八 相关与回归

合集下载

第八章 相关分析与回归分析

第八章 相关分析与回归分析
第8章 回归分析
下一页
返回本节首页
19
③在数据区域中输入B2:C11,选择“系列产 生在—列”,如下图所示,单击“下一步” 按钮。
上一页
第8章 回归分析
下一页
返回本节首页
20
④打开“图例”页面,取消图例,省略标题,如 下图所示。
上一页
第8章 回归分析
下一页
返回本节首页
21
⑤单击“完成”按钮,便得到XY散点图如下图 所示。
n 8, x 36.4, x 207.54 , y 104214 y 880, . xy 4544 6
2 2
r
n xy x y n x2 x 2 n y2 y 2 8 4544 6 36.4 880 .
第8章 回归分析
40
(二)回归分析的种类: 1、按自变量 x 的多少,分为一元回归和多 元回归; 2、按 y 与 x 关系的形式,分为线性回归和 非线性回归。
第8章 回归分析
41
二、一元线性回归分析
x y 62 86 80 110 115 132 135 160
42
(一)一元线性回归方程:
2、非线性相关:当一个变量变动时, 另一个变量也相应发生变动,但这种变 动是不均等的。
第8章 回归分析
9
㈢根据相关关系的方向 1、正相关:两个变量间的变化方向一 致,都是增长趋势或下降趋势。 2、负相关:两个变量变化趋势相反。
上一页
第8章 回归分析
下一页
返回本节首页
10
(四)根据相关关系的程度 1、完全相关:两个变量之间呈函数关系 2、不相关:两个变量彼此互不影响,其 数量的变化各自独立

第八章直线相关与回归分析

第八章直线相关与回归分析

第十章一元回归与相关分析概述:许多问题需要研究多个变量之间的关系,例如生物的生长发育速度就与温度,营养,湿度等许多因素有关。

相关关系:两变量X,Y均为随机变量,任一变量的每一可能值都有另一变量的一个确信散布与之对应。

回归关系:X是非随机变量(如施肥)或随机变量(如穗长),Y是随机变量,对X的每一确信值x i都有Y的一个确信散布与之对应。

区别:1.相关中的两个变量地位对称,互为因果;回归中X是自变量,Y是因变量。

两种意义不同,分析的数学概念与推导进程不同,但如果是利用一起标准即使y的残差平方和最小(最小二乘法),可取得相同的参数估量式。

因此要紧讨论X为非随机变量(不包括有随机误差)的情形,所取得的参数估量式也可用于X为随机变量的情形。

2.分析目的不同。

回归分析是成立X与Y之间的数学关系式,用于预测;而相关分析研究X与Y两个随机变量之间的一起转变规律,例如当X增大时Y如何转变,和这种共变关系的强弱。

分类:从两个变量间相关(或回归)的程度分三种:(1)完全相关。

一个变量的值确信后,另一个变量的值可通过公式求出(函数关系);生物学研究中不太多见。

(2)不相关。

变量之间完全没有任何关系。

一个变量的值不能提供另一个变量的任何信息。

(3)统计相关(不完全相关)。

介于上述两情形之间。

明白一个变量的值通过某种公式就能够够提供另一个变量的均值的信息。

一个变量的取值不完全决定另一个变量的取值,但可或多或少地决定它的散布。

科研中最常碰到。

研究“一因一果”,即一个自变量与一个依变量的回归分析称为一元回归分析;研究“多因一果”,即多个自变量与一个依变量的回归分析称为多元回归分析。

一元回归分析又分为直线回归分析与曲线回归分析两种;多元回归分析又分为多元线性回归分析与多元非线性回归分析两种。

对两个变量间的直线关系进行相关分析称为直线相关分析;研究一个变量与多个变量间的线性相关称为复相关分析;研究其余变量维持不变的情形下两个变量间的线性相关称为偏相关分析。

