数电实验_芯片引脚图
数电实验报告:实验4-计数器及应用161
广东海洋大学学生实验报告书(学生用表)实验名称课程名称 课程号 学院(系)专业 班级 学生姓名 学号 实验地点 实验日期实验4 计数器及其应用一、实验目的1、熟悉中规模集成计数器的逻辑功能及使用方法2、掌握用74LS161构成计数器的方法3、熟悉中规模集成计数器应用二、实验原理计数器是典型的时序逻辑电路,它是用来累计和记忆输入脉冲的个数.计数是数字系统中很重要的基本操作,集成计数器是最广泛应用的逻辑部件之一。
计数器种类较多,按构成计数器中的多触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器;根据计数制的不同,可分为二进制计数器、十进制计数器和任意进制计数器;根据计数的增减趋势,又分为加法、减法和可逆计数器。
还有可预置数和可编程序功能计数器等。
本实验主要研究中规模十进制计数器74LS161的功能及应用。
1、中规模集成计数器74LS161 是四位二进制可预置同步计数器,由于它采用4 个主从JK 触发器作为记忆单元,故又称为四位二进制同步计数器,其集成芯片管脚如图1所示:管脚符号说明:电源正端Vcc ,接+5V ;异步置零(复位)端Rd ;时钟脉冲CP ;预置数控制端 A 、B 、C 、D ;数据输出端 QA 、QB 、QC 、QD ;进位输出端 RCO :使能端EP ,ET ;预置端 LD ;图1 74LS161 管脚图GDOU-B-11-112该计数器由于内部采用了快速进位电路,所以具有较高的计数速度。
各触发器翻转是靠时钟脉冲信号的正跳变上升沿来完成的。
时钟脉冲每正跳变一次,计数器内各触发器就同时翻转一次,74LS161的功能表如表1所示:表1 74LS161 逻辑功能表2、实现任意进制计数器由于74LS161的计数容量为16,即计16个脉冲,发生一次进位,所以可以用它构成16进制以内的各进制计数器,实现的方法有两种:置零法(复位法)和置数法(置位法)。
(1) 用复位法获得任意进制计数器假定已有N进制计数器,而需要得到一个M进制计数器时,只要M<N,用复位法使计数器计数到M时置“0”,即获得M进制计数器。
数电实验 计数器逻辑功能和设计
2.5 计数器逻辑功能和设计1.实验目的(1)熟悉四位二进制计数器的逻辑功能和使用方法。
(2)熟悉二-五-十进制计数器的逻辑功能和使用方法。
(3)熟悉中规模集成计数器设计任意进制计数器的方法。
(4)初步理解数字电路系统设计方法,以数字钟设计为例。
2.实验仪器设备(1)数字电路实验箱。
(2)数字万用表。
(3)数字集成电路:74161 4位二进制计数器74390 2二-五-十进制计数器7400 4与非门7408 4与门7432 4或门3.预习(1)复习实验所用芯片的逻辑功能及逻辑函数表达式。
(2)复习实验所用芯片的结构图、管脚图和功能表。
(3)复习实验所用的相关原理。
(4)按要求设计实验中的各电路。
4.实验原理(1)计数器是一个用以实现计数功能的时序逻辑部件,它不仅可以用来对脉冲进行计数,还常用做数字系统的定时、分频和执行数字运算以及其他特定的逻辑功能。
计数器的种类很多,按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器;根据计数进制的不同,分为二进制、十进制和任意进制计数器;根据计数的增减趋势分为加法、减法和可逆计数器;还有可预置数和可编程功能计数器等。
(2)利用集成计数器芯片构成任意(N)进制计数器方法。
①反馈归零法。
反馈归零法是利用计数器清零端的清零作用,截取计数过程中的某一个中间状态控制清零端,使计数器由此状态返回到零重新开始计数。
把模数大的计数器改成模数小的计数器,关键是清零信号的选择。
异步清零方式以N作为清零信号或反馈识别码,其有效循环状态为0~N-1;同步清零方式以N-1作为反馈识别码,其有效循环状态为0~N-1。
还要注意清零端的有效电平,以确定用与门还是与非门来引导。
②反馈置数法。
反馈置数法是利用具有置数功能的计数器,截取从Nb到Na 之间的N个有效状态构成N进制计数器。
其方法是当计数器的状态循环到Na时,由Na构成的反馈信号提供置数指令,由于事先将并行置数数据输入端置成了Nb 的状态,所以置数指令到来时,计数器输出端被置成Nb,再来计数脉冲,计数器在Nb基础上继续计数至Na,又进行新一轮置数、计数,其关键是反馈识别码的确定与芯片的置数方式有关。
数电实验之计数器
计数器一实验目的1、掌握中规模集成计数器的逻辑功能及使用方法。
2、学习运用集成电路芯片计数器构成N位十进制计数器的方法。
二实验原理计数器是一个用以实现计数功能的时序器件,它不仅可以用来记忆脉冲的个数,还常用于数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。
计数器种类很多,按构成计数器中的各个触发器输出状态更新是否受同一个CP脉冲控制来分,有同步和异步计数器,根据计数制的不同,分为二进制、十进制和任意进制计数器。
