【中小学资料】天津市东丽区2016年中考数学二模试卷(含解析)
2016年天津市中考数学试卷(word版)及答案
机密★启用前2016年天津市初中毕业生学业测试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。
第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。
试卷满分120分。
测试时间100分钟。
答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴测试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
测试结束后,将本试卷和“答题卡”一并交回。
祝你测试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共12题,共36分。
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-2)-5的结果等于(A)-7 (B)-3(C)3 (D)7(2)sin60 的值等于(A)12(B2(C 3(D3(3)下列图形中,可以看作是中心对称图形的是(A ) (B ) (C ) (D )(4)据2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6 120 000株.将6 120 000用科学记数法表示应为 (A )70.61210⨯ (B )66.1210⨯(C )561.210⨯(D )461210⨯(5)右图是一个由4个相同的正方体组成的立体图形,它的主视图是(A ) (B )(C ) (D ) (6)估计19的值在(A )2和3之间 (B )3和4之间 (C )4和5之间 (D )5和6之间(7)计算11x x x+-的结果为 (A )1 (B )x(C )1x(D )2x x+ (8)方程2120x x +-=的两个根为(A )1226x x =-=, (B )1262x x =-=,(C )1234x x =-=,(D )1243x x =-=,(9)实数a b ,在数轴上的对应点的位置如图所示,把a -,第(5)题abb -,0按照从小到大的顺序排列,正确的是(A )0a b -<<- (B )0a b <-<- (C )0b a -<<- (D )0b a <-<-(10)如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B ′,AB ′和DC 相交于点E ,则下列结论一定正确的是(A )∠DAB ′=∠CAB ′ (B )∠ACD =∠B ′CD (C )AD =AE(D )AE =CE(11)若点A 1(5)y -,,B 2(3)y -,,C 3(2)y ,在反比例函数3y x=的图象上,则123y y y ,,的大小关系是(A )132y y y << (B )123y y y << (C )321y y y << (D )213y y y <<(12)已知二次函数2()1y x h =-+(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,和其对应的函数值y 的最小值为5,则h 的值为(A )1或-5 (B )-1或5 (C )1或-3 (D )1或3 机密★启用前2016年天津市初中毕业生学业测试试卷数 学第(10)题第(9)题EB'B第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔)。
2016年天津市中考数学试卷含答案(word版)
2016年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是符合题目要求的)(1)计算(-2)-5的结果等于( )(A )-7(B )-3(C )3(D )7(2)sin60o 的值等于( )(A )21 (B )22 (C )23(D )3(3)下列图形中,可以看作是中心对称图形的是( )(A )(B )(C )(D )(4)2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120 000株,将6120 000用科学记数法表示应为( )(A )0.612×107(B )6.12×106 (C )61.2×105(D )612×104(5)右图是一个由4个相同的正方体组成的立体图形,它的主视图是( )(A )(B )(C )(D )(6)估计6的值在( )(A )2和3之间 (B )3和4之间 (C )4和5之间(D )5和6之间(7)计算xx x 11-+的结果为( ) (A )1(B )x(C )x1(D )xx 2+ 第(5)题图(8)方程01222=-+x x 的两个根为( )(A )x 1= -2,x 2=6 (B )x 1= -6,x 2=2 (C )x 1= -3,x 2=4(D )x 1= -4,x 2=3(9)实数a ,b 在数轴上的对应点的位置如图所示,把-a ,-b ,0按照从小到大的顺序排列,正确的是( )(A )-a < 0 < -b (B )0 < -a < -b (C )-b < 0 < -a (D )0 < -b < -a(10)如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B’,AB’与DC 相交于点E ,则下列结论一定正确的是( )(A )∠DAB’=∠CAB’ (B )∠ACD=∠B’CD (C )AD=AE(D )AE=CE(11)若点A (-5,y 1),B (-3,y 2),C (2,y 3)在反比例函数xy 3=的图象上,则y 1,y 2,y 3的大小关系是( )(A )y 1 < y 3 < y 2(B )y 1 < y 2 < y 3 (C )y 3 < y 2 < y 1(D )y 2 < y 1 < y 3(12)已知二次函数()12+-=h x y (h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )(A )1或 -5 (B )-1或5 (C )1或 -3(D )1或3二、填空题(本大题共6小题,每小题3分,共18分) (13)计算()32a 的结果等于________.(14)计算()()3535-+的结果等于________.(15)不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是________.(16)若一次函数b x y +-=2(b 为常数)的图象经过第二、三、四象限,则b 的值可以是________(写出一个即可).(17)如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则的值等于________.第(9)题图a 0b 第(10)题图(18)如图,在每个小正方形的边长为1的网格中,A ,E 为格点,B ,F 为小正方形边的中点,C 为AE ,BF 的延长线的交点.(Ⅰ)AE 的长等于________;(Ⅱ)若点P 在线段AC 上,点Q 在线段BC 上,且满足AP = PQ = PB ,请在如图所示的网格中,用无刻度的直尺,画出线段PQ ,并简要说明点P ,Q 的位置是如何找到的(不要求证明)________.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程) (19)(本小题8分) 解不等式组⎩⎨⎧≥-≤+②,①,x x x 22362请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得________; (Ⅱ)解不等式②,得________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为_____________________.第(17)题图第(18)题图(20)(本小题8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:第(20)题图(Ⅰ)图①中a的值为________;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人能进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.(21)(本小题10分)在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27o,求∠P 的大小;⌒上一点,且OD 经过AC的中点E,连接DC并延长,与AB的延长(Ⅱ)如图②,D为AC线相交于点P,若∠CAB=10o,求∠P的大小.第(21)题图(22)(本小题10分)小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB.如图,在△ABC中,AB=63m,∠A=45o,∠B=37o,求AC,CB的长(结果保留小数点后一位).参考数据:sin37o≈0.60,cos37o≈0.80,tan37o≈0.75,2取第(22)题图1.414.(23)(本小题10分)公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆.已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元.(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写下表.表一:租用甲种货车的数量/ 辆 3 7 x租用的甲种货车最多运送机器的数量/ 台135租用的乙种货车最多运送机器的数量/ 台150表二:租用甲种货车的数量/ 辆 3 7 x租用甲种货车的费用/ 元2800租用乙种货车的费用/ 元280(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.(24)(本小题10分)在平面直角坐标系中,O 为原点,点A (4,0),点B (0,3)把△ABO 绕点B 逆时针旋转,得△A’BO’,点A ,O 旋转后的对应点为A’,O’.记旋转角为α.(Ⅰ)如图①,若α=90o ,求AA’的长; (Ⅱ)如图②,若α=120o ,求点O’的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA 上的一点P 旋转后的对应点为P’,当O’P+BP’取得最小值时,求点P’的坐标(直接写出结果即可).(25)(本小题10分) 已知抛物线C :122+-=x x y 的顶点为P ,与y 轴的交点为Q ,点F (1,21).(Ⅰ)求点P ,Q 的坐标;(Ⅱ)将抛物线C 向上平移得抛物线C’,点Q 平移后的对应点为Q’,且FQ’=OQ’. ①求抛物线C’的解析式;②若点P 关于直线Q’F 的对称点为K ,射线FK 与抛物线C’相交于A ,求点A 的坐标.第(24)题图。
2016年天津市中考数学试卷及解析答案
2016年天津市中考数学试卷及解析答案2016年天津市中考数学试卷一、选择题:共12小题,每小题3分,共36分1.计算 (-2)-5 的结果等于()。
A。
-7 B。
-3 C。
3 D。
72.sin60°的值等于()。
A。
√2/2 B。
√3/2 C。
1/2 D。
1/√23.下列图形中,可以看作是中心对称图形的是()。
A。
B。
C。
D。
4.2016年5月24日《XXX》报道,2015年天津外环线内新栽植树木xxxxxxx株,将xxxxxxx用科学记数法表示应为()。
A。
0.612×10^7 B。
6.12×10^6 C。
61.2×10^5 D。
612×10^45.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()。
A。
B。
C。
D。
6.估计的值在()。
A。
2和3之间 B。
3和4之间 C。
4和5之间 D。
5和6之间7.计算。
的结果为()。
A。
1 B。
x C。
D。
8.方程 x^2+x-12=0 的两个根为()。
A。
x1=-2,x2=6 B。
x1=-6,x2=2 C。
x1=-3,x2=4 D。
x1=-4,x2=39.实数a,b在数轴上的对应点的位置如图所示,把 -a,-b,按照从小到大的顺序排列,正确的是()。
A。
-a << -b B。
<<-a<<-b C。
-b << -a D。
<<-b<<-a10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()。
A。
∠DAB′=∠CAB′ B。
∠ACD=∠B′CD C。
AD=AE D。
AE=CE11.若点A(-5,y1),B(-3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()。
A。
y1<y3<y2 B。
y1<y2<y3 C。
2016年天津市中考数学试卷(word版,含答案)
2016年天津市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.计算(﹣2)﹣5的结果等于()A.﹣7 B.﹣3 C.3 D.7A.2.sin60°的值等于()A.B.C.D.C.3.下列图形中,可以看作是中心对称图形的是()A.B.C. D.B.4.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为()A.0.612×107B.6.12×106 C.61.2×105 D.612×104B.5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B. C.D.A.6.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间C.7.计算﹣的结果为()A.1 B.x C.D.A.8.方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3D.9.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣aC.10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CED.11.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3D.12.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3B.二、填空题:本大题共6小题,每小题3分,共18分13.计算(2a)3的结果等于8a3.14.计算(+)(﹣)的结果等于2.15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是.16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是﹣1(写出一个即可).17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.18.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(Ⅰ)AE的长等于;(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.三、综合题:本大题共7小题,共66分19.解不等式,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≤4;(Ⅱ)解不等式②,得x≥2;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为2≤x≤4.解:(I)解不等式①,得x≤4.故答案为:x≤4;(II)解不等式②,得x≥2.故答案为:x≥2.(III)把不等式①和②的解集在数轴上表示为:;(IV)原不等式组的解集为:.故答案为:2≤x≤4.20.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为25;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.解:(Ⅰ)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图得:==1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(Ⅲ)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.21.在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P 的大小;(Ⅱ)如图2,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.解:(Ⅰ)如图,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(Ⅱ)∵E为AC的中点,∴OD⊥AC,即∠AEO=90°,在Rt△AOE中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=∠AOD=40°,∵∠ACD是△ACP的一个外角,∴∠P=∠ACD﹣∠A=40°﹣10°=30°.22.小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB的长.(结果保留小数点后一位)参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,取1.414.解:过点C作CD⊥AB垂足为D,在Rt△ACD中,tanA=tan45°==1,CD=AD,sinA=sin45°==,AC=CD.在Rt△BCD中,tanB=tan37°=≈0.75,BD=;sinB=sin37°=≈0.60,CB=.∵AD+BD=AB=63,∴CD+=63,解得CD≈27,AC=CD≈1.414×27=38.178≈38.2,CB=≈=45.0,答:AC的长约为38.2cm,CB的长约等于45.0m.23.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.表一:租用甲种货车的数量/辆 3 7 x租用的甲种货车最多运送机器的数量/台135 31545x租用的乙种货车最多运送机器的数量/台150 30﹣30x+240表二:租用甲种货车的数量/辆 3 7 x租用甲种货车的费用/元12002800 400x租用乙种货车的费用/元1400280 ﹣280x+2240(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.解:(Ⅰ)由题意可得,在表一中,当甲车7辆时,运送的机器数量为:45×7=315(台),则乙车8﹣7=1辆,运送的机器数量为:30×1=30(台),当甲车x辆时,运送的机器数量为:45×x=45x(台),则乙车(8﹣x)辆,运送的机器数量为:30×(8﹣x)=﹣30x+240(台),在表二中,当租用甲货车3辆时,租用甲种货车的费用为:400×3=1200(元),则租用乙种货车8﹣3=5辆,租用乙种货车的费用为:280×5=1400(元),当租用甲货车x辆时,租用甲种货车的费用为:400×x=400x(元),则租用乙种货车(8﹣x)辆,租用乙种货车的费用为:280×(8﹣x)=﹣280x+2240(元),故答案为:表一:315,45x,30,﹣30x+240;表二:1200,400x,1400,﹣280x+2240;(Ⅱ)能完成此项运送任务的最节省费用的租车方案是甲车6辆,乙车2辆,理由:当租用甲种货车x辆时,设两种货车的总费用为y元,则两种货车的总费用为:y=400x+(﹣280x+2240)=120x+2240,又∵45x+(﹣30x+240)≥330,解得x≥6,∵120>0,∴在函数y=120x+2240中,y随x的增大而增大,∴当x=6时,y取得最小值,即能完成此项运送任务的最节省费用的租车方案是甲种货车6辆,乙种货车2辆.24.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA′的长;(Ⅱ)如图②,若α=120°,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)解:(1)如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+=,∴O′点的坐标为(,);(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(,),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=O′D=,∴DH=O′H﹣O′D=﹣=,∴P′点的坐标为(,).25.已知抛物线C:y=x2﹣2x+1的顶点为P,与y轴的交点为Q,点F(1,).(Ⅰ)求点P,Q的坐标;(Ⅱ)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.①求抛物线C′的解析式;②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.解:(Ⅰ)∵y=x2﹣2x+1=(x﹣1)2∴顶点P(1,0),∵当x=0时,y=1,∴Q(0,1),(Ⅱ)①设抛物线C′的解析式为y=x2﹣2x+m,∴Q′(0,m)其中m>1,∴OQ′=m,∵F(1,),过F作FH⊥OQ′,如图:∴FH=1,Q′H=m﹣,在Rt△FQ′H中,FQ′2=(m﹣)2+1=m2﹣m+,∵FQ′=OQ′,∴m2﹣m+=m2,∴m=,∴抛物线C′的解析式为y=x2﹣2x+,②设点A(x0,y0),则y0=x02﹣2x0+,过点A作x轴的垂线,与直线Q′F相交于点N,则可设N(x0,n),∴AN=y0﹣n,其中y0>n,连接FP,∵F(1,),P(1,0),∴FP⊥x轴,∴FP∥AN,∴∠ANF=∠PFN,连接PK,则直线Q′F是线段PK的垂直平分线,∴FP=FK,有∠PFN=∠AFN,∴∠ANF=∠AFN,则AF=AN,根据勾股定理,得,AF2=(x0﹣1)2+(y0﹣)2,∴(x0﹣1)2+(y0﹣)2=(x﹣2x0+)+y﹣y0=y,∴AF=y0,∴y0=y0﹣n,∴n=0,∴N(x0,0),设直线Q′F的解析式为y=kx+b,则,解得,∴y=﹣x+,由点N在直线Q′F上,得,0=﹣x0+,∴x0=,将x0=代入y0=x﹣2x0+,∴y0=,∴A(,)第11页(共11页)。
2016中考数学二模试卷附答案
中考数学二模试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的,请考生用2B铅笔在答题卷上将选定的答案标号涂黑.1.在实数0,﹣π,,﹣4中,最小的数是()A.0 B.﹣π C.D.﹣42.下列计算中正确的是()A.a3+a3=a6 B.a3•a3=a6 C.a3÷a3=0 D.(a3)3=a6.3.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20° B.25° C.30° D.35°4.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B. 3 C. 4 D. 55.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数与中位数分别为()A.9与8 B.8与9 C.8与8.5 D.8.5与97.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()A.7队B.6队C.5队D.4队8.如图,在▱ABCD中,DB=DC,∠C=65°,AE⊥BD于点E,则∠DAE等于()A.20° B.25° C.30° D.35°9.关于反比例函数y=,下列叙述错误的是()A.y随x的增大而减小B.图象位于一、二象限C.图象关于直线y=x对称D.点(﹣1,﹣2)在这个函数的图象上10.把抛物线y=(x+1)2向下平移2个单位长度,再向右平移1个单位长度,所得到的抛物线是()A.y=x2﹣2 B.y=x2+2 C.y=(x+2)2﹣2 D.y=(x+2)2+211.如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为()A.9:4 B.3:2 C.4:3 D.16:912.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2﹣4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0其中,正确结论的个数是()A.1 B. 2 C. 3 D. 4二、填空题(本大题共6小题,每小题3分,共18分)13.要使函数y=有意义,则x的取值范围是.14.一个多边形的每个外角都是60°,则这个多边形边数为.15.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是m.16.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.17.如图,△ABC的三个顶点的坐标分别为A(﹣1,3)、B (﹣2,﹣2)、C(4,﹣2),则△ABC外接圆上劣弧AB的长度为.(结果保留π)18.如图,在函数y=(x>0)的图象上有点P1、P2、P3…、P n、P n+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S n=.(用含n的代数式表示)三、(本大题共2小题,每小题6分,共12分)19.计算:2tan60°﹣+(π﹣1)0+(﹣1)2015.20.先化简(1﹣)÷,再从a=1、2、3中选取一个合适的数代入求值.四、(本大题共2小题,每小题8分,共16分)21.“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:等级成绩(用s表示)频数频率A 90≤s≤100 x 0.08B 80≤s<90 35 yC s<80 11 0.22合计50 1请根据上表提供的信息,解答下列问题:(1)表中的x的值为,y的值为(2)将本次参赛作品获得A等级的学生依次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.22.如图,已知:梯形ABCD中,AD∥BC,E为AC的中点,连接DE并延长交BC于点F,连接AF.(1)求证:AD=CF;(2)在原有条件不变的情况下,请你再添加一个条件(不再增添辅助线),使四边形AFCD 成为菱形,并说明理由.五、(本大题满分8分)23.如图是某地下商业街的入口,数学课外兴趣小组的同学打算运用所学的知识测量侧面支架的最高点E到地面的距离EF.经测量,支架的立柱BC与地面垂直,即∠BCA=90°,且BC=1.5m,点F、A、C在同一条水平线上,斜杆AB与水平线AC的夹角∠BAC=30°,支撑杆DE⊥AB于点D,该支架的边BE与AB的夹角∠EBD=60°,又测得AD=1m.请你求出该支架的边BE及顶端E到地面的距离EF的长度.六、(本大题满分10分)24.(10分)(2015•西乡塘区二模)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装的进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;(3)若乙服装每件的进价为242元,商场把乙服装按8折出售.问标价至少为多少时,销售乙服装才不亏本?(结果取整数)七、(本大题满分10分)25.(10分)(2015•西乡塘区二模)如图,已知:矩形ABCD,以对角线AC的中点O为圆心,OA的长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为点K,过点D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)若F是EG的中点,且DE=6,求⊙O的半径.八、(本大题满分10分)26.(10分)(2015•西乡塘区二模)如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的函数解析式;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,c=﹣4,求证:无论b取何值,点D的坐标均不改变.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的,请考生用2B铅笔在答题卷上将选定的答案标号涂黑.1.在实数0,﹣π,,﹣4中,最小的数是()A.0 B.﹣π C.D.﹣4考点:实数大小比较.分析:根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.解答:解:∵正数大于0和一切负数,∴只需比较﹣π和﹣4的大小,∵|﹣π|<|﹣4|,∴最小的数是﹣4.故选D.点评:此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.2.下列计算中正确的是()A.a3+a3=a6 B.a3•a3=a6 C.a3÷a3=0 D.(a3)3=a6.