第八章 相关与回归分析

第八章 相关与回归分析

相关系数的特点:
相关系数的取值在-1与1之间。 相关系数的取值在之间。 =0时 表明X 没有线性相关关系。 当r=0时,表明X与Y没有线性相关关系。 表明X 当 时,表明X与Y存在一定的线性相关关 系; 表明X 为正相关; 若 表明X与Y 为正相关; 表明X 为负相关。 若 表明X与Y 为负相关。 表明X 完全线性相关; 当 时,表明X与Y完全线性相关; r=1, 完全正相关; 若r=1,称X与Y完全正相关; r=完全负相关。 若r=-1,称X与Y完全负相关
25 20 15 10 5 0 0 2 4 6 8 10 12
11.2 11 10.8 10.6 10.4 10.2 10 0 5 10
相关关系的类型
25
● 从变量相关关系变化的方向 方向看 方向 正相关——变量同方向变化 正相关 负相关——变量反方向变化 负相关 ● 从变量相关的程度看 完全相关 不完全相关 不相关
x
最小二乘法 ˆ ˆ (α 和 β 的计算公式)
根据最小二乘法, 根据最小二乘法,可得求解 和 的公式如下
最小二乘估计的性质 ——高斯 马尔可夫定理 高斯—马尔可夫定理 前提: 在基本假定满足时
最小二乘估计是因变量的线性函数 线性函数 最小二乘估计是无偏估计 无偏估计,即 无偏估计 在所有的线性无偏估计中,回归系数的最小二 乘估计的方差最小 方差最小。 方差最小
结论:
回归系数的最小二乘估计是最佳线性无偏估计 最佳线性无偏估计
四、简单线性回归模型的检验
回归模型的检验包括: 回归模型的检验包括: 理论意义检验: 理论意义检验:主要涉及参数估计值的符号和取 值区间,检验它们与实质性科学的理论以及人们 的实践经验是否相符。 一级检验: 一级检验:又称统计学检验,利用统计学的抽样 理论来检验样本回归方程的可靠性,具体分为拟 合优度检验和显著性检验。 二级检验: 二级检验:又称计量经济学检验,它是对标准线 性回归模型的假设条件是否满足进行检验,包括 自相关检验、异方差检验、多重共线性检验等。

相关分析和回归分析

相关分析和回归分析

即r (x x)( y y) 或r (x x)( y y)
n x y
(x x)2 ( y y)2
•协方差的意义
①显示x与y是正相关还是负相关 协方差为负,是负相关, 协方差为正,是正相关。 ②协方差显示x与y相关程度的大小 当相关点在四个象限呈散乱的分布,相关程度很低 当相关点分布在x与y的平均值线上时,表示不相关 当相关点靠近一直线,表示相关关系密切 当相关点全部落在一直线,表示完全相关
2、相关图被形象地称为相关散点图 3、因素标志分了组,结果标志表现为组平均数,
所绘制的相关图就是一条折线,这种折线又叫 相关曲线。
三、相关系数的计算:
1、符号系数:把两个同平均值的离差数列做对称 比较。
①如果一个数列的离差与另一个数列的离差有很 多同号,就可以认为这两标志之间存在正相关。
②如果大多数为异号,就可以认为他们之间存在 负相关。
.............b

xx x
y x

2
y


xy

1 n

x
y

x2

1 n

x2
当出现权数时:
方程为:a f b xf yf ................a xf b x2 f xyf
解得:a y bx
•相关系数的r的推导公式:
r
n xy x y
n x2 x2 n y2 y2
r
xy nxy
(
x2

2
nx )
y2

2
ny
r
xy x y

第八章-相关与回归分析练习题

第八章-相关与回归分析练习题

第八章-相关与回归分析练习题第八章相关与回归分析一、单选题1.相关分析研究的是()A、变量间相互关系的密切程度B、变量之间因果关系C、变量之间严格的相依关系D、变量之间的线性关系2.若变量X的值增加时,变量Y的值也增加,那么变量X和变量Y之间存在着()。

A、正相关关系 B、负相关关系 C、直线相关关系 D、曲线相关关系3.若变量X的值增加时,变量Y的值随之下降,那么变量X和变量Y之间存在着()。

A、正相关关系 B、负相关关系 C、直线相关关系 D、曲线相关关系4.相关系数等于零表明两变量()。

A.是严格的函数关系B.不存在相关关系C.不存在线性相关关系D.存在曲线线性相关关系5.相关关系的主要特征是()。

A、某一现象的标志与另外的标志之间的关系是不确定的B、某一现象的标志与另外的标志之间存在着一定的依存关系,但它们不是确定的关系C、某一现象的标志与另外的标志之间存在着严格的依存关系D、某一现象的标志与另外的标志之间存在着不确定的直线关系 6.时间数列自身相关是指()。

A、两变量在不同时间上的依存关系 B、两变量静态的依存关系C、一个变量随时间不同其前后期变量值之间的依存关系D、一个变量的数值与时间之间的依存关系7.如果变量X和变量Y之间的相关系数为负1,说明两个变量之间()。

A、不存在相关关系 B、相关程度很低 C、相关程度很高 D、完全负相关8.若物价上涨,商品的需求量愈小,则物价与商品需求量之间()。

A、无相关 B、存在正相关 C、存在负相关 D、无法判断是否相关 9.相关分析对资料的要求是()。

A.两变量均为随机的 B.两变量均不是随机的 C、自变量是随机的,因变量不是随机的 D、自变量不是随机的,因变量是随机的 10.回归分析中简单回归是指()。

A.时间数列自身回归 B.两个变量之间的回归 C.变量之间的线性回归 D.两个变量之间的线性回归11.已知某工厂甲产品产量和生产成本有直线关系,在这条直线上,当产量为1000时,其生产成本为30000元,其中不随产量变化的成本为6000元,则成本总额对产量的回归方程为()A. y=6000+24xB. y=6+0.24xC. y=24000+6xD. y=24+6000x12.直线回归方程中,若回归系数为负,则() A.表明现象正相关 B.表明现象负相关C.表明相关程度很弱D.不能说明相关方向和程度二、多项选择题1.下列属于相关关系的有()。

