(完整版)数列求和测试题练习题
高考数学数列求和选择题
![高考数学数列求和选择题](https://img.taocdn.com/s3/m/1e1168e81b37f111f18583d049649b6648d7099f.png)
高考数学数列求和选择题1. 已知数列{an}的通项公式为an=2n-1,求数列{an}的前n项和Sn。
2. 已知数列{bn}的通项公式为bn=3n^2+1,求数列{bn}的前n项和Tn。
3. 已知数列{cn}的通项公式为cn=4n^3-2n,求数列{cn}的前n 项和Un。
4. 已知数列{dn}的通项公式为dn=5n^4+3n^2,求数列{dn}的前n项和Vn。
5. 已知数列{en}的通项公式为en=6n^5-4n^3,求数列{en}的前n项和Wn。
6. 已知数列{fn}的通项公式为fn=7n^6+2n^4,求数列{fn}的前n项和Xn。
7. 已知数列{gn}的通项公式为gn=8n^7-3n^5,求数列{gn}的前n项和Yn。
8. 已知数列{hn}的通项公式为hn=9n^8+4n^6,求数列{hn}的前n项和Zn。
9. 已知数列{in}的通项公式为in=10n^9-5n^7,求数列{in}的前n项和An。
10. 已知数列{jn}的通项公式为jn=11n^10+3n^8,求数列{jn}的前n项和Bn。
11. 已知数列{kn}的通项公式为kn=12n^11-2n^9,求数列{kn}的前n项和Cn。
12. 已知数列{ln}的通项公式为ln=13n^12+n^10,求数列{ln}的前n项和Dn。
13. 已知数列{mn}的通项公式为mn=14n^13-3n^11,求数列{mn}的前n项和En。
14. 已知数列{on}的通项公式为on=15n^14+2n^12,求数列{on}的前n项和Fn。
15. 已知数列{pn}的通项公式为pn=16n^15-n^13,求数列{pn}的前n项和Gn。
16. 已知数列{qn}的通项公式为qn=17n^16+3n^14,求数列{qn}的前n项和Hn。
17. 已知数列{rn}的通项公式为rn=18n^17-4n^15,求数列{rn}的前n项和In。
18. 已知数列{sn}的通项公式为sn=19n^18+2n^16,求数列{sn}的前n项和Jn。
数列求和练习题
![数列求和练习题](https://img.taocdn.com/s3/m/795cfa3f86c24028915f804d2b160b4e767f818f.png)
数列求与问题例1.求与:(1))()2()1(2n a a a n -++-+- (2))12)(12(1531311+-++⨯+⨯n n (3))1(32112≠++++-x nx x x n例2.在等差数列{}n a 中,11a =,前n 项与n S 满足条件242,1,2,1n n S n n S n +==+,(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)记(0)nan n b a p p =>,求数列{}n b 的前n 项与n T 。
例3.正项数列}{n a 的前n 项与为n S ,且.12+=n n a S (公差为2) (1)求数列}{n a 的通项公式; (2)设.21:,}{,11<⋅=+n n n n n nT T n b a a b 求证项和为的前数列四、练习题:1.数列}{n a 的通项公式是)(11+∈++=N n n n a n ,若它的前n 项与为10,则其项数n 为A .11B .99C .120D .1212.数列 ,211,,3211,211,1n ++++++的前n 项与为 A .122+n n B .12+n n C .12++n n D .12+n n3.数列}{n a 的通项是14-=n a n ,na a ab nn +++= 21,则数列}{n b 的的前n 项与为4.已知数列}{n a 的前n项与为142+-=n n S n ,则||||||||10321a a a a ++++ 的值是5.设221)(+=x x f ,利用课本中推导等差数列前n 项与公式的方法,可求)0()4()5(f f f ++-+- )6()5(f f ++的值为A .23B .2C .22D .22 6.22222212979899100-++-+- 的值是 7.数列 ,21)12(,,815,413,211n n +-的前n 项与为n S ,则=n S 8.在等比数列}{n a 中,1221-=+++n n a a a ,则=+++22221n a a a 9.数列2211,(12),(122),,(1222),n -+++++++的通项公式n a = ,前n 项与n S = .10.若数列{}n a 满足 12a =,1(1)2n n na n a +-+=,则数列{}n a 的通项公式n a =___13.已知数列}{n a 是等差数列,其前n 项与为.621,33=⋅=S a S n (I )求数列}{n a 的通项公式; (II )求与:nS S S 11121+++ . 6,1214.设数列}{n a 的前n 项与为22n S n =,}{n b 为等比数列,且.)(,112211b a a b b a =-=(Ⅰ)求数列}{n a 与}{n b 的通项公式; (Ⅱ)设nnnb ac =,求数列}{n c 的前n 项与n T .15. 设数列{}n a 的前n 项与为n S ,且对任意正整数n ,4096n n a S +=。
高三数学数列求和练习题
![高三数学数列求和练习题](https://img.taocdn.com/s3/m/24fc0342cd1755270722192e453610661ed95a1b.png)
高三数学数列求和练习题假设有一位名叫小明的高三学生,他正在备战数学考试。
最近,他对数列的求和问题感到十分困惑,因此他向老师请教,老师给了他以下一些练习题。
下面,我们来一起解决这些题目,帮助小明理解数列求和的方法。
练习题一:等差数列求和已知等差数列的首项为a₁,公差为d,请计算这个等差数列的前n 项和Sn。
1. a₁ = 3,d = 2,n = 102. a₁ = -2,d = 4,n = 153. a₁ = 0,d = -3,n = 8解答:对于等差数列来说,可以使用求和公式Sn = n(a₁ + an)/2来计算前n项和。
其中,an表示等差数列的第n项。
1. a₁ = 3,d = 2,n = 10根据公式,代入数据计算得到:Sn = 10(3 + a₁ + 2(n-1))/2= 10(3 + 3 + 2(10-1))/2= 10(6 + 18)/2= 10(24)/2= 1202. a₁ = -2,d = 4,n = 15代入数据计算得到:Sn = 15(-2 + a₁ + 4(15-1))/2= 15(-2 + -2 + 4(14))/2= 15(-4 + 56)/2= 15(52)/2= 3903. a₁ = 0,d = -3,n = 8代入数据计算得到:Sn = 8(0 + a₁ + -3(8-1))/2= 8(0 + 0 + -3(7))/2= 8(0 - 21)/2= 8(-21)/2= -84练习题二:等比数列求和已知等比数列的首项为a₁,公比为q,请计算这个等比数列的前n 项和Sn。
2. a₁ = 4,q = -2,n = 63. a₁ = -6,q = 0.5,n = 7解答:对于等比数列来说,可以使用求和公式Sn = a₁(1 - q^n)/(1 - q)来计算前n项和。
1. a₁ = 2,q = 3,n = 5根据公式,代入数据计算得到:Sn = 2(1 - 3^5)/(1 - 3)= 2(1 - 243)/(-2)= 2(-242)/(-2)= 2422. a₁ = 4,q = -2,n = 6代入数据计算得到:Sn = 4(1 - (-2)^6)/(1 - (-2))= 4(1 - 64)/3= 4(-63)/3= -84代入数据计算得到:Sn = -6(1 - 0.5^7)/(1 - 0.5)= -6(1 - 0.0078125)/0.5= -6(0.9921875)/0.5= -11.859375通过解答以上练习题,我们可以得出结论:数列求和可以通过特定的公式来计算,对于等差数列可以使用Sn = n(a₁ + an)/2,对于等比数列可以使用Sn = a₁(1 - q^n)/(1 - q)。
经典的数列通项公式与数列求和练习题(有答案)
![经典的数列通项公式与数列求和练习题(有答案)](https://img.taocdn.com/s3/m/c2821862ae45b307e87101f69e3143323868f57f.png)
经典的数列通项公式与数列求和练习题(有答案)一、斐波那契数列斐波那契数列是最经典的数列之一,它的通项公式为:$$F(n) = F(n-1) + F(n-2)$$其中 $F(1) = 1$,$F(2) = 1$。
以下是一些关于斐波那契数列的练题:练题1:求斐波那契数列的第10项。
解答:根据通项公式进行递归计算,得出第10项为34。
练题2:求斐波那契数列的前20项的和。
解答:利用循环计算斐波那契数列的前20项,并将每项相加得到总和为6765。
二、等差数列等差数列是一种常见的数列类型,它的通项公式为:$$a_n = a_1 + (n - 1) \cdot d$$其中 $a_1$ 是首项,$d$ 是公差。
