高三物理狭义相对论的基本原理
狭义相对论知识点总结
dP dt
d (mv) dt
d dt
(
m0 v)
1 2
5、相对论的动量与能量的关系
E2 m2c4 p2c2 E02
x x vt
1 (v)2
逆
c y y
变
z z
换
t
t
v c2
x
1 (v)2
c
ux
dx dt
ux
1
v c2
v ux
速 度 正 变
uy
dy dt
uy
1
v c2
ux
1 2
换
uz
dz dt
uz
1
v c2
ux
1 2
三、狭义相对论时空观
四、狭义相对论动力学基础
1、相对论质量:
m m0
1
v2 c2
m0—静止质量
2、相对论动量: P mv m0 v 1 v2 / c2
3、相对论能量:
静能: E 0 m 0 c 2 总能量:E m c 2 动能: Ek mc2 m0c2
4、狭义相对论力学的基本方程
F
1、同时的相对性
只有在一个惯性系中同时同地发生的事件,在其它惯性 系中必同时发生.
2、长度的收缩
l l0
1
v2 c2
固有长度(原长): 相对物体静止的惯性系 测得长度.
注意:测量长度一定是同时读取两端坐标取差。
3、时间的延缓
t
tt发生的两事件 的时间间隔 .
狭义相对论知识点总结
一、狭义相对论的两个基本假设 1、爱因斯坦相对性原理
物理学中的相对论和狭义相对论
物理学中的相对论和狭义相对论相对论是物理学中一种关于时间、空间、质量和能量等物理量的理论,它是现代物理学的基础,对物质的本质性质产生了深远的影响和重要的启示。
狭义相对论则是相对论的一个分支,主要研究的是相对论的基础理论,如光速不变性、时空的相对性等。
下面,我们将深入了解一下相对论和狭义相对论。
相对论的基本概念相对论是经典物理学与量子力学的桥梁,它对物理学的发展产生了深远的影响。
相对论的基本概念包括:时间的相对性、长度的相对性、物质的相对性、光速的不变性和能量-动量的相对性。
相对论中最基本的概念是时间的相对性,即时间不是一个普遍的或绝对的物理量,而是取决于观察者的参考系。
在相对论的视角下,时间与空间相互关联,形成时空的统一。
这就意味着,两个不同参考系下的事件,可以在时间和空间上发生不同的排序。
长度的相对性是相对论中的另一个基本概念。
同一物体的长度也会因为观察者的不同而发生变化。
在相对论的视角下,物体的长度会随着它的速度而发生变化,这是因为它们越接近光速,它们的相对长度就会越短。
物质的相对性是相对论中最奇妙的概念之一。
它表明,不同的参考系下,物体的质量可能会发生变化。
此外,质量和能量被认为是相互转换的。
根据爱因斯坦的公式,能量等于质量乘以光速的平方,这表明任何物体都可以被视为能量的形式。
相对论中的光速不变性是一个基本的定理,表明在任何参考系中,光速都是相同的。
很长一段时间里,人们认为光速是相对的,而爱因斯坦的理论却彻底改变了这种看法,证明了光速的绝对不变性。
能量-动量的相对性表明,能量和动量同样不是绝对的,而是相对于观察者的参考系。
换句话说,在不同的参考系下,同一物体所具有的能量和动量可以发生变化。
这些变化可能会导致质量、长度和时间等物理量出现异于预期的值。
狭义相对论的基本原理狭义相对论是相对论的一个分支,主要研究相对论的基础理论。
它最初由爱因斯坦提出,是解释光的行为的唯一与时俱进的理论。
狭义相对论的基本原理包括:光速不变性、相对性原理和加速度原理。
狭义相对论的原理
狭义相对论的原理狭义相对论的原理狭义相对论是爱因斯坦于1905年提出的一种物理学理论,它是描述物质和能量之间关系的一种理论。
狭义相对论的原理可以分为以下几个方面:一、光速不变原理光速不变原理是狭义相对论的核心原理之一。
它认为在任何惯性参考系中,光速都是恒定不变的,即无论光源和观察者相对运动的状态如何,光速都保持不变。
这个原理可以用以下公式来表示:c = λf其中c代表光速,λ代表波长,f代表频率。
这个公式说明了在任何情况下,光速都是定值。
二、等效性原理等效性原理认为,在任何加速度下观察到的现象与在重力场中观察到的现象是等价的。
这个原理意味着重力可以被视为加速度。
三、时空相对性原理时空相对性原理认为,在所有惯性参考系中物理规律都应该具有相同的形式。
这个原理意味着时间和空间是相互关联且互不可分割的。
四、质能等价原则质能等价原则是狭义相对论的另一个核心原理。
它认为质量和能量是等价的,即E=mc²。
这个公式说明了质量和能量之间的转换关系。
五、洛伦兹变换洛伦兹变换是狭义相对论中最重要的数学工具之一。
它描述了不同惯性参考系之间时间和空间的变换关系。
洛伦兹变换包括时间、长度、速度和动量等方面。
六、相对性原理相对性原理是狭义相对论的基础之一。
它认为物理规律在所有惯性参考系中都应该具有相同的形式,而没有一个特定的惯性参考系是绝对正确的。
七、时间膨胀时间膨胀是狭义相对论中比较奇特的现象之一。
它指出,在高速运动状态下,时间会变慢,即观察到同一事件所需的时间会增加。
总结:以上就是狭义相对论的原理,其中包括光速不变原理、等效性原理、时空相对性原理、质能等价原则、洛伦兹变换、相对性原理以及时间膨胀等方面。
这些原理共同构成了狭义相对论的理论框架,为我们理解物质和能量之间的关系提供了重要的理论基础。
《狭义相对论的基本原理》 讲义
《狭义相对论的基本原理》讲义在探索物理世界的奥秘时,狭义相对论无疑是一座重要的里程碑。
它以独特的视角和深刻的洞察,改变了我们对时间和空间的理解。
接下来,让我们一起深入了解狭义相对论的基本原理。
一、相对性原理相对性原理是狭义相对论的首要基本原理。
它指出,物理规律在所有惯性参考系中都是相同的。
这意味着什么呢?想象一下,你坐在一辆平稳行驶的火车里,做着各种物理实验,比如测量小球的下落速度、观察光的传播等。
同时,在地面上也有人在做完全相同的实验。
按照相对性原理,无论你在火车里还是在地面上,只要是在惯性参考系中,这些实验的结果应该是一样的,物理规律不会因为你所处的参考系不同而改变。
这个原理打破了以往人们认为存在一个绝对静止的参考系的观念。
过去,人们常常认为存在一个特殊的、绝对静止的空间,其他物体的运动都是相对于这个绝对静止的空间来衡量的。
但相对性原理告诉我们,不存在这样一个特殊的、优越的参考系,所有的惯性参考系都是平等的。
为了更好地理解相对性原理,我们可以思考一个例子。
假设有两艘以匀速直线相对运动的飞船,在每艘飞船上都有一位科学家在进行相同的电磁实验。
根据相对性原理,这两位科学家得到的实验结果应该是一致的,不会因为飞船的相对运动而有所不同。
