (3)=23-2-32=6316, 所以f (0)<f (2)<f (3). 答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.函数f (x )=2x-4的定义域为________.解析:要使函数f (x )有意义,只需2x-4≥0,即2x≥22,即x ≥2.所以函数f (x )的定义域为[2,+∞).答案:[2,+∞)14.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f (f (2))=______. 解析:因为f (2)=log 3(22-1)=1, 所以f (f (2))=f (1)=2e 1-1=2.答案:215.世界人口在过去40年翻了一番,则每年人口平均增长率约是________(参考数据:lg 2≈0.301,100.007 5≈1.017).解析:设原来人口为a ,每年人口平均增长率是x ,则a (1+x )40=2a ,(1+x )40=2,两边取常用对数得:40lg(1+x )=lg 2, lg(1+x )=lg 240≈0.30140≈0.007 5,则1+x ≈100.007 5≈1.017,x ≈0.017=1.7%.答案:1.7%16.已知函数f (x )=|log 2x |,正实数m ,n 满足m <n ,且f (m )=f (n ),若f (x )在区间[m 2,n ]上的最大值为2,则mn=________.解析:根据函数f (x )=|log 2x |的图象(如图),得0<m <1<n ,所以0<m 2<m <1.结合函数图象,易知当x =m 2时f (x )在[m 2,n ]上取得最大值,所以f (m 2)=|log 2m 2|=2,又0<m <1,所以m =12,再结合f (m )=f (n ),可得n =2,所以m n =14.答案:14三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)计算:(1)2723-2log 23×log 218×2lg(3+5+3-5);(2)(lg 5)2+lg 2×lg 5+lg 20+lg 225×log 34×log 59.解:(1)2723-2log 23×log 218+2lg(3+5+3-5)=(33)23-3×log 22-3+lg(3+5+3-5)2=9+9+lg 10 =19.(2)(lg 5)2+lg 2×lg 5+lg 20+log 225×log 34×log 59 =lg 5(lg 5+lg 2)+lg 20+log 252×log 322×log 532=lg 5+lg 20+8×lg 5lg 2×lg 2lg 3×lg 3lg 5=2+8=10.18.(本小题满分12分)(1)解不等式:⎝ ⎛⎭⎪⎫123x -1≤2;(2)已知a-5x>ax +7(a >0,且a ≠1),求x 的取值范围.解:(1)因为2=⎝ ⎛⎭⎪⎫12-1, 所以原不等式可以转化为⎝ ⎛⎭⎪⎫123x -1≤⎝ ⎛⎭⎪⎫12-1. 因为y =⎝ ⎛⎭⎪⎫12x在R 上是减函数, 所以3x -1≥-1,所以x ≥0. 故原不等式的解集是{x |x ≥0}. (2)当a >1时,因为a -5x>ax +7,所以-5x >x +7,解得x <-76;当0<a <1时,因为a -5x >ax +7,所以-5x <x +7,解得x >-76.综上所述,x 的取值范围是:当a >1时,x <-76;当0<a <1时,x >-76.19.(本小题满分12分)如图所示,函数F (x )的图象是由指数函数f (x )=a x与幂函数g (x )=x b 的图象“拼接”而成的.(1)求F (x )的解析式; (2)比较a b 与b a的大小;(3)已知(m +4)-b<(3-2m )-b,求实数m 的取值范围.解:将点⎝ ⎛⎭⎪⎫14,12分别代入函数f (x )=a x与g (x )=x b,得⎩⎪⎨⎪⎧a 14=12,⎝ ⎛⎭⎪⎫14b =12,解得⎩⎪⎨⎪⎧a =116,b =12,所以F (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫116x,x ≤14,x 12,x >14.(2)a b =⎝ ⎛⎭⎪⎫11612=⎝ ⎛⎭⎪⎫122,b a=⎝ ⎛⎭⎪⎫12116,又函数y =⎝ ⎛⎭⎪⎫12x在R 上是减函数, 所以⎝ ⎛⎭⎪⎫12116>⎝ ⎛⎭⎪⎫122,即a b <b a.(3)由(1)可得(m +4)-12<(3-2m )-12,又幂函数y =x -12在(0,+∞)上减函数,所以⎩⎪⎨⎪⎧m +4>0,3-2m >0,m +4>3-2m ,解得-13<m <32,所以实数m 的取值范围是⎝ ⎛⎭⎪⎫-13,32.20.(本小题满分12分)已知指数函数f (x )=a x(a >0,且a ≠1),g (x )为f (x )的反函数. (1)写出函数g (x )的解析式;(2)解关于x 的不等式g (x )-log a (2-3x )≤log a 1.解:(1)因为指数函数f (x )=a x(a >0,且a ≠1), 所以g (x )=log a x (a >0,且a ≠1). (2)由g (x )-log a (2-3x )≤log a 1, 得log a x ≤log a (2-3x ).当a >1时,因为函数y =log a x 在(0,+∞)上单调递增,所以⎩⎪⎨⎪⎧x ≤2-3x ,x >0,解得0<x ≤12;当0<a <1时,因为函数y =log a x 在(0,+∞)上单调递减,所以⎩⎪⎨⎪⎧x ≥2-3x ,2-3x >0,解得12≤x <23.综上,当a >1时,原不等式的解集为⎝ ⎛⎦⎥⎤0,12;当0<a <1时,原不等式的解集为⎣⎢⎡⎭⎪⎫12,23. 21.(本小题满分12分)已知函数h (x )=(m 2-5m +1)·x m +1为幂函数,且为奇函数.(1)求实数m 的值;(2)求函数g (x )=h (x )+1-2h (x )在⎣⎢⎡⎦⎥⎤0,12上的值域. 解:因为函数h (x )=(m 2-5m +1)x m +1为幂函数,所以m 2-5m +1=1, 解得m =0或m =5. 又h (x )为奇函数, 所以m =0.(2)由(1)可知h (x )=x ,g (x )=x +1-2x .令1-2x =t ,则当x ∈⎣⎢⎡⎦⎥⎤0,12时,t ∈[0,1], 所以y =-12t 2+t +12=-12(t -1)2+1.因为函数y =-12(t -1)2+1在[0,1]上单调递增,所以12≤y ≤1,所以g (x )=h (x )+1-2h (x )在⎣⎢⎡⎦⎥⎤0,12上的值域为⎣⎢⎡⎦⎥⎤12,1. 22.(本小题满分12分)已知函数f (x )=2x-12|x |.(1)若f (x )=2,求x 的值;(2)若2tf (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. 解:(1)当x <0时,f (x )=0;当x ≥0时,f (x )=2x-12x .由条件可知2x -12x =2,即22x -2·2x-1=0,解得2x=1± 2.因为2x >0,所以x =log 2(1+2).(2)当t ∈[1,2]时,2t⎝⎛⎭⎪⎫22t -122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0, 即m (22t -1)≥-(24t-1).因为22t-1>0,所以m ≥-(22t+1).因为t ∈[1,2],所以-(1+22t)∈[-17,-5], 故m 的取值范围是[-5,+∞).。