根据计数的增减趋势分,又分为加法、减法和可逆计数器。
另外,还有可预置数和可编程功能的计数器等。
目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器芯片。
如:异步十进制计数器74LS90,4位二进制同步计数器74LS93,CD4520,4位十进制计数器74LS160、74LS162;4位二进制可预置同步计数器CD40161、74LS161、74LS163;4位二进制可预置同步加/减计数器CD4510、CD4516、74LS191、74LS193;BCD码十进制同步加/减计数器74LS190、74LS192、CD40192等。
使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列就能正确使用这些器件。
例如74LS192同步十进制可逆计数器,具有双时钟输入十进制可逆计数功能;异步并行置数功能;保持功能和异步清零功能。
74192功能见表表19.1*表中符号和引脚符号的对应关系:CR = CLR—清零端;LD= LOAD—置数端(装载端)CP U = UP—加计数脉冲输入端CP D = DOWN—减计数脉冲输入端CO——非同步进位输出端(低电平有效)BO——非同步借位输出端(低电平有效)D3 D2 D1 D0 = D C B A—计数器数据输入端Q D Q C Q B Q A—计数器数据输出端根据功能表我们可以设计一个特殊的12进制的计数器,且无0数。
如图19.1所示:当计数器计到13时,通过与非门产生一个复位信号,使第二片74LS192(时十位)直接置成0000,而第一片74LS192计时的个位直接置成0001;从而实现了1——12的计数。
数电实验报告
河 北 科 技 大 学实 验 报 告级 专业 班 学号 年 月 日 姓 名 同组人 指导教师 实验名称 实验二 基本门电路逻辑功能的测试 成 绩 实验类型 验证型 批阅教师一、实验目的(1)掌握常用门电路的逻辑功能,熟悉其外形及引脚排列图。
(2)熟悉三态门的逻辑功能及用途。
(3)掌握TTL 、CMOS 电路逻辑功能的测试方法。
二、实验仪器与元器件(1)直流稳压电源 1台 (2)集成电路74LS00 四2输入与非门 1片 74LS86 四2输入异或门 1片 74S64 4-2-3-2输入与或非门 1片 74LS125 四总线缓冲门(TS ) 1片 CD4011 四2输入与非门1片三、实验内容及步骤1.常用集成门电路逻辑功能的测试在数字实验板上找到双列直插式集成芯片74LS00和74LS86。
按图进行连线。
测试各电路的逻辑功能,并将输出结果记入表中。
门电路测试结果2.测试与或非门74S64的逻辑功能在实验板上找到芯片74S64,实现Y AB CD =+的逻辑功能。
Y Y &3.用与非门组成其他逻辑门电路 (1)用与非门组成与门电路按图接线,按表测试电路的逻辑功能。
根据测得的真值表,写出输出Y的逻辑表达式。
真值表逻辑表达式:(2)用与非门组成异或门电路按图接线,将测量结果记入表中,并写出输出Y 的逻辑表达式。
真值表逻辑表达式:真值表4.三态门测试(1)三态门逻辑功能测试三态门选用 74LS125将测试结果记入表中。
(2)按图接线。
将测试结果记录表中。
真值表河北科技大学实验报告级专业班学号年月日姓名同组人指导教师实验名称实验三示波器的使用及门电路测试成绩实验类型综合型批阅教师一、实验目的(1)熟悉双踪示波器的面板结构,学习其使用方法。
(2)进一步学习数字实验板的使用方法。
(3)进一步掌握TTL与非门的特性和测试方法。
二、实验仪器与元器件(1)直流稳压电源1台(2)信号发生器1台(3)6502型示波器1台(4)集成电路74LS00 四2输入与非门1片三、实验内容及步骤1.信号发生器的使用信号发生器选择不同的按键,可以产生TTL/CMOS标准电平的数字信号,信号从“数字输出”端引出。
数电实验芯片引脚图课品
1G 1
B
2
1C3 3
1C2 4
1C1 5
1C0 6
1Y 7
GND 8
16 Vcc 15 2G 14 A 13 2C3 12 2C2 11 2C1 10 2C0 9 2Y
74LS153双四选 一
输
地址选择 使能
A
BĒ
C0
*
*1
*
0
00
C0
0
10
*
1
00
*
1
10
*
1 G1
6 C0 5 C1 4 C2 3
123 4567
A B C D E F GND
2). 74LS138
输入端 允许 选择
输 出 端 (低有效)
G1 G2 C B A Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7
数据输出
Vcc Y0 Y1Y2 Y3 Y4Y5Y6 16 15 14 13 12 11 10 9
X 1 XXX 1 1 1 1 1 1 1 1 0 X XXX 1 1 1 1 1 1 1 1
ABC
使 能 端 输出 地 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 110 1 1 1 1 1 1 0 1
