2011-Adaptive Pulse Coupled Neural Network
高性能PtS2
第42卷 第1期吉林大学学报(信息科学版)Vol.42 No.12024年1月Journal of Jilin University (Information Science Edition)Jan.2024文章编号:1671⁃5896(2024)01⁃0074⁃07高性能PtS 2/MoTe 2异质结红外光电探测器收稿日期:2023⁃01⁃12基金项目:上海市自然科学基金资助项目(15ZR1627300)作者简介:潘生生(1995 ),男,合肥人,上海理工大学硕士研究生,主要从事二维光电材料研究,(Tel)86⁃187****3664(E⁃mail)2351948787@;通讯作者:袁涛(1983 ),女,上海人,上海理工大学教授,博士,主要从事新能源材料研究,(Tel)86⁃181****3228(E⁃mail)4673250167@㊂潘生生1,袁 涛1,周孝好2,王 振2(1.上海理工大学理学院,上海200093;2.中国科学院上海技术物理研究所,上海200092)摘要:由于光电探测器的工作性能直接关系到系统数据采集质量,为此,对高性能PtS 2/MoTe 2异质结红外光电探测器进行了研究㊂通过选取材料㊁试剂和设备制作了PtS 2/MoTe 2异质结红外光电探测器㊂搭建探测器性能测试环境,并利用光响应度㊁探测率㊁响应时间和光电导增益4个指标,分析探测器性能㊂结果表明,随着测试时间的推移,PtS 2/MoTe 2异质结红外光电探测器的光响应度数值始终处于5A /W 限值以上;无论对采集何种材质反射的红外光,探测器探测率均大于10cm㊃Hz1/2W -1;无论光生电流是处于上升还是下降时间,其响应时间始终在限值150μs 以下;光电导增益值保持在80%以上㊂关键词:PtS 2/MoTe 2异质结红外光电探测器;光响应度;探测率;光电导增益中图分类号:TP365.66文献标志码:AHigh Performance PtS 2/MoTe 2Heterojunction Infrared PhotodetectorPAN Shengsheng 1,YUAN Tao 1,ZHOU Xiaohao 2,WANG Zhen 2(1.College of Science,Shanghai University of Technology,Shanghai 200093,China;2.Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200092,China)Abstract :As one of the important components of the detection system,the performance of photoelectric detector is directly related to the quality of system data acquisition.In order not to affect the final detection result,it is essential to ensure the detector performance.The performance of high performance PtS 2/MoTe 2heterojunction infrared photodetector is studied.First,the materials,reagents and equipment are prepared to make PtS 2/MoTe 2heterojunction infrared photodetectors.The detector performance test environment,the four indicators of light response,detection rate,response time and photoconductivity gain are set up,and the detector performance is analyzed.The results show that the optical responsivity of PtS 2/MoTe 2heterojunction infrared photodetector is always above the 5A /W limit with the passage of test time.The detection rate of the detector is greater than 10cm㊃Hz1/2W -1regardless of the infrared light reflected from any material.Whether the photocurrent is in the rising time or the falling time,its response time is always below the limit of 150μs;The photoconductivity gain value has been kept above 80%.Key words :PtS 2/MoTe 2heterojunction infrared photodetector;optical responsivity;detection rate;photoconductivity gain0 引 言目标检测是一个确定目标缺陷㊁故障㊁属性㊁类型的过程,其是很多领域的研究重点课题㊂在目标检测过程中,基础数据采集是首要环节,其质量直接关系到目标检测结果的准确性[1]㊂针对目标的不同,基础数据的采集手段也各不相同,如振动传感㊁雷达㊁光电探测系统等㊂其中,光电探测系统根据发射光的颜色不同,又分为紫外光㊁可见光及红外光等[2]㊂而其中红外光由于探测范围较为广泛,使其成为光电探测系统中的重要组成部分㊂其工作原理是反射光照射到半导体材料上后,会吸收光能量,则会触发光电导效应,从而将红外光转换为电信号[3]㊂红外光电探测器是整个探测系统的 核心”,因此其性能会直接影响数据采集质量,进而影响整个探测工作质量㊂基于上述分析,人们对红外光电探测器性能进行了大量分析研究㊂周国方等[4]以石墨烯材料为基础并利用碱刻蚀法合成金字塔状硅,形成异质结,制备近红外光探测器,并针对其响应速度㊁比探测率㊁光电流等性能进行了检测㊂秦铭聪等[5]首先选取探测器制备所需要的材料并制备了各个组成元件,然后将这些元件组合,构成了高性能近红外有机光探测器件,最后针对响应度和比探测率㊁线性动态范围LDR(Low Dynamic Range)㊁光开关特性和响应时间等性能进行了分析㊂皇甫路遥等[6]以二硫化钼和二硒化钨为基础,利用蒸镀机热蒸镀法制备成异质结光电探测器,然后针对该设备进行了拉曼荧光㊁输出㊁光电特性的分析㊂在上述研究基础上,笔者制备高性能PtS 2/MoTe 2异质结红外光电探测器并对其性能进行研究,以期为红外光电探测器设计和应用提供参考㊂1 高性能PtS 2/MoTe 2异质结红外光电探测器设计1.1 材料制备二硫化铂(PtS 2)是一种过渡金属硫族层间化合物,其光响应特性优秀,因此广泛用于光电探测器的设计中;二碲化钼(MoTe 2)是一种N 型半导体材料,具有良好的光吸收性㊁半导体特性以及同质结效率,可保证电子在其中迅速运动[7]㊂这两种材料是形成探测器光电导效应的主要原料㊂其基础性质如表1所示㊂表1 PtS 2和MoTe 2的性质 2和MoTe 2两种主要材料外,还需要衬底材料,以承载PtS 2和MoTe 2氧化硅,来自浙江精功科技股份有限公司,该硅片基础参数如下:氧化层厚度:50~200μm;晶向:〈100〉;掺杂类型:P;电阻率:1~3Ω㊃cm㊂1.2 试剂制备PtS 2/MoTe 2异质结红外光电探测器制备所需试剂如表2所示㊂表2 探测器制备所需试剂57第1期潘生生,等:高性能PtS 2/MoTe 2异质结红外光电探测器1.3 设备选取PtS 2/MoTe 2异质结红外光电探测器制备所需设备如表3所示㊂表3 探测器制备所需设备Tab.3 Equipment required for detector preparation设备名称型号生产厂家旋涂仪SPIN200i⁃NPP 北京汉达森机械技术有限公司电子束蒸发系统FC /BCD⁃2800上海耀他科技有限公司扫描电子显微镜WF10X /23上海锦玟仪器设备有限公司鼓风干燥箱xud 东莞市新远大机械设备有限公司超声清洗机SB⁃50江门市先泰机械制造有限公司无掩模光刻机Micro⁃Writer ML3英国DMO 公司氮气枪沈阳广泰气体有限公司双温区管式炉MY⁃G3洛阳美优实验设备有限公司紫外曝光系统UVSF81T007356复坦希(上海)电子科技有限公司三维转移平台SmartCART北京昊诺斯科技有限公司1.4 红外光电探测器制作工艺基于表1~表3给出的制备材料㊁试剂和设备,制备出高性能PtS 2/MoTe 2异质结红外光电探测器用于性能测试[9]㊂具体过程如下㊂步骤1) 制作衬底㊂①氧化硅片切割成直径为1cm 的圆形硅片;②将圆形硅片放入准备好的烧杯容器中;③在其中加入丙酮溶液,浸泡10min;④取出硅片后,放入乙醇溶液中,再次浸泡10min;⑤将硅片放入去离子水中并同时利用超声清洗机清洗5min,用氮气枪吹干表面的水分,完全去除附着在硅片表面的有机物和杂质;⑥利用氢氟酸溶液去除氧化层;⑦通过外延生长技术得到p 型硅;⑧进行紫外臭氧处理20min,得到衬底[10]㊂步骤2) 利用热辅助硒化法制备PtS 2和MoTe 2薄膜㊂步骤3) 将PtS 2薄膜贴到衬底上,得到薄层PtS 2样品㊂步骤4) 在薄层PtS 2样品上均匀旋涂上聚甲基丙烯酸甲酯㊂步骤5) 在显微镜和三维转移平台下将MoTe 2薄膜进行精确定位,然后对准并贴合在一起㊂步骤6) 利用鼓风干燥箱干燥处理㊂步骤7) 浸泡氢氟酸溶液㊁捞取㊁烘烤㊁去胶和退火,完成PtS 2/MoTe 2异质结制备[11]㊂图1 PtS 2/MoTe 2异质结红外光电探测器示意图Fig.1 Schematic diagram of PtS 2/MoTe 2heterojunction infrared photodetector步骤8) 在PtS 2/MoTe 2异质结上光刻出图形,形成微结构㊂步骤9) 利用紫外曝光和湿法刻蚀工艺制备出晶体管栅极㊂步骤10) 利用电子束曝光结合电子束蒸发系统制备出源漏电极㊂步骤11) 完成高性能PtS 2/MoTe 2异质结红外光电探测器的制作如图1所示㊂67吉林大学学报(信息科学版)第42卷2 光电探测器性能测试对制备好的PtS 2/MoTe 2异质结红外光电探测器进行性能测试㊂其测试工作分为两部分,一是设定测试环境,二是确定测试指标[12]㊂2.1 设定测试环境图2 红外光电探测器测试环境Fig.2 Test environment of infrared photodetector 红外光电探测器是光电探测系统中的重要组成部分,光电探测系统主要用于目标检测,因此为测试所制备的PtS 2/MoTe 2异质结红外光电探测器性能,需要搭配其他系统构成测试环境,如图2所示[13]㊂应用所设计的PtS 2/MoTe 2异质结红外光电探测器采集反射信号,测试持续10min㊂记录期间内探测器的相关工作参数,以便性能指标的计算[14]㊂2.2 性能测试指标针对所设计的PtS 2/MoTe 2异质结红外光电探测器,选用以下4个指标进行性能评定,即光响应度㊁探测率㊁响应时间和光电导增益[15]㊂1)光响应度㊂描述探测器光电转换能力的指标,该指标越大,说明探测器的光电转换能力越好㊂计算如下:A =a 1/B ,(1)其中A 表示光响应度,a 1表示光照射下产生的光生电流,B 表示入射光功率㊂光响应度大于5A /W 为高性能标准㊂2)探测率㊂反射的光信号中部分信号是十分微弱的,并不容易被采集到,因此要求探测器具有良好的针对微弱信号的探测能力,探测率就是描述该能力的最直观指标,该指标越大,说明探测器的针对微弱信号的探测能力越好[16]㊂计算如下:C =a 2L /D ,(2)其中D =G 1/A ,(3)其中C 表示探测率,大于10cm㊃Hz1/2W -1为高性能标准,a 2表示器件有效面积,L 表示带宽,D 表示噪声等效功率,G 1表示1Hz 带宽的噪声电流㊂红外光电探测器常用于不同材质目标的检测,因此保证其适用性是非常重要的㊂为此,在文中设置3种材质或属性的探测目标,即混凝土材质㊁金属材质以及人体㊂针对这3种材质或属性的探测目标,测试其探测率变化情况㊂3)响应时间㊂其反映了光电探测器对入射光信号响应的快慢,包括上升和下降时间㊂上升时间是指光生电流从10%上升到90%的这段时间,而下降时间则相反㊂实际应用中对光照快速响应的需求为小于等于150μs,且时间越短,表示器件响应越快㊂计算如下:E =~A[1+(2πeg )2]1/2T ,(4)其中E 表示响应时间,~A表示静态光照下的光响应度,e 表示电子电荷的数值,T 表示时间长度㊂4)光电导增益㊂其指标描述了光作用下外电路电流的增强能力㊂计算如下:H =(a 1/N )MP×100%,(5)其中H 表示光电导增益,该值越大,说明探测器工作越稳定,以80%为标准,大于该值认为探测器达到高性能标准;N 表示光电子的电荷量,P 表示探测器的电子转移效率,M 表示光电子数目㊂77第1期潘生生,等:高性能PtS 2/MoTe 2异质结红外光电探测器3 性能测试结果与分析3.1 光响应度图3为光响应度测试结果㊂从图3可看出,随着测试时间的推移,光响应度波动较小,基本保持稳定㊂并且光响应度数值始终处于5A /W 限值以上,说明所设计的PtS 2/MoTe 2异质结红外光电探测器达到了高性能标准㊂3.2 探测率图4为探测率测试结果㊂从图4可看出,无论是采集何种材质反射的红外光,所设计的探测器探测率均大于10cm㊃Hz1/2W -1,说明该探测器针对微弱信号具有较强的检测能力,达到高性能标准㊂ 图3 光响应度测试结果 图4 探测率测试结果 Fig.3 Optical responsivity test results Fig.4 Detection rate test results3.3 响应时间图5为响应时间测试结果㊂从图5可看出,无论光生电流处于上升还是下降时间,其响应时间始终在限值150μs 以下,说明所设计的探测器能快速检测入射光信号,完成信号采集工作㊂图5 响应时间测试结果Fig.5 Response time test results图6 光电导增益测试结果Fig.6 Photo conductivity gain test results3.4 光电导增益图6为光电导增益测试结果㊂从图6可看出,随着时间的推移,光电导增益值并没有随之下降,虽然有所波动,但也一直保持在80%以上,证明了所设计探测器的性能㊂4 结 语红外探测器是光电探测系统中的最重要组成部分,起到数据收集的重要作用,而收集的数据质量越高,探测结果越准确㊂因此,保证探测器的工作性能87吉林大学学报(信息科学版)第42卷对于数据收集工作具有重要作用㊂为此,进行了高性能PtS 2/MoTe 2异质结红外光电探测器性能研究㊂并以PtS 2/MoTe 2为基础设计一款探测器,同时测定了探测器的4个指标,分析了其探测性能㊂实验结果表明,tS 2/MoTe 2异质结红外光电探测器的光响应度㊁探测率㊁光电导增益均较高,响应时间在限值150μs以下㊂通过本研究以期为PtS 2/MoTe 2异质结红外光电探测器的研究和应用提供参考㊂参考文献:[1]林亚楠,吴亚东,程海洋,等.PdSe 2纳米线薄膜/Si 异质结近红外集成光电探测器[J].