以下是一些关于等差数列的练题:练题1:已知等差数列的首项 $a_1 = 3$,公差 $d = 5$,求该数列的前10项。
解答:根据通项公式,将$a_1$ 和$d$ 代入,依次计算出前10项为:3, 8, 13, 18, 23, 28, 33, 38, 43, 48。
练题2:已知等差数列的首项 $a_1 = 2$,公差 $d = -4$,求该数列的前15项的和。
解答:根据通项公式和等差数列前n项和的公式,将 $a_1$、$d$ 和$n$ 代入,计算出前15项的和为:-420。
三、等比数列等比数列是另一种常见的数列类型,它的通项公式为:$$a_n = a_1 \cdot q^{(n-1)}$$其中 $a_1$ 是首项,$q$ 是公比。
以下是一些关于等比数列的练题:练题1:已知等比数列的首项 $a_1 = 2$,公比 $q = 3$,求该数列的前8项。
解答:根据通项公式,将 $a_1$ 和 $q$ 代入,依次计算出前8项为:2, 6, 18, 54, 162, 486, 1458, 4374。
练题2:已知等比数列的首项 $a_1 = 5$,公比 $q = \frac{1}{4}$,求该数列的前12项的和。
解答:根据通项公式和等比数列前n项和的公式,将 $a_1$、$q$ 和$n$ 代入,计算出前12项的和为 $\frac{5}{1 - \frac{1}{4}} =\frac{20}{3}$。
千题百炼- 数列求和综合必刷100题(原卷版)
![千题百炼- 数列求和综合必刷100题(原卷版)](https://img.taocdn.com/s3/m/cfccb1c1162ded630b1c59eef8c75fbfc77d9464.png)
专题14 数列求和综合必刷100题任务一:善良模式(基础)1-30题一、单选题1.已知数列{}n a 满足13a =,()111n n a a n n +=++,则n a =( )A .14n +B .14n -C .12n +D .12n-2.已知数列{}n a 的前n 项和为n S ,且11a =,121()n n a a n n N +++=+∈,则数列1{}nS 的前2020项的和为( ) A .20202021B .40402021C .40392020D .404120223.数列1,1+2,1+2+22,…,1+2+22+…+2n -1,…的前99项和为( ) A .2100-101 B .299-101C .2100-99D .299-994.已知数列{}n a 的前n 项和n S 满足2n S n =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,*n N ∈.则使得20T 的值为( ) A .1939B .2041C .3839D .40415.已知数列{a n }满足:a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,S n 为数列{a n }的前n 项和,则S 2021=( ) A .3 B .2 C .1 D .06.正项数列{}n a 满足11a =,211(2)30(1,)nn n n a a a a n n N ---+--=>∈,则133520192021111a a a a a a +++=( )A .12003534B .10106061C .12202021D .202054617.化简221(1)2(2)2222n n n S n n n --=+-⨯+-⨯++⨯+的结果是( )A .122n n ++-B .122n n +-+C .22n n --D .122n n +--8.已知数列{}n a 中,*111,34(,2)n n a a a n N n -==+∈≥,求数列{}n a 的前n 项和n S 为( )A .13232n n n S +--=B .13232n n n S ++-=C .13432n n n S +--=D .1332n n S +-=9.等比数列{}n a 中,12a =,2q ,数列()()111nn n n a b a a +=--,{}n b的前n 项和为n T ,则10T 的值为( ) A .40944095B .20462047C .10221023D .51051110.已知数列{}n a 的前n 项和n S 满足2n S n =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,*n ∈N .则使得2041n T <成立的n 的最大值为( ) A .17 B .18C .19D .20第II 卷(非选择题)二、填空题11.数列{}n a 是首项和公差都为1的等差数列,其前n 项和为n S ,若n T 是数列12n S ⎧⎫⎨⎬⎩⎭的前n 项和,则99T =______12.已知数列{}n a 的通项公式*21log ()2n n a n N n +=∈+,设其前n 项和为n S ,则使3n S ≤-成立的最小的自然n 为__________.13.已知数列{}n a 满足()*2n n a a n n N ++=∈,则{}n a 的前20项和20S =________.14.已知正项数列{}n a 满足11a =,2+11(2)30,(2,)n n n n a a a a n n N ---+--=≥∈,则122320002021111a a a a a a +++=___________.15.设数列{}n a 满足12(1)n n a a n +=++,*n ∈N ,12a =,则数列{}(1)nn a -的前50项和是________.16.设4()42xx f x =+,则12320192020202020202020f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭__________.17.数列{}n a 的前n 项和为n S ,且341,1S S ==-,且()*32n n a a n N +=∈,则2017S =___________.18.在数列{}n a 中,12a =,且1n 1n 2(2)n n n a a n a a --+=+≥-,则数列21242n n a a ⎧⎫⎨⎬-+⎩⎭的前2021项和为__________.19.已知数列1111,,,121231234++++++,……,则该数列的前10项和为__________.20.已知数列{}n a 满足11a =且()1231111123n n a a a a a n N n*+++++=-∈,数列{}2n n a 的前n 项为n S ,则不等式30n n S a ≥最小整数解为________.三、解答题21.数列{}n a 的前n 项和为n S ,若13a =,点()1,n n S S +在直线()11n y x n n N n*+=++∈上. (1)求证:数列n S n ⎧⎫⎨⎬⎩⎭是等差数列;(2)若数列{}n b 满足122n a n b n -=⋅,求数列{}n b 的前n 项和n T .22.已知数列{}n a 为等差数列,公差10,5d a ≠=,且1a ,6a ,21a 依次成等比数列. (1)求数列{}n a 的通项公式; (2)设11n n n b a a +=,数列{}n b 的前n 项和为n S ,若335n S =,求n 的值.23.在等差数列{}n a 中,2414a a +=,135736a a a a +++=. (1)求数列{}n a 的通项公式; (2)令21n n b a =-,求数列{}2n n b b +的前n 项和n T .24.已知数列{}n a 满足316a =,121nn n a a a +=+. (1)求证:数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)若 ,求数列{}n b 的前n 项和n T . 在(①1n n n b a a +=;②()1nnnb a =-;③113nan n b a ⎛⎫=+ ⎪⎝⎭三个条件中选择一个补充在第(2)问中,并对其求解,如果多写按第一个计分)25.已知正项数列{}n a 的前n 项和为n S ,且141n n n S a a +=+,11a =.数列{}n b 满足11b =,1n n n b b a +=. (1)求数列{}n a 的通项公式; (2)证明:1231111++++≥nb b b b26.已知{}n a 是等比数列,0n a >,且223a =,6542a a a -=. (1)求数列{}n a 的通项公式;(2)设n n b a n =+,求数列{}n b 的前n 项和n S .27.已知公差不为0的等差数列{}n a 满足35a =,且125,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,证明12n T <.28.已知数列{}n a 满足11a =,132n n a a +=+,*n N ∈.数列{}n b 满足11b =,11n n n S n S b n +-=+++,其中n S 为数列{}n b 是前n 项和.(1)求数列{}n a ,{}n b 的通项公式; (2)令()()21n n n b n c n a +=+,求数列{}n c 的前n 项和n T ,并证明:1524n T ≤<.29.