1 0 111 1 1 1 1 1 1 1 0
G1=1 G2=0器时译码正常工作
1. 1) 验证数据选择 器的功能。
74LS153是一个双4 选一数据选择器, 功能表见指导书 表5-10。
Q0 14 Q1 13
10 A0 12 A1
A=B 6 F2
5V cp
7 10 2
P T
Q2 12 Q3 11
74LS161
13 A2 15 A3
数电实验报告模板_2
交通灯逻辑控制电路设计一、绪论1.意义交通的发达,标志着城市的发达,相对交通的管理则显得越来越重要。
对于复杂的城市交通系统,为了确保安全,保证正常的交通秩序,十字路口的信号控制必需按照一定的规律变化,以便于车辆行人能顺利地通过十字路口。
交通灯在安全行车过程中起着十分重要的作用, 现在交通灯一般设在十字路口, 在醒目位置用红、绿、黄三种颜色的指示灯, 加上一个倒计时的显示计时器来控制行车, 对于一般情况下的安全行车、车辆分流发挥着作用。
2.目的(1)熟悉集成电路的引脚安排。
(2)掌握各芯片的逻辑功能及使用方法。
(3)了解面包板结构及其接线方法。
(4)了解数字交通灯控制电路的组成及工作原理。
3.指标要求(1)满足图1顺序工作流程。
图中设南北方向的红、黄、绿灯分别为NSR 、NSY 、NSG ,东西方向的红、黄、绿灯分别为EWR 、EWY 、EWG 。
它们的工作方式有些必须是并行进行的,即南北方向绿灯亮,东西方向红灯亮;南北方向黄灯亮,东西方向红灯亮;南北方向红灯亮,东西方向绿灯亮;南北方向红灯亮,东西方向黄红灯亮。
(2)应满足两个方向的工作时序:即东西方向亮红灯时间应等于南北方向亮黄、绿灯时间之和,南北方向亮红灯时间应等于东西方向亮黄、绿灯时间之和。
时序工作流程图2所示。
图2中,假设每个单位时间为4秒,则南北、东西方向绿、黄、红灯亮时间分别20秒、4秒、24秒,一次循环为48秒。
其中红灯亮的时间为绿灯、黄灯亮的时间之和。
图1 交通灯顺序工作流程图 图2 交通灯时序工作流程图(3)十字路口要有数字显示,作为时间提示,以便人们更直观地把握时间。
具体为:当某方向绿灯亮时,置显示器为某值,然后以每秒减1计数方式方式工作,直至减到数1 2 3 4 5 6 7 10 11 12 1 2 3 4NS t为“0”,十字路口红、绿灯交换,一次工作循环结束,进入下一步某方向地工作循环。
例如:当南北方向从红灯转换成绿灯时,置南北方向数字显示为18,并使数显计数器开始减“1”计数,当减到绿灯灭而黄灯亮时,数显的值应为3,当减到“0”,时,此时黄灯灭,而南北方向的红灯亮;同时,使得东西方向的绿灯亮,并置东西方向的数显为18。
数电实验2-组合逻辑电路装测调试方法
暨南大学本科实验报告专用纸课程名称数字电子技术实验成绩评定实验项目名称组合逻辑电路装测调试方法指导教师实验项目编号071200031实验项目类型验证+设计实验地点实B406 学生姓名学号学院电气信息学院专业实验时间2016年4月19 日一、实验目的1.学习应用实验的方法分析组合逻辑电路。
2.学习数字电路设计和装测调试方法。
3.学习数字系统综合实验平台可编辑数字波形发生器使用方法。
二、实验器件、设备和仪器1. 三3输入与非门74LS10 1片2. 双4输入与非门74LS20 1片3. 4异或门74LS86 1片4. 6反相器74LS04 1片5. 四2输入与非门74LS00 1片6. PC机(数字信号显示仪) 1台7. GOS-6051示波器 1台8. 数字万用表UT56 1台9. TDS-4数字系统综合实验平台 1台三、实验原理1.芯片引脚图2.组合逻辑电路测试方法介绍数字电路静态测试方法指的是:给定数字电路若干组静态输入值,测定数字电路的输出值是否正确。
数字电路状态测试的过程是在数字电路设计好后,将其安装连接成完整的线路,把线路的输入接到逻辑电平开关上,线路的输出接到电平指示灯(LED)或用万用表测量进行电平测试,按功能表或状态表的要求,改变输入状态,观察输入和输出之间的关系是否符合设计要求。
数字电路电平测试是测量数字电路输入与输出逻辑电平(电压)值是否正确的一种方法。
静态测试是检查设计与接线是否正确无误的重要一步。
数字电路动态测试方法是:在静态测试的基础上,按设计要求在输入端加动态脉冲信号,观察输出端波形是否符合设计要求,这是动态测试,动态测试的主要目的测试电路的频率特性(如测试电路使用时的频率范围)等)及稳定特性等。
四、实验内容1.用实验方法分析由异或门组成的组合逻辑电路①用一片74LS86按图1连接逻辑电路。
②采用静态测试方法进行逻辑电路测试。
接好电路后,将输入信号用逻辑开关置入(由逻辑电平信号源提供输入信号),输出结果输出接LED指示灯通过逻辑电平指示灯进行显示测试。
数电考试电路图
