与圆锥曲线有关的问题
高二圆锥曲线基础练习题及答案
高二圆锥曲线基础练习题及答案一、选择题1. 下列关于椭圆的说法,正确的是:A. 所有椭圆都是对称图形。
B. 椭圆的离心率大于1。
C. 椭圆的长轴和短轴相等。
D. 椭圆的焦点个数与离心率有关。
答案:D2. 设椭圆的长轴长度为10,短轴长度为6,则该椭圆的离心率为:A. 3/5B. 1/2C. 2/3D. 5/6答案:C3. 下列关于双曲线的说法,正确的是:A. 所有双曲线都是开口向上的图形。
B. 双曲线的离心率等于1。
C. 双曲线的长轴和短轴相等。
D. 双曲线的焦点个数与离心率有关。
答案:D4. 设双曲线的长轴长度为8,短轴长度为4,则该双曲线的离心率为:A. 2B. 3/2C. 4/3D. 5/4答案:B5. 下列关于抛物线的说法,正确的是:A. 抛物线的焦点位于抛物线的顶点上。
B. 抛物线的离心率等于1。
C. 抛物线的长轴和短轴相等。
D. 抛物线的焦点个数与离心率有关。
答案:A二、填空题1. 设椭圆的长轴长度为12,短轴长度为8,则该椭圆的离心率为__________。
答案:2/32. 设直角双曲线的焦点到中心的距离为3,焦点到顶点的距离为5,则该直角双曲线的离心率为__________。
答案:4/53. 设抛物线的焦距为6,顶点到焦点的距离为4,则该抛物线的离心率为__________。
答案:3/2三、解答题1. 某椭圆的长轴长度为10,焦距为6,求离心率和短轴的长度。
解:设椭圆的离心率为e,短轴长度为b。
根据椭圆的定义,焦距的长度为ae,即6 = ae。
由此可以解得椭圆的离心率为e = 6/a。
又已知长轴长度为10,即2a = 10,解得a = 5。
将a = 5代入离心率的公式,可得e = 6/5。
由椭圆的定义可知,离心率e = √(1 - b²/a²),代入已知的离心率和a的值,可得√(1 - b²/25) = 6/5。
将等式两边平方化简,得到1 - b²/25 = 36/25,即1 - b² = 36,解得b = √(1 - 36) = √(-35)。
圆锥曲线专题:恒过定点问题的4种常见考法(原卷版)
圆锥曲线专题:恒过定点问题的4种常见考法一、常用方法技巧1、参数无关法把直线或者曲线方程中的变量x ,y 当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时的参数的系数就要全部为零,这样就得到一个关于x ,y 的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点。
2、特殊到一般法根据动点或动直线、动曲线的特殊情况探索出定点,再证明该定点与变量无关。
3、关系法对满足一定条件上的两点连结所得直线定点或满足一定条件的曲线过定点问题,可设直线(或曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识求解。
二、手电筒模型解题步骤1、概念:只要任意一个限定AP 与BP 条件(如AP BP k k ⋅=定值,+AP BP k k =定值),直线AB 依然会过定点,因为三条直线形似手电筒,故称为手电筒模型。
2、解题步骤:第一步:由AB 直线y kx m =+,联立曲线方程得根与系数关系,∆求出参数范围;第二步:由AP 与BP 关系,得到一次函数()k f m =或()m f k =;第三步:将()k f m =或()m f k =代入y kx m =+,得到()y y k x x =-+定定.三、交点弦的中点所在直线恒过定点解题步骤第一步:设其中一条直线的斜率为1k ,求出直线方程;第二步:直线与曲线进行联立,出现韦达定理的形式,或者直接求出坐标,表示出这条弦的中点,并且类比出另外一条的中点坐标;第三步:由上述两部,根据点斜式写出两个中点所在直线的方程;第四步:化直线为点斜式,确定定点坐标。
四、圆锥曲线的切点弦方程1、过抛物线()220y px p =>外一点()00,M x y 作抛物线的切线,切点弦方程为()00yy p x x =+;2、过椭圆()222210x y a b a b+=>>外一点()00,M x y 作椭圆的切线,切点弦方程为00221x x y ya b +=;3、过双曲线()222210,0x y a b a b-=>>外一点()00,M x y 作双曲线的切线,切点弦方程为00221x x y ya b-=;五、几个重要的定点模型1、过椭圆()222210x y a b a b +=>>的左焦点(),0F c -作两条相互垂直的弦AB ,CD ,若弦AB ,CD 的中点分别为M ,N ,则直线MN 恒过定点222,0ac a b ⎛⎫- ⎪+⎝⎭.(双曲线与抛物线也有类似结论)2、动点()00,P x y 在直线0Ax By C ++=上,由P 引椭圆22221x y a b +=的两条切线,切点分别是M ,N ,则直线MN 恒过定点22,a A b B C C ⎛⎫-- ⎪⎝⎭.(双曲线与抛物线也有类似结论)3、(1)过椭圆()222210x y a b a b +=>>上的一定点()00,P x y 作两条斜率之和为m 的直线1l ,2l ,分别交椭圆于A ,B 两点,则直线AB 必过定点20000222,y b x x y m ma ⎛⎫--- ⎪⎝⎭;(2)过抛物线()220y px p =>上的一定点()00,P x y 作两条斜率之和为m 的直线1l ,2l ,分别交抛物线于A ,B 两点,则直线AB 必过定点0002,2y y x p m m ⎛⎫-- ⎪⎝⎭4、(1)过椭圆()222210x y a b a b +=>>上的一定点()00,P x y 作两条斜率之积为m 的直线1l ,2l ,分别交椭圆于A ,B 两点,则直线AB 必过定点()()2222002222,b ma x b ma y b ma b ma ⎛⎫++ ⎪- ⎪--⎝⎭(2)过抛物线()220y px p =>上的一定点()00,P x y 作两条斜率之积为m 的直线1l ,2l ,分别交抛物线于A ,B 两点,则直线AB 必过定点002,p x y m ⎛⎫-- ⎪⎝⎭(3、4两个结论对于圆与双曲线也成立,当22b a =时就是圆中的结论,用2b -替代2b 就可得到双曲线中的结论)题型一手电筒模型恒过定点问题【例1】已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设不经过点Q 的直线l 与曲线C 相交于A,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为-2,证明:直线l 过定点.【变式1-1】已知直线2y =与双曲线C :()222210,0x ya b a b-=>>交于A ,B 两点,F 是C 的左焦点,且AF AB ⊥,2BF AF =.(1)求双曲线C 的方程;(2)若P ,Q 是双曲线C 上的两点,M 是C 的右顶点,且直线MP 与MQ 的斜率之积为23-,证明直线PQ 恒过定点,并求出该定点的坐标.【变式1-2】已知F 为抛物线22y px =(0)p >的焦点,过F 且倾斜角为45︒的直线交抛物线于A,B 两点,||8AB =.(1)求抛物线的方程:(2)已知()0,1P x -为抛物线上一点,M,N 为抛物线上异于P 的两点,且满足2PM PN k k ⋅=-,试探究直线MN 是否过一定点?若是,求出此定点;若不是,说明理由.【变式1-3】已知动点(,)P x y (0)x ≥到定点(1,0)的距离比它到y 轴的距离大1.(1)求动点P 的轨迹E 的方程;(2)设点(,0)Q m (m 为常数),过点Q 作斜率分别为12,k k 的两条直线1l 与2l ,1l 交曲线E 于,A B 两点,2l 交曲线E 于,C D 两点,点,M N 分别是线段,AB CD 的中点,若121k k +=,求证:直线MN 过定点.题型二切点弦恒过定点问题【例2】在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b +=>>的右焦点与抛物线2y =的焦点重合,且椭圆的四个顶点围成的四边形面积为(1)求椭圆C 的标准方程;(2)已知点P 是直线420y x =-+上的动点,过点P 做椭圆C 的两条切线,切点分别为M ,N ,问直线MN 是否过定点?