已知数列{}n a 的前n 项和为n S ,111,1(*)n n a a S n N +==+∈,数列{}n b 满足11b =,12n n n b a b +=+. (1)求数列{}n a 、{}n b 的通项公式; (2)若数列{}n c 满足1nn n n a c b b +=,求证:1212n c c c +++<.30.在各项均为正数的等比数列{}n a 中,1122,,,n n n a a a a ++=-成等差数列.等差数列{n b }满足121b a =+,523233b b a -=-.(1)求数列{n a },{n b }的通项公式;(2)设数列1(21)n n b ⎧⎫⎨⎬+⎩⎭的前n 项和为Tn ,证明: 16n T <任务二:中立模式(中档)1-40题一、单选题1.已知数列{}n a 满足12a =,23a =且*21(1),n n n a a n N +-=+-∈,则该数列的前9项之和为( )A .32B .43C .34D .352.数列{}n a 满足143a =,()2*11n n n a a a n N +-=-∈,数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则( ) A .202112S << B .202123S << C .202134S << D .202145S <<3.设n S 为数列{}n a 的前n 项和,()112322n n n a a n ---=⋅≥,且1232a a =.记n T 为数列1nn a S ⎧⎫⎨⎬+⎩⎭的前n 项和,若对任意*n ∈N ,n T m <,则m 的最小值为( ) A .3 B .13C .2D .124.记数列{}n a 的前n 项和为n S ,若11a =,()112n n n na S S +-=,则2021S =( ) A .1009132+ B .1009132- C .1010132+D .1010132-5.数列{}n a 是正项等比数列,满足14+=nn n a a ,则数列2211log log n n a a +⋅⎧⎫⎨⎬⎩⎭的前n 项和n T =( )A .421nn + B .421nn - C .21nn + D .21nn -6.数列{}n a 满足11a =,且11n n a a a n +=++(*n ∈N ),则122017111a a a ++⋅⋅⋅+=( )A .20171009B .40322017C .40282015D .201510087.设数列{}n a 满足113,34n n a a a n +==-,若21485n n n n n b a a +++=,且数列{}n b 的前n 项和为n S ,则n S =( ) A .2169n n ⎛⎫+ ⎪+⎝⎭B .42369n n ++C .1169n n ⎛⎫+ ⎪+⎝⎭D .2169n n ⎛⎫+ ⎪+⎝⎭8.已知函数4()42xx f x =+,数列{}n a 满足2020n n a f ⎛⎫= ⎪⎝⎭,则数列{}n a 的前2019项和为( )A .20192B .1010C .20212D .10119.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且112a =,1112122n n n n S S +++-=-.若2log n nb T =-,则数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n A 为( ) A .21nn + B .2n n + C .12nn + D .132n +10.数列{}n b 满足11122n n n b b ++=+﹐若112b =,则{}n b 的前n 项和为( ) A .1212n n ++- B .1112n n ++- C .222nn +-D .13322n n ++-11.已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.令21n n n b a a +=,数列{}n b 的前n 项和为n T ,若对于*n N ∀∈,不等式n T λ<恒成立,则实数λ的取值范围是( ) A .13λ≥ B .15λ>C .15λ≥D .0λ>12.已知数列{}n a 满足()2*11n n n a a a n N +=-+∈,设12111n n S a a a =+++,且10910231a S a -=-,则数列{}n a 的首项1a 的值为( ) A .23B .1C .32D .213.设n S 为数列{}n a 的前n 项和,*1(1),N 2n n n n S a n =--∈,则12100S S S +++=( )A .10011132⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ B .9811132⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦C .5011132⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦D .4911132⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦14.正项数列{}n a 的前n 项和为n S ,且()2*2n n n S a a n N =+∈,设()2112nn n na c s +=-,则数列{}n c 的前2020项的和为( ) A .20192020- B .20202019-C .20202021-D .20212020-第II 卷(非选择题)二、填空题15.已知正项数列{}n a 的前n 项和为n S ,且22n n n S a a =+.若21(1)2n n nn b S +=-,则数列{}n b 的前2021项和为___________.16.已知数列{}n a 的各项均为正数,13a =,()2*116n n n na a a n a ++=+∈N ,()()1211n n n n ab a a +=++,数列{}n b 的前n 项和为n S ,若n S λμ<<对任意正整数n 都成立,则λμ-的取值范围是___________.17.设n S 为数列{}n a 的前n 项和,满足11S =,12n n nS S n +=+,其中*n N ∈,数列{}n S 的前n 项和为n T ,则20T =___________.18.已知正项数列{}n a 满足12a =且221120n n n n a a a a ++--=,令()2527n n b n a =+-,则数列{}n b 的前7项的和等于___________.19.已知21n a n =+,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,且对于任意的*n N ∈,11n n a T t +≤,则实数t 的最大值是________.20.数列{}n a 且21,212sin ,24n n k n na n n k π⎧=-⎪⎪+=⎨⎪=⎪⎩()k N *∈,若n S 为数列{}n a 的前n 项和,则2021S =__________.21.用()T n 表示正整数n 所有因数中最大的那个奇数,例如:9的因数有1,3,9,则()99T =,10的因数有1,2,5,10,则()105T =.计算()2021(1)(2)(3)21T T T T ++++-=________.22.已知数列{}n a 满足()232113521n a a a a n n +++⋅⋅⋅+=+-,则n a =___________;若1n n b a =,则数列{}n b 的前n 项和n S =___________.23.已知数列{}n a 的前n 项和为n S ,且满足1n n a S +=,则812128S S S a a a +++=______________.24.已知数列{}n a 的前n 项和为n S ,点,31n S n n ⎛⎫ ⎪+⎝⎭在直线12y x =上.若()1nn n b a =-,数列{}n b 的前n 项和为n T ,则满足20n T ≤的n 的最大值为________.25.已知正项数列{}n a 的前n 项和为n S ,11a =,且()212n n nS S a n -+=≥,设()()121nn nna b S -+=,则数列{}n b 前n 项和的取值范围为_________.26.已知数列{}n a 满足:11a =,213a =,1121216n n n n b b b b a a a a +-+++=+(2n ≥且n ∈+N ),等比数列{}n b 公比2q,令1,,n n nn a c b n ⎧⎪=⎨⎪⎩为奇数为偶数,则数列{}n c 的前n 项和2n S =___________.27.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且20,2,n n n n a S a a n *>=+∈N ,()()112122n n n n n n b a a +++=++,则6T =________.三、解答题28.数列{}n a 中,n S 为{}n a 的前n 项和,24a =,()()21n n S n a n N *=+∈.