5.1.1YX 实验一实验二实验三实验四芯片7脚接地,14脚接5V5.1.2实验一实验二5.1.4实验一实验三实验一 138、148译码编码5.1.5实验二 138、20一位全加器全加和进位实验四 双153实现8选一数据选择器实验三 153一位全加器进位5.1.6实验一 D触发器逻辑功能八分频十六分频实验一 D触发器分频器(使用1KHz方波)实验二 JK触发器逻辑功能实验四 JK触发器转换D触发器(使用单脉冲)实验五 JK触发器转换T触发器(使用1Hz脉冲或单脉冲)5.1.8实验一 192实现7进制清零法加法计数器(QA、QB、QC、QD接入数码管接口) 权位:QA-1、QB-2、QC-4、QD-8实验二 161实现7进制清零法加法计数器(Q1、Q2、Q3、Q4接入数码管接口) 权位:Q1-1、Q2-2、Q3-4、Q4-8 实验二 161实现7进制置数法加法计数器(Q1、Q2、Q3、Q4接入数码管接口) 权位:Q1-1、Q2-2、Q3-4、Q4-8实验三 双390实现24进制清零法加法计数器 权位:从左到右1、2、4、8、1674LS194功能表H-高电平 L-低电平 X-任意电平 ↑-低到高电平跳变a-d-A-D端的稳态输入电平Q A0-Q D0-规定的稳态条件建立前Q A-A D的电平Q An-Q Dn-时钟最近的↑前Q A-A D的电平实验五 194环形移位寄存器5.1.9实验一 74LS123方波转窄脉冲电路 74LS122方波转窄脉冲电路 (使用1KHz方波)实验二 74LS121脉冲整形或展宽电路 使用1KHz方波 R=1k 0.7uF <C<1.4uF t=0.7RC5.1.10实验一 NE555单稳态触发器 R=100k C=4.7uF 使用单脉冲实验二 NE555单稳态触发器 R=1k C=0.1uF f=1KHz实验三 NE555多谐振荡器R1接1k电阻 R2接4.7K滑动变阻器实验四 NE555施密特触发器。
EP1C6Q240C8封装和部分引脚的功能分析
EP1C6Q240C8封装和部分引脚的功能分析图U21A图U21B图U21C图U21D第一部分:封装图U21A、U21B、U21C、U21D表示的是同一块芯片EP1C6Q240C8,有240个引脚,采用的是PQFP封装(即Plastic Quad Flat Package,塑料方块平面封装),PQFP封装的芯片的四周均有引脚,而且引脚之间距离很小,管脚也很细,一般大规模或超大规模集成电路采用这种封装形式.用这种形式封装的芯片必须采用SMT(Surface Mount Technology,表面组装技术)将芯片边上的引脚与主板焊接起来。
对于SMT技术,个人理解,即表面组装技术,一般用来焊接一些引脚在几百以上的芯片,比如说BGA,PGA一般都采用这种技术;例如笔记本主板上的intel北桥芯片,一般都采用球形封装,又如比较古老的Intel 965底部球形引脚大约有600多个,现在笔记本流行用的P43、P45、P55、X58,从P43一代引脚多达几千个甚至更多,这样做的好处是节约面积,坏处是测试的时候比较麻烦,像BGA这种封装的芯片一般焊上去之后,顶部要引出几个接点,以防止在使用过程中坏掉,方便用万用表或者示波器来测试各个通路便于修理.对于这几种类型的芯片,除了PQFP少数罕见的高手能手工焊接之外,一般都采用贴片机来进行专门的焊接工作。
这里简单介绍一下这两种封装:PQFP/PFP封装具有以下特点1.适用于SMD表面安装技术在PCB电路板上安装布线。
2.适合高频使用。
2.操作方便,可靠性高。
3.芯片面积与封装面积之间的比值较小。
4.Intel系列CPU中80286、80386和某些486主板采用这种封装形式。
这里的SMD表示的是贴片组装器件;BGA球栅阵列封装随着集成电路技术的发展,对集成电路的封装要求更加严格.产品的功能性,当IC的频率超过100MHz时,传统封装方式可能会产生所谓的“CrossTalk(串扰)”现象,而且当IC的管脚数大于208 Pin时,传统的封装方式有其困难度。
数字电子技术(数电) 集成门电路的应用 实验指导书
教案(第次课,学时)集成门电路的应用一、实验目的1.进一步熟练掌握集成与非门的逻辑功能测试方法。
2.掌握用集成门电路实现逻辑函数的方法。
3.掌握逻辑函数形式的变换。
二、实验内容1.CMOS(TTL)集成与非门74HC20(74LS20)的逻辑功能测试。
2.用与非门74HC00(74LS00)组成与门,实现Y=AB。
3.用与非门74HC00(74LS00)组成或门,实现Y=A+B。
3.用74HC20(74LS20),74HC00(74LS00)实现逻辑函数式Y=AB+A′C+AC′三、实验设备及器件数字电路实验台、万用表、74HC00(74LS00)、74HC20(74LS20)四、实验原理1.芯片介绍本实验采用双四输入与非门74HC20(74LS20),在一块集成块内含有两个相互独立的与非门,每个与非门有四个输入端,其引脚排列如图1所示。
图1 74LS20(74HC20)引脚图与非门的逻辑功能实:当输入端中有一个或一个以上是低电平时,输出端为高电平;只有当输入端全部为高电平时,输出端才是低电平(即有0得1,全1得0)。
74LS00(74HC00)引脚图见实验一。