第八章-相关与回归分析

第八章-相关与回归分析

第八章相关与回归分析一1. 进行相关分析,要求相关的两个变量(A. 都是随机的B.C. 一个是随机的,一个不是随机的D.2. 相关关系的主要特征是(A.B. 某一现象的标志与另一标志之间存在着一定的关系,但它们不是确定的关系C.D. 某一现象的标志与另一标志之间存在着函数关系3. 相关分析是研究(A. 变量之间的数量关系B.C.变量之间相互关系的密切程度D.4. 相关关系的取值范围是(A. r=0B. -1≤r≤0C. 0≤r≤1D. -1≤r≤15. 现象之间相互依存关系的程度越低,则相关系数(A. 越接近于0B. 越接近于-1C. 越接近于1D. 越接近于0.56. 当所有观察值都落在回归直线上,则x与y之间的相关系数()。

A. r=0B. -1<r<1C. |r|=1D. 0<r<17. 在回归直线中,若b<0,则x与y之间的相关系数(A. r=0B. r=1C. 0<r<1D. -1<r<08. 在回归直线中,b表示(A. 当x增加一个单位,y增加a的数量B. 当y增加一个单位时,x增加bC. 当x增加一个单位时,y的平均增加量D. 当y增加一个单位时,x9. 当相关系数r=0时,表明(A. 现象之间完全无关B.C. 现象之间完全相关D.10. r值越接近于-1,表明两变量间(A. 没有相关关系B. 线性相关关系越弱C. 负相关关系越强D.11. 下列直线回归方程中,肯定错误的是(A. y=2+3x,r=0.88B. y=4+5x,r=0.55C. y=-10+5X,R=-0.90D. y=-100-0.9x,r=-0.8312. 正相关的特点是(A.B.C.D.13. 下列现象的相关密切程度高的是(A. 某商店的职工人数与商品销售额之间的相关系数为0.87B. 流通费用率与商业利润率之间的相关系数为-0.94C. 商品销售额与商业利润率之间的相关系数为0.51D. 商品销售额与流通费用率之间的相关系数为-0.8114. 计算估计标准误差的依据是(A. 因变量的数列B.C. 因变量的回归变差D.15. 两个变量间的相关关系称为(A. 单相关B. 复相关C. 无相关D.16. 从变量之间相关的方向看,可分为(A. 正相关与负相关B.C. 单相关与复相关D.17. 从变量之间相关的表现形式看,可分为()。

第八章 相关分析与回归分析习题答案

第八章 相关分析与回归分析习题答案

第八章 相关分析与回归分析习题参考答案一、名词解释函数关系:函数关系亦称确定性关系,是指变量(现象)之间存在的严格确定的依存关系。

在这种关系中,当一个或几个相互联系的变量取一定的数值时,必定有另一个且只有一个变量有确定的值与之对应。

相关关系:是指变量(现象)之间存在着非严格、不确定的依存关系。

在这种关系中,当一个或几个相互联系的变量取一定的数值时,可以有另一变量的若干数值与之相对应。

这种关系不能用完全确定的函数来表示。

相关分析:相关分析主要是研究两个或者两个以上随机变量之间相互依存关系的方向和密切程度的方法,直线相关用相关系数表示,曲线相关用相关指数表示,多元相关用复相关系数表示。

回归分析:回归分析是研究某一随机变量关于另一个(或多个)非随机变量之间数量关系变动趋势的方法。

其目的在于根据已知非随机变量来估计和预测随机变量的总体均值。

单相关:单相关是指仅涉及两个变量的相关关系。

复相关:复相关是指一个变量对两个或者两个以上其他变量的相关关系。

正相关:正相关是指两个变量的变化方向是一致的,当一个变量的值增加(或减少)时,另一变量的值也随之增加(或减少)。

负相关:负相关是指两个变量的变化方向相反,即当一个变量的值增加(或减少)时,另一个变量的值会随之减少(或增加)。

线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈一条直线,则称为线性相关。

非线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈现出某种曲线形式,则为非线性相关。

相关系数:相关系数是衡量变量之间线性相关密切程度及相关方向的统计分析指标。

取值在-1到1之间。

两个变量之间的简单样本相关系数的计算公式为:()()niix x y y r --∑二、单项选择1.B;2.D;3.D;4.C;5.A;6.D 。

三、判断题(正确的打“√”,错误的打“×”) 1.×; 2.×; 3.√; 4.×; 5.×; 6.×; 7.×; 8.√. 四、简答题1、什么是相关关系?相关关系与函数关系有什么区别?答:相关关系,是指变量(现象)之间存在着非严格、不确定的依存关系。