2019_2020学年高中数学第二章基本初等函数(Ⅰ)单元测试题新人教A版必修1

2019_2020学年高中数学第二章基本初等函数(Ⅰ)单元测试题新人教A版必修1

第二章 基本初等函数(Ⅰ)能力检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,满分60分)1.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α等于( )A ..12B .1C .32 D .2【答案】C【解析】由幂函数的定义知k =1.又f ⎝ ⎛⎭⎪⎫12=22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,从而k +α=32. 2.已知f (x 3)=lg x ,则f (2)等于( ) A .lg 2 B .lg 8 C .lg 18D .13lg 2 【答案】D【解析】令x 3=2,则x =32,∴f (2)=lg 32=13lg 2.3.(2019年湖北武汉期末)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )A B C D【答案】B【解析】若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则a >1,故函数y =log a |x |的图象如图所示.故选B.4.下列函数在区间(0,3)内是增函数的是( ) A .y =1xB .y =x 12C .y =⎝ ⎛⎭⎪⎫13xD .y =x 2-2x -15【答案】B【解析】由幂函数、指数函数性质即得.5.设a =0.712 ,b =0.812 ,c =log 30.7,则( ) A .c <b <a B .c <a <b C .a <b <c D .b <a <c【答案】B【解析】由幂函数性质与对数函数性质有b >a >0>C . 6.(2019年广东中山模拟)设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞) 【答案】C【解析】当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1,所以0≤a <1.故a 的取值范围是(-3,1).故选C.7.幂函数y =(m 2-m -1)x m 2-2m -3,当x ∈(0,+∞)时为减函数,则实数m 的值为( )A .m =2B .m =-1C .m =-1或2D .m ≠1±52【答案】A【解析】∵y =(m 2-m -1)x m 2-2m -3为幂函数,∴m 2-m -1=1.解得m =2或m =-1.当m =2时,m 2-2m -3=-3,y =x-3在(0,+∞)上为减函数;当m =-1时,m 2-2m -3=0,y =x=1(x ≠0)在(0,+∞)上为常数函数(舍去),∴m =2.8.定义运算a *b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,则函数f (x )=1]( )【答案】A【解析】f (x )=1*2x=⎩⎪⎨⎪⎧1,1≤2x,2x ,1>2x,即f (x )=⎩⎪⎨⎪⎧1,x ≥0,2x,x <0,故选A.9.(2019年黑龙江哈尔滨期末)已知函数f (x )=ln x1-x ,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,18 B .⎝ ⎛⎭⎪⎫0,16 C .⎝ ⎛⎭⎪⎫0,14 D .⎝ ⎛⎭⎪⎫0,12 【答案】C【解析】由题意可知ln a1-a +ln b1-b =0,即ln ⎝ ⎛⎭⎪⎫a1-a ×b1-b =0,从而a1-a ×b1-b =1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝ ⎛⎭⎪⎫a -122+14.又0<a <b <1,所以0<a <12,故0<-⎝ ⎛⎭⎪⎫a -122+14<14.10.设函数f (x )=log a |x |(a >0且a ≠1)在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系为( )A .f (a +1)=f (2)B .f (a +1)>f (2)C .f (a +1)<f (2)D .不确定【答案】B【解析】易知f (x )为偶函数,所以f (x )在(0,+∞)上单调递减.所以0<a <1.所以1<a +1<2.所以f (a +1)>f (2).11.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x,x ≤0,则满足f (a )<12的实数a 的取值范围是( )A .(-∞,-1)B .(-∞,-1)∪(0,2)C .(0,2)D .(-∞,-1)∪(0,2)【答案】B【解析】当a >0时,由f (a )<12,可得log 2a <12=log 22,得0<a <2;当a ≤0时,由f (a )<12,可得2a <12=2-1,因此得a <-1.综上所述,a 的取值范围是(-∞,-1)∪(0,2).12.(2019年北京模拟)记x 2-x 1为区间[x 1,x 2]的长度,已知函数y =2|x |,x ∈[-2,a ](a ≥0),其值域为[m ,n ],则区间[m ,n ]的长度的最小值是( )A .6B .5C .4D .3【答案】D【解析】令f (x )=y =2|x |,则f (x )=⎩⎪⎨⎪⎧2x,0≤x ≤a ,2-x,-2≤x <0.当a =0时,f (x )=2-x在[-2,0]上为减函数,值域为[1,4];当a >0时,f (x )在[-2,0)上递减,在[0,a ]上递增,①当0<a ≤2时,f (x )max =f (-2)=4,值域为[1,4];②当a >2时,f (x )max =f (a )=2a>4,值域为[1,2a].综上可知[m ,n ]的长度的最小值为4-1=3.二、填空题(本大题共4小题,每小题5分,满分20分) 13.计算⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=________. 【答案】-20【解析】⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=lg 1100÷100-12=-2÷110=-20. 14.(2019年广西贵港期中)若α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,则使幂函数y =xα为奇函数且在(0,+∞)上单调递增的α值的个数为________.【答案】3【解析】∵幂函数y =x α是奇函数,∴α=-1,13,1,3.又∵幂函数y =x α在(0,+∞)上单调递增,∴α=13,1,3,即α值的个数为3.15.函数y =lg(4+3x -x 2)的单调增区间为________. 【答案】⎝⎛⎦⎥⎤-1,32 【解析】函数y =lg(4+3x -x 2)的增区间即为函数h (x )=4+3x -x 2的增区间且4+3x -x 2>0,因此所求区间为⎝⎛⎦⎥⎤-1,32.16.(2019年吉林长春模拟)已知函数f (x )=b ·a x(其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24).若不等式⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x-m ≥0在x ∈(-∞,1]上恒成立,则m 的最大值为________.【答案】56【解析】把A (1,6),B (3,24)代入f (x )=b ·a x,得⎩⎪⎨⎪⎧6=ab ,24=b ·a 3,结合a >0,且a ≠1,解得⎩⎪⎨⎪⎧a =2,b =3,所以f (x )=3·2x.要使⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x ≥m 在x ∈(-∞,1]上恒成立,只需保证函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x 在(-∞,1]上的最小值不小于m 即可.因为函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上为减函数,所以当x =1时,y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x 有最小值56.所以只需m ≤56即可.所以m 的最大值为56. 三、解答题(本大题共6小题,满分70分) 17.(10分)已知幂函数f (x )的图象过点(25,5). (1)求f (x )的解析式;(2)若函数g (x )=f (2-lg x ),求g (x )的定义域、值域.【解析】(1)设f (x )=x α,由题意可知25α=5,∴α=12.∴f (x )=x 12.(2)∵g (x )=f (2-lg x )=2-lg x ,∴要使g (x )有意义,只需2-lg x ≥0,即lg x ≤2,解得0<x ≤100.∴g (x )的定义域为(0,100].又2-lg x ≥0,∴g (x )的值域为[0,+∞).18.(12分)(1)计算:2log 32-log 3329+log 38-52log 53;(2)已知x =27,y =64,化简并计算: 5x -23 y 12⎝ ⎛⎭⎪⎫-14x -1y 12 ⎝ ⎛⎭⎪⎫-56x 13 y -16 .【解析】(1)原式=log 34-log 3329+log 38-52log 53=log 3⎝ ⎛⎭⎪⎫4×932×8-5log59=log 39-9=2-9=-7.(2)原式=5x -23 y 12⎝ ⎛⎭⎪⎫-14x -1y 12 ⎝ ⎛⎭⎪⎫-56x 13 y -16=5x -23 ·y 12 524×x -23 ·y 13 =24y 16 .又y =64,∴原式=24×(26)16 =48.19.(12分)已知函数f (x )=⎝ ⎛⎭⎪⎫12ax,a 为常数且函数的图象过点(-1,2).(1)求a 的值;(2)若g (x )=4-x-2且g (x )=f (x ),求满足条件的x 的值.【解析】(1)由已知,得⎝ ⎛⎭⎪⎫12-a=2,解得a =1.(2)由(1),知f (x )=⎝ ⎛⎭⎪⎫12x ,又g (x )=f (x ),则4-x -2=⎝ ⎛⎭⎪⎫12x ,即⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x -2=0,即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x 2-⎝ ⎛⎭⎪⎫12x-2=0. 令⎝ ⎛⎭⎪⎫12x =t ,则t 2-t -2=0,即(t -2)(t +1)=0,又t >0,故t =2,即⎝ ⎛⎭⎪⎫12x =2,解得x =-1.20.(12分)已知函数f (x )=log a (1+x ),g (x )=log a (1-x )(a >0,a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求f (x )的最值; (2)求不等式f (x )-g (x )>0成立时x 的取值范围. 【解析】(1)当a =2时,f (x )=log 2(1+x ),在[3,63]上为增函数,因此当x =3时,f (x )最小值为2; 当x =63时f (x )最大值为6. (2)f (x )-g (x )>0,即f (x )>g (x ). 当a >1时,log a (1+x )>log a (1-x ), 满足⎩⎪⎨⎪⎧ 1+x >1-x ,1+x >0,1-x >0,∴0<x <1.当0<a <1时,log a (1+x )>log a (1-x ), 满足⎩⎪⎨⎪⎧1+x <1-x ,1+x >0,1-x >0,∴-1<x <0.综上,a >1时,x ∈(0,1); 0<a <1时,x ∈(-1,0).21.(12分)已知函数f (x )=log a (1-x )+log a (x +3)(0<a <1). (1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-2,求a 的值.【解析】(1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0,解得-3<x <1,故f (x )的定义域为(-3,1).(2)函数可化为f (x )=log a [(1-x )(x +3)] =log a (-x 2-2x +3) =log a [-(x +1)2+4]. ∵-3<x <1,∴0<-(x +1)2+4≤4. ∵0<a <1,∴log a [-(x +1)2+4]≥log a 4. 由log a 4=-2,得a -2=4, ∴a =4-12 =12.22.(12分)已知函数f (x )=a ·2x +b ·3x,其中常数a ,b 满足ab ≠0. (1)若ab >0,判断函数f (x )的单调性; (2)若ab <0,求f (x +1)>f (x )时x 的取值范围.【解析】(1)当a >0,b >0时,因为函数y =a ·2x和y =b ·3x都单调递增,所以函数f (x )单调递增;当a <0,b <0时,因为函数y =a ·2x和y =b ·3x 都单调递减,所以函数f (x )单调递减. (2)f (x +1)-f (x )=a ·2x +1+b ·3x +1-a ·2x -b ·3x =a ·2x +2b ·3x>0.当a <0,b >0时,⎝ ⎛⎭⎪⎫32x>-a 2b ,解得x >log 32⎝ ⎛⎭⎪⎫-a 2b ;当a >0,b <0时,⎝ ⎛⎭⎪⎫32x<-a 2b ,解得x <log 32⎝ ⎛⎭⎪⎫-a 2b .。

人教a版必修1章末检测:第二章《基本初等函数(ⅰ)》(含答案)

人教a版必修1章末检测:第二章《基本初等函数(ⅰ)》(含答案)

第二章 章末检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.函数y =ln(x -1)的定义域是( )A .(1,2)B .[1,+∞)C .(1,+∞)D .(1,2)∪(2,+∞)2.若x log 23=1,则3x +9x 的值为( )A .3 B.52 C .6 D.123.已知a >0且a ≠1,下列四组函数中表示相等函数的是( )A .y =log a x 与y =(log x a )-1B .y =a log a x 与y =xC .y =2x 与y =log a a 2xD .y =log a x 2与y =2log a x4.若函数y =a x +m -1 (a >0,a ≠1)的图象在第一、三、四象限内,则( )A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <15.已知函数f (log 4x )=x ,则f ⎝⎛⎭⎫12等于( )A.14B.12 C .1 D .26.已知函数y =log a (3a -1)的值恒为正数,则a 的取值范围是( )A .a >13 B.13<a ≤23C .a >1 D.13<a <23或a >17.已知函数f (x )={ log 3x (x >0)x (x ≤0),则f [f (19)]的值是( )A .9 B.19C .-9D .-198.已知f (x )={ (3a -1)x +4a (x <1)a x (x ≥1)是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13C.⎣⎡⎭⎫17,13D.⎣⎡⎭⎫17,19.已知0<a <1,x =log a 2+log a 3,y =12log a 5,z =log a 21-log a 3,则() A .x >y >z B .z >y >xC .y >x >zD .z >x >y10.关于x 的方程a x =log 1a x (a >0,且a ≠1)( )A .无解B .必有唯一解C .仅当a >1时有唯一解D .仅当0<a <1时有唯一解11.函数y =lg(21-x-1)的图象关于( ) A .x 轴对称 B .y 轴对称C .原点对称D .y =x 对称12.设函数f (x )=⎩⎨⎧ 2-x -1 (x ≤0)x 12 (x >0), 若f (x 0)>1,则x 0的取值范围是( )A .(-1,1)B .(-1,+∞)C .(-∞,-2)∪(0,+∞)D .(-∞,-1)∪(1,+∞)二、填空题(本大题共4小题,每小题4分,共16分)13.函数y =log (2x -1)3x -2的定义域是__________________.14.函数f (x )=log 12(x 2-3x +2)的递增区间是__________. 15.已知函数f (x )=a -12x +1,若f (x )是奇函数,则a =________. 16.给出函数f (x )=⎩⎨⎧⎝⎛⎭⎫12x (x ≥4)f (x +1) (x <4), 则f (log 23)=________.三、解答题(本大题共6小题,共74分)17.(12分)计算:(1)⎝⎛⎭⎫-338-23+(0.002)-12-10(5-2)-1+(2-3)0; (2)2lg 5+23lg 8+lg 5·lg 20+lg 22.18.(12分)若函数f (x )=log a (x +1)(a >0且a ≠1)的定义域和值域均为[0,1],求a 的值.19.(12分)已知函数f (x )=-2x 12,求f (x )的定义域,并证明在f (x )的定义域内,当x 1<x 2时,f (x 1)>f (x 2).20.(12分)已知函数f (x )=log a (x +1),g (x )=log a (1-x )(a >0,且a ≠1),令F (x )=f (x )-g (x ).(1)求函数y =F (x )的定义域;(2)判断函数y =F (x )的奇偶性.21.(12分)已知函数f (x )=3x ,且f (a )=2,g (x )=3ax -4x .(1)求g (x )的解析式;(2)当x ∈[-2,1]时,求g (x )的值域.22.(14分)设f (x )=log 12(1-ax x -1)为奇函数,a 为常数. (1)求a 的值;(2)证明f (x )在(1,+∞)内单调递增;(3)若对于[3,4]上的每一个x 的值,不等式f (x )>(12)x +m 恒成立,求实数m 的取值范围.第二章 章末检测 答案1.C2.C [x log 23=1⇒log 23x =1,∴3x =2,9x =(3x )2=22=4,∴3x +9x =6.]3.C [对A ,解析式不同,定义域不同;对B ,定义域不同;对D ,定义域不同;对C ,是相等函数.]4.B [由函数y =a x +m -1 (a >0,a ≠1)的图象在第一、三象限知a >1.又过第四象限内,∴a 0+m -1<0,则有m <0.]5.D [令log 4x =12,则x =412=2.] 6.D [由y >0得:⎩⎪⎨⎪⎧ a >13a -1>1 或⎩⎪⎨⎪⎧0<a <10<3a -1<1, 解得a >1或13<a <23.] 7.B8.C [当x =1时,log a x =0,若为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立. 令g (x )=(3a -1)x +4a ,则g (x )>0在x <1上恒成立,故3a -1<0且g (1)≥0,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0.⇒17≤a <13,故选C.] 9.C [x =log a 2+log a 3=log a 6,y =12log a 5=log a 5,z log a 21-log a 3=log a 213=log a 7, ∵0<a <1,∴y =log a x 在定义域上是减函数.∴y >x >z .]10.B [在同一平面直角坐标系中分别画出函数y =a x ,y =log 1ax 的图象. 由图象可知方程a x =log 1ax 必有唯一解.] 11.C [f (x )=lg(21-x -1)=lg 1+x 1-x, f (-x )=lg 1-x 1+x =-f (x ),所以y =lg(21-x-1)的图象关于原点对称,故选C.] 12.D [当x ≤0时,由2-x -1>1得x <-1;当x >0时,由x 12>1得x >1.] 13.(23,1)∪(1,+∞) 解析 由题意得0<2x -1<1或2x -1>1,且必须满足3x -2>0,∴x 的取值范围是(23,1)∪(1,+∞). 14.(-∞,1)15.12解析 方法一 函数f (x )=a -12x +1的定义域为R ,且为奇函数, ∴f (0)=0,即a -120+1=0,∴a =12. 方法二 f (-x )=a -12-x +1=a -2x1+2x, ∵f (x )为奇函数,∴f (x )=-f (-x ),∴a -12x +1=-a +2x1+2x. ∴2a =2x +12x +1=1,∴a =12. 16.124解析 ∵log 23<4,∴f (log 23)=f (log 23+1)=f (log 23+3)=f (log 224),∵log 224>4,∴f (log 224)=⎝⎛⎭⎫12log 224=124. 17.解 (1)原式=(-1)-23⎝⎛⎭⎫338-23+⎝⎛⎭⎫1500-12-105-2+1 =⎝⎛⎭⎫278-23+50012-10(5+2)+1 =49+105-105-20+1=-1679. (2)原式=2lg 5+23lg 23+lg 5·lg(4×5)+lg 22 =2lg 5+2lg 2+2lg 5·lg 2+lg 25+lg 22=2(lg 5+lg 2)+2lg 5·lg 2+lg 25+lg 22=2+(lg 5+lg 2)2=2+1=3.18.解 当a >1时,函数f (x )在区间[0,1]上为增函数, ∴⎩⎪⎨⎪⎧ f (0)=0f (1)=1,解得a =2. 当0<a <1时,函数f (x )在区间[0,1]上为减函数,∴⎩⎪⎨⎪⎧ f (0)=1f (1)=0,方程组无解. 综上可知a =2.19.解 ∵f (x )=-2x 12=-2x , ∴函数f (x )的定义域为[0,+∞),当0≤x 1<x 2时,f (x 1)-f (x 2)=-2x 121+2x 122 =2(x 2-x 1)=2x 2-x 1x 2+x 1, ∵0≤x 1<x 2,∴x 2-x 1>0,x 2+x 1>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).20.解 (1)由⎩⎪⎨⎪⎧x +1>01-x >0,解得-1<x <1, 故函数F (x )的定义域是(-1,1).(2)因为函数F (x )的定义域关于原点对称,且F (-x )=log a (-x +1)-log a (1+x )=log a 1-x 1+x =-log a 1+x 1-x=-[log a (x +1)-log a (1-x )]=-F (x ),所以F (x )是奇函数.21.解 (1)由f (a )=2,得3a =2,a =log 32, ∴g (x )=(3a )x -4x =(3log 32)x -4x=2x -4x =-(2x )2+2x . (2)设2x =t ,∵x ∈[-2,1],∴14≤t ≤2. g (t )=-t 2+t =-(t -12)2+14,由g (t )在t ∈[14,2]上的图象可得, 当t =12,即x =-1时,g (x )有最大值14; 当t =2,即x =1时,g (x )有最小值-2.故g (x )的值域是[-2,14]. 22.(1)解 ∵f (x )是奇函数,∴f (-x )=-f (x ),∴log 12(1+ax -x -1)=-log 12(1-ax x -1) ⇔1+ax -x -1=x -11-ax>0 ⇒1-a 2x 2=1-x 2⇒a =±1.检验a =1(舍),∴a =-1.(2)证明 任取x 1>x 2>1,∴x 1-1>x 2-1>0,∴0<2x 1-1<2x 2-1⇒ 0<1+2x 1-1<1+2x 2-1⇒0<x 1+1x 1-1<x 2+1x 2-1⇒log 12x 1+1x 1-1>log 12x 2+1x 2-1, 即f (x 1)>f (x 2),∴f (x )在(1,+∞)内单调递增.(3)解 f (x )-(12)x >m 恒成立. 令g (x )=f (x )-(12)x ,只需g (x )min >m , 用定义可以证明g (x )在[3,4]上是增函数,∴g (x )min =g (3)=-98, ∴m <-98时原式恒成立. 即m 的取值范围为(-∞,-98).。