考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项,可判断A,根据同底数幂的乘法,可判断B,根据同底数幂的除法,可判断C,根据幂的乘方,可判断D.解答:解:A、合并同类项系数相加字母部分不变,故A错误;B、同底数幂的乘法底数不变指数相加,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、幂的乘方底数不变指数相乘,故D错误;故选:B.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.3.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20° B.25° C.30° D.35°考点:平行线的性质.分析:首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,即可求得答案∠4的度数,又由△ABC是含有45°角的三角板,即可求得∠3的度数,继而求得∠2的度数.解答:解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1=25°,∵∠ABC=45°,∴∠3=∠ABC﹣∠4=45°﹣25°=20°,∴∠2=∠3=20°.故选A.点评:此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.4.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C. 4 D. 5考点:一元一次方程的解.分析:根据方程的解的定义,把x=2代入方程,解关于a的一元一次方程即可.解答:解;∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选:D.点评:本题考查了一元一次方程的解,把解代入方程求解即可,比较简单.5.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.专题:几何图形问题.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形;B、是中心对称图形,不是轴对称图形;C、是轴对称图形,不是中心对称图形;D、是中心对称图形,也是轴对称图形.故选D.点评:本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.6.一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数与中位数分别为()A.9与8 B.8与9 C.8与8.5 D.8.5与9考点:众数;中位数.专题:图表型.分析:先读出数据,再按大小排列,然后利用众数、中位数的概念求解.这里中位数是第4、5个数的平均数.解答:解:这组数据从小到大排列为7,8,8,8,9,9,10,10,众数为8,中位数为=8.5.故选C.点评:本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()A.7队B.6队C.5队D.4队考点:一元二次方程的应用.分析:设邀请x个球队参加比赛,那么第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排10场比赛即可列出方程求解.解答:解:设邀请x个球队参加比赛,依题意得1+2+3+…+x﹣1=10,即=10,∴x2﹣x﹣20=0,∴x=5或x=﹣4(不合题意,舍去).故选C.点评:此题和实际生活结合比较紧密,准确找到关键描述语,从而根据等量关系准确的列出方程是解决问题的关键.此题还要判断所求的解是否符合题意,舍去不合题意的解.8.如图,在▱ABCD中,DB=DC,∠C=65°,AE⊥BD于点E,则∠DAE等于()A.20° B.25° C.30° D.35°考点:平行四边形的性质.分析:要求∠DAE,就要先求出∠ADE,要求出∠ADE,就要先求出∠DBC.利用DB=DC,∠C=65°即可求出.解答:解:∵DB=DC,∠C=65°,∴∠DBC=∠C=65°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠DBC=65°,∵AE⊥BD,∴∠AEB=90°,∴∠DAE=90°﹣∠ADE=25°.故选B.点评:本题考查了平行四边形的性质,解决本题的关键是利用三角形内角和定理,等边对等角等知识得到和所求角有关的角的度数.9.关于反比例函数y=,下列叙述错误的是()A.y随x的增大而减小B.图象位于一、二象限C.图象关于直线y=x对称D.点(﹣1,﹣2)在这个函数的图象上考点:反比例函数的性质.分析:根据k>0,双曲线的两支分别位于第一、第三象限对B,C进行判断;根据反比例函数图象上点的坐标特征对D进行判断;根据反比例函数的增减性质对A进行判断.解答:解:k=2>0,反比例函数的图象分布在第一、第三象限,图象是轴对称图形,所以B、C选项的说法正确;需要强调在每一象限内,y的值随x的增大而减小,所以A选项的说法错误;当x=﹣1时,y=﹣2,故D选项正确.故选A.点评:本题考查了反比例函数的性质:y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.10.把抛物线y=(x+1)2向下平移2个单位长度,再向右平移1个单位长度,所得到的抛物线是()A.y=x2﹣2 B.y=x2+2 C.y=(x+2)2﹣2 D.y=(x+2)2+2考点:二次函数图象与几何变换.分析:易得原抛物线的顶点,然后得到经过平移后的新抛物线的顶点,根据平移不改变二次项的系数可得新抛物线解析式.解答:解:抛物线y=(x+1)2的顶点坐标是(﹣1,0),向下平移2个单位长度,再向右平移1个单位长度后抛物线的顶点坐标是(0,﹣2),所以平移后抛物线的解析式为:y=x2﹣2,故选:A.点评:本题考查了二次函数图象与几何变换,抛物线平移问题,实际上就是两条抛物线顶点之间的问题,找到了顶点的变化就知道了抛物线的变化.11.如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为()A.9:4 B.3:2 C.4:3 D.16:9考点:翻折变换(折叠问题).专题:数形结合.分析:设BF=x,则CF=3﹣x,B'F=x,在Rt△B′CF中,利用勾股定理求出x的值,继而判断△DB′G∽△CFB′,根据面积比等于相似比的平方即可得出答案.解答:解:设BF=x,则CF=3﹣x,B'F=x,又点B′为CD的中点,∴B′C=1,在Rt△B′CF中,B'F2=B′C2+CF2,即x2=1+(3﹣x)2,解得:x=,即可得CF=3﹣=,∵∠DB′G+∠DGB'=90°,∠DB′G+∠CB′F=90°,∴∠DGB′=∠CB′F,∴Rt△DB′G∽Rt△CFB′,根据面积比等于相似比的平方可得:===.故选D.点评:此题考查了翻折变换的知识,解答本题的关键是求出FC的长度,然后利用面积比等于相似比的平方进行求解,难度一般.12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2﹣4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0其中,正确结论的个数是()A.1 B. 2 C. 3 D. 4考点:二次函数图象与系数的关系.专题:压轴题.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①由图知:抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,故①正确;②抛物线开口向上,得:a>0;抛物线的对称轴为x=﹣=1,b=﹣2a,故b<0;抛物线交y轴于负半轴,得:c<0;所以abc>0;故②正确;③根据②可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);由函数的图象知:当x=﹣2时,y>0;即4a﹣(﹣4a)+c=8a+c>0,故③正确;④根据抛物线的对称轴方程可知:(﹣1,0)关于对称轴的对称点是(3,0);当x=﹣1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故④正确;所以这四个结论都正确.故选:D.点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6小题,每小题3分,共18分)13.要使函数y=有意义,则x的取值范围是x≥﹣2.考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,2x+4≥0,解得x≥﹣2.故答案为:x≥﹣2点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.一个多边形的每个外角都是60°,则这个多边形边数为6.考点:多边形内角与外角.分析:利用外角和除以外角的度数即可得到边数.解答:解:360÷60=6.故这个多边形边数为6.故答案为:6.点评:此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都360°.15.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是9.4×10﹣7m.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00000094=9.4×10﹣7;故答案为:9.4×10﹣7.点评:本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.考点:概率公式.分析:根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.解答:解:∵一个布袋里装有2个红球和5个白球,∴摸出一个球摸到红球的概率为:=.故答案为:.点评:此题主要考查了概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.17.如图,△ABC的三个顶点的坐标分别为A(﹣1,3)、B (﹣2,﹣2)、C(4,﹣2),则△ABC外接圆上劣弧AB的长度为.(结果保留π)考点:弧长的计算;勾股定理;等腰直角三角形;圆周角定理.分析:分别作BC、AC的中垂线找到圆心I的位置,继而求出IA、IB,结合AB的长度可得出△ABI是直角三角形,继而可求出劣弧AB的长度.解答:解:作BC、AC的中垂线,则可得圆心I的坐标为(1,0),则IA=IB==,∵AB2=12+52=26=IA2+IB2,∴∠AIB=90°,l劣弧AB==π.故答案为:π.点评:本题考查了弧长的计算、勾股定理、勾股定理的逆定理,解答本题的关键确定圆心I的坐标,注意掌握利用在格点三角形求线段的长度.18.如图,在函数y=(x>0)的图象上有点P1、P2、P3…、P n、P n+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S n=.(用含n的代数式表示)考点:反比例函数系数k的几何意义.专题:规律型.分析:根据反比例函数图象上点的坐标特征得到P1(2,),P2(4,),P3(6,),则利用矩形的面积公式得到S1=2×(﹣),S2=2×(﹣),S3=2×(﹣),根据此规律得S n=2×(﹣,然后化简即可.解答:解:∵P1(2,),P2(4,),P3(6,),∴S1=2×(﹣),S2=2×(﹣)S3=2×(﹣),所以S n=2×(﹣=﹣=.故答案为.点评:本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了正方形的性质.三、(本大题共2小题,每小题6分,共12分)19.计算:2tan60°﹣+(π﹣1)0+(﹣1)2015.考点:实数的运算;零指数幂;特殊角的三角函数值.分析:原式第一项利用特殊角的三角函数值计算,第二项化为最简二次根式,第三项利用零指数幂法则计算,最后一项利用乘方的意义计算即可得到结果.解答:解:原式=2﹣3+1﹣1=﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简(1﹣)÷,再从a=1、2、3中选取一个合适的数代入求值.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.解答:解:原式=•=,当a=3时,原式=3.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.四、(本大题共2小题,每小题8分,共16分)21.“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:等级成绩(用s表示)频数频率A 90≤s≤100 x 0.08B 80≤s<90 35 yC s<80 11 0.22合计50 1请根据上表提供的信息,解答下列问题:(1)表中的x的值为4,y的值为0.7(2)将本次参赛作品获得A等级的学生依次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.考点:频数(率)分布表;列表法与树状图法.分析:(1)用50减去B等级与C等级的学生人数,即可求出A等级的学生人数x的值,用35除以50即可得出B等级的频率即y的值;(2)由(1)可知获得A等级的学生有4人,用A1,A2,A3,A4表示,画出树状图,通过图确定恰好抽到学生A1和A2的概率.解答:解:(1)∵x+35+11=50,∴x=4,或x=50×0.08=4;y==0.7,或y=1﹣0.08﹣0.22=0.7;(2)依题得获得A等级的学生有4人,用A1,A2,A3,A4表示,画树状图如下:由上图可知共有12种结果,且每一种结果可能性都相同,其中抽到学生A1和A2的有两种结果,所以从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,恰好抽到学生A1和A2的概率为:P=.点评:本题考查读频数(率)分布表的能力和利用图表获取信息的能力.利用统计图表获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.用到的知识点为:各小组频数之和等于数据总数;各小组频率之和等于1;频率=频数÷数据总数;概率=所求情况数与总情况数之比.22.如图,已知:梯形ABCD中,AD∥BC,E为AC的中点,连接DE并延长交BC于点F,连接AF.(1)求证:AD=CF;(2)在原有条件不变的情况下,请你再添加一个条件(不再增添辅助线),使四边形AFCD 成为菱形,并说明理由.考点:梯形;全等三角形的判定与性质;菱形的判定.专题:证明题;开放型.分析:(1)∵AD∥BC,∴∠DAE=∠FCE.∠ADE=∠EFC,∵E为AC的中点,∴AE=CE.利用AAS证得△DEA≌△FEC.∴AD=CF;(2)若四边形AFCD成为菱形,则应证四边形AFCD是平行四边形,因而加一组邻边相等即可,如:DA=DC.解答:(1)证明:在△DEA和△FEC中,∵AD∥BC,∴∠DAE=∠FCE,∠ADE=∠EFC.又∵E为AC的中点,∴AE=CE.∴△DEA≌△FEC.∴AD=CF.(2)添加DA=DC.证明:∵AD∥BC,又∵AD=CF,∴四边形AFCD为平行四边形.又∵DA=DC,∴四边形AFCD为菱形.点评:本题利用了:(1)两直线平行,内错角相等;(2)全等三角形的判定和性质;(3)平行四边形和菱形的判定.五、(本大题满分8分)23.如图是某地下商业街的入口,数学课外兴趣小组的同学打算运用所学的知识测量侧面支架的最高点E到地面的距离EF.经测量,支架的立柱BC与地面垂直,即∠BCA=90°,且BC=1.5m,点F、A、C在同一条水平线上,斜杆AB与水平线AC的夹角∠BAC=30°,支撑杆DE⊥AB于点D,该支架的边BE与AB的夹角∠EBD=60°,又测得AD=1m.请你求出该支架的边BE及顶端E到地面的距离EF的长度.考点:解直角三角形的应用.分析:过B作BH⊥EF于点H,在Rt△ABC中,根据∠BAC=30°,BC=1.5,可求得AB 的长度,又AD=1m,可求得BD的长度,在Rt△EBD中解直角三角形求得EB的长度,然后根据BH⊥EF,求得∠EBH=30°,继而可求得EH的长度,易得EF=EH+HF的值.解答:解:过B作BH⊥EF于点H,∴四边形BCFH为矩形,BC=HF=1.5m,∠HBA=∠BAC=30°,在Rt△ABC中,∵∠BAC=30°,BC=1.5m,∴AB=3m,∵AD=1m,∴BD=2m,在Rt△EDB中,∵∠EBD=60°,∴∠BED=90°﹣60°=30°,∴EB=2BD=2×2=4m,又∵∠HBA=∠BAC=30°,∴∠EBH=∠EBD﹣∠HBD=30°,∴EH=EB=2m,∴EF=EH+HF=2+1.5=3.5(m).答:该支架的边BE为4m,顶端E到地面的距离EF的长度为3.5m.点评:本题考查了解直角三角形的应用,解题的关键是将实际问题转化为数学问题,构造直角三角形并解直角三角形,难度适中.六、(本大题满分10分)24.(10分)(2015•西乡塘区二模)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装的进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;(3)若乙服装每件的进价为242元,商场把乙服装按8折出售.问标价至少为多少时,销售乙服装才不亏本?(结果取整数)考点:一元二次方程的应用;一元一次方程的应用;一元一次不等式的应用.分析:(1)若设甲服装的进价为x元,则乙服装的进价为(500﹣x)元.根据公式:总利润=总售价﹣总进价,即可列出方程.(2)利用乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)设每件乙衣服的标价为m元,根据题意列不等式0.8m﹣242≥0,求解后取整数即可.解答:解:(1)设甲服装的进价为x元,则乙服装的进价为(500﹣x)元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500﹣x)﹣500=67,解得:x=300,500﹣x=200.答:甲服装的进价为300元、乙服装的进价为200元.(2)∵乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元,∴设每件乙服装进价的平均增长率为y,则200(1+y)2=242,解得:y1=0.1=10%,y2=﹣2.1(不合题意舍去).答:每件乙服装进价的平均增长率为10%;(3)设每件乙衣服的标价为m圆,则0.8m﹣242≥0,解得:m≥302.5,∵结果取整数,∴乙衣服的标价至少为303元,才不亏本.点评:此题主要考查了一元二次方程的应用以及增长率问题和一元一次不等式的应用,注意售价的算法:售价=定价×打折数.七、(本大题满分10分)25.(10分)(2015•西乡塘区二模)如图,已知:矩形ABCD,以对角线AC的中点O为圆心,OA的长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为点K,过点D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)若F是EG的中点,且DE=6,求⊙O的半径.考点:相似三角形的判定与性质;全等三角形的判定与性质;圆周角定理.分析:(1)由四边形ABCD是矩形,得到AD∥BC,AD=BC,于是得到∠DAE=∠BCK,得到∠BKC=∠AED=90°,推出△BKC≌△ADE,即可得到结论;(2)根据三角形中位线定理可求出EF,再利用△AFD≌△HBF可求出HF,然后即可求出GH;利用射影定理求出AE,再利△AED∽△HEC求证AE=AC,然后即可求得AC即可.解答:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠DAE=∠BCK,∵BK⊥AC,DH∥KB,∴∠BKC=∠AED=90°,在△BKC与△ADE中,,∴△BKC≌△ADE,∴AE=CK;(2)DG是圆的弦,又有AE⊥GD得GE=ED,∵DE=6,∴GE=6,又∵F为EG中点,∴EF=EG=3,∵△BKC≌△DEA,∴BK=DE=6,∴EF=BK,且EF∥BK,∴△AEF∽△AKB,且相似比为1:2,∴EF为△ABK的中位线,∴AF=BF,又∵∠ADF=∠H,∠DAF=∠HBF=90°,在△AFD≌△BFH中,,∴△AFD≌△BFH(AAS),∴HF=DF=3+6=9,∴GH=6,∵DH∥KB,BK⊥AC,四边形ABCD为矩形,∴∠AEF=∠DEA=90°,∴∠FAE+∠DAE=∠FAE+∠AFE=90°,∴∠AFE=∠DAE,∴△AEF∽△DEA,∴AE:ED=EF:AE,∴AE2=EF•ED=3×6=18,∴AE=3,∵△AED∽△HEC,∴==,∴AE=AC,∴AC=9,则AO=,故⊙O的半径是.点评:此题主要考查相似三角形的判定与性质,全等三角形的判定与性质,三角形中位线定理,垂径定理等知识点,综合性很强,利用学生系统的掌握知识,是一道很典型的题目.八、(本大题满分10分)26.(10分)(2015•西乡塘区二模)如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.。
2016年天津市东丽区中考数学二模试卷带答案解析
2016年天津市东丽区中考数学二模试卷一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣5)×(﹣2)的结果等于()A.7 B.﹣10 C.10 D.﹣32.(3分)tan30°的结果等于()A.B.C.D.3.(3分)下列图形中,属于轴对称图形的是()A.B.C.D.4.(3分)在第三届中小学生运动会上,我市共有1330名学生参赛,创造了比赛组别、人数、项目之最,将1330用科学记数法表示为()A.133×10 B.1.33×103C.133×104D.133×1055.(3分)如图所示,几何体的主视图是()A.B.C.D.6.(3分)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>107.(3分)正六边形的边心距是,则它的边长是()A.B.2 C.D.8.(3分)若=0,则x的值等于()A.3或﹣2 B.﹣3 C.2 D.无法确定9.(3分)化简的结果是()A.x+1 B. C.x﹣1 D.10.(3分)如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C的度数等于()A.100°B.105°C.115° D.120°11.(3分)为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有()A.1200名B.450名C.400名D.300名12.(3分)已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是()个.A.4个 B.3个 C.2个 D.1个二、填空题(本大题共6小题,共18分)13.(3分)计算(﹣2y3)2的结果等于.14.(3分)一次函数y=﹣x+3的图象上有两点(x1,y1)和(x2,y2),且x1<x2,则y1与y2的大小关系为.15.(3分)在五张完全相同的卡片上,分别写有数字0,﹣3,﹣2,1,﹣,现从中随机抽取一张,抽到写有非负数的卡片的概率是.16.(3分)四边形ABCD为圆O的内接四边形,已知∠BOD=100°,则∠BCD=.17.(3分)已知,在△ABC中,∠ABC=90°,AB=4,BC=3,若线段CD=2,且CD ∥AB,则AD的长度等于.18.(3分)如图,是由每个边长都是1的小正方形构成的网格,点O,A,B,M均为格点,P为线段OM上的一个动点.(1)点B到OM的距离等于;(2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.三、解答题(本大题共7小题,共66分)19.(8分)解不等式组,并把解集在数轴上表示出来.20.(9分)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?21.(9分)已知四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,∠DAB=45°.(Ⅰ)如图①,判断CD与⊙O的位置关系,并说明理由;(Ⅱ)如图②,E是⊙O上一点,且点E在AB的下方,若⊙O的半径为3cm,AE=5cm,求点E到AB的距离.22.(10分)如图是放在水平地面上的一把椅子的侧面图,椅子高为AC,椅面宽为BE,椅脚高为ED,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得点D、E的俯角分别为64°和53°.已知ED=35cm,求椅子高AC约为多少?(参考数据:tan53°≈,sin53°≈,tan64°≈2,sin64°≈)23.(10分)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过1000元后,超出1000元的部分按90%收费;在乙商场累计购物超过500元后,超出500元的部分按95%收费,设小红在同一商场累计购物x元,其中x>1000.(1)根据题题意,填写下表(单位:元)(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过1000元时,在哪家商场的实际花费少?24.(10分)如图,有一张直角三角形纸片ABC,∠ACB=90°,∠B=60°,BC=3,直角边AC在x轴上,B点在第二象限,A(,0),AB交y轴于E,将纸片过E 点折叠使BE与EA所在的直线上,得到折痕EF(F在x轴上),再展开还原沿EF 剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA方向平行移动,至B点到达A点停止(记平移后的四边形为B1C1F1E1).在平移过程中,设平移的距离BB1=x,四边形B1C1F1E1与△AEF重叠的面积为S.(1)求折痕EF的长;(2)平移过程中是否存在点F1落在y轴上?若存在,求出x的值;若不存在,说明理由;(3)直接写出S与x的函数关系式及自变量x的取值范围.25.(10分)如图,点A(﹣2,0)、B(4,0)、C(3,3)在抛物线y=ax2+bx+c 上,点D在y轴上,且DC⊥BC,∠BCD绕点C顺时针旋转后两边与x轴、y轴分别相交于点E、F.(1)求抛物线的解析式;(2)CF能否经过抛物线的顶点?若能,求出此时点E的坐标;若不能,说明理由;(3)若△FDC是等腰三角形,求点F的坐标.2016年天津市东丽区中考数学二模试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣5)×(﹣2)的结果等于()A.7 B.﹣10 C.10 D.﹣3【解答】解:(﹣5)×(﹣2)=10.故选:C.2.(3分)tan30°的结果等于()A.B.C.D.【解答】解:tan30°=,故选:C.3.(3分)下列图形中,属于轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.4.(3分)在第三届中小学生运动会上,我市共有1330名学生参赛,创造了比赛组别、人数、项目之最,将1330用科学记数法表示为()A.133×10 B.1.33×103C.133×104D.133×105【解答】解:1330用科学记数法表示为1.33×103.故选B.5.(3分)如图所示,几何体的主视图是()A.B.C.D.【解答】解:从正面看第一层是一个矩形,第二层左边一个矩形,故选:A.6.(3分)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>10【解答】解:∵反比例函数y=中当x=1时y=10,当x=2时,y=5,∴当1<x<2时,y的取值范围是5<y<10,故选:C.7.(3分)正六边形的边心距是,则它的边长是()A.B.2 C.D.【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得:OA=2.故选B.8.(3分)若=0,则x的值等于()A.3或﹣2 B.﹣3 C.2 D.无法确定【解答】解:由题意得:(x+3)(x﹣2)=0,且x﹣2≠0,解得:x=﹣3,故选:B.9.(3分)化简的结果是()A.x+1 B. C.x﹣1 D.【解答】解:原式=﹣===x+1.故选A10.(3分)如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C的度数等于()A.100°B.105°C.115° D.120°【解答】解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),∴AB=AB′,∠BAB′=30°,∴∠B=∠AB′B=(180°﹣30°)÷2=75°,∴∠C=180°﹣75°=105°.故选B.11.(3分)为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有()A.1200名B.450名C.400名D.300名【解答】解;∵喜爱体育节目的学生占1﹣10%﹣5%﹣35%﹣30%=20%,该校共1500名学生,∴该校喜爱体育节目的学生共有1500×20%=300(名),故选:D.12.