若是,求出该定点;若不是,请说明理由.【变式2-1】如图,已知椭圆2222:1(0)x y C a b a b +=>>的上顶点为(0,1)A ,离心率为2.(1)求椭圆C 的方程;(2)若过点A 作圆222:(1)(01)M x y r r ++=<<的两条切线分别与椭圆C 相交于点,B D (不同于点A ).当r 变化时,试问直线BD 是否过某个定点若是,求出该定点;若不是,请说明理由.【变式2-2】抛物线2:2(0)C x py p =>的焦点F 是椭圆22134x y +=的一个焦点.(1)求C 的准线方程;(2)若P 是直线240x y --=上的一动点,过P 向C 作两条切线,切点为M ,N ,试探究直线MN 是否过定点?若是,请求出定点,若否,请说明理由.【变式2-3】在平面直角坐标系xOy 中,已知点(0,2)F ,点P 到点F 的距离比点P 到直线3y =-的距离小1,记P 的轨迹为C .(1)求曲线C 的方程;(2)在直线2y =-上任取一点M ,过M 作曲线C 的切线12l l 、,切点分别为A 、B ,求证直线AB 过定点.题型三相交弦中恒过定点问题2:2(0)C x py p =>上.(1)求抛物线C 的方程;(2)过点(0,)T p 作两条互相垂直的直线1l 和2l ,1l 交抛物线C 于A 、B 两点,2l 交抛物线C 于D ,E 两点,若线段AB 的中点为M ,线段DE 的中点为N ,证明:直线MN 过定点.【变式3-1】在平面直角坐标系xOy 中,已知动点P 到点()2,0F 的距离与它到直线32x =的P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 作两条互相垂直的直线1l ,2l .1l 交曲线C 于A ,B 两点,2l 交曲线C 于S ,T 两点,线段AB 的中点为M ,线段ST 的中点为N .证明:直线MN 过定点,并求出该定点坐标.【变式3-2】已知椭圆()2222:10x y E a b a b +=>>A ,右顶点为B ,上顶点为C ,ABC 的内切圆的半径为4-.(1)求椭圆E 的标准方程;(2)点M 为直线:1l x =上任意一点,直线AM ,BM 分别交椭圆E 于不同的两点P ,Q .求证:直线PQ 恒过定点,并求出定点坐标.【变式3-3】已知M ⎝,N ⎫⎪⎪⎝⎭是椭圆2222:1(0)x yE a b a b +=>>上的两点.(1)求椭圆E 的方程;(2)过椭圆E 的上顶点A 和右焦点F 的直线与椭圆E 交于另一个点B ,P 为直线5x =上的动点,直线AP ,BP 分别与椭圆E 交于C (异于点A ),D (异于点B )两点,证明:直线CD 经过点F .题型四动圆恒过定点问题【例4】已知椭圆C :223412x y +=.(1)求椭圆C 的离心率;(2)设,A B 分别为椭圆C 的左右顶点,点P 在椭圆C 上,直线AP ,BP 分别与直线4x =相交于点M ,N .当点P 运动时,以M ,N 为直径的圆是否经过x 轴上的定点?试证明你的结论.【变式4-1】已知椭圆C :22221x y a b +=(0a b >>)的离心率为22,其左、右焦点分别为1F ,2F ,T 为椭圆C 上任意一点,12TF F △面积的最大值为1.(1)求椭圆C 的标准方程;(2)已知()0,1A ,过点10,2⎛⎫⎪⎝⎭的直线l 与椭圆C 交于不同的两点M ,N ,直线AM ,AN 与x 轴的交点分别为P ,Q ,证明:以PQ 为直径的圆过定点.【变式4-2】设A ,B 为双曲线C :22221x y a b-=()0,0a b >>的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知直线AM ,AN 分别交直线2ax =于P ,Q 两点,当直线l 的倾斜角变化时,以PQ 为直径的圆是否过定点,若过定点,求出定点的坐标;若不过定点,请说明理由.【变式4-3】已知抛物线()2:20C y px p =>与直线:20l x y +=交于M ,N 两点,且线段MN的中点为()8,p P y .(1)求抛物线C 的方程;(2)过点P 作直线m 交抛物线于点A ,B ,是否存在定点M ,使得以弦AB 为直径的圆恒过点M.若存在,请求出点M 坐标;若不存在,请说明理由.。
第一关 以圆锥曲线的几何性质为背景的选择题-高考数学备考优生百日闯关系列(原卷版)
专题一 压轴选择题第一关 以圆锥曲线的几何性质为背景的选择题【名师综述】1.求解曲线的离心率:求椭圆、双曲线的离心率,关键是根据已知条件确定a ,b ,c 的等量关系,然后把b 用a ,c 代换,求c a 的值;在双曲线中由于221()b e a=+,故双曲线的渐近线与离心率密切相关,求离心率的范围问题关键是确立一个关于a ,b ,c 的不等式,再根据a ,b ,c 的关系消掉b 得到关于a ,c 的不等式,由这个不等式确定a ,c 的关系.2.求解特定字母取值范围问题的常用方法:(1)构造不等式法:根据题设条件以及曲线的几何性质(如:曲线的范围、对称性、位置关系等),建立关于特定字母的不等式(或不等式组),然后解不等式(或不等式组),求得特定字母的取值范围.(2)构造函数法:根据题设条件,用其他的变量或参数表示欲求范围的特定字母,即建立关于特定字母的目标函数,然后研究该函数的值域或最值情况,从而得到特定字母的取值范围.(3)数形结合法:研究特定字母所对应的几何意义,然后根据相关曲线的定义、几何性质,利用数形结合的方法求解.3.圆锥曲线中的最值问题:一是利用几何方法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.常见的几何方法有:(1)直线外一定点P 到直线上各点距离的最小值为该点P 到直线的垂线段的长度;(2)圆C 外一定点P 到圆上各点距离的最大值为||PC R +,最小值为||PC R -(R 为圆C 半径);(3)过圆C 内一定点P 的圆的最长的弦即为经过P 点的直径,最短的弦为过P 点且与经过P 点直径垂直的弦;(4)圆锥曲线上本身存在最值问题,如①椭圆上两点间最大距离为2a (长轴长);②双曲线上两点间最小距离为2a (实轴长);③椭圆上的点到焦点的距离的取值范围为[,]a c a c -+,a c -与a c +分别表示椭圆焦点到椭圆上点的最小与最大距离;④抛物线上的点中顶点与抛物线的准线距离最近.常用的代数方法有:(1)利用二次函数求最值;(2)通过三角换元,利用正、余弦函数的有界性求最值;(3)利用基本不等式求最值;(4)利用导数法求最值;(5)利用函数单调性求最值.【典例剖析】类型一 求圆锥曲线的离心率问题典例1.(2021·全国高考真题(理))设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P都满足||2PB b ≤,则C 的离心率的取值范围是( )A .2⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤ ⎥⎝⎦典例2.3.设12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左右焦点,点()0,P x a 为双曲线上的一点,若12PF F △的重心和内心的连线与x 轴垂直,则双曲线的离心率为( ) A 32B 33C 2D 3【来源】江西省上饶市六校2022届高三第一次联考数学试题【举一反三】1F ,2F 分别是椭圆()222210x y a b a b+=>>的左右焦点,B 是椭圆的上顶点,过点1F 作2BF 的垂线交椭圆C 于P ,Q 两点,若1137PF FQ =,则椭圆的离心率是( ) A 36B 255C 2127 D .59214【来源】浙江省温州市普通高中2022届高三下学期返校统一测试数学试题类型二 与圆锥曲线有关的最值问题典例3.已知点F 为拋物线2:4C y x =的焦点,过点F 作两条互相垂直的直线12,l l ,直线1l 与C 交于,A B 两点,直线2l 与C 交于,D E 两点,则9AB DE +的最小值为( ) A .32B .48C .64D .72【来源】江西省五市九校(分宜中学、高安中学、临川一中、南城一中、彭泽一中、泰和中学、玉山一中、樟树中学、南康中学)协作体2022届高三第一次联考数学(理)试题【举一反三】坐标原点O 且斜率为()0k k <的直线l 与椭圆2214x y +=交于M 、N 两点.