二、光速不变原理光速不变原理是狭义相对论的另一个基石。
它表明,真空中的光速在任何惯性参考系中都是恒定不变的,与光源和观察者的相对运动无关。
这是一个非常令人惊讶和难以直观理解的概念。
在我们日常生活的经验中,速度是相对的。
比如,一辆行驶的汽车相对于地面的速度和相对于另一辆同向行驶但速度不同的汽车的速度是不一样的。
但光却不同,无论你是静止的还是在运动的参考系中观察,光的速度始终保持不变。
假设你坐在一辆快速行驶的汽车上,打开车头灯。
按照常理,我们可能会认为,对于地面上静止的观察者来说,灯光的速度应该是汽车的速度加上光本身的速度。
但光速不变原理告诉我们,不是这样的,地面观察者测量到的光速仍然是恒定的约 30 万公里每秒。
高中物理第五章相对论第一节狭义相对论的基本原理第二节时空相对性学案含解析粤教版选修
第一节 狭义相对论的基本原理第二节 时空相对性的科学探究思想和逻辑推理方法.一、伽利略相对性原理:力学规律在任何惯性系中都是相同的. 二、狭义相对论的两个基本假设: 1.狭义相对性原理在不同的惯性参考系中,一切物理规律都是相同的; 2.光速不变原理真空中的光速在不同的惯性参考系中是相同的,光速与光源、观察者间的相对运动没有关系.三、时间和空间的相对性 1.“同时”的相对性 “同时”是相对的.在一个参考系中看来“同时”的,在另一个参考系中却可能“不同时”的.2.长度的相对性一条沿自身长度方向运动的杆,其长度总比静止时的长度小.即l ′=l 01-(v c)2式中l 是沿杆运动方向的长度,l 0是杆静止时的长度.3.时间间隔的相对性 从地面上观察,高速运动的飞船上时间进程变慢,飞船上的人则感觉地面上的时间进程变慢.Δt ′=Δt1-(v c)2式中Δt ′是运动的参考系中测得的两事件的时间间隔,Δt 是静止的参考系中测得的两事件的时间间隔.四、相对论的时空观 1.经典物理学的时空观经典物理学认为时间和空间是脱离物质而存在的,是绝对的,时间和空间之间也是没有联系的.2.相对论的时空观相对论认为有物质才有时间和空间,时间和空间与物质的运动状态有关,因而时间与空间并不是相互独立的.预习交流学生讨论:什么是惯性系?什么是非惯性系?答案:牛顿运动定律能够成立的参考系叫惯性系,匀速运动的汽车、轮船等作为参考系就是惯性系.牛顿运动定律不成立的参考系称为非惯性系,例如我们坐在加速的车厢里,以车厢为参考系观察路边的树木、房屋向后方加速运动,根据牛顿运动定律,房屋、树木应该受到不为零的合外力作用,但事实上没有,也就是牛顿运动定律不成立,这里加速的车厢就是非惯性系.相对于一个惯性系做匀速直线运动的另一个参考系也是惯性系.一、对狭义相对论的两个基本假设的理解1.如何理解经典相对性原理?答案:(1)惯性系:如果牛顿运动定律在某个参考系中成立,这个参考系叫做惯性系,相对一个惯性系做匀速直线运动的另一个参考系也是惯性系.(2)这里的力学规律是指“经典力学规律”.(3)本原理可以有不同表示,比如:在一个惯性系内进行的任何力学实验都不能判断这个惯性系是否对于另一个惯性系做匀速直线运动;或者说,任何惯性参考系都是平权的.2.对光速不变原理如何理解?答案:我们经常讲速度是相对的,参考系选取不同,速度也不同,这是经典力学中速度的概念,但是1887年迈克耳孙—莫雷实验中证明的结论是:不论取怎样的参考系,光速都是一样的,也就是说光速的大小与选取的参考系无关,光的速度是从麦克斯韦方程组中推导出来的,它没有任何前提条件,所以这个速度不是指相对某个参考系的速度.3.学生讨论:试述当经典力学时空观遇到光速不变的实验事实这一困难时,爱因斯坦是如何解决的,它的意义如何.答案:爱因斯坦提出了两条基本假设即爱因斯坦相对性原理:在不同的惯性参考系中,一切物理规律都是相同的.“光速不变原理”:不管在哪个惯性系中,测得的真空中的光速都相同.两条基本假设的提出解决了光速不变的困难.同时为狭义相对论的建立奠定了基础,使得人们的时空观发生了重大的变革,使得看似毫无联系的时间与空间紧密地联系在了一起.分析下列几种说法:(1)所有惯性系统对物理基本规律都是等价的.(2)在真空中,光的速度与光的频率、光源的运动状态无关.(3)在任何惯性系中,光在真空中沿任何方向的传播速度都相同.关于上述说法().A.只有(1)(2)是正确的B.只有(1)(3)是正确的C.只有(2)(3)是正确的D.三种说法都是正确的答案:D解析:狭义相对论认为:物体所具有的一些物理量可以因所选参考系的不同而不同,但它们在不同的参考系中所遵从的物理规律却是相同的,即(1)(2)都是正确的.“光速不变原理”认为:在不同的惯性参考系中,光在真空中沿任何方向的传播速度都是相同的.(3)正确.对两个基本原理的正确理解:1.自然规律不仅包括力学规律,还包括电磁学规律等其他所有的物理学规律.2.强调真空中的光速不变,指大小既不依赖于光源或观察者的运动,也不依赖于光的传播方向.3.几十年来科学家采用各种先进的物理技术测量光速,结果都不违背光速不变原理.二、对“同时”相对性的理解1.怎样理解同时的相对性?答案:同时是指两个事件发生的时刻是相同的,“相同”是观察者得出的结论,不同的观察者观察到的结果是不“相同”的.2.怎样理解时间间隔的相对性?答案:运动的时钟变慢:时钟相对于观察者静止时,走得快;相对于观察者运动时,观察者会看到它变慢了,运动速度越快,效果越明显,即运动着的时钟变慢.3.怎样理解经典时空观与相对论时空观的区别?答案:经典力学时空观:绝对的真实的数学时间,就其本质而言,是永远均匀地流逝,与任何外界无关;绝对空间就其本质而言是与任何外界事物无关的,它从不运动,并且永远不变.经典力学时空观的几个具体结论:(1)同时的绝对性:在一个参考系中的观察者在某一时刻观测到两个事件.对另一参考系中的观察者来说是同时发生的,即同时性与观察者做匀速直线运动的状态无关.(2)时间间隔的绝对性:任何事件所经历的时间,在不同的参考系中测量都是相同的,而与参考系的运动无关.(3)空间距离的绝对性:如果各个参考系中用来测量长度的标准相同,那么空间两点的距离也就有绝对不变的量值,而与参考系的选择无关.相对论时空观:空间的大小、时间流逝的快慢都与物体运动的速度有关.4.如图所示:车厢长为L,正以速度v匀速向右运动,车厢底面光滑,两只完全相同的小球,从车厢中点以相同的速率v0相对于车厢分别向前后匀速运动.(1)在车厢内的观察者看来,两球是否同时到达两壁?(2)在地面上的观察者看来,两球是否同时到达两壁?