2. 用与非门74HC00(74LS00)组成与门。
与非门的布尔代数表达式为Y=(AB)′,而与门的布尔代数表达式为Z=AB,只要把与非门的输出Y反相一次,即可得到与门的功能:AB=Z=Y′=((AB) ′ ) ′因此只要用二个与非门即可实现与门的功能。
3. 用与非门74HC00(74LS00)组成或门。
或门的布尔代数表达式为:Y=A+B,根据摩根定律可知Y=((A+B) ′ ) ′=((A ′ B ′) ) ′,因此可以用三个与非门连接起来,即可实现或门的功能。
4. 实现逻辑函数式Y=AB+A′C+AC′利用摩根定律,将要实现的与或逻辑式两次取非,外层的非号保持不变,内层的非用德摩根定律,即可得到与非-与非表达式。
Y=((AB+A′C+AC′) ′) ′ = ((AB) ′(A′C) ′(AC′) ′) ′用3个二输入与非门和1个三输入与非门,另外A′和C′非门各用一个与非门实现,因此需要5个二输入与门、1个三输入与非门实现。
数字逻辑电路实验
1.1 数电实验仪器的使用及门电路逻辑功能的测试1.1.1 实验目的(1)掌握数字电路实验仪器的使用方法。
(2)掌握门电路逻辑功能的测试方法。
1.1.2 实验设备双踪示波器一台数字电路实验箱一台万用表一块集成芯片:74LS00、74LS201.1.3 实验原理图1.1是TTL系列74LS00(四2输入端与非门)的引脚排列图。
Y A B其逻辑表达式为:=⋅图1.2是TTL系列74LS20(双4输入端与非门)的引脚排列图。
Y A B C D其逻辑表达式为:=⋅⋅⋅与非门的输入中任一个为低电平“0”时,输出便为高电平“1”。
只有当所有输入都为高电平“1”时,输出才为低电平“0”。
对于TTL逻辑电路,输入端如果悬空可看作逻辑“1”,但为防止干扰信号引入,一般不悬空。
对于MOS逻辑电路,输入端绝对不允许悬空,因为MOS电路输入阻抗很高,受外界电磁场干扰的影响大,悬空会破坏正常的逻辑功能,因此使用时一定要注意。
一般把多余的输入端接高电平或者和一个有用输入端连在一起。
1.1.4 实验内容及步骤(1)测量逻辑开关及电平指示功能用导线把一个数据开关的输出端与一个电平指示的输入端相连接,将数据开关置“0”位,电平指示灯应该不亮。
将数据开关置“1”位,电平指示灯应该亮。
以此类推,检测所有的数据开关及电平指示功能是否正常。
(2)检测脉冲信号源给示波器输入脉冲信号,调节频率旋钮,可观察到脉冲信号的波形。
改变脉冲信号的频率,示波器上的波形也应随之发生变化。
(3)检测译码显示器用导线将四个数据开关分别与一位译码显示器的四个输入端相连接,按8421码进位规律拨动数据开关,可观察到译码显示器上显示0~9十个数字。
(4)与非门逻辑功能测试①逻辑功能测试将芯片74LS20中一个4输入与非门的四个输入端A、B、C、D分别与四个数据开关相连接,输出端Y与一个电平指示相连接。
电平指示的灯亮为1,灯不亮为0。
根据表1.1中输入的不同状态组合,分别测出输出端的相应状态,并将结果填入表中。
数电实验五:计数器的功能验证
数电实验五:计数器的功能验证1. 实验目的本实验旨在通过验证计数器的功能,加深对计数器原理的理解,让学生能够掌握计数器的使用方法和工作原理。
2. 实验器材•数字逻辑实验箱•计数器芯片•电压源•示波器•逻辑分析仪3. 实验原理计数器是一种常用的数字电路,能够实现计数功能。
常见的计数器有二进制计数器、十进制计数器等。
计数器可以用来进行时序控制、频率分频等应用。
4. 实验步骤4.1 连接电路首先将计数器芯片插入实验箱中的插槽,注意芯片的引脚方向要正确。
接下来按照以下步骤连接电路:1.将电压源的正极与实验箱的正电源线连接,将电压源的负极与实验箱的地线连接。
2.将计数器芯片的Vcc引脚连接到电压源的正极,将GND引脚连接到电压源的负极。
3.将计数器芯片的输入引脚与任意输入信号源连接,可以使用示波器或逻辑分析仪提供输入信号。
4.将计数器芯片的输出引脚与外部观察装置(示波器、数码管等)连接,以观察计数器的输出情况。
4.2 功能验证启动电路后,根据以下步骤验证计数器的功能:1.观察计数器的输出情况,注意是否按照预期进行计数。
2.调节输入信号源的频率,观察计数器的计数速度。
3.尝试改变计数器的工作模式(比如二进制计数、十进制计数等),观察输出结果的变化。
4.使用逻辑分析仪对计数器进行分析,验证计数器的工作原理。
5. 实验结果与分析通过观察实验中计数器的输出情况,我们可以得出以下结论:1.计数器能够按照预期的规律进行计数,对输入信号的边沿敏感。
2.计数器的计数速度与输入信号的频率有关,频率较高时计数速度较快,频率较低时计数速度较慢。
3.改变计数器的工作模式会导致输出结果的变化,不同的工作模式对计数器的计数规律有不同的要求。
6. 实验总结本次实验主要验证了计数器的功能,加深了对计数器的认识。
通过实验,我们学到了以下知识:1.计数器是一种常用的数字电路,能够实现计数功能。
2.计数器的输入信号可以是时钟信号或其他外部触发信号。
数电实验实验报告