第八章 相关分析与回归分析

第八章 相关分析与回归分析

第八章相关分析与回归分析一、单项选择题(以下每小题各有四项备选答案,其中只有一项是正确的。

)1.根据散点图8-1,可以判断两个变量之间存在( )。

A.正线性相关关系B.负线性相关关系C.非线性关系D.函数关系[答案] A2.假设某品牌的笔记本市场需求只与消费者的收入水平和该笔记本的市场价格水平有关。

则在假定消费者的收入水平不变的条件下,该笔记本的市场需求与其市场价格水平的相关关系就是一种( )。

A.单相关B.复相关C.偏相关D.函数关系[答案] C[解析] 在某一现象与多种现象相关的场合,假定其他变量不变,专门考察其中两个变量的相关关系称为偏相关。

在假定消费者的收入水平不变的条件下,该笔记本的市场需求与其市场价格水平的关系就是一种偏相关。

3.相关图又称( )。

A.散布表B.折线图C.散点图D.曲线图[答案] C[解析] 相关图又称散点图,是指把相关表中的原始对应数值在乎面直角坐标系中用坐标点描绘出来的图形。

4.下列相关系数取值中错误的是( )。

A.-0.86 B.0.78 C.1.25 D.0[答案] C[解析] 相关系数r的取值介于-1与1之间。

5.如果相关系数r=0,则表明两个变量之间( )。

A.相关程度很低B.不存在任何关系C.不存在线性相关关系D.存在非线性相关关系[答案] C[解析] 相关系数r是根据样本数据计算的度量两个变量之间线性关系强度的统计量。

如果相关系数r=0,说明两个变量之间不存在线性相关关系。

6.当所有观测值都落在回归直线上,则两个变量之间的相关系数为( )。

A.1 B.-1C.+1或-1 D.大于-1,小于+1[答案] C[解析] 当所有观测值都落在回归直线上时,说明两个变量完全线性相关,所以相关系数为+1或-1。

即当两个变量完全正相关时,r=+1;当两个变量完全负相关时,r=-1。

7.对于回归方程,下列说法中正确的是( )。

A.只能由自变量x去预测因变量yB.只能由因变量y去预测自变量xC.既可以由自变量x去预测因变量y,也可以由变量因y去预测自变量xD.能否相互预测,取决于自变量x和变量因y之间的因果关系[答案] A[解析] 回归方程中,只能由自变量x去预测因变量y,而不能由因变量y不能预测自变量x。

第8章 相关与回归分析

第8章 相关与回归分析

4、在相关关系中,变量之间是平等关系,不存在自变量和因变量。 、在相关关系中,变量之间是平等关系,不存在自变量和因变量。
而在回归分析中必须明确划分自变量和因变量。 而在回归分析中必须明确划分自变量和因变量。
8-9
统计学
STATISTICS
8.2 简单线性相关与回归分析
8 - 10
STATISTICS
8-5
统计学
STATISTICS
(三)从变量相关关系变化的方向看 从变量相关关系变化的方向看 变化的方向 正相关: A 正相关:变量同方向变化 , 即同增同减 (A) 同增同减 负相关:变量反方向变化, 负相关:变量反方向变化, 即一增一减 (B) B 一增一减 从变量相关的程度 相关的程度看 (四)从变量相关的程度看
完全相关 (B) 不完全相关 (A) 不相关 (C)
8-6
25 20 15 10 5 0 0 2 4 6 8 10 12
25 20 15 10 5 0 0 2 4 6 8 10 12
C
35 30 25 20 15 10 5 0 0 5 10 15
统计学
STATISTICS
三、回归分析
回归一词的由来: 回归一词的由来:
8 - 13
见第218页例题 页例题 见第 页例
统计学
STATISTICS
相关系数的特点: 相关系数的特点:
1、r 的取值范围是 − 1 ≤ r ≤ 1 。 、 2、r<0时,β<0 为负相关;r>0时, β>0 为正相关。 为负相关; 为正相关。 、 时 时 3、|r|=1,为完全相关。r =1,为完全正相关;r = -1, 、 ,为完全相关。 ,为完全正相关; , 为完全负正相关。 为完全负正相关。 4、r = 0,不存在线性相关。 、 线性相关。 ,不存在线性相关 5、|r|越趋于 表示两变量线性关系越密切;|r|越趋于 、 越趋于 表示两变量线性关系越密切; 越趋于 越趋于1表示两变量线性关系越密切 越趋于0 表示两变量线性关系越不密切。 表示两变量线性关系越不密切。 线性关系越不密切 6、r是一个随机变量。 、 是一个随机变量 是一个随机变量。