若点11,2A ⎛⎫ ⎪⎝⎭,则MAN △ 面积的最大值为( ) A 2B .22C .22D .1【来源】四川省内江市2020届高三下学期第三次模拟考试数学(文)试题类型三 平面图形与圆锥曲线相结合的问题典例4.(多选)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,P 为双曲线的左支上一点,且直线1PA 与2PA 的斜率之积等于3,则下列说法正确的是( ) A .双曲线C 的离心率为2B .若12PF PF ⊥,且123PF F S =△,则2a =C .以线段1PF ,12A A 为直径的两个圆外切D .若点P 在第二象限,则12212PF A PA F ∠=∠【来源】广东省2022届高三上学期第三次联考数学试题【举一反三】已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F .点P 在C 上且位于第一象限,圆1O 与线段1F P 的延长线,线段2PF 以及x 轴均相切,12PF F △的内切圆为圆2O .若圆1O 与圆2O 外切,且圆1O 与圆2O 的面积之比为4,则C 的离心率为( ) A .12B .35C 2D 3【来源】衡水金卷2021-2022学年度高三一轮复习摸底测试卷数学(一)【精选名校模拟】1.点F 是双曲线2222:1(0,0)x y C a b a b -=>>的左焦点,斜率为34的直线l 过点F 且与双曲线C 的右支交于点P ,过切点P 的切线与x 轴交于点M .若FM PM =,则双曲线C 的离心率e 的值为( ) A .207B .165C .259D .143【来源】江西省景德镇市2022届高三第二次质检数学(理)试题2.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为1F ,2F ,实轴长为4,点P 为其右支上一点,点Q 在以()0,4为圆心、半径为1的圆上,若1PF PQ +的最小值为8,则双曲线的渐近线方程为( ) A .12y x =±B .y x =±C .32y x =±D .52y x =±【来源】江西省景德镇市2021届高三上学期期末数学(理)试题3.已知抛物线22(0)y px p =>的焦点为F ,过F 且倾斜角为4π的直线l 与抛物线相交于A ,B 两点,||8AB =,过A ,B 两点分别作抛物线的切线,交于点Q .下列说法正确的是( ) A .QA QB ⊥B .AOB (O 为坐标原点)的面积为2C .112||||AF BF += D .若()1,1M ,P 是抛物线上一动点,则||||PM PF +的最小值为52【来源】江西省吉安市2022届高三上学期期末数学(理)试题4.已知点(5A ,(0,5B -,若曲线()222200,0y xa b a b-=>>上存在点P 满足4PA PB -=,则下列正确的是( ) A .1b a <+B .2b a <C .1b a >+D .2b a >【来源】浙江省嘉兴市2021-2022学年高三上学期期末数学试题5.已知圆()2222p x y b b ⎛⎫-+-= ⎪⎝⎭与抛物线22(0)y px b p =>>的两个交点是A ,B .过点A ,B 分别作圆和抛物线的切线1l ,2l ,则( )A .存在两个不同的b 使得两个交点均满足12l l ⊥B .存在两个不同的b 使得仅一个交点满足12l l ⊥C .仅存在唯一的b 使得两个交点均满足12l l ⊥D .仅存在唯一的b 使得仅一个交点满足12l l ⊥【来源】浙江省2022届筑梦九章新高考命题导向研究卷Ⅱ数学试题6.已知双曲线22221x y a b -=,(),0a b >的左右焦点记为1F ,2F ,直线l 过2F 且与该双曲线的一条渐近线平行,记l 与双曲线的交点为P ,若所得12PF F △的内切圆半径恰为3b,则此双曲线的离心率为( )A .2B .53C 3D .112【来源】浙江省绍兴市上虞区2021-2022学年高三上学期期末数学试题7.已知1F ,2F 分别为双曲线()222210,0x y a b a b -=>>的左、右焦点,以12F F 为直径的圆与双曲线在第一象限和第三象限的交点分别为M ,N ,设四边形12F NF M 的周长C 与面积S 满足2aS C =则该双曲线的离心率的平方为( ) A .22B .842+C .222+D .23+【来源】江西省上饶市2022届高三一模数学(理)试题8.椭圆E :()222210x y a b a b+=>>的左右焦点分别为1F ,2F ,点P 在椭圆E 上,12PF F △的重心为G .若12PF F △的内切圆H 的直径等于1212F F ,且12GH F F ∥,则椭圆E 的离心率为( ) A 6B .23C 2D .12【来源】安徽省合肥市2021-2022学年高三上学期第一次教学质量检测理科数学试题9.已知椭圆C :22143x y +=的左、右焦点分别为1F ,2F ,左、右顶点分别为A ,B ,点M 为椭圆C 上不与A ,B 重合的任意一点,直线AM 与直线2x =交于点D ,过点B ,D 分别作BP ⊥直线2MF ,DQ ⊥直线2MF ,垂足分别为P ,Q ,则使BP DQ BD +<成立的点M ( ) A .有一个B .有两个C .有无数个D .不存在【来源】河南省名校联盟2021-2022学年高三上学期期末考试理科数学试题10.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,椭圆C 上的两点A ,B 关于原点对你,且满足0FA FB ⋅=,3FB FA ≤,则椭圆C 的离心率的取值范围为( )A .22⎫⎪⎢⎪⎣⎭ B .2312⎤⎢⎥⎣⎦C .)31,1⎡⎣D .232⎢⎣⎦11.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别是1F ,2F ,在其渐近线上存在一点P ,满足122PF PF b -=,则该双曲线离心率的取值范围为( ) A .(2B .)2,2C .2,3D .()2,3【来源】重庆市巴蜀中学校2022届高三上学期适应性月考(六)数学试题12.已知椭圆22:142x y C +=的左右顶点分别为,A B ,过x 轴上点(4,0)M -作一直线PQ 与椭圆交于,P Q 两点(异于,A B ),若直线AP 和BQ 的交点为N ,记直线MN 和AP 的斜率分别为12,k k ,则12:k k =( ) A .13B .3C .12D .2【来源】湖北省“大课改、大数据、大测评”2020-2021学年高三上学期联合测评数学试题13.双曲线2222:1(0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点P 为C 的左支上任意一点,直线l是双曲线的一条渐近线,PQ l ⊥,垂足为Q .当2PF PQ +的最小值为3时,1F Q 的中点在双曲线C 上,则C 的方程为( ) A .221x y -=B .22122x y -=C .2212y x -=D .2212x y -=【来源】陕西省商洛市2020-2021学年高三上学期期末数学试题14.过点()3,0P-作直线()220ax a b y b +++=(,a b 不同时为零)的垂线,垂足为M ,点()2,3N ,则MN 的取值范围是( ) A .0,55⎡+⎣B .55,5⎡⎤⎣⎦C .5,55⎡+⎣D .55,55⎡⎣15.(多选)已知P 为椭圆22221(0)x y a b a b+=>>外一点,()()12,0,,0F c F c -分别为椭圆C 的左、右焦点,2PF =21212,6F F PF PF c ⋅=,线段12,PF PF 分别交椭圆于1122,,,M N F M F P F N F P λμ==,设椭圆离心率为e ,则下列说法正确的有( ) A .若e 越大,则λ越大 B .若M 为线段1PF 的中点,则31e = C .