答案:(1)在车厢内的观察者看来,两球同时到达两壁.(2)在地面上的观察者看来,两球不同时到达两壁.解析:(1)在车上的观察者看来,A球经时间t A=L 2v0=L2v0到达后壁,B球经时间t B=L2v0=L2v0到达前壁,因此两球同时到达前后壁.(2)在地面上的观察者看来,A球经时间t A′=L 2v0+v =L2(v0+v)到达后壁,B球经时间t B′=L2v0-v=L2(v0-v)到达前壁,因此两球不同时到达前后壁.如图所示,在地面上M点固定一光源,在离光源等距离的A、B两点上固定有两个光接收器,今使光源发出一闪光,问:(1)在地面参考系中观测,谁先接收到光信号?(2)在沿AB方向高速运动的火车参考系中观测,谁先接收到光信号?答案:(1)同时收到(2)B先接收到解析:(1)因光源离A、B两点等距,光向A、B两点传播的速度相等,则光到达A、B 两点,所需要的时间相等,即在地面参考系中观测,两接收器同时收到光信号.(2)对于火车参考系来说,光源和A、B两接收器都沿BA方向运动,当光源发出的光向A、B传播时,A和B都沿BA方向运动了一段距离到达A′,B′,如图所示,所以光到达A′的距离长,到达B′的距离短,即在火车参考系中观测,B比A先收到光信号.1.经典物理学认为,同时发生的两件事在任何参考系中观察,结果都是同时的.2.相对论观点认为,“同时”是相对的,在一个参考系中看来是“同时”的,在另一个参考系中却可能是“不同时”的.三、长度的相对性如图所示,地面上的人看到杆的M 、N 两端发出的光同时到达他的眼睛,他读出N 、M 的坐标之差为l ,即地面上的观察者测得杆的长度为l 0,若在向右匀速运动的车上的观察者测得的杆长为l ,则l 和l 0是否相等?为什么?答案:不相等,l 0>l ,因为车上的观察者看到N 端先发光,而M 端后发光,车上的观察者测得的长度l 比地上的观察者测得的长度l 0小,这是因为同时的相对性导致了长度的相对性.严格的数学推导告诉我们l 0和l 之间的关系为l =l 01-(vc)2,可见总有l <l 0.在一飞船上测得飞船的长度为100 m ,高度为10 m .当飞船以0.60c 的速度从你身边经过时,按你的测量,飞船有多高、多长?答案:10 m 80 m解析:因为长度收缩只发生在运动的方向上,与运动垂直的方向上没有这种效应,故测得的飞船的高度仍为原来高度10 m .设飞船原长为l 0,观测到飞船的长度为l ,则根据尺缩效应有l =l 01-(v c )2=100×1-(0.6c c)2m =80 m所以观测到飞船的高度和长度分别为10 m 、80 m .1.在垂直于运动方向上,杆的长度没有变化.2.这种长度的变化是相对的,如果两条平行的杆在沿自己的长度方向上做相对运动,与它们一起运动的两位观察者都会认为对方的杆缩短了.3.由l =l 01-(v c)2知v 越小长度的变化越小.四、时间间隔的相对性一列高速火车上发生两个事件:假定车厢上安装着一个墨水罐,它每隔一定时间滴出一滴墨水.墨水在t 1、t 2两个时刻在地上形成P 、Q 两个墨点,设车上的观察者测得两事件间隔为Δt ,地面上的观察者测得两事件间隔为Δt ′,车厢匀速前进的速度为v ,试比较Δt ′和Δt 的大小.答案:Δt >Δt ′解析:车上观察者认为两个事件的时间间隔:Δt =t 2-t 1地面观察者认为两个事件的时间间隔:Δt ′=t 2′-t 1′ 根据公式l =l 01-(v c)2,通过一定的数学推导可以得出:Δt ′=Δt1-(v c)2,即Δt >Δt ′一对孪生兄弟,出生后甲乘高速飞船去旅行,测量出自己飞行30年回到地面上,乙在地面上生活,问甲回来时30岁,乙这时是多少岁?(已知飞船速度v =32c )答案:60岁解析:飞船中的甲经时间Δt ′=30年,地面上的乙经过的时间为Δt =Δt ′1-(v c)2=301-(32c c)2年=60年,可见乙这时60岁了. 1.由“同时”的相对性引起了长度的相对性.从而引起了时间的相对性.2.由Δt ′=Δt1-(v c)2知,v 越大,Δt ′越短.1.某地发生洪涝灾害,灾情紧急,特派一飞机前往,飞机在某高度做匀速直线运动,投放一包救急品,灾民看到物品做曲线运动,飞行员看到物品做自由落体运动,物品刚好落到灾民救济处,根据经典时空观,则下列说法正确的是( ).A .飞机为非惯性参考系B .飞机为惯性参考系C .灾民为非惯性参考系D .灾民为惯性参考系 答案:BD解析:物品投放后,仅受重力作用,飞行员是初速度为零的自由落体运动,符合牛顿运动定律,故飞机为惯性参考系,B 对;而地面上的人员看物品做初速度不为零的抛体运动,也符合牛顿运动定律,D 也对.2.如图所示,强强乘速度为0.9c (c 为真空中的光速)的宇宙飞船追赶正前方的壮壮,壮壮的飞行速度为0.5c ,强强向壮壮发出一束光进行联络,则壮壮观测到该光束的传播速度为( ).A .0.4cB .0.5cC .0.9cD .1.0c答案:D解析:根据爱因斯坦的狭义相对论,在一切惯性系中,光在真空中的传播速度都等于c .故选项D 正确.3.麦克耳孙—莫雷实验说明了以下哪些结论( ). A .以太不存在B .光速的合成满足经典力学法则C .光速不变D .光速是相对的,与参考系的选取有关答案:AC解析:麦克耳孙—莫雷实验证明了光速不变的原理,同时也说明以太是不存在的. 4.假设地面上有一火车以接近光速的速度运行,车内站立着一个中等身材的人,站在路旁的人观察车里的人,观察的结果是( ).A .这个人是一个矮胖子B .这个人是一个瘦高个子C .这个人矮但不胖D .这个人瘦但不高 答案:D解析:取路旁的人为惯性系,车上的人相对于路旁的人高速运动,根据尺缩效应,人在运动方向上将变窄,但在垂直于运动方向上没有发生变化,故选D .5.以8 km/s 的速度运行的人造卫星上一只完好的手表走过了1 min ,地面上的人认为它走过这1 min“实际”上花了多少时间?答案:(1+3.6×10-10)min解析:卫星上观测到的时间为Δt ′=1 min ,卫星运动的速度v =8×103m/s ,所以地面上观测到的时间为Δt =Δt ′1-v 2c 2=11-(8×1033×108)2min=(1+3.6×10-10)min .。
高中物理《相对论简介》知识梳理
1 《相对论简介》知识梳理
【相对论的诞生】
惯性系:如果牛顿运动定律在某个参考系中成立,这个参考系叫做惯性系。
相对于一个惯性系做匀速直线运动的另一个参考系也是惯性系。