光学学报,2021,41(21):184⁃192.LIN Y N,WU Y D,CHENG H Y,et al.Near⁃Infrared Integrated Photodetector Based on PdSe 2Nanowires Film /Si Heterojunction [J].Acta Optica Sinica,2021,41(21):184⁃192.[2]支鹏伟,容萍,任帅,等.g⁃C 3N 4/CdS 异质结紫外⁃可见光电探测器的制备及其性能研究[J].光子学报,2021,50(9):252⁃259.ZHI P W,RONG P,REN S,et al.Preparation and Performance Study of g⁃C 3N 4/CdS Heterojunction Ultraviolet⁃Visible Photodetector [J].Acta Photonica Sinica,2021,50(9):252⁃259.[3]翁思远,蒋大勇,赵曼.P3HT ∶PC(61)BM 作为活性层制备无机/有机异质结光电探测器的研究[J].光学学报,2022,42(13):17⁃24.WENG S Y,JIANG D Y,ZHAO M.P3HT ∶PC(61)BM as Active Layer for Preparation of Inorganic /Organic Heterojunction Photodetector [J].Acta Optica Sinica,2022,42(13):17⁃24.[4]周国方,蓝镇立,余浪,等.高性能石墨烯/金字塔硅异质结近红外光探测器[J].激光与红外,2022,52(4):552⁃558.ZHOU G F,LAN Z L,YU L,et al.High⁃Performance Graphene /Pyramid Silicon Heterojunction near Infrared Photoelectric Detector [J].Laser &Infrared,2022,52(4):552⁃558.[5]秦铭聪,李清源,张帆,等.基于窄带系DPP 类聚合物的高性能近红外有机光探测器件[J].高分子学报,2022,53(4):405⁃413.QIN M C,LI Q Y,ZHANG F,et al.High Performance Near⁃Infrared Organic Photodetectors Based on Narrow⁃Bandgap Diketopyrrolopyrrole⁃Based Polymer [J].Acta Polymerica Sinica,2022,53(4):405⁃413.[6]皇甫路遥,戴梦德,南海燕,等.二维MoS 2/WSe 2异质结的光电性能研究[J].人工晶体学报,2021,50(11):2075⁃2080.HUANGFU L Y,DAI M D,NAN H Y,et al.Optoelectronic Properties of Two⁃Dimensional MoS 2/WSe 2Heterojunction [J].Journal of Synthetic Crystals,2021,50(11):2075⁃2080.[7]陶泽军,霍婷婷,尹欢,等.基于碳管/石墨烯/GaAs 双异质结自驱动的近红外光电探测器[J].半导体光电,2020,41(2):164⁃168,172.TAO Z J,HUO T T,YIN H,et al.Self⁃Powered Near⁃Infrared Photodetector Based on Single⁃Walled Carbon Nanotube /Graphene /GaAs Double Heterojunctions [J].Semiconductor Optoelectronics,2020,41(2):164⁃168,172.[8]高诗佳,王鑫,张育林,等.光敏层厚度与退火温度调控对聚3⁃己基噻吩光电探测器性能的影响[J].高分子学报,2020,51(4):338⁃345.GAO S J,WANG X,ZHANG Y L,et al.Effects of Annealing Temperature and Active Layer Thickness on the Photovoltaic Performance of Poly (3⁃Hexylthiophene)Photodetector [J].Acta Polymerica Sinica,2020,51(4):338⁃345.[9]郭越,孙一鸣,宋伟东.多孔GaN /CuZnS 异质结窄带近紫外光电探测器[J].物理学报,2022,71(21):382⁃390.GUO Y,SUN Y M,SONG W D.Narrowband Near⁃Ultraviolet Photodetector Fabricated from Porous GaN /CuZnSHeterojunction [J].Acta Physica Sinica,2022,71(21):382⁃390.[10]王月晖,张清怡,申佳颖,等.ε⁃Ga 2O 3/SiC 异质结自驱动型日盲光电探测器[J].北京邮电大学学报,2022,45(3):44⁃49.WANG Y H,ZHANG Q Y,SHEN J Y,et al.Self⁃Driven Solar⁃Blind Photodetector Based on ε⁃Ga 2O 3/SiC Heterojunction [J].Journal of Beijing University of Posts and Telecommunications,2022,45(3):44⁃49.[11]何峰,徐波,蓝镇立,等.基于石墨烯/硅微米孔阵列异质结的高性能近红外光探测器[J].红外技术,2022,44(11):1236⁃1242.HE F,XU B,LAN Z L,et al.High⁃Performance Near⁃Infrared Photodetector Based on a Graphene /Silicon Microholes Array97第1期潘生生,等:高性能PtS 2/MoTe 2异质结红外光电探测器08吉林大学学报(信息科学版)第42卷Heterojunction[J].Infrared Technology,2022,44(11):1236⁃1242.[12]张翔宇,陈雨田,曾值,等.自供能Bi2O2Se/TiO2异质结紫外探测器的制备与光电探测性能[J].激光与光电子学进展,2022,59(11):177⁃182.ZHANG X Y,CHEN Y T,ZENG Z,et al.Preparation and Photodetection Performance of Self⁃Powered Bi2O2Se/TiO2 Heterojunction Ultraviolet Detectors[J].Laser&Optoelectronics Progress,2022,59(11):177⁃182.[13]朱建华,容萍,任帅,等.ZnO纳米棒/Bi2S3量子点异质结的制备及光电探测性能研究[J].光学精密工程,2022,30 (16):1915⁃1923.ZHU J H,RONG P,REN S,et al.Preparation and Photodetection Performance of ZnO Nanorods/Bi2S3Quantum Dots Heterojunction[J].Optics and Precision Engineering,2022,30(16):1915⁃1923.[14]何登洋,李丹阳,韩旭,等.垂直型g⁃C3N4/p++⁃Si异质结器件的光电性能[J].半导体技术,2021,46(3):203⁃209. HE D Y,LI D Y,HAN X,et al.Photoelectric Property of Vertical g⁃C3N4/p++⁃Si Heterojunction Device[J].Semiconductor Technology,2021,46(3):203⁃209.[15]陈荣鹏,冯仕亮,郑天旭,等.Ag纳米线增强硒微米管/聚噻吩自驱动光电探测器性能[J].发光学报,2022,43(8): 1273⁃1280.CHEN R P,FENG S L,ZHENG T X,et al.Ag Nanowires Enhance Performance of Self⁃Powered Photodetector Based on Selenium Microtube/Polythiophene[J].Chinese Journal of Luminescence,2022,43(8):1273⁃1280.[16]梁雪静,赵付来,王宇,等.硫硒化亚锗光电探测器的制备及光电性能[J].高等学校化学学报,2021,42(8): 2661⁃2667.LIANG X J,ZHAO F L,WANG Y,et al.Preparation and Photoelectric Properties of Germanium Sulphoselenide Photodetector [J].Chemical Journal of Chinese Universities,2021,42(8):2661⁃2667.(责任编辑:刘东亮)。
脉冲耦合神经网络自适应图像融合算法研究
2017,53(7)1引言图像融合是数据融合的重要研究课题之一,其目的是综合多幅源图像中的互补和冗余信息,以获得一幅能够比单一源图像更好描述场景的图像[1]。
图像融合不仅在军事领域具有广泛的应用,而且在民用领域也广泛应用,包括安全检查和遥感等。
像素级图像融合是近年来的研究热点。
平均法则是最简单的像素级图像融合方法,但是这种方法会显著降低融合图像的质量。
为了克服平均法的缺点,人们提出了一类基于多尺度、多分辨分析的图像融合算法,包括基于金字塔变换的图像融合算法、基于小波变换的图像融合算法和基于多尺度几何分析的图像融合算法[1-2]。
近年来,作为一种新型人工神经网络模型,脉冲耦合神经网络(Pulse Coupled Neural Networks ,PCNN )被广泛应用到了路径规划、图像滤波、图像分割和图像融合等领域[3-4]。
PCNN 的特点是具有神经元的全局耦合性和脉冲同步性,这些特点使得PCNN 在应用于图像融合时能够更好地利用图像的局部信息。
脉冲耦合神经网络自适应图像融合算法研究王红梅,付浩WANG Hongmei,FU Hao西北工业大学航天学院,西安710072School of Astronautics,Northwestern Polytechnical University,Xi ’an 710072,ChinaWANG Hongmei,FU Hao.Adaptive image fusion algorithm based on pulse coupled neural puter Engineering and Applications,2017,53(7):177-180.Abstract:As a new network model,Pulse Coupled Neural Networks (PCNN )has been widely used in many fields.Aiming at the insufficient of traditional image fusion by pulse coupled neural networks algorithm,a novel adaptive PCNN image fusion algorithm is proposed.Two features are used as external stimulus of PCNN to extract the complementary information of source images.The linking strength parameters of PCNN are determined adaptively according to contrast of source images.Through analyzing the traditional PCNN algorithms in obtaining the optimal fusion result,a novel method is proposed which can acquire the optimal fusion result by comparing the structural similarity of the fused image at each iteration.Experimental results for visible and infrared images show that the proposed algorithm is effective for image fusion.Key words:image fusion;pulse coupled neural networks;structural similarity;objective evaluation摘要:作为一种新型的神经网络模型,脉冲耦合神经网络(PCNN )已经在众多领域得到了应用。
基于脉冲耦合神经网络的运动检测算法
信 息 技 术
基 于 脉 冲耦 合 神 经 网络 的运 动 检 测 算 法
刘 丽 , 王保 增 , 陈瑞 生
( 1 . 甘 肃省陇南市气象局 , 甘肃 陇南 7 4 6 0 0 0; 2 . 兰州理工大学 机电工程学院 , 甘肃 兰州 7 3 0 0 5 0 )
2 P C N N 的 基 本 模 型
脉冲耦合 神经 网络就 是利用 神经元 的特性 构建
的, 是 一个 二 维单 层神 经 元 阵列 , 由脉 冲耦 合 神 经元 构
其中 , [ n ] 为 与第 ( i , ) 个 神 经 元 内部 活 动 项 , 卢 为 突触 之 间连接 调制 常量 。
[ 凡 ]一 [ 一1 ] e 一 + + ∑ z z [ 一 1 ] ( 2 )
其 中, £ , [ n ] 为第 ( i , ) 个 神经元相连 的其 它神经
元 的线 性输 入 。 式 1 、 2中 和 是 连 接权 重 矩 阵 , y为神 经 元 点 火 与 否 的信息 , n , 和 吼 为 时 间衰减 常量 , 和 为连 接和 反馈 常量 。 非线 性 连 接 调 制 部 分 也称 神 经元 内部 活 动项 , 它
, [ ] 一 F [ n一 1 ] e ~ + + ∑
l [ 一 1 ]( 1 )
其中 , F , [ n ] 为第( i , ) 个神经元 的反馈输入, 为
外部 输 人刺 激信 号 。 ,
另 一个 线性 连接 输入 通道 接 受局 部 相邻 神 经元 的
摘
要: 在研 究 P C N N算法的基础上 , 详细 论述 了 P C N N的数学 模 型与工 作原 理 , 提 出 了基 于 P C N N的运 动 目标 检测 算
GLHMS_算法的PCNN_参数优化及其在图像融合中的应用
第 22卷第 8期2023年 8月Vol.22 No.8Aug.2023软件导刊Software GuideGLHMS算法的PCNN参数优化及其在图像融合中的应用徐仵博,刘立群(甘肃农业大学信息科学技术学院,甘肃兰州 730070)摘要:人类心理搜索算法(HMS)和脉冲耦合神经网络(PCNN)存在收敛精度低、参数太多等问题,导致融合图像质量不高,由此提出一种基于参数自适应的PCNN图像融合方法。
首先,将均匀分组、局部搜索以及移动次数算子引入人类心理搜索算法,克服了HMS存在的搜索能力不强、收敛速度慢等问题;然后,通过改进后的算法对PCNN的αθ、β、αL 3个参数进行优化,增强了其特征提取性能;最后,通过参数优化后的PCNN融合ToF和RGB图像,得到完整的融合图像。