若13μ=,则131e -=D .334eλμ=- 【来源】湖北省部分重点中学2022届高三上学期第二次联考数学试题16.(多选)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:椭圆的两条切线互相垂直,则两切线的交点位于一个与椭圆同中心的圆上,称此圆为该椭圆的蒙日圆.已知椭圆()2222:10x y C a b a b+=>>的离心率为22,1F 、2F 分别为椭圆的左、右焦点,点A 在椭圆上,直线22:0l bx ay a b +--=,则( ) A .直线l 与蒙日圆相切B .C 的蒙日圆的方程为2222x y a +=C .记点A 到直线l 的距离为d ,则2d AF -的最小值为(323bD .若矩形MNGH 的四条边均与C 相切,则矩形MNGH 的面积的最大值为28b 【来源】湖南省永州市2021-2022学年高三上学期第二次适应性考试数学试题17.(多选)已知抛物线C :()220y px p =>的焦点F 到准线l 的距离为4,过焦点F 的直线与抛物线相交于()11,M x y ,()22,N x y 两点,则下列结论中正确的是( ) A .抛物线C 的准线l 的方程为2x =- B .MN 的最小值为4C .若()4,2A ,点Q 为抛物线C 上的动点,则QA QF +的最小值为6D .122x x +的最小值2【来源】山东省滨州市2021-2022学年高三期末数学试题。
17 与圆锥曲线有关的定点、定值、最值、范围问题
1.已知动圆圆心在抛物线y 2=4x 上,且动圆恒与直线x =-1相切,则此动圆必过定点( ).A .(2,0)B .(1,0)C .(0,1)D .(0,-1) 2.设AB 是过椭圆x 2a 2+y 2b 2=1(a >b >0)中心的弦,椭圆的左焦点为F 1(-c,0),则△F 1AB 的面积最大为( ).A .bcB .abC .acD .b 23.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ).A .(1,2)B .(-1,2)C .(2,+∞)D .[2,+∞)4.若AB 是过椭圆x 2a 2+y 2b 2=1(a >b >0)中心的一条弦,M 是椭圆上任意一点,且AM 、BM 与两坐标轴均不平行,k AM 、k BM 分别表示直线AM 、BM 的斜率,则k AM ·k BM =( ).A .-c 2a 2B .-b 2a 2C .-c 2b 2D .-a 2b 2 5.已知过抛物线y 2=2px (p >0)的焦点F 且倾斜角为60°的直线l 与抛物线在第一、四象限分别交于A 、B 两点,则|AF ||BF |的值为( ). A .5 B .4 C .3 D .26.点P 在抛物线x 2=4y 的图象上,F 为其焦点,点A (-1,3),若使|PF |+|PA |最小,则相应P 的坐标为________. 7.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率是2,则b 2+13a的最小值为________. 8.已知F 1(-c,0),F 2(c,0)为椭圆x 2a 2+y 2b 2=1的两个焦点,P 为椭圆上一点,且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是________.9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =33,以原点为圆心,椭圆短半轴长为半径的圆与直线x -y +2=0相切,A ,B 分别是椭圆的左右两个顶点,P 为椭圆C 上的动点.(1)求椭圆的标准方程;(2)若P 与A ,B 均不重合,设直线PA 与PB 的斜率分别为k 1,k 2,证明:k 1·k 2为定值.10.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的一个顶点与抛物线:x 2=4 2y 的焦点重合,F 1、F 2分别是椭圆的左、右焦点,离心率e =33,过椭圆右焦点F 2的直线l 与椭圆C 交于M 、N 两点.(1)求椭圆C 的方程;(2)是否存在直线l ,使得OM →·ON →=-1,若存在,求出直线l 的方程;若不存在,说明理由.。
圆锥曲线和几何原理
圆锥曲线和几何原理
圆锥曲线和几何原理是紧密相关的。
圆锥曲线是平面截圆锥面的不同截口所形成的曲线,包括椭圆、抛物线和双曲线。
这些曲线在几何学中有着重要的地位和应用。
首先,圆锥曲线与几何中的对称性有关。
例如,椭圆具有轴对称性和中心对称性,抛物线也具有轴对称性,而双曲线则具有中心对称性和轴对称性。
这些对称性在几何中具有重要的应用,如在建筑设计、艺术和工程中用于确定形状和布局。
其次,圆锥曲线还与几何中的距离和角度有关。
在圆锥曲线上,点与焦点之间的距离(称为焦距)和与准线之间的距离之间存在一定的关系。
例如,在椭圆上,任意一点到两焦点的距离之和等于长轴的长度,而到两准线的距离之比等于离心率。
这些关系在几何中用于确定曲线的形状和大小。
此外,圆锥曲线还与几何中的极坐标有关。
在极坐标系中,圆锥曲线可以用极坐标方程来表示。
例如,椭圆可以用极坐标方程ρ=ep/(1-ecosθ)来表示,其中e是离心率,p是焦点到中心的距离。
极坐标方程在几何中用于表示复杂形状和计算角度和距离。
总之,圆锥曲线和几何原理是相互关联的。
圆锥曲线的性质和特征可以通过几何原理来解释和应用,而几何原理也可以通过圆锥曲线来表达和应用。
圆锥曲线定直线问题解题方法与技巧
圆锥曲线定直线问题解题方法与技巧标题:圆锥曲线定直线问题的解题方法与技巧一、引言在解析几何中,圆锥曲线是重要的研究对象,其中涉及到的定直线问题要求我们找出经过特定点或者满足特定条件的直线方程。
这类问题通常需要综合运用直线与圆锥曲线的位置关系、参数方程、极坐标方程以及代数运算等知识。
以下将详细介绍解决此类问题的一些基本方法和实用技巧。
二、基本解题方法1. 利用位置关系确定直线方程:当已知直线过某定点或与圆锥曲线相切、相交于两点等情况时,可以利用圆锥曲线的标准方程(例如椭圆、双曲线、抛物线)与直线的一般方程联立,通过求解方程组得到交点坐标,进而确定直线方程。
2. 参数法:圆锥曲线的参数方程能直观地反映点与曲线的关系,当直线与圆锥曲线有特殊关系(如切线、法线)时,可先将直线写成参数形式,然后与圆锥曲线的参数方程联立求解参数,从而得出直线的方程。
3. 极坐标法:在某些情况下,若圆锥曲线或直线在极坐标下表达更为简便,可直接在极坐标系中建立方程,求解后转换为直角坐标系下的直线方程。
三、解题技巧1. 明确题目条件:解决定直线问题时,首先要明确直线需要满足的条件,如是否过定点、是否为圆锥曲线的切线、斜率是否存在等,这些信息对于选择合适的解题方法至关重要。
2. 判断直线与圆锥曲线的位置关系:通过计算判别式,可以判断直线与圆锥曲线的位置关系,如相离、相切、相交等,进一步决定如何设定直线方程。
3. 巧妙应用韦达定理:在处理直线与圆锥曲线交点问题时,韦达定理是一个非常有力的工具。
它可以快速给出两交点横坐标的乘积和和关系,帮助简化计算过程。
4. 充分利用对称性:圆锥曲线具有良好的对称性,有时可以根据对称性简化问题,比如已知直线过原点或与坐标轴平行的情况。
总结,解决圆锥曲线定直线问题需灵活运用解析几何的基础理论,结合具体情况选择最适宜的解题策略,同时注重培养观察问题的能力和逻辑推理能力,以提升解题效率与准确性。
齐次式法与圆锥曲线斜率有关的一类问题
齐次式法与圆锥曲线斜率有关的一类问题本文介绍了利用“齐次式”法解决圆锥曲线斜率有关的顶点定值问题。
针对定点问题,文章提出了引入变量参数表示直线方程、数量积、比例关系等的方法,以寻找不受参数影响的量。
对于直线过定点问题,可以通过设出直线方程,利用韦达定理和已知条件找出k和m的一次函数关系式,代入直线方程解决。
在圆锥曲线中,有很多常见的定点模型,熟练掌握这些结论可以事半功倍。
举例来说,文章给出了一个07山东省的例题。
该题要求证明直线l过定点,并求出该定点的坐标。
通过设定直线方程,利用已知条件和韦达定理,可以求出直线方程中的k和m的关系式,代入方程解得定点坐标。
文章还提供了一些解题技巧,例如如何选择直线,如何转化题目条件等。