相对于一个惯性系做变速运动的另一个参考系是非惯性系,在非惯性系中牛顿运动定律不成立。
伽利略相对性原理:力学规律在任何惯性系中都是相同的。
狭义相对性原理:一切物理定律在任何惯性系中都是相同的。
广义相对性原理:物理规律在任何参考系中都是相同的。
经典速度变换公式:
狭义相对论的两个基本假设:
(1)狭义相对性原理:在不同的惯性参考系中,一切物理规律都是相同的。
(2)光速不变原理:真空中的光速在不同的惯性参考系中都是相同的。
【广义相对论的两条基本原理】
(1)广义相对性原理;
(2)等效原理:一个均匀的引力场与一个做匀加速运动的参考系等价。
【由狭义相对论推出的六个重要结论】
(1)“同时”是相对的。
(2)长度是相对的。
(3)时间是相对的。
(4)质量是相对的。
(5)相对论速度变换公式(是矢量式)
(6)相对论质能关系公式:2
mc E 。
【由广义相对论得出的几个结论】
(1)物质的引力场使光线弯曲。
如远处的星光经过太阳附近时发生偏折。
(2)物质的引力场使时间变慢。
如引力红移:同种原子在强引力场中发光的频率比在较小引力场中发光的频率低。
高三物理学科中的相对论知识点总结与应用
高三物理学科中的相对论知识点总结与应用相对论是物理学中一项重要的理论,它主要由爱因斯坦在20世纪初提出。
在高三物理学科中,相对论也被广泛地涉及和应用。
本文将对高三物理学科中的相对论知识点进行总结,并探讨其应用。
一、狭义相对论知识点总结1. 相对性原理:指出物理规律在惯性参考系下具有相同的形式。
即无论观察者的相对运动如何,物理现象的规律都是不变的。
2. 光速不变原理:无论物体的相对运动如何,光速在真空中的数值都是恒定不变的。
3. 等时原理:不同的观察者在相同的时刻测量到的空间间隔是相同的。
二、狭义相对论的应用1. 时间膨胀:根据狭义相对论的时间膨胀公式,可以计算高速运动物体的时间流逝比静止物体的时间慢。
2. 长度收缩:根据狭义相对论的长度收缩公式,可以计算高速运动物体在运动方向上的长度会缩短。
3. 质能关系:狭义相对论揭示了质量与能量之间的等价关系,即质量可以转化为能量,质能关系表达式为E=mc²。
4. 相对论动量:狭义相对论给出了相对论动量的计算公式,可以描述高速运动物体的动量。
三、广义相对论知识点总结1. 引力场和弯曲时空:广义相对论认为质量和能量会弯曲时空,形成引力场。
2. 时空弯曲的效应:在弯曲的时空中,物体的运动轨迹不再是直线,而是曲线。
光线也会受到引力场的弯曲影响。
3. 等效原理:广义相对论提出,重力场和加速度场的效应等价,即在自由下落的物体中,无法区分是地球的引力作用还是加速度场的作用。
四、广义相对论的应用1. 黑洞:广义相对论揭示了质量足够大的物体会形成黑洞,其中的引力场非常强大。
2. 宇宙膨胀:广义相对论的引力场效应揭示了宇宙的膨胀现象,并提出了宇宙膨胀的宇宙学模型。
3. GPS导航的相对论校正:由于卫星在高速运动中,相对论的效应会导致GPS导航中的时间误差,因此需要进行相对论校正。
综上所述,高三物理学科中的相对论知识点主要涵盖了狭义相对论和广义相对论。
在应用方面,相对论在时间膨胀、长度收缩、质能关系、相对论动量、引力场弯曲等方面都有着广泛的应用。
《狭义相对论的基本原理》 知识清单
《狭义相对论的基本原理》知识清单一、狭义相对论的背景在 19 世纪末,经典物理学在解释许多物理现象时遇到了困难。
比如,麦克斯韦方程组预言了电磁波的存在,并得出电磁波在真空中的速度是一个常数。
但按照经典力学的速度叠加原理,不同惯性系中测量的光速应该是不同的,这就产生了矛盾。
同时,在研究高速运动的微观粒子时,经典物理学的理论也无法给出准确的描述。
正是在这样的背景下,爱因斯坦提出了狭义相对论,对经典物理学进行了重大的修正和拓展。
二、狭义相对论的两个基本原理1、相对性原理相对性原理指出,物理规律在所有惯性系中都是相同的。
这意味着无论我们处于哪个匀速直线运动的惯性参考系中,进行物理实验所得到的结果应该是一样的。
打个比方,如果在一个匀速直线运动的火车厢里做一个物理实验,比如测量小球的下落轨迹,同时在地面上也做同样的实验,只要忽略外界的影响,两个实验的结果应该是相同的。
这就打破了牛顿力学中绝对空间和绝对时间的观念,因为在牛顿力学中,存在一个绝对静止的参考系,而相对性原理否定了这种绝对的参考系。
2、光速不变原理光速不变原理是指真空中的光速在任何惯性系中都是恒定不变的,与光源和观察者的相对运动无关。
假设一个光源向各个方向发出光,无论观察者是静止的还是以一定速度运动,他们测量到的光速都是相同的。
这与我们日常生活中的经验似乎相悖,因为当我们观察一辆行驶中的汽车发出的声音时,声音的速度会因为观察者和汽车的相对运动而有所不同。
但对于光,情况却完全不同,光速始终保持不变。
三、洛伦兹变换为了从数学上描述狭义相对论中的物理量在不同惯性系之间的变换关系,引入了洛伦兹变换。
洛伦兹变换取代了经典力学中的伽利略变换。
在低速情况下,洛伦兹变换可以近似为伽利略变换,但在高速情况下,两者的差异就变得非常显著。
通过洛伦兹变换,可以得到时间和空间的坐标在不同惯性系之间的关系。
比如,一个事件在一个惯性系中的时间和空间坐标,通过洛伦兹变换可以计算出在另一个惯性系中的相应坐标。
狭义相对论的三个时空观
狭义相对论的三个时空观
狭义相对论是爱因斯坦在1905年提出的一种描述时空的理论。
狭义相对论的三个时空观包括:
1. 相对性原理:狭义相对论认为物理定律在所有惯性参考系中都是相同的。
这意味着无论在任何相对于其他物体以匀速运动的参考系中观察,物理现象的规律都是一样的。
相对性原理推翻了牛顿力学中的绝对时空观。
2. 光速不变原理:狭义相对论认为光在真空中的速度是恒定不变的,即与光源的运动状态无关。
这意味着在不同的参考系中观察光的速度都是相同的,即光速是一个绝对不变的常数。
光速不变原理对于描述时间和空间的测量具有重要意义。
3. 时空的相对性:狭义相对论认为时间和空间是相互关联的,构成了一个四维时空的整体。
它引入了时空的弯曲和收缩的概念,即不同的观察者对于事件的时间顺序和空间间距可能有不同的感知。
这就导致了著名的“双生子悖论”和“钟慢效应”等现象,揭示了时间和空间的相对性质。
狭义相对论的基本原理
3)当 u « c 时,γ→1
x' (x ut)
正变换
y' y
回到伽利略变换
z' z
t' (t ux / c2 )
x x ut y y z z t t
4) u > c 变换无意义, 存在极限速度c .