选取20个测试函数对算法进行仿真实验,结果表明,算法能够有效地加快收敛速度,提高寻优精度。
选取不同时间光线下的果园图像验证了该方法的有效性,平均指标相较于DWT、TIF、CNN、PCNN、DWT_PCNN分别提高19.99%、30.74%、21.14%、17.6%、8.93%,能显著提高融合图像质量。
关键词:人类心理搜索算法;脉冲耦合神经网络;图像融合DOI:10.11907/rjdk.222477开放科学(资源服务)标识码(OSID):中图分类号:TP391.41 文献标识码:A文章编号:1672-7800(2023)008-0187-09Optimization of PCNN Parameters of GLHMS Algorithm and ItsApplication in Image FusionXU Wubo, LIU Liqun(College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China)Abstract:Aimed at the problems of low convergence accuracy and too many parameters of human mental search algorithm and pulse coupled neural network, which lead to poor quality of fused images, a PCNN image fusion method based on parameter adaptation is proposed. First, an algorithm that introduces uniform grouping, local search and the move count operator into the human mental search algorithm is proposed to overcome the problems of poor search ability and slow convergence of HMS; Then, the PCNN's αθ,β,αL parameters are optimized by the im⁃proved algorithm to enhance its feature extraction performance; Finally, the complete fused image is obtained by fusing the ToF and RGB im⁃ages with the PCNN after parameter optimization. Twenty test functions were selected for simulation experiments of the algorithm, and the ex⁃perimental results showed that the proposed algorithm can effectively speed up the convergence speed and improve the accuracy of the optimi⁃zation search. The effectiveness of the method was verified by selecting orchard images under different temporal lighting, and the average index of the proposed method was improved by 19.99%,30.74%,21.14%,17.6%,and 8.93% compared to DWT,TIF,CNN,PCNN,and DWT_PCNN, respectively. The method can significantly improve the quality of fused images.Key Words:human mental search algorithm; pulse coupled neural network; image fusion0 引言可见光图像具有分辨率高、图像细节丰富等特点,但在光照条件不好或目标遮挡等环境影响下,其效果会变差,而基于飞行时间测距原理相机(Time of Flight, ToF)的成像效果几乎不受环境光的影响,但也存在细节表现不好等缺点[1]。
陕西师范大学2012-2013学年度拟获“优秀学生标兵”学生情况一览表
1/40
四级454
1.一等专业奖学金2 次; 2.优秀团员、暑期社 会实践先进个人各1 次; 3.陕西师范大学第一 届本科生板书书写能 力大赛优秀奖
26 音乐学院
2010
音乐 文化学
刘杨扬 男
78.24
1/25
89.05
2/25
73.27
1/25
80.15
2/25
四级582
1.第二届陕西省民族 器乐大赛(职业)青 年A组演奏三等奖; 2.优秀团干部1次; 3.优秀学生1次
在SCI期刊《The American Ceramic Society》发表论 文《The Lowewed Dielectric Loss and Grain-Boundary Effects in La-doped Y2/3Cu3Ti4O12 Ceramics》,2013年第3作 者,共5人
16
化学化工 学院
第一学期
第二学期
第一学期
第二学期
28
国际 商学院
2010
电子 商务
梁倩
女
பைடு நூலகம்90
1/17
89.6
1/17
80.2
1/17
83.4
1/17
548/520
1.陕西师范大学外语 专项奖励基金二等 奖; 2.一等优秀奖学金、 优秀团干部、优秀学 生干部各1次
29
国际 商学院
2011
财务 管理
方瑞瑞 女
91.33
信息 管理
李勇俊 男
92
1/28
93.5
1/28
89.5
1/28
92.05
1/28
500/426
一种改进的SAR与可见光图像融合算法
雷达科学与技术!ada$ Science and Technology第6期2020年12月Vol.18No.6December2020DOI : 10. 3969/j. issn. 1672-2337. 2020. 06. 011一种改进的SAR 与可见光图像融合算法张瑞1,董张玉2(1.合肥工业大学计算机与信息学院,安徽合肥230601;2.工业安全与应急技术安徽省实 ,安徽合肥230601)摘要:针对现有SAR 与可见光遥感影像融的计算复杂度较高,细节信息保留较差等问题,提出了一种NSST-HS 结合自适应PCNN 改进的融 。
该 先利用IHS 变见 的亮度分量I,并将得到的亮度分量I 与SAR 图像分别进行NSST 变换;然后,针对 子带分即间频率和 梯度自适应PCNN 的外部刺激与链接强度;高频子带分量上 进的拉普拉 和(SML)的融 ;最后,运用逆NSST 变换和逆IHS 变 到最终融 。
实验表明,本文算法融 传统 在视觉效果方面提升,线性结 到更多保留、各类评价指标上比传统要更好。
关键词:遥:图像融合;非下采样剪切波变换;脉冲耦合神经网络中图分类号:TN958;TP391 文献标志码:A文章编号:1672-2337(2020)06-0645-06An Improved Fusion of SAR and Visible ImagesZHANG Rut ,DONG Zhangyu 2(1. School of Computer and Information , Hefei University of Technology , Hefei 230601, China ;2. Key Laboratory of Industrial Safety and Emergency Technology , Hefei 230601, China )Abstract :Aiming at the problems of high computational complexity and poor retention of detailed informa tion of the existing SAR and visible light remote sensing image fusion algorithms, an improved fusion algorithm combining NSST-IHS and adaptive PCNN is proposed. This method first uses the IHS transform to extract the luminance component I of the visible light image , and performs the NSST transform on the obtained luminance component I and the SAR image respectively. Then, it uses the direction information, that is, the spatial fre quency and average gradient , to adaptively adjust the external stimulus and link strength of the PCNN for low frequency sub-band components. The sum-modified-Laplacian (SML ) is applied to the high-frequency sub-band components. Finally , the inverse NSST transform and the inverse IHS transform are used to obtain the final fu sion image. The experiments show that the fusion image obtained by the algorithm in this paper improves visual effects significantly compared with the traditional algorithms , the spectral information and linear structure fea-turesaremoreretained andvariousevaluationindicatorsarebe t erthanthetraditionalalgorithms.Key words : remote sensing image ; image fusion ; non-subsampled shearlet transform (NSST); pulse coupled neural network (PCNN)0引言合成孔径雷达(Synthetic Aperture Radar , SAR)对与人造桥梁都比 ,成像原主动式微波反射成像,SAR 更多 表 现信 纹 ;与 SAR 不受气候环境干扰,能全天成像接收更多的地理信息。
Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints
article
info
abstract
In this paper, adaptive tracking control is proposed for a class of uncertain multi-input and multi-output nonlinear systems with non-symmetric input constraints. The auxiliary design system is introduced to analyze the effect of input constraints, and its states are used to adaptive tracking control design. The spectral radius of the control coefficient matrix is used to relax the nonsingular assumption of the control coefficient matrix. Subsequently, the constrained adaptive control is presented, where command filters are adopted to implement the emulate of actuator physical constraints on the control law and virtual control laws and avoid the tedious analytic computations of time derivatives of virtual control laws in the backstepping procedure. Under the proposed control techniques, the closed-loop semi-global uniformly ultimate bounded stability is achieved via Lyapunov synthesis. Finally, simulation studies are presented to illustrate the effectiveness of the proposed adaptive tracking control. © 2011 Elsevier Ltd. All rights reserved.
基于自适应线性神经元网络的谐波检测算法
中 文 引 用 格 式 :方 树 , 韩杨 , 罗 飞, 等 .基 于 自 适 应 线 性 神 经 元 网 络 的 谐 波 检 测 算 法 [ J 】 . 电 子技 术 应 用 , 2 0 1 7, 4 3 ( 6 ) : 8 3 - 8 6 .
英 文 引 用 格 式 :F a n g S h u, H a n Y a n g, L u o F e i , e t 1 .A a n o v e l h a r mo n i c e s t i m a t i o n a l g o i r t h m b a s e d o n a d a p t i v e l i n e a r n e u r a l n e t —
2 . Un i v e r s i t y o f E l e c t r o n i c S c i e n c e a n d T e c h n o l o g y o f C h i n a, Ch e n g d u 6 1 1 7 3 1, C h i n a; 3. S t a t e G r i d L i a n g S h a n E l e c t i r c P o w e r S u p p l y C o mp a n y, Xi c h a n g 6 1 5 0 5 0, C h i n a;
w o r k [ J 】 . A p p l i c a t i o n o f E l e c t r o n i c T e c h n i q u e , 2 0 1 7, 4 3 ( 6 ) : 8 3 — 8 6 .