人教A版数学必修一第二章基本初等函数(ⅰ)(一)a卷

人教A版数学必修一第二章基本初等函数(ⅰ)(一)a卷

高中数学学习材料金戈铁骑整理制作高中同步创优单元测评A 卷 数 学班级:________ 姓名:________ 得分:________第二章 基本初等函数(Ⅰ)(一)(指数与指数函数) [名师原创·基础卷](时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算[(-2)2]- 12的结果是( )A.2 B .-2 C.22D .-222.⎝ ⎛⎭⎪⎫1120-(1-0.5-2)÷⎝ ⎛⎭⎪⎫278 23的值为( )A .-13 B.13 C.43 D.733.若a >1,则函数y =a x 与y =(1-a )x 2的图象可能是下列四个选项中的()4.下列结论中正确的个数是( )①当a <0时,(a 2 23=a 3;②na n =|a |(n ≥2,n ∈N ); ③函数y =(x -2) 12 -(3x -7)0的定义域是[2,+∞); ④6(-2)2=32.A .1B .2C .3D .45.指数函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫-2,14,那么f (4)·f (2)等于( )A .8B .16C .32D .64 6.函数y =21x的值域是( ) A .(0,+∞) B .(0,1) C .(0,1)∪(1,+∞)D .(1,+∞)7.函数y =|2x -2|的图象是( )8.a ,b 满足0<a <b <1,下列不等式中正确的是( ) A .a a <a b B .b a <b b C .a a <b a D .b b <a b9.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( )A .e x +1B .e x -1C .e -x +1D .e -x -110.若函数y =a x +m -1(a >0,a ≠1)的图象在第一、三、四象限内,则( )A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <111.函数f (x )=2x +2-4x ,若x 2-x -6≤0,则f (x )的最大值和最小值分别是( )A .4,-32B .32,-4 C.23,0D.43,112.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系为________.14.若方程⎝ ⎛⎭⎪⎫14x +⎝ ⎛⎭⎪⎫12x -1+a =0有正数解,则实数a 的取值范围是________.15.已知函数f (x )=⎝ ⎛⎭⎪⎫12|x -1|,则f (x )的单调递增区间是________.16.定义区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1,已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)解不等式a 2x +7<a 3x -2(a >0,a ≠1).18.(本小题满分12分)已知函数f (x )=3x ,且f (a )=2,g (x )=3ax -4x . (1)求g (x )的解析式;(2)当x ∈[-2,1]时,求g (x )的值域.19.(本小题满分12分)已知函数f (x )=⎝ ⎛⎭⎪⎫12ax,a 为常数,且函数的图象过点(-1,2).(1)求a 的值;(2)若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.20.(本小题满分12分)已知函数f (x )=a ·2x +b ·3x ,其中常数a ,b 为实数. (1)当a >0,b >0时,判断并证明函数f (x )的单调性; (2)当ab <0时,求f (x +1)>f (x )时x 的取值范围.21.(本小题满分12分)设a ∈R ,f (x )=a -22x +1(x ∈R ).(1)证明:对任意实数a ,f (x )为增函数; (2)试确定a 的值,使f (x )≤0恒成立.22.(本小题满分12分)已知定义域为R 的函数f (x )=-2x +b2x +1+2是奇函数.(1)求b 的值;(2)判断函数f (x )的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.详解答案第二章 基本初等函数(Ⅰ)(一)(指数与指数函数) [名师原创·基础卷]1.C 解析:[(-2)2]- 12=2-12=12=22.2.D 解析:原式=1-(1-22)÷⎝ ⎛⎭⎪⎫322=1-(-3)×49=73.故选D. 3.C 解析:a >1,∴y =a x 在R 上单调递增且过(0,1)点,排除B ,D ,又∵1-a <0,∴y =(1-a )x 2的开口向下.4.A 解析:在①中,a <0时,(a 2) 32>0,而a 3<0,∴①不成立.在②中,令a =-2,n =3,则3(-2)3=-2≠|-2|,∴②不成立. 在③中,定义域应为⎣⎢⎡⎭⎪⎫2,73∪⎝ ⎛⎭⎪⎫73,+∞,∴③不成立. ④式是正确的,∵6(-2)2=622=32,∴④正确. 5.D 解析:设f (x )=a x (a >0且a ≠1), 由已知得14=a -2,a 2=4,所以a =2, 于是f (x )=2x ,所以f (4)·f (2)=24·22=64.解题技巧:已知函数类型,求函数解析式,常用待定系数法,即先把函数设出来,再利用方程或方程组解出系数.6.C 解析:∵1x ≠0,∴21x≠1, ∴函数y =21x 的值域为(0,1)∪(1,+∞).7.B 解析:找两个特殊点,当x =0时,y =1,排除A ,C.当x =1时,y =0,排除D.故选B.8.C 解析:∵0<a <b <1,∴a a >a b ,故A 不成立,同理B 不成立,若a a <b a ,则⎝ ⎛⎭⎪⎫a b a <1,∵0<ab <1,0<a <1,∴⎝ ⎛⎭⎪⎫a b a<1成立,故选C. 9.D 解析:与曲线y =e x 关于y 轴对称的曲线为y =e -x ,函数y =e -x 的图象向左平移一个单位长度即可得到函数f (x )的图象,即f (x )=e -(x +1)=e -x -1.解题技巧:函数图象的平移变换,要注意平移的方向和平移量.平移规律为:10.B 解析:由函数y =a x +m -1(a >0,a ≠1)的图象在第一、三象限知,a >1.知函数在第四象限,∴a 0+m -1<0,则有m <0.11.A 解析:f (x )=2x +2-4x =-(2x )2+4·2x =-(2x -2)2+4,又∵x 2-x -6≤0,∴-2≤x ≤3,∴14≤2x ≤8.当2x =2时,f (x )max =4,当2x =8时,f (x )min =-32. 12.B 解析:因为f (-x )=3-x +3-(-x )=3-x +3x =f (x ), g (-x )=3-x -3-(-x )=3-x -3x =-g (x ),所以f (x )为偶函数,g (x )为奇函数.13.c >a >b 解析:由指数函数y =a x 当0<a <1时为减函数知, 0.80.7>0.80.9,又1.20.8>1,0.80.7<1, ∴1.20.8>0.80.7>0.80.9,即c >a >b .14.(-3,0) 解析:令⎝ ⎛⎭⎪⎫12x=t ,∵方程有正根,∴t ∈(0,1).方程转化为t 2+2t +a =0, ∴a =1-(t +1)2.∵t ∈(0,1),∴a ∈(-3,0).15.(-∞,1] 解析:解法一:由指数函数的性质可知,f (x )=⎝ ⎛⎭⎪⎫12x在定义域上为减函数,故要求f (x )的单调递增区间,只需求y =|x -1|的单调递减区间.又y =|x -1|的单调递减区间为(-∞,1],所以f (x )的单调递增区间为(-∞,1].解法二:f (x )=⎝ ⎛⎭⎪⎫12|x -1|=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -1,x ≥1,2x -1,x <1.可画出f (x )的图象,并求其单调递增区间.解题技巧:既可以利用复合函数的“同增异减”法则求解,也可以去绝对值符号,转化为分段函数求解.16.1 解析:作出函数y =2|x |的图象(如图所示).当x =0时,y =20=1, 当x =-1时,y =2|-1|=2, 当x =1时,y =21=2,所以当值域为[1,2]时,区间[a ,b ]的长度的最大值为2,最小值为1,它们的差为1.17.解:当a >1时,a 2x +7<a 3x -2等价于2x +7<3x -2, ∴x >9;当0<a <1时,a 2x +7<a 3x -2等价于2x +7>3x -2. ∴x <9.综上,当a >1时,不等式的解集为{x |x >9}; 当0<a <1时,不等式的解集为{x |x <9}. 解题技巧:注意按照底数进行分类讨论. 18.解:(1)由f (a )=2,得3a =2,a =log 32, ∴g (x )=(3a )x -4x =(3log 32)x -4x =2x -4x =-(2x )2+2x . ∴g (x )=-(2x )2+2x . (2)设2x =t ,∵x ∈[-2,1], ∴14≤t ≤2.g (t )=-t 2+t =-⎝ ⎛⎭⎪⎫t -122+14,由g (t )在t ∈⎣⎢⎡⎦⎥⎤14,2上的图象可得,当t =12,即x =-1时,g (x )有最大值14; 当t =2,即x =1时,g (x )有最小值-2. 故g (x )的值域是⎣⎢⎡⎦⎥⎤-2,14.19.解:(1)由已知得⎝ ⎛⎭⎪⎫12-a =2,解得a =1. (2)由(1)知,f (x )=⎝ ⎛⎭⎪⎫12x ,又g (x )=f (x ),则4-x -2=⎝ ⎛⎭⎪⎫12x , 即⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x -2=0,即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x 2-⎝ ⎛⎭⎪⎫12x -2=0. 令⎝ ⎛⎭⎪⎫12x =t ,则t 2-t -2=0,即(t -2)(t +1)=0. 又t >0,故t =2,即⎝ ⎛⎭⎪⎫12x =2,解得x =-1. 20.解:(1)函数f (x )在R 上是增函数.证明如下: a >0,b >0,任取x 1,x 2∈R ,且x 1<x 2,(2)∵f (x +1)>f (x ),∴f (x +1)-f (x )=(a ·2x +1+b ·3x +1)-(a ·2x +b ·3x ) =a ·2x +2b ·3x >0,当a <0,b >0时,⎝ ⎛⎭⎪⎫32x >-a 2b ,则x >log 1.5⎝ ⎛⎭⎪⎫-a 2b , 当a >0,b <0时,⎝ ⎛⎭⎪⎫32x <-a 2b ,则x <log 1.5⎝ ⎛⎭⎪⎫-a 2b .综上,当a <0,b >0时,x 的取值范围是⎝ ⎛⎭⎪⎫log 1.5⎝ ⎛⎭⎪⎫-a 2b ,+∞; 当a >0,b <0时,x 的取值范围是⎝ ⎛⎭⎪⎫-∞,log 1.5⎝ ⎛⎭⎪⎫-a 2b . 21.(1)证明:任取x 1,x 2∈R ,且x 1<x 2,故对于任意实数a ,f (x )为增函数.(2)解:f (x )=a -22x +1≤0恒成立,只要a ≤22x +1恒成立,问题转化为只要a 不大于22x +1的最小值. ∵x ∈R,2x >0恒成立,∴2x +1>1.∴0<12x +1<1,0<22x +1<2,∴a ≤0. 故当a ∈(-∞,0]时,f (x )≤0恒成立.22.解:(1)因为f (x )是奇函数,所以f (0)=0, 即b -12+2=0,解得b =1.(3)因为f (x )是奇函数,f (t 2-2t )+f (2t 2-k )<0,则f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得,t 2-2t >k -2t 2. 即对一切t ∈R 有3t 2-2t -k >0,从而判别式Δ=4+12k <0,解得k <-13.故k 的取值范围是⎝ ⎛⎭⎪⎫-∞,-13.。