5) 洛仑兹变换与伽利略变换相比,洛仑兹变换中的时 间坐标和空间坐标相互联系在一起 ,不再是独立的了 。时间与空间的测量都与参照系有关,这种新的时空 观叫做狭义相对论的时空观。
1
t' t ux / c2 (t ux / c2 ) 相对论因子
1 (v / c)2
这种变换是已知事件在S系中的时空坐标(x,y,z,
t)变换成事件在S/系中的时空坐标(x/,y/,z/,t/)
。这种变换称为坐标正变换。
6
由S/系到S系的逆坐标变换为:
S系
x'ut'
x
(x'ut')
x2 y2 z2 c2t 2 (1)
S
u
xx O O’ ’
x2 y2 z2 c2t2 (2)
站在S和S/的人都认为自 己是静止不动的,而且
•由发展的观点:
光速也不变的。
u<<c 情况下,狭义 牛顿力学 y y z z
•由于客观事实是确定的:
x, y, z, t 对应唯一的 x, y, z, t
下面的任务是,根据
设: x x t (3) 上述四式,利用比较
t x t
(4)
系数法,确定系数
。
5
最后得到洛仑兹坐标变换:
狭义相对论的两个原理和两个条件
狭义相对论的两个原理和两个条件狭义相对论的两条基本原理是什么?狭义相对论的两条基本原理是狭义相对性原理和光速不变原理。
1、狭义相对性原理一切物理定律(除引力外的力学定律、电磁学定律以及其他相互作用的动力学定律)在所有惯性系中均有效;或者说,一切物理定律(除引力外)的方程式在洛伦兹变换下保持形式不变。
不同时间进行的实验给出了同样的物理定律,这正是相对性原理的实验基础。
2、光速不变原理光在真空中总是以确定的速度c传播,速度的大小同光源的运动状态无关。
在真空中的各个方向上,光信号传播速度(即单向光速)的大小均相同(即光速各向同性)。
光速同光源的运动状态和观察者所处的惯性系无关。
这个原理同经典力学不相容。
有了这个原理,才能够准确地定义不同地点的同时性。
爱因斯坦狭义相对论的两个基本原理爱因斯坦狭义相对论是一种物理学理论,用于解释物质和能量如何在宇宙中运动。
它是爱因斯坦在20 世纪初期提出的,并成为现代物理学的基础之一。
狭义相对论的两个基本原理是:基本不变性原理:所有的观察者,无论他们的相对运动如何,都应该观察到光的速度是相同的。
这意味着,对于不同的观察者来说,光的速度是不受他们的速度的影响的。
引力与加速度的等价原理:所有的质体都应该受到相同的引力作用。
这意味着,无论质体处在什么加速度环境中,它们都应该表现出相同的运动规律。
例如,在地球表面上落下的两个质体,不论它们的质量和形状如何,都应该以相同的加速度掉落。
这两个原理都是爱因斯坦狭义相对论的核心部分,并且在现代物理学中被广泛使用。
它们提供了一种更加精确的方法来解释宇宙中的自然现象,并为我们对宇宙的理解提供了基础。
一、狭义相对论的两个基本假设1、狭义相对性原理:在不同的惯性参考系中,一切物理规律都是相同的。
2、光速不变原理:真空中的光速在不同的惯性参考系中都是相同的。
二、广义相对论:1、广义相对性原理和等效原理①广义相对性原理:在任何参考性中,物理规律都是相同的;②等效原理:一个均匀的引力场与一个做匀加速运动的参考系等价。
《狭义相对论的基本原理》 讲义
《狭义相对论的基本原理》讲义在探索物理学的奇妙世界时,狭义相对论无疑是一座令人瞩目的高峰。
它彻底改变了我们对时间和空间的理解,为现代物理学的发展奠定了坚实的基础。
接下来,让我们一同深入了解狭义相对论的基本原理。
狭义相对论建立在两条基本原理之上。
第一个基本原理是相对性原理。
相对性原理指出,物理规律在所有惯性参考系中都是相同的。
这意味着,无论你是在一个静止的实验室中,还是在一艘以匀速直线运动的飞船里,只要是惯性参考系,你进行的物理实验都会得到相同的结果。
为了更好地理解这个原理,让我们想象一个简单的实验。
假设你在一个封闭的车厢里,无法看到外面的景象。
你手里拿着一个小球,松手让它自由下落。
在这个车厢里,小球会垂直下落。
现在,假设这个车厢正在以匀速直线运动前进,从外面静止的观察者来看,小球的运动轨迹是一条抛物线。
但对于身处车厢内的你来说,小球依然是垂直下落的。
这就是相对性原理的一个直观体现:在不同的惯性参考系中,物理现象的表现形式可能不同,但背后的物理规律是一致的。
第二个基本原理是光速不变原理。
这一原理表明,真空中的光速在任何惯性参考系中都是恒定不变的,与光源和观察者的相对运动状态无关。
想象一下这样的场景:有一束光从一个静止的光源发出。
当你以一定的速度朝着光源运动时,按照我们的日常经验,你会觉得光相对于你的速度变快了。
但在狭义相对论中,不是这样的!无论你是朝着光源运动,还是背向光源运动,光相对于你的速度始终是恒定的,约为299792458 米/秒。
这个原理初看起来似乎与我们的直觉相悖,但它却有着深刻的实验基础和逻辑必然性。
那么,基于这两个基本原理,狭义相对论带来了哪些令人惊叹的结论呢?首先是时间膨胀。
简单来说,运动中的时钟会比静止的时钟走得慢。
这可不是说时钟出了故障,而是时间本身的流逝发生了变化。
假如有一对双胞胎,其中一个留在地球上,另一个乘坐高速飞船去太空旅行。
当旅行者回来时,他会发现留在地球上的兄弟比自己老了很多。
《狭义相对论的基本原理》 讲义
《狭义相对论的基本原理》讲义在物理学的发展历程中,狭义相对论无疑是一座具有里程碑意义的理论大厦。
它由爱因斯坦在 1905 年提出,彻底改变了我们对时间和空间的理解。
接下来,让我们一起深入探讨狭义相对论的基本原理。
首先,我们来谈谈相对性原理。
相对性原理指出,物理规律在所有惯性参考系中都是相同的。
这意味着,无论你是在一个静止的实验室中,还是在一个匀速直线运动的火车上,做相同的物理实验,得到的结果应该是一致的。
比如说,你在地面上抛一个球,观察它的运动轨迹;而在一辆匀速行驶的火车上做同样的抛球实验,只要火车的运动是匀速直线的,那么球的运动规律不会因为参考系的不同而改变。