数字电路实验报告实验一 组合逻辑电路分析一.试验用集成电路引脚图74LS00集成电路 74LS20集成电路 四2输入与非门 双4输入与非门 二.实验内容 1.实验一X12.5 VA BCD示灯:灯亮表示“1”,灯灭表示“0”ABCD 按逻辑开关,“1”表示高电平,“0”表示低电平自拟表格并记录:2.实验二密码锁的开锁条件是:拨对密码,钥匙插入锁眼将电源接通,当两个条件同时满足时,开锁信号为“1”,将锁打开。
否则,报警信号为“1”,则接通警铃。
试分析密码锁的密码ABCD 是什么?ABCDABCD 接逻辑电平开关。
最简表达式为:X1=AB ’C ’D 密码为: 1001 表格为:三.实验体会:1.分析组合逻辑电路时,可以通过逻辑表达式,电路图和真值表之间的相互转换来到达实验所要求的目的。
2.这次试验比较简单,熟悉了一些简单的组合逻辑电路和芯片,和使用仿真软件来设计和构造逻辑电路来求解。
实验二组合逻辑实验(一)半加器和全加器一.实验目的1.熟悉用门电路设计组合电路的原理和方法步骤二.预习内容1.复习用门电路设计组合逻辑电路的原理和方法步骤。
2.复习二进制数的运算。
3. 用“与非门”设计半加器的逻辑图。
4. 完成用“异或门”、“与或非”门、“与非”门设计全加器的逻辑图。
5. 完成用“异或”门设计的3变量判奇电路的原理图。
三.元件参考依次为74LS283、74LS00、74LS51、74LS136其中74LS51:Y=(AB+CD )’,74LS136:Y=A ⊕B (OC 门) 四.实验内容1. 用与非门组成半加器,用或非门、与或非门、与非门组成全加器(电路自拟)NOR2SC半加器全加器2.用异或门设计3变量判奇电路,要求变量中1的个数为奇数是,输出为1,否则为0.3变量判奇电路3.“74LS283”全加器逻辑功能测试测试结果填入下表中:五.实验体会:1.通过这次实验,掌握了熟悉半加器与全加器的逻辑功能2.这次实验的逻辑电路图比较复杂,涉及了异或门、与或非门、与非门三种逻辑门,在接线时应注意不要接错。
数电实验(B310)
实验一组合逻辑电路一、实验目的1.掌握组合逻辑电路的功能测试。
2.验证半加器和全加器的逻辑功能。
3.学会二进制数的运算规律。
二、实验所用仪器和仪表1.二输入四与非门74LS00 3. 数字万用表(DT9106)2.二输入四异或门74LS86三、实验内容1.组合逻辑电路的功能测试(1)用2片74LS00组成图2-1逻辑电路。
为便于接线和检查,在图中要注明芯片编号和引脚号。
(2)图中A、B、C、接电平开关,Y1、Y2接电平指示灯(LED)。
(3)按表2-1要求,改变A、B、C的状态,填表并写出Y1、Y2的逻辑表达式。
(4)将运算结果与实验结果进行比较。
表2-12.测试用异或门(74LS86)和与非门组成的半加器的逻辑功能。
根据半加器的逻辑表达式可知,半加器Y是A、B的异或,而进位C n上是A、B相与。
S n=A i⊕B i C n=A i•B i其中⊕代表半加故半加器可用一个集成异或门和二个与非门组成。
如图2-2(1)在实验箱上用异或门(74LS86)和与非门(74LS00)按图2-2接电路。
A i、B i接电平开关,S n、C n接电平指示灯。
(2)按表2-2要求改变A i、B i状态,将测试结果填入表2-2中。
表2-23.测试全加器的逻辑功能(1)写出图2-3电路的逻辑表达式。
(2)根据逻辑表达式列出真值表。
(3)根据真值表画出S n、C n的卡诺图.(4)按原理图接电路并测试,填写表2-3各点状态。
S nCn表2-3四、实验报告1.整理实验数据、图表,并对实验结果进行分析。
2.总结组合逻辑电路的分析方法。
实验二集成计数器一、实验目的1.掌握计数器74LS163功能。
2、掌握计数器的联级方法。
3、熟悉数码管的使用。
二、实验说明计数器器件是应用广泛的器件之一,它有很多型号,各自完成不同的功能。
本实验选用74LS163做实验用器件。
74LS163是同步四位二进制计数器(同步清除)。
当清除端(CR)为低电平时,在时钟端(CP)上升沿的作用下,即可完成清除功能。
数字电路课程设计之数字密码锁电路设计
图1 数字式电子锁原理框图课程设计任务书学生姓名: 张浩然 专业班级: 通信1105班 指导教师: 李政颖 工作单位: 信息工程学院 题 目: 数字式电子锁的设计与实现初始条件:本设计既可以使用集成电路和必要的元器件等,也可以使用单片机系统构建数字密码电子锁。
自行设计所需工作电源。
电路组成原理框图如图1,数字密码锁的实际锁体一般由电磁线圈、锁栓、弹簧和锁柜构成。
当线圈有电流时,产生磁力,吸动锁栓,即可开锁。
反之则不开锁。
要求完成的主要任务: 1、课程设计工作量:1周。
2、技术要求:1)课程设计中,锁体用LED 代替(如“绿灯亮”表示开锁,“红灯亮”表示闭锁)。
2)其密码为4位二进制代码,密码可以通过密码设定电路自行设定。
3)开锁指令为串行输入码,当开锁密码与存储密码一致时,锁被打开。
当开锁密码与存储密码不一致时,可重复进行,若连续三次未将锁打开,电路则报警并实现自锁。