高中数学 第二章 基本初等函数Ⅰ质量评估检测 新人教A

高中数学 第二章 基本初等函数Ⅰ质量评估检测 新人教A

【师说】2015-2016学年高中数学 第二章 基本初等函数Ⅰ质量评估检测 新人教A 版必修1时间:120分钟 满分:150分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.2015·四川绵阳市高一期末9-32=( )A .9B .-19C .27 D.127解析:9-32=193=136=133=127,故选D.答案:D2.2015·吉林市高一期末函数f (x )=⎝ ⎛⎭⎪⎫12x -1的定义域、值域分别是( )A .定义域是R ,值域是RB .定义域是R ,值域是(0,+∞)C .定义域是(0,+∞),值域是RD .定义域是R ,值域是(-1,+∞)解析:显然函数f (x )的定义域为R ,因为⎝ ⎛⎭⎪⎫12x >0,故⎝ ⎛⎭⎪⎫12x-1>-1,即y >-1,故选D.答案:D3.(2015·北京市海淀区高一期末)设a =2-1,b =e 0.5,c =0.512,其中e≈2.71828,则a ,b ,c 的大小顺序为( )A .a >b >cB .a >c >bC .b >a >cD .b >c >a解析:因为b =e 0.5>1,c =0.512=2-22>2-1=a ,所以b >c >a ,故选D. 答案:D4.2015·河北唐山一中高一期中下列函数中既是偶函数又在(-∞,0)上是增函数的是( )A .y =x 43B .y =x 32C .y =x -2D .y =x -14解析:y =x 43是偶函数,在(0,+∞)递增,在(-∞,0)上递减,排除A 项;y =x 32在(-∞,0)上无意义,排除B 项;y =x -2符合题意;y =x -14在(-∞,0)上递减,排除D 项,故选C.答案:C5.2015·宁夏大学附中高一期中已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,f x +3,x ≤0,则f (-10)的值是( )A .-2B .-1C .0D .1解析:因为f (-10)=f (-7)=f (-4)=f (-1)=f (2)=log 22=1,故选D. 答案:D6.2015·河南许昌高一四校联考a ,b 满足0<a <b <1,下列不等式中正确的是( )A .a a <a bB .b a <b bC .a a <b aD .b b <a b解析:因为0<a <b <1,而函数y =x a 单调递增,所以a a <b a,故选C. 答案:C7.2015·山东德州市高一期中f (x )=4-xx -1+log 4(x +1)的定义域是( )A .(0,1)∪(1,4]B .[-1,1)∪(1,4]C .(-1,4)D .(-1,1)∪(1,4]解析:由⎩⎪⎨⎪⎧4-x ≥0,x -1≠0,x +1>0,解得-1<x ≤4,且x ≠1,即x ∈(-1,1)∪(1,4],故选D.答案:D8.2015·河南郑州市高一期末函数y =log 2(x 2-3x +2)的递减区间是( ) A .(-∞,1) B .(2,+∞)C.⎝ ⎛⎭⎪⎫-∞,32D.⎝ ⎛⎭⎪⎫32,+∞ 解析:由x 2-3x +2>0,得x <1或x >2,又因为底数是2>1,所以函数在(-∞,1)上单调递减,故选A.答案:A9.2015·河北沧州市高一期末设0<x <1,且log a x <log b x <0<c x <d x<1,则( )A .a <b <c <dB .b <a <c <dC .c <d <a <bD .c <d <b <a解析:由0<x <1,log a x <log b x <0得1<a <b ;由0<x <1,0<c x <d x<1,得0<c <d <1,所以c <d <a <b ,故选C.答案:C10.2015·河南郑州市高一期末三个数20.3,0.32,log 0.32的大小顺序是( )A .0.32<log 0.32<20.3B .0.32<20.3<log 0.32C .log 0.32<20.3<0.32D .log 0.32<0.32<20.3解析:20.3>1,0<0.32<1,log 0.32<0,故选D. 答案:D11.2015·浙江杭州市高一期末函数f (x )=log 2|2x-1|的图象大致是( )BCD解析:当x >0时,函数f (x )单调递增,当x <0时,f (x )<0,故选A. 答案:A12.2015·河南许昌高一四校联考函数f (x )=log 2(x 2-ax +3a )在[2,+∞)上是增函数,则实数a 的取值范围是( )A .a ≤2 B.a ≤4C .-2≤a ≤4 D.-4<a ≤4解析:因为f (x )在[2,+∞)上是增函数,所以y =x 2-ax +3a 在[2,+∞)上单调递增且恒为正,所以⎩⎪⎨⎪⎧a 2≤2,22-2a +3a >0,即-4<a ≤4,故选D.答案:D二、填空题:本大题共4小题,每小题5分,共20分.13.2015·重庆南开中学高一期末函数y =log a (2x -3)+8的图象恒过定点A ,且点A 在幂函数f (x )的图象上,则f (3)=________.解析:由题意得定点A 为(2,8),设f (x )=x α,则2α=8,α=3,∴f (x )=x 3,∴f (3)=33=27.答案:2714.2015·宁夏大学附中高一期中设函数f (x )=f ⎝ ⎛⎭⎪⎫1x ·lg x +1,则f (10)=________.解析:令x =10得f (10)=f ⎝ ⎛⎭⎪⎫110+1①,令x =110得f ⎝ ⎛⎭⎪⎫110=f (10)·(-1)+1②,由①②得f (10)=1.答案:115.2015·山东德州市高一期中满足⎝ ⎛⎭⎪⎫14x -3>16的x 的取值集合是__________.解析:⎝ ⎛⎭⎪⎫14x -3>16⇒⎝ ⎛⎭⎪⎫14x -3>⎝ ⎛⎭⎪⎫14-2⇒x -3<-2⇒x <1.答案:(-∞,1)16.2015·山东德州市高一期中已知奇函数f (x ),x ∈(0,+∞),f (x )=lg x ,则不等式f (x )<0的解集是________.解析:∵x ∈(0,+∞),f (x )=lg x ,不等式f (x )<0化为lg x <0,解得0<x <1. 当x ∈(-∞,0)时,∵函数f (x )是奇函数, ∴f (x )=-f (-x )=-lg(-x ), 由f (x )<0得-lg(-x )<0,于是lg(-x )>0⇒lg(-x )>lg1⇒-x >1, ∴x <-1,故结果为(-∞,-1)∪(0,1). 答案:(-∞,-1)∪(0,1)三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.2015·宁夏大学附中高一期中,10分化简或求值. (1)⎝ ⎛⎭⎪⎫2450+2-2×⎝ ⎛⎭⎪⎫214-12-⎝ ⎛⎭⎪⎫82713; (2)2(lg 2)2+lg 2·lg5+lg 22-lg2+1.解析:(1)⎝ ⎛⎭⎪⎫2450+2-2×⎝ ⎛⎭⎪⎫214-12-⎝ ⎛⎭⎪⎫82713=1+14×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫322-12-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫23313=1+14×23-23=12;(2)2(lg 2)2+lg 2·lg5+lg 22-lg2+1 =2⎝ ⎛⎭⎪⎫12lg22+12lg2·(1-lg2)+⎝ ⎛⎭⎪⎫12lg2-12 =12(lg2)2+12lg2-12(lg2)2+1-12lg2 =118.2015·宁厦大学高一期中,12分已知f (x )=⎩⎪⎨⎪⎧2x-1,0≤x <2,x 2-6x +8,x ≥2.(1)画出f (x )的图象;(2)若f (m )=1,求实数m 的值.解析:(1)作出函数f (x )的图象如图所示.(2)由于f (x )=⎩⎪⎨⎪⎧2x-1,0≤x <2x 2-6x +8,x ≥2若f (m )=1,则⎩⎪⎨⎪⎧0≤m <2,2m-1=1,或⎩⎪⎨⎪⎧m ≥2,m 2-6m +8=1,解得m =1或m =3+ 2.19.2015·河北沧州市高一期末,12分已知指数函数f (x )=a x(a >0,且a ≠1)过点(-2,9).(1)求函数f (x )的解析式;(2)若f (2m -1)-f (m +3)<0,求实数m 的取值范围.解析:(1)由题意,得a -2=9,解得a =13,所以f (x )=⎝ ⎛⎭⎪⎫13x .(2)由f (2m -1)-f (m +3)<0,得f (2m -1)<f (m +3).因为f (x )=⎝ ⎛⎭⎪⎫13x在R 上单调递减,所以2m -1>m +3,解得m >4.所以实数m 的取值范围是(4,+∞).20.2015·贵州贵阳市高一期末,12分已知函数f (x )=lg(2+x ),g (x )=lg(2-x ),设h (x )=f (x )+g (x ).(1)求函数h (x )的定义域;(2)判断函数h (x )的奇偶性,并说明理由.解析:(1)∵h (x )=f (x )+g (x )=lg(x +2)+lg(2-x ).要使函数h (x )有意义,则有⎩⎪⎨⎪⎧x +2>0,2-x >0解得-2<x <2.所以h (x )的定义域为(-2,2).(2)由(1)知h (x )的定义域是(-2,2),定义域关于原点对称.又∵h (-x )=f (-x )+g (-x )=lg(2-x )+lg(2+x )=g (x )+f (x )=h (x ), ∴h (-x )=h (x ), ∴h (x )为偶函数.21.2015·山西师大附中高一检测,12分已知函数f (x )=2x -x α且f (4)=-72.(1)求α的值;(2)判断f (x )在(0,+∞)上的单调性,并给予证明.解析:(1)∵f (4)=-72,∴24-4α=-72,α=1.(4分)(2)f (x )=2x-x 在(0,+∞)上是减函数.(6分)证明如下:设任意x 1,x 2∈(0,+∞),且x 1<x 2.f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫2x 1-x 1-⎝ ⎛⎭⎪⎫2x 2-x 2=(x 2-x 1)⎝⎛⎭⎪⎫2x 1x 2+1. ∵0<x 1<x 2, ∴x 2-x 1>0,2x 1x 2+1>0.∴f (x 1)-f (x 2)>0,f (x 1)>f (x 2),故f (x )=2x-x 在(0,+∞)上是减函数.(12分)22.2015·烟台高一检测,12分已知定义在R 上的函数f (x )=-2x+b2x +a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.解析:(1)∵f (x )是定义在R 上的奇函数,∴f (0)=-1+b1+a=0,∴b =1,f (x )=-2x+12x +a .(3分)而f (-x )=-2-x+12-x +a=2x-11+2x·a =-f (x ) =2x-12x +a. 对比系数可得a =1.(5分)(2)f (x )=1-2x1+2x =21+2x -1在R 上单调递减,又是奇函数.∵f (t 2-2t )<-f (2t 2-k )=f (k -2t 2), ∴t 2-2t >k -2t 2对任意t ∈R 恒成立,即k <3t 2-2t =3⎝ ⎛⎭⎪⎫t -132-13恒成立.(10分)∴k <-13.(12分)。