A n o v e l h a r mo n i c e s t i ma t i o n a l g o r i t h m b a s e d O / 1 a d a p t i v e l i n e a r n e u r a l n e t wo r k
迫弹激光引信用脉冲半导体激光电源的设计与应用
第40卷第9期红外与激光工程2011年9月Vol.40No.9Infrared and Laser Engineering Sep.2011迫弹激光引信用脉冲半导体激光电源的设计与应用姚萍萍,张毅,涂碧海,王相京,赵平建,赵欣(中国科学院安徽光学精密机械研究所,安徽合肥230031)摘要:设计了适应于迫弹激光近炸引信的小体积、低电压、窄脉宽、高功率的脉冲半导体激光电源。
采用电容充放电的模式,选用高速大功率MOSFET管作为开关,设计了相应的高速开关控制电路。
激光电源模块的重复频率高达50kHz,常规热电池供电电压条件下的输出脉冲激光峰值功率为9W,光脉冲上升沿为4.2ns,光脉宽为10ns,为有效提高迫弹激光近炸引信定距精度和抗阳光、烟雾等干扰提供了保证。
关键词:激光近炸引信;半导体激光器;驱动电路;纳秒级脉冲中图分类号:TN958.98文献标志码:A文章编号:1007-2276(2011)09-1696-05Design and application of pulsed laser diode drive sourcein laser fuze of mortarYao Pingping,Zhang Yi,Tu Bihai,Wang Xiangjing,Zhao Pingjian,Zhao Xin(Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Hefei230031,China)Abstract:A pulsed laser diode drive source for laser proximity fuze of mortar was presented,which was compactness,low voltage,short pulse and high power.The drive circuit was constructed using a capacitor and an extremely fast and high-power MOSFET as switch,which discharged the charge of capacitor to the laser.A high performance switch control circuit was also developed.The whole performance of pulsed laser diode drive circuit was validated with a lot of experiments.The output optical peak pulse power can reach9W,the rise time was4.2ns and the full width at half-maximum was10ns when the highest value of the charge voltage was limited to28V.The repetition frequency of the circuit can arrive 50kHz.All these excellent characteristics provide guarantee for improving the precision of distance measurement efficiently in laser proximity fuze of mortar and anti-interference capability of sunlight,fog and dust.Key words:laser proximity fuze;semiconductor laser;drive circuit;nanosecond pulse收稿日期:2011-01-10;修订日期:2011-02-15基金项目:中国科学院合肥物质科学研究院院长基金作者简介:姚萍萍(1985-),女,博士生,主要从事激光探测和光电子技术方面的研究。
生物医学工程中的信号分析与处理技术
生物医学工程中的信号分析与处理技术随着科技的不断发展,医疗行业也在不断地进步和改进。
生物医学工程作为一门集生物学、医学和工程学于一体的综合性学科,正在成为医疗行业中的重要力量。
信号分析与处理技术是生物医学工程领域中的重要内容,本文将从数据采集、信号预处理、特征提取和信号分类四个方面分析和介绍生物医学工程中的信号分析与处理技术。
一、数据采集数据采集是信号分析与处理技术的第一步,好的数据采集可以为后续的信号处理和分析提供准确的数据源。
在生物医学工程中,数据采集可以通过传感器获取体内特定位置的生理参数,如脑电图、心电图、血压、血氧饱和度等,这些数据的精确度和稳定性直接影响到后续的信号处理和分析结果。
当前,常见的生理参数数据采集设备有心电图记录仪、血压监测仪、脑电图采集器和生物可穿戴设备等。
这些设备不仅可以为临床医疗提供可靠的数据,而且可以对特定疾病的治疗和预防提供参考意见。
二、信号预处理信号预处理是信号分析与处理技术不可或缺的一环。
信号预处理的目的是去除噪声干扰,增强信号的可信度和准确度。
在生物医学工程领域中,信号预处理对于保证生理参数信号的准确性至关重要。
常见的信号预处理方法包括滤波、降噪和去伪影等。
其中,滤波是最基本的处理方法,常用滤波方法包括低通滤波、带通滤波和高通滤波等。
除此之外,还有脉冲耳模型(Pulse Coupled Neural Networks)等先进的降噪技术,可以有效地去除生理信号中的噪声和干扰。
三、特征提取特征提取是信号分析与处理技术中的重要环节。
在生物医学工程中,需要从生理参数信号中提取出与生理状态密切相关的特征信息,这些特征可以用来对疾病进行诊断和判断,也可以用来监测治疗效果。
常见的特征提取方法有时域分析、频域分析和小波分析等。
其中,时域分析是最简单的特征提取方法,可以直观地了解信号波形的变化趋势。
频域分析是根据信号在频域上的功率分布情况提取特征,通常用于识别振动和波形信号。
基于自适应脉冲耦合神经网络的行人检测方法
基于自适应脉冲耦合神经网络的行人检测方法王泽胜;董宝田;王爱丽【摘要】It is rather difficult to detect pedestrians accurately in the traffic images stained by speckle noise and intensity distortions under complex illumination.In order to solve this problem and improve the accuracy and automation level of information extraction from traffic images, a new pedestrian detection method, which is based on adaptive pulse-coupled neural networks, is proposed.In the investigation, first, the ignition contribution values between the central nerve and its neighborhoods are determined according to the quasi-Euclidean distance between pixels.Then, a key control parameter named initial threshold is set by merging gray feature and neighborhood information.Finally, multi-strategy morphological modifications are performed on the initial detection results to obtain the final pedestrian information.Experimental results demonstrate that the proposed method greatly eliminates the impact of noise, well restrains the over-segmentation, and helps to obtain satisfactory detection results with good adaptability.%由于受到光照等因素造成的散斑噪声和灰度不均衡现象的影响,应用计算机视觉技术实现行人的准确检测较为困难.为了提高交通场景信息提取的精准度和自动化水平,文中提出一种基于自适应脉冲耦合神经网络的行人检测方法.首先以像素间"准欧式"距离为参考,确定神经网络接受区中心神经元与邻域神经元间的点火贡献关系;然后根据图像灰度特征以及邻域综合信息对脉冲产生区的关键控制参数——初始阈值进行设定;最后对获得的初始结果进行多策略形态学修正,从而提取出图像中的行人.实验结果表明,该方法能够在有效提高检测方法自适应程度的同时,显著去除噪声的影响,较好地抑制过分割的问题,检测到相对完整的目标.【期刊名称】《华南理工大学学报(自然科学版)》【年(卷),期】2017(045)006【总页数】7页(P74-80)【关键词】智能交通;行人检测;脉冲耦合神经网络;计算机视觉;自适应性【作者】王泽胜;董宝田;王爱丽【作者单位】北京交通大学交通运输学院, 北京 100044;北京交通大学交通运输学院, 北京 100044;中国铁路总公司信息技术中心, 北京 102300【正文语种】中文【中图分类】U298.2交通信息智能检测设备是现代交通管理系统的基础,而基于计算机视觉技术的检测方法相比传统方法,具有设备易维护、不破坏路面等明显优势,已经成为智能交通信息采集的发展方向之一[1].随着视频监控技术的快速发展,行人交通检测逐渐引起广泛的重视,对其展开研究具有极大的现实意义和实用价值.如何对视频图像中的运动目标进行精准定位与分割,是实现交通信息智能检测的重点和难点.很多学者投入到该领域并提出了许多算法,包括阈值法、边缘检测法以及分水岭方法等[2- 9].其中,基于脉冲耦合神经网络(PCNN)[10- 11]的分割方法是新发展起来的一种方法.作为第3代神经网络,PCNN以迭代算法为核心,具有脉冲调制和耦合链接特性,相似的元素集群若在空间上也相近,就会同步产生脉冲,这非常适合处理由离散值构成、以矩阵形式存储的数字图像,也使其成为关注的焦点[12].但传统的PCNN方法参数较多,在对特征不同的图像进行分割时,多需要人工输入,自动化水平有待提高,适应性和鲁棒性需要进一步增强[13- 14].因此,学者们提出了许多解决方法,主要有:Ashraf等[15]提出的基于自组织映射网络(SOM)的脉冲耦合神经网络图像分割方法;徐黎明等[16]提出的基于最小交叉熵的改进PCNN杨梅图像分割算法;Chen 等[17]提出的应用区块特征匹配简化的、对彩色图像进行分割的PCNN方法;Qu 等[18]提出的利用遗传算法优化PCNN模型参数来进行图像分割的方法.然而,这些方法多针对脉冲耦合神经网络中的部分区域或部分参数进行优化,自动化水平仍然需要进一步提高.另外,对于复杂的交通环境,现有方法无法直接适用,需要针对具体环境进行研究.在前人研究基础上,文中提出一种基于自适应脉冲耦合神经网络的行人目标提取方法.该方法对脉冲耦合神经网中信息接受区和脉冲产生区均进行了优化,并最终进行融合.1.1 具体实现流程文中算法流程如图1所示.首先引入背景差分法,获得初始待检测对象,对其进行灰度标准化处理;然后根据灰度标准化处理结果计算初始阈值等PCNN需要的主要参数;迭代执行PCNN,记录网络内各个神经元的激活状态,并以此作为迭代终止的判定条件;最后对迭代分割结果进行多策略形态学修正,从而提取出相对完整的目标.1.2 简化的PCNN 神经元模型PCNN是一个由脉冲耦合神经元(基本单位)构成的二维单层神经元阵列.各个神经元之间通过链接权值相互连接,从而形成复杂的非线性动力学系统.将PCNN模型应用于二维图像,图像中每一个像素点作为一个神经元,如图2所示.当某个神经元激发时会引起相邻区域中灰度级相近的像素点的激发,神经元自身的特殊结构保证了脉冲发放的特性.图3为单个神经元模型.在该模型中,神经元输入划分为反馈输入F和链接输入L:Fij(n)=e-αFFij(n-1)+Iij+VFMij,klYkl(n-1)Lij(n)=e-αLLij(n-1)+VLWij,klYkl(n-1)Uij(n)=Fij(n)[1+βLij(n)]θij(n)=e-αθθij(n-1)+VθYij(n)其中:n为迭代次数;Fij(n)、Lij(n)分别为反馈域通道和链接域通道的输入;ij为神经元位置,kl为该位置对应的神经元;VF和VL为放大系数;αF和αL为衰减系数;M和W分别为反馈输入和链接输入的权重矩阵;Uij为内部信号,控制神经元的点火状态;β为链接强度,取[0,1]之间的一个常数;Yij(n)标记神经元当前的点火状态;θ为神经元动态阈值,在衰减因子αθ的影响下逐渐衰减,直至该神经元发生点火.PCNN模型中,可调节参数众多,从而使分割效果对参数设置的依赖性较强.为了提高PCNN在由离散值像素组成的图像矩阵分割中的自适应性,文中对传统PCNN做如下改进和简化:Fij(n)=I(i,j)Uij(n)=Fij(n)[1+βLij(n)]Yij(n)=Uij(n)>θij(n-1)‖Yij(n-1)其中:I(i, j)为输入图像中坐标为(i, j)的像素灰度值,对于单帧静态图像,将像素值作为反馈通道的输出,更有利于强化图像本身的灰度特征;内部信号Uij(n)依然取链接通道输入与链接强度的乘积加上1的正偏移量,再与反馈通道输入相乘的结果,充分体现双通道相乘调制特征;θij为动态阈值;θT为单个神经元脉冲爆发临界阈值.由于指数型衰减函数更符合人类视觉机制,因此文中设置θij(n)为指数型衰减.相比传统PCNN模型,简化模型不再严格按生物学机制处理图像分割.在输入域,不再考虑其随时间的变化,而是只接受外部刺激以及邻域神经元的点火状态信息.阈值模型的简化能够有效降低算法复杂度,有利于算法在实际应用中进行实时处理.为了获得较好的处理效果,具体情况下需要对权重矩阵、迭代自适应终止条件等进行设置.该部分内容将在1.3-1.5节中进行详细介绍.1.3 接受区链接矩阵的设置在接受区,对于单幅静态图像,忽略其随时间的变化,只以外部刺激和8邻接神经元点火信息作为输入,即只考虑像素间的空域关系.通过链接矩阵来确定接受区链接域和反馈域邻域神经元对中心神经元的点火贡献度,提高低亮度像素的反馈输入,从而在一定程度上抑制由于光照不均衡造成的高亮噪声.这里将M和W设为3×3的矩阵,代表每个神经元只能影响其周围8连通邻域的神经元,即每个神经元只受一定距离内的其他神经元影响,且均为与其关联最紧密的直接相邻神经元.将欧式距离作为邻域中各像素间影响程度的参考,公式表达如下:其中,(i, j)为神经元在图像中的坐标,(k,l)为该神经元邻接神经元的坐标.1.4 脉冲产生区脉冲爆发阈值的设置初始阈值是神经元点火的关键控制参数,而分割操作应做到尽量区分背景环境和行人目标.传统PCNN中常以经验值作为模型计算的初始阈值.为了强化图像自身灰度特征,提高算法的自适应性,文中采用分割结果类间方差取得最大值,即将背景区域与前景目标区域差异化最大时计算得到的归一化灰度结果θg,max作为模型计算的初始阈值,从而在提高前景目标分割准确度的同时减少图像分割的无效迭代次数,提高方法的效率和有效性.综合上式有g=其中,图像中包含的灰度级为R个(0,1,…,R-1),灰度为的像素点出现的概率为P,前景目标像素点占整幅图像的比例以及平均灰度分别为ω0、μ0,背景像素点所占比例以及平均灰度分别为ω1、μ1,μ为整幅图像的平均灰度,ψ为进行划分的阶数(即灰度值).对图像的各个灰度值应用遍历法获得类间方差g取得最大值时的灰度级ψ,记为ψg,max.标准化处理ψg,max到区间[0,1]内,获得初始阈值θg,max:θg,max=ψg,max/255其中,255为灰度数字图像的灰度级上限.1.5 迭代终止判定条件的设置传统PCNN分割方法需要多次操作,然后对结果进行对比,选取效果较优者作为最终结果.文中神经元激活后将该神经元动态阈值设为θT,为了保证神经元不被重复点火,θT应足够大.通常PCNN可接受的有效迭代次数在30次以内,文中将θT值设置为1.0×1010倍的θg,max,从而保证在可接受迭代次数内,同一神经元不被二次点火.θT=1.0×1010θg,max标记矩阵B初始化为全零矩阵,并与图像同大小,用来记录整幅图像中曾被激活的像素.式中,a为图像高度,b为图像宽度,n′为n次迭代中的任意一次,0<n′≤n.由此得到一个状态记录输出序列{H(1),H(2),…,H(n-1),H(n)}.当输出记录H(n)的值不再变化时,可以确定神经网络内各个神经元已经全部被成功激活,此时停止迭代过程.由于此时记录的激活区域为背景区域,所以需要对其进行翻转操作,从而得到最终的分割结果Fst(x,y,k).通过图像自身的特征来判定迭代操作终止与否,避免了通过重复人工操作来确定最优迭代次数,从而提升了算法的自适应性.1.6 初始检测结果的修正为了获得结构更清晰、完整,辨识度更高的行人目标检测结果,采用自适应形态学方法对初始结果进行修正.首先采用形态学开操作,根据连通域属性去除Fst(x,y,k)中的异常点;然后进行孔洞填充,得到封闭性较好的目标图像Fmodify02(x,y,k);对Fmodify02(x,y,k)目标执行细化操作,从而消除模糊边缘;最后利用椭圆形核结构进行膨胀运算,得到最终的行人目标检测结果Fnd(x,y,k).采用参考文献[19]中的方法计算P和stel01.为确定异常连通域的像素大小,stel01为进行膨胀操作的结构元素.为验证文中提出方法的合理性和有效性,取北京南站录制的行人流视频资料进行测试实验.并与公认较好的Otsu's 阈值分割方法以及分水岭分割方法进行对比.实验中,初始化连接强度系数β=0.32,衰减常数α=0.31[20].2.1 迭代结果分步展示图4(a)-4(f)为北京南站高架北候车区样本图片在迭代过程中的分步处理结果.根据1.4节得到图4(a)的θg,max为0.243 1,θT为2.431×109.参数初始化完成后开始迭代运行.在每次迭代过程中,分别计算各神经元内部行为,并与不断更新的动态阈值进行比较,从而判断神经元是否点火.神经网络的输出状态形成二维点火矩阵,将其作为该次迭代的输出图像,并作为下次迭代的反馈输入直接影响神经元内部活动.5次迭代后终止,此时H(5)为165 157.2.2 直观效果对比图5为文中方法与对比方法的检测结果.限于篇幅,只给出图5(a)所示在高架北候车区、高架北进站厅和首层北进口内西侧监控视频中随机抽取的3幅图像(从左至右依次排列),大小分别为521×317,351×247,271×227(3幅图像均为自适应背景更新和背景差法获得的初始前景灰度图像,包含由于光照造成的阴影和大量的散点噪声).对检测结果进行直观效果的对比分析,可以看到基于分水岭的方法对图像中由于光照引起的的噪声较为敏感,在检测结果中出现了噪声形成的虚假目标区域以及过分割现象;Otsu's 方法结果在部分区域存在一定程度的欠分割与过分割现象.在视觉效果上,文中方法检测结果轮廓较清晰,目标区域完整,有效地抑制了光照造成的散斑噪声以及过分割与欠分割问题,检测效果得到了明显的改善.当行人密度增大时,优势更明显.3幅图像的关键参数、迭代次数以及H(n)值如表1所示.计算异常点去除的连通域尺寸P以及椭圆形核函数半径、高度值(均以像素为单位),得到的结果见表2.2.3 客观参数对比在图像分割处理中,交叉熵用来描述分割前后图像信息量的差异.交叉熵值越小,表明经过处理后原有图像灰度聚集程度受影响越小,即保留的灰度特征信息越多.因此,常将交叉熵作为图像分割的一项重要评价指标.计算检测结果与原始图像的交叉熵,结果如表3所示.结果显示,文中方法图像处理结果的交叉熵更低,对原始图像灰度聚集程度信息保留得更完整,损失的有效信息更少,分割结果更好.2.4 场景应用将文中方法应用于北京南站高架层北候车区一段时长60 s、背景存在复杂运动和光照变化的视频片段,检测人数与实际人数如图6所示.结果显示,除个别检测帧检测准确率较低外,绝大部分都较高,行人检测结果较为理想.文中从PCNN的模型机理出发,根据交通场景中的光照噪声影响和局部灰度特征,简化了模型的输入部分,并利用图像空间域信息特征,给出了该模型应用于图像处理时多个参数的确定准则,从而构建了一个自适应性较强的简化PCNN处理方法.实验结果表明:文中方法能够有效抑制复杂环境中光照以及运动背景对检测结果的影响,减少传统方法中过分割与欠分割问题的出现,提高检测的准确性;并能在有效检测的同时,更完整地保留原始图像的信息,为智能交通系统进一步地进行行人分析提供保障;制定参数的确定准则可提高方法的自适应性,使系统的自动化水平更高.然而,当行人密度较大导致互相遮挡、图像中灰度混叠严重时,检测结果出现偏差.在今后的工作中将会针对该问题做进一步完善.† 通信作者: 董宝田(1956-),男,博士生导师,主要从事智能交通与铁路信息化研究.E-mail:***************.cn【相关文献】[1] 刘寅.数字智能视频监控系统在城市轨道交通中的发展前景[C]∥中国城市科学研究会数字城市专业委员会.《智慧城市与轨道交通》2015年中国城市科学研究会数字城市专业委员会轨道交通学组年会论文集.沈阳:中国城市出版社,2015:131- 132.[2] YUAN Xiao-cui,WU Lu-shen,PENG Qing-jin.An improved Otsu method using the weighted object variance for defect detection [J].Applied Surface Science,2015,349:472- 484.