(3分)已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是()个.A.4个 B.3个 C.2个 D.1个【解答】解:根据二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x=﹣2代入得:4a﹣2b+c=0,∴①正确;把x=﹣1代入得:y=a﹣b+c>0,如图A点,∴②错误;∵(﹣2,0)、(x1,0),且1<x1,∴取符合条件1<x1<2的任何一个x1,﹣2•x1<﹣2,∴由一元二次方程根与系数的关系知x1•x2=<﹣2,∴不等式的两边都乘以a(a<0)得:c>﹣2a,∴2a+c>0,∴③正确;④由4a﹣2b+c=0得2a﹣b=﹣,而0<c<2,∴﹣1<﹣<0∴﹣1<2a﹣b<0∴2a﹣b+1>0,∴④正确.所以①③④三项正确.故选B.二、填空题(本大题共6小题,共18分)13.(3分)计算(﹣2y3)2的结果等于4y6.【解答】解:(﹣2y3)2=(﹣2y3)•(﹣2y3)=4y6.故答案为:4y6.14.(3分)一次函数y=﹣x+3的图象上有两点(x1,y1)和(x2,y2),且x1<x2,则y1与y2的大小关系为y1>y2.【解答】解:∵一次函数y=﹣x+3中,k=﹣1<0,∴y随x的增大而减小.∵x1<x2,∴y1>y2.故答案为:y1>y2.15.(3分)在五张完全相同的卡片上,分别写有数字0,﹣3,﹣2,1,﹣,现从中随机抽取一张,抽到写有非负数的卡片的概率是.【解答】解:∵0,﹣3,﹣2,1,﹣这5个数中,非负数有0,1这2个,∴从中随机抽取一张,抽到写有非负数的卡片的概率是,故答案为:.16.(3分)四边形ABCD为圆O的内接四边形,已知∠BOD=100°,则∠BCD=130°或50°.【解答】解:如图∵弧BAD的度数为100°,∴∠BOD=100°,∴∠BCD=∠BOD=50°,∴∠BAD=180°﹣∠ACD=130°.同理,当点A是优弧上时,∠BAD=50°.故答案为:130°或50°.17.(3分)已知,在△ABC中,∠ABC=90°,AB=4,BC=3,若线段CD=2,且CD∥AB,则AD的长度等于或3.【解答】解:分两种情况:①如图1所示:延长BC、AD交于点M,∵CD∥AB,∴△DCM∽△ABN,∴==,∴CN=BC=3,AD═AN,∴BN=6,∵∠ABC=90°,∴AN===2,∴AD=;②如图2所示:设AD交BC于O,∵CD∥AB,∠ABC=90°,∴△COD∽△BOA,∴=,∵BC=3,∴OC=1,OB=2,∴OD==,OA==2,∴AD=OA+OD=3;综上所述:AD的长度等于或3;故答案为:或3.18.(3分)如图,是由每个边长都是1的小正方形构成的网格,点O,A,B,M均为格点,P为线段OM上的一个动点.(1)点B到OM的距离等于2;(2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.【解答】解:(1)点B到OM的距离==2,故答案为:2;(2)以点O为原点建立直角坐标系,则A(1,0),B(4,0),设P(a,a),(0≤a≤4),∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,∴PA2+PB2=4(a﹣)2+,∵0≤a≤4,∴当a=时,PA2+PB2取得最小值,综上,需作出点P满足线段OP的长=;取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR 交OM于P,则点P即为所求.三、解答题(本大题共7小题,共66分)19.(8分)解不等式组,并把解集在数轴上表示出来.【解答】解:解不等式①,得:x>﹣3,解不等式②,得:x≤2,∴不等式组的解集为:﹣3<x≤2,在数轴上表示不等式组的解集为:20.(9分)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?【解答】解:(1)根据条形图可得出:平均用水11吨的用户为:100﹣20﹣10﹣20﹣10=40(户),如图所示:(2)平均数为:(20×10+40×11+12×10+13×20+10×14)=11.6(吨),根据11出现次数最多,故众数为:11,根据100个数据的最中间为第50和第51个数据,按大小排列后第50,51个数据是11,故中位数为:11;答:这100个样本数据的平均数,众数和中位数分别是11.6,11,11;(3)样本中不超过12吨的有20+40+10=70(户),答:黄冈市直机关500户家庭中月平均用水量不超过12吨的约有:500×=350(户).21.(9分)已知四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,∠DAB=45°.(Ⅰ)如图①,判断CD与⊙O的位置关系,并说明理由;(Ⅱ)如图②,E是⊙O上一点,且点E在AB的下方,若⊙O的半径为3cm,AE=5cm,求点E到AB的距离.【解答】解:(1)CD与圆O相切.证明:如图①,连接OD,则∠AOD=2∠DAB=2×45°=90°,∵四边形ABCD是平行四边形,∴AB∥DC.∴∠CDO=∠AOD=90°.∴OD⊥CD.∴CD与圆O相切.(2)如图②,作EF⊥AB于F,连接BE,∵AB是圆O的直径,∴∠AEB=90°,AB=2×3=6.∵AE=5,∴BE==,∵sin∠BAE==.∴=∴EF=.22.(10分)如图是放在水平地面上的一把椅子的侧面图,椅子高为AC,椅面宽为BE,椅脚高为ED,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得点D、E的俯角分别为64°和53°.已知ED=35cm,求椅子高AC约为多少?(参考数据:tan53°≈,sin53°≈,tan64°≈2,sin64°≈)【解答】解:在Rt△ACD中,tan∠ADC=tan64°==2,CD=①.在Rt△ABE中tan∠AEB=tan53°==,BE=AB ②.BE=CD,得===AB,解得AB=70cm,AC=AB+BC=AB+DE=70+35=105cm.23.(10分)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过1000元后,超出1000元的部分按90%收费;在乙商场累计购物超过500元后,超出500元的部分按95%收费,设小红在同一商场累计购物x元,其中x>1000.(1)根据题题意,填写下表(单位:元)(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过1000元时,在哪家商场的实际花费少?【解答】解:(1)在甲商场:1000+(1300﹣1000)×0.9=1270,1000+(2900﹣1000)×0.9=2710,1000+(x﹣1000)×0.9=0.9x+100;在乙商场:500+(1300﹣500)×0.95=1260,500+(2900﹣500)×0.95=2780,500+(x﹣500)×0.95=0.95x+25;填表如下:(2)根据题意得出:0.9x+100=0.95x+25,解得:x=1500,答:当x为1500时,小红在甲、乙两商场的实际花费相同;(3)由0.9x+100<0.95x+25,解得:x>1500,0.9x+100>0.95x+25,解得:x<1500,∴当小红累计购物大于1500时,选择甲商场实际花费少;当累计购物正好为1500元时,两商场花费相同;当小红累计购物超过1000元而不到1500元时,在乙商场实际花费少.答:当小红累计购物超过1000元而不到1500元时,在乙商场实际花费少;正好为1500元时,两商场花费相同;大于1500时,选择甲商场实际花费少.24.(10分)如图,有一张直角三角形纸片ABC,∠ACB=90°,∠B=60°,BC=3,直角边AC在x轴上,B点在第二象限,A(,0),AB交y轴于E,将纸片过E 点折叠使BE与EA所在的直线上,得到折痕EF(F在x轴上),再展开还原沿EF 剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA方向平行移动,至B点到达A点停止(记平移后的四边形为B1C1F1E1).在平移过程中,设平移的距离BB1=x,四边形B1C1F1E1与△AEF重叠的面积为S.(1)求折痕EF的长;(2)平移过程中是否存在点F1落在y轴上?若存在,求出x的值;若不存在,说明理由;(3)直接写出S与x的函数关系式及自变量x的取值范围S=.【解答】解:(1)∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∵A(,0),∴EO=1,∵∠EFO=60°,∠EOF=90°,∴EF==,(2)存在,理由如下:如图1,作B1D⊥BC,∵FO=,∴B1D=,∠B=60°∴BB1==,即x=,(3)①当0≤x≤2时,即点E到A时经过的面积,如图2,∵AO=,∠ACB=90°,∠B=60°,∴AE=2,∵BB1=EE1=x,∴E1A=2﹣x,∴E1M=(2﹣x),∴S=(EF+E1M)•E1E=[+(2﹣x)]•x=﹣x2+x ②当2<x≤时,S为△AEF的面积,所以S=EF•AE=××2=,③当<x≤4时,如图3∵∠ACB=90°,∠B=60°,BC=3,∴AC=3,∵AO=,OF=,∴CF=3﹣﹣=,∴此时BB 1=,即当B 1C 1过点F 时x=,当x >时,FM=(x ﹣),在RT △NMF 中,NM=FM=(x ﹣),∴△NMF 的面积为:FM•MN=×(x ﹣)×(x ﹣),∴S=S △AEF ﹣S △NMF =﹣×(x ﹣)×(x ﹣)=﹣x 2+x ﹣, ④当4<x ≤6时,如图4,∵∠ACB=90°,∠B=60°,BC=3, ∴AB=6, AB 1=6﹣x ,∴DB 1=(6﹣x ),AD=(6﹣x ),∴S=DA•DB 1=×(6﹣x )×(6﹣x )=x 2﹣x +,综上可知S 与x 的函数关系式为:S=,故答案为:S=.25.(10分)如图,点A(﹣2,0)、B(4,0)、C(3,3)在抛物线y=ax2+bx+c 上,点D在y轴上,且DC⊥BC,∠BCD绕点C顺时针旋转后两边与x轴、y轴分别相交于点E、F.(1)求抛物线的解析式;(2)CF能否经过抛物线的顶点?若能,求出此时点E的坐标;若不能,说明理由;(3)若△FDC是等腰三角形,求点F的坐标.【解答】解:(1)由抛物线与X轴的两个交点A、B的坐标,可以由两根式设抛物线解析式为:y=a(x+2)(x﹣4),然后将C点坐标代入得:a(3+2)(3﹣4)=3,解得:a=﹣,故抛物线解析式是:y=﹣(x+2)(x﹣4);(2)由C、B两点坐标利用待定系数法可以求得CB直线方程为:y=﹣3x+12,∵B(4,0)、C(3,3),∴BC=,设点D坐标为(0,a)(a>0),则CD=BD=,∵CD⊥CB,∴BC2+CD2=BD2,∴a=2,∴点D坐标为(0,2)设CD的解析式为y=kx+b,,即∴CD直线方程为:y=x+2,由抛物线解析式可以顶点公式或对称轴x=1解得顶点M坐标为M(1,),∴由C、M两点坐标可以求得CM即CF直线方程为:y=﹣x+,∴F点坐标为:F(0,),∴CE直线方程可以设为:y=x+n,将C点坐标代入得:n=,∴CE直线方程为:y=x+,令y=0,解得:x=﹣,∴E点坐标为E(﹣,0),∴能;(3)由C、D两点坐标可以求得CD=,则△FDC是等腰△可以有三种情形:①FD=CD=,则F点坐标为F(0,2+)或(0,2﹣),②FC=CD=,过C点作y轴垂线,垂足为H点,则DH=1,则FH=1,则F点坐标为F(0,4),③FD=FC,作DC的中垂线FG,交y轴于F点,交DC于G点,由中点公式得G点坐标为G(,),由DC两点可以求得DC直线方程为:y=x+2,则FG直线方程可以设为:y=﹣3x+p,将G点坐标代入解得:p=7,故F点坐标为(0,7).赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
【精品】2016-2017年天津市东丽区初三上学期数学期末试卷与答案
2016-2017学年天津市东丽区初三上学期期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取1个球,则取到的是一个白球的概率为()A.B.C.D.2.(3分)若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A.1 B.0 C.﹣1 D.23.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C. D.4.(3分)抛物线y=(x+2)2+3的顶点坐标是()A.(﹣2,﹣3)B.(2,3) C.(﹣2,3)D.(2,﹣3)5.(3分)下列判断中正确的是()A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦6.(3分)如图,AB是⊙O的弦,点C在圆上,已知∠AOB=100°,则∠C=()A.40°B.50°C.60°D.80°7.(3分)如图,在△ABC中,∠ACB=90°,将△ABC绕点A顺时针旋转90°,得到△ADE,连接BD,若AC=3,DE=1,则线段BD的长为()A.2 B.2 C.4 D.28.(3分)一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定9.(3分)已知抛物线y=x2﹣x﹣1,与x轴的一个交点为(m,0),则代数式m2﹣m+2016的值为()A.2015 B.2016 C.2017 D.201010.(3分)已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.1011.(3分)函数y=x2﹣2x﹣3中,当﹣2≤x≤3时,函数值y的取值范围是()A.﹣4≤y≤5 B.0≤y≤5 C.﹣4≤y≤0 D.﹣2≤y≤312.(3分)已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,AC=2,AD=1,F是BE的中点.若将△ADE绕点A旋转一周,则线段AF长度的取值范围是()A.≤AF≤B.2≤AF≤3 C.≤AF≤3 D.≤AF≤二.填空题(本大题共6小题,共18分)13.(3分)已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2=.14.(3分)如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=.15.(3分)已知二次函数y=(x﹣2)2+3,当x时,y随x的增大而减小.16.(3分)圆内接正六边形的边心距为2cm,则这个正六边形的面积为cm2.17.(3分)如图,AB是半径为4的⊙O的直径,P是圆上异于A,B的任意一点,∠APB的平分线交⊙O于点C,连接AC和BC,△ABC的中位线所在的直线与⊙O 相交于点E、F,则EF的长是.18.(3分)如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①abc<0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤a=b,你认为其中正确信息的个数有个.三、解答题(本大题共66分)19.(8分)解方程:3x(x﹣2)=2(2﹣x).20.(9分)如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.21.(9分)如图,⊙O是△ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E,求证:(Ⅰ)∠ECB=∠BAD;(Ⅱ)BE是⊙O的切线.22.(10分)已知:抛物线有=﹣x2+bx+c经过A(﹣1,0)、B(5,0)两点,顶点为P.求:(Ⅰ)求b,c的值;(Ⅱ)求△ABP的面积.23.(10分)如图,用长为6m的铝合金条制成“日”字形窗框,若窗框的宽为x m,窗户的透光面积为y m2(铝合金条的宽度不计).(1)求出y与x的函数关系式;(2)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积.24.(10分)如图1,已知O为正方形ABCD的中心,分别延长OA到点F,OD 到点E,使OF=2OA,OE=2OD,连结EF,将△FOE绕点O逆时针旋转α角得到△F′OE′(如图2).连结AE′、BF′.(1)探究AE′与BF′的数量关系,并给予证明;(2)当α=30°,AB=2时,求:①∠AE′O的度数;②BF′的长度.25.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P 的横坐标为m.(Ⅰ)求抛物线的解析式和直线BC的解析式;(Ⅱ)当点P在线段OB上运动时,求线段MN的最大值;(Ⅲ)当以C、O、M、N为顶点的四边形是平行四边形时,直接写出m的值.2016-2017学年天津市东丽区初三上学期期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取1个球,则取到的是一个白球的概率为()A.B.C.D.【解答】解:∵袋子中共有5个球,其中白球有3个,∴取到的是一个白球的概率为,故选:C.2.(3分)若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A.1 B.0 C.﹣1 D.2【解答】解:把x=1代入x2﹣x﹣m=0得1﹣1﹣m=0,解得m=0.故选:B.3.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C. D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项正确;故选:D.4.(3分)抛物线y=(x+2)2+3的顶点坐标是()A.(﹣2,﹣3)B.(2,3) C.(﹣2,3)D.(2,﹣3)【解答】解:抛物线y=(x+2)2+3的顶点坐标是(﹣2,3).故选:C.5.(3分)下列判断中正确的是()A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦【解答】解:A、等弧是能重合的两弧,长度相等的弧不一定是等弧,故选项错误;B、平分弦的直线也必平分弦所对的两条弧,注意被平分的弦不是直径,故选项错误;C、弦的垂直平分线必平分弦所对的两条弧,正确,故选项正确;D、平分一条弧的直径必平分这条弧所对的弦,故选项错误.故选:C.6.(3分)如图,AB是⊙O的弦,点C在圆上,已知∠AOB=100°,则∠C=()A.40°B.50°C.60°D.80°【解答】解:∵∠AOB和∠ACB是弧AB所对的角,∴∠AOB=2∠ACB,∵∠AOB=100°,∴∠ACB=50°,故选:B.7.(3分)如图,在△ABC中,∠ACB=90°,将△ABC绕点A顺时针旋转90°,得到△ADE,连接BD,若AC=3,DE=1,则线段BD的长为()A.2 B.2 C.4 D.2【解答】解:由旋转的性质可知:BC=DE=1,AB=AD∵在RT△ABC中,AC=3,BC=1,∠ACB=90°,∴由勾股定理得:AB=AD==又旋转角为90°,∴∠BAD=90°,∴在RT△ADB中,BD==2即:BD的长为2故选:A.8.(3分)一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【解答】解:在方程x2﹣4x+4=0中,△=(﹣4)2﹣4×1×4=0,∴该方程有两个相等的实数根.故选:B.9.(3分)已知抛物线y=x2﹣x﹣1,与x轴的一个交点为(m,0),则代数式m2﹣m+2016的值为()A.2015 B.2016 C.2017 D.2010【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m+2016=m2﹣m﹣1+2017=2017.故选:C.10.(3分)已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.10【解答】解:解方程x2﹣4x+3=0,(x﹣1)(x﹣3)=0解得x1=3,x2=1;∵当底为3,腰为1时,由于3>1+1,不符合三角形三边关系,不能构成三角形;∴等腰三角形的底为1,腰为3;∴三角形的周长为1+3+3=7.故选:B.11.(3分)函数y=x2﹣2x﹣3中,当﹣2≤x≤3时,函数值y的取值范围是()A.﹣4≤y≤5 B.0≤y≤5 C.﹣4≤y≤0 D.﹣2≤y≤3【解答】解:∵y=x2﹣2x﹣3,∴抛物线对称轴为x=﹣=1,开口向上,又∵2≤x≤3,∴x=1时,函数y有最小值﹣4;x=﹣2时,函数y有最大值5,即﹣4≤y≤5.故选:A.12.(3分)已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,AC=2,AD=1,F是BE的中点.若将△ADE绕点A旋转一周,则线段AF长度的取值范围是()A.≤AF≤B.2≤AF≤3 C.≤AF≤3 D.≤AF≤【解答】解:根据旋转的特性,画出E点旋转一圈的轨迹,如图.结合图形可知:①当E落在E′位置时,AF最大,∵△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,AC=2,AD=1,∴AB==4,AE′==,BE′=AB﹣AE′=4﹣,∵F是BE′的中点,∴BF=BE′=,AF=AB﹣BF=4﹣=;②当E落在E″位置时,AF最小,∵BE″=AB+AE″=4+,且F是BE″的中点,∴BF=BE″=,AF=AB﹣BF=4﹣=.综合①②可知:≤AF≤.故选:A.二.填空题(本大题共6小题,共18分)13.(3分)已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2=3.【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根是x1、x2,∴x1+x2=3,故答案为:3.14.(3分)如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC= 4cm.【解答】解:连接OA,∵OC⊥AB,∴AC=AB=3cm,∴OC==4(cm).故答案是:4cm.15.(3分)已知二次函数y=(x﹣2)2+3,当x<2时,y随x的增大而减小.【解答】解:在y=(x﹣2)2+3中,a=1,∵a>0,∴开口向上,由于函数的对称轴为x=2,当x<2时,y的值随着x的值增大而减小;当x>2时,y的值随着x的值增大而增大.故答案为:<2.16.(3分)圆内接正六边形的边心距为2cm,则这个正六边形的面积为24 cm2.【解答】解:如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,OG=2,∠AOG=30°,∵OG=OA•cos 30°,∴OA===4cm,∴这个正六边形的面积为6××4×2=24cm2.故答案为:24.17.(3分)如图,AB是半径为4的⊙O的直径,P是圆上异于A,B的任意一点,∠APB的平分线交⊙O于点C,连接AC和BC,△ABC的中位线所在的直线与⊙O 相交于点E、F,则EF的长是4.【解答】解:如图所示,∵PC是∠APB的角平分线,∴∠APC=∠CPB,∴=,∴AC=BC;∵AB是直径,∴∠ACB=90°.即△ABC是等腰直角三角形.连接OC,交EF于点D,则OC⊥AB;∵MN是△ABC的中位线,∴MN∥AB;∴OC⊥EF,OD=OC=2.连接OE,根据勾股定理,得:DE==2,∴EF=2ED=4.故答案是:4.18.(3分)如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①abc<0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤a=b,你认为其中正确信息的个数有4个.【解答】解:①∵图象开口向下,∴a<0,∵对称轴x=﹣=﹣,∴3b=2a,则a=b,∴b<0,∵图象与x轴交与y轴正半轴,∴c>0,∴abc>0,故选项①错误;选项⑤正确;②由图象可得出:当x=1时,y<0,∴a+b+c<0,故此选项正确;③当x=﹣1时,y=a﹣b+c>0,∴b﹣b+c>0,∴b+2c>0,故此选项正确;④当x=﹣时,y>0,∴a﹣b+c>0,∴a﹣2b+4c>0,故此选项正确.故正确的有4个.故答案为:4.三、解答题(本大题共66分)19.(8分)解方程:3x(x﹣2)=2(2﹣x).【解答】解:由原方程,得(3x+2)(x﹣2)=0,所以3x+2=0或x﹣2=0,解得x1=﹣,x2=2.20.(9分)如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B 的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵两个数字的积为奇数的4种情况,∴两个数字的积为奇数的概率为:=.21.(9分)如图,⊙O是△ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E,求证:(Ⅰ)∠ECB=∠BAD;(Ⅱ)BE是⊙O的切线.【解答】(Ⅰ)证明:∵四边形ABCD是圆内接四边形,∴∠ECB=∠BAD;(Ⅱ)证明:连结OB,OD,在△ABO和△DBO中,,∴△ABO≌△DBO(SSS),∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB∥ED,∵BE⊥ED,∴EB⊥BO,∴BE是⊙O的切线.22.(10分)已知:抛物线有=﹣x2+bx+c经过A(﹣1,0)、B(5,0)两点,顶点为P.求:(Ⅰ)求b,c的值;(Ⅱ)求△ABP的面积.【解答】解:(1)设抛物线的解析式为y=﹣(x+1)(x﹣5),所以y=﹣x2+4x+5,所以b=4,c=5;(2)因为y=﹣x2+4x+5=﹣(x﹣2)2+9,则P点坐标为(2,9),所以△ABP的面积=×6×9=27.23.(10分)如图,用长为6m的铝合金条制成“日”字形窗框,若窗框的宽为x m,窗户的透光面积为y m2(铝合金条的宽度不计).(1)求出y与x的函数关系式;(2)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积.【解答】解:(1)∵大长方形的周长为6m,宽为xm,∴长为m,∴y=x•=﹣(0<x<2),(2)由(1)可知:y和x是二次函数关系,a=﹣<0,∴函数有最大值,=m2.当x=﹣时,y最大答:窗框的长和宽分别为1.5m和1m时才能使得窗户的透光面积最大,此时的最大面积为1.5m2.24.(10分)如图1,已知O为正方形ABCD的中心,分别延长OA到点F,OD 到点E,使OF=2OA,OE=2OD,连结EF,将△FOE绕点O逆时针旋转α角得到△F′OE′(如图2).连结AE′、BF′.(1)探究AE′与BF′的数量关系,并给予证明;(2)当α=30°,AB=2时,求:①∠AE′O的度数;②BF′的长度.【解答】解:(1)∵正方形ABCD中,OA=OD=OB,又∵OF=2OA,OE=2OD,∴OE=OF,则OE′=OF′,在△AOE′和△BOF′中,,∴△AOE′≌△BOF′∴AE′=BF′;(2)①延长OA到M,使AM=OA,则OM=OE′.∵正方形ABCD中,∠AOD=90°,∴∠AOE′=90°﹣30°=60°,∴△OME′是等边三角形,又∵AM=OA,∴AE′⊥OM,则∠E′AO=90°,∴∠AOE′=90°﹣α=60°,∴在直角△AOE′中,∠AE′O=90°﹣∠AOE′=30°;②∵∠AOE′=90°﹣α=60°,∠E′OF′=90°,∴∠AOF′=30°,又∵∠AOB=90°,∴∠BOF′=60°,又∵等腰直角△AOB中,OB=AB=,∴在Rt△ABE'中得到AE'=OA=,又BF'=AE'∴BF′=.25.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P 的横坐标为m.(Ⅰ)求抛物线的解析式和直线BC的解析式;(Ⅱ)当点P在线段OB上运动时,求线段MN的最大值;(Ⅲ)当以C、O、M、N为顶点的四边形是平行四边形时,直接写出m的值.【解答】解:(1)∵抛物线过A、C两点,∴代入抛物线解析式可得:,解得:,∴抛物线解析式为y=﹣x2+2x+3,令y=0可得,﹣x2+2x+3=0,解x1=﹣1,x2=3,∵B点在A点右侧,∴B点坐标为(3,0),设直线BC解析式为y=kx+s,把B、C坐标代入可得,解得,∴直线BC解析式为y=﹣x+3;(2)∵PM⊥x轴,点P的横坐标为m,∴M(m,﹣m2+2m+3),N(m,﹣m+3),∵P在线段OB上运动,∴M点在N点上方,∴MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+,∴当m=时,MN有最大值,MN的最大值为;(3)∵PM⊥x轴,∴MN∥OC,当以C、O、M、N为顶点的四边形是平行四边形时,则有OC=MN,当点P在线段OB上时,则有MN=﹣m2+3m,∴﹣m2+3m=3,此方程无实数根,当点P不在线段OB上时,则有MN=﹣m+3﹣(﹣m2+2m+3)=m2﹣3m,∴m2﹣3m=3,解得m=或m=,综上可知当以C、O、M、N为顶点的四边形是平行四边形时,m的值为或.初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
2016年天津市五区县数学中考二模试卷【答案】