(1)求数列{}n a 的通项公式; (2)若()11611n n n n n c a a ++-=-,求数列{}n c 的前2n 项和2n T .29.已知各项均为正数的无穷数列{}n a 的前n 项和为n S ,且11a =,()()()*1112n n n n nS n S n ++=++∈N .(1)证明数列{}n a 是等差数列,并求出{}n a 的通项公式; (2)若数列{}n b 满足112b =,()*12n n n n b b b n a +=+∈N .设数列{}n c 满足2n n n b c S +=,证明:1212n c c c ++⋅⋅⋅+<.30.已知等差数列{}n a 的前n 项和为n S ,数列{}n b 是各项均为正数的等比数列,28b =,1334b b -=. (1)求数列{}n b 的通项公式;(2)在①420S =,②332S a =,③3423a a b -=,这三个条件中任选一个,补充在下面问题中,并作答.问题:已知14a b =,___________,是否存在正整数k ,使得数列1n S ⎧⎫⎨⎬⎩⎭的前k 项和1516k T >?若存在,求k的最小值;若不存在,说明理由.(注:如果选择多个条件分别解答,按第一个解答计分.)31.在①39S =,520S =;②公差为2,且1S ,2S ,4S 成等比数列;③238n S n n =+;三个条件中任选一个,补充在下面问题中,并给出解答.问题:已知数列{}n a 为公差不为零的等差数列,其前项和为n S ,______. (1)求数列{}n a 的通项公式;(2)令[]2log n n c a =,其中[]x 表示不超过x 的最大整数,求1220c c c ++⋅⋅⋅+的值. 注:如果选择多个条件分别解答,按第一个解答计分.32.在∈21,323;n n n a n b T =-=+∈222,n n n n n S n a b a S =+=这两组条件中任选一组,补充在下面横线处,并解答下列问题.已知数列的{}n a 前n 项和是,n S 数列{}n b 的前n 项和是n T ,__________. (1)求数列{},{}n n a b 的通项公式; (2)设,nn na cb =证明:123 1.nc c c c ++++<33.在①22n n S a =-;②314S =;③3S ,22S +,1S 成等差数列这三个条件中任选一个,补充在下面的问题中,并解答.问题:数列{}n a 是各项均为正数的等比数列,前n 项和为n S ,12a =且______. (1)求数列{}n a 的通项公式;(2)2,log ,n n na nb a n ⎧=⎨⎩为奇数为偶数,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.34.已知数列{}n a 中,11a =,131n n a a +=+.(1)求证:12n a ⎧⎫+⎨⎬⎩⎭是等比数列,并求{}n a 的通项公式;(2)数列{}n b 满足()1312n n n n n b a +=-⋅⋅,数列{}n b 的前n 项和为n T ,若不等式(1)2nn n n T λ-<+对一切*N n ∈恒成立,求λ的取值范围.35.已知{}n a 为等比数列,124a a +=,记数列{}n b 满足31log n n b a +=,且11n n b b +-=. (1)求{}n a 和{}n b 的通项公式;(2)对任意的正整数n ,设(1)()n bn n n c a b =-+,求{}n c 的前n 项的和n S .36.设正项数列{}n a 的前n 项和为n S ,满足()2144n n a S +=+.(1)求数列{}n a 的通项公式; (2)令124n n n n b a a a ++=,若数列{}n b 的前n 项和为n T ,证明:4110515n T ≤<.37.已知数列{}n a 的前n 项和为n S .若11a =,且*1)n a n N +∈ (1)求n S ; (2)设()*24n n n nb n N S S +=∈⋅,记数列{}n b 的前n 项和为n T .证明:32n T <.38.已知等差数列{}n a 的前n 项和为n S ,且3117,143a S ==. (1)求{}n a 的通项公式以及n S ; (2)求使不等式121112542n S S S +++≥成立的最小值n .39.设数列{}n a 前n 项和为n S ,11a =,11n n a S +-=(n *∈N ). (1)求出{}n a 通项公式;(2)若()11,?2,? n n n n n b n n a +⎧⎪+⎪=⎨⎪⎪⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .40.设数列{}n a 的前n 项和为n S ,已知111,1n n a S a +=-=-. (1)求{}n a 通项公式;(2)对任意的正整数n ,设 212321221,log log log 2,n n n n n n k k N a a c a n k k N a +++++⎧=-∈⎪⋅⎪=⎨⎪=∈⎪⎩,,,求数列{}n c 的前2n 项和.任务三:邪恶模式(困难)1-30题一、单选题1.已知数列{}n a 满足11a =,()2211nn n a a -=+-,2123nn n a a +=+(*N n ∈),则数列{}n a 的前2017项的和为( ) A .100332005- B .201632017- C .100832017- D .100932018-2.已知数列{}n a 满足0n a >,其前n 项和2234n n n a a S +-=,数列{}n b 满足()1111n n n n n b a a +++=-,其前n 项和为n T ,若2n T nλ>对任意n *∈N 恒成立,则实数λ的取值范围是( )A .1,21⎛⎫-∞ ⎪⎝⎭B .1,15⎛⎫-∞ ⎪⎝⎭C .4,33⎛⎫-∞ ⎪⎝⎭D .4,21⎛⎫-∞ ⎪⎝⎭3.已知等比数列{}n a 满足516a =,434a a -=,若n n b na =,n S 是数列{}n b 的前n 项和,对任意*n ∈N ,不等式1n n S mb -≤恒成立,则实数m 的取值范围为( ) A .[)4,+∞ B .[)3,+∞C .[)2,+∞D .[)1,+∞4.设[]x 为不超过x 的最大整数,n a 为[][)()x x x 0,n ⎡⎤∈⎣⎦可能取到所有值的个数,n S 是数列n 1a 2n ⎧⎫⎨⎬+⎩⎭前n 项的和,则下列结论正确个数的有( ) (1)3a 4=(2)190是数列{}n a 中的项 (3)105S 6=(4)当n 7=时,n a 21n+取最小值 A .1个B .2个C .3个D .45.设数列{}n a 的前n 项积()1n n T a n *=-∈N ,记22212n n S T T T =++⋅⋅⋅+,求1n n S a +-的取值范围是( ).A .11,23⎛⎫-- ⎪⎝⎭B .17,218⎡⎤--⎢⎥⎣⎦C .57,1218⎡⎤--⎢⎥⎣⎦D .51,123⎡⎫--⎪⎢⎣⎭6.已知n S 数列{}n a 的前n 项和,1a λ=,且21(1)n n n a a n ++=-,若201920192101020192019S a μ-=-,(其中,0λμ>),则20191λμ+的最小值是( )A.B .4C.D .20187.数列{}n a 满足11a =,21n n a a n --=(*n N ∈且2n ≥),数列{}21n a -为递增数列,数列{}2n a 为递减数列,且12a a >,则99a =(). A .4950- B .4851- C .4851 D .49508.已知数列{}n a 中,12a =,若21n n n a a a +=+,设1212222111m m m a a a S a a a =++⋅⋅⋅++++,若2020m S <,则正整数m 的最大值为( )A .1009B .1010C .2019D .20209.已知数列{}n a 满足1212a a ++…2*1()n a n n n N n+=+∈,设数列{}n b 满足:121n n n n b a a ++=,数列{}n b 的前n 项和为n T ,若*()1n nT n N n λ<∈+恒成立,则λ的取值范围是 A .1(,) 4+∞B .1[,) 4+∞C .3[,) 8+∞D .3(,)8+∞10.艾萨克·牛顿(1643年1月4日——1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数()f x 零点时给出一个数列{}n x :满足()()1n n n n f x x x f x +=-',我们把该数列称为牛顿数列.如果函数2()f x ax bx c =++(0a >)有两个零点1,2,数列{}n x 为牛顿数列,设2ln1n n n x a x -=-,已知11a =,2n x >,{}n a 的前n 项和为n S ,则20181S +等于A .2018B .2019C .20182D .2019211.