2019-2020学年高中数学人教A版必修一阶段质量检测:第二章 基本初等函数(Ⅰ) 含解析

2019-2020学年高中数学人教A版必修一阶段质量检测:第二章 基本初等函数(Ⅰ) 含解析

阶段质量检测(二)基本初等函数一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(lg 9-1)2等于()A.lg 9-1 B.1-lg 9C.8 D.2 2解析:因为lg 9<lg 10=1,所以(lg 9-1)2=1-lg 9.答案:B解析:方法一当a>1时,y=x a与y=log a x均为增函数,但y=x a 增较快,排除C;当0<a<1时,y=x a为增函数,y=log a x为减函数,排除由于y=x a递增较慢,所以选D.=x a的图象不过(0,1)点,故A的图象知0<a<1,而此时幂函数f(x)=xB错,D对;C项中由对数函数x)=x a的图象应是增长越来越快的变化趋势,2⎝⎭4a =±3,又a >0,∴a = 3.答案:A12.已知函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫a -14x ,x ≥1,a x ,x <1,在R 上为减函数,则实数的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫0,14C.⎝ ⎛⎭⎪⎫-∞,14D.⎝ ⎛⎭⎪⎫14,1∴f(x)的减区间为(-∞,1].答案:(-∞,1]16.若函数f(x)=(m-1)xα是幂函数,则函数g(x)=log a(x-m)(其中a>0≠1)的图象过定点A的坐标为________.解析:若函数f(x)=(m-1)xα是幂函数,则m=2,则函数g(x)=log a(x-m)=log a(x-2)(其中a>0,a≠1),令x-2=1,则x=3,g(x)=0,其图象过定点A的坐标为(3,0).答案:(3,0)三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)43所以⎝ ⎛⎭⎪⎫3423>⎝ ⎛⎭⎪⎫2323,所以⎝ ⎛⎭⎪⎫3423>⎝ ⎛⎭⎪⎫2334.19.(12分)已知f (x )=log 2(1+x )+log 2(1-x ). (1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性,并加以说明;(3)求f ⎝ ⎛⎭⎪⎫22的值.解析:(1)由⎩⎪⎨⎪⎧ 1+x >0,1-x >0,得⎩⎪⎨⎪⎧x >-1x <1,即-1<x <1.⎩⎪g (x ),f (x )>g (x ),解析:(1)设f (x )=x α,因为点(2,2)在幂函数f (x )的图象上,所以(2)2,解得α=2,即f (x )=x 2.设g (x )=x β,因为点⎝ ⎛⎭⎪⎫2,12在幂函数g (x )的图象上,所以2β=12,解得=-1,即g (x )=x -1.(2)在同一平面直角坐标系中画出函数f (x )=x 2和g (x )=x -1的图象,可得函数h (x )的图象如图所示.的解析式及图象可知,函数h (。

2019届高一数学人教A版必修1单元测评五:第二章基本初等函数(I) Word版含解析

2019届高一数学人教A版必修1单元测评五:第二章基本初等函数(I) Word版含解析

B 卷本试卷满分:100分;考试时间:90分钟一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合要求的)1.下列函数表达式中表不幂函数的是( )A .y =2x 3B .y =x 2C .y =-x 21D .y =πx2.图中的曲线是亲函数y =x n 在第一象限内的图象,已知n 取2,,-1三个值,则曲线21C 1、C 2、C 3的n 值依次为( )A .2,,-121B .-1,,221C .2,-1,21D .,2,-1213.函数f (x )=lg (x -2)+(x -3)0的定义域是( )A .{x |x >2}B .{x |x >3}C .{x |x >2或x ≠3}D .{x |x >2且x ≠3}4.实数方程()x =x 的解的个数是( )3121A .1个B .2个C .3个D .4个5.已知幂函数y =f (x )通过点(2,2),则幂函数的解析式为( )2A .y =2x 21B .y =x21C .y =x23D .y =x 21256.已知函数y =log x 与y =kx 的图象有一个公共点A ,且点A (2,y a ),则k =( )41A .-B .C .-D .414121217.函数y =a x 与y =x a 的图象如图所示,则a 可能是( )A .2B .3C .D .21318.函数的值域是( )⎩⎨⎧+∞∈-∞∈=),1(,log ],1,(,25.0x x x y x A .{y |y ≤1,y ≠0}B .{y |y ≤2}C .{y |y <l ,y ≠0}D .{y |y ≤2,y ≠0}9.已知集合A ={x ∈R |y =x },B ={y |y =x 2,x ∈R ),则A ∩B 等于( )A .{x |x ∈R }B .{y |y ≥0}C .∅D .{(0,0),(1,1)}10.在下列不等式中,m >n 的是( )A .log πm <log πn B .log 0.3m >log 0.3n C .πm >πnD .0.3m >0.3n答案:1.B 2.C 3.D 4.A 5.C 6.A 7.D 8.D 9.B 10.C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)11.函数y =log 2()+(x +2)的定义域是__________.x311-21答案:{x |-2≤x <}3112.方程log 2x =-x +2的近似解为x ≈__________.(精确度为0.1)答案:x ≈1.513.幂函数y =x和幂函数y =x-3如图所示(在第一象限),则曲线C 1,是__________.31-答案:y =x31-14.若不计算空气阻力,火箭的最大速度v km /s 和燃料的质量M kg 、火箭(除燃料外)的质量m kg 的函数关亲式为v =21n (1+).当M =200m 时,v ≈__________km /s .(答案mM 保留小数点后两位)答案:v ≈10.61 km /s三、解答题(本大题共5小题,每小题8分,共40分,解答应写出文字说明、证明过程或演算步骤)15.证明幂函数f (x )=在(-∞,+∞)上是增函数.3x 答案:设x 1<x 2时,f (x 1)-f (x 2)==,∵x 1<x 2,3231x x -2322323121)(43)21(x x x x x ++-∴x 1-x 2<0,又∵()2+()2>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),323121x x +4332x ∴f (x )在R 上是增函数16.设函数f (x )=log π(2+x )和函数g (x )=log π(2一x ),令函数F (x )=f (x )+g (x ).(1)求函数F (x )的定义域;(2)判断函数F (x )奇偶性,并说明理由;(3)判断函数F (x )的单调性,并说明理由.答案:(1)定义域:{x |-2<x <2}(2)∵x ∈{x |-2<x <2),f (-x )=log π(2-x )+log (2+x )=F (x ),∴F (x )是偶函数∀(3)∵F (x )=log π(4-x 2),∴F (x )在(-2,0]上是增函数,F (x )在[0,2)上是减函数17.某I P 产品原来每年市场需求量为a ,在今后n 年内,估计市场需求量平均每年比上一年增加p %,写出市场需求量随年数x (1≤x ≤n ,x ∈N *)变化的函数解析式f (x ),并求当p =0.2时,经过多少年市场的需求量增加1成?若p ≤0.3时,(1+p %)x ≈1+xp %,试计算结果并作比较.答案:函数y =a (1+p %)x (1≤x ≤n ,x ∈N *),当p =0.2时,a (1+0.002)x =1.1a ,从而有:x =log l.002 l.1≈48,当p ≤0.3时,a (1+0.002)x ≈a (1+0.002x )=1.1a x =50,绝对误差是50-⇒48=218.完成下列各题:(1)确定x 的值,使不等式a 2x-1>a 3x (a >0,a ≠1)成立;(2)已知函数f (x )=2x -1,g (x )=求f [g (x )]的表达式.⎩⎨⎧<-≥,0,1,0,2x x x答案:(1)①当0<a <1时,x >-1;②当a >1时,x <-1(2)当x ≥0时,f [g (x )]=f (x 2)=2x 2-1;当x <0时,f [g (x )]=f (-1)=-319.低压燃煤气体是通过管道输送的.在固定的压力差下,当燃煤气体通过圆形管道时,其流量速率v (cm 3/s )与管道的直径(内径)d (cm )的四次方成正比.(1)若燃煤气体在直径为6 cm 的管道中,流量速率为400 cm 3/s ,求该燃煤气体通过直径为d 的管道时,其流量速率的表达式;(2)要向某居民小区每小时供给36 m 3。