2016年天津市五区县中考数学二模试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)计算(﹣3)3的结果等于()A.9 B.﹣9 C.27 D.﹣272.(3分)已知α为锐角,sinα=,则α等于()A.30°B.45°C.60°D.75°3.(3分)晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是()A. B. C. D.4.(3分)2015年8月18日,第三届中国绿色博览会在天津开吗,坐落在“新时代”板块的天津园面积最大,达11000平方米,将11000用科学记数法表示应为()A.0.11×105B.1.1×104C.11×103D.11×1045.(3分)下列几何体中,主视图和左视图都是矩形的是()A.B.C.D.6.(3分)如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C7.(3分)用矩形纸片折出直角的平分线,下列折法正确的是()A. B.C. D.8.(3分)把分式中的分子、分母的x、y同时扩大2倍,那么分式的值()A.扩大2倍B.缩小2倍C.改变原来的D.不改变9.(3分)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60°B.45°C.30°D.75°10.(3分)已知两点(x1,y1),(x2,y2)在函数y=﹣的图象上,当x1>x2>0时,下列结论正确的是()A.y1>y2>0 B.y1<y2<0 C.y2>y1>0 D.y2<y1<011.(3分)以半径为1的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则()A.不能构成三角形 B.这个三角形是等腰三角形C.这个三角形是直角三角形D.这个三角形是钝角三角形12.(3分)若二次函数y=ax2+bx+c(a≠0)的图象上有两点,坐标分别为(x1,y1),(x2,y2),其中x1<x2,y1y2<0,则下列判断正确的是()A.a<0B.a>0C.方程ax2+bx+c=0必有一根x0满足x1<x0<x2D.y1<y2二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算(ab)5÷(ab)2的结果是.14.(3分)将直线y=﹣2x+3向下平移4个单位长度,所得直线的解析式为.15.(3分)从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张卡片中,随机抽取一张,所抽卡片上数的绝对值小于2的概率是.16.(3分)如图,AB是⊙O直径,弦AD、BC相交于点E,若CD=5,AB=13,则=.17.(3分)如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍,如果搭建的正三角形和正六边形共用了2016根火柴棍,且正三角形的个数比正六边形的个数多6个,能连续搭建正六边形的个数为个.18.(3分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.①则△ABC的面积为.②请利用网格作以AB为底的等腰△ABD,使△ABD的面积等于3说明你的作图方法(不要求证明).三、解答题(本大题共7小题,共66分)19.(8分)解不等式组:.请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.(8分)某校申报“跳绳特色运动”学校一年后,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图.(1)补全频数分布直方图,扇形图中m=;(2)若把每组中各个数据用这组数据的中间值代替(如A组80≤x<100的中间值是=90次),则这次调查的样本平均数是多少?(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校2100名学生中“1分钟跳绳”成绩为优秀的大约有多少人?21.(10分)已知AB是⊙O的直径,点P是直径AB上任意一点,过点P作弦CD⊥AB,垂足为点P,过B点的直线与线段AB的延长线交于点F,且∠F=∠ABC.(1)如图1,求证:直线BF是⊙O的切线;(2)如图2,当点P与点O重合时,过点A作⊙O的切线交线段BC的延长线于点E,在其它条件不变的情况下,判断四边形AEBF是什么特殊的四边形?证明你的结论.22.(10分)钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设N、M为该岛的东西两端点)最近距离为15海里(即MC=15海里),在A点测得岛屿的西端点M在点A的东北方向,航行4海里后到达B点,测得岛屿的东端点N在点B的北偏东57°方向(其中N、M、C在同一条直线上),求钓鱼岛东西两端点MN之间的距离.(精确到0.1海里)参考数据:sin57°=0.84,cos57°=0.54,tan57°=1.54.23.(10分)某市出租车的收费标准是:起步价10元(起步价指小于等于3千米行程的出租车价),行程在3千米到5千米(即大于3千米小于等于5千米)时,超过3千米的部分按每千米1.3元收费(不足1千米按1千米计算),当超过5千米时,超过5千米的部分按每千米2.4元收费(不足1千米按1千米计算).(Ⅰ)若某人乘坐了2千米的路程,则他应支付的费用为元;若乘坐了4千米的路程,则应支付的费用为元;若乘坐了8千米的路程,则应支付的费用为元;(Ⅱ)若某人乘坐了x(x>5且为整数)千米的路程,则应支付的费用为元(用含x的代数式表示);(Ⅲ)若某人乘车付了15元的车费,且他所乘路程的千米数位整数,那么请你算一算他乘了多少千米的路程?24.(10分)如图所示,已知OABC是一张放在平面直角坐标系中的矩形纸片,O为坐标原点,点A在x轴上,点C在y轴上,且OA=15,OC=9,在边AB上选取一点D,将△AOD沿OD翻折,使点A落在BC边上,记为点E.(Ⅰ)求点E和点D的坐标;(Ⅱ)在x轴、y轴上是否分别存在点M、N,使四边形MNED的周长最小?如果存在,求出点M、N的坐标及四边形MNED周长的最小值;如果不存在,请说明理由.(Ⅲ)设点P在x轴上,以点O、E、P为顶点的三角形是等腰三角形,请直接写出所有满足条件的点P的坐标.25.(10分)已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.2016年天津市五区县中考数学二模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)计算(﹣3)3的结果等于()A.9 B.﹣9 C.27 D.﹣27【解答】解:计算(﹣3)3的结果等于﹣27.故选:D.2.(3分)已知α为锐角,sinα=,则α等于()A.30°B.45°C.60°D.75°【解答】解:∵α为锐角,sinα=,∴α=30°.故选A.3.(3分)晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是()A. B. C. D.【解答】解:A、是轴对称图形,也是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故正确;C、是轴对称图形,也是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故错误.故选B.4.(3分)2015年8月18日,第三届中国绿色博览会在天津开吗,坐落在“新时代”板块的天津园面积最大,达11000平方米,将11000用科学记数法表示应为()A.0.11×105B.1.1×104C.11×103D.11×104【解答】解:将11000用科学记数法表示为1.1×104.故选:B.5.(3分)下列几何体中,主视图和左视图都是矩形的是()A.B.C.D.【解答】解:A、主视图为矩圆形,左视图为圆,故选项错误;B、主视图为三角形,左视图为带圆心的圆,故选项错误;C、主视图为矩形,左视图为矩形,故选项正确;D、主视图为矩形,左视图为圆形,故选项错误.故选:B.6.(3分)如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【解答】解:∵6.25<7<9,∴2.5<<3,则表示的点在数轴上表示时,所在C和D两个字母之间.故选A7.(3分)用矩形纸片折出直角的平分线,下列折法正确的是()A. B.C. D.【解答】解:A.当长方形如A所示对折时,其重叠部分两角的和中,一个顶点处小于90°,另一顶点处大于90°,故A错误;B.当如B所示折叠时,其重叠部分两角的和小于90°,故B错误;C.当如C所示折叠时,折痕不经过长方形任何一角的顶点,所以不可能是角的平分线,故C错误;D.当如D所示折叠时,两角的和是90°,由折叠的性质可知其折痕必是其角的平分线,故D正确.故选:D.8.(3分)把分式中的分子、分母的x、y同时扩大2倍,那么分式的值()A.扩大2倍B.缩小2倍C.改变原来的D.不改变【解答】解:分子、分母的x、y同时扩大2倍,即,根据分式的基本性质,则分式的值不变.故选D.9.(3分)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60°B.45°C.30°D.75°【解答】解:∵在Rt△ABC中,∠ACB=90°,CD为AB边上的高,点A关于CD 所在直线的对称点E恰好为AB的中点,∴∠CED=∠A,CE=BE=AE,∴∠ECA=∠A,∠B=∠BCE,∴△ACE是等边三角形,∴∠CED=60°,∴∠B=∠CED=30°.故选:C.10.(3分)已知两点(x1,y1),(x2,y2)在函数y=﹣的图象上,当x1>x2>0时,下列结论正确的是()A.y1>y2>0 B.y1<y2<0 C.y2>y1>0 D.y2<y1<0【解答】解:∵反比例函数y=﹣中,k=﹣5<0,∴此函数图象的两个分支在二、四象限,∵x1>x2>0,∴两点都在第四象限,∵在第四象限内y的值随x的增大而增大,∴y2<y1<0.故选D.11.(3分)以半径为1的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则()A.不能构成三角形 B.这个三角形是等腰三角形C.这个三角形是直角三角形D.这个三角形是钝角三角形【解答】解:(1)因为OC=1,所以OD=1×sin30°=;(2)因为OB=1,所以OE=1×sin45°=;(3)因为OA=1,所以OD=1×cos30°=.因为()2+()2=()2,所以这个三角形是直角三角形.故选C12.(3分)若二次函数y=ax2+bx+c(a≠0)的图象上有两点,坐标分别为(x1,y1),(x2,y2),其中x1<x2,y1y2<0,则下列判断正确的是()A.a<0B.a>0C.方程ax2+bx+c=0必有一根x0满足x1<x0<x2D.y1<y2【解答】解:∵x1<x2,y1y2<0,∴两个交点在x轴的上方一个,下方一个,∴抛物线与x轴有一个交点在这两个点之间,∴方程ax2+bx+c=0必有一根x0满足x1<x0<x2.a的正负情况以及y1与y2哪一个是正数哪一个是负数无法判断.故选C.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算(ab)5÷(ab)2的结果是a3b3.【解答】解:原式=(ab)5﹣2=(ab)3=a3b3.故答案为;a3b3.14.(3分)将直线y=﹣2x+3向下平移4个单位长度,所得直线的解析式为y=﹣2x﹣1.【解答】解:将直线y=﹣2x+3向下平移4个单位长度,所得直线的解析式为y=﹣2x+3﹣4,即y=﹣2x﹣1.故答案为y=﹣2x﹣1.15.(3分)从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张卡片中,随机抽取一张,所抽卡片上数的绝对值小于2的概率是.【解答】解:∵写有数字﹣3、﹣2、﹣1、0、1、2、3、的七张一样的卡片中,数字的绝对值小于2的有﹣1、0、1、,∴任意抽取一张卡片,所抽卡片上数字的绝对值小于2的概率是:.故答案为:.16.(3分)如图,AB是⊙O直径,弦AD、BC相交于点E,若CD=5,AB=13,则=.【解答】解:∵∠C=∠A,∠D=∠B,∴△ECD∽△EAB,∴=;故答案为:.17.(3分)如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍,如果搭建的正三角形和正六边形共用了2016根火柴棍,且正三角形的个数比正六边形的个数多6个,能连续搭建正六边形的个数为286个.【解答】解:设连续搭建正三角形的个数为x个,连续搭建正六边形的根数为y 个,由题意得,解得:.故答案为:286.18.(3分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.①则△ABC的面积为.②请利用网格作以AB为底的等腰△ABD,使△ABD的面积等于3说明你的作图方法(不要求证明)延长BC得到格点E,作EF∥AB得格点F,EF与格线交于点M,连结MK,把EF向左平移2格得到HG,HG交格线于N,同样把AB向右平移3格得到PQ,PQ交格线于L,连结LN交MK于点,然后连结DA、DB,则△ABD为所作.【解答】解:①BC==,=••=;所以S△ABC故答案为;②如图,延长BC得到格点E,作EF∥AB得格点F,EF与格线交于点M,连结MK,把EF向左平移2格得到HG,HG交格线于N,同样把AB向右平移3格得到PQ,PQ交格线于L,连结LN交MK于点,然后连结DA、DB,则△ABD为所作.故答案为;延长BC得到格点E,作EF∥AB得格点F,EF与格线交于点M,连结MK,把EF向左平移2格得到HG,HG交格线于N,同样把AB向右平移3格得到PQ,PQ交格线于L,连结LN交MK于点,然后连结DA、DB,则△ABD为所作.三、解答题(本大题共7小题,共66分)19.(8分)解不等式组:.请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x>﹣3;(Ⅱ)解不等式②,得x≤2;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣3<x≤2.【解答】解:,(Ⅰ)解不等式①得:x>﹣3,(Ⅱ)解不等式②得:x≤2,(Ⅲ)把不等式①和②的解集在数轴上表示出来如图:(Ⅳ)原不等式组的解集为:﹣3<x≤2,故答案为:(Ⅰ)x>﹣3;(Ⅱ)x≤2;(Ⅳ)﹣3<x≤2.20.(8分)某校申报“跳绳特色运动”学校一年后,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图.(1)补全频数分布直方图,扇形图中m=84;(2)若把每组中各个数据用这组数据的中间值代替(如A组80≤x<100的中间值是=90次),则这次调查的样本平均数是多少?(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校2100名学生中“1分钟跳绳”成绩为优秀的大约有多少人?【解答】解:(1)由直方图和扇形图可知,A组人数是6人,占10%,则总人数:6÷10%=60,m=×360°=84°,D组人数为:60﹣6﹣14﹣19﹣5=16,;(2)平均数是:=130;(3)绩为优秀的大约有:2100×=1400人21.(10分)已知AB是⊙O的直径,点P是直径AB上任意一点,过点P作弦CD⊥AB,垂足为点P,过B点的直线与线段AB的延长线交于点F,且∠F=∠ABC.(1)如图1,求证:直线BF是⊙O的切线;(2)如图2,当点P与点O重合时,过点A作⊙O的切线交线段BC的延长线于点E,在其它条件不变的情况下,判断四边形AEBF是什么特殊的四边形?证明你的结论.【解答】(1)证明:如图1中,∵∠A=∠C,∠F=∠ABC,∴∠ABF=∠CPB,∵CD⊥AB,∴∠ABF=∠CPB=90°,∴直线BF是⊙O的切线.(2)结论:四边形AEBF是平行四边形.证明:如图2中,连接AC、BD.∵OA=OB,∴OC=OD,∴四边形ACBD是平行四边形∴AD∥BC,即AF∥BE,又∵AE切⊙O于点A,∴AE⊥AB,同理BF⊥AB,∴AE∥BF,∴四边形AEBF是平行四边形.22.(10分)钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设N、M为该岛的东西两端点)最近距离为15海里(即MC=15海里),在A点测得岛屿的西端点M在点A的东北方向,航行4海里后到达B点,测得岛屿的东端点N在点B的北偏东57°方向(其中N、M、C在同一条直线上),求钓鱼岛东西两端点MN之间的距离.(精确到0.1海里)参考数据:sin57°=0.84,cos57°=0.54,tan57°=1.54.【解答】解:在Rt△ACM中,tan∠CAM=tan45°==1,∴AC=CM=15,∴BC=AC﹣AB=15﹣4=11.在Rt△BCN中,tan∠CBN=tan57°==1.54.∴CN=1.54B C=16.94.∴MN=16.94﹣15=1.94≈1.9海里.答:钓鱼岛东西两端点MN之间的距离约为1.9海里.23.(10分)某市出租车的收费标准是:起步价10元(起步价指小于等于3千米行程的出租车价),行程在3千米到5千米(即大于3千米小于等于5千米)时,超过3千米的部分按每千米1.3元收费(不足1千米按1千米计算),当超过5千米时,超过5千米的部分按每千米2.4元收费(不足1千米按1千米计算).(Ⅰ)若某人乘坐了2千米的路程,则他应支付的费用为10元;若乘坐了4千米的路程,则应支付的费用为11.3元;若乘坐了8千米的路程,则应支付的费用为19.8元;(Ⅱ)若某人乘坐了x(x>5且为整数)千米的路程,则应支付的费用为 2.4x+0.6或12.6+2.4(x﹣5)元(用含x的代数式表示);(Ⅲ)若某人乘车付了15元的车费,且他所乘路程的千米数位整数,那么请你算一算他乘了多少千米的路程?【解答】解:(Ⅰ)由题意可得:某人乘坐了2千米的路程,他应支付的费用为:10元;乘坐了4千米的路程,应支付的费用为:10+(4﹣3)×1.3=11.3(元),乘坐了8千米的路程,应支付的费用为:10+2×1.3+3×2.4=19.8(元),故答案为:10;11.3,19.8;(Ⅱ)由题意可得:10+1.3×2+2.4(x﹣5)=2.4x+0.6;故答案为:2.4x+0.6或12.6+2.4(x﹣5)(Ⅲ)若走5千米,则应付车费:10+1.3×2=12.6(元),∵12.6<15,∴此人乘车的路程超过5千米,因此,由(Ⅱ)得2.4x+0.6=15,解得:x=6答:此人乘车的路程为6千米.24.(10分)如图所示,已知OABC是一张放在平面直角坐标系中的矩形纸片,O为坐标原点,点A在x轴上,点C在y轴上,且OA=15,OC=9,在边AB上选取一点D,将△AOD沿OD翻折,使点A落在BC边上,记为点E.(Ⅰ)求点E和点D的坐标;(Ⅱ)在x轴、y轴上是否分别存在点M、N,使四边形MNED的周长最小?如果存在,求出点M、N的坐标及四边形MNED周长的最小值;如果不存在,请说明理由.(Ⅲ)设点P在x轴上,以点O、E、P为顶点的三角形是等腰三角形,请直接写出所有满足条件的点P的坐标.【解答】解:(Ⅰ)依题意可OE=OA=15,AD=DE在Rt△OCE中,CE=12,∴E(12,9),又∵BE=BC﹣CE=3,在Rt△BED中,DE2=BE2+BD2,即:DE2=BE2+(9﹣DE)2∴DE=AD=5,∴D(15,5)(Ⅱ)存在如图,作点D关于x轴的对称点D′(15,﹣5),E关于y轴的对称点E′(﹣12,9),连接点D′E′,分别交x轴、y轴于点M、N,则点M、N即为所求,设直线D′E′的解析式为y=kx+b,将D′(15,﹣5)、E′(﹣12,9)代入得k=﹣,b=∴直线D′E′的解析式为y=﹣x+令x=0,得y=令y=0,得x=∴M(,0)、N(0,),在Rt△BE′D′中,D′E′=5∴四边形MNED周长最小值=DE+EN+MN+MD=5+5(Ⅲ)当在x轴正半轴上,OP1=OE=15时,点P1与A重合,∴P1(15,0),当在x轴负半轴上时,OP2=OE=15时,P2(﹣15,0),如图,当OE=EP3时,作EH⊥OA,∴OH=CE=HP3=12,∴P3(24,0),当OP4=EP4时,由勾股定理得,P4H2+EH2=P4E2,∴(12﹣P4E)2+81=P4E2,∴OP4=EP4=,∴P4(,0).满足条件的P点有四个,分别是P1(15,0),P2(﹣15,0),P3(24,0),P4(,0).25.(10分)已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.【解答】解:(1)∵抛物线l 1:y=﹣x2+bx+3的对称轴为x=1,∴﹣=1,解得b=2,∴抛物线l1的解析式为y=﹣x2+2x+3,令y=0,可得﹣x2+2x+3=0,解得x=﹣1或x=3,∴A点坐标为(﹣1,0),∵抛物线l2经过点A、E两点,∴可设抛物线l2解析式为y=a(x+1)(x﹣5),又∵抛物线l2交y轴于点D(0,﹣),∴﹣=﹣5a,解得a=,∴y=(x+1)(x﹣5)=x2﹣2x﹣,∴抛物线l2的函数表达式为y=x2﹣2x﹣;(2)设P点坐标为(1,y),由(1)可得C点坐标为(0,3),∴PC2=12+(y﹣3)2=y2﹣6y+10,PA2=[1﹣(﹣1)]2+y2=y2+4,∵PC=PA,∴y2﹣6y+10=y2+4,解得y=1,∴P点坐标为(1,1);(3)由题意可设M(x,x2﹣2x﹣),∵MN∥y轴,∴N(x,﹣x2+2x+3),x2﹣2x﹣令﹣x2+2x+3=x2﹣2x﹣,可解得x=﹣1或x=,①当﹣1<x≤时,MN=(﹣x2+2x+3)﹣(x2﹣2x﹣)=﹣x2+4x+=﹣(x ﹣)2+,显然﹣1<≤,∴当x=时,MN有最大值;②当<x≤5时,MN=(x2﹣2x﹣)﹣(﹣x2+2x+3)=x2﹣4x﹣=(x ﹣)2﹣,显然当x>时,MN随x的增大而增大,∴当x=5时,MN有最大值,×(5﹣)2﹣=12;综上可知在点M自点A运动至点E的过程中,线段MN长度的最大值为12.。
天津市中考模拟考试数学试题含答案
天津市中考模拟考试数学试题含答案中学数学二模模拟试卷一、选择题(本大题共12小题,共48.0分)1.下面调查方式中,合适的是()A. 调查你所在班级同学的体重,采用抽样调查方式B. 调查乌金塘水库的水质情况,采用抽样调査的方式C. 调查《联赛》栏目在我市的收视率,采用普查的方式D. 要了解全市初中学生的业余爱好,采用普查的方式2.-1的相反数是()A. 1B. 0C.D. 23.某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用的时间的数据,结果如图所示,根据此条形统计图估计这一天该校学生平均课外阅读时间约为()A. 时B. 时C. 时D. 时4.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A. 2B. 3C. 4D.55.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔()A. 20支B. 14支C. 13支D. 10支6.如图,一束光线从y轴的点A(0,2)出发,经过x轴上的点C反射后经过点B(6,6),则光线从点A到点B所经过的路程是()A. 10B. 8C. 6D. 47.如图,甲为四等分数字转盘,乙为三等分数字转盘.同时自由转动两个转盘,当转盘停止转动后(若指针指在边界处则重转),两个转盘指针指向数字之和不超过4的概率是()A. B. C. D.8.如图,△ABC中,∠ABC=∠BAC,D是AB的中点,EC∥AB,DE∥BC,AC与DE交于点O.下列结论中,不一定成立的是()A.B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l′的解析式为()A. B. C. D.10.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A. 最高分B. 中位数C. 方差D. 平均数11.在直角坐标系中,O为坐标原点,A(1,1),在x轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有()A. 1个B. 2个C. 3个D. 4个12.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B-D-E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A. B.C. D.二、填空题(本大题共6小题,共24.0分)13.35989.76用科学记数法表示为______.14.方程x2-4x-3=0的解为______.15.已知等腰△ABC内接于半径为5的⊙O,如果底边BC的长为8,那么BC边上的高为______.16.100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为______个.17.如图,在四边形ABCD中,AB∥CD,2AB=2BC=CD=10,tan B=,则AD=______.18.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,AD=2AB,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是______.三、计算题(本大题共2小题,共20.0分)19.已知x=+1,求的值.20.如图1,二次函数y=ax2-2ax-3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.四、解答题(本大题共6小题,共58.0分)21.为了从甲、乙两名学生中选择一人参加电脑知识竞赛,在相同条件下对他们的电脑知识进行了10次测验,成绩如下:(单位:分)(1)请填写下表.(2)利用以上信息,请从三个不同的角度对甲、乙两名同学的成绩进行分析.22.如图,在⊙O中,弦AB与DC相交于点E,AB=CD.(1)求证:△AEC≌△DEB;(2)点B与点C关于直线OE对称吗?试说明理由.23.已知抛物线y=(1-a)x2+8x+b的图象的一部分如图所示,抛物线的顶点在第一象限,且经过点A(0,-7)和点B.(1)求a的取值范围;(2)若OA=2OB,求抛物线的解析式.24.张强两次共购买香蕉(第二次多于第一次),共付出元,请问张强第一次,第二次分别购买香蕉多少千克?25.如图,在平面直角坐标系中,已知△AOB,A(0,-3),B(-2,0).将△OAB先绕点B逆时针旋转90°得到△BO1A1,再把所得三角形向上平移2个单位得到△B1A2O2;(1)在图中画出上述变换的图形,并涂黑;(2)求△OAB在上述变换过程所扫过的面积.26.如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?答案和解析1.【答案】B【解析】解:A、调查你所在班级同学的体重,采用普查,故A不符合题意;B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;故选:B.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.【答案】A【解析】解:-1的相反数是1.故选:A.只有符号不同的两个数叫做互为相反数.本题考查了相反数,在一个数的前面加上符号就是这个数的相反数.3.【答案】B【解析】解:这一天该校学生平均课外阅读时间== =1.07(小时).故选:B.求出总的阅读时间与总人数的商即可.本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.4.【答案】C【解析】解:若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选:C.若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,据此可得.本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.5.【答案】C【解析】解:设小明最多能买钢笔x支,则小明买笔记本(30-x)本,故5x+2(30-x)≤100,解得x≤13.因为钢笔的支数应为整数,故小明最多能买钢笔13支.故选:C.先设小明最多能买钢笔x支,则小明买笔记本(30-x)本,再根据题意列出不等式求解即可.此题是一元一次不等式在实际生活中的运用,解答此题的关键是熟知不等式的性质,找到关键描述语,进而找到所求的量的等量关系.6.【答案】A【解析】解:法1:B点作x轴的垂线与x轴相交于点D,则BD⊥CD,∵A点经过点C反射后经过B点,∴∠OCA=∠DCB,∴△OAC∽△DBC,又∵BD⊥CD,AO⊥OC,根据勾股定理得出==,OA=2,BD=6,===∵OD=OC+CD=6∴OC=6×=1.5.AC===2.5,BC=2.5×3=7.5,AC+BC=2.5+7.5=10;法2:延长BC,与y轴交于E点,过B作BF⊥y轴,交y轴于F点,由题意得到A与E关于x轴对称,可得E(0,-2),AC=CE,∴BF=6,EF=OE+OF=6+2=8,在Rt△BEF中,根据勾股定理得:BE==10,则光线从A到B所经过的路程为AC+CB=EC+CB=BE=10.故选:A.法1:B点作x轴的垂线与X轴相交于点D,由已知条件可以得到△OAC∽△DBC,从而得到OA与BD、OC与CD、AC与BC的关系,然后求的A点到B点所经过的路程为AC+BC;法2:延长BC,交y轴与E,由题意得到A与E关于x轴对称,得到E(0,-2),过B作BF垂直于y轴,利用勾股定理求出BE的距离,即为光线从点A到点B所经过的路程.