这个原理打破了以往人们认为存在一个绝对静止的参考系的观念。
在牛顿力学中,存在一个绝对的空间和时间,而狭义相对论告诉我们,这种绝对的观念是不正确的。
接下来是光速不变原理。
这是狭义相对论中一个非常关键且令人惊奇的原理。
光速不变原理说的是,真空中的光速在任何惯性参考系中都是恒定不变的,约为 299792458 米/秒。
这意味着,无论光源是静止的还是运动的,光在真空中的传播速度始终保持不变。
想象一下,有一辆快速行驶的汽车打开了车灯。
按照我们的日常经验,可能会认为汽车跑得越快,灯光向前传播的速度就应该越快。
但狭义相对论告诉我们,不是这样的!无论汽车的速度如何,光的速度都是恒定的。
为了更好地理解这两个原理,我们来思考一个经典的思想实验——火车闪电实验。
假设有一辆很长的火车正在以匀速直线运动行驶。
在火车的两端分别有一个观察者 A 和 B,在火车经过的铁轨旁也有一个静止的观察者C。
当火车经过某个位置时,在这个位置的正上方同时出现两道闪电,分别击中火车的两端。
对于站在铁轨旁的观察者 C 来说,由于闪电同时发生在同一地点,所以他看到闪电的光同时到达他所在的位置。
但是对于火车上的观察者 A 和 B 来说,情况就不同了。
因为火车在运动,当闪电发生时,A 朝着闪电的方向运动,而 B 背着闪电的方向运动。
狭义相对论和广义相对论的基本原理
狭义相对论和广义相对论的基本原理狭义相对论和广义相对论是现代物理学的基本理论之一,它们解释了时间、空间、质量和能量之间的关系。
以下是对这两种相对论的基本原理的讲解。
一、狭义相对论的基本原理狭义相对论是爱因斯坦在1905年提出的理论,它提出了一个与牛顿力学不同的观点,即光速在所有惯性参考系中都是常数。
这一原则被称为“光速不变原理”,它是狭义相对论的核心。
基于“光速不变原理”,狭义相对论提出了以下原则:1. 所有物理定律在所有惯性参考系中都是相同的。
2. 物体的质量随着速度的增加而增加,速度越快,增加的质量越大。
3. 时间和空间是相对的,没有绝对的标准。
4. 能量和质量是等价的,它们之间可以相互转化。
这些原则反映了狭义相对论的基本特征,它推翻了牛顿力学中的一些假设,如时间和空间的绝对性、万有引力的绝对性等。
狭义相对论为我们提供了更加准确和完整的描述物理规律的框架,同时也为后来的广义相对论的发展提供了基础。
二、广义相对论的基本原理广义相对论是爱因斯坦在1916年提出的理论,它是在狭义相对论的基础上进一步发展而来的。
广义相对论初衷是想解释引力的本质,它基于“等效原理”提出了新的物理规律。
广义相对论的基本原理包括:1. 等效原理:自由下落的物体在惯性参考系中运动是匀速直线运动。
2. 引力不是一种真正的力,而是由物体所在空间弯曲而产生的一种现象。
3. 时间和空间的弯曲程度受到物质分布的影响。
4. 光线会沿着最短路径传播。
这些原理反映了广义相对论的基本特征,它描述了物质的引力性质和空间的几何形态之间的关系。
广义相对论证明了狭义相对论中的“光速不变原理”是任何物质和能量影响的最高速度,同时也为黑洞、宇宙学等领域的研究提供了新的工具和思路。
狭义相对论和广义相对论是现代物理学中最基本的理论之一,它们提供了理解时空的新视角和解释物理规律的新方法。
【狭义相对论】狭义相对论建立在“光速不变原理”之上,它意味着在不同的参考系中,光的速度是恒定不变的。
《狭义相对论的基本原理》 讲义
《狭义相对论的基本原理》讲义在物理学的发展历程中,爱因斯坦的狭义相对论无疑是一座具有里程碑意义的理论大厦。
它以其独特的视角和深刻的洞察,彻底改变了我们对时间和空间的理解。
接下来,让我们一同走进狭义相对论的世界,深入探讨其基本原理。
一、相对性原理相对性原理是狭义相对论的核心支柱之一。
它指出,物理规律在所有惯性参考系中都是相同的。
这意味着,无论我们是处于静止状态还是以匀速直线运动的状态观察物理现象,所遵循的物理定律都应该是一致的。
想象一下,你坐在一辆匀速行驶的火车上,车内有一个小球自由下落。
对于车内的你来说,小球是垂直下落的。
而对于站在地面上的观察者,由于火车的运动,小球的下落轨迹看起来是一条斜线。
但神奇的是,通过运用相同的物理定律,无论是你还是地面上的观察者,都能准确地描述和预测小球的运动。
相对性原理打破了传统的绝对时空观。
在牛顿力学中,存在一个绝对静止的空间和绝对均匀流逝的时间。
而狭义相对论告诉我们,不存在这样的绝对参考系,所有的惯性参考系都是平等的。
二、光速不变原理光速不变原理是狭义相对论中另一个令人惊叹的基本原理。
它表明,真空中的光速在任何惯性参考系中都是恒定不变的,其大小约为299792458 米/秒。
这与我们日常生活中的经验似乎有些相悖。
比如,当我们坐在一辆飞驰的汽车上向前扔出一个球,球的速度会是汽车的速度加上我们扔球的速度。
但对于光来说,无论光源是静止的还是运动的,光的速度始终保持不变。
假设一艘宇宙飞船以接近光速的速度飞行,当飞船上的人打开一盏灯时,这束光对于飞船内的人和地球上的观察者来说,速度都是一样的。
光速不变原理是狭义相对论中许多奇妙结论的根源。
它使得时间和空间不再是绝对的,而是相对的,取决于观察者的运动状态。
三、时间膨胀由于光速不变原理,导致了一个奇特的现象——时间膨胀。
简单来说,运动的时钟会比静止的时钟走得慢。
为了更好地理解这一点,我们可以想象一个思想实验。
有一对双胞胎,其中一个留在地球上,另一个乘坐高速飞船去太空旅行。
狭义相对论的基本原理和推论
狭义相对论的基本原理和推论狭义相对论,作为现代物理学中的重要理论之一,对于我们理解宇宙的运行规律和空间时间的统一起到了至关重要的作用。
在科学研究中具有重要的意义,本文将对狭义相对论的基本原理和推论进行深入研究,探讨其在物理学中的应用和影响。
第一章狭义相对论的历史背景# 1.1 牛顿力学的局限性牛顿力学是在17世纪由牛顿创立的经典物理学理论,是描述宇宙运动规律的重要工具。