2019高中数学 第二章 基本初等函数(Ⅰ)章末质量评估 新人教A版必修1

2019高中数学 第二章 基本初等函数(Ⅰ)章末质量评估 新人教A版必修1

第二章 基本初等函数(Ⅰ)章末质量评估(二)A 基础达标卷(时间:45分钟 满分:75分)一、选择题(本大题共6小题,每小题5分,共30分) 1.计算:log 225·log 522=( ) A .3 B .4 C .5D .6 解析:log 225·log 522=lg 25lg 2·12 lg 5=3.故选A.答案:A2.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤0,log 2x ,x >0,那么f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫18的值为( ) A .27 B.127C .-27D .-127解析:f ⎝ ⎛⎭⎪⎫18=log 218=-3,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫18=f (-3)=3-3=127.答案:B3. 下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数是( ) A .f (x )=x 12B .f (x )=x 3C .f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=3x解析:由于f (x +y )=f (x )f (y ),故排除选项A ,B.又f (x )=⎝ ⎛⎭⎪⎫12x为单调递减函数,所以排除选项C .答案:D 4.函数f (x )=1x ++4-x 2的定义域为( )A .[-2,2]B .(-1,2]C .[-2,0)∪(0,2]D .(-1,0)∪(0,2]解析:要使函数有意义,x 应满足⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,解得-1<x <0或0<x ≤2,所以该函数的定义域为(-1,0)∪(0,2].故选D.答案:D5.已知函数f (x )=⎝ ⎛⎭⎪⎫12x,则函数f (x +1)的反函数的图象可能是( )解析:∵f (x )=⎝ ⎛⎭⎪⎫12x ,∴f (x +1)=⎝ ⎛⎭⎪⎫12x +1,f (x +1)的反函数为y =log 12x -1.故选D.答案:D6.设函数f (x )定义在R 上,f (2-x )=f (x ),且当x ≥1时,f (x )=log 2x ,则有( )A .f (-3)<f (2)<f ⎝ ⎛⎭⎪⎫12B .f ⎝ ⎛⎭⎪⎫12<f (2)<f (-3)C .f ⎝ ⎛⎭⎪⎫12<f (-3)<f (2) D .f (2)<f ⎝ ⎛⎭⎪⎫12<f (-3) 解析:本题主要考查对数函数的单调性.由f (x )=f (2-x ),得f (-3)=f (5),f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32.当x ≥1时,函数f (x )=log 2x 为增函数,可知f ⎝ ⎛⎭⎪⎫32<f (2)<f (5),即f ⎝ ⎛⎭⎪⎫12<f (2)<f (-3),故选B. 答案:B二、填空题(本大题共4小题,每小题5分,共20分)7.如果幂函数f (x )的图象过点⎝⎛⎭⎪⎫16,12,那么f (64)=________.解析:设幂函数f (x )=x α(α为常数),将⎝⎛⎭⎪⎫16,12代入,求得α=-14,则f (x )=x -14 ,所以f (64)=64-14=24. 答案:248.已知(1.40.8)a<(0.81.4)a,则实数a 的取值范围是________. 解析:∵1.40.8>1,0<0.81.4<1,且(1.40.8)a<(0.81.4)a,∴y =x α为减函数, ∴a 的取值范围是(-∞,0). 答案:(-∞,0)9.已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________.解析:由已知可得,lg(ab )=1,故f (a 2)+f (b 2)=lg a 2+lg b 2=lg(a 2b 2)=2lg(ab )=2×1=2. 答案:210.定义在R 上的偶函数f (x )在[0,+∞)上单调递减,且f ⎝ ⎛⎭⎪⎫12=0,则满足f (log 14x )<0的集合为__________________.解析:本题主要考查函数的奇偶性、单调性的应用和对数不等式的解法.因为定义在R 上的偶函数f (x )在[0,+∞)上单调递减,所以在(-∞,0]上单调递增.又f ⎝ ⎛⎭⎪⎫12=0,所以f ⎝ ⎛⎭⎪⎫-12=0.由f (log 14 x )<0可得log 14x <-12,或log 14x >12,解得x ∈⎝⎛⎭⎪⎫0,12∪(2,+∞).答案:⎝ ⎛⎭⎪⎫0,12∪()2,+∞ 三、解答题(本大题共2小题,需写出演算过程与文字说明,共25分) 11.(本小题满分12分)计算下列各式的值: (1)⎝ ⎛⎭⎪⎫21412 -(-9.6)0-⎝ ⎛⎭⎪⎫338-23 +(1.5)-2; (2)log 34273+lg 25+lg 4+7log72. 解:(1)原式=⎝ ⎛⎭⎪⎫942-1-⎝ ⎛⎭⎪⎫278-23 +⎝ ⎛⎭⎪⎫32-2 =⎝ ⎛⎭⎪⎫322×12 -1-⎝ ⎛⎭⎪⎫32-3×23 +⎝ ⎛⎭⎪⎫32-2=32-1-⎝ ⎛⎭⎪⎫32-2+⎝ ⎛⎭⎪⎫32-2=12. (2)原式=log 33343+lg(25×4)+2=log 33-14 +lg102+2=-14+2+2=154.12.(本小题满分13分)已知函数f (x )=x -2m 2+m +3(m ∈Z )为偶函数,且f (3)<f (5).(1)求函数f (x )的解析式;(2)若g (x )=log a [f (x )-ax ](a >0且a ≠1)在区间[2,3]上为增函数,求实数a 的取值范围. 解:(1)∵f (x )为偶函数,∴-2m 2+m +3为偶数. 又f (3)<f (5),∴3-2m 2+m +3<5-2m 2+m +3,即有⎝ ⎛⎭⎪⎫35-2m 2+m +3<1. ∴-2m 2+m +3>0.∴-1<m <32.又m ∈Z ,∴m =0或m =1.当m =0时,-2m 2+m +3=3为奇数(舍去); 当m =1时,-2m 2+m +3=2为偶数,符合题意. ∴m =1,f (x )=x 2.(2)由(1)知,g (x )=log a [f (x )-ax ]=log a (x 2-ax ) (a >0且a ≠1)在区间[2,3]上为增函数. 令u (x )=x 2-ax ,y =log a u .①当a >1时,y =log a u 为增函数,只需u (x )=x 2-ax 在区间[2,3]上为增函数,即 ⎩⎪⎨⎪⎧a 2≤2,u=4-2a >0⇒1<a <2;②当0<a <1时,y =log a u 为减函数,只需u (x )=x 2-ax 在区间[2,3]上为减函数,即⎩⎪⎨⎪⎧a 2≥3,u=9-3a >0⇒a ∈∅.综上可知,a 的取值范围为(1,2).B 能力提升卷(时间:45分钟 满分:75分)一、选择题(本大题共6小题,每小题5分,共30分) 1.下列幂函数中过点(0,0),(1,1)的偶函数是( ) A .y =x 12 B .y =x 4C .y =x -1D .y =x 3解析:选项A 中y =x 12 =x 是非奇非偶的函数,选项C 中y =x -1是奇函数,对于选项D 中y =x 3也是奇函数,均不满足题意;选项B 中y =x 4是偶函数,且过点(0,0),(1,1),满足题意.故选B.答案:B2.三个数a =0.72,b =log 20.7,c =20.7之间的大小关系是( ) A .a <c <b B .a <b <c C .b <a <cD .b <c <a解析:∵0<a =0.72<1,b =log 20.7<0,c =20.7>1.∴b <a <c .故选C. 答案:C3.设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A .奇函数,且在(0,1)上是增函数 B .奇函数,且在(0,1)上是减函数 C .偶函数,且在(0,1)上是增函数 D .偶函数,且在(0,1)上是减函数解析:∵f (x )=ln(1+x )-ln(1-x )的定义域是(-1,1),f (-x )=ln(1-x )-ln(1+x ),∴f (-x )=-f (x ),∴f (x )是奇函数,排除C 、D. ∵y =ln(1+x )在(0,1)上是增函数,y =ln(1-x )在(0,1)上是减函数,∴f (x )=ln(1+x )-ln(1-x )上是增函数,故选A. 答案:A4.函数f (x )=4x-3·2x+3的值域为[1,7],则f (x )的定义域为( ) A .(-1,1)∪[2,4] B .(0,1)∪[2,4] C .[2,4]D .(-∞,0]∪[1,2]解析:设t =2x ,则t >0,且y =t 2-3t +3=⎝ ⎛⎭⎪⎫t -322+34≥34.∵函数f (x )=4x -3·2x+3的值域为[1,7], ∴函数y =t 2-3t +3的值域为[1,7] .由y =1得t =1或2,由y =7得t =4或-1(舍去),则0<t ≤1或2≤t ≤4,即0<2x≤1或2≤2x≤4,解得x <0或1≤x ≤2, ∴f (x )的定义域是(-∞,0]∪[1,2],故选D. 答案:D5.已知函数f (x )满足:当x ≥4时,f (x )=⎝ ⎛⎭⎪⎫12x;当x <4时,f (x )=f (x +1),则f (2+log 23)=( )A.124B.112C.18D .38解析:2+log 23=log 24+log 23=log 212<log 216=4,log 224>log 216=4,由于当x <4时,f (x )=f (x +1),则f (2+log 23)=f (log 212)=f (1+log 212)=f (log 224).又当x ≥4时,f (x )=⎝ ⎛⎭⎪⎫12x ,所以f (log 224)=⎝ ⎛⎭⎪⎫12log224=2log2124 =124,故f (2+log 23)=124. 答案:A6.已知函数f (x )=2x -P ·2-x,则下列结论正确的是( ) A .P =1,f (x )为奇函数且为R 上的减函数 B .P =-1,f (x )为偶函数且为R 上的减函数 C .P =1,f (x )为奇函数且为R 上的增函数 D .P =-1,f (x )为偶函数且为R 上的增函数解析:当P =1时,f (x )=2x-2-x,定义域为R 且f (-x )=2-x-2x =-f (x ),∴f (x )为奇函数.∵2x是R 上的增函数,2-x 是R 的减函数,∴f (x )=2x -2-x 为R 上的增函数.因此选项C 正确.当P =-1时,f (x )=2x+2-x,定义域为R 且f (-x )=2-x +2x=f (x ),∴f (x )为偶函数.根据1<2,f (1)<f (2)可知f (x )在R 上的不是减函数;根据-2<-1,f (-2)>f (-1)可知f (x )在R 上的不是增函数.因此选项B 、D 不正确.故选C.答案:C二、填空题(本大题共4小题,每小题5分,共20分) 7.若x 12 +x -12 =3,则x +x -1=______.解析:本题主要考查指数式的运算.对x 12 +x -12 =3两边平方得x +x -1+2=9,所以x +x -1=7. 答案:78.函数y =(2)1x 的单调递减区间是__________.解析:本题主要考查指数函数与反比例函数的复合函数的单调性.函数y =(2)1x 的单调递减区间即为y =1x的单调递减区间,也即为(-∞,0),(0,+∞).答案:(-∞,0),(0,+∞) 9.已知函数f (x )=a2x -4+n (a >0且a ≠1)的图象恒过定点P (m,2),则m +n =______.解析:本题主要考查指数函数的图象及图象变换.当2x -4=0,即x =2时,f (x )=1+n ,函数图象恒过点(2,1+n ),所以m =2,1+n =2,即m =2,n =1.所以m +n =3.答案:310.已知定义在实数集R 上的偶函数f (x )在区间(-∞,0]上是单调减函数,则不等式f (-1)<f (ln x )的解集是________.解析:由已知f (x )在区间(-∞,0]上是单调减函数,在区间(0,+∞)上是单调增函数,当ln x >0,f (1)<f (ln x )则1<ln x ,有x >e ,当ln x <0,f (-1)<f (ln x ),则-1>ln x ,有0<x <1e.不等式f (-1)<f (ln x )的解集是⎝ ⎛⎭⎪⎫0,1e ∪(e ,+∞). 答案:⎝ ⎛⎭⎪⎫0,1e ∪(e ,+∞) 三、解答题(本大题共2小题,需写出演算过程与文字说明,共25分) 11.(本小题满分12分)设函数f (x )=a x -a -x(a >0且a ≠1),(1)若f (1)<0,试判断函数单调性并求使不等式f (x 2+tx )+f (4-x )<0恒成立的t 的取值范围; (2)若f (1)=32, g (x )=a 2x +a -2x-2mf (x )且g (x )在[1,+∞)上的最小值为-2,求m 的值.解:(1)f (x )=a x-a -x(a >0且a ≠1),∵f (1)<0,∴a -1a<0,又a >0,且a ≠1,∴0<a <1.∵a x 单调递减,a -x 单调递增,故f (x )在R 上单调递减.不等式化为f (x 2+tx )<f (x -4), ∴x 2+tx >x -4,即x 2+(t -1)x +4>0恒成立.-∴Δ=(t -1)2-16<0,解得-3<t <5. (2)∵f (1)=32,∴a -1a =32,2a 2-3a -2=0,∴a =2或a =-12(舍去).∴g (x )=22x+2-2x-2m (2x -2-x )=(2x -2-x )2-2m (2x -2-x)+2.令t =f (x )=2x-2-x,由(1)可知f (x )=2x -2-x为增函数, ∵x ≥1,∴t ≥f (1)=32,令h (t )=t 2-2mt +2=(t -m )2+2-m 2.⎝ ⎛⎭⎪⎫t ≥32 若m ≥32,当t =m 时,h (t )min =2-m 2=-2,∴m =2.若m <32,当t =32时,h (t )min =174-3m =-2,解得m =2512>32,舍去综上可知m =2.12.(本小题满分13分)已知f (x )=log 21+x 1-x .(1)判断f (x )奇偶性并证明;(2)判断f (x )单调性并用单调性定义证明;(3)若f (x -3)+f ⎝ ⎛⎭⎪⎫-13<0,求实数x 的取值范围. 解:(1)∵1+x1-x >0,∴-1<x <1,∴定义域为(-1,1)关于原点对称,又f (-x )=log 21-x 1+x =log 2⎝ ⎛⎭⎪⎫1+x 1-x -1=-log 21+x 1-x =-f (x ),∴f (x )为(-1,1)上的奇函数.(2) 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)= log 21+x 11-x 1-log 21+x 21-x 2=log 21+x 11-x 21-x 11+x 2.又-1<x 1<x 2<1,∴(1+x 1)(1-x 2)-(1-x 1)(1+x 2)=2(x 1-x 2)<0, 即0<(1+x 1)(1-x 2)<(1-x 1)(1+x 2), ∴0<+x 1-x 2-x 1+x 2<1, ∴log 2+x 1-x 2-x 1+x 2<0,∴f (x 1)<(fx 2), ∴f (x )在(-1,1)上单调递增. (3)∵f (x )为(-1,1)上的奇函数,-∴f (x -3)<-f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫13. 又f (x )在(-1,1)上单调递增,∴-1<x -3<13,得2<x <103.。