已知1x =是函数3212()1n n n f x a x a x a x ++=--+()*n ∈N 的极值点,数列{}n a 满足11a =,22a =,记21log n n b a +=,若[]x 表示不超过x 的最大整数,则122320182019201820182018b b b b b b ⎡⎤+++=⎢⎥⎣⎦( )A .2017B .2018C .2019D .202012.设[]x 表示不超过x 的最大整数,已知数列{}n a 中,12a =,且1(1)n n n a a a +=+,若1212[]100111nn a a aa a a +++=+++,则整数n = A .99 B .100 C .101 D .102第II 卷(非选择题)二、填空题13.已知数列{}n a 满足:11a =,213a =,1121216n n n n b b b b a a a a +-+++=+(2n ≥且n ∈+N ),等比数列{}n b 公比2q ,则数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n S =___________.14.各项均为正数的等比数列{}n a ,满足234lg lg lg a a a +=,且2a ,31a +,4a 成等差数列,数列{}n b 满足11b =,数列(){}1n n n b b a +-的前n 项和2n S n =,则n b =______.15.已知公差不为零的等差数列{}n a 的前n 项和为n S ,且满足1a ,2a ,5a 成等比数列,253S a =,数列{}n b 满足()()11211n n n n n a b a a +++=-,前n 项和为n T ,则510T T +=_________.16.已知n S 是等差数列{}n a 的前n 项和,若201820202019S S S <<,设12n n n n b a a a ++=,则数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T 取最大值时n 的值为______________17.已知数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,满足11a =,3()()n n S n m a m R =+∈,且15n n a b =.若对*n N ∀∈,n T λ>恒成立,则实数λ的最小值为____________.18.已知函数()02,2,2x f x f x x ≤<=-≥⎪⎩若对于正数()*n k n N ∈,直线n y k x =与函数()y f x =的图象恰有21n 个不同的交点,则数列{}2n k 的前n 项和为________.19.数列{}n a 满足132a =,211n n n a a a +=-+()N n +∈,则122019111m a a a =++⋯+的整数部分是___________.20.设()P n 表示正整数n 的个位数字,记()()()32n P n P n ψ=-,M 是(){}n ψ的前4038项的和,函数()1ln 1f x x x=++,若函数()g x 满足()2282Mx Mx f g x Mx Mx ⎡⎤---=⎢⎥+⎣⎦,则数列(){}g n 的前2020项的和为________.21.已知正项数列{}n a 满足()()22112120n n n n n a n a a na +++++⋅-=,14a =,则数列()()12n a n n ⎧⎫⎪⎪⎨⎬+⋅+⎪⎪⎩⎭的前n 项和为___________.22.已知数列{}n a 满足112(1)0,4n n n a na a ++-==,则数列(1)(2)na n n ⎧⎫⎨⎬++⎩⎭的前n 项和为___________.23.设n S 是数列{}n a 的前n 项和,若1(1)2n n n nS a =-+,则1211S S S ++⋯+=_____.24.在各项均为正数的等比数列{}n a 中,318a a -=,当4a 取最小值时,则数列2{}n na 的前n 项和为__________.三、解答题25.已知等比数列{}n a 的各项均为正数,5462,,4a a a 成等差数列,且满足2434a a =,数列{}n b 的前n 项和*1,N 2n n n S b n +=∈,且11b =. (1)求数列{}n a 和{}n b 的通项公式;(2)设,21(N ),2(N )n n nb n k kc a n k k **⎧=-∈=⎨=∈⎩,求数列{}n c 的前n 项和n P .26.已知数列{}n a 是正项..等差数列,11a =,且12a a ≠.数列{}n b满足)n b n +∈N ,数列{}n b 前n 项和记为n S ,且()111124n n n S S n b +++⎛⎫+=-∈ ⎪⎝⎭N .(1)求数列{}n a 的通项公式n a ; (2)若数列{}n c 满足11n n nc a a +=⋅,其前n 项和记为n T ,试比较n S 与n T 的大小.27.已知正项数列{}n a 的首项11a =,其前n 项和为n S ,且12n n n a a S +=.数列{}n b 满足:1n a +(b 1+ b 2)n n b a ++=.(1)求数列{}n a 的通项公式;(2)记*n c n N =∈122n c c c <+++<.28.已知等比数列{}n a 的各项均为正数,52a ,4a ,64a 成等差数列,且满足2434a a =,数列{}n S 的前n 项之积为n b ,且121n nS b +=.(1)求数列{}n a 和{}n b 的通项公式; (2)设nn nb c a =,求数列{}n c 的前n 项和n T . (3)设21n n n n n b a d b b ++⋅=⋅,若数列{}n d 的前n 项和n M ,证明:71303n M ≤<.29.已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)证明:2222ln 2ln 3ln 21(,2)234(1)n n n n N n n n --++⋅⋅⋅+<∈≥+.30.已知数列{}n a 的前n 项和为n S ,()2*2(21)2n n S n a n n N =+-∈,数列{}n b 满足11b a =,1n n n nb a b +=.(1)求数列{}n a 和{}n b 的通项公式; (2)设数列{}n c 满足:14c =,()*1n n n n a c c n N b +=-∈,若不等式()*392n n n c n N λ++≥∈恒成立,求实数λ的取值范围.。
(完整版)数列求和习题及答案
![(完整版)数列求和习题及答案](https://img.taocdn.com/s3/m/2138f633524de518974b7db1.png)
(完整版)数列求和习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN§6.4 数列求和(时间:45分钟 满分:100分)一、选择题(每小题7分,共35分)1.在等比数列{a n } (n ∈N *)中,若a 1=1,a 4=18,则该数列的前10项和为( )A .2-128 B .2-129 C .2-1210D .2-12112.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( )A .2n +n 2-1B .2n +1+n 2-1 C .2n +1+n 2-2D .2n +n -23.已知等比数列{a n }的各项均为不等于1的正数,数列{b n }满足b n =lg a n ,b 3=18,b 6=12,则数列{b n }的前n 项和的最大值等于( ) A .126B .130C .132D .1344.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A .200B .-200C .400D .-4005.数列1·n ,2(n -1),3(n -2),…,n·1的和为( )A.16n(n +1)(n +2)B.16n(n +1)(2n +1)C.13n(n +2)(n +3)D.13n(n +1)(n +2) 二、填空题(每小题6分,共24分)6.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.7.已知数列{a n }的通项a n 与前n 项和S n 之间满足关系式S n =2-3a n ,则a n =__________.8.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n项和S n =________.9.设关于x 的不等式x 2-x<2nx (n ∈N *)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________. 三、解答题(共41分)10.(13分)已知数列{a n }的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *满足关系式2S n =3a n -3.(1)求数列{a n }的通项公式;(2)设数列{b n }的通项公式是b n =1log 3a n ·log 3a n +1,前n 项和为T n ,求证:对于任意的正数n ,总有T n <1.11.