然而,随着科学技术的不断发展和实验数据的不断丰富,人们逐渐意识到牛顿力学在描述高速运动和微观粒子运动时存在一定的局限性。
# 1.2 麦克斯韦电磁理论的挑战19世纪中期,麦克斯韦提出了电磁场理论,将电磁场统一到了一种方程中。
这一理论对于当时的物理学家来说是一个巨大的挑战,因为麦克斯韦的理论预言了电磁波的存在,这种波动介质必然是以光速传播的。
# 1.3 惯性系和相对论原理爱因斯坦在研究运动物体的时候发现,他们的运动与观察者的运动状态息息相关。
这就引出了狭义相对论的概念,即不同惯性系之间的相对运动是没有绝对的意义的。
第二章狭义相对论的基本原理# 2.1 相对性原理狭义相对论的基本原理就是相对性原理,它包含了以下两点内容:一是物理规律在所有惯性系中都是相同的;二是光在真空中的速度在所有惯性系中都是恒定的,即光速不变原理。
# 2.2 同步坐标系和尺缩效应根据狭义相对性理论,两个相对运动的参考系之间的时间和空间的测量是不同的。
当两个时钟相对静止时,它们显示的时间相同,但是当它们相对运动时,它们的时间会出现错位。
此外,根据洛伦兹收缩公式,当一个物体以接近光速的速度运动时,其长度在运动方向上会发生压缩。
# 2.3 双缝实验和时钟测量双缝实验是验证量子力学的重要实验之一,而在狭义相对论中也有类似的实验来验证其基本原理。
在双缝实验中,光同时通过两个狭缝,根据光的波动性质,会出现干涉条纹。
而在时钟测量中,当两个钟相对运动时,它们的时间会有微小的差异,这也是狭义相对论所描述的现象。
介绍狭义相对论的核心概念
介绍狭义相对论的核心概念狭义相对论是物理学领域里最为重要的理论之一,它是现代物理学的基石,在解释自然现象和发展先进技术方面起着重要作用。
本文将介绍狭义相对论中的核心概念,包括相对性原理、光速不变原理和洛伦兹变换等,让读者对这一重要理论有更深刻的理解。
一、相对性原理相对性原理是狭义相对论的基础。
相对性原理最初的表述是由加利福尼亚州伯克利的爱因斯坦提出的,它的核心思想就是:“在相对静止的惯性参照系中,自然定律的形式应该是不变的。
”相对静止的惯性参照系是指相对于被观测对象静止的参考系。
在这个惯性参照系里,物理规律和公式是适用的,这种惯性参照系也可以被称为“真实参照系”。
相对性原理之所以被称为“相对性”是因为它的发现是相对于之前无限透明的伽利略相对性的,因为伽利略相对性对于自然定律的适用性有所限制。
相对性原理的推出对于整个自然科学都具有深刻的意义,因为它证明自然定律是不存在万有性。
二、光速不变原理光速不变原理也是狭义相对论的核心概念之一,它指出通过空气、水、玻璃等介质的光速都是相同不变的,这一原理早在艾萨克·牛顿时代就已经被认为是不成立的,但直到爱因斯坦提出狭义相对论后,光速不变原理才得到了证明。
光速不变原理的应用最为广泛的就是光时钟实验,这种实验利用了光速不变的原理。
在这种实验中,光的运动速度被用作时间的标准,可以通过比较光时钟的发射光束和反射光束的时间差来测量时间的流逝。
光速不变原理不仅与理论推导相关,也在实际中得到了充分的验证和应用。
三、洛伦兹变换狭义相对论中的一项关键概念是洛伦兹变换,它是一组方程,描述了时间、空间、物质之间的关系。
洛伦兹变换可以被用来计算参照系间的物理量转换,尤其是当两个相对静止的观测者观测到同一个事件时。
狭义相对论中的主要应用之一是描述高速运动密闭系统的行为。
对于例子,当我们看向惯性系统中运动的粒子时,由于相对性原理,我们能够预测到相对物体的移动情况。
在这种情况下,通过洛伦兹变换,我们可以得到对象的质量和速度的变化,这对于高速飞行器的设计和探测器的设计都具有重要意义。
《狭义相对论的基本原理》 讲义
《狭义相对论的基本原理》讲义在物理学的发展历程中,狭义相对论无疑是一座重要的里程碑。
它彻底改变了我们对时间和空间的理解,对现代物理学的发展产生了深远的影响。
接下来,让我们一同深入探讨狭义相对论的基本原理。
一、相对性原理相对性原理是狭义相对论的首要基本原理。
它指出,物理规律在所有惯性参考系中都是相同的。
这意味着,无论我们处于何种匀速直线运动的惯性参考系中,进行物理实验和观察所得到的结果应该遵循相同的物理规律。
为了更好地理解相对性原理,我们可以想象这样一个场景:在一辆匀速直线行驶的火车上,有一个人在做一个物理实验,比如测量光在真空中的传播速度。
同时,在地面上也有一个人在做同样的实验。
按照相对性原理,他们所得到的测量结果应该是完全一致的,不会因为火车的运动状态而有所不同。
相对性原理打破了传统的绝对时空观。
在牛顿力学中,存在着一个绝对静止的参考系,而狭义相对论则否定了这种绝对静止的存在,强调了参考系的相对性。
二、光速不变原理光速不变原理是狭义相对论的另一个核心基本原理。
它表明,真空中的光速在任何惯性参考系中都是恒定不变的,与光源和观察者的相对运动状态无关。
这一原理与我们日常生活中的经验似乎有所冲突。
通常,当我们观察一个运动的物体时,它的速度会因为我们自身的运动状态而发生变化。
但对于光来说,情况却完全不同。
无论我们是朝着光源运动,还是背离光源运动,或者光源本身在运动,我们测量到的光速始终是一个恒定的值,约为 299792458 米/秒。
为了验证光速不变原理,科学家们进行了许多实验。
其中,迈克尔逊莫雷实验是一个重要的例证。
这个实验试图测量地球在以太中运动时对光速的影响,但结果却发现光速没有任何变化,这为狭义相对论的提出奠定了实验基础。
三、时间膨胀狭义相对论带来的一个令人惊讶的结果是时间膨胀。
当一个物体以接近光速的速度运动时,相对于静止的观察者,运动物体上的时间会变慢。
这可以通过一个简单的思想实验来理解。
假设在地球上有一个精确的时钟,同时在一艘高速飞行的宇宙飞船上也有一个相同的时钟。
《狭义相对论的基本原理》 讲义
《狭义相对论的基本原理》讲义在物理学的广袤领域中,狭义相对论无疑是一颗璀璨的明珠。