[3] SHAHVERDI Reza,TAVANA Madjid,EBRAHIMNEJAD Ali,et al.An improved method for edge detection and image segmentation using fuzzy cellular automata [J].Cybernetics and Systems,2016,47(3):161- 179.[4] 刘琼,王国华,申旻旻.基于边缘分割的车载单目远红外行人检测方法 [J].华南理工大学报(自然科学版),2015,43(1):87- 91,98. LIU Qiong,WANG Guo-hua,SHEN Min-min.Pedestrian detection with vehicle-mounted far-infrared monocular sensor based on edge segmentation [J].Journal of South China University of Technology(Natural ScienceEdition),2015,43(1):87- 91,98.[5] 袁小翠,吴禄慎,陈华伟.基于Otsu方法的钢轨图像分割 [J].光学精密工程,2016,24(7):1772- 1781. YUAN Xiao-cui,Wu LU-shen,CHEN Hua-wei.Rail image segmentation based on Otsu threshold method [J].Optics and Precision Engineering,2016,24(7):1772- 1781.[6] CHEN Xiao-dan,LI Si-ming,HU Jun,et al.A survey on Otsu image segmentation methods [J].Journal of Computational Information Systems,2014,10(10):4287- 4298.[7] ANURADHA S G,KARIBASAPPA K,REDDY B E.Target Seg:A GUI for image segmentation using morphogical watershed and graph cut techniques [J].International Journal of Signal Processing,Image Processing and Pattern Recognition,2016,9(3):167- 178.[8] WANG Yin-long,LI Qian-jin,LI Zhi-xiang.An image segmentation algorithm based on watershed transform [J].Applied Mechanics and Materials,2015,740:608- 619.[9] 沈夏炯,吴晓洋,韩道军.分水岭分割算法研究综述 [J].计算机工程,2015,41(10):26- 30. SHEN Xia-tong,WU Xiao-yang,HAN Dao-jun.Survey of research on watershed segmentation algorithms [J].Computer Engineering,2015,41(10):26- 30.[10] ECKHORN R,REITBOECK H J,ARNDT M,et al.Feature linking via,synchronization among distributed assemblies:simulation of results from cat visual cortex [J].Neural Computation,1990,2(3):293- 307.[11] JOHNSON J L,PADGETT M L.PCNN model and applications [J].IEEE Trans Neural Network,1999,10(3):480- 498.[12] 陈龙斌.基于脉冲耦合神经网络的图像分割与图像融合研究 [D].昆明:云南大学,2015.[13] DENG Xiang-yu,MA Yi-de.PCNN model analysis and its automatic parameters determination in image segmentation and edge detection [J].Chinese Journal of Electronics,2014,23(1):97- 103.[14] 廖艳萍,张鹏.PCNN文本图像分割的细菌觅食优化算法 [J].哈尔滨工业大学学报,2015,47(11):89- 92. LIAO Yan-ping,ZHANG Peng.PCNN image segmentation method based on bactrial foraging optimization algorithm [J].Journal of Harbin Institute of Technology,2015,47(11):89- 92.[15] ASHRAF K H,GH S E T.Image segmentation scheme based on SOM-PCNN in frequency domain [J].Applied Soft Computing,2016,40:405- 415.[16] 徐黎明,吕继东.基于最小交叉熵的改进PCNN杨梅图像分割算法 [J].西北师范大学学报(自然科学版),2016,52(1):43- 52. XU Li-ming,LÜ Ji-dong.Improved PCNN bayberry image segmentation algorithm based on minimum cross entropy [J].Journal of Northwest Normal University(Natural Science),2016,52(1):43- 52.[17] CHEN Yu-li,MA Yi-de,KIM,et al.Region-based object recognition by color segmentation using a simplified PCNN [J].IEEE Transactions on Neural Networks and Learning Systems,2015,26(8):1682- 1697.[18] QU Shi-ru,YANG Hong-hong.Infrared image segmentation based on PCNN with genetic algorithm parameter optimization [J].High Power Laser and ParticleBeams,2015,27(5):270510071- 270510076.[19] 王爱丽,董宝田,王泽胜,等.融合光流速度场自适应背景更新建模的交通场景中运动行人检测算法[J].长安大学学报(自然科学版),2015,35(增刊):184- 187,221. WANG Ai-li,DONG Bao-tian,WANG Ze-sheng,et al.Pedestrian detection algorithm based on optical flow velocity field and adaptive background modeling in traffic scenes [J].Journal of Chang’an University(Natural Science Edition),2015,35(Suppl):184- 187,221.[20] 赵小川.MATLAB图像处理——程序实现与模块化仿真 [M].北京:北京航空航天大学出版社,2014:299- 301.。
采用脉冲耦合神经网络的改进显著性区域提取方法
采用脉冲耦合神经网络的改进显著性区域提取方法贾松敏;徐涛;董政胤;李秀智【摘要】由于仅考虑颜色等视觉对比信息的视觉显著性提取模型不符合人眼生物学过程,本文提出了一种基于混合模型的改进显著性区域提取(ISRE)方法.该混合模型由显著性滤波算法和改进脉冲耦合神经网络(PCNN)算法构成.首先,利用显著性滤波器算法获得原图像的初始显著性图(OSM)和亮度特征图(IFM),用IFM作为PCNN的输入神经元;然后,进一步对PCNN点火脉冲输入进行改进,即对PCNN内部神经元与OSM的二值化显著性图进行点乘,确定最终点火脉冲输入,以获得更加准确的点火范围;最后,通过改进后的PCNN多次迭代,完成显著性二值化区域提取.基于1 000张标准图像数据库进行的实验结果显示:在视觉效果和客观定量数据比对两方面,本算法均优于现有的5种显著性提取方法,平均查准率为0.891,平均召回率为0.808,综合指标F值为0.870.在真实环境实验中,所提算法获得了精确的提取效果,进一步验证了本算法具有较高的准确性和执行效率.【期刊名称】《光学精密工程》【年(卷),期】2015(023)003【总页数】8页(P819-826)【关键词】混合模型;特征提取;改进显著性区域提取;脉冲耦合神经网络(PCNN);点火脉冲;二值化【作者】贾松敏;徐涛;董政胤;李秀智【作者单位】北京工业大学电子信息与控制工程学院,北京100124;北京工业大学电子信息与控制工程学院,北京100124;河南科技学院机电学院,河南新乡453003;北京工业大学电子信息与控制工程学院,北京100124;北京工业大学电子信息与控制工程学院,北京100124【正文语种】中文【中图分类】TP391.41 引言据统计,人类所获取的80%~90%的外界信息是经过视觉系统传入大脑的[1]。
图像像素的识别技术和人眼获取注意区域的方法类似,是一个复杂的跨学科问题,急需一个深入融合神经学、生物学、计算机视觉等领域的高水平模型来进行分析。
毕业设计进度汇报ppt课件
方向选择 • 壹
七月份在去吉林的火车上,联系了老师 ,从而确定
了毕业设计题目《 基于SPCNN的医学组织细胞完 整区域分割技术研究 》,选择后就开始了对毕设难
度的担心,内心依旧挣扎 ing ,之后便进入了更为费神 的考研复习中,每天在毕设和“求极限”,背单词煎熬 的度过。。。。
BREAD PPT DESIGN
BREAD PPT DESIGN
7
背景介绍
在读了几篇论文之后,对细胞核分割大致有了想 法,为实现对细胞核的准确分割,了解到了一种基于 B-G 值细胞细胞核的快速分割方法。因 B-G 值 为8bit运算操作, 且分割阈值为大量的实验统计 所得的具有普适性的经验值, 大大降低了计算量。 还有一种自适应地、 局部地应用图割法的方式, ( LAGC) 。此方法能够在复杂背景下处理图像对比度 变化、 核染色较浅、 染色质不均匀等问题, 准确分 割出细胞核。之后会对这两种方法继续了解和学习。
BREAD PPT DESIGN
8
BREAD PPT DESIGN
9
2
目录 CONTENTS
1 进度介绍 2 下阶段安排 3 总结
BREAD PPT DESIGN
3
ቤተ መጻሕፍቲ ባይዱ前进度
机器学习
• 看视频学习 • 做笔记 • 配套讲义阅读
相关论文
• 知网下载论文 • 阅读论文 • 了解SPCNN相关
BREAD PPT DESIGN
4
背景介绍
目标识别通常包括两个有关联而不同的任务:辨别 与分类⑴。辨别的主要任务是从一幅图像或一个视频 喊中识别出一个特定的目标物体;而分类的主要任务 是将一个目标物体归入某一个类别中。我的毕业设计 主要关注医学组织细胞的细胞核辨别并分割方面的研 究,致力于开发一个基于神经系统科学的目标识别算 法,该算法可在一幅由显微镜下拍摄的医学组织细胞 图中,便捷地定位细胞核并标识。
呼吸系统耦合神经元模型中树突型混合簇放电的动力学研究
呼吸系统耦合神经元模型中树突型混合簇放电的动力学研究赵林帆
【期刊名称】《动力系统与控制》
【年(卷),期】2024(13)1
【摘要】呼吸是哺乳动物必不可少的生理活动,对维持正常身体功能和生存起着关键作用。
位于脑干中延髓外侧区的pre-Bötzinger复合体是哺乳动物产生和调节呼吸节律的中枢部位。
本文以耦合pre-Bötzinger复合体中的神经元为研究对象,运用快慢动力学和分岔分析等方法,讨论了三磷酸肌醇浓度对耦合神经元树突型混合簇放电的影响,并揭示了若干树突型混合簇放电模式产生和转迁的动力学机制。
研究发现,三磷酸肌醇浓度对树突型混合簇放电的类型和周期具有显著影响。
【总页数】12页(P33-44)
【作者】赵林帆
【作者单位】北京邮电大学理学院
【正文语种】中文
【中图分类】R74
【相关文献】
1.神经元模型中混合模式振荡动力学研究进展
2.耦合Pre-Bötzinger复合体神经元中混合簇放电模式的研究
3.耦合pre-B(o)tzinger复合体神经元中混合簇放电的多时间尺度动力学分析
4.耦合前包钦格复合体神经元中复杂混合簇放电的动力学
5.耦合神经元模型中簇放电的动力学分析
因版权原因,仅展示原文概要,查看原文内容请购买。
异质自适应网络中的核心-边缘结构及其对疾病传播的抑制作用
异质自适应网络中的核心-边缘结构及其对疾病传播的抑制作
用
杨慧;唐明;蔡世民;周涛
【期刊名称】《物理学报》
【年(卷),期】2016(065)005
【摘要】节点属性异质自适应网络中疾病传播的研究表明节点属性异质性可以很大程度上增大传播阈值,并且自组织形成一个更鲁棒的度异质网络结构.本文从数值模拟方面研究鲁棒的度分布异质结构的自组织形成过程,分析发现核心-边缘结构的形成才是导致传播阈值增大的根本原因.鉴于此,提出一种重连策略,能够促进核心-边缘结构的形成,从而达到增大传播阈值的目的.这不仅有助于深入认识节点属性异质自适应网络中的流行病传播过程,而且为疾病传播控制策略的提出提供了新思路.【总页数】10页(P361-370)
【作者】杨慧;唐明;蔡世民;周涛
【作者单位】电子科技大学互联网科学中心,成都611731;电子科技大学大数据研究中心,成都611731;电子科技大学互联网科学中心,成都611731;电子科技大学大数据研究中心,成都611731;电子科技大学互联网科学中心,成都611731;电子科技大学大数据研究中心,成都611731;电子科技大学互联网科学中心,成都611731;电子科技大学大数据研究中心,成都611731
【正文语种】中文
【相关文献】
1.网络结构异质性对疾病传播影响的初步研究 [J], 王宁宁
2.虚拟学习社区中的核心-边缘结构分析 [J], 胡勇;赵凤梅
3.网络结构异质性对疾病传播影响的初步研究 [J], 王宁宁;
4.异质集合种群上疾病传播动力学的研究 [J], 张杰; 刘茂省
5.异质集合种群上疾病传播动力学的研究 [J], 张杰; 刘茂省
因版权原因,仅展示原文概要,查看原文内容请购买。
混合远近场太赫兹通信中波束色散分析及预编码设计
混合远近场太赫兹通信中波束色散分析及预编码设计
赵笑洁;郝万明;王芳;杨守义;黄崇文
【期刊名称】《无线电通信技术》
【年(卷),期】2024(50)1
【摘要】为解决宽带太赫兹通信中传统混合预编码架构中的波束色散问题,将时延器引入到该架构中,并研究基于时延器的混合预编码架构性能。
讨论了混合远近场太赫兹通信中的波束色散问题,分析了引入时延器后的混合预编码架构及其性能,提出了一种基于远近场的混合预编码算法,对所提算法和传统的混合预编码算法进行了仿真。
仿真结果表明,所提算法在性能上优于传统算法,可以有效缓解混合远近场中的波束色散。
【总页数】9页(P143-151)
【作者】赵笑洁;郝万明;王芳;杨守义;黄崇文
【作者单位】郑州大学电气与信息工程学院;浙江大学信息与电子工程学院
【正文语种】中文
【中图分类】TN820.1;TN928
【相关文献】
1.基于光导微探针的近场/远场可扫描太赫兹光谱技术∗
2.超宽带太赫兹通信中天线结构设计及其波束色散影响分析
3.太赫兹大规模MIMO系统DSP-OMP混合预编码设计
4.《太赫兹科学与电子信息学报》2024年第7期专栏征稿主题:太赫兹通信技术设计、实现与应用
5.《太赫兹科学与电子信息学报》2024年第7期专栏征稿主题:太赫兹通信技术设计、实现与应用
因版权原因,仅展示原文概要,查看原文内容请购买。
深度强化学习下连续和离散相位RIS毫米波通信
深度强化学习下连续和离散相位RIS毫米波通信
胡浪涛;杨瑞;刘全金;吴建岚;嵇文;吴磊
【期刊名称】《电子科技大学学报》
【年(卷),期】2024(53)1
【摘要】在分布式智能反射面(RIS)辅助多用户毫米波(mmWave)系统中,利用深度强化学习(DRL)理论学习并调整基站发射波束赋形矩阵和RIS相位偏转矩阵,联合优化发射波束赋形和相位偏转,实现加权和速率最大化。
即在离散动作空间中,设计了功率码本与相位码本,提出了用深度Q网络(DQN)算法进行优化发射波束赋形与RIS相位偏转矩阵;在连续动作空间中,采用双延迟策略梯度(TD3)算法进行优化发射波束赋形与RIS相位偏转矩阵。
仿真分析比较了在不同码本比特数下离散动作空间和连续动作空间下系统的加权和速率。
与传统的凸优化算法以及迫零波束赋形随机相位偏转算法进行了对比,强化学习算法的和速率性能有明显提升,连续的TD3算法的和速率超过凸优化算法23.89%,在码本比特数目为4时,离散的DQN算法性能也优于传统的凸优化算法。
【总页数】10页(P50-59)
【作者】胡浪涛;杨瑞;刘全金;吴建岚;嵇文;吴磊
【作者单位】安庆师范大学电子工程与智能制造学院
【正文语种】中文
【中图分类】TN928
【相关文献】
1.网联环境下基于深度强化学习的单路口交通信号控制优化
2.双环相位结构约束下的强化学习交通信号控制方法
3.利用无监督学习的RIS辅助毫米波通信系统鲁棒传输设计
4.基于深度强化学习的毫米波通信资源分配方法
5.无蜂窝毫米波大规模MIMO系统基于深度强化学习的节能睡眠策略
因版权原因,仅展示原文概要,查看原文内容请购买。
基于小波变换和各向异性扩散的红外和可见光图像融合算法
基于小波变换和各向异性扩散的红外和可见光图像融合算法郝帅;安倍逸;付周兴;马瑞泽;赵新生;马旭;刘彬
【期刊名称】《西安科技大学学报》
【年(卷),期】2022(42)1
【摘要】针对利用传统方法进行红外与可见光图像融合时易出现边缘模糊以及细
节分辨能力弱的问题,提出一种基于小波变换和各向异性扩散的红外和可见光图像
融合算法。
首先,将红外图像和可见光图像利用小波变换进行多尺度分解,获取原图
像所对应的高频部分和低频部分;其次,将高频部分和低频部分分别进行各向异性扩散,生成对应图像的基础层和细节层;然后,采用KL变换对异源图像的细节层进行融合,采用加权平均方法对基础层进行融合;最后,将融合后的细节层和基础层通过线性重构得到最终的融合图像。
为了验证所提出算法的优势,将其与3种经典融合算法
进行比较。
通过大量融合实验表明,相比于其他3种经典融合算法,所提出的算法不仅实时性好,而且融合结果能够较好保留原图像丰富的细节信息,具有较高的清晰度。
【总页数】7页(P184-190)
【作者】郝帅;安倍逸;付周兴;马瑞泽;赵新生;马旭;刘彬
【作者单位】西安科技大学电气与控制工程学院;西安卫星测控中心
【正文语种】中文
【中图分类】TP391
【相关文献】
1.一种基于小波变换的可见光与红外图像融合算法研究
2.基于小波变换的红外与可见光图像融合技术研究
3.基于灰度直方图熵与小波变换的近红外与可见光图像融合
4.基于对比度增强与小波变换相结合的红外与可见光图像融合算法
5.基于双树复小波变换与引导滤波的红外与可见光图像融合算法