本题考查镜面反射的原理与性质、三角形相似的性质以及勾股定理的应用.7.【答案】D【解析】解:由树状图可知共有4×3=12种可能,两个转盘指针指向数字之和不超过4的有6种,∴两个转盘指针指向数字之和不超过4的概率是,故选:D.列举出所有情况,看两个转盘指针指向数字之和不超过4的情况占总情况的多少即可.本题主要考查列表法与树状图法,画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.8.【答案】B【解析】解:∵EC∥AB,DE∥BC,∴四边形DBCE为平行四边形,∴BC=DE,DB=EC,∵∠ABC=∠BAC,∴CB=CA,∴AC=DE,A结论正确,不符合题意;∵∠ABC与∠ACB不一定相等,∴AB与AC不一定相等,B结论错误,符合题意;∵AD=DB,DB=EC,∴AD=EC,C结论正确,不符合题意;∵DE∥BC,∴∠ADO=∠ABC,∴∠ADO=∠A,∴OA=OD,∵DE∥BC,D是AB的中点,∴OD=BC=DE=OE,∴OA=OE,D结论正确,不符合题意;故选:B.根据平行四边形的性质判定定理和性质定理判断A;根据等腰三角形的判定定理判断B;根据平行四边形的性质判断C,根据等腰三角形的性质判断D.本题考查的是三角形中位线定理、平行四边形的判定和性质、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.9.【答案】C【解析】解:∵直线L经过(0,0)、(1,2),∴直线l为y=2x,∵直线l沿x轴正方向向右平移2个单位得到直线l′,∴直线l′为y=2(x-2),即y=2x-4,故选:C.先确定直线l的解析式,然后根据平移的规律即可求得.本题考查了一次函数图象与几何变换,解决本题的关键是求直线解析式和熟练掌握平移的规律.10.【答案】B【解析】解:某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的中位数.故选:B.根据中位数的意义分析.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.11.【答案】D【解析】解:如图,观察图象可知,满足条件的点P有4个.故选:D.根据等腰三角形的定义画出图形即可.本题考查等腰三角形的判定,坐标与图形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.12.【答案】A【解析】解:∵BD=2,∠B=60°∴点D到AB距离为当0≤x≤2时,y=当2≤x≤4时,y=根据函数解析式,A符合条件故选:A.根据题意,将运动过程分成两段.分段讨论求出解析式即可.本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.13.【答案】3.598976×104【解析】解:将35989.76用科学记数法表示为:3.598976×104.故答案为:3.598976×104.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【答案】x1=2+,x2=2-【解析】解:x==2所以x1=2+,x2=2-.本题可用公式法对方程进行求解,公式为:x=,由此可解此题.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是公式法.15.【答案】2或8【解析】解:①当圆心在三角形内部时,BC边上的高AD=+5=8;②当圆心在三角形外部时,BC边上的高AD=5-=2.因此BC边上的高为2或8.分两种情况讨论:当圆心在三角形内部时和当圆心在三角形的外部时.本题利用了勾股定理和垂径定理求解,注意要分两种情况讨论求解.16.【答案】33【解析】解:设这100个数为:1,0,-1,-1,0,1,1,0,-1,-1…,∴通过观察得:第1个数开始6个数一循环,∴100÷6=16 (4)又每组的6个数中有两个0,则这100个数中“0”的个数为:16×2+1=33个故这100个数中“0”的个数为33个.根据题意可知数列为:1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0…从第1个数开始6个数一循环,所以100÷6=16…4,所以100个数中“0”的个数为33个.主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.17.【答案】3【解析】解:∵2AB=2BC=CD=10,∴AB=BC=5,过A作AF⊥CD于F,过C作CE⊥AB于E,则∠AEC=∠AFD=∠BEC=90°,AF∥CE,∵AB∥CD,∴四边形AECF是矩形,∴AE=CF,AF=CE,∵在Rt△BEC中,tanB==,又∵BC=5,CE=3,BE=4,∴AE=CF=5-4=1,AF=CE=3,∵CD=10,∴DF=10-1=9,在Rt△AFD中,由勾股定理得:AD===3,故答案为:.过A作AF⊥CD于F,过C作CE⊥AB于E,根据矩形的性质得出AF=CE,AE=CF,求出AF和DF长,再根据勾股定理求出即可.本题考查了解直角三角形和矩形的性质和判定、平行线的性质等知识点,能构造直角三角形是解此题的关键.18.【答案】-【解析】解:∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S矩形ABCD -S△ABE-S扇形EBF=1×2-×1×1-=-.故答案为:-.利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S矩形ABCD -S△ABE-S扇形EBF,求出答案.此题主要考查了扇形面积求法以及矩形的性质等知识,正确得出BE的长以及∠EBC的度数是解题关键.19.【答案】解:原式===;当x=+1时,原式=.【解析】先将所求的代数式化简,再将未知数的值代入计算求解.此题考查分式的计算与化简,解决这类题目关键是把握好通分与约分:分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.20.【答案】解:(1)∵y=ax2-2ax-3a=a(x-1)2-4a,∴D(1,-4a).(2)①∵以AD为直径的圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2-2ax-3a=a(x-3)(x+1)知,A(3,0)、B(-1,0)、C(0,-3a),则:AC2=(0-3)2+(-3a-0)2=9a2+9、CD2=(0-1)2+(-3a+4a)2=a2+1、AD2=(3-1)2+(0+4a)2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=-1即,抛物线的解析式:y=-x2+2x+3.②∵将△OBE绕平面内某一点旋转180°得到△PMN,∴PM∥x轴,且PM=OB=1;设M(x,-x2+2x+3),则OF=x,MF=-x2+2x+3,BF=OF+OB=x+1;∵MF:BF=1:2,即BF=2MF,∴2(-x2+2x+3)=x+1,化简,得:2x2-3x-5=0解得:x1=-1、x2=∴M(,)、N(,).③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如右图;设Q(1,b),则QD=4-b,QB2=QG2=(1+1)2+(b-0)2=b2+4;∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;代入数据,得:(4-b)2=2(b2+4),化简,得:b2+8b-8=0,解得:b=-4±2;即点Q的坐标为(1,-4+2)或(1,-4-2).【解析】(1)将二次函数的解析式进行配方即可得到顶点D的坐标.(2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值,由此得出抛物线的解析式.②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD2=2QG2=2QB2,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD和⊙Q半径间的数量关系是解题题目的关键.21.【答案】解:(1)(2)甲成绩的众数是84,乙成绩的众数是90,从两人成绩的众数看,乙的成绩较好;甲成绩的方差是14.4,乙成绩的方差是34,从成绩的方差看,甲的成绩相对稳定;甲成绩、乙成绩的中位数、平均数都是84,但从(85分)以上的频率看,乙的成绩较好.【解析】(1)根据中位数、众数、频率的计算方法,求得甲成绩的中位数,乙成绩的众数,85分以上的频率.(2)可分别从众数、方差、频率三方面进行比较.本题重点考查平均数,中位数,众数及方差、频率的概念及求法,以及会用这些知识来评价这组数据.22.【答案】(1)证明:∵AB =CD ,∴= . ∴- = - . ∴= . ∴BD =CA .在△AEC 与△DEB 中, ∠∠ ∠,∴△AEC ≌△DEB (AAS ).(2)解:点B 与点C 关于直线OE 对称.理由如下:如图,连接OB 、OC 、BC .由(1)得BE =CE .∴点E 在线段BC 的中垂线上,∵BO =CO ,∴点O 在线段BC 的中垂线上,∴直线EO 是线段BC 的中垂线,∴点B 与点C 关于直线OE 对称.【解析】(1)要证△AEC ≌△DEB ,由于AB=CD ,根据等弦所对的弧相等得=,根据等量减等量还是等量,得=,由等弧对等弦得BD=CA ,由圆周角定理得,∠ACE=∠DBE ,∠AEC=∠DEB ,即可根据AAS 判定;(2)由△AEC ≌△DEB 得,BE=CE ,得到点E 在直线BC 的中垂线上,连接BO ,CO ,BO 和CO 是半径,则BO 和CO 相等,即点O 在线段BC 的中垂线上,亦即直线EO 是线段BC 的中垂线,所以点B 与点C 关于直线OE 对称.本题利用了圆周角定理、等弦所对的弧相等,等弧对等弦、全等三角形的判定和性质求解.23.【答案】解:(1)由图可知,b =-7.(1分)故抛物线为y=(1-a)x2+8x-7.又因抛物线的顶点在第一象限,开口向下,所以抛物线与x轴有两个不同的交点.∴ ,解之,得1<a<.(3分)即a的取值范围是1<a<.(6分)(2)设B(x1,0),由OA=20B,得7=2x1,即x1=.(7分)由于x1=,方程(1-a)x2+8x-7=0的一个根,∴(1-a)()2+8×-7=0∴.(9分)故所求所抛物线解析式为y=-x2+8x-7.(10分)【解析】(1)因为二次函数过点A,所以可以确定b的值,又因为抛物线为y=(1-a)x2+8x-7又抛物线的顶点在第一象限,开口向下,所以抛物线与x轴有两个不同的交点,所以可以确定1-a<0,△>0,解不等式组即可求得a的取值范围;(2)因为OA=2OB,可求得点B的坐标,将点A,B的坐标代入二次函数的解析式即可求得a,b的值,即可求得二次函数的解析式.此题考查了二次函数的图象的性质,开口方向,与x轴的交点个数与△的关系,待定系数法求函数解析式等;解题的关键是数形结合思想的应用.24.【答案】解:设张强第一次购买香蕉xkg,第二次购买香蕉ykg,由题意可得0<x<25.则①当0<x≤20,y≤40,则题意可得.解得.②当0<x ≤20,y >40时,由题意可得. 解得.(不合题意,舍去)③当20<x <25时,则25<y <30,此时张强用去的款项为5x +5y =5(x +y )=5×50=250<264(不合题意,舍去);④当20<x ≤40 y >40时,总质量将大于60kg ,不符合题意,答:张强第一次购买香蕉14kg ,第二次购买香蕉36kg .【解析】本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=264.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y >40③当20<x <25时,则25<y <30.本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答.25.【答案】解:(1)如图所示;(2)在Rt △AOB 中,AB = = = ,∴扇形BAA 1的面积= = π, 梯形A 1A 2O 2B 的面积= ×(2+4)×3=9, ∴变换过程所扫过的面积=扇形BAA 1的面积+梯形A 1A 2O 2B 的面积= π+9. 【解析】(1)根据旋转的性质,结合网格结构找出点A 、O 的对应点A 1、O 1,再与点B 顺次连接即可得到△BO 1A 1;再根据中学数学二模模拟试卷一、选择题(每小题3分,共30分)1.下列各组数的大小比较中,正确的是( * ).(A )21> (B )23->- (C )10-> (D )22>2.下列计算正确的是( * ).(A )x x 1248=+ (B )y y =-44 (C )y y y =-34 (D )33=-x x 3.如图,如果︒=∠+∠18021,那么( * ). (A ) ︒=∠+∠18042 (B )︒=∠+∠18043(C ) ︒=∠+∠18031 (D )41∠=∠4. 图中各硬纸片,不可以沿虚线折叠成长方体纸盒的是( * ).① ② ③ ④ (A )①② (B )②③ (C )③④ (D )①④ 5.甲、乙两名同学在参加体育中考前各作了5次投掷实心球的测试,甲所测的成绩分别为10.2m ,9m ,9.4m ,8.2m ,9.2m ,乙所测得的成绩的平均数与甲相同且所测成绩的方差为0.72,那么( * ).(A )甲、乙成绩一样稳定 (B ) 甲成绩更稳定 (C )乙成绩更稳定 (D )不能确定谁的成绩更稳定 6. 若b a <,下列各式中不成立的是( * ).(A )b a 22< (B )b a 22-<- (C )22+<+b a (D )22-<-b a 7.下列函数的图象中,不经过第一象限的是( * ).(A )3+=x y (B )3-=x y (C ) 1+-=x y (D )1--=x y 8. 函数222++-=x x y 的顶点坐标是( * ).(A )(1,3) (B )(1-,3) (C )(1,-2) (D )(-1,2)9.如果点E ,F ,G ,H 分别是菱形ABCD 四边AB ,BC ,CD ,DA 上的中点,那么四边形EFGH 是( * ).(A )菱形 (B )矩形 (C )正方形 (D )以上都不是 10. 边长分别等于6 cm 、8 cm 、10cm 的三角形的内切圆的半径为( * )cm .(A) 3 (B )2 (C) 23 (D )6第二部分 非选择题(共120分)二、填空题(本大题共6题,每小题3分,满分18分) 11.若代数式1-x 有意义,则实数x 的取值范围是= * .12.2015年4月8日,广东省扶贫基金会收到了88家爱心企业合计217000000元的捐赠.将217000000用科学记数法表示为 * . 13.分解因式:2ab a -= * .14. 在Rt △ABC 中,∠C =90°CB =8cm ,若斜边AB 的垂直平分线交CB 于点D ,CD =2cm ,则AD= * cm .第3题15.已知命题“如果一个四边形是平行四边形,那么这个四边形是旋转对称图形.”,写出它的逆命题是 * ,该逆命题是 * 命题(填“真”或“假”). 16. 反比例函数xk y 11=与一次函数b x k y +=22的图象交于A (-2,-1)和B 两点,点B 的纵坐标为-3,若21y y <,则x 的取值范围是 * .三、解答题(本大题共9小题,共102 分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分) 解方程:213-=x x 18.(本小题满分9分)在□ABCD 中,点E ,F 分别在AB ,CD 上,且AE =CF . 求证:∠AED =∠BFC . 19.(本小题满分10分) 已知xy 2=,求22)5()y x y x y x -+-+(的值. 20.为测山高,在点A 处测得山顶D 的仰角为31°,从点A 向山方向前进140米到达点B ,在B 处测得山顶D 的仰角为62°(如图).(1)在所给的图②中尺规作图:过点D 作DC ⊥AB ,交AB 的延长线于点C ; (2)山高DC 是多少(结果取整数)?21.(本小题满分12分)某校九年级在母亲节倡议“感恩母亲,做点家务”活动.为了解同学们在母亲节的周末做家务情况,年级随机调查了部分同学,并用得到的数据制成如下不完整的统计表. (1)统计表中的=x ,=y ; (2)被调查同学做家务时间的中位数是 小时,平均数是 小时; (3)年级要组织一次"感恩母亲“的主题级会,级长想从报名的4位同学中随机抽取2位同学在会上谈体会.据统计,报名的4人分别是母亲节的周末做家务1小时的1人、做家务1.5小时的2人、做家务2小时的1人.请你算算选上的2位同学恰好是一位做家务2小时和一位做家务1.5小第18题第20题图①图②31︒AD62︒B时的概率.22.(本小题满分12分) 已知关于x 的方程-2xmx 3-x 4-+m =0(m 为常数).(1)求证:方程有两个不相等的实数根;(2)设1x ,2x 是方程的两个实数根,且1x +2x =6.请求出方程的这两个实数根.23.(本小题满分12分)直线l 经过(2,3)和(-2,-1)两点,它还与 x 轴交于A 点,与y 轴交于C 点,与经过原点的直线OB 交于第三象限的B 点,且∠ABO =30°.求: (1)点A 、C 的坐标; (2)点B 的坐标.24.(本小题满分14分)已知关于x 的二次函数k x k k x y 2)43(22+--+=的图象与x 轴从左到右交于A ,B 两点,且这两点关于原点对称. (1)求k 的值;(2)在(1)的条件下,若反比例函数xmy =的图象与二次函数k x k k x y 2)43(22+--+=的图象从左到右交于Q ,R ,S 三点,且点Q 的坐标为(-1,-1),点R (R x ,R y ),S (S x ,S y )中的纵坐标R y ,S y 分别是一元二次方程012=-+my y 的解,求四边形AQBS 的面积AQBS S 四边形;(3)在(1),(2)的条件下,在x 轴下方是否存在二次函数k x k k x y 2)43(22+--+=图象上的点P 使得PAB S ∆=2RAB S ∆,若存在,求出点P 的坐标;若不存在,请说明理由.25.(本小题满分14分)如图,正三角形ABC 内接于⊙O ,P 是BC 上的一点,且PC PB <,PA 交BC 于E ,F第23题xy点F 是PC 延长线上的点,PB CF =,13=AB ,4=PA . (1)求证ABP ∆≌ACF ∆; (2)求证AE PA AC ⋅=2; (3)求PB 和PC 的长.数学参考答案一.选择题(每小题3分,共30分) CCCCB BDABB二.填空题(本大题共6题,每小题3分,满分18分) 11.1≥x 12.8102.17⨯ 13.)1)(1(b b a +-14.615. 如果一个四边形是旋转对称图形,那么这个四边形是平行四边形. 假 16.2-<x 或032<<-x (说明:只答对2-<x 中学数学二模模拟试卷一.选择题(每小题3分,共30分 1.(3分)﹣的绝对值是( ) A .2B .C .﹣D .﹣22.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm 的小洞,则0.000000039用科学记数法可表示为( ) A .3.9×10﹣8B .﹣3.9×10﹣8C .0.39×10﹣7D .39×10﹣93.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是( )A.B.C.D.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+15.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°8.(3分)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3B.﹣2或﹣3C.1或﹣2或3D.1或﹣2或﹣39.(3分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE 交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2B.C.D.10.(3分)如图,点A在x轴上,点B,C在反比例函数y=(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM⊥x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.二.填空题(每题3分,共15分)11.(3分)计算:+(﹣1)0﹣()﹣2=.12.(3分)如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.。
天津市东丽区2016届九年级中考一模数学试题解析(解析版)
一、选择题1.计算(﹣2)+(﹣4)的结果等于( )A .﹣2B .6C .﹣6D .8 【答案】C .【解析】试题分析:原式利用同号两数相加的法则计算即可得到结果.原式=﹣(2+4)=﹣6,故选C .【考点】有理数的加法.2.sin30°的值等于( )A .1B .2C .2.12 【答案】D .【解析】试题分析:根据特殊角的三角函数值来解本题.sin30°=12.故选D . 【考点】特殊角的三角函数值.3.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .【答案】A .【解析】【考点】轴对称图形.4.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×106【答案】B.【解析】试题分析:将140000用科学记数法表示即可.140000=1.4×105,故选B.【考点】科学记数法—表示较大的数.5.如图所示的立体图形的主视图是()A.B.C.D.【答案】B.【解析】试题分析:分别找出此几何体从正面看所得到的视图.此立体图形从正面看所得到的图形为矩形,里面有一条竖线,故选:B.【考点】简单几何体的三视图.6)A.1与2 B.2与3 C.3与4 D.4与5【答案】D.【解析】454与5之间,故选D.【考点】估算无理数的大小.7.在平面直角坐标系xOy中,A点坐标为(3,4),将OA绕原点O顺时针旋转180°得到OA′,则点A′的坐标是()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣4,﹣3)D.(﹣3,4)【答案】B.【解析】【考点】坐标与图形变化-旋转.8.方程253xx-=-的解是()A.x=3 B.x=﹣2 C.x=2 D.x=5【答案】C.【解析】试题分析:方程两边都乘以3(5﹣x),得3x=2(5﹣x).解得x=2.检验:x=2时,3(5﹣x)≠0,∴x=2时原分式方程的解,故选:C.【考点】解分式方程.9.在反比例函数y=1kx-的每一条曲线上,y都随着x的增大而减小,则k的值可以是()A.﹣1 B.1 C.2 D.3【答案】A.【解析】试题分析:利用反比例函数的增减性,y随x的增大而减小,则求解不等式1﹣k>0.解得k<1.故选A.【考点】反比例函数的性质.10.已知圆的半径是)A.B.C.D.【答案】C.【解析】试题分析:连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是3,因而等边三角形的面积是3C.【考点】正多边形和圆.11.如图,四边形ABDC中,△EDC是由△ABC绕顶点C旋转40°所得,顶点A恰好转到AB上一点E的位置,则∠1+∠2=()A.90° B.100°C.110°D.120°【答案】C.【解析】试题分析:由旋转的性质可知AC=EC,BC=DC,∠BCD=∠ACE=40°,在△BCD中,由内角和定理求∠1,根据外角定理可求∴∠2=∠ACE=40°,∴∠1+∠2=70°+40°=110°,故选C.【考点】旋转的性质.12.已知抛物线y=2x2﹣8x+6与x轴相交于点A、B(点A在点B的左边),与y轴交于点C,BC的中点为M,点B关于y轴的对称点为N,则MN的长度等于()A B C D.6【答案】A.【解析】试题分析:求出A,B.C的坐标,根据中点公式求出点M坐标,根据对称求出点N坐标,运用两点距离公式即可求解.y=2x2﹣8x+6,当x=0时,y=6,∴点C(0,6),当y=0时,2x2﹣8x+6=0,解得:x=1或x=3,∴点A(1,0),点B(3,0),可求BC的中点为M(32,3),点B关于y轴的对称点为N(﹣3,0),A.【考点】抛物线与x轴的交点.二、填空题:13.计算3x2•x3的结果等于.【答案】3x5【解析】试题分析:根据单项式乘单项式,系数乘系数,同底数的幂相乘,可得答案.3x2•x3=3x2+3=3x5,故答案为:35.【考点】单项式乘单项式.14.若一次函数y=﹣x+b﹣32的图象不过第三象限,则b的取值范围是.【答案】b≤3 2.【解析】试题分析:∵一次函数y=﹣x+b﹣32的图象不过第三象限,∴b﹣32≤0,解得b≤32.故答案为:b≤3 2.【考点】一次函数的性质.15.一个不透明的盒子中装有7个大小相同的乒乓球,其中5个是黄球,2个是白球,从该盒子中任意摸出一个球,摸到黄球的概率是.【答案】5 7.【解析】试题分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.∵盒子中装有7个大小相同的乒乓球,其中5个是黄球,2个是白球,∴该盒子中任意摸出一个球,摸到黄球的概率是5 7;故答案为:5 7.【考点】概率公式.16.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则AC的长为.【答案】6.【解析】试题分析:∵DE∥BC,∴AD AEAB AC=,∴6463AC=+,∴AC=6,故答案为:6.【考点】平行线分线段成比例.17.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AE平分∠BAC,∠D=∠DBC=60°,若BD=5cm,DE=3cm,则BC的长是cm.【答案】8.【解析】试题分析:作出辅助线后根据等边三角形的判定得出△BDM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.试题解析:延长DE交BC于M,延长AE交BC于N,作EF∥BC于F,∵AB=AC,AE平分∠BAC,∴AN⊥BC,BN=CN,∵∠DBC=∠D=60°,∴△BDM为等边三角形,∴△EFD为等边三角形,∵BD=5,DE=3,∴EM=2,∵△BDM为等边三角形,∴∠DMB=60°,∵AN⊥BC,∴∠ENM=90°,∴∠NEM=30°,∴NM=1,∴BN=4,∴BC=2BN=8(cm),故答案为8.【考点】等边三角形的判定与性质;等腰三角形的性质.18.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABO的三个顶点A、B、O都在格点上.(1)画出△ABO绕点O逆时针旋转90°后得到的△A1B1O三角形;(2)点B的运动路径的长;(3)求△ABO在上述旋转过程中所扫过的面积.【答案】(1)见试题解析;(2)2π;(3)4π+4.【解析】试题分析:(1)根据网格结构找出点A 、B 绕点O 逆时针旋转90°后的对应点A 1、B 1的位置,然后顺次连接即可;(2)利用弧长公式列式计算即可得解;(3)观察图形,△ABO 旋转过程中所扫过的面积等于一个扇形的面积加上三角形的面积列式计算即可得解.【考点】作图-旋转变换;弧长的计算;扇形面积的计算.三、解答题:19.解不等式组并将解集在数轴上表示出来.【答案】x <2.【解析】试题分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,就是不等式组的解集.试题解析:2315x x +≥-⎧⎨-<⎩解①得:x ≥﹣3,解②得:x <2.不等式组的解集是:﹣3≤x<2.【考点】解一元一次不等式组;在数轴上表示不等式的解集.20.某校计划开设4门选修课:音乐、绘画、体育、舞蹈,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),对调查结果进行统计后,绘制了如下不完整的两个统计图.根据以上统计图提供的信息,回答下列问题:(1)此次调查抽取的学生人数为a= 人,其中选择“绘画”的学生人数占抽样人数的百分比为b= 4 ;(2)补全条形统计图;(3)若该校有2000名学生,请估计全校选择“绘画”的学生大约有多少人?【答案】(1)100;40%;(2)见试题解析;(3)估计全校选择“绘画”的学生大约有800人.【解析】试题分析:(1)用音乐的人数除以所占的百分比计算即可求出a,再用绘画的人数除以总人数求出b;(2)求出体育的人数,然后补全统计图即可;(3)用总人数乘以“绘画”所占的百分比计算即可得解.试题解析:(1)a=20÷20%=100人,b=40100×100%=40%;故答案为:100;40%;(2)体育的人数:100﹣20﹣40﹣10=30人,补全统计图如图所示;(3)选择“绘画”的学生共有2000×40%=800(人).答:估计全校选择“绘画”的学生大约有800人.【考点】条形统计图;用样本估计总体;扇形统计图.21.