2019年高中数学第二章基本初等函数(Ⅰ)章末检测新人教A版必修1

2019年高中数学第二章基本初等函数(Ⅰ)章末检测新人教A版必修1

第二章 基本初等函数(Ⅰ)章末检测时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.4-2=( )A .e -3B .3-e C.3-eD .±3-e解析:∵e<3,∴e -3<0, ∴4e -32=[(e -3)2] 14=[(3-e)2] 14=(3-e)124⨯=3-e.答案:C2.函数y =3|x |-1的定义域为[-1,2],则函数的值域为( ) A .[2,8] B.[0,8] C .[1,8]D .[-1,8]解析:当x =0时,y min =30-1=0, 当x =2时,y max =32-1=8, 故值域为[0,8]. 答案:B3.已知函数f (x )=⎩⎪⎨⎪⎧e x -1,x ≤1,ln x ,x >1,那么f (ln 2)的值是( ) A .0 B.1 C .ln(ln 2)D .2解析:∵0<ln 2<1,∴f (ln 2)=e ln 2-1=2-1=1.答案:B4.函数f (x )=x|x |·a x(a >1)的图象的大致形状是( )解析:当x >0时,f (x )=a x, 当x <0时,f (x )=-a x,则f (x )=x|x |·a x(a >1)的图象为B.答案:B5.幂函数的图象过点⎝ ⎛⎭⎪⎫2,14,则它的单调递增区间是( )A .(0,+∞) B.[0,+∞) C .(-∞,0)D .(-∞,+∞)解析:设幂函数f (x )=x α,∴2α=14,∴α=-2,∴f (x )=x -2=1x2,图象如图所示:∴f (x )的增区间为(-∞,0). 答案:C6.若0<a <b <1,则( ) A .3b<3aB.log a 3<log b 3C .log 4a <log 4bD .⎝ ⎛⎭⎪⎫14a <⎝ ⎛⎭⎪⎫14b 解析:对于选项A :∵y =3x是增函数,∴3a<3b. 对于选项B :∵log a 3-log b 3=lg 3lg a -lg 3lg b =b -lg a lg a lg b,∵0<a <b <1,∴lg b <0,lg a <0,lg 3>0,lg b-lg a >0,∴log a 3-log b 3>0,∴log a 3>log b 3. 对于选项C :∵y =log 4x 是增函数,∴C 正确.对于选项D :∵y =⎝ ⎛⎭⎪⎫14x 是减函数,∴⎝ ⎛⎭⎪⎫14a >⎝ ⎛⎭⎪⎫14b.答案:C7.已知函数f (x )=⎩⎪⎨⎪⎧3x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=6,则a 的值等于( ) A .-1 B.1 C .2D .4解析:∵0<1,∴f (0)=30+1=2,而2≥1, ∴f (f (0))=f (2)=22+2a =6,∴a =1. 答案:B8.已知a =0.3,b =20.3,c =0.30.2,则a ,b ,c 三者的大小关系是( ) A .b >c >a B.b >a >c C .a >b >cD .c >b >a解析:a =0.3=0.312=0.30.5,∵y =0.3x 是减函数,∴0.30.5<0.30.2<0.30=1, 即a <c <1;而y =2x是增函数,∴20.3>20=1, ∴b >c >a . 答案:A9.下列函数中,定义域为R 的是( ) A .y =x -2B.y =x 12C .y =x 2D .y =x -1答案:C10.若a =ln 22,b =ln 33,c =ln 55,则有( )A .a >b >c B.b >a >c C .b >c >aD .a >c >b解析:∵a -b =ln 22-ln 33=3ln 2-2ln 36=ln 8-ln 96<0,∴a <b ,∵a -c =ln 22-ln 55=5ln 2-2ln 510=ln 32-ln 2510>0,∴a >c ∴b >a >c . 答案:B11.已知f (x )=ln (1+x 2+x ),且f (a )=2, 则f (-a )=( ) A .1 B.0 C .2D .-2解析:f (a )=ln (1+a 2+a ),f (-a )=ln (1+a 2-a )∴f (a )+f (-a )=ln (1+a 2+a )+ln (1+a 2-a )=ln [(1+a 2+a )(1+a 2-a )]=ln (1+a 2-a 2)=ln 1=0. 答案:D12.(2016·高考天津卷)已知函数f (x )={ x 2+a -x +3a ,x <0,ax ++1,x ≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2-x 恰有两个不相等的实数解,则a 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,23B.⎣⎢⎡⎦⎥⎤23,34C.⎣⎢⎡⎦⎥⎤13,23∪⎩⎨⎧⎭⎬⎫34D.⎣⎢⎡⎭⎪⎫13,23∪⎩⎨⎧⎭⎬⎫34 解析:由y =log a (x +1)+1在[0,+∞)上递减,得0<a <1.又由f (x )在R 上单调递减,则 ⎩⎪⎨⎪⎧02+a -+3a ≥f =1,3-4a2≥0⇒13≤a ≤34.如图所示,在同一坐标系中作出函数y =|f (x )|和y =2-x 的图象.由图象可知,在[0,+∞)上,|f (x )|=2-x 有且仅有一个解,故在(-∞,0)上,|f (x )|=2-x 同样有且仅有一个解.当3a >2,即a >23时,由x 2+(4a -3)x +3a =2-x (其中x <0),得x 2+(4a -2)x +3a -2=0(其中x <0),则Δ=(4a -2)2-4(3a -2)=0,解得a =34或a =1(舍去);当1≤3a ≤2,即13≤a ≤23时,由图象可知,符合条件.综上所述,a ∈⎣⎢⎡⎦⎥⎤13,23∪⎩⎨⎧⎭⎬⎫34.故选C.答案:C二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上) 13.函数f (x )=4-2x+x -x -的定义域为________.解析:若解析式有意义,则⎩⎪⎨⎪⎧ 4-2x≥0,x -1≠0,x -1>0,x -1≠1,⇒⎩⎪⎨⎪⎧x ≤2,x ≠1,x >1,x ≠2.∴1<x <2. 答案:(1,2)14.若a >0,a 23=49,则log 23a =________.解析:∵a 23=49,∴3232324()9a ⎛⎫= ⎪⎝⎭∴a =⎝ ⎛⎭⎪⎫233,∴log 23a =log 23⎝ ⎛⎭⎪⎫233=3.答案:315.若函数f (x )=a x-x -a =0有两个解,则实数a 的取值范围是________.解析:题设等价于a x=x+a 有两个解,即y =a x与直线y =x +a 有两个交点,如图所示:答案:a >116. 已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2a -1)>f (-2),则a 的取值范围是________.解析:∵f (x )是偶函数,且在(-∞,0)上单调递增, ∴在(0,+∞)上单调递减,f (-2)=f (2), ∴f (2|a -1|)>f (2),∴2|a -1|<2=2.∴|a -1|<12,即-12<a -1<12,即12<a <32.答案:⎝ ⎛⎭⎪⎫12,32 三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)计算:(1)733-3324-6319+ 4333;(2)(0.008 1)14--[3×⎝ ⎛⎭⎪⎫780]-1×[81-0.25+(278)13-]12--10×0.02713.解析:(1)原式=733-3×233-6×333+33=733-633-233+33=0.(2)原式=[(0.3)4]14--3-1×-10×0.3133⨯=103-13×(13+23)12--10×0.3=103-13-3=0.18.(本小题满分12分)求下列各式的值: (1)12lg 3249-43lg 8+lg 245; (2)(lg 5)2+2lg 2-(lg 2)2. 解析:(1)12lg 3249-43lg 8+lg 245=lg3249-lg 23423⨯+lg 245 =lg 427-lg 4+lg 7 5=lg 42×757×4=lg 10=12.(2)(lg 5)2+2lg 2-(lg 2)2=(lg 5) 2-(lg 2)2+2lg 2=(lg 5+lg 2)(lg 5-lg 2)+2lg 2=lg 5-lg 2+2lg 2=lg 5+lg 2=lg 10=1.19.(本小题满分12分)已知函数f (x )=12x -1+12,(1)求f (x )的定义域;(2)判断函数f (x )的奇偶性. 解析:(1)x 的取值需满足2x-1≠0,则x ≠0, 即f (x )的定义域是(-∞,0)∪(0,+∞).(2)由(1)知定义域是(-∞,0)∪(0,+∞),关于原点对称, 则f (-x )=12-x -1+12=2x1-2x +12 =12-2x 2x -1, ∴f (x )+f (-x ) =12x -1+12+12-2x2x -1 =1-2x2x -1+1=0. ∴f (-x )=-f (x ),∴函数f (x )为奇函数.20.(本小题满分12分)若-3≤log 12x ≤-12,求f (x )=⎝⎛⎭⎪⎫log 2x 2·⎝ ⎛⎭⎪⎫log 2x 4的最大值和最小值. 解析:f (x )=(log 2x -1)(log 2x -2) =(log 2x )2-3log 2x +2 =⎝⎛⎭⎪⎫log 2x -322-14.又因为-3≤log 12x ≤-12,所以12≤log 2x ≤3.所以当log 2x =32时,f (x )min =f (22)=-14.所以log 2x =3时,f (x )max =f (8)=2.21.(本小题满分13分)对于函数f (x )=log 12(x 2-2ax +3).(1)若函数在[-1,+∞)上有意义,求a 的取值范围; (2)若函数在(-∞,1]上是增函数,求a 的取值范围.解析:(1)函数f (x )在[-1,+∞)上有意义,则u =x 2-2ax +3=g (x )>0对于x ∈[-1,+∞)恒成立,因此保证g (x )在[-1,+∞)上的图象位于x 轴上方,因此应按g (x )的对称轴x =a 分类,则得对称轴在[-1,+∞)左侧,即g (x )在[-1,+∞)上为增函数,对称轴在[-1,+∞)上,这时保证顶点都在x 轴上方即可.则得⎩⎪⎨⎪⎧a <-1,g -,或⎩⎪⎨⎪⎧a ≥-1,Δ=4a 2-12<0⇒⎩⎪⎨⎪⎧a <-1,4+2a >0,或⎩⎪⎨⎪⎧a ≥-1,a 2-3<0,得-2<a <-1或-1≤a <3,即-2<a < 3. 故a 的取值范围是(-2,3).(2)令u =g (x )=x 2-2ax +3,f (u )=log 12u .由复合函数的单调性可知,函数f (x )在(-∞,1]上是增函数⇔g (x )在(-∞,1]上是减函数,且g (x )>0,对x ∈(-∞,1]恒成立⇔⎩⎪⎨⎪⎧a ≥1,g,得⎩⎪⎨⎪⎧a ≥1,4-2a >0,解得a ∈[1,2).22.(本小题满分13分)已知定义域为R 的函数f (x )=b -2x2x +a是奇函数.(1)求a ,b 的值;(2)用定义证明f (x )在(-∞,+∞)上为减函数.(3)若对于任意t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的范围. 