总的来说,本文介绍了一种解决定点问题的方法,并以圆锥曲线为例,详细说明了几种常见的定点模型。
文章语言简洁明了,逻辑清晰,对于解决类似问题有很大的帮助。
练7:已知点A(-1,0),B(1,-1)和抛物线C:y=4x,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图。
I)证明:OM·OP为定值;II)若△POM的面积为5,求向量OM与OP的夹角;III)证明直线PQ恒过一个定点。
解:(I)设点M(m,4m),则动直线l的斜率为k=4/m。
由于A、M、P三点共线,故有k·(-1)+4=m,即m=4/(k+1)。
又因为直线MB与抛物线C有两个交点,设另一点为Q(q,4q),则有q=-1/4.因此,OM·OP=|(m,4m)·(q,4q)|=|16(mq)^2|=|16/(k+1)^2|,为定值。
II)设∠PO M=α,则OM·OP·cosα=5.又因为△POM的面积为5,所以OM·OP·sinα=5.由此可得tanα=1,又因为α∈(0,π),所以α=45°。
因此,向量OM与OP的夹角为45°。
两类有关圆锥曲线中弦问题的解法
备考指南有关圆锥曲线中弦的问题对同学们的空间想象能力和分析能力有比较高的要求.这类问题往往涉及较多的变量,经常让考生捉摸不透,不知如何下手.只有熟悉并掌握几类经典题型及其解题规律,才能举一反三,从容应对有关圆锥曲线中弦的问题.接下来,通过例题,探讨一下两类有关圆锥曲线中弦问题及其解法.一、切点弦恒过定点问题很多圆锥曲线问题涉及了切点弦,切点弦有一些特殊的性质和特征,我们需要熟练掌握.例如,(1)如果过圆锥曲线的准线和长轴所在直线的交点作圆锥曲线的切点,则切点弦长正好与圆锥曲线的通径相等;(2)过椭圆右准线上任何一点,作椭圆的切线时,这个切点弦恒过椭圆的右焦点.在解答切点弦恒过定点问题时,我们可以灵活运用切点弦的这些特殊性质和特征来建立关系式,消去参数,进而求得切点弦的方程,最后根据一元一次方程有无数个解的性质求得定点的坐标.例1.已知椭圆C :x 24+y 2=1,若过椭圆C 的右准线l 上任意一点M 作两条椭圆的切线,切点分别为A 、B .试求证:直线AB 恒过一个定点.证明:设点M 的坐标为t )(t ∈R),A (x 1,y 1),B (x 2,y 2),所以直线MA 的方程为x 1x41y =1,又点M 在直线MA 上,所以1+ty 1=1,2+ty 2=1,联立方程可得,直线AB +ty =1,化简得:x =3(1-ty ),所以直线AB 恒过定点(3,0).由已知的椭圆方程可求得其右准线的方程,所以可直接设点M 的坐标,然后通过切线的方程表示出切点弦的方程,进而得到直线AB 恒过的定点坐标.二、相交弦过定点问题任意相交的弦肯定不过定点,但是如果两个满足一定条件的弦相交,就会恒过一定点.在解题时,要注意观察,学会根据相交弦的特征进行分析,寻找一些特殊的位置、点、关系,据此建立关系式,通过消元,求得相交弦的方程.在建立关系式时,要逐步减少变量,这样就容易发现并求出定点的坐标.例2.如图,若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任意一点,直线PA 1,PA 2分别与椭圆C :x 24+y 2=1交于M ,N通过椭圆的焦点?解:设M ()x 1,y 1,N (x 2,y 2),直线A 1M 的斜率为k 1,则直线A 1M 的方程为y =k 1(x +2),联立方程可得ìíîïïy =k 1(x +2x 24+y 2=1,消去y 并整理得:()1+4k 21x 2+16k 21x +16k 21-4=0,由交点的坐标可知,该方程的两个根为-2和x 1,根据韦达定理可得-2x 1=16k 21-41+4k 21,可得x 1=2-8k 211+4k 21,y 1=4k 11+4k 21,所以M 点的坐标为:(2-8k 211+4k 21,4k 11+4k 21),同理可得点N 的坐标为(8k 22-21+4k 22,-4k 21+4k 22),其中k 2为直线A 2N 的斜率.由于点P 的坐标为(t ,y p ),所以y p =k 1()t +2,y p =k 2(t -2),所以k 1-k 2k 1+k 2=-2t ,因为直线MN 的方程为:y -y 1x -x 1=y 2-y 1x 2-x 1,令y =0得:x =x 2y 1-x 1y 2y 1-y 2,将M ,N 的坐标代入上式,化简得:x =4t,由t >2,可得:0<4t<2.所以当4t=3时,MN 过椭圆的交点,此时t ,综上可知当t =相交弦MN 过椭圆的交点.先设出M 、N 的坐标;再由A 1、A 2的坐标,得到直线A 1M 、A 2M 的方程;然后通过联立方程,求出M 、N 点的坐标,进而求出直线MN 的方程.解答相交弦过定点问题,需要关注一些特殊点的位置,比如点P 的位置,既在直线l 上,也在直线PA 1、PA 2上,所以点P 的坐标满足这三个直线的方程,从而建立关系式.可见解答有关圆锥曲线中弦问题,需注意:(1)明确弦与圆锥曲线的位置关系;(2)关注弦与弦之间的位置关系;(3)根据弦的特征、性质,建立关系式;(4)掌握并灵活运用一些消元的技巧.(作者单位:江西省玉山县第一中学)52Copyright ©博看网. All Rights Reserved.。
(完整版)圆锥曲线常见题型及答案
圆锥曲线常见题型归纳一、基础题涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。
此类题在考试中最常见,解此类题应注意:(1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况;(3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=;例题:(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( )A .421=+PF PFB .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____ (答:双曲线的左支)(3)已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2)(4)已知方程12322=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11(3,)(,2)22---); (5)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)二、定义题对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。
此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。
圆锥曲线专题(定值)
2、直接法解题步骤
第一步设变量:选择适的量当变量,一般情况先设出直线的方程:y=kx+b或x=my+n、点的坐标;
第二步表示函数:要把证明为定值的量表示成上述变量的函数,一般情况通过题干所给的已知条件,进行正确的运算,将需要用到的所有中间结果(如弦长、距离等)用引入的变量表示出来;
(三) 常见条件转化
1、对边平行:斜率相等,或向量平行;
2、两边垂直:斜率乘积为-1,或向量数量积为0;
3、两角相等:斜率成相反数或相等或利用角平分线性质;
4、直角三角形中线性质:两点的距离公式
5、点与圆的位置关系:(1)圆外:点到直径端点向量数量积为正数;(2)圆上:点到直径端点向量数量积为零;(3)圆内:点到直径端点向量数量积为负数.
第三步定值:将中间结果带入目标量,通过计算化简得出目标量与引入的变量无关,是一个常数.
(二) 常见定值问题的处理方法
1、处理较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向;
2、在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;
3、巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算.