它以独特的视角和深刻的洞察,改变了我们对时间和空间的理解。
接下来,让我们一同深入探索狭义相对论的基本原理。
狭义相对论的诞生并非偶然,而是在经典物理学面临一系列挑战时应运而生。
19 世纪末,随着电磁学的迅速发展,人们发现经典力学与电磁学之间存在着一些难以调和的矛盾。
特别是光速不变这一现象,无法用经典的速度叠加原理来解释。
狭义相对论的两个基本原理是相对性原理和光速不变原理。
相对性原理指出,物理规律在所有惯性参考系中都是相同的。
这意味着无论我们处于怎样的匀速直线运动状态,所观察到的物理现象都应该遵循相同的规律。
想象一下,你坐在一辆平稳行驶的火车中,如果你不看窗外,不借助任何外部参考,你所进行的物理实验结果和在地面上进行的是完全一样的。
而光速不变原理则更加令人惊叹。
它表明,真空中的光速在任何惯性参考系中都是恒定不变的,恒为 c ,约为 299792458 米/秒。
这与我们日常生活中的经验似乎大相径庭。
通常情况下,当我们坐在一辆行驶的汽车上,向车外扔出一个球,球的速度是汽车速度与我们抛出速度的叠加。
但对于光来说,无论光源是静止的还是运动的,光的速度始终保持不变。
为了更好地理解这两个原理,让我们通过一些思想实验来感受一下。
假设有一辆高速行驶的火车,车厢中间有一盏灯。
当灯被打开时,光线同时向车头和车尾传播。
在火车上的观察者会看到光线同时到达车头和车尾,因为在他的参考系中,光向两个方向传播的速度相同,且车厢长度是固定的。
然而,对于站在地面上的观察者来说,情况就有所不同了。
由于火车在运动,当光线传播的同时,火车也在向前行进。
但神奇的是,尽管如此,他所观测到的光到达车头和车尾的时间仍然是相同的,这正是光速不变原理的体现。
基于这两个基本原理,狭义相对论引出了一系列奇妙的结论。
首先是时间膨胀效应。
简单来说,运动的时钟会变慢。
假设一个宇航员以接近光速的速度进行太空旅行,当他返回地球时,会发现地球上已经过去了很长时间,而他自己经历的时间却相对较短。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
狭义相对论基本原理
伽利略相对性原理 经典力学的时空观
一、伽利略(牛顿力学)相对性原理
对力学规律而言,所有的惯性系都是等价的或在一个惯性系中,所作的任何理学实验都不能够确定这一惯性系本身是静止状态,还是匀速直线运动。
力学中不存在绝对静止的概念,不存在一个绝对静止优越的惯性系。
二、伽利略坐标变换式 经典力学时空观
设当O 与O '重合时0t t
='=作为记时的起点
同一事件:K 系中)t ,z ,y ,x (
K '系中)t ,z ,y ,x (''''
按经典观念:⎪⎪⎩⎪⎪⎨⎧='='='-='t t z z y y vt x x 或⎪⎪⎩⎪⎪⎨⎧'
='
='='
+'=t t z z y y t v x x
⎪⎩⎪⎨⎧'='=+'=⎪⎩⎪⎨⎧='='-='⇒'='=z
z y y x x z z y y x x u u u u v u u u u u u v u u t d dt ,t t 或
所谓绝对时空:
1、时间:时间间隔的绝对性与同时的绝对性,即t t ,t t ='∆='
∆。
时间是与参照系无关
的不变量。
2、空间:若有一把尺子,两端坐标分别为 K 中:)t ,z ,y ,x (P ),t ,z ,y ,x (P 22221111
K '中:)
t ,z ,y ,x (P ),t ,z ,y ,x (P 22221111''''''''' 有222222z y x r ,z y x r
'∆+'∆+'∆='∆∆+∆+∆=∆ 由,t t ='得r r '∆=∆,即:长度(空间间隔)是与参照系无关的不变量或长度(空间间隔)的绝对性。
a a ='即⎪⎩⎪⎨⎧='='='z z y y x x a a a a a a
且认为m m ,F F ='='
因此:在K '中,有a m F ''=' ,得K 中a m F =
由牛顿的绝对时空以及“绝对质量”的概念,得到牛顿相对性原理。
总结:牛顿定律在所有惯性系都具有相同的表述形式,即牛顿定律在伽利略变换下是协变的,牛顿力学符合力学相对性原理。
三.引子:相对论主要是关于时空的理论
局限于惯性参考系的理论称为狭义相对论,推广到一般参考系和包括引力场在内的理论称为广义相对论。
牛顿力学的困难:
例子:○
1打排球,发点球 ○2超新星爆发过程中光线传播引起的疑问,如“蟹状星云”有较为祥实的记载。
“客星”最初出现于公元1054年,历时23天,往后
慢慢暗下来,直到1056年才隐没。
按牛顿观点:
1500v ≅km.s -1
5000l ≅光年
会持续25年,能看到超新星开始爆发时发出的强光,其实不然
○
3电动力学的例子 物理规律需要用一定参考系来表述
麦克斯韦方程组⇒波动方程⇒真空中光速c ⇒以太参考系⇒寻找以太参考系⇒
寻找
到?
爱因斯坦提出:所面临的困难处境:
1.存在力学相对性原理,但不适于电动力学,对电动力学存在一个优越的惯性系――以太参考系。
2.存在一个既适用于力学,又适用于电动力学的相对性原理。
但麦克斯韦给出的电动力学规律――麦克斯韦方程组但不正确。
3.存在一个既适用于力学,又适用于电动力学的相对性原理,但牛顿给出的力学不正确。
爱因斯坦认为:这种不对称不像是自然现象本身所固有的问题,大概发生在我们所习惯的旧概念和理论上。
他发现:只要把作为经典物理学基础的空间和时间观念加以改变,这种“不对称”就可以消除。
他猜想:绝对静止这一概念,不仅在力学中,而且在电动力学中也不符合现象的特性。
四.狭义相对论基本原理(将猜想提升为假设)
1.狭义相对论的相对性原理(力学相对性原理的推广)
对一切物理规律而言,所有惯性系都是等价的
2.光速不变原理
真空中的光速向对于任何惯性系沿任一方向恒为c,且与光源运动无关。