相关 分析与回归分析

相关 分析与回归分析
下一页 返回
第二节 相关关系的判断
2.相关表 相关表就是把被研究现象的观察值对应排列所形成的统计表
格。如某地区工业劳动者人数和增加值的历史资料对应排列 如表8-1所示。 相关表中的两行数据叫相关数列,它有别于变量数列。相关 表中的数值是变量的观测值,是实际资料,是样本数据,它 是判别相关关系的基础。在相关表中,如果观测值的分布呈 现一定的规律性,则表明现象间存在相关关系。如随着一个 变量数值的增加或减少,另一个变量的值也大致以某一固定 的速率和数量增加或减少,这就可以初步判别现象间存在相 关关系。如果两个变量的观测值不表现出任何规律性,则可 以判定现象间不存在相关关系。
上一页 下一页 返回
第一节 相关分析的一般问题
2.判定相关关系的表现形态和密切程度 相关关系是一种数量上不严格的相互依存关系。只有当变量间
确实存在高度密切的相关关系时,才可能进行相关分析,对社 会经济现象进行预测、推算和决策。因此,判定现象间存在相 关关系后,需要进一步确定相关关系的表现形态和密切程度。 统计上,一般是通过编制相关表、绘制相关图和计算相关系数 来做出判断的。根据相关图表可对相关关系的表现形态和密切 程度做出一般性的判断,依据相关系数则能做出数量上的具体 分析。在我们判断中学生的学习成绩和身高之间有无相关性时, 如果我们发现有部分相关联的点,我们还要进行相关程度的判 断,看两种现象之间的相关程度的高低,以此来判定其是否具 有研究相关性的必要。
除上例外,在其他方面也都可以编制类似的双变量分组相关 表。如工业企业按产量和成本水平同时分组;对同行业的商 业企业,按企业规模和流通费水平同时分组等。这种双变量 分组相关表,可作为探寻最佳方案、提高经济效益的一种工 具。但是,根据双变量分组表的资料来计算相关分析指标比 较复杂,所以,在相关分析中较少使用。

第八章 相关与回归分析习题

第八章 相关与回归分析习题

第八章相关与回归分析练习题一、填空题1.相关关系依影响因素的多少分为和;依相关方向不同分为和;依相关的表现形式不同分为和。

2.在判定现象相关关系密切程度时,主要用进行一般性判断,用进行数量上的说明。

3.两个变量之间的相关关系称为;在具有相关关系的两个变量中,当一个变量的数值由小变大,而另一个变量的数值却由大变小时,这两个变量之间的关系称为。

4.进行分析时,首先要确定哪个是自变量,哪个是因变量,在这一点上与分析不同。

5.估计标准误差是与之间的标准差,它是说明的综合指标。

6.相关系数的取值范围是。

7.完全相关即是关系,其相关系数为。

8.相关系数是用于反映条件下,两变量相关关系的密切程度和方向的统计指标。

9.直线相关系数等于零,说明两变量之间;直线相关系数等于1,说明两变量之间;直线相关系数等于-1,说明两变量之间。

10.对现象之间变量的研究,统计是从两个方面进行的,一方面是研究变量之间关系的,这种研究称为相关关系;另一方面是研究关于自变量和因变量之间的变动关系,用数学方程式表达,称为。

11.回归方程y=a+bx中的参数a是, b是。

在统计中估计待定参数的常用方法是。

12.求两个变量之间非线性关系的回归线比较复杂,在许多情况下,非线性回归问题可以通过化成来解决。

13.用来说明回归方程代表性大小的统计分析指标是。

二、单项选择题l. 相关分析研究的是( )。

A.变量间的相互依存关系 B.变量间的因果关系C.变量间严格的一一对应关系D.变量间的线性关系2.下列情况中称为正相关的是( )A.随一个变量增加,另一个变量减少B.随一个变量减少,另一个变量增加C.随一个变量增加,另一个变量相应增加D.随一个变量增加,另一个变量不变3.相关系数的取值范围是( )。