(四) 常用的弦长公式:
(1) 若直线AB的方程设为y=kx+b,A(x1,y1),B(x2,y2),则
|AB|=sqrt(1+k^(2))⋅|x1−x2|=sqrt(1+k^(2))⋅sqrt((x1+x2)^(2)−4x1x2)=sqrt(1+k^(2))⋅(sqrt(Δ))/(|a|)
高中数学圆锥曲线经典例题
题目:已知椭圆C:x^2/a^2 + y^2/b^2 = 1 (a > b > 0) 的离心率为√3/2,过点(0,2) 的直线l 与椭圆C交于A,B 两点,且|AB| 最大值为4√2。
(1) 求椭圆C的方程;
(2) 在椭圆C上是否存在点P,使得ΔABP为等腰三角形?如果存在,求出所有点P的坐标;如果不存在,说明理由。
这道题考查了椭圆的性质和应用、直线与椭圆的交点、点到直线的距离公式、三角形的性质等知识点。
答案:(1) 由题意知,椭圆的离心率为ac=23,当过点(0,2) 的直线与椭圆相切时,弦长∣AB∣最大,此时∣AB∣=42。
根据切线长公式和点到直线的距离公式,可以求得 a 和 b 的值,进而得到椭圆C的方程为8x2+4y2=1。
(2)假设存在点P,使得ΔABP为等腰三角形。
设点P的坐标为(x0 ,y0),则∣PA∣=∣PB∣。
根据两点间距离公式和点到直线的距离公式,可以列出关于x0和y0的方程,解得x0=±22或x0=0。
代入椭圆方程可得点P的坐标为(±22,±2)或(0,±2)。
有关一类圆锥曲线的切线和切点弦结论的推理和证明
知识导航圆锥曲线问题是高考考查的重点,其中有关圆锥曲线的切线和切点弦问题是比较常见的问题,此类问题主要考查直线与圆锥曲线相切的位置关系,与圆的切线问题较为相似.笔者总结了一些有关圆锥曲线的切线和切点弦的结论,以帮助同学们提升解答此类问题的效率.结论1:若点P (x 0,y 0)在椭圆x 2a 2+y 2b2=1 上,则在点P 处的切线的方程为x 0x a 2+y 0yb2=1 .证明:因为点P 在椭圆上,所以x 02a 2+y 02b2=1 ,①则直线x 0x a 2+y 0yb2=1 必过点P ,所以直线x 0x a 2+y 0y b 2=1与椭圆x 2a 2+y 2b2=1 至少有一个公共点P ,假设直线l 与椭圆有不同于点P 的公共点Q (x 1,y 1),则x 12a 2+y 12b2=1 ②,x 0x 1a 2+y 0y 1b 2=1 ③,由①②③得:(x 0-x 1)2a 2+(y 0-y 1)2b 2=0,当x 0=x 1,y 0=y 1,即点P 与点Q 重合时,直线l 与椭圆有唯一的公共点,此时直线l 是椭圆的切线,其方程为x 0x a 2+y 0y b2=1.这里采用了间接法,假设直线l 与椭圆还有其他的公共点,通过联立方程,从而证明出结论.此类问题具有普遍性,我们可以将该结论推广到双曲线、抛物线中,得到如下结论.结论2:若点P (x 0,y 0)在双曲线x 2a 2-y 2b2=1上,则在点P 处的切线的方程为x 0x 1a 2-y 0y1b2=1 .结论3:若点P (x 0,y 0)在抛物线y 2=2px 上,则在点P 处的切线的方程为y 0y =p (x +x 0).此类结论适用于解答有关圆锥曲线的切线问题,运用上述结论可以快速求出有关圆锥曲线的切线方程.相比较于常规方法:联立直线与圆锥曲线方程,通过判别式Δ判定直线与圆锥曲线相切,要简便很多.结论4:已知椭圆为x 2a 2+y 2b2=1,若点M (x 0,y 0)为椭圆外一点,由点M 引椭圆的两条切线,则切点弦直线的方程为x 0x a 2+y 0yb2=1.证明:设A (x 1,y 1),B (x 2,y 2),因为点A ,B 在椭圆上,由结论1可得在A 点处的切线方程为x 1x a 2+y 1yb2=1,M 经过该切线,所以x 0x 1a 2+y 0y 1b2=1①,同理,在B 点处的切线为x 2x a 2+y 2yb2=1,所以x 0x 2a 2+y 0y 2b2=1②.由①②可得,过点A ,B 切点弦直线为x 0x a 2+y 0yb2=1.我们可以将该结论推广到双曲线、抛物线中,得到如下结论.结论5:若点M (x 0,y 0)为双曲线外一点,由点M 引双曲线的两条切线,则切点弦直线的方程为xx 0a 2-yy 0b2=1.结论6:若点M (x 0,y 0)为抛物线外一点,由M 点向抛物线引两条切线,则切点弦直线的方程为y 0y =p ()x +x 0.以上结论均可用证明椭圆的切点弦直线的方法来证明.例题:若椭圆x 2a 2+y 2b 2=1的右焦点为F ()c ,0,点M 为直线x =a 2c上任意一点,由点M 向椭圆引两条切线,其切点为A ,B ,证明:直线AB 恒过焦点F .解:设点M æèçöø÷a 2c ,m ,由结论4可得切点弦直线AB的方程为x c +myb2=1,将F ()c ,0代入上述方程,满足方程,故AB 恒过焦点F .可见,运用有关圆锥曲线的切线和切点弦的结论来解题,能简化解题的过程,有效提升解题的效率.高中数学题型多变,解法多样,同学们在日常学习中要注意总结解题的规律,将同类型的题目放在一起进行对比,归纳出一类问题的通性通法,这样当再次遇到同类问题的时候便能轻松应对.(作者单位:山东省淄博实验中学)张春宁35。
圆锥曲线大题题型归纳
圆锥曲线大题题型归纳基本方法:1. 待定系数法:求所设直线方程中的系数,求标准方程中的待定系数a 、b 、c 、e 、p 等等;2. 齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题;3. 韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。
要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根;4. 点差法:弦中点问题,端点坐标设而不求。
也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式;5. 距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题;基本思想:1.“常规求值”问题需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解; 3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关;4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决; 5.有些题思路易成,但难以实施。
这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 6.大多数问题只要真实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。
题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题例1、 已知F 1,F 2为椭圆2100x +264y =1的两个焦点,P 在椭圆上,且∠F 1 PF 2=60°,则△F 1 PF 2的面积为多少?点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。
变式1、 已知12,F F 分别是双曲线223575x y -=的左右焦点,P 是双曲线右支上的一点,且12F PF ∠=120︒,求12F PF ∆的面积。
例2.(淄博市2017届高三3月模拟考试)已知椭圆C :22221(0)x y a b a b+=>>经过点(1,2,离心率为2,点A 为椭圆C 的右顶点,直线l 与椭圆相交于不同于点A 的两个点1122(,),(,)P x y Q x y . (Ⅰ)求椭圆C 的标准方程;(Ⅱ)当0AP AQ •=u u u r u u u r时,求OPQ ∆面积的最大值;(Ⅲ)若直线l 的斜率为2,求证:OPQ ∆的外接圆恒过一个异于点A 的定点.处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明。
圆锥曲线解题的七种题型和八种方法
解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。
2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。
解圆锥曲线问题常用的八种方法及七种常规题型