已知△ABC中,BC=5,以BC为直径的⊙O交AB边于点D.(1)如图1,连接CD,则∠BDC的度数为;(2)如图2,若AC与⊙O相切,且AC=BC,求BD的长;(3)如图3,若∠A=45°,且AB=7,求BD的长.3)BD的长为3或4.【答案】(1)90°;(2)2【解析】试题分析:(1)如图1,只需依据直径所对的圆周角是直角就可解决问题;(2)如图2,连接CD,根据条件可得△ACB是等腰直角三角形,从而得到∠B=45°,再根据直径所对的圆周角是直角可得△BDC是等腰直角三角形,然后运用勾股定理就可解决问题;(3)如图3,连接CD,根据条件可得△ADC是等腰直角三角形,从而得到DA=DC,设BD=x,然后在Rt△BDC 运用勾股定理就可解决问题.试题解析:(1)如图1,∵BC是⊙O的直径,∴∠BDC=90°故答案为90°;(2)连接CD,如图2,∵AC与⊙O相切,BC是⊙O的直径,∴∠BDC=90°,∠ACB=90°.∵AC=BC,∴∠A=∠B=45°,∴∠DCB=∠B=45°,∴DC=DB.∵BC=5,∴BD2+DC2=2BD2=52,∴BD=2(3)连接CD,如图3,∵BC是⊙O的直径,∴∠BDC=90°,∵∠A=45°,∴∠ACD=45°=∠A,∴DA=DC.设BD=x,则CD=AD=7﹣x.在Rt△BDC中,x2+(7﹣x)2=52,解得x1=3,x2=4,∴BD的长为3或4.【考点】圆的综合题.22.天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).【答案】天塔的高度CD约为:415m.【解析】试题分析:首先根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,在Rt△ACD中,易求得BD=AD﹣AB=CD ﹣112;在Rt△BCD中,可得BD=CD•tan36°,即可得CD•tan36°=CD﹣112,继而求得答案.试题解析:根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,∵在Rt△ACD中,∠ACD=∠CAD=45°,∴AD=CD,∵AD=AB+BD,∴BD=AD﹣AB=CD﹣112(m),∵在Rt△BCD中,tan∠BCD=BDCD,∠BCD=90°﹣∠CBD=36°,∴tan36°=BDCD,∴BD=CD•tan36°,∴CD•tan36°=CD﹣112,∴CD=1121tan36-≈11210.37-≈415(m).答:天塔的高度CD约为:415m.【考点】解直角三角形的应用-仰角俯角问题.23.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是______元;②月销量是______件;(直接写出结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?【答案】(1)W=﹣2x+400;(2)售价为130元时,当月的利润最大,最大利润是9800元.【解析】试题分析:(1)根据利润=售价﹣进价求出利润,运用待定系数法求出月销量;(2)根据月利润=每件的利润×月销量列出函数关系式,根据二次函数的性质求出最大利润.试题解析:(1)①销售该运动服每件的利润是(x﹣60)元;②设月销量W与x的关系式为w=kx+b,由题意得,100k200110180bk b+=⎧⎨+=⎩,解得,2400kb=-⎧⎨=⎩,∴W=﹣2x+400;(2)由题意得,y=(x﹣60)(﹣2x+400)=﹣2x2+520x﹣24000=﹣2(x﹣130)2+9800,∴售价为130元时,当月的利润最大,最大利润是9800元.【考点】二次函数的应用.24.在△ABC 中,AB=AC=5,cos ∠ABC=,将△ABC 绕点C 顺时针旋转,得到△A 1B 1C .(1)如图①,当点B 1在线段BA 延长线上时.①求证:BB 1∥CA 1;②求△AB 1C 的面积;(2)如图②,点E 是BC 边的中点,点F 为线段AB 上的动点,在△ABC 绕点C 顺时针旋转过程中,点F 的对应点是F 1,求线段EF 1长度的最大值与最小值的差.【答案】(1)①见试题解析;②25132(3)526. 【解析】 试题分析:(1)①根据旋转的性质和平行线的性质证明;②过A 作AF ⊥B C 于F ,过C 作CE ⊥AB 于E ,根据三角函数和三角形的面积公式解答;(2)过C 作CF ⊥AB 于F ,以C 为圆心CF 为半径画圆交BC 于F 1,和以C 为圆心BC 为半径画圆交BC 的延长线于F 1,得出最大和最小值解答即可.试题解析:(1)①证明:∵AB=AC ,B 1C=BC ,∴∠AB 1C=∠B ,∠B=∠ACB ,∵∠AB 1C=∠ACB (旋转角相等),∴∠B 1CA 1=∠AB 1C ,∴BB 1∥CA 1;②过A 作AF ⊥BC 于F ,过C 作CE ⊥AB 于E ,如图①:∵AB=AC ,AF ⊥BC ,∴BF=CF ,∵cos ∠ABC=35,AB=5,∴BF=3,∴BC=6,∴B 1C=BC=6,∵CE ⊥AB ,∴BE=B 1E=35×6=185, ∴BB 1=365,CE=45×6=245,∴AB 1=365-5=115, ∴△AB 1C 的面积为:1112413225525⨯⨯=;(2)如图2,过C 作CF ⊥AB 于F ,以C 为圆心CF 为半径画圆交BC 于F 1,EF 1有最小值,此时在Rt △BFC 中,CF=245,∴CF 1=245, ∴EF 1的最小值为245-3=95; 如图,以C 为圆心BC 为半径画圆交BC 的延长线于F 1,EF 1有最大值;此时EF 1=EC+CF 1=3+6=9,∴线段EF 1的最大值与最小值的差为9-95=365. 【考点】几何变换综合题.25.在平面直角坐标系xOy 中,二次函数y=mx 2﹣(m+n )x+n (m <0)的图象与y 轴正半轴交于A 点.(1)求证:该二次函数的图象与x 轴必有两个交点;(2)设该二次函数的图象与x 轴的两个交点中右侧的交点为点B ,若∠ABO=45°,将直线AB 向下平移2个单位得到直线l ,求直线l 的解析式;(3)在(2)的条件下,设M (p ,q )为二次函数图象上的一个动点,当﹣3<p <0时,点M 关于x 轴的对称点都在直线l 的下方,求m 的取值范围.【答案】(1)该二次函数的图象与轴必有两个交点;(2)y=﹣x ﹣1;(3)m 的取值范围为:﹣12<m <0. 【解析】试题分析:(1)直接利用根的判别式,结合完全平方公式求出△的符号进而得出答案;(2)首先求出B ,A 点坐标,进而求出直线AB 的解析式,再利用平移规律得出答案;(3)根据当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=﹣3时,q=12m+4;结合图象可知:﹣(12m+4)≤2,即可得出m的取值范围.试题解析:(1)令mx2﹣(m+n)x+n=0,则△=(m+n)2﹣4mn=(m﹣n)2,∵二次函数图象与y轴正半轴交于A点,∴A(0,n),且n>0,又∵m<0,∴m﹣n<0,∴△=(m﹣n)2>0,∴该二次函数的图象与轴必有两个交点;(2)令mx2﹣(m+n)x+n=0,解得:x1=1,x2=nm,由(1)得nm<0,故B的坐标为(1,0),又因为∠ABO=45°,所以A(0,1),即n=1,则可求得直线AB的解析式为:y=﹣x+1.再向下平移2个单位可得到直线l:y=﹣x﹣1;(3)由(2)得二次函数的解析式为:y=mx2﹣(m+1)x+1.∵M(p,q)为二次函数图象上的一个动点,∴q=mp2﹣(m+1)p+1.∴点M关于轴的对称点M′的坐标为(p,﹣q).∴M′点在二次函数y=﹣m2+(m+1)x﹣1上.∵当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=﹣3时,q=12m+4;结合图象可知:﹣(12m+4)<2,解得:m>﹣1 2.∴m的取值范围为:﹣12<m<0.【考点】二次函数综合题.。
天津市中考数学二模试卷
天津市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共13题;共26分)1. (2分)(2016·宜昌) 下列各数:1.414,,﹣,0,其中是无理数的为()A . 1.414B .C . ﹣D . 03. (2分) (2019七下·玄武期中) 人体中红细胞的直径约为0.0000077m,用科学记数法表示该数据为()A .B .C .D .4. (2分)如图所示,是一个几何体的三视图,已知正视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为()A . 2πB . 3πC . 2πD . (1+2)π5. (2分)(2016·余姚模拟) 下列计算不正确的是()A . x2•x3=x5B . (x3)2=x6C . x3+x3=x6D . ( x)2=3x26. (2分)当1<a<2时,代数式的值是()A . -1B . 1C . 2a-3D . 3-2a7. (2分)(2019·宁夏) 为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:阅读时间/小时0.5及以下0.70.91.11.31.5及以上人数296544则本次调查中阅读时间的中位数和众数分别是()A . 0.7和0.7B . 0.9和0.7C . 1和0.7D . 0.9和1.18. (2分)(2018·牡丹江) 在函数y= 中,自变量x的取值范围是()A . x≤﹣3B . x≥﹣3C . x<﹣3D . x>﹣39. (2分)(2020·泸县模拟) 如图,在平面直角坐标系中,点、、… 在轴上,、、… 在直线上,若,且、… 都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为、、… .则可表示为()A .B .C .D .10. (2分)如图,边长为的正方形ABCD的对角线AC与BD交于点O,将正方形ABCD沿直线DF折叠,点C 落在对角线BD上的点E处,折痕DF交AC于点M,则OM=()A .B .C .D .11. (2分) (2020九上·新乡期末) 若反比例函数的图象分布在二、四象限,则关于x的方程的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 只有一个实数根12. (2分)如图,关于抛物线y=(x﹣1)2﹣2,下列说法错误的是()A . 顶点坐标为(1,﹣2)B . 对称轴是直线x=lC . 开口方向向上D . 当x>1时,y随x的增大而减小13. (2分)已知二次函数y=ax2+bx+c的图象如右图所示,则下列结论中正确的是()A . a>0B . b>0C . c<0D . a+b+c=0二、填空题 (共6题;共6分)14. (1分)已知x=m时,多项式x2+2x+n2的值为﹣1,则x=﹣m时,该多项式的值为________.15. (1分)某工厂一月份产值50万元,第一季度的产值比一月份的3倍还多32万元,设二三月份的平均增长率是x,则列出方程是________ .16. (1分)晚上,身高1.6米的小华站在D处(如图),测得他的影长DE=1.5米,BD=4.5米,那么灯到地面的距离AB=________ 米.17. (1分)(2019·枣庄模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积为________ .18. (1分)(2019·赣县模拟) 如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为________.19. (1分) (2019九上·西城期中) 将含有30°角的直角三角板 OAB 如图放置在平面直角坐标系中,OB 在x轴上,若 OA=2,将三角板绕原点 O 顺时针旋转75°,则点 A 的对应点A′ 的坐标为________.三、解答题 (共7题;共75分)20. (5分)(2017·益阳) 计算:|﹣4|﹣2cos60°+(﹣)0﹣(﹣3)2 .21. (8分) (2017九下·莒县开学考) 社区要调查社区居民双休日的学习状况,采用下列调查方式:① 选取社区内200名在校学生;② 从一幢高层住宅楼中选取200名居民;③ 从不同住宅楼中随机选取200名居民.(1)上述调查方式最合理的是________(填写序号);(2)将最合理的调查方式得到的数据绘制成扇形统计图(如图1)和频数分布直方图(如图2).在图1中,“在图书馆等场所学习”部分所占的圆心角是________度;在这个调查中,200名居民双休日在家学习的有________人;(3)请估计该社区1800名居民双休日学习时间不少于4小时的人数.22. (6分)(2020·启东模拟) 某市体育中考现场考试内容有三项:50米跑为必测项目.另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项.(1)每位考生有________种选择方案;(2)求小明与小刚选择同种方案的概率.23. (15分)(2017·姑苏模拟) 如图,在Rt△ABC中,∠C=90°,点D,E,F分别在AC,BC,AB边上,以AF为直径的⊙O恰好经过D,E,且DE=EF.(1)求证:BC为⊙O的切线;(2)若∠B=40°,求∠CDE的度数;(3)若CD=2,CE=4,求⊙O的半径及线段BE的长.24. (11分)小明从家去体育场锻炼,同时,妈妈从体育场以米/分的速度回家,小明到体育场后发现要下雨,立即返回,追上妈妈后,小明以米/分的速度回家取伞,立即又以米/分的速度折回接妈妈,并一同回家.如图是两人离家的距离(米)与小明出发的时间(分)之间的函数图像.(注:小明和妈妈始终在同一条笔直的公路上行走,图像上、、三点在一条直线上)(1)求线段的函数表达式.(写出自变量的取值范围)(2)求点坐标,并说明点的实际意义.(3)当的值为________时,小明与妈妈相距米.25. (15分) (2019八上·武汉期中) 如图,四边形ABCD中,∠A=∠B=90度,E是AB上一点,且AE=BC,∠1=∠2(1)Rt△ADE与Rt△BEC全等吗?请说明理由;(2)证明:AB=AD+BC;(3)△CDE是不是直角三角形?请说明理由.26. (15分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当△BCP的面积最大时,求点P的坐标和△BCP的最大面积.(3)当△BCP的面积最大时,在抛物线上是否点Q(异于点P),使△BCQ的面积等于△BCP,若存在,求出点Q的坐标,若不存在,请说明理由.参考答案一、选择题 (共13题;共26分)1-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、二、填空题 (共6题;共6分)14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共7题;共75分)20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、。
2016年天津市中考数学考试
2016年天津市中考数学考试作者: 日期:1•计算 的结果等于()A. B.C. D.2.的值等于()D.A- B.—C.—A.5•如图是一个由 个相同的正方体组成的立体图形,它的主视图是(6•估计 的值在()7•计算——-的结果为()、选择题:本大题共 12小题,每小题3分,共36分3•下列图形中,可以看作是中心对称图形的是()B.4. 年 月 日《天津日报》报道, 用科学记数法表示应为()年天津外环线内新栽植树木A.B.株,将A. B.D.A.和之间B.和之间C.和之间D.和之间C. D.C.D.C.A. B. C L D.8方程 A.C. 的两个根为() B.D. 9•实数,在数轴上的对应点的位置如图所示,把 正确的是() ,按照从小到大的顺序排列,A. C.B. D.沿对角线折叠,点的对应点为,与相交于点,10.如图,把一张矩形纸片 C . B. D.11.若点 在反比例函数-的图象上,则 ,, 的大小关系是() A. C. B. D.为常数),在自变量 的值为()C.或 本大题共 6小题,每小题3分,共18分 12.已知二次函数 其对应的函数值 的最小值为,则 A.或 B. 或二、填空题: 的值满足的情况下,与D.或 13.计算 的结果等于 14.计算-的结果等于 15.不透明袋子中装有 差别,从袋子中随机取出 个球,其中有个红球、个绿球和 个球,则它是绿球的概率是 — 个黑球,这些球除颜色外无其他 16.若一次函数 (写出一个即可)•(为常数)的图象经过第二、三、四象限,贝U 的值可以是17.如图,在正方形中,点,,,分别在边,,,上,点,,都在对角线上,且四边形和均为正方形,则丄形——的值等于_______________ -正方形18.如图,在每个小正方形的边长为的网格中,,为格点,,为小正方形边的中点,为,的延长线的交点.的长等于________ ;_若点在线段上,点在线段上,且满足,请在如图所示的网格中,用无刻度的直尺,画出线段,并简要说明点,的位置是如何找到的(不要求证明)三、综合题:本大题共7小题,共66分19.解不等式,请结合题意填空,完成本题的解答.解不等式①,得___________ ;_解不等式②,得___________ ;_把不等式①和②的解集在数轴上表示出来;----------------------------------------------------------------------- >_1 n 1 9 3 ji原不等式组的解集为___________ -20.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:求统计的这组初赛成绩数据的平均数、众数和中位数;根据这组初赛成绩,由高到低确定人进入复赛,请直接写出初赛成绩为的运动员能否进入复赛.21.在中,为直径,为上一点.如图•过点作的切线,与的延长线相交于点,若,求的大小;如图,为上一点,且经过的中点,连接并延长,与的延长线相交于点,若,求的大小.22.小明上学途中要经过,两地,由于,两地之间有一片草坪,所以需要走路线,,如图,在中,,,,求,的长.(结果保留小数点后一位)P参考数据:,,,一取C23•公司有台机器需要一次性运送到某地,计划租用甲、乙两种货车共辆,已知每辆甲种货车一次最多运送机器台、租车费用为元,每辆乙种货车一次最多运送机器台、租车费用为元设租用甲种货车辆(为非负整数),试填写表格.表一:租用甲种货车的数量/辆租用的甲种货车最多运送机器的数量/台租用的乙种货车最多运送机器的数量/台表二:租用甲种货车的数量/辆租用甲种货车的费用/元租用乙种货车的费用/元给出能完成此项运送任务的最节省费用的租车方案,并说明理由.24.在平面直角坐标系中,为原点,点 ,点,把,点,旋转后的对应点为,,记旋转角为.如图①,若 ,求 的长;如图②,若,求点的坐标;在 的条件下,边 上的一点旋转后的对应点为,当 求点的坐标(直接写出结果即可)答案1. 【答案】A【解析】根据减去一个数等于加上这个数的相反数进行计算即可得解. 【解答】解: ,故选:2. 【答案】C【解析】直接利用特殊角的三角函数值求出答案. 【解答】解: 一.故选:3. 【答案】B【解析】根据中心对称图形的概念求解.【解答】解:、不是中心对称图形,因为找不到任何这样的一点,旋转度后它的两部求点,的坐标;将抛物线 向上平移得到抛物线 ,点 平移后的对应点为 ,且 .①求抛物线的解析式;②若点 关于直线 的对称点为,射线 与抛物线 相交于点,求点 的坐标25.已知抛物线的顶点为,与轴的交点为,点绕点逆时针旋转,得取得最小值时,分能够重合;即不满足中心对称图形的定义,故此选项错误;、是中心对称图形,故此选项正确;、不是中心对称图形,因为找不到任何这样的一点,旋转度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;、不是中心对称图形,因为找不到任何这样的一点,旋转度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:4. 【答案】B【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同•当时,是正数;当原数的绝对值小于时,是负数.原数绝对值大于【解答】解:故选:5. 【答案】A【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有个正方形,第二层左边有一个正方形,第三层左边有一个正方形.故选.6. 【答案】C【解析】直接利用二次根式的性质得出—的取值范围.【解答】解:•/,•••—的值在和之间.故选:7. 【答案】A【解析】根据同分母分式相加减,分母不变,分子相加减计算即可得解.【解答】解:故选.8.【答案】D【解析】将分解因式成,解或即可得出结论【解答】解:则,或,解得:故选.9.【答案】C【解析】根据数轴得出,求出, ,即可得出答案.【解答】••从数轴可知:,解:… ,故选.10.【答案】D【解析】根据翻折变换的性质可得,根据两直线平行,内错角相等可得,从而得到,然后根据等角对等边可得,从而得解.【解答】解:••矩形纸片沿对角线 折叠,点的对应点为 ,所以,结论正确的是 选项.故选.11. 【答案】D【解析】直接利用反比例函数图象的分布,结合增减性得出答案. 【解答】解:••点,,在反比例函数-的图象上,点在第三象限, 点在第一象限,每个图象上随 的增大减小,定最大, 故选:12. 【答案】B【解析】由解析式可知该函数在时取得最小值、 时,随的增大而增大、当时,随 的增大而减小,根据 时,函数的最小值为 可分如下两种情况: ①若,当 时,取得最小值(舍). 或, 故选:13. 【答案】【解析】根据幕的乘方与积的乘方运算法则进行计算即可. 【解答】解: 故答案为:14. 【答案】【解析】先套用平方差公式,再根据二次根式的性质计算可得. 【解答】解:原式——故答案为:.15. 【答案】-时,取得最小值;②若别列出关于的方程求解即可. 【解答】解:••当 时, 随 的增大而增大,当,当 时,取得最小值,分时,随的增大而减小,•••①若 可得: 解得:或 时,取得最小值(舍);②若 可得: 解得: 综上,的值为【解析】由题意可得,共有种等可能的结果,其中从口袋中任意摸出一个球是绿球的有种情况,利用概率公式即可求得答案.【解答】解:••在一个不透明的口袋中有个除颜色外其余都相同的小球,其中个红球、个绿球和个黑球,••从口袋中任意摸出一个球是绿球的概率是--,故答案为:-.16. 【答案】【解析】根据一次函数的图象经过第二、三、四象限,可以得出,,随便写出一个小于的值即可.【解答】解:••一次函数(为常数)的图象经过第二、三、四象限,・・ , .故答案为:17. 【答案】-【解析】根据辅助线的性质得到,四边形和均为正方形,推出与是等腰直角三角形,于是得到-,,同理,即可得到结论.【解答】解:在正方形中,・,••四边形和均为正方形,• •, ,• 与是等腰直角三角形,同理正方形一• ------- ---------- -,正方形-故答案为:-.18. 【答案】一;;如图,与网格线相交,得到,取格点,连接,并延长与交于,连接,则线段即为所求.故答案为:与网格线相交,得到,取格点,连接,并延长与交于,连接,则线段即为所求.【解析】根据勾股定理即可得到结论;;取格点,连接,并延长与交于,连接,则线段即为所求.【解答】解:; 如图,与网格线相交,得到,取格点,连接,并延长与交于,连接则线段即为所求.19. 【答案】;;解不等式②,得故答案为:.;把不等式①和②的解集在数轴上表示为:_I ----------- 1——4 I 厶一_>-10 12 3 4 5;;原不等式组的解集为:.故答案为:【解析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:解不等式①,得;解不等式②,得;把不等式①和②的解集在数轴上表示为:-10 12 3; 原不等式组的解集为:20.【答案】;; 观察条形统计图得:••在这组数据中,出现了次,出现的次数最多,••这组数据的众数是;将这组数据从小到大排列为,其中处于中间的两个数都是,则这组数据的中位数是.;能;••共有个人,中位数是第、个数的平均数,••根据中位数可以判断出能否进入前名;• ,••能进入复赛.【解析】用整体减去其它所占的百分比,即可求出的值;;根据平均数、众数和中位数的定义分别进行解答即可;;根据中位数的意义可直接判断出能否进入复赛.【解答】解:根据题意得:;则的值是;; 观察条形统计图得:••在这组数据中,出现了次,出现的次数最多,••这组数据的众数是;将这组数据从小到大排列为,其中处于中间的两个数都是则这组数据的中位数是 .;能;••共有个人,中位数是第、个数的平均数,••根据中位数可以判断出能否进入前名;• ,••能进入复赛.,即在中,,•••; ; •为的中点,•,即,在中,由,得,是的一个外角,【解析】连接,首先根据切线的性质得到,利用得到,然后利用直角三角形两锐角互余即可求得答案;;根据为的中点得到,从而求得,然后利用圆周角定理求得,最后利用三角形的外角的性质求解即可.,即解得23.【答案】表一:,,,;表二:,,,;;能完成此项运送任务的最节省费用的租车方案是甲车辆,乙车辆,理由:当租用甲种货车 辆时,设两种货车的总费用为 元,则两种货车的总费用为: ,又•••,解得 ,22. 中,,即 中,的一个外角,的长约为 •••为的中点,【答案】【解析】根据锐角三角函数,可用 的长约等于 表示, ,, ,根据线段的和差,可得关于的方程,根据解方程,可得的长,根据 ,可得答案.垂足为中,• ,••在函数 中,随的增大而增大, ••当 时,.取得最小值, 即能完成此项运送任务的最节省费用的租车方案是甲种货车 辆,乙种货车 辆. 【解析】 根据计划租用甲、乙两种货车共 辆,已知每辆甲种货车一次最多运送机器 租车费用为 元,每辆乙种货车一次最多运送机器 台、租车费用为 元 ,可以分别把表一和表二补充完整; ; 由 中的数据和公司有 台机器需要一次性运 送到某地,可以解答本题. 【解答】解: 由题意可得, 在表一中,当甲车 辆时,运送的机器数量为: 送的机器数量为: (台), 当甲车辆时,运送的机器数量为: 为: (台), 在表二中,当租用甲货车 辆时,租用甲种货车的费用为:种货车 辆,租用乙种货车的费用为:当租用甲货车 辆时,租用甲种货车的费用为: 辆,租用乙种货车的费用为: ; 能完成此项运送任务的最节省费用的租车方案是甲车 理由:当租用甲种货车 辆时, 则两种货车的总费用为: 又••• (台),贝忆车 (台),贝忆车设两种货车的总费用为 ,解得 ・?••在函数 中, ••当 时,取得最小值, 即能完成此项运送任务的最节省费用的租车方案是甲种货车 24.【答案】解: 如图①, ••点 八、、 随的增大而增大, 台、 辆,运 辆,运送的机器数量(元),则租用乙 (元),(元),则租用乙种货车(元), 辆,乙车辆,元, 辆,乙种货车辆.绕点逆时针旋转 ,得 为等腰直角三角形, 轴于,如图②, 绕点逆时针旋转,得中,•••••点的坐标为 绕点逆时针旋转 ,得 ,点的对应点为 ,55作点关于轴的对称点 ,连结交轴于点,如图②,则,此时的值最小,••点与点关于轴对称,… , 设直线 的解析式为把-,代入得一,解得••直线 的解析式为当时,-,解得 「,则■,3点的坐标为 【解析】如图①,先利用勾股定理计算出 ,再根据旋转的性质得 ,,则可判定为等腰直角三角形,然后根据等腰直角三角形的性质求的长;作轴于,如图②,利用旋转的性质得 ,,贝y ,再在中利用含度的直角三角形三边的关系可计算出和 的长,然后利用坐标的表示方法写出点的坐标;,作点关于轴的对称点,连结,利用两点之间线段最短可判断此时 的值最小,接着利用待定系数法求出直线的解析式为,从而得到由旋转的性质得 ,则 交轴于点,如图②,易得【解答】解: 如图①,点八、、为等腰直角三角形,;作轴于,如图②, 绕点逆时针旋转 ,得• • ? ? • • ?在 中,•••点的坐标为• • ?设直线 的解析式为把 --------- ,代入得—解得••直线 的解析式为 一 , 当 时,二,解得 二,则则 二,作 于,然后确定 后利用含度的直角三角形三边的关系可计算出和 的长,从而可得到点的坐标.绕点逆时针旋转,得绕点逆时针旋转,得,点的对应点为 ,点关于轴的对称点,连结 作 则••点与点关于轴对称,交,此时轴于点,如图②, 的值最小,作于•••点的坐标为———.25.【答案】解:•/••顶点,••当时,,•,;①殳抛物线的解析式为•其中,…,•_ ,过作,如图:••抛物线的解析式为-,②设点,则-,过点作轴的垂线,与直线相交于点,则可设•- ,其中,连接,. _ , ,•轴,… ,… ,连接,则直线是线段的垂直平分线,••,有,•,则,根据勾股定理,得,-… ,… ,… ,… ,设直线的解析式为,则,解得,由点在直线 上,得,将 -代入【解析】 令,求出抛物线与 轴的交点,抛物线解析式化为顶点式,求出点 坐标; ②根据,用勾股定理, ,再求出直线的解析式,即可. 【解答】解:•/ ••顶点, ••当时, , •,; ①殳抛物线的解析式为 •其中 ,过 中, ①设出,表示出 ,根据 ,用勾股定理建立方程求出,即可. ,求出••抛物线的解析式为-,②设点,则-,过点作轴的垂线,与直线相交于点,则可设•- ,其中,连接,. _ , ,•轴,… ,… ,连接,则直线是线段的垂直平分线,••,有,•,则,根据勾股定理,得,-… ,… ,… ,… ,设直线的解析式为,则,解得,由点在直线上,得, 将-代入。