A.一1<r<1B.0<r<1 C.一l≤r≤1 D. r>14.相关系数等于零表明两个变量( )。

A.是严格的函数关系B.不存在相关关系C.不存在线性相关关系D.存在曲线相关关系5.相关分析对资料的要求是( )。

第八章直线相关与回归分析

第八章直线相关与回归分析

第十章一元回归与相关分析概述:许多问题需要研究多个变量之间的关系,例如生物的生长发育速度就与温度,营养,湿度等许多因素有关。

相关关系:两变量X,Y均为随机变量,任一变量的每一可能值都有另一变量的一个确定分布与之对应。

回归关系:X是非随机变量(如施肥)或随机变量(如穗长),Y是随机变量,对X的每一确定值x i都有Y的一个确定分布与之对应。

区别:1.相关中的两个变量地位对称,互为因果;回归中X是自变量,Y是因变量。

两种意义不同,分析的数学概念与推导过程不同,但如果使用共同标准即使y的残差平方和最小(最小二乘法),可得到相同的参数估计式。

因此主要讨论X为非随机变量(不包含有随机误差)的情况,所得到的参数估计式也可用于X为随机变量的情况。

2.分析目的不同。

回归分析是建立X与Y之间的数学关系式,用于预测;而相关分析研究X与Y两个随机变量之间的共同变化规律,例如当X增大时Y如何变化,以及这种共变关系的强弱。

分类:从两个变量间相关(或回归)的程度分三种:(1)完全相关。

一个变量的值确定后,另一个变量的值可通过公式求出(函数关系);生物学研究中不太多见。

(2)不相关。

变量之间完全没有任何关系。

一个变量的值不能提供另一个变量的任何信息。

(3)统计相关(不完全相关)。

介于上述两情况之间。

知道一个变量的值通过某种公式就可以提供另一个变量的均值的信息。

一个变量的取值不完全决定另一个变量的取值,但可或多或少地决定它的分布。

科研中最常遇到。

研究“一因一果”,即一个自变量与一个依变量的回归分析称为一元回归分析;研究“多因一果”,即多个自变量与一个依变量的回归分析称为多元回归分析。

一元回归分析又分为直线回归分析与曲线回归分析两种;多元回归分析又分为多元线性回归分析与多元非线性回归分析两种。

对两个变量间的直线关系进行相关分析称为直线相关分析;研究一个变量与多个变量间的线性相关称为复相关分析;研究其余变量保持不变的情况下两个变量间的线性相关称为偏相关分析。

统计学原理第八章相关分析与回归分析

统计学原理第八章相关分析与回归分析

21
例1:P354页,第1题
企业 产量 X 单位成 XY
X2
Y2
序号 (4件) 本(元)Y
1
2
52
104
4
2704
2
3
54
162
9
2916
3
4
52
208
16
2704
4
4
48
192
16
2304
5
5
48
240
25
2304
6
6

24
46
276
36
2116
300
1182
106 15048
即:∑X=24,∑Y=300, ∑XY=1182,
• 2) X倚Y的直线方程的确定
• 根据最小平方法的原理:(x xc )2 最小值
• 将xc = c + dy代入上述公式中,分别对c和d 求一阶偏导数,并令偏导数等于0,就可以
得出两个正规方程:
x nc dy yx cy dy2
d
nyx y n y2 (
x
y )2
c x dy
举例:P355,第4题。
• 偏相关:在复相关中,当假定其他变量不 变时,其中两个变量间的相关关系称为偏 相关。例如,在假定人们收入水平不变的 条件下,某种商品的需求与其价格水平的 关系就是一种偏相关。
9
三、相关分析与回归分析
• (一)相关分析 • 是用一个指标(相关系数)来表明现象
之间相互依存的密切程度。 • (二)回归分析 • 是根据相关关系的具体形态,选择一个
• 曲线相关:如果现象之间的相关关系近似 地表现为某种曲线形式时,就称这种相关 关系为曲线相关。

第八章 相关与回归分析-一元线性回归

第八章 相关与回归分析-一元线性回归
11
12
1、散点图
不良贷款
14
12
10
8
6
4
2
0 0
100
200
300
400
贷款余额 不良贷款与贷款余额的散点图
14
12
10
8 6
4
2
0 0
10
20
30
40
贷款项目个数
不良贷款与贷款项目个数的散点图不来自贷款不良贷款14
12
10
8
6
4
2
0 0
10
20
30
累计应收贷款
不良贷款与累计应收贷款的散点图
14
2
本章主要内容
➢ 相关分析
• 相关关系度量 • 相关关系显著性检验
➢ 一元线性回归分析
• 一元线性回归模型 • 参数的最小二乘估计 • 回归直线的拟合优度 • 显著性检验
➢ 利用回归方程进行预测
➢ 残差分析
3
第一节 直线相关分析 一、变量间的关系
函数关系
相关关系
函数关系的例子
▪ 某种商品的销售额(y)与销售量(x)之间的关系可 表示为 y = px (p 为单价)
儿子与父亲的身高关系:Y=33.73+0.516X(英寸)
24
一、概述——什么是回归分析(Regression )?
1. 从一组样本数据出发,确定变量之间的数学关系式 2. 对这些关系式的可信程度进行各种统计检验,并从
影响某一特定变量的诸多变量中找出哪些变量的影 响显著,哪些不显著 3. 利用所求的关系式,根据一个或几个变量的取值来 预测或控制另一个特定变量的取值,并给出这种预 测或控制的精确程度