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Abstract—For over a decade, the Pulse Coupled Neural Network (PCNN) based algorithms have been successfully used in image interpretation applications including image segmentation. There are several versions of the PCNN based image segmentation methods, and the segmentation accuracy of all of them is very sensitive to the values of the network parameters. Most methods treat PCNN parameters like linking coefficient and primary firing threshold as global parameters, and determine them by trial-and-error. The automatic determination of appropriate values for linking coefficient, and primary firing threshold is a challenging problem and deserves further research. This paper presents a method for obtaining global as well as local values for the linking coefficient and the primary firing threshold for neurons directly from the image statistics. Extensive simulation results show that the proposed approach achieves excellent segmentation accuracy comparable to the best accuracy obtainable by trial-and-error for a variety of images. Keywords—Automatic Selection of PCNN Parameters,Image Segmentation, Neural Networks, Pulse Coupled Neural NetworkI.I NTRODUCTIONHE single layered Pulse Coupled Neural Network (PCNN)is a laterally connected two-dimensional array of artificial neurons known as Pulse Coupled Neurons (PCN). Though Eckhorn did not refer to his neuron model as PCN, the artificial neuron model (Eckhorn’s neuron) developed by him based on the study of the visual cortex of cats is the first PCN model [1]. By using a laterally connected recurrent network of Eckhorn’s neurons, he was successful in emulating some of the neuro-physiological phenomena observed in cat’s visual cortex. Ranganath, Kuntimad and Johnson modified Eckhorn’s model for image processing applications including image segmentation, smoothing and object detection. They called the simplified model the pulse coupled neuron [2]. Both neuron models are being used for image segmentation. Though there are several PCNN based image segmentation methods, even today, the single-burst algorithm developed by Kuntimad and Ranganath in 1999 is considered a classic algorithm [3]-[4]. The segmentation accuracy of the single-burst PCNN algorithm has been compared with those of other widely used segmentation methods by segmenting several images consisting of two regions, object and background, in T. H. Raya is with the University of Alabama in Huntsville, Huntsville, AL 35899 USA (phone: 678-979-6907; fax: 256-824-6239; e-mail: thr0001@).V. Bettaiah is with the University of Alabama in Huntsville, Huntsville, AL 35899 USA (;e-mail: vb0003@).H. S. Ranganath is with the University of Alabama in Huntsville, Huntsville, AL 35899 USA (phone: 256-824-6653; e-mail: ranganat@).. which intensity ranges of object and background regions overlap significantly. The segmentation result of the PCNN based algorithm was found to be consistently better than the segmentation results obtained by optimal thresholding, region growing, split-and merge, and probabilistic relaxation algorithms [3]. It has been proved that the single-burst PCNN can segment a two-region image perfectly even if the two intensity ranges overlap significantly when there exist linking coefficient and linking radius values for which two inequalities involving linking coefficient, linking radius, object pixel intensity range, and background pixel intensity range are consistent [4]. However, no method has been suggested for the automatic determination of the two parameters from image statistics. Karvonen used the PCNN to segment Baltic sea ice Synthetic Aperture Radar (SAR) images [5]. He estimated the Gaussian probability density function that best represented the histogram of each region, and calculated the primary firing threshold and the linking coefficient for each region. Though his approach may have suited to segment Baltic ice SAR images it is not expected to give satisfactory result when region pixel intensity distribution can not be approximated by a Gaussian probability density function. In many cases, the image or region histogram may not even be bi-modal. Therefore, automatic determination of primary firing thresholds and the corresponding linking coefficient values is still an open problem. The PCNN based image segmentation process can be viewed as a region growing method where seed pixels are identified by the neurons that fire during primary firing, and the region growing is accomplished by capturing spatially connected neighboring neurons through secondary firing. Stewart et. al. have used PCNN to develop a seeded region growing method in which seed locations are internally generated [6]. They have avoided the difficulty of choosing optimal value for the linking coefficient for each region by gradually incrementing the value of the linking coefficient to grow the region in multiple steps. The process terminates when at least one of the three termination conditions they have specified is satisfied.A few researchers have used the PCNN with the original Eckhorn’s neuron model to segment images [7]-[9]. Note that Eckhorn’s neuron consists of a feeding receptive field, a linking receptive field, and a spike or pulse generator. The spike generator has one leaky integrator, the output of which is the threshold signal. The feeding and linking receptive fields have several leaky integrators. Each leaky integrator has two parameters, amplitude and decay time constant. Even if we assume that all leaky integrators in each receptive fieldAdaptive Pulse Coupled Neural NetworkParameters for Image SegmentationThejaswi H. Raya, Vineetha Bettaiah, and Heggere S. RanganathTare identical, there are six parameters. The linking coefficient is the seventh parameter. It is obvious that selection of appropriate values for these parameters is a challenging problem. Usually these parameter values are determined by trial-and-error. Also, when Eckhorn’s model is used a neuron is allowed to pulse more than once during the segmentation process. Ma e t. al. have allowed the pulsing activity to continue for a large number of iterations (a few thousand). At the end of every iteration, the entropy of the segmented image is computed. The segmented image of the iteration at which the entropy attains its maximum value is taken as the final result. Based on the experiments conducted, they claim that as entropy increases the details in the segmented image increase [7]. Ma, Liu, and Qian have also suggested that a possible way for automating the selection of the segmentation result is by selecting the result of the iteration for which the discrepancy between the input image and the segmented image as measured by the cross-entropy is minimum [8].As the accuracy of a PCNN based image segmentation algorithm is very sensitive and depends on the values of the PCNN parameters, it is important to develop a method for the automatic determination of appropriate values for all PCNN parameters based on image statistics. This paper presents a method for computing the linking coefficient and the primary firing threshold directly from the image histogram. The approach can be used to obtain global as well as adaptive local values for both parameters.The PCNN based single-burst image segmentation algorithm is briefly described in Section II. An analysis of the single-burst segmentation algorithm and the role played by the linking coefficient and the primary firing threshold are given in Section III. Two methods for the determination of values for the linking coefficient and primary firing threshold are given in Sections IV and V. Section VI presents simulation results. Finally, discussion and conclusions are given in Section VII.II.PCNN BASED SINGLE-BURST IMAGESEGMENTATION ALGORITHMThis section briefly describes the N X N laterally connected single-layer PCNN operating in single-burst mode that was developed by Kuntimad and Ranganath to segment an N × N image [3]-[4]. There is one-to-one correspondence between image pixels and PCNN neurons. The neuron N i,,j corresponding to pixel (i, j) consists of a feeding input X i,,j (intensity of image pixel (i, j)), a linking receptive field which gathers linking input L i,j(t) from its 8-neighbors, and a pulse generator as shown in Fig. 1. The internal activity of N i,,j is computed by combining the feeding and linking inputs asU i,j (t) = X i,j (1 + β L i,j (t)) (1) where, β> 0is a global parameter known as the linking coefficient. When U i,j (t) > θi,j (t), the neuron N i,j fires (Y i,j (t) = 1) and sends linking input to each of its 8-neighbors through a linking leaky integrator (LLI), and also charges the threshold signal generator to a very high value θmax to ensure that N i,j will not fire again in the current pulsing cycle [3]. All leaky integrators are considered identical with an impulse response of V e-t/τ where V is the amplitude and τ is the decay time constant. One may prefer to use unit linking and avoid the use of leaky integrators in the linking receptive field. Consider an image of two regions, object and background. Assume that the object is brighter than the background. Let (Bmin, Bmax) and (O min, Omax) be intensity ranges of the background and object pixels. If Bmax > Omin then the two intensity ranges overlap, and perfect segmentation becomes difficult to achieve. In fact, the number of pixels incorrectlyassigned increases as the extent of the overlap increases.Fig. 1 The Pulse Coupled Neuron Model However, it has been shown that PCNN segments such images perfectly if the following two inequalities are satisfied [4].1)The neurons corresponding to the object pixels withintensity Omax pulse naturally (primary pulsing withoutthe help of linking input) at time t = T(Omax) whereT(Omax ) is the time required for the threshold signals todecay from their maximum value of θmax to Omax.2)During secondary firing due to fast linking, all objectneurons for which the following inequality is true arecaptured.X i,j (1 + β L i,j (T(Omax)) ≥ Omax(2) In the above inequality, β is the linking coefficient, L i,j (T(Omax)) is the total linking input received by N i,jfrom its 8-neighbors, and X i,j is the intensity of pixel (i, j)which is the feeding input to N i,j.3) Similarly, during secondary firing, all backgroundneurons for which the following inequality is not true arealso captured.X p,q (1 + β L p.q (T(Omax)) < Omax (3) If it is possible to find a value of βfor which the inequality (2) is true for all object neurons and the inequality (3) is true for all background neurons, then