(报警动作为响1分钟,停10秒)4)选择电路方案,完成对确定方案电路的设计。
计算电路元件参数与元件选择、并画出总体电路原理图,阐述基本原理。
安装调试设计电路。
3、查阅至少5篇参考文献。
按《武汉理工大学课程设计工作规范》要求撰写设计报告书。
全文用A4纸打印,图纸应符合绘图规范。
时间安排:1、2013年5月17日,布置课设具体实施计划与课程设计报告格式的要求说明。
2、 年 月 日至 年 月 日,方案选择和电路设计。
3、 年 月 日至 年 月 日,电路调试和设计说明书撰写。
4、 2013年 7月 5日,上交课程设计成果及报告,同时进行答辩。
指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日摘要数字电子技术课程设计对所学的基础理论知识是一次实践检测的过程。
本文的电子密码锁利用数字逻辑电路,实现对门的电子控制,并且有各种附加电路保证电路能够安全工作,具有极高的安全系数。
该系统主要由密码存储电路,比较电路,开锁输入,报警电路,锁体组成。
数电考试电路图
5.1.1YX 实验一实验二实验三实验四芯片7脚接地,14脚接5V5.1.2实验一实验二5.1.4实验一实验三实验一 138、148译码编码5.1.5实验二 138、20一位全加器全加和进位实验四 双153实现8选一数据选择器实验三 153一位全加器进位5.1.6实验一 D触发器逻辑功能八分频十六分频实验一 D触发器分频器(使用1KHz方波)实验二 JK触发器逻辑功能实验四 JK触发器转换D触发器(使用单脉冲)实验五 JK触发器转换T触发器(使用1Hz脉冲或单脉冲)5.1.8实验一 192实现7进制清零法加法计数器(QA、QB、QC、QD接入数码管接口) 权位:QA-1、QB-2、QC-4、QD-8实验二 161实现7进制清零法加法计数器(Q1、Q2、Q3、Q4接入数码管接口) 权位:Q1-1、Q2-2、Q3-4、Q4-8 实验二 161实现7进制置数法加法计数器(Q1、Q2、Q3、Q4接入数码管接口) 权位:Q1-1、Q2-2、Q3-4、Q4-8实验三 双390实现24进制清零法加法计数器 权位:从左到右1、2、4、8、1674LS194功能表H-高电平 L-低电平 X-任意电平 ↑-低到高电平跳变a-d-A-D端的稳态输入电平Q A0-Q D0-规定的稳态条件建立前Q A-A D的电平Q An-Q Dn-时钟最近的↑前Q A-A D的电平实验五 194环形移位寄存器5.1.9实验一 74LS123方波转窄脉冲电路 74LS122方波转窄脉冲电路 (使用1KHz方波)实验二 74LS121脉冲整形或展宽电路 使用1KHz方波 R=1k 0.7uF <C<1.4uF t=0.7RC5.1.10实验一 NE555单稳态触发器 R=100k C=4.7uF 使用单脉冲实验二 NE555单稳态触发器 R=1k C=0.1uF f=1KHz实验三 NE555多谐振荡器R1接1k电阻 R2接4.7K滑动变阻器实验四 NE555施密特触发器。
数电实验——精选推荐
实验一 TTL集成逻辑门的参数测试一、实验目的1、了解TTL与非门各参数的意义。
2、掌握TTL集成门电路的逻辑功能和参数测试方法。
二、实验原理、方法和手段TTL集成与非门是数字电路中广泛使用的一种逻辑门,使用时,必须对它的逻辑功能、主要参数和特性曲线进行测试,以确定其性能好坏。
本实验主要是对TTL集成与非门74LS20进行测试,该芯片外形为DIP双列直插式结构。
原理电路、逻辑符号和管脚排列如图1-1(a)、(b)、(c)所示。
图1-1 74LS20芯片原理电路、逻辑符号和封装引脚图1. 与非门的逻辑功能与非门的逻辑功能是:当输入端有一个或一个以上的低电平时,输出端为高电平;只有输入端全部为高电平时,输出端才是低电平。
(即有“0”得“1”,全“1”得“0”。
)对与非门进行测试时,门的输入端接逻辑开关,开关向上为逻辑“1”,向下为逻辑“0”。
门的输出端接电平指示器,发光管亮为逻辑“1”,不亮为逻辑“0”。
与非门的逻辑表达式为:Q ABCD2. TTL与非门的主要参数(1)低电平输出电源电流I CCL与高电平输出电源电流I CCH与非门在不同的工作状态,电源提供的电流是不同的。
I CCL 是指输出端空载,所有输入端全部悬空,(与非门处于导通状态),电源提供器件的电流。
I CCH 是指输出端空载,每个门各有一个以上的输入端接地,其余输入端悬空,(与非门处于截止状态),电源提供器件的电流。
测试电路如图1-2(a)、(b)所示。
通常I CCL >I CCH ,它们的大小标志着与非门在静态情况下的功耗大小。
导通功耗:P CCL =I CCL ×U CC 截止功耗:P CCH =I CCH ×U CC由于I CCL 较大,一般手册中给出的功耗是指P CCL 。
注意:TTL 电路对电源电压要求较严,电源电压V CC 允许在+5±10%的电压范围内工作,超过5.5V 将损坏器件;低于4.5V 器件的逻辑功能将不正常。