天津东丽区中考一模数学考试卷(解析版)(初三)中考模拟.doc
天津东丽区中考一模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】计算(﹣2)+(﹣4)的结果等于()A.﹣2 B.6 C.﹣6 D.8【答案】C.【解析】试题分析:原式利用同号两数相加的法则计算即可得到结果.原式=﹣(2+4)=﹣6,故选C.【考点】有理数的加法.【题文】sin30°的值等于()A.1 B. C. D.【答案】D.【解析】试题分析:根据特殊角的三角函数值来解本题.sin30°=.故选D.【考点】特殊角的三角函数值.【题文】在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.【答案】A.【解析】试题分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【考点】轴对称图形.【题文】截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104 B.1.4×105 C.1.4×106 D.14×106【答案】B.【解析】试题分析:将140000用科学记数法表示即可.140000=1.4×105,故选B.【考点】科学记数法—表示较大的数.【题文】如图所示的立体图形的主视图是()A. B. C. D.【答案】B.【解析】试题分析:分别找出此几何体从正面看所得到的视图.此立体图形从正面看所得到的图形为矩形,里面有一条竖线,故选:B.【考点】简单几何体的三视图.【题文】实数在哪两个整数之间()A.1与2 B.2与3 C.3与4 D.4与5【答案】D.【解析】试题分析:先求出的范围,即可得出选项.4<<5,即在4与5之间,故选D.【考点】估算无理数的大小.【题文】在平面直角坐标系xOy中,A点坐标为(3,4),将OA绕原点O顺时针旋转180°得到OA′,则点A′的坐标是()A.(﹣4,3) B.(﹣3,﹣4) C.(﹣4,﹣3) D.(﹣3,4)【答案】B.【解析】试题分析:将OA绕原点O顺时针旋转180°,实际上是求点A关于原点的对称点的坐标.根据题意得,点A关于原点的对称点是点A′,∵A点坐标为(3,4),∴点A′的坐标(﹣3,﹣4).故选B.【考点】坐标与图形变化-旋转.【题文】方程的解是()A.x=3 B.x=﹣2 C.x=2 D.x=5【答案】C.【解析】试题分析:方程两边都乘以3(5﹣x),得3x=2(5﹣x).解得x=2.检验:x=2时,3(5﹣x)≠0,∴x=2时原分式方程的解,故选:C.【考点】解分式方程.【题文】在反比例函数y=的每一条曲线上,y都随着x的增大而减小,则k的值可以是()A.﹣1 B.1 C.2 D.3【答案】A.【解析】试题分析:利用反比例函数的增减性,y随x的增大而减小,则求解不等式1﹣k>0.解得k<1.故选A.【考点】反比例函数的性质.【题文】已知圆的半径是2,则该圆的内接正六边形的面积是()A.3 B.9 C.18 D.36【答案】C.【解析】试题分析:连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是2,高为3,因而等边三角形的面积是3,∴正六边形的面积=18,故选C.【考点】正多边形和圆.【题文】如图,四边形ABDC中,△EDC是由△ABC绕顶点C旋转40°所得,顶点A恰好转到AB上一点E的位置,则∠1+∠2=()A.90° B.100° C.110° D.120°【答案】C.【解析】试题分析:由旋转的性质可知AC=EC,BC=DC,∠BCD=∠ACE=40°,在△BCD中,由内角和定理求∠1,根据外角定理可求∴∠2=∠ACE=40°,∴∠1+∠2=70°+40°=110°,故选C.【考点】旋转的性质.【题文】已知抛物线y=2x2﹣8x+6与x轴相交于点A、B(点A在点B的左边),与y轴交于点C,BC的中点为M,点B关于y轴的对称点为N,则MN的长度等于()A. B. C. D.6【答案】A.【解析】试题分析:求出A,B.C的坐标,根据中点公式求出点M坐标,根据对称求出点N坐标,运用两点距离公式即可求解.y=2x2﹣8x+6,当x=0时,y=6,∴点C(0,6),当y=0时,2x2﹣8x+6=0,解得:x=1或x=3,∴点A(1,0),点B(3,0),可求BC的中点为M(,3),点B关于y轴的对称点为N(﹣3,0),MN=.故选A.【考点】抛物线与x轴的交点.【题文】计算3x2•x3的结果等于.【答案】3x5【解析】试题分析:根据单项式乘单项式,系数乘系数,同底数的幂相乘,可得答案.3x2•x3=3x2+3=3x5,故答案为:35.【考点】单项式乘单项式.【题文】若一次函数y=﹣x+b﹣的图象不过第三象限,则b的取值范围是.【答案】b≤.【解析】试题分析:∵一次函数y=﹣x+b﹣的图象不过第三象限,∴b﹣≤0,解得b≤.故答案为:b≤.【考点】一次函数的性质.【题文】一个不透明的盒子中装有7个大小相同的乒乓球,其中5个是黄球,2个是白球,从该盒子中任意摸出一个球,摸到黄球的概率是.【答案】.【解析】试题分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.∵盒子中装有7个大小相同的乒乓球,其中5个是黄球,2个是白球,∴该盒子中任意摸出一个球,摸到黄球的概率是;故答案为:.【考点】概率公式.【题文】如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则AC的长为.【答案】6.【解析】试题分析:∵DE∥BC,∴,∴,∴AC=6,故答案为:6.【考点】平行线分线段成比例.【题文】如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AE平分∠BAC,∠D=∠DBC=60°,若BD=5cm ,DE=3cm,则BC的长是 cm.【答案】8.【解析】试题分析:作出辅助线后根据等边三角形的判定得出△BDM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.试题解析:延长DE交BC于M,延长AE交BC于N,作EF∥BC于F,∵AB=AC,AE平分∠BAC,∴AN⊥BC,BN=CN,∵∠DBC=∠D=60°,∴△BDM为等边三角形,∴△EFD为等边三角形,∵BD=5,DE=3,∴EM=2,∵△BDM为等边三角形,∴∠DMB=60°,∵AN⊥BC,∴∠ENM=90°,∴∠NEM=30°,∴NM=1,∴BN=4,∴BC=2BN=8(cm),故答案为8.【考点】等边三角形的判定与性质;等腰三角形的性质.【题文】如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABO的三个顶点A、B、O都在格点上.(1)画出△ABO绕点O逆时针旋转90°后得到的△A1B1O三角形;(2)点B的运动路径的长;(3)求△ABO在上述旋转过程中所扫过的面积.【答案】(1)见试题解析;(2)2π;(3)4π+4.【解析】试题分析:(1)根据网格结构找出点A、B绕点O逆时针旋转90°后的对应点A1、B1的位置,然后顺次连接即可;(2)利用弧长公式列式计算即可得解;(3)观察图形,△ABO旋转过程中所扫过的面积等于一个扇形的面积加上三角形的面积列式计算即可得解.【考点】作图-旋转变换;弧长的计算;扇形面积的计算.【题文】解不等式组并将解集在数轴上表示出来.【答案】x<2.【解析】试题分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,就是不等式组的解集.试题解析:,解①得:x≥﹣3,解②得:x<2.不等式组的解集是:﹣3≤x<2.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【题文】某校计划开设4门选修课:音乐、绘画、体育、舞蹈,学校采取随机抽样的方法进行问卷l试题分析:(1)用音乐的人数除以所占的百分比计算即可求出a,再用绘画的人数除以总人数求出b;(2)求出体育的人数,然后补全统计图即可;(3)用总人数乘以“绘画”所占的百分比计算即可得解.试题解析:(1)a=20÷20%=100人,b=×100%=40%;故答案为:100;40%;(2)体育的人数:100﹣20﹣40﹣10=30人,补全统计图如图所示;(3)选择“绘画”的学生共有2000×40%=800(人).答:估计全校选择“绘画”的学生大约有800人.【考点】条形统计图;用样本估计总体;扇形统计图.【题文】已知△ABC中,BC=5,以BC为直径的⊙O交AB边于点D.(1)如图1,连接CD,则∠BDC的度数为;(2)如图2,若AC与⊙O相切,且AC=BC,求BD的长;(3)如图3,若∠A=45°,且AB=7,求BD的长.【答案】(1)90°;(2)(3)BD的长为3或4.【解析】试题分析:(1)如图1,只需依据直径所对的圆周角是直角就可解决问题;(2)如图2,连接CD,根据条件可得△ACB是等腰直角三角形,从而得到∠B=45°,再根据直径所对的圆周角是直角可得△BDC是等腰直角三角形,然后运用勾股定理就可解决问题;(3)如图3,连接CD,根据条件可得△ADC是等腰直角三角形,从而得到DA=DC,设BD=x,然后在Rt△BDC 运用勾股定理就可解决问题.试题解析:(1)如图1,∵BC是⊙O的直径,∴∠BDC=90°故答案为90°;(2)连接CD,如图2,∵AC与⊙O相切,BC是⊙O的直径,∴∠BDC=90°,∠ACB=90°.∵AC=BC,∴∠A=∠B=45°,∴∠DCB=∠B=45°,∴DC=DB.∵BC=5,∴BD2+DC2=2BD2=52,∴BD=;(3)连接CD,如图3,∵BC是⊙O的直径,∴∠BDC=90°,∵∠A=45°,∴∠ACD=45°=∠A,∴DA=DC.设BD=x,则CD=AD=7﹣x.在Rt△BDC中,x2+(7﹣x)2=52,解得x1=3,x2=4,∴BD的长为3或4.【考点】圆的综合题.【题文】天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).【答案】天塔的高度CD约为:415m.【解析】试题分析:首先根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,在Rt△ACD中,易求得BD=AD﹣AB=CD ﹣112;在Rt△BCD中,可得BD=CD•tan36°,即可得CD•tan36°=CD﹣112,继而求得答案.试题解析:根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,∵在Rt△ACD中,∠ACD=∠CAD=45°,∴AD=CD,∵AD=AB+BD,∴BD=AD﹣AB=CD﹣112(m),∵在Rt△BCD中,tan∠BCD=,∠BCD=90°﹣∠CBD=36°,∴tan36°=,∴BD=CD•tan36°,∴CD•tan36°=CD﹣112,∴CD=≈≈415(m).答:天塔的高度CD约为:415m.【考点】解直角三角形的应用-仰角俯角问题.【题文】九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价(元/件)100110120130…月销量(件)200180160140…已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是______元;②月销量是______件;(直接写出结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?【答案】(1)W=﹣2x+400;(2)售价为130元时,当月的利润最大,最大利润是9800元.【解析】试题分析:(1)根据利润=售价﹣进价求出利润,运用待定系数法求出月销量;(2)根据月利润=每件的利润×月销量列出函数关系式,根据二次函数的性质求出最大利润.试题解析:(1)①销售该运动服每件的利润是(x﹣60)元;②设月销量W与x的关系式为w=kx+b,由题意得,,解得,,∴W=﹣2x+400;(2)由题意得,y=(x﹣60)(﹣2x+400)=﹣2x2+520x﹣24000=﹣2(x﹣130)2+9800,∴售价为130元时,当月的利润最大,最大利润是9800元.【考点】二次函数的应用.【题文】在△ABC中,AB=AC=5,cos∠ABC=,将△ABC绕点C顺时针旋转,得到△A1B1C.(1)如图①,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积;(2)如图②,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,求线段EF1长度的最大值与最小值的差.【答案】(1)①见试题解析;②(3).【解析】试题分析:(1)①根据旋转的性质和平行线的性质证明;②过A作AF⊥BC于F,过C作CE⊥AB于E,根据三角函数和三角形的面积公式解答;(2)过C作CF⊥AB于F,以C为圆心CF为半径画圆交BC于F1,和以C为圆心BC为半径画圆交BC的延长线于F1,得出最大和最小值解答即可.试题解析:(1)①证明:∵AB=AC,B1C=BC,∴∠AB1C=∠B,∠B=∠ACB,∵∠AB1C=∠ACB(旋转角相等),∴∠B1CA1=∠AB1C,∴BB1∥CA1;②过A作AF⊥BC于F,过C作CE⊥AB于E,如图①:∵AB=AC,AF⊥BC,∴BF=CF,∵cos∠ABC=,AB=5,∴BF=3,∴BC=6,∴B1C=BC=6,∵CE⊥AB,∴BE=B1E=×6=,∴BB1=,CE=×6=,∴AB1=-5=,∴△AB1C的面积为:;(2)如图2,过C作CF⊥AB于F,以C为圆心CF为半径画圆交BC于F1,EF1有最小值,此时在Rt△BFC中,CF=,∴CF1=,∴EF1的最小值为-3=;如图,以C为圆心BC为半径画圆交BC的延长线于F1,EF1有最大值;此时EF1=EC+CF1=3+6=9,∴线段EF1的最大值与最小值的差为9-=.【考点】几何变换综合题.【题文】在平面直角坐标系xOy中,二次函数y=mx2﹣(m+n)x+n(m<0)的图象与y轴正半轴交于A点.(1)求证:该二次函数的图象与x轴必有两个交点;(2)设该二次函数的图象与x轴的两个交点中右侧的交点为点B,若∠ABO=45°,将直线AB向下平移2个单位得到直线l,求直线l的解析式;(3)在(2)的条件下,设M(p,q)为二次函数图象上的一个动点,当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,求m的取值范围.【答案】(1)该二次函数的图象与轴必有两个交点;(2)y=﹣x﹣1;(3)m的取值范围为:﹣<m<0.【解析】试题分析:(1)直接利用根的判别式,结合完全平方公式求出△的符号进而得出答案;(2)首先求出B,A点坐标,进而求出直线AB的解析式,再利用平移规律得出答案;(3)根据当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=﹣3时,q=12m+4;结合图象可知:﹣(12m+4)≤2,即可得出m的取值范围.试题解析:(1)令mx2﹣(m+n)x+n=0,则△=(m+n)2﹣4mn=(m﹣n)2,∵二次函数图象与y轴正半轴交于A点,∴A(0,n),且n>0,又∵m<0,∴m﹣n<0,∴△=(m﹣n)2>0,∴该二次函数的图象与轴必有两个交点;(2)令mx2﹣(m+n)x+n=0,解得:x1=1,x2=,由(1)得<0,故B的坐标为(1,0),又因为∠ABO=45°,所以A(0,1),即n=1,则可求得直线AB的解析式为:y=﹣x+1.再向下平移2个单位可得到直线l:y=﹣x﹣1;(3)由(2)得二次函数的解析式为:y=mx2﹣(m+1)x+1.∵M(p,q)为二次函数图象上的一个动点,∴q=mp2﹣(m+1)p+1.∴点M关于轴的对称点M′的坐标为(p,﹣q).∴M′点在二次函数y=﹣m2+(m+1)x﹣1上.∵当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=﹣3时,q=12m+4;结合图象可知:﹣(12m+4)<2,解得:m>﹣.∴m的取值范围为:﹣<m<0.【考点】二次函数综合题.。
天津市2016年中考数学模拟题及答案
2016年中考数学模拟题一 选择题:(每小题3分,共12题,共计36分)1.下列各数中,是无理数的是( )A.cos300B.(-π)0C.31- D.642.下列图形既是轴对称又是中心对称图形的是( )A .B .C .D . 3.“秦淮灯彩甲天下”的美誉已从南京走向国内外.截至2016年2月22日晚10点,超过350 000名国内外游客来到夫子庙、老门东和大报恩寺遗址公园等景区观灯赏景.将350 000用科学记数法表示为( ) A.0.35×106B.3.5×104C.3.5×105D.3.5×1064.下列运算正确的是( )A.a 3+a 3=a 6B.2(a+1)=2a+1C.(-ab)2=a 2b 2D.a 6÷a 3=a 2 5.甲、乙两名运动员在六次射击测试中的成绩如下表(单位:环):如果两人测试成绩的中位数相同,那么乙第四次射击的成绩(表中标记为“?”)可以是( ) A.6环B.7环C.8环D.9环6.体积为80的正方体的棱长在( )A.3到4之间B.4到5之间C.5到6之间D.6到7之间 7.如图,AB ∥EF,CD ⊥EF,∠BGC=500,则∠GCD=( )A.120°B.130°C.140°D.150°第7题图 第8题图 第9题图 8.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O,P 是优弧AMB 上一点,则∠APB 度数为( ) A.30° B.45° C.60° D.75°9.如图,在平面直角坐标系中,△ABC 是等边三角形,BC ∥x 轴,AB=4,AC 的中点D 在x 轴上,且D(3,0),则点A 的坐标为( ) A.(23,-3)B.(3-1,3)C.(3+1,-3)D.(3-1,-3)10.已知2是关于x 的方程x 2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A.10 B.14C.10或14D.8或1011.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A 、B 两点的纵坐标分别为3和1,反比例函数xy 3=的图像经过A,B 两点,则菱形对ABCD 的面积为( ) A.2 B.4 C.22 D.24第11题图 第12题图12.如图,已知二次函数y=ax 2+bx+c(a ≠0)的图象与x 轴交于点A(-1,0),对称轴为直线x=1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当x >3时,y <0;②3a+b <0;③-1≤a ≤32-;④4ac-b 2>8a.其中正确的结论是( ) A.①②③ B.①②④C.①③④D.①②③④二 填空题:(每小题3分,共6题,共计18分)13.211--x 有意义的条件为 .14.已知一次函数y=(a-2)x+a+4的图象不经过第三象限,则a 的取值范围是 . 15.从-3,-2,-1,0,4这五个数中随机抽取一个数记为a,a 的值既是不等式组⎩⎨⎧->-<+1113432x x 的解,又在函数xx y 2212+=的自变量取值范围内的概率是 .16.如图,将等边△ABC 的边AC 逐渐变成以B 为圆心、BA 为半径的 ⌒AC,长度不变,AB 、BC 的长度也不变,则∠ABC 的度数大小由600变为 .17.如图,四边形ABCD 中,∠A=900,AB=33,AD=3,点M ,N 分别为线段BC,AB 上的动点(含端点,但点M 不与点B 重合),点E,F 分别为DM,MN 的中点,则EF 长度的最大值为 .18.如图,已知矩形ABCD 和边AB 上的点E,请按要求画图.(1)如图1,当点E 为AB 的中点时,请仅用无刻度的直尺在AD 上找出一点P (不同于点F),使PE ⊥PC; (2)如图2,当点E 为AB 上任意一点时,请仅用无刻度的直尺和圆规在AD 上找出一点Q,使得QE⊥QC.请简要写出画图步骤:三 综合计算题(共7题,共66分)19.(本小题8分)解不等式组⎪⎩⎪⎨⎧-≥++>-312121502x x x ,并把解集在数轴上表示出来.20.(本小题8分)如图,转盘上1、2、3、4四个数字分别代表鸡、猴、鼠、羊四种生肖邮票(每种邮票各两枚,鸡年邮票面值“80分”,其它邮票都是面值“1.20元”),转动转盘后,指针每落在某个数字所在扇形一次就表示获得该种邮票一枚.(1)任意转动转盘一次,获得猴年邮票的概率是 ;(2)任意转动转盘两次,求获得的两枚邮票可以邮寄一封需2.4元邮资的信件的概率.21.(本小题10分)小东从甲地出发匀速前往相距20km的乙地,一段时间后,小明从乙地出发沿同一条路匀速前往甲地.小东出发2.5h后,在距乙地7.5km处与小明相遇,之后两人同时到达终点.图中线段AB、CD分别表示小东、小明与乙地的距离y(km)与小东所用时间x(h)的关系.(1)求线段AB、CD所表示的y与x之间的函数表达式;(2)小东出发多长时间后,两人相距16km?22.(本小题10分)如图,AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至点C,使得∠DAC=∠AED.(1)求证:AC是⊙O的切线;BD的中点,AE与BC交于点F,(2)若点E是⌒①求证:CA=CF;②当BD=5,CD=4时,DF=.23.(本小题10分)一艘船在小岛A的南偏西370方向的B处,AB=20海里,船自西向东航行1.5小时后到达C处,测得小岛A在点C的北偏西500方向,求该船航行的速度(精确到0.1海里/小时?).(数据:sin370=cos530≈0.60,sin530=cos370≈0.80,tan3770≈0.75,tan530≈1.33,tan400≈0.84,tan500≈1.19)24(本小题10分)如图(1),矩形ABCD的一边BC在直接坐标系中x轴上,折叠边AD,使点D落在x轴上点F处,折痕为AE.已知AB=8,AD=10,并设点B坐标为(m,0),其中m>0.(1)求点E、F的坐标(用含的式子表示);(2)连接OA,若△OAF是等腰三角形,求m的值;(3)如图(2),设抛物线h-=2)6m-y+xa(经过A、E两点,其顶点为M,连接AM,若∠OAM=900,求a,h,m值.25.(本小题10分)如图,已知一条直线过点(0,4),与抛物线241x y 交于A,B 两点,其中A 横坐标是-2. (1)求这条直线的函数关系式及点B 的坐标;(2)在x 轴上是否存在点C,使得△ABC 是直角三角形?若存在,求出点C 的坐标;若不存在,请说明理由; (3)过线段AB 上一点P ,作PM//x 轴,交抛物线于点M,点M 在第一象限,点N(0,1),当点M 的横坐标为何值时,MN+3MP 的长度最大?最大值是多少?答案详解1-12.A A C C B B C C C B D D 13.x ≥1且x ≠5.14.a-2<0,a+4≥0,-4≤a<2. 15.52 16.π18017.当N 在B 点重合时,EF 最大,根据中位线性质,EF=3. 18.(1)略;(2)连接CE,作CE 的垂直平分线,交CE 于O 点,以O 为圆心,OE 为半径画圆,与AD 交于Q 点,即为所求的点.19.解:2111112,2463152,312121502<≤-∴⎩⎨⎧-≥<⎩⎨⎧-≥++<⎪⎩⎪⎨⎧-≥++>-x x x x x x x x x21.解:(1)设线段AB 所表示的y 与x 之间的函数表达式为y 1=kx +b , 由图像可知,函数图像经过点(0,20),(2.5,7.5).得⎩⎨⎧=+=5.75.220b k b 解得⎩⎨⎧=-=205b k .所以线段AB 所表示的y 与x 之间的函数表达式为y 1=-5x +20.令y 1=0,得x =4. 所以B 点的坐标为(4,0).所以D 点的坐标为(4,20).设线段CD 所表示的y 与x 之间的函数表达式为y 2=mx +n ,因为函数图像经过点(4,20),(2.5,7.5).得⎩⎨⎧=+=+5.75.2204n m n m 解得⎪⎪⎩⎪⎪⎨⎧-==340325n m所以线段CD 所表示的y 与x 之间的函数表达式为y 2=253x -403.(2)线段CD 所表示的y 与x 之间的函数表达式为y 2=253x -403,令y 2=0,得x =1.6.即小东出发1.6 h 后,小明开始出发. ①当0≤x <1.6时,y 1=16,即-5x +20=16,x =0.8.②当1.6≤x <2.5时,y 1-y 2=16,即-5x +20-(253x -403)=16,解得x =1.3.(舍去)③当2.5≤x ≤4时,y 2-y 1=16,即253x -403-(-5x +20)=16,x =3.7.答:小东出发0.8 h 或3.7 h 后,两人相距16 km .22.(1)证明:∵AB 是⊙O 的直径,∴∠ADB=90°.∴∠ABC +∠DAB=90°.∵∠DAC=∠AED ,∠AED=∠ABC ,∴∠DAC+∠DAB=90°,∴ AC 是⊙O 的切线. (2)①证明:∵点E 是 ⌒BD 的中点,∴ ⌒BE = ⌒DE ,∴∠BAE=∠DAE . ∵∠DAC+∠DAB=90°,∠ABC+∠DAB=90°,∴∠DAC=∠ABC .∵∠CFA=∠ABC+∠BAE ,∠CAF=∠DAC+∠DAE ,∴∠CFA=∠CAF .∴ CA=CF .②DF=2.24.解:(1)∵四边形ABCD 是矩形,∴AD=BC=10,AB=CD=8,∠D=∠DCB=∠ABC=90°25.解:(1)因为点A 是直线与抛物线的交点,且其横坐标是-2,所以21(2)14y =⨯-=,A 点坐标(-2,1)设直线的函数关系式为ykx b =+将(0,4),(-2,1)代入得421b k b =⎧⎨-+=⎩解得324k b ⎧=⎪⎨⎪=⎩ 所以直线342y x =+.由231424x x +=,得26160x x --=,解之得12x =-,28x = 当8x =时,384162y =⨯+=.所以点(8,16)B .(2)作AM ∥y 轴,BM ∥x 轴, AM, BM 交于点M .由勾股定理得:222AB AM BM =+=325. 设点(,0)C a ,则2222(2)145AC a a a =++=++,2222(8)1616320BC a a a =-+=-+. ((1))若90BAC ∠=︒,则222AB AC BC +=,((2))即232545a a +++=216320a a -+, 所以12a =-.②若90ACB ∠=︒,则222AB AC BC =+,即232545a a =+++216320a a -+, 化简得260a a -=,解之得0a =或6a =.③若90ABC ∠=︒,则222AB BC AC +=,即216320a a -+232545a a +=++,所以32a =.所以点C 的坐标为102-(,),(0,0),(6,0),(32,0)(3)设21(,)4M a a,则2114MN a +.由231424x a +=,所以2166a x -=,所以点P 的横坐标为2166a -.所以2166a MP a -=-.所以3M N P M +222116113()39464a a a a a -=++-=-++.所以当3612()4a =-=⨯-,又因为268≤≤, 所以21394a a -++取到最大值18.所以当点M 的横坐标为6时,3MN PM +的长度最大值是18.。
天津市东丽区中考化学二模考试试卷
天津市东丽区中考化学二模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共14题;共28分)1. (2分) 6月1日为“世界牛奶日”。
某品牌牛奶富含蛋白质、糖类、无机盐等营养物质。
下列叙述错误的是A . 蛋白质、糖类都属于有机物B . 青少年常饮牛奶有利于骨骼生长C . 误食重金属盐可以立即喝大量牛奶D . 蔗糖与碘水作用呈蓝色2. (2分)民以食为天”,我们青少年正是长身体的关键时期,要注意营养的均衡补充。
下列有关健康叙述正确的是()①正常人每天去都应摄入一定量的蛋白质②油脂会使人发胖,故禁食油脂③维生素有20多种,多数在人体内不能合成,需要从食物中摄取,饮食中要注意补充水果等含维生素较多的食品④青少年正处于生长发育阶段,需要多摄入钙,成年人体格已经健全.可以不补充钙。
A . ②③B . ①②C . ①③D . ②④3. (2分)(2018·武昌模拟) 下图所示实验操作正确的是()A . 向试管中滴加液体B . 给试管中液体加热C . 称量一定质量的食盐D . 检查装置的气密性4. (2分)(2019·邵阳模拟) 一些食物的近似pH如下,其中酸性最强的是()A . 苹果汁B . 葡萄汁C . 牛奶D . 鸡蛋清5. (2分) (2019九上·郑州月考) 根据下列各组原子结构示意图,判断元素的化学性质相似的一组是()A .B .C .D .6. (2分) (2018九上·吉林月考) 表示下列反应的化学方程式中,完全正确的是()A . 细铁丝在氧气中燃烧:4Fe+3O2=2Fe2O3B . 加热氯酸钾和二氧化锰的混合物制氧气:KClO3=KCl+O2 ↑C . 水在直流电作用下分解: 2H2O 2H2↑+ O2↑D . 甲烷(CH4)在空气中燃烧生成二氧化碳和水:CH4↑+2O2↑ 2H2O+CO2↑7. (2分)在农业生产上,有时用溶质质量分数为10%~20%的食盐水来选种。
天津市东丽区2016届九年级上期中考试数学试题及答案
22.根据下列条件求m的取值范围.