(14分)已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n·2n +1>50成立的最小正整数n 的值.12.(14分)已知等差数列{a n }的首项a 1=1,公差d>0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项. (1)求数列{a n }的通项公式;(2)设b n =1n (a n +3) (n ∈N *),S n =b 1+b 2+…+b n ,是否存在最大的整数t ,使得对任意的n 均有S n >t36总成立?若存在,求出t ;若不存在,请说明理由.答案 1.B 2.C 3.C4.B5.A6. 13(4n -1)7. 12⎝ ⎛⎭⎪⎫34n -18.n n +19.10 10010. (1)解 由已知得⎩⎪⎨⎪⎧2S n =3a n -3,2S n -1=3a n -1-3(n ≥2).故2(S n -S n -1)=2a n =3a n -3a n -1,即a n =3a n -1 (n ≥2). 故数列{a n }为等比数列,且公比q =3.又当n =1时,2a 1=3a 1-3,∴a 1=3.∴a n =3n . (2)证明 ∵b n =1n (n +1)=1n -1n +1.∴T n =b 1+b 2+…+b n=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=1-1n +1<1.11解 (1)设此等比数列为a 1,a 1q ,a 1q 2,a 1q 3,…,其中a 1≠0,q ≠0.由题意知:a 1q +a 1q 2+a 1q 3=28, ① a 1q +a 1q 3=2(a 1q 2+2).②②×7-①得6a 1q 3-15a 1q 2+6a 1q =0, 即2q 2-5q +2=0,解得q =2或q =12.∵等比数列{a n }单调递增,∴a 1=2,q =2,∴a n =2n . (2)由(1)得b n =-n·2n ,∴S n =b 1+b 2+…+b n =-(1×2+2×22+…+n·2n ).设T n =1×2+2×22+…+n·2n ,③ 则2T n =1×22+2×23+…+n·2n +1.④由③-④,得-T n =1×2+1×22+…+1·2n -n·2n +1 =2n +1-2-n·2n +1=(1-n)·2n +1-2, ∴-T n =-(n -1)·2n +1-2.∴S n =-(n -1)·2n +1-2.要使S n +n·2n +1>50成立,即-(n -1)·2n +1-2+n·2n +1>50,即2n >26.∵24=16<26,25=32>26,且y =2x 是单调递增函数, ∴满足条件的n 的最小值为5.12解 (1)由题意得(a 1+d)(a 1+13d)=(a 1+4d)2,整理得2a 1d =d 2.∵a 1=1,解得d =2,d =0(舍). ∴a n =2n -1 (n ∈N *).(2)b n =1n (a n +3)=12n (n +1)=12⎝⎛⎭⎫1n -1n +1,∴S n =b 1+b 2+…+b n=12⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫1n -1n +1 =12⎝⎛⎭⎫1-1n +1=n 2(n +1).假设存在整数t 满足S n >t36总成立,又S n +1-S n =n +12(n +2)-n 2(n +1)=12(n +2)(n +1)>0,∴数列{S n }是单调递增的.∴S 1=14为S n 的最小值,故t 36<14,即t<9. 又∵t ∈Z ,∴适合条件的t 的最大值为8.。
数列求和综合练习题(含答案)
![数列求和综合练习题(含答案)](https://img.taocdn.com/s3/m/7fc74867e009581b6ad9eb0b.png)
数列求和综合练习题一、选择题1.已知数列{}n a 的前n 项和为n S ,若11++=n n a n ,10n S =,则=n ( )A .90B .121C .119D .1202.已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) A.172 B.192C.10D.12 3.数列{}n a 中,1160,3n n a a a +=-=+,则此数列前30项的绝对值的和为 ( )A.720B.765C.600D.630 4.数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则6S 等于( )A .142 B .45 C .56 D .675.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2·a 4=1,S 3=7,则S 5=( ) A.12 B.314 C.172 D.1526.设是等差数列的前项和,已知,则等于 ( )A. 13B. 35C. 49D. 637.等差数列的前n 项和为= ( ) A .18 B .20 C .21D .228.等差数列{}n a 的前n 项和为n S ,且336,0S a ==,则公差d 等于( ) A.1- B.1 C.2- D.29.设等差数列{}n a 的前n 项和为n S ,若111-=a ,664-=+a a ,则当n S 取最小值时,n 等于( ) A .6 B .7 C .8 D .9 10.在等差数列中,已知,则该数列前11项的和等于( )A .58B .88C .143D . 17611.已知数列}{n a 的前n 项和为)34()1(2117139511--++-+-+-=+n S n n ,则312215S S S -+的值是( )A .-76B .76C .46D .1312.等比数列{a n }的前n 项和为S n ,若a 1+a 2+a 3+a 4=1,a 5+a 6+a 7+a 8=2,S n =15,则项数n 为( ) A .12 B .14 C .15 D .1613.等差数列{}n a 中,若14739a a a ++=,36927a a a ++=,则{}n a 的前9项和为( ) {}n a 5128,11,186,n S a S a ==则{}n a 4816a a +=11S二、解答题14.已知数列{}n a 的前n 项和()2*,n S n n N =∈. (1)求数列{}n a 的通项公式;(2)若数列{}n b 是等比数列,公比为()0q q >且11423,b S b a a ==+,求数列{}n b 的前n 项和n T .15.已知等差数列{}n a 的前n 项和为n S ,且93=S ,731,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)若数列{}n a 的公差不为0,数列{}n b 满足nn n a b 2)1(-=,求数列{}n b 的前n 项和n T .16.设数列{}n a 的前n 项和122nn S ,数列{}n b 满足21(1)log n nb n a =+.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和n T .17.已知数列}{n a 的各项均为正数,n S 是数列}{n a 的前n 项和,且3242-+=n n n a a S . (1)求数列}{n a 的通项公式;(2)n n n nn b a b a b a T b +++== 2211,2求已知的值.18.已知数列}{n a 的前n 项和nn S 2=,数列}{n b 满足)12(,111-+=-=+n b b b n n ()1,2,3,n =.(1)求数列}{n a 的通项n a ; (2)求数列}{n b 的通项n b ; (3)若nb ac nn n ⋅=,求数列}{n c 的前n 项和n T .19.已知数列{}n a 的前n 项和为n S ,且2n n S n +=2.(1)求数列}{n a 的通项公式; (2)若*)(,1211N n a a a b n n n n ∈-+=+求数列}{n b 的前n 项和n S .20.已知数列{a n }的前n 项和2n n S a =-,数列{b n }满足b 1=1,b 3+b 7=18,且112n n n b b b -++=(n ≥2).(1)求数列{a n }和{b n }的通项公式;(2)若nnn a b c =,求数列{c n }的前n 项和T n.21.已知数列}{n a 的前n 项和为n S ,数列}1{+n S 是公比为2的等比数列,2a 是1a 和3a 的等比中项. (1)求数列}{n a 的通项公式; (2)求数列{}n na 的前n 项和n T .22.设数列{}n a 满足11=a )(211*+∈=-N n a a n n n (1)求数列{}n a 的通项公式;(2)令n n b na =,求数列{}n b 的前n 项和n S三、填空题23.已知等比数列{}n a 的各项均为正数,若11a =,34a =,则2________;a =此数列的其前n 项和__________.n S =24.已知等差数列{}n a 中,52=a ,114=a ,则前10项和=10S .25.设等比数列{}n a 的前n 项和为n S ,已知488,12,S S ==则13141516a a a a +++的值为 . 26.