解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法〔点参数、K 参数、角参数〕7、代入法8、充分利用曲线系方程法七种常规题型〔1〕中点弦问题 〔2〕焦点三角形问题〔3〕直线与圆锥曲线位置关系问题 〔4〕圆锥曲线的有关最值〔围〕问题 〔5〕求曲线的方程问题1.曲线的形状--------这类问题一般可用待定系数法解决。
2.曲线的形状未知-----求轨迹方程〔6〕存在两点关于直线对称问题 〔7〕两线段垂直问题常用的八种方法1、定义法〔1〕椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
〔2〕双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离〞互相转化。
〔3〕抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要无视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法〞。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法〞,即设弦的两个端点A(*1,y 1),B(*2,y 2),弦AB 中点为M(*0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求〞法,具体有:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(*0,y 0),则有02020=+k by a x 。
史上最难圆锥曲线压轴题
史上最难圆锥曲线压轴题引言圆锥曲线是数学中的重要概念,由圆锥与平面相交而产生。
它们在几何学、物理学和工程学中有着广泛的应用。
然而,在众多的圆锥曲线中,有一道题目被誉为史上最难的圆锥曲线题。
本文将对这道题目进行全面、详细、完整且深入地探讨。
二级标题一道至简之题三级标题题目描述这道题目的描述非常简洁,只有一句话:“给定一个圆锥曲线,求其方程。
”然而,这句话所蕴含的深意却远非表面上看起来的那么简单。
三级标题几何背景在几何学中,圆锥曲线包括四种类型:圆、椭圆、抛物线和双曲线。
每种类型都有其独特的特征和性质。
求解圆锥曲线方程的过程就是要确定曲线的类型以及曲线上的点的坐标。
三级标题难点分析这道题目之所以被称为史上最难的圆锥曲线题,主要有以下几个难点:1.圆锥曲线的类型未知:题目中并没有明确指定给定的圆锥曲线的类型,因此,我们需要通过对曲线的形状和性质进行分析,来确定曲线的类型。
2.圆锥曲线的方程推导:求解圆锥曲线的方程需要在已知类型的基础上,根据曲线上的点的坐标和曲线的性质,推导出方程的表达式。
然而,在给定的题目中,并没有提供任何与具体点坐标有关的信息,这就增加了方程推导的难度。
二级标题解题思路为了解决这道题目,我们需要考虑到以下几个方面:三级标题曲线类型推断我们可以通过对曲线形状和性质的分析,来推断其类型。
例如,我们可以观察曲线是否有中心对称性、焦点的位置是否在曲线的内部等等,以确定其类型。
三级标题方程推导一般情况下,我们可以通过曲线上的点的坐标和曲线的性质来推导方程的表达式。
但在这道题目中,由于没有提供与点的坐标有关的信息,这就增加了我们推导方程的难度。
在这种情况下,我们可以尝试通过其他方式,例如使用参数方程或者与曲线有关的其他数学关系,来解决这个问题。
三级标题求解方程在确定了曲线的类型和推导出方程的表达式后,我们就可以使用所学的数学方法来求解方程。
不同类型的圆锥曲线,求解方程的方法也不尽相同。
二级标题结论综上所述,这道被称为史上最难圆锥曲线题的难点主要在于未知圆锥曲线的类型和方程的推导。
解圆锥曲线问题常用的八种方法及七种常规题型
解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。
2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。
高考必备知识训练(十)圆锥曲线的标准方程、相关点法、点差法
高考必备知识训练(十)圆锥曲线的标准方程、相关点法、点差法一、待定系数法举例:已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为23,两个焦点分别为1F 和2F ,椭圆G 上一点到1F 和2F 的距离之和为12.求椭圆G 的方程 练习:1、已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(3,0)F -,右顶点为(2,0)D ,设点11,2A ⎛⎫ ⎪⎝⎭,求该椭圆的标准方程. 2、在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为22。
过l 的直线 交于,A B 两点,且2ABF V 的周长为16,那么C 的方程为 3、已知双曲线中心在原点,一个顶点的坐标为(3,0),且焦距与虚轴长之比为5:4,求双曲线的标准方程.4、已知抛物线关于y 轴对称,它的顶点在坐标原点,并且经过点M (32,3-),求它的标准方程。
5、巳知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为 .6、以点(2,1-)为圆心且与直线6x y +=相切的圆的方程是 .7、设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,求抛物线方程.8、已知抛物线C 的顶点坐标为原点,焦点在x 轴上,直线y=x 与抛物线C 交于A ,B 两点,若()2,2P 为AB 的中点,求抛物线C 的方程.9、已知椭圆1C :22221(0)y x a b a b+=>>的右顶点为(1,0)A ,过1C 的焦点且垂直长轴的弦长为1.求椭圆1C 的方程.10、已知双曲线2222:1(0,0)x y C a b a b-=>>,右准线方程为x =。
求双曲线C 的方程;11、设椭圆E: 22221x y a b+=(a,b>0)过M (2) ,,1)两点,O 为坐标原点,求椭圆E 的方程;二、相关点法举例:已知圆的方程为(x-1)2+y 2=1,过原点O 作圆的弦0A ,求弦的中点M 的轨迹方程. 练习:1、已知定点A (6,0),点P 是圆 x2 + y2 =9上的动点,求线段PA 的中点M 的轨迹方程2、的的中点求线段为定点上的动点是椭圆点M AB ,a ,,A by a x B )02(12222=+轨迹方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与圆锥曲线有关的问题与圆锥曲线有关的问题【内容地位】圆锥曲线是高考的重中之重,高考对圆锥曲线的考查,主要考查圆锥曲线的的定义、标准方程、几何性质,以及直线与圆锥曲线的位置关系和求轨迹方程等内容。
涉及的数学思想方法主要有数形结合思想、等价转化思想、分类讨论思想、整体思想,以及配方、换元、构造、待定系数法等数学方法。
以圆锥曲线为载体在知识网络的交汇点处设计问题也是近几年高考的一大特点。
【设计意图】04年对圆锥曲线的考查,主要是对基本知识和基本概念的考查,没有偏题、怪题、注重通性通法,淡化特殊技巧,因此我设计此课主要通过问题带动学生对基础知识的理解深化,让学生在已有知识经验的基础上,主动研究,发现规律,形成能力。
对课堂问题不是讲解,而是和学生一起研究、解决。
【基础知识梳理】问题1.方程xy 1=表示什么曲线?问题2.双曲线x y 1=的焦点是______和_______。
(注意和常规下的双曲线比较同时复习常规下的圆锥曲线方程的形式)问题3.曲线x y 1=为什么表示双曲线?(引导学生回忆圆锥曲线的定义)和学生一起探究曲线上的点到两定点的距离差的绝对值是否是常数。
双曲线的两个焦点为F 1(-2,-2)、F 2(2,2),设P ),(y x 是双曲线上任一点,2221212121)21()2()21()2(22222221=-+-++=-+-++=-+--+++=-xx x x x x x x xx x x PF PF )()((去绝对值时注意分21-≤+xx 和21≥+xx 两种情况) 问题4.你能用其它方法说明它是双曲线吗?和学生一起尝试用双曲线的第二定义来探究。
(同时引导学生复习相关的几何性质)问题5.问过双曲线xy 1=的某个焦点且弦长为22的弦长有几条? 思考时可以将问题转化为求过双曲线222=-y x 右焦点弦长为22的弦长有几条?设直线与双曲线的交点为A 、B 。