数电实验报告
数字电子技术实验报告学号:姓名:班级:实验一组合逻辑电路分析一、实验用集成电路引脚图74LS00集成电路:74LS20集成电路:二、实验内容1.ABCD接逻辑开关,“1”表示高电平,“0”表示低电平。
电路图如下:A=B=C=D=1时(注:逻辑指示灯:灯亮表示“1”,灯不亮表示“0”。
)表格记录:结果分析:由表中结果可得该电路所实现功能的逻辑表达式为:F=AB+CD。
在multisim软件里运用逻辑分析仪分析,可得出同样结果:2.密码锁的开锁条件是:拨对密码,钥匙插入锁眼将电源接通,当两个条件同时满足时,开锁信号为”1”,将锁打开。
否则,报警信号为”1”,则接通警铃。
试分析密码锁的密码ABCD是什么?电路图如下:A=B=C=D=1时A=B= D=1,C=0时2.5 VA= D=1,B=C=0时记录表格:结果分析:由表可知,只有当A=D=1,B=C=0时,开锁灯亮;其它情况下,都是报警灯亮。
因此,可知开锁密码是1001。
三、实验体会与非门电路可以实现多种逻辑函数的功能模拟,在使用芯片LS7400和LS7420时,始终应该注意其14脚接高电平,8脚接地,否则与非门无法正常工作。
利用单刀双掷开关,可以实现输入端输入高/低电平的转换;利用LED灯可以指示输出端的高低电平。
实验二组合逻辑实验(一)半加器和全加器一、实验目的熟悉用门电路设计组合电路的原理和方法步骤。
二、预习内容1.预习用门电路设计组合逻辑电路的原理和方法步骤。
2.复习二进制数的运算。
①用与非门设计半加器的逻辑图。
②完成用异或门、与非门、与或非门设计全加器的逻辑图。
③完成用异或门设计的三变量判奇电路的原理图。
三、参考元件74LS283: 74LS00:74LS51: 74LS136:四、实验内容1.用与非门组成半加器,用异或门、与或非门、与非门组成全加器。
实验结果填入表中。
(1)与非门组成的半加器。
电路图如下(J1、J2分别代表Ai、Bi,图示为Ai、Bi分别取不同的电平时的仿真结果):2.5 V2.5 V2.5 V记录表格:(2)异或门、与或非门、与非门组成的全加器。
数电实验报告-半加半减器,全加全减器
S A B Ci
Co 的卡诺图
-3-
Co BCi (Ci B)(M A) 四、实验结果
半加器半减器的电路实现如图所示:
-4-
(74LS00 引脚图)
(74LS86LS86 实现半加器、全加器的逻辑电路功能。
(一)半加器、半减器 M=0 时为半加,M=1 时为半减,真值表如下:
-1-
2、半加器、半减器卡诺图:
-2-
(二)全加器、全减器 M=0 表示全加,M=1 表示全减
数字电子技术实验报告
实验二、半加器半减器、全加器全减器的逻辑电路实现
一、实验目的:
1、能够根据真值表,连接逻辑电路实现半加器、全加器的逻辑功能。 2、熟悉加法器的使用,了解运算电路的结构。 3、了解 74LS00,74LS86 芯片的内部结构和功能。
二、实验仪器:
74LS00(二输入端四与非门)、74LS86(二输入端四异或门)、数字电 路实验箱、导线若干。
数电实验预习要求
实验二 用SSI 设计组合逻辑电路一、 实验目的1、 掌握用基本逻辑门设计组合逻辑电路的方法;2、 熟悉各种逻辑门电路的应用及其应用电路功能的测试方法。
二、预习要求1、 画出芯片74LS00和74LS126的引脚图和逻辑功能表;2、 列出2-4译码器真值表,写出逻辑表达式;3、 理解频率选择电路原理;4、 设计测试表格。
三、实验内容1、测试与非门和三态门的逻辑功能。
2、试用与非门和三态门设计一个频率选择电路。
频率选择电路的框图如图5-2-4所示。
图中虚线框内为三态门74LS126,其中数字为74LS126的引脚示意。
各三态门控制端分别受2-4译码器输出B3、B 2、B 1、B 0控制,各三态门的输入端分别接不同频率的输入信号,输出端均接在同一总线上。
将总线接到示波器输入端。
若译码器B 0=1,TS 0三态门选通,1KHz 频率信号传送到总线上,而此时B 3、B 2、B 1均为0,TS 3、TS 2、TS 1三态门输出均为高阻态,所以示波器上只观察到1KHz 频率信号,依次类推,总线实现了频率信号的选择。
设计要求:先用与非门设计2-4译码器,然后按图4连接,通过实验台上的逻辑电平改变译码器的输入A 0和A 1组合观察示波器的显示波形,并填入自制的数据表中。
图5-2-4 频率选择电路框图210Hz 213Hz 0216Hz实验三用MSI设计组合逻辑电路一、实验目的1、熟悉各种常用MSI组合逻辑电路的功能与使用方法;2、掌握多片MSI组合逻辑电路的级联、功能扩展及综合应用技术;3、学会组装和调试各种MSI组合逻辑电路。
二、预习要求1、画出芯片74LS10、74LS20、74LS151、74LS153和74LS138的引脚图和逻辑功能表;2、根据实验内容要求设计的题目写出具体的设计步骤,画出逻辑图及芯片连接图;3、设计测试表格。
三、实验内容1、分别测试芯片74LS151、74LS153和74LS138的逻辑功能。