设n S 是等差数列{}n a 的前n 项和,且3613S S =,则912S S = .27.等差数列{}n a 中,10120S =,那么29a a += .28.[2014·北京海淀模拟]在等比数列{a n }中,S n 为其前n 项和,已知a 5=2S 4+3,a 6=2S 5+3,则此数列的公比q =________.29.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S = . 30.已知等差数列{}n a 中,已知8116,0a a ==,则18S =________________.31.已知等比数列的前项和为,若,则的值是 .32.已知{a n }是等差数列,a 1=1,公差d≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8= _________ . 33.数列{}n an 项和为9n S =,则n =_________.34.[2014·浙江调研]设S n 是数列{a n }的前n 项和,已知a 1=1,a n =-S n ·S n -1(n≥2),则S n =________.}{n a n n S 62,256382-==S a a a a 1a参考答案1.D【解析】n n n n a n -+=++=111 ,()()111...23)12(-+=-+++-+-=∴n n n S n ,1011=-+n ,解得120=n .【命题意图】本题考查利用裂项抵消法求数列的前n 项和等知识,意在考查学生的简单思维能力与基本运算能力. 2.B 【解析】试题分析:∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B. 考点:等差数列通项公式及前n 项和公式3.B 【解析】试题分析:因为13n n a a +=+,所以13n n a a +-=。
数列求和 经典练习题(含答案解析)
![数列求和 经典练习题(含答案解析)](https://img.taocdn.com/s3/m/c2e6c32683c4bb4cf7ecd158.png)
1.在等差数列{a n }中,已知a 6+a 9+a 12+a 15=34,求前20项之和.解法一 由a 6+a 9+a 12+a 15=34 得4a 1+38d =34=20a 1+190d=5(4a 1+38d)=5×34=170由等差数列的性质可得:a 6+a 15=a 9+a 12=a 1+a 20 ∴a 1+a 20=17 S 20=1702.已知等差数列{a n }的公差是正数,且a 3·a 7=-12,a 4+a 6=-4,求它的前20项的和S 20的值.解法一 设等差数列{a n }的公差为d ,则d >0,由已知可得由②,有a 1=-2-4d ,代入①,有d 2=4 再由d >0,得d =2 ∴a 1=-10最后由等差数列的前n 项和公式,可求得S 20=180 解法二 由等差数列的性质可得: a 4+a 6=a 3+a 7 即a 3+a 7=-4 又a 3·a 7=-12,由韦达定理可知: a 3,a 7是方程x 2+4x -12=0的二根 解方程可得x 1=-6,x 2=2又=+×S 20a d 20120192解法二 S =(a +a )202=10(a a )20120120×+(a 2d)(a bd)12 a 3d a 5d = 41111++=-①+++-②⎧⎨⎩∵ d >0 ∴{a n }是递增数列 ∴a 3=-6,a 7=23. 等差数列{a n }的前n 项和S n =m ,前m 项和S m =n(m >n),求前m +n 项和S m+n .解法一 设{a n }的公差d 按题意,则有=-(m +n)解法二 设S x =Ax 2+Bx(x ∈N)①-②,得A(m 2-n 2)+B(m -n)=n -m ∵m ≠n ∴ A(m +n)+B=-1 故A(m +n)2+B(m +n)=-(m +n) 即S m+n =-(m +n)4.设x ≠y ,且两数列x ,a 1,a 2,a 3,y 和b 1,x ,d =a =2a 10S 1807120--a 373,=-,=S na d m S ma d n (m n)a d =n mn 1m11=+=①=+=②①-②,得-·+·-n n m m m n m n ()()()()--⎧⎨⎪⎪⎩⎪⎪-+-121212即+-∴··a d =11m n S m n a m n m n d m n a m n d m n++=++++-=+++-+12121211()()()()()Am Bm n An Bn m22+=①+=②⎧⎨⎪⎩⎪b b y b 234,,,均为等差数列,求.b b a a 4321--5.在等差数列{a n }中,设前m 项和为S m ,前n 项和为S n ,且S m =S n ,m ≠n ,求S m+n .且S m =S n ,m ≠n∴S m+n =06. 在等差数列{a n }中,已知a 1=25,S 9=S 17,问数列前多少项和最大,并求出最大值.解法一 建立S n 关于n 的函数,运用函数思想,求最大值.∵a 1=25,S 17=S 9 解得d =-2∴当n=13时,S n 最大,最大值S 13=169解法二 因为a 1=25>0,d =-2<0,所以数列{a n }是递减等分析解 d =y x 51(1)=y x52(2)可采用=由a a m na ab b m n ----------21433264(2)(1)÷,得b b a a 432183--=解 S (m n)a (m n)(m n 1)d(m n)[a (m n 1)d]m+n 11∵=++++-=+++-1212∴+-=+-整理得-+-+-ma m(m 1)d na n(n 1)d(m n)a (m n)(m n 1)=011112122d即-++-由≠,知++-=(m n)[a (m n 1)d]=0m n a (m n 1)d 0111212根据题意:+×,=+×S =17a d S 9a d 1719117162982∴=+--+--+S 25n (2)=n 26n =(n 13)169n 22n n ()-12∵a 1=25,S 9=S 17∴a n =25+(n -1)(-2)=-2n +27即前13项和最大,由等差数列的前n 项和公式可求得S 13=169. 解法三 利用S 9=S 17寻找相邻项的关系. 由题意S 9=S 17得a 10+a 11+a 12+…+a 17=0 而a 10+a 17=a 11+a 16=a 12+a 15=a 13+a 14 ∴a 13+a 14=0,a 13=-a 14 ∴a 13≥0,a 14≤0 ∴S 13=169最大.解法四 根据等差数列前n 项和的函数图像,确定取最大值时的n . ∵{a n }是等差数列 ∴可设S n =An 2+Bn二次函数y=Ax 2+Bx 的图像过原点,如图3.2-1所示∵S 9=S 17,∴取n=13时,S 13=169最大差数列,若使前项和最大,只需解≥≤,可解出.n a 0a 0n n n+1⎧⎨⎩∴×+××+×,解得-9252d =1725d d =29817162∴-+≥-++≥≤≥∴2n 2702(n 1)270n 13.5n 12.5n =13⎧⎨⎩⇒⎧⎨⎩∴对称轴 x =9+172=137.求数列的通项公式:(1){a n }中,a 1=2,a n+1=3a n +2(2){a n }中,a 1=2,a 2=5,且a n+2-3a n+1+2a n =0 思路:转化为等比数列.∴{a n +1}是等比数列 ∴a n +1=3·3n-1 ∴a n =3n -1∴{a n+1-a n }是等比数列,即 a n+1-a n =(a 2-a 1)·2n-1=3·2n-1再注意到a 2-a 1=3,a 3-a 2=3·21,a 4-a 3=3·22,…,a n -a n-1=3·2n-2,这些等式相加,即可以得到+2说明 解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{a n +1}是等比数列,(2)中发现{a n+1-a n }是等比数列,这也是通常说的化归思想的一种体现.8. 三个数成等比数列,若第二个数加4就成等差数列,再把这个等差数列的第3项加32又成等比数列,求这三个数.解法一 按等比数列设三个数,设原数列为a ,aq ,aq 2 由已知:a ,aq +4,aq 2成等差数列 即:2(aq +4)=a +aq 2①a ,aq +4,aq 2+32成等比数列 即:(aq +4)2=a(aq 2+32)解 (1)a =3a 2a 1=3(a 1)n+1n n+1n +++⇒(2)a 3a 2a =0a a =2(a a )n+2n+1n n+2n+1n+1n -+--⇒a =3[1222]=3=3(21)n 2n-2n 1+++…+·-21211n ----⇒aq 2=4a +②解法二 按等差数列设三个数,设原数列为b -d ,b -4,b +d由已知:三个数成等比数列 即:(b -4)2=(b -d)(b +d)b -d ,b ,b +d +32成等比数列 即b 2=(b -d)(b +d +32)解法三 任意设三个未知数,设原数列为a 1,a 2,a 3 由已知:a 1,a 2,a 3成等比数列a 1,a 2+4,a 3成等差数列 得:2(a 2+4)=a 1+a 3②a 1,a 2+4,a 3+32成等比数列 得:(a 2+4)2=a 1(a 3+32)③①,②两式联立解得:或-∴这三数为:,,或,,.a =2q =3a =29q =52618⎧⎨⎩⎧⎨⎪⎩⎪-29109509⇒8b d =162-①⇒32b d 32d =02--②①、②两式联立,解得:或∴三数为,,或,,.b =269d =83b =10d =82618⎧⎨⎪⎪⎩⎪⎪⎧⎨⎩-29109509得:①a =a a 2213说明 将三个成等差数列的数设为a -d ,a ,a +d ;将三个成简化计算过程的作用.9.