当斜率k 存在时,设过右焦点的直线方程为)2(-=x k y ,将其与双曲线222=-y x 联立,得)01(0244)1(22222≠-=++--k k x k x k则1)12(2,142222-+=-=+k k x x k k x x B A B A 。
由弦长公式得1)1(22122222-+=-+=k k x x k B A ∴k=0(直观可看出) 当斜率k 不存在时,将2=x 代入222=-y x 得2±=y ,∴22=AB 。
(过焦点的弦长问题可用第二定义,比弦长公式运算量小,也可由此推出通径长是交同一支中最短的弦长,讲解此问题时可以适当复习直线与圆锥曲线的关系) 【例题讲解】例题1.(2004北京东城)已知椭圆C 的中心在原点,左焦点为F 1,其右焦点F 2和右准线分别是抛物线3692+-=x y 的顶点和准线。
⑴求椭圆C 的方程;⑵若点P 为椭圆上C 的点,△PF 1F 2的内切圆的半径为75,求点P 到x 轴的距离;(此问在原题基础上添加的)⑶若点P 为椭圆C 上的一个动点,当∠F 1PF 2为钝角时求点P 的取值范围。
(此问也可改成求∠F 1PF 2的最大值)〖设计意图〗主要复习圆锥曲线的基本知识,待定系数法和定义法等通性通法的运用。
学生可能出现的问题:学生能够知道抛物线的开口方向,在定位顶点和准线时易出错,所以在和学生一起解决问题时,在有些易出错的地方故意出错,来加深学生对问题的理解。
解:⑴抛物线的顶点为(4,0),准线方程为425449=+=x , 设椭圆的方程为()012222>>=+b a by a x ,则有c=4,又4252=c a , ∴9,2522==b a ∴椭圆的方程为192522=+y x⑵设椭圆内切圆的圆心为Q ,则()575212121212121=++⨯=++=∆∆∆∆F F PF PF S S S S F QF QPF QPF PF F 设点P 到x 轴的距离为h ,则5421=⨯⨯h ∴25410==h 。
⑶设点P 的坐标为(x 0,y 0),由椭圆的第二定义得:002001545,545x ex a PF x ex a PF +=-=-=+=由∠F 1PF 2为钝角知:2212221F F PF PF <+∴4754750<<-x 即为所求。
(此题也可以用向量的方法解决,也可将椭圆的方程192522=+y x 与圆的方程1622=+y x 联立消去y 得475±=x ,让学生来体会点P 的横坐标的取值范围为什么是4754750<<-x ?) 例题 2.(04湖北高考与全国高考改编)设双曲线C 的方程为()01222>=-a y ax ⑴若双曲线与直线01:=-+y x l 的右支交于不同的两点A 、B ,求双曲线离心率e 的取值范围;⑵①设点Q ),(y x 在双曲线C 上第一象限上运动,试求点P ),(xy xy 的轨迹方程E ;②将①中轨迹方程E 的表达式,写成)(x f y =的形式,求其单调区间。
〖设计意图〗通过本例引导学生运用方程思想、函数思想等数学方法,培养学生分析、解决问题的能力。
学生可能出现的问题:基础知识梳理后让学生解决问题⑴应该很容易,他们可能在解决⑵①时不能理解求P 点轨迹方程的实质,求点P ),(xy xy 的轨迹实质上是求点P 的横纵坐标满足的关系式,因此设出点P 的坐标后,找出它和Q 的关系,利用代入的方法就很容易解决了。
解:⑴由双曲线与直线有两个不同的交点知:方程组⎪⎩⎪⎨⎧=-+=-011222y x y a x 有两组不同的解,消去y 整理得:022)1(2222=-+-a x a x a 解为一正一负,∴01222<--aa ∴10<<a双曲线的离心率22111aa a e +=+=∴2>e 。
⑵①设⎪⎩⎪⎨⎧==xy n x y m ⎪⎩⎪⎨⎧==⇒mn y m n x 22代入双曲线方程得:0222=-+n m a n m a 即所求轨迹方程为0222=-+y x a y x a 。
)0,0(>>y x②由①得2221xa x a y -= 由0,0>>y x 得函数的定义域为)1,0(a , 01222222/>-+=)(x a x a a y ∴在)1,0(a 上单调递增。
例3.已知双曲线的中心在坐标原点,以坐标轴为对称轴,离心率为25,且双曲线上动点P 到点(2,0)的最近距离为1. ⑴证明:满足条件的双曲线的焦点不可能在y 轴上; ⑵求此双曲线的方程;⑶设此双曲线的左右焦点分别是F 1、F 2,Q 是双曲线右支上的动点,过F 1作∠F 1QF 2的平分线的垂线,求垂足M 的轨迹。
〖设计意图〗通过此问题培养学生逻辑推理能力及掌握数学基本方法如配方法等方法。
学生可能出现的问题:逻辑推理是学生的弱项,相当多的学生在解决推理问题时说理不清,因果关系不明显,以至于失分较多。
对问题⑶学生能够求出轨迹方程,但不会考虑轨迹的限制条件,不能准确求出x 的范围。
解:⑴用反证法,设双曲线的实半轴长为a ,虚半轴长为b ,半焦距为c ,则由25=a c ,得21=a b 。
若双曲线焦点在y 轴上, 法1:则其双曲线方程为)0(422>=-λλx y ,求出PA (用λ表示),然后利用PA 的最小值为1,推出矛盾。
法2:焦点在在y 轴上的双曲线的渐近线为x y 2±=,A 到渐近线的距离154>=d ,∴不可能。
⑵设双曲线的方程为:)0(142222>=-b b y b x ,则P ),(y x 到A 的距离为:),2[]2,((54)58(45)2(2222+∞--∞∈-+-=+-=b b x b x y x PA 若582≤b ,即当58=x 时,154542min <≤-=b PA ,不可能。
若582>b ,即当b x 2=时,PA 有最小值122=-b ,解得21=b (舍去)或23=b ,所以所求双曲线为:194922=-y x 。
⑶设M ),(y x ,延长QF 2与F 1M 交于点T ,连接OM 。
MT M F QT QF ==11, ∵点Q 是双曲线右支上的动点, ∴a OM a T F a QF QT QF QF =⇒=⇒=-=-222221∴M 在以O 为圆心,a 为半径的圆上。
圆的方程为)3556(922≤<-=+x y x (注意讲清x 的范围)。
在几何画板上,拖动Q 时,当拖到无穷远处,QM 趋近于双曲线的渐近线,向左点M 的极限位置(不可能达到的位置)是渐近线x y 21=与过F 1且垂直x y 21±=的直线)253(2+=x y 的交点,联立x y 21±=和)253(2+=x y 得556-=x 。
所以可得x 的范围。
例4.(解密高考P 164)椭圆E 的中心在原点O ,焦点在x 轴上,离心率e=32,过点C(-1,0)的直线l 交椭圆于A ,B 两点,且满足)(2≥=λλBC CA(1) 若λ为常数,试用直线l 的斜率k (k≠0)表示三角形OAB 的面积。
(2) 若λ为常数,当三角形OAB 的面积取得最大值时,求椭圆E的方程。
(3) 若λ变化,且λ=k 2+1,试问:实数λ和直线l 的斜率k(k∈R),分别为何值时,椭圆E 的短半轴长取得最大值?并求此时的椭圆方程。
〖设计意图〗此题在向量的背景下把方程、不等式、函数联系在一起,能够把前后知识联系起来,能够提高学生综合运用数学知识和数学思想方法解决问题的能力。
学生可能出现的问题:问题⑴综合性强、运算要求高,学生在解决问题时不可能一蹴而就。
问题⑶是一个双参数问题,学生理不清思路,建立不起来函数关系。
解:设椭圆方程为:()012222>>=+b a by a x ,由32==a c e 及222c b a +=,得223b a =,故椭圆方程为:22233b y x =+ ①⑴直线)1(+=x k y l :交椭圆于A ),(11y x ,B ),(22y x 两点,由BC CA λ=得),1(),1(2211y x y x ---=+λ即⎩⎨⎧-=+-=+2121)1(1y y x x λλ②把)1(+=x k y l :代入椭圆方程得:0)13(0336)13(22222222>+-=-+++b b k b k x k x k 且∴1362221+-=+k k x x ③ 13332221+-=k b k x x ④∴121121212221++=+=-=∆x k y y y S OAB λλ由②③知道)13)(1(2122+-=+k x λ ∴)0(13112≠+⋅-+=∆k k k S OAB λλ⑵)(23211113111≥⋅-+≤+⋅-+=∆λλλλλkk S OAB 当且仅当k k 13=时,即33±=k 时,S 取得最大值。