only the object neurons can be made to pulse together at T(Omax) and thus leading to perfect segmentation of the input. When perfect segmentation is not possible the goal is to capture maximum number of object neurons and minimum number of background neurons as possible.III.ANALYSIS OF PCNN BASED IMAGE SEGMENTATIONALGORITHMIt is obvious that inequalities (2) and (3) impose opposing conditions on β. Inequality (2) specifies the lower bound (β1), and inequality (3) specifies the upper bound (β2) for β. The value of β1increases as the intensity ratio Omax/Omin increases, and the value ofβ2decreases as the ratio Omax/Bmax decreases. Any image for which β1 >β2 perfect segmentation is not possible. Preprocessing the input image or enhancing the neuron model that effectively reduces β1and increases β2improves segmentation accuracy. Smoothing the image compresses the dynamic range of each region and also reduces the extent of intensity range overlap of regions. The net effect is a reduction in the value of β1and an increase in the value of β2 as desired [3]. Kuntimad achieved improvement in segmentation accuracy by delaying the primary firing to a value below Omax. This was accomplished by allowing the inactive neurons in the linking receptive field to send inhibitory linking inputs [4]. The approach is not biologically plausible, and also may not always improve segmentation. Note that delaying the primary firing to a value below Omax decreases values of both β1and β2. This is beneficial only if the benefit of the reduction in the value of β1is relatively more than the harm caused by the reduction in the value of β2. Also, he has not addressed the problem of determining the value of the threshold or intensity at which primary firing must begin.Therefore, associated with the above approach, there are three major problems or issues which should be solved to further improve the segmentation accuracy of the PCNN approach.1)The accuracy of the PCNN based algorithms is verysensitive to the values assigned to linking coefficient andlinking neighborhood radius. Almost always the linkingradius is fixed at 1.5. Each neuron receives linking inputfrom its 8-neighbours. Previous experience with PCNNshows that a small change in the value of βchanges thesegmentation result significantly. Therefore, it is important to develop a quantitative approach to determine a suitable value of βrather than determine itsvalue by trial-and-error approach. To the best of ourknowledge the determination of the optimal or near optimal value for the linking coefficient βdirectly fromthe image is still an open problem that needs to besolved.2)It is very beneficial if one can delay primary firing to anappropriate intensity level between Omax and Bmax, sayPFT. This effectively reduces the lower bound for βwhich is desirable. Also, prevents stray bright pixelsfrom triggering primary firing leading to unacceptablesegmentation result. At the same time, PFT must belarge enough to prevent brighter background neuronsfrom firing with object neurons in large numbers.Therefore, there is a need to develop a method to determine an appropriate value for the primary firingthreshold PFT from the image itself.3)Because of non-uniform illumination, varying object-background intensity contrast or differing noise levels, itmay not be practical to use global values for PFT and β.In other words, it is desirable to make both parameterslocal and assign values based on local image intensityattributes. In the limiting case, each neuron can have itsown parameter values. A good compromise is to partition the image into subimages and assign appropriate parameter values to each subimage.IV. GLOBAL LINKING COEFFICIENT AND PRIMARYFIRING THRESHOLDNow consider the segmentation of an image with two regions, object and background. Assume that intensity ranges of object pixels and background pixels overlap considerably. The goal is to find near optimal values for PFT and β so that the PCNN produces good segmentation result. The method for computing global PFT and β directly from the image statistics is described below.1)For the image to be segmented, threshold T whichroughly segments the image into two regions (object andbackground) is determined. The threshold T may beobtained using the basic iterative method, Otsu’s methodwhich maximizes inter-class variance or by locating thevalley of the histogram if the histogram is bimodal. Theintensity mean m O and standard deviation σO of objectpixels are approximated using image pixels with intensity greater than T. Similarly, the intensity mean m Band standard deviation σB of background pixels areapproximated using image pixels with intensity less thanor equal to T.2)The primary firing threshold PFT should be greater thanT to prevent bright noisy background pixels from firingduring the primary firing. Thus, PFT is computed asPFT = (m O + k1σO) (4) where, k is a constant greater than zero. Typically, k1 isin the range [1, 2].3)The linking coefficients βshould be computed such thatthe following inequality is true for all object neurons.Omin (1 + β L1 (t)) ≥PFT (5) The minimum object intensity Omin is not known and isroughly taken as (T – k2σO). It is reasonable to expectmore object neurons than background neurons in the 8-neighborhood of an object neuron. Therefore, assumingunity linking, the minimum value of LI (t) for an objectneuron may be taken as 5. Therefore, the linkingcoefficient β is computed asβ = (PFT / (T – k2σO) -1)/5(6) Usually, k2 is a positive number in the range [0.5, 1.0].V. ADAPTIVE LINKING COEFFICIENTS AND PRIMARYFIRING THRESHOLDSOften, it is not practical to use a global value for the linking coefficient or the primary firing threshold. This could happen due to a variety of reasons such as non-uniform illumination, varying contrast between object and background regions, and noise characteristics as described below.1) Consider two areas of object (background) whoseintensities would approximately be the same under uniform illumination. If the illumination is not uniformthen object (background) pixels in the area whereillumination is relatively higher will be significantlybrighter than the object (background) pixels in the areawhere illumination is lower. Non-uniform illumination,in general, expands the object and background intensityranges.2) The contrast between object and background pixels asmeasured by intensity difference also changes as illumination changes. Thus, the non-uniform illumination increases the extent by which object andbackground intensity ranges overlap.3) The standard deviation of pixel intensity may not beuniform throughout the image due to shadows (non-uniform illumination) and varying noise characteristics. As a result, values of parameters suitable for one part of the image may not be suitable for other parts. In such cases, it is necessary to adapt parameter values to match the local image properties. As an extreme case, one may wish to compute values of βand PFT for each neuron. The development of an approach to accomplish this task is challenging and has not been done so far. In this section, two methods for computing βand PFT for individual neurons are described. The first method consists of the following steps.1)The image to be segmented is partitioned into (K × L)non-overlapping subimages or blocks.2)The global values of the linking coefficient and theprimary firing threshold are computed for each block asdescribed in Section IV. LetβG[i, j] and PFT G [i, j] bethe linking coefficient and the primary firing thresholdfor the block BLK[i, j].3)If necessary, the possibility of abrupt change ofparameter values between adjacent blocks is avoided byusing interpolation in two steps. For example, considerthe computation of the primary firing threshold forneurons in BLK[i, j]. In the first step, for all neurons inD columns on either side of the boundary betweenadjacent blocks BLK[i, j-1] and BLK[i, j], the primaryfiring threshold is modified to change linearly along therows from PFT G [i, j-1] to PFT G [i, j]. In the secondstep, for all neurons in D rows on either side of theboundary between blocks BLK[i-1, j] and BLK[i, j] theprimary firing threshold is further modified to changelinearly along the columns from the modified value inBLK[i-1, j] to the modified value in BLK[i, j]. Asimilar process is used to assign linking coefficientvalues to individual neurons.The second method consists of the following steps.1) The image to be segmented is divided into (K × K)overlapping subimages or blocks. For adjacent blocksBLK[i-1, j] and BLK[i, j], the bottom 50% of the rowsin BLK[i-1, j] are same as the top 50% of the rows inBLK[i, j]. Similarly, for adjacent blocks BLK[i, j]and BLK[i, j+1], the right 50% of the columns inBLK[i, j] are same as the left 50% of the columns inBLK[i, j].2) The global values of the linking coefficient and theprimary firing threshold are computed for each block asdescribed in Section III. LetβG [i, j] and PFT G [i, j]be the linking coefficient and the primary firing threshold for the block BLK[i, j].3) Because of the overlapping partitioning, a neuronbelongs to 1, 2 or 4 blocks depending on its location inthe PCNN. Most neurons belong to 4 blocks.Therefore, the parameter value for a neuron iscomputed as the weighted sum of values of all blocks towhich the neuron belongs. The value of each weight isin the range [0, 1] and the sum of all w eights associatedwith a neuron is 1. The value of the weight thatmultiplies the global parameter of a block is