(1)函数
时,y随x的增大而减小,当x<0时,y随x的增大而增大;
(2)函数
有最小值;
(3)抛物线
与抛物线
的形状相同.
23.某商店购进一批单价为 8 元的商品,如果按每件 10 元出售,那么每天可销售 100 件,经调查 发现,这种商品的销售单价每提高 1 元,其销售量相应减少 10 件,将销售价定位多少时,才能使 每天所获销售利润最大?最大利润是多少?
25.如图所示,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上两点,经过点A,C,B的 抛物线的一部分C1与经过点A,D,B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲
线称为“蛋线”,已知点C的坐标为
,点M是抛物线
的顶
点. 1 (1)求 A、B 两点的坐标; (2)“蛋线”在第四象限上是否存在一点 P,使得△PBC 的面积最大?若存在,求出△PBC 面积的 最大值;若不存在,请说明理由; (3)当△BDM 为直角三角形时,求 m 的值.
东丽区2015-2016学年第一学期九年级期中质量调查试卷
数学
一. 选择题(本大题共12小题,每小题3分,共36分) 1.下列函数中,是二次函数的是()
2.方程
的根是()
3.如果2是一元二次方程
的一个根,那么常数c是()
A. 2 B.-2 C.4 D.-4
4.一元二次方程
有两个不相等的实数根,则
满足的条件是()
24、如图①,在平面直角坐标系中,边长为2的正方形OABC的两顶点A,C分别在y轴,x轴的正半 轴上,O为坐标原点,现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋 转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N. (1)当A点第一次落在直线y=x上时,请直接写出点A的坐标__________; (2)在旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数; (3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年天津市东丽区中考数学二模试卷一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣5)×(﹣2)的结果等于()A.7 B.﹣10 C.10 D.﹣32.tan30°的结果等于()A.B.C.D.3.下列图形中,属于轴对称图形的是()A.B. C.D.4.在第三届中小学生运动会上,我市共有1330名学生参赛,创造了比赛组别、人数、项目之最,将1330用科学记数法表示为()A.133×10 B.1.33×103C.133×104D.133×1055.如图所示,几何体的主视图是()A.B.C.D.6.已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>107.正六边形的边心距是,则它的边长是()A.B.2 C.D.8.若=0,则x的值等于()A.3或﹣2 B.﹣3 C.2 D.无法确定9.化简的结果是()A.x+1 B. C.x﹣1 D.10.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C的度数等于()A.100°B.105°C.115°D.120°11.为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有()A.1200名B.450名C.400名D.300名12.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y 轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是()个.A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,共18分)13.计算(﹣2y3)2的结果等于.14.一次函数y=﹣x+3的图象上有两点(x1,y1)和(x2,y2),且x1<x2,则y1与y2的大小关系为.15.在五张完全相同的卡片上,分别写有数字0,﹣3,﹣2,1,﹣,现从中随机抽取一张,抽到写有非负数的卡片的概率是.16.四边形ABCD为圆O的内接四边形,已知∠BOD=100°,则∠BCD= .17.已知,在△ABC中,∠ABC=90°,AB=4,BC=3,若线段CD=2,且CD∥AB,则AD的长度等于.18.如图,是由每个边长都是1的小正方形构成的网格,点O,A,B,M均为格点,P为线段OM上的一个动点.(1)点B到OM的距离等于;(2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.三、解答题(本大题共7小题,共66分)19.解不等式组,并把解集在数轴上表示出来.20.为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?21.已知四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,∠DAB=45°.(Ⅰ)如图①,判断CD与⊙O的位置关系,并说明理由;(Ⅱ)如图②,E是⊙O上一点,且点E在AB的下方,若⊙O的半径为3cm,AE=5cm,求点E到AB的距离.22.如图是放在水平地面上的一把椅子的侧面图,椅子高为AC,椅面宽为BE,椅脚高为ED,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得点D、E的俯角分别为64°和53°.已知ED=35cm,求椅子高AC约为多少?(参考数据:tan53°≈,sin53°≈,tan64°≈2,sin64°≈)23.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过1000元后,超出1000元的部分按90%收费;在乙商场累计购物超过500元后,超出500元的部分按95%收费,设小红在同一商场累计购物x元,其中x>1000.(1)根据题题意,填写下表(单位:元)(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过1000元时,在哪家商场的实际花费少?24.如图,有一张直角三角形纸片ABC,∠ACB=90°,∠B=60°,BC=3,直角边AC在x轴上,B点在第二象限,A(,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在的直线上,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA方向平行移动,至B点到达A点停止(记平移后的四边形为B1C1F1E1).在平移过程中,设平移的距离BB1=x,四边形B1C1F1E1与△AEF重叠的面积为S.(1)求折痕EF的长;(2)平移过程中是否存在点F1落在y轴上?若存在,求出x的值;若不存在,说明理由;(3)直接写出S与x的函数关系式及自变量x的取值范围.25.如图,点A(﹣2,0)、B(4,0)、C(3,3)在抛物线y=ax2+bx+c上,点D在y轴上,且DC⊥BC,∠BCD绕点C顺时针旋转后两边与x轴、y轴分别相交于点E、F.(1)求抛物线的解析式;(2)CF能否经过抛物线的顶点?若能,求出此时点E的坐标;若不能,说明理由;(3)若△FDC是等腰三角形,求点F的坐标.2016年天津市东丽区中考数学二模试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣5)×(﹣2)的结果等于()A.7 B.﹣10 C.10 D.﹣3【考点】有理数的乘法.【分析】有理数乘法法则:两数相乘,同号得正,依此计算即可求解.【解答】解:(﹣5)×(﹣2)=10.故选:C.2.tan30°的结果等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:tan30°=,故选:C.3.下列图形中,属于轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.4.在第三届中小学生运动会上,我市共有1330名学生参赛,创造了比赛组别、人数、项目之最,将1330用科学记数法表示为()A.133×10 B.1.33×103C.133×104D.133×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1330用科学记数法表示为1.33×103.故选B.5.如图所示,几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是一个矩形,第二层左边一个矩形,故选:A.6.已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>10【考点】反比例函数的性质.【分析】将x=1和x=2分别代入反比例函数即可确定函数值的取值范围.【解答】解:∵反比例函数y=中当x=1时y=10,当x=2时,y=5,∴当1<x<2时,y的取值范围是5<y<10,故选:C.7.正六边形的边心距是,则它的边长是()A.B.2 C.D.【考点】正多边形和圆.【分析】运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得:OA=2.故选B.8.若=0,则x的值等于()A.3或﹣2 B.﹣3 C.2 D.无法确定【考点】分式的值为零的条件.【分析】根据分式有意义的条件可得:(x+3)(x﹣2)=0,且x﹣2≠0,再解即可.【解答】解:由题意得:(x+3)(x﹣2)=0,且x﹣2≠0,解得:x=﹣3,故选:B.9.化简的结果是()A .x+1B .C .x ﹣1D .【考点】分式的加减法.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1.故选A10.如图,平行四边形ABCD 绕点A 逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B 是对应点,点C′与点C 是对应点,点D′与点D 是对应点),点B′恰好落在BC 边上,则∠C 的度数等于( )A .100°B .105°C .115°D .120°【考点】旋转的性质;平行四边形的性质.【分析】根据旋转的性质得出AB=AB′,∠BAB′=30°,进而得出∠B 的度数,再利用平行四边形的性质得出∠C 的度数即可.【解答】解:∵平行四边形ABCD 绕点A 逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B 是对应点,点C′与点C 是对应点,点D ′与点D 是对应点),∴AB=AB′,∠BAB′=30°,∴∠B=∠AB′B=÷2=75°,∴∠C=180°﹣75°=105°.故选B .11.为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有( )A.1200名B.450名C.400名D.300名【考点】用样本估计总体;扇形统计图.【分析】先求出喜爱体育节目的学生占总人数百分比,再乘以总人数即可.【解答】解;∵喜爱体育节目的学生占1﹣10%﹣5%﹣35%﹣30%=20%,该校共1500名学生,∴该校喜爱体育节目的学生共有1500×20%=300(名),故选:D.12.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y 轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是()个.A.4个B.3个C.2个D.1个【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【分析】根据已知画出图象,把x=﹣2代入得:4a﹣2b+c=0,2a+c=2b﹣2a;把x=﹣1代入得到a﹣b+c>0;根据﹣<0,推出a<0,b<0,a+c>b,计算2a+c=2b﹣2a>0;代入得到2a﹣b+1=﹣c+1>0,根据结论判断即可.【解答】解:根据二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x=﹣2代入得:4a﹣2b+c=0,∴①正确;把x=﹣1代入得:y=a﹣b+c>0,如图A点,∴②错误;∵(﹣2,0)、(x1,0),且1<x1,∴取符合条件1<x1<2的任何一个x1,﹣2•x1<﹣2,∴由一元二次方程根与系数的关系知 x1•x2=<﹣2,∴不等式的两边都乘以a(a<0)得:c>﹣2a,∴2a+c>0,∴③正确;④由4a﹣2b+c=0得 2a﹣b=﹣,而0<c<2,∴﹣1<﹣<0∴﹣1<2a﹣b<0∴2a﹣b+1>0,∴④正确.所以①③④三项正确.故选B.二、填空题(本大题共6小题,共18分)13.计算(﹣2y3)2的结果等于4y6.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解即可.【解答】解:(﹣2y3)2=(﹣2y3)•(﹣2y3)=4y6.故答案为:4y6.14.一次函数y=﹣x+3的图象上有两点(x1,y1)和(x2,y2),且x1<x2,则y1与y2的大小关系为y1>y2.【考点】一次函数图象上点的坐标特征.【分析】先根据从一次函数的解析式判断出函数的增减性,再由x1<x2即可得出结论.【解答】解:∵一次函数y=﹣x+3中,k=﹣1<0,∴y随x的增大而减小.∵x1<x2,∴y1>y2.故答案为:y1>y2.15.在五张完全相同的卡片上,分别写有数字0,﹣3,﹣2,1,﹣,现从中随机抽取一张,抽到写有非负数的卡片的概率是.【考点】概率公式.【分析】先求出非负数的个数,再根据概率公式计算可得.【解答】解:∵0,﹣3,﹣2,1,﹣这5个数中,非负数有0,1这2个,∴从中随机抽取一张,抽到写有非负数的卡片的概率是,故答案为:.16.四边形ABCD为圆O的内接四边形,已知∠BOD=100°,则∠BCD= 130°或50°.【考点】圆内接四边形的性质;圆周角定理.【分析】先根据圆心角的度数等于它所对弧的度数得到∠BOD=100°,再根据圆周角定理得∠BCD=∠BOD=50°,然后根据圆内接四边形的性质求解.【解答】解:如图∵弧BAD的度数为140°,∴∠BOD=140°,∴∠BCD=∠BOD=50°,∴∠BAD=180°﹣∠ACD=130°.同理,当点A是优弧上时,∠BAD=50°故答案为:130°或50°.17.已知,在△ABC中,∠AB C=90°,AB=4,BC=3,若线段CD=2,且CD∥AB,则AD的长度【考点】勾股定理.【分析】分两种情况:①延长BC、AD交于点M,由平行线证出△DCM∽△ABN,得出=,得出CN=BC=3,AD=DN=AN,求出BN=6,由勾股定理求出AN,即可得出AD的长度;②设AD交BC于O,由平行线证明△COD∽△BOA,得出=,求出OC=1,OB=2,由勾股定理求出OD和OA,即可得出AD的长度.【解答】解:分两种情况:①如图1所示:延长BC、AD交于点M,∵CD∥AB,∴△DCM∽△ABN,∴==,∴CN=BC=3,AD═AN,∴BN=6,∵∠ABC=90°,∴AN===2,∴AD=;②如图2所示:设AD交BC于O,∵CD∥AB,∠ABC=90°,∴△COD∽△BOA,∴=,∵BC=3,∴OC=1,OB=2,∴OD==,OA==2,∴AD=OA+OD=3;综上所述:AD的长度等于或3;18.如图,是由每个边长都是1的小正方形构成的网格,点O,A,B,M均为格点,P为线段OM上的一个动点.(1)点B到OM的距离等于2;(2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.【考点】作图—应用与设计作图;轴对称﹣最短路线问题.【分析】(1)根据勾股定理即可得到结论;(2)取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR即可得到结果.【解答】解:(1)点B到OM的距离==2,故答案为:2;(2)取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR交OM则点P即为所求.三、解答题(本大题共7小题,共66分)19.解不等式组,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:解不等式①,得:x>﹣3,解不等式②,得:x≤2,∴不等式组的解集为:﹣3<x≤2,在数轴上表示不等式组的解集为:20.为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少【考点】条形统计图;用样本估计总体;加权平均数;中位数;众数.【分析】(1)根据条形图中数据得出平均用水11吨的户数,进而画出条形图即可;(2)根据平均数、中位数、众的定义分别求解即可;(3)根据样本估计总体得出答案即可.【解答】解:(1)根据条形图可得出:平均用水11吨的用户为:100﹣20﹣10﹣20﹣10=40(户),如图所示:(2)平均数为:(20×10+40×11+12×10+13×20+10×14)=11.6(吨),根据11出现次数最多,故众数为:11,根据100个数据的最中间为第50和第51个数据,按大小排列后第50,51个数据是11,故中位数为:11;答:这100个样本数据的平均数,众数和中位数分别是11.6,11,11;(3)样本中不超过12吨的有20+40+10=70(户),答:黄冈市直机关500户家庭中月平均用水量不超过12吨的约有:500×=350(户).21.已知四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,∠DAB=45°.(Ⅰ)如图①,判断CD与⊙O的位置关系,并说明理由;(Ⅱ)如图②,E是⊙O上一点,且点E在AB的下方,若⊙O的半径为3cm,AE=5cm,求点E到AB的距离.【考点】切线的判定;勾股定理.【分析】(1)连接OD,则∠AOD为直角,由四边形ABCD是平行四边形,则AB∥DC.从而得出∠CDO=90°,即可证出答案.(2)作EF⊥AB于F,连接BE,根据圆周角定理得∠AEB=90°,然后根据勾股定理求得BE,然后根据sin∠BAE==求得EF即可.【解答】解:(1)CD与圆O相切.证明:如图①,连接OD,则∠AOD=2∠DAB=2×45°=90°,∵四边形ABCD是平行四边形,∴AB∥DC.∴∠CDO=∠AOD=90°.∴OD⊥CD.∴CD与圆O相切.(2)如图②,作EF⊥AB于F,连接BE,∵AB是圆O的直径,∴∠AEB=90°,AB=2×3=6.∵AE=5,∴BE==,∵sin∠BAE==.∴=∴EF=.22.如图是放在水平地面上的一把椅子的侧面图,椅子高为AC,椅面宽为BE,椅脚高为ED,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得点D、E的俯角分别为64°和53°.已知ED=35cm,求椅子高AC约为多少?(参考数据:tan53°≈,sin53°≈,tan64°≈2,sin64°≈)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据正切函数的定义,可得方程①②,根据代入消元法,可得答案.【解答】解:在Rt△ACD中,tan∠ADC=tan64°==2,CD=①.在Rt△ABE中tan∠ABE=tan53°==,BE=AB ②.BE=CD,得===AB,解得AB=70cm,AC=AB+BC=AB+DE=70+35=105cm.23.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过1000元后,超出1000元的部分按90%收费;在乙商场累计购物超过500元后,超出500元的部分按95%收费,设小红在同一商场累计购物x元,其中x>1000.(1)根据题题意,填写下表(单位:元)(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过1000元时,在哪家商场的实际花费少?【考点】一元一次方程的应用.【分析】(1)根据已知得出甲商场1000+×0.9以及500+×0.95进而得出答案,同理可得出在乙商场累计购物2900元、x元的实际花费;(2)根据题中已知条件,求出0.95x+2.5,0.9x+100相等,从而得出正确结论;(3)根据0.95x+25与0.9x+100相比较,从而得出正确结论.【解答】解:(1)在甲商场:1000+×0.9=1270,1000+×0.9=2710,1000+(x﹣1000)×0.9=0.9x+100;在乙商场:500+×0.95=1260,500+×0.95=2780,500+(x﹣500)×0.95=0.95x+25;填表如下:(2)根据题意得出:0.9x+100=0.95x+25,解得:x=1500,答:当x为1500时,小红在甲、乙两商场的实际花费相同;(3)由0.9x+100<0.95x+25,解得:x>1500,0.9x+100>0.95x+25,解得:x<1500,∴当小红累计购物大于1500时,选择甲商场实际花费少;当累计购物正好为1500元时,两商场花费相同;当小红累计购物超过1000元而不到1500元时,在乙商场实际花费少.答:当小红累计购物超过1000元而不到1500元时,在乙商场实际花费少;正好为1500元时,两商场花费相同;大于1500时,选择甲商场实际花费少.24.如图,有一张直角三角形纸片ABC,∠ACB=90°,∠B=60°,BC=3,直角边AC在x轴上,B点在第二象限,A(,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在的直线上,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA方向平行移动,至B点到达A点停止(记平移后的四边形为B1C1F1E1).在平移过程中,设平移的距离BB1=x,四边形B1C1F1E1与△AEF重叠的面积为S.(1)求折痕EF的长;(2)平移过程中是否存在点F1落在y轴上?若存在,求出x的值;若不存在,说明理由;(3)直接写出S与x的函数关系式及自变量x的取值范围S=.【考点】几何变换综合题.【分析】(1)运用30°的角的直角三角形求解即可求出折痕EF的长.(2)存在,作B1D⊥BC,由(1)可得FO的长,进而可求出B1D的长度,在直角三角形中可求出BB1,即x的值.(3)分4种情况讨论①当0≤x≤2时,即点E到A时经过的面积,②当2<x≤时,S为△AEF的面积,③当<x≤4时,④当4<x≤6时,根据四边形B1C1F1E1与△AEF重叠的面积为S与x关系求出表达式及自变量x的取值范围.【解答】解:(1)∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∵A(,0),∴EO=1,∵∠EFO=60°,∠EOF=90°,∴EF==,(2)存在,理由如下:如图1,作B1D⊥BC,∵FO=,∴B1D=,∠B=60°∴BB1==,即x=,(3)①当0≤x≤2时,即点E到A时经过的面积,如图2,∵AO=,∠ACB=90°,∠B=60°,∴AE=2,∵BB1=EE1=x,∴E1A=2﹣x,∴E1M=(2﹣x),∴S=(EF+E1M)•E1E= [+(2﹣x)]•x=﹣x2+x②当2<x≤时,S为△AEF的面积,所以S=EF•AE=××2=,③当<x≤4时,如图3∵∠ACB=90°,∠B=60°,BC=3,∴AC=3,∵AO=,OF=,∴CF=3﹣﹣=,∴此时BB1=,即当B1C1过点F时x=,当x>时,FM=(x﹣),在RT△NMF中,NM=FM=(x﹣),∴△NMF的面积为:FM•MN=×(x﹣)×(x﹣),∴S=S△AEF﹣S△NMF=﹣×(x﹣)×(x﹣)=﹣x2+x﹣,④当4<x≤6时,如图4,∵∠ACB=90°,∠B=60°,BC=3,∴AB=6,AB1=6﹣x,∴DB1=(6﹣x),AD=(6﹣x),∴S=DA•DB1=×(6﹣x)×(6﹣x)=x2﹣x+,综上可知S与x的函数关系式为:S=,故答案为:S=.25.如图,点A(﹣2,0)、B(4,0)、C(3,3)在抛物线y=ax2+bx+c上,点D在y轴上,且DC⊥BC,∠BCD绕点C顺时针旋转后两边与x轴、y轴分别相交于点E、F.(1)求抛物线的解析式;(2)CF能否经过抛物线的顶点?若能,求出此时点E的坐标;若不能,说明理由;(3)若△FDC是等腰三角形,求点F的坐标.【考点】二次函数综合题.【分析】(1)由抛物线与X轴的两个交点A、B的坐标,可以由两根式设抛物线解析式为:y=a(x+2)(x﹣4),求出a的值即可;(2)由C、B两点坐标利用待定系数法可以求得CB直线方程为:y=﹣3x+12,设CD直线方程可以设为:y=x+m,求出m的值,进而求出D点的值,由抛物线解析式可以顶点公式或对称轴x=1解得顶点M坐标,由C、M两点坐标可以求得CM即CF直线方程,CE直线方程可以设为:y=x+n,求出n的值,进而求出E点的坐标;(3)由C、D两点坐标可以求得CD=,△FDC是等腰△可以有三种情形:①当FD=CD;②FC=CD;③FD=FC,分别求出F点的坐标即可;【解答】解:(1)由抛物线与X轴的两个交点A、B的坐标,可以由两根式设抛物线解析式为:y=a(x+2)(x﹣4),然后将C点坐标代入得:a(3+2)(3﹣4)=3,解得:a=﹣,故抛物线解析式是:y=﹣(x+2)(x﹣4);(2)由C、B两点坐标利用待定系数法可以求得CB直线方程为:y=﹣3x+12,∵CD⊥CB,∴CD直线方程可以设为:y=x+m,将C点坐标代入得:m=2,∴CD直线方程为:y=x+2,∴D点坐标为:D(0,2),由抛物线解析式可以顶点公式或对称轴x=1解得顶点M坐标为M(1,),∴由C、M两点坐标可以求得CM即CF直线方程为:y=﹣x+,∴F点坐标为:F(0,),∴CE直线方程可以设为:y=x+n,将C点坐标代入得:n=,∴CE直线方程为:y=x+,令y=0,解得:x=﹣,∴E点坐标为E(﹣,0),∴能;(3)由C、D两点坐标可以求得CD=,则△FDC是等腰△可以有三种情形:①FD=CD=,则F点坐标为F(0,2+),②FC=CD=,过C点作y轴垂线,垂足为H点,则DH=1,则FH=1,则F点坐标为F(0,4),③FD=FC,作DC的中垂线FG,交y轴于F点,交DC于G点,由中点公式得G点坐标为G(,),由DC两点可以求得DC直线方程为:y=x+2,则FG直线方程可以设为:y=﹣3x+p,将G点坐标代入解得:p=7,故F点坐标为(0,7).。