统计学原理第8章相关与回归分析

统计学原理第8章相关与回归分析
两个回归方程。() (9) 估计标准误差指的就是因变量的估计值yc与实际值y之间的平均误差程度。() (10) 在任何相关条件下,都可以用相关系数r说明变量之间相关的密切程度。() (11) 若变量x与y的相关系数r1=-0.8,变量p与q的相关系数r2=-0.92,由于r1>r2,因
此x与y间相关的程度比较高。()
27
同步练习
★ 判断题 (1) 根据结果标志对因素标志的不同反映,可以把现象间数量上的依存关系划分为
函数关系和相关关系。() (2) 正相关指的就是因素标志和结果标志的数量变动方向都是上升的。() (3) 相关系数是测定变量间相关密切程度的唯一方法。() (4) 只有当相关系数接近于1时,才能说明两变量之间存在高度相关系数。() (5) 若变量x的值减少,y的值也减少,说明变量x与y之间存在相关关系。() (6) 回归系数b和相关系数r都可以来判断现象之间相关的密切程度。() (7) 若回归直线方程为:yc=160-2.3x,则变量x与y之间存在负的相关关系。() (8) 回归分析中,对于没有明显因果关系的两个变量x与y,可以建立y依x和x依y的
D产量每增加1000件时,单位成本下降78元
E产品的产量随生产用固定资产价值的减少而减少
(4) 测定现象间有无相关关系的方法是()。
A编制相关表 B绘制相关图 C对客观现象作定性分析
D计算估计标准误系数时,()。
A相关的两个变量都是随机的
B相关的两个变量是对等的关系
C相关的两个变量一个是随机的,一个是可以控制的量
特点 在进行回归分析时,必须根据研究目的确定相关的变量中谁为自变 量,谁为因变量。 回归方程的作用在于由自变量的数值来估计因变量的值。一个回 归方程只能作一种推算或估计。 在回归分析中,因变量是随机的,自变量是可以控制的量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y2
xy
576 840 625 950 576 960 784 1176 1024 1568 961 1612 1369 1998 1600 2360 1681 2542 1600 2560 2209 3055 2500 3400 2401 3381 2601 3621 2304 3456 3364 4408 26175 37887
某种股票的成交额Y与该股票的成交量X 成交价格P之间的关系可以用Y=PX来表示
一、相关分析的概念与类型
指客观现象间确实存在,但数量 相关关系 上不是严格对应的依存关系,在 这类关系中,对某一变量的某个 数值,另一个变量可能有若干个 数值与之相对应,从而表现出一 定的波动性。
例如:人均GDP高的国家,生育率往往较低,但 二者没有惟一确定的关系,这是因为除了经济因 素外,生育水平还受教育水平、城市化水平以及 不易测量的民族风俗、宗教和其他随机因素的共 同影响。
【例】计算工业总产值与能源消耗量之间的相 关系数。
结论:工业总产值与能源消耗量之间存 解:已知n = 16, ∑ = 916, ∑ = 625, x y
在高度的正相关关系。 , xy = 37887 x 2 = 55086 ,