解析:(1)∵f (x )为R 上的奇函数, ∴f (0)=0,b =1.又f (-1)=-f (1),得a =1. (2)任取x 1,x 2∈R ,且x 1<x 2,∵x 1<x 2,∴22x -21x >0,又(21x +1)(22x +1)>0,f (x 1)-f (x 2)>0∴f (x )为R 上的减函数.(3)∵t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立, ∴f (t 2-2t )<-f (2t 2-k )∵f (x )是奇函数,∴f (t 2-2t )<f (k -2t 2),由f (x )为减函数, ∴t 2-2t >k -2t 2.即k <3t 2-2t 恒成立,而3t 2-2t =3⎝ ⎛⎭⎪⎫t -132-13≥-13.∴k <-13.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019高中数学 第二章 基本初等函数(I )阶段质量检测 新人教A版必修1(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.2211+log 52等于( )A .2+ 5B .2 5C .2+52D .1+522.已知f (x 3)=lg x ,则f (2)等于( ) A .lg 2 B .lg 8 C .lg 18D.13lg 23.函数y =1log 0.5x -的定义域为( )A.⎝ ⎛⎭⎪⎫34,1 B.⎝ ⎛⎭⎪⎫34,+∞ C .(1,+∞)D.⎝ ⎛⎭⎪⎫34,1∪(1,+∞) 4.若0<a <1,且log b a <1,则( ) A .0<b <a B .0<a <b C .0<a <b <1D .0<b <a 或b >15.已知函数f (x )=a x,g (x )=x a,h (x )=log a x (a >0,且a ≠1),在同一平面直角坐标系中画出其中两个函数在第一象限内的图象,其中正确的是( )6.已知函数f (x )=⎩⎪⎨⎪⎧3x +1,x ≤0,log 2x ,x >0,若f (x 0)>3,则x 0的取值范围是( ) A .x 0>8 B .x 0<0,或x 0>8 C .0<x 0<8D .x 0<0,或0<x 0<87.对于函数f (x )=lg x 的定义域内任意x 1,x 2(x 1≠x 2)有如下结论: ①f (x 1+x 2)=f (x 1)+f (x 2);②f (x 1·x 2)=f (x 1)+f (x 2);③f x 1-f x 2x 1-x 2>0;④f (x 1+x 22)<f x 1+f x 22上述结论正确的是( )A .②③④B .①②③C .②③D .①③④8.定义运算a ⊗b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,则函数f (x )=1⊗2x的图象是( )9.若f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x,则有( ) A .f (2)<f (3)<g (0) B .g (0)<f (3)<f (2) C .f (2)<g (0)<f (3)D .g (0)<f (2)<f (3)10.设函数f (x )=log a |x |(a >0且a ≠1)在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系为( )A .f (a +1)=f (2)B .f (a +1)>f (2)C .f (a +1)<f (2)D .不确定二、填空题(本大题共4小题,每小题5分,共20分)11.计算⎝ ⎛⎭⎪⎫lg 14-lg 25÷10012-=________.12.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3x-,x ≥2,则f [f (2)]等于________.13.函数f (x )=ax -2 011+2 011的图象一定过点P ,则P 点的坐标是________.14.若lg(x -y )+lg(x +2y )=lg 2+lg x +lg y ,则xy=________.三、解答题(本大题共4小题,共50分.解答时应写出文字说明,证明过程或运算步骤.) 15.(10分)计算:(1)12-1-⎝ ⎛⎭⎪⎫350+⎝ ⎛⎭⎪⎫94-0.5+ 42-4;(2)lg 500+lg 85-12lg 64+50(lg 2+lg 5)2.16.(12分)已知函数f (x )=4x -2·2x +1-6,其中x ∈[0,3].(1)求函数f (x )的最大值和最小值;(2)若实数a 满足:f (x )-a ≥0恒成立,求a 的取值范围.17.(14分)已知f (x )是定义在R 上的偶函数,且x ≤0时,f (x )=log 12(-x +1).(1)求f (0),f (1); (2)求函数f (x )的解析式;(3)若f (a -1)<-1,求实数a 的取值范围.18.(14分)已知函数f (x )=a -22x +1.(1)求f (0);(2)探究f (x )的单调性,并证明你的结论;(3)若f (x )为奇函数,求满足f (ax )<f (2)的x 的取值范围.答 案 阶段质量检测(二)1.选B 2211+log 52=2×2122log 5=2×2log =2 5.2.选D 令x 3=2,则x =32,∴f (2)=lg 32=13lg 2.3.选A 由题意得⎩⎪⎨⎪⎧log 0.5x -,4x -3>0,解得34<x <14.选D 当b >1时,log b a <1=log b b . ∴a <b ,即b >1成立.当0<b <1时,log b a <1=log b b,0<b <a <1, 即0<b <a .5.选B 本题综合考查了幂函数、指数函数、对数函数的图象,分a >1和0<a <1两种情况,分别画出幂函数、指数函数、对数函数的图象,对比可得选项B 正确.6.选A 依题意,得⎩⎪⎨⎪⎧x 0≤0,3x 0+1>3,或⎩⎪⎨⎪⎧x 0>0,log 2x 0>3,即⎩⎪⎨⎪⎧x 0≤0,x 0+1>1,或⎩⎪⎨⎪⎧x 0>0,log 2x 0>log 28.所以x 0∈∅,或x 0>8,故选A.7.选C 由对数的运算性质可得f (x 1)+f (x 2)=lg x 1+lg x 2=lg(x 1x 2)=f (x 1x 2),所以①错误,②正确;因为f (x )是定义域内的增函数,所以③正确;f ⎝⎛⎭⎪⎫x 1+x 22=lg x 1+x 22,f x 1+f x 22=lg x 1+lg x 22=lg x 1x 2,因为x 1+x 22>x 1x 2(x 1≠x 2),所以lgx 1+x 22>lg x 1x 2,即f ⎝⎛⎭⎪⎫x 1+x 22>f x 1+f x 22,所以④错误.8.选A f (x )=1⊗2x=⎩⎪⎨⎪⎧1,1≤2x,2x ,1>2x,即f (x )=⎩⎪⎨⎪⎧1,x ≥0,2x,x <0,结合选项知选A.9.选D 用-x 代x ,则有f (-x )-g (-x )=e -x,即-f (x )-g (x )=e -x,结合f (x )-g (x )=e x,可得f (x )=e x-e -x2,g (x )=-e -x+ex2.所以f (x )在R 上为增函数,且f (0)=0,g (0)=-1,所以f (3)>f (2)>f (0)>g (0),故选D.10.选B 易知f (x )为偶函数,所以f (x )在(0,+∞)上单调递减,所以0<a <1,所以1<a +1<2,所以f (a +1)>f (2).11.解析:⎝ ⎛⎭⎪⎫lg 14-lg 25÷10012- =lg 1100÷10012-=-2÷110=-20.答案:-2012.解析:∵f (2)=log 3(22-1)=1,∴f [f (2)]=f (1)=2e 1-1=2.答案:213.解析:当x -2 011=0,即x =2 011时,f (x )=a 0+2 011=2 012,∴定点P 的坐标为(2 011,2 012). 答案:(2 011,2 012)14.解析:lg(x -y )(x +2y )=lg 2xy⇒⎩⎪⎨⎪⎧x -y >0,x +2y >0,x >0,y >0,x -y x +2y=2xy ,∴⎩⎪⎨⎪⎧x >y >0,x -2yx +y =0.∴x =2y ,即xy=2. 答案:215.解:(1)原式=2+1-1+23+e -2=23+e.(2)原式=lg 5+lg 102+lg 23-lg 5-12lg 26+50(lg 10)2=lg 5+2+3lg 2-lg 5-3lg 2+50=52.16.解:(1)f (x )=(2x )2-4·2x-6(0≤x ≤3). 令t =2x,∵0≤x ≤3,∴1≤t ≤8.令h (t )=t 2-4t -6=(t -2)2-10(1≤t ≤8).当t ∈[1,2]时,h (t )是减函数;当t ∈(2,8]时,h (t )是增函数. ∴f (x )min =h (2)=-10,f (x )max =h (8)=26. (2)∵f (x )-a ≥0恒成立,即a ≤f (x )恒成立, ∴a ≤f (x )min 恒成立.由(1)知f (x )min =-10,∴a ≤-10. 故a 的取值范围为(-∞,-10].17.解:(1)因为当x ≤0时,f (x )=log 12(-x +1),所以f (0)=0.又函数f (x )是定义在R 上的偶函数,所以f (1)=f (-1)=log 12[-(-1)+1]=log 122=-1,即f (1)=-1.(2)令x >0,则-x <0,从而f (-x )=log 12(x +1)=f (x ),∴x >0时,f (x )=log 12(x +1).∴函数f (x )的解析式为f (x )=⎩⎨⎧log12x +,x >0,log 12-x +,x ≤0.(3)设x 1,x 2是任意两个值,且x 1<x 2≤0,则-x 1>-x 2≥0,∴1-x 1>1-x 2>0.∵f (x 2)-f (x 1)=log 12(-x 2+1)-log 12(-x 1+1)=log 121-x 21-x 1>log 121=0,∴f (x 2)>f (x 1), ∴f (x )=log 12(-x +1)在(-∞,0]上为增函数.又f (x )是定义在R 上的偶函数, ∴f (x )在(0,+∞)上为减函数.∵f (a -1)<-1=f (1),∴|a -1|>1,解得a >2或a <0. 故实数a 的取值范围为(-∞,0)∪(2,+∞). 18.解:(1)f (0)=a -220+1=a -1.(2)∵f (x )的定义域为R ,∴任取x 1,x 2∈R ,且x 1<x 2, 则f (x 1)-f (x 2)=a -22x 1+1-a +22x 2+1=x 1-2x2+2x 1+2x 2.∵y =2x在R 上单调递增,且x 1<x 2,∴0<2x 1<2x 2,∴2x 1-2x 2<0,2x 1+1>0,2x 2+1>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴f (x )在R 上单调递增.(3)∵f (x )是奇函数,∴f (-x )=-f (x ),即a -22-x +1=-a +22x +1,解得a =1.(或用f (0)=0求解)∴f (ax )<f (2)即为f (x )<f (2).又f (x )在R 上单调递增,∴x <2.(或代入化简亦可) 故x 的取值范围为(-∞,2).。

相关文档
最新文档