inverselyproportional to the distance of the neuron from the center of the block.VI. SIMULATION RESULTSThis section presents simulation results that validate the concepts and algorithms described in detail in the previous sections.A. The PCNN based image segmentation algorithm is able to segment an image perfectly even when object and background intensity ranges overlap significantly if inequalities (2) and (3) are true.Fig. 2 (a) shows a two-region image for which Omin = 120, Omax = 200, Bmin = 40, and Bmax = 140. When this image is applied as input to the PCNN for segmentation, all neurons corresponding to pixels with intensity 200 fire first (primary firing), and then initiate secondary firing. Inequality (2) establishes the lower limit for the value of β. The value of βmust be large enough to capture object neurons corresponding to pixels of intensity 120 even when the linking inputs received by them are at their minimum values. Therefore,(a)(b)(c) (d)Fig. 2 Illustration of perfect image segmentation using PCNN. (a)Two-region image with additiveGaussian noise with mean 0 and standard deviation 20. (b) Image histogram. (c) Result of segmenting the image in (a) using Otsu’s optimal thresholding method. (d) Result of segmenting the image in(a) using PCNN.assuming that all object neurons get linking input from at least 5out of 8 neighbors, the lower limit for β is (200/120 – 1) /5 = 2/15. The value of β must be small enough to not to capture background neurons corresponding to pixels of intensity 140 even when the linking inputs received by them from neighboring object neuron are at their maximum values. Inequality (3) establishes the upper limit for the value of β. Therefore, assuming that all background neurons get linking input from at most 3 out of 8 neighbors, the upper limit for β is (200/140 – 1) /3 = 1/7. As the upper limit is greater than the lower limit, the PCNN gives perfect result if PFT = 200 and 1/7 > β > 2/15. The segmentation result obtained with PFT = 200 and β = 0.14 is shown in Fig. 2 (d). For comparison purpose, segmentation result obtained from Otsu’s optimal thresholding method is shown in Fig. 2 (c).B . If one or two of inequalities (2) and (3) are not true then perfect segmentation is not possible. However, the accuracy of the PCNN based image segmentation algorithm can be greatly improved by delaying the primary firing threshold (PFT) to an appropriate value between Bmax and Omax.The image in Fig 3 (a) is similar to the image in Fig. 2 (a) in content. However, contrast between object and background is poor and the noise level is high (Standard Deviation = 40). For the image in Fig. 3(a), Omin = 20, Omax = 200, Bmin = 1, and Bmax = 80. It is not possible to find a value of β forwhich inequalities (2) and (3) are both true, and therefore(a) (b)(c) (d)Fig. 3 Effect of delaying the primary firing threshold on segmentation accuracy. (a) Two-region image with additive Gaussian noise of mean 0 and standard deviation 40. (b) Result of segmenting the image in (a) using Otsu’s optimal thresholding method. (c) Result of segmenting the image in (a) using PCNN withOmax = 200 as the primary firing threshold. (d) Result of segmenting the image in (a) using PCNN with PFT = 190 as theprimary firing threshold.perfect segmentation is not achievable. As there is significant overlap between object and background intensity ranges, thisis not an easy image to segment. This is illustrated by the poor quality of the segmentation result obtained by Otsu’s optimal thresholding algorithm shown in Fig 3 (b). Even under these adverse conditions, the PCNN gives remarkably better result compared to Otsu’s method as shown in Fig 3 (c). The value of β was varied by trial-and-error to obtain the best result (judged by visual inspection). In Section III, it is stated that it is possible to obtain significantly better results by delaying the primary firing to an appropriate intensity level (PFT) less than Omax . The result in Fig 3 (d) is obtained by setting PFT to 190. Once again the value of β is obtained by trial-and-error.C . If the intensity characteristics of an image vary significantly across the image then improved segmentation result may be obtained by using adaptive local parameters instead of using a single set of global parameters.The image is Fig 4 (a) is obtained by modifying the image in Fig 2(a) to achieve the effect of non-uniform illumination. The illumination of the image in Fig. 4 (a) increases linearly from left to right. Note the difference in the histograms in Fig 2 (b) and Fig. 4 (b). The image has changed for worse as far segmentation is concerned. As Omin = 84, Omax = 214, Bmin = 20, and Bmax = 177, it is not possible to find a value of β for which inequalities (2) and (3) are both true, and therefore perfect segmentation is not achievable for all values of the primary firing threshold. However, the PCNN produces better result than most other methods if β and PFT are set to proper values. The result in Fig 4 (c) is obtained by setting β and PFT to 0.30 and 200, respectively. These values areobtained by trial-and-error. In order to illustrate that the use of adaptive parameters improves segmentation accuracy, the image in Fig 4 (a) is split into two blocks of size 256×128(a)(b)(c) (d)Fig. 4 Illustration of segmentation of an image with non-uniformillumination using PCNN.(a) Two-region image with linearly increasing illumination fromleft to right, and additive Gaussian noise of mean 0 and standarddeviation 20. (b) Image histogram. (c) Result of segmenting theimage in (a) using PCNN with PFT = 200 and β = 0.30 . (d) Result of segmenting the image in (a) using PCNN with adaptive parameters. (vertically at the center) and each block is segmented independently. The values of β and PFT for the left block are 0.28 and 165, respectively. The values of β andPFT for the right block are 0.26 and 210, respectively. The improved segmentation result obtained by using adaptive parameters is shown in Fig. 4 (d).D. The values of β and PFT obtained using the methods proposed in Sections IV and V are able to produce near optimal segmentation results.Now consider the segmentation of the three images in Fig.2 (a), Fig.3 (a), Fig.4 (a) using the parameters values computed as described by the methods given in Sections IV and V. The threshold T that roughly partitions the image in Fig. 2 (a) into object and background regions is computed using Otsu’s method and its value is 126. The object’s mean intensity m O and standard deviation σO, approximated by the mean and standard deviation of all pixels with intensity greater than T, are 154.5 and 19.62, respectively. Then, PFT (194) and β(0.17) are computed as (m O + 2σO) and 0.2*[ PFT/(T - σO) – 1], respectively. The segmentation result obtained using these values is shown in Fig. 5 (a).(a) (b)(c) (d)Fig. 5 Segmentation results using adaptive values of PFT and βcalculated using the methods proposed in Sections IV and V. (a) Result of segmenting the image in Fig. 2 (a) using global PFT and β.(b) Result of segmenting the image in Fig. 3 (a) using global PFT and β. (c) Result of segmenting the image in Fig. 4 (a) using global PFT and β. (d) Result of segmenting the image in Fig. 4 (a) usingadaptive PFT and β.Otsu’s threshold, object’s mean intensity and standard deviation for the image in Fig. 3 (a) are 55, 81 and 20, respectively. Therefore, PFT is 121 and β is 0.37. The result of segmenting the image in 3 (a) is displayed in Fig. 5 (b). A comparison of segmented images in Fig 5 (a) and Fig. 5 (b) with the images in Fig. 2 (d) and Fig. 3 (d) shows that the use of automated parameter values has produced segmentation results very similar to the best results obtained by trial-and-error approach in both cases.When the image in 4 (a) is segmented using global PFT and β, the segmentation result obtained is not comparable to the result in Fig. 4 (c). However, when the image is partitioned into two blocks vertically at the center and each block is independently segmented almost perfect segmentation is achieved. Otsu’s threshold, object mean, standard deviation, PFT and β for the left block are 92, 121, 18, 160 and 0.23, respectively. For the right block these numbers are 124, 149, 19, 187 and 0.14. The segmented image, shown in Fig. 5 (d), is comparable to the image in Fig. 4 (d) in quality.E. In general, the segmentation accuracy is less sensitive to the variation in the value of k1 than it is to the variation in the value of β.The image in 2 (a) is segmented by varying the value of k1 from 1 to 2 in steps of 0.1. No noticeable difference is found in the final results obtained. Several other images are then segmented by varying k1. In all cases, simulation results indicate that the segmentation accuracy remains fairly insensitive to the value of k in the range [1, 2]. This is perhaps due to the fact that the values of PFT and β both increase or decrease together as k1 is increased or decreased, respectively.F. If an image is highly noisy, in general, the segmentation accuracy can be improved by smoothing the image before segmentation.Fig. 6 (a) shows an image obtained with non-uniform illumination. The illumination increases linearly from left to right. The image is also corrupted with additive Gaussian noise (mean = 0 and standard deviation = 20). It is obvious from the histogram that this is a difficult image to segment using any region thresholding method. The image is(a)(b)(c) (d)Fig. 6 Effect of smoothing on the performance of PCNN.。