r=
∑ n∑ - ∑ ∑ xy x y n∑ - (∑ ) n∑ - (∑ ) x x y y
相关与回归分析已经广泛应用到企业 管理、商业决策、金融分析以及自然科学 和社会科学等许多研究领域。
第一节
相关分析
一、相关分析的概念与类型
函数关系 指现象间所具有的严格的确定性 的依存关系,表现为某一现象发 生变化时,另一些现象也随之发 生变化。而且有确定的值与之相 对应。
例如:圆面积S=πR2,给定R值便有一个确 定的S
工业总产值 (亿元)y 24 25 24 28 32 31 37 40 41 40 47 50 49 51 48 58 625
x2
1225 1444 1600 1764 2401 2704 2916 3481 3844 4096 4225 4624 4761 5041 5184 5776 55086
在具体应用过程中,相关分析和回归分析应结合使用。
第二节
区别:
一元线性回归分析
二、相关分析与回归分析的关系
在相关分析中涉及的变量不存在自变量和 因变量的划分问题,变量之间的关系是对等 的;而在回归分析中,则必须根据研究对象 的性质和研究分析的目的,对变量进行自变 量和因变量的划分。因此,在回归分析中, 变量之间的关系是不对等的。
自变量与因变量
现象之间的相互联系,在许多情况下表现为一 定的因果关系,将这些现象数量化则成为变量: 其中一个或若干个起着影响作用的变量称为自 变量,通常用X表示,它是引起另一现象变化 的原因,是可以控制、给定的值;而受自变量 影响的变量称为因变量,通常用Y表示,它是 自变量变化的结果,是不确定的值。
r
nxy xy nx (x)
2 2
ny (y)
2
2
相关系数r的取值范围:-1≤r≤1
r>0 表示两变量正相关;
r<0 表示两变量负相关;
r=0 表示两变量间不存在线性关系;
|r|=1 表示完全线性相关,即函数关系;
0<|r|<1表示存在不同程度的线性相关:
|r| <0.4为低度线性相关;
例如:收入水平与股票的持有额正相关 ,赚 的钱越多,买的股票也越多,而买的股票越 多,赚的钱也就越多
何为因?何为果?
相关分析应注意的问题
警惕虚假相关导致的错误结论 有时两变量之间并不存在相关关系,但却 可能出现较高的相关系数。
例如:对教师薪金的提高和酒价的上涨作相关 分析,计算得到一个较大的相关系数 ,这不能 表明是教师薪金提高导致酒的消费量增加,从 而导致酒价上涨.。 事实是由于经济繁荣导致教师薪金和酒 价的上涨,而教师薪金增长和酒价之间并没有 什么直接关系。
2
10 14304.52 346.2 0.9942
相关系数为0.9942,说明广告投入费与月平均销售额 之间有高度的线性正相关关系
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
能源消耗量 (十万吨)x
35 38 40 42 49 52 54 59 62 64 65 68 69 71 72 76
第二节
一元线性回归分析
“回归”一词是由英国生物学家葛尔 登在研究人体身高的遗传问题时首先提出 的。根据遗传学的观点,一般而言,父辈 身高者,其子辈身高也高,依此推论,祖 祖辈辈遗传下来,身高必然向两极分化, 而事实上并非如此,显然有一种力量将身 高拉向中心,即子辈的身高有向中心回归 的特点。“回归”一词即源于此。
相关分析应注意的问题 不要在相关关系据以成立的数据范围以 外,推论这种相关关系仍然保持
例如:雨下的多,农作物长的好,在缺水地区, 干旱季节雨是一种福音,但雨量太大,却可能损 坏庄稼。 广告投入多,销售额上涨,利润增加,但 盲目加大广告投入,却未必使销售额再增长,利 润还可能减少。
正相关达到某个极限,就可能变成负相关
第二节
一元线性回归分析
一、回归分析的概念与内容
通过一个变量或一些变量的变化 回归分析 解释另一变量的变化 根据变量之间相关关系的具体形态,建立一个 数学方程(回归方程)来描述变量之间关系。 也即以给定的自变量x,揭示因变量y在数量 上的平均变化并求得因变量的预测值的统计分 析方法。
例如:葛尔登的朋友Pearson收集数据,分析儿子 的身高y和父亲身高x大致关系:
某软件公司的年广告投入费和月平均销售额
(万元)
月均销售额
80 60 40 20 0 0 20 40 60 80
年广告费投入 (万元)
相关表和相关图可反映两个变量之间的相 互关系及其相关方向,但无法确切地表明 两个变量之间相关的程度。著名统计学家 卡尔· 皮尔逊设计了统计指标 ––– 相关系数 在直线相关的条件下,用以反映两变 量间线性相关方向和程度的统计指标, 用r表示
400~450 350~400 300~350
2 2 2
1 2
5
f
X
2
3
5
4
3
1
相关图
又称散点图,用直角坐标系的x轴代表自变量,y轴代 表因变量,将两个变量间相对应的变量值用坐标点的 形式描绘出来,用以表明相关点分布状况的图形。
y
y
y
y
x 负 相 关 x 曲线相关 x 不 相 关 x 正相关
相关图
工业总产值 (亿元)y
24 25 24 28 32 31 37 40 41 40 47 50 49 51 48 58
合计
916
625
60
50
40
工业总产值
30
20 30
40
50
60
70
80
能源消耗量
序号
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 合计
能源消耗量 (十万吨)x 35 38 40 42 49 52 54 59 62 64 65 68 69 71 72 76 916
第八章
相关与回归
第八章
相关与回归
§8.1 相关分析 §8.2 一元线性回归分析
第八章 相关与回归
相关和回归分析现代统计学中非常重 要的内容,是处理变量数据之间的相互关 系、测定它们联系的紧密程度、揭示其变 化的具体形式和规律性的统计方法,是构 造各种经济模型、进行结构分析、政策评 价、预测和控制的重要工具。
y2
449.44 571.21 1082.41 1162.81 1806.25 1866.24 2401.00 2787.84 3528.36 4032.25
xy
265.00 365.67 763.28 900.24 1423.75 1486.08 1930.60 2386.56 3290.76 3867.15
0.4≤ |r| <0.7为显著性相关;
0.7≤ |r| <1.相关 完全正相关
-1.0
-0.5
0
+0.5
正相关程度增加
+1.0
r
负相关程度增加
相关系数
序号 广告投入费x 月均销售额y
x2
156.25 234.09 538.24 696.96 1122.25 1183.36 1552.36 2043.04 3069.16 3708.81
2 2 2
y 2 = 26175 ∑
2
=
16×37887- 916×625 16×55086- 916
2
16×26175- 625
2
= 0.9757
相关分析应注意的问题 相关分析不能解释两变量间的因果关系 相关系数只是表明两个变量间互相影 响的程度和方向,它并不能说明两变量间 是否有因果关系,以及何为因,何为果, 即使是在相关系数非常大时,也并不意味 着两变量间具有显著的因果关系。
例如:资金投入与产值之间,前者为自变量, 后者为因变量。
y y






x


x
函数关系
相关关系
研究函数关系用数学分析的方法
研究相关关系用相关与回归分析的方法
相关关系与函数关系的联系
相关关系和函数关系既有区别,又有 联系。有些函数关系往往因为有观察或 测量误差以及各种随机因素的干扰等原 因,在实际中常常通过相关关系表现出 来;而在研究相关关系时,其数量间的 规律性了解得越深刻的时候,则相关关 系越有可能转化为函数关系或借助函数 关系来表现。
y=33.73+0.516x
(以英寸为单位)
相关文档
最新文档