证 ∵S n =a 1+a 1q +a 1q 2+…+a 1q n-1 S 2n =S n +(a 1q n +a 1q n+1+…+a 1q 2n-1) =S n +q n (a 1+a 1q +…+a 1q n-1) =S n +q n S n =S n (1+q n )类似地,可得S 3n =S n (1+q n +q 2n )说明 本题直接运用前n 项和公式去解,也很容易.上边的解法,灵活地处理了S 2n 、S 3n 与S n 的关系.介绍它的用意在于让读者体会利用结合律、提取公因式等方法将某些解析式变形经常是解决数学问题的关键,并且变得好,则解法巧. 10.数列{a n }是等比数列,其中S n =48,S 2n =60,求S 3n .解法一 利用等比数列的前n 项和公式若q=1,则S n =na 1,即na 1=48,2na 1=96≠60,所以q ≠1①、②、③式联立,解得:或a =29a =109a =509a =2a =6a =18123123-⎧⎨⎪⎪⎪⎩⎪⎪⎪⎧⎨⎪⎩⎪等比数列的数设为,,或,,是一种常用技巧,可起到a aq aq (a aq)2aq++.S S =S (S S )n 22n 2n 2n 3n ∴++++S +S =S [S (1q )]=S (22q q )n 22n 2n 2n n 2n2n 2nS (S S )=S [S (1q )S (1q q )]=S (22q q )S S =S (S S )n 2n 3n n n n n n 2n n 2n 2nn 22n 2n 2n 3n +++++++∴++∵S =a (1q )1n 1n --q=S n (1+q n +q 2n )解法二 利用等比数列的性质:S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列 ∴ (60-48)2=48·(S 3n -60) ∴ S 3n =63. 解法三 取特殊值法取n=1,则S 1=a 1=48,S 2n =S 2=a 1+a 2=60 ∴ a 2=12∵ {a n }为等比数列S 3n =S 3=a 1+a 2+a 3=6311.已知数列{a n }中,S n 是它的前n 项和,并且S n+1=4a n +2(n ∈N*),a 1=1(1)设b n =a n+1-2a n (n ∈N*),求证:数列{b n }是等比数列;解 (1)∵ S n+1=4a n +2 S n+2=4a n+1+2S =a (1)a (1)(1+)1q 2n 11--=--=+q qq q S q nn n n n 211()∴q =14S =a (1q )1qn 3n 13n --=-++-a q q q qn n n 12111()()∴S =48(1+116)=633n +14∴ q =a a a =3213=14(2)c =a 2(n N*){c }n nnn 设∈,求证:数列是等差数列.两式相减,得S n+2-S n+1=4a n+1=4a n (n ∈N*) 即:a n+2=4a n+1-4a n变形,得a n+2-2a n+1=2(a n+1-2a n ) ∵ b n =a n+1-2a n (n ∈N*) ∴ b n+1=2b n由此可知,数列{b n }是公比为2的等比数列. 由S 2=a 1+a 2=4a 1+2,a 1=1 可得a 2=5,b 1=a 2-2a 1=3 ∴ b n =3·2n-1将b n =3·2n-1代入,得说明 利用题设的已知条件,通过合理的转换,将非等差、非等比数列转化为等差数列或等比数列来解决(2) c =a 2(n N*)c =b 2n nnn+1n n+1∵∈∴-=-=-++++c a a a a n n n n n n nn 11112222c c =34(n N*)n+1n -∈由此可知,数列是公差的等差数列,它的首项,故+-·即:{c }d =34c =a 2c =(n 1)C =34n 11n n =-12123414n。
数列求和综合练习题(含答案)
![数列求和综合练习题(含答案)](https://img.taocdn.com/s3/m/7fc74867e009581b6ad9eb0b.png)
数列求和综合练习题一、选择题1.已知数列{}n a 的前n 项和为n S ,若11++=n n a n ,10n S =,则=n ( )A .90B .121C .119D .1202.已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) A.172 B.192C.10D.12 3.数列{}n a 中,1160,3n n a a a +=-=+,则此数列前30项的绝对值的和为 ( )A.720B.765C.600D.630 4.数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则6S 等于( )A .142 B .45 C .56 D .675.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2·a 4=1,S 3=7,则S 5=( ) A.12 B.314 C.172 D.1526.设是等差数列的前项和,已知,则等于 ( )A. 13B. 35C. 49D. 637.等差数列的前n 项和为= ( ) A .18 B .20 C .21D .228.等差数列{}n a 的前n 项和为n S ,且336,0S a ==,则公差d 等于( ) A.1- B.1 C.2- D.29.设等差数列{}n a 的前n 项和为n S ,若111-=a ,664-=+a a ,则当n S 取最小值时,n 等于( ) A .6 B .7 C .8 D .9 10.在等差数列中,已知,则该数列前11项的和等于( )A .58B .88C .143D . 17611.已知数列}{n a 的前n 项和为)34()1(2117139511--++-+-+-=+n S n n ,则312215S S S -+的值是( )A .-76B .76C .46D .1312.等比数列{a n }的前n 项和为S n ,若a 1+a 2+a 3+a 4=1,a 5+a 6+a 7+a 8=2,S n =15,则项数n 为( ) A .12 B .14 C .15 D .1613.等差数列{}n a 中,若14739a a a ++=,36927a a a ++=,则{}n a 的前9项和为( ) {}n a 5128,11,186,n S a S a ==则{}n a 4816a a +=11S二、解答题14.已知数列{}n a 的前n 项和()2*,n S n n N =∈. (1)求数列{}n a 的通项公式;(2)若数列{}n b 是等比数列,公比为()0q q >且11423,b S b a a ==+,求数列{}n b 的前n 项和n T .15.已知等差数列{}n a 的前n 项和为n S ,且93=S ,731,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)若数列{}n a 的公差不为0,数列{}n b 满足nn n a b 2)1(-=,求数列{}n b 的前n 项和n T .16.设数列{}n a 的前n 项和122nn S ,数列{}n b 满足21(1)log n nb n a =+.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和n T .17.已知数列}{n a 的各项均为正数,n S 是数列}{n a 的前n 项和,且3242-+=n n n a a S . (1)求数列}{n a 的通项公式;(2)n n n nn b a b a b a T b +++== 2211,2求已知的值.18.已知数列}{n a 的前n 项和nn S 2=,数列}{n b 满足)12(,111-+=-=+n b b b n n ()1,2,3,n =.(1)求数列}{n a 的通项n a ; (2)求数列}{n b 的通项n b ; (3)若nb ac nn n ⋅=,求数列}{n c 的前n 项和n T .19.已知数列{}n a 的前n 项和为n S ,且2n n S n +=2.(1)求数列}{n a 的通项公式; (2)若*)(,1211N n a a a b n n n n ∈-+=+求数列}{n b 的前n 项和n S .20.已知数列{a n }的前n 项和2n n S a =-,数列{b n }满足b 1=1,b 3+b 7=18,且112n n n b b b -++=(n ≥2).(1)求数列{a n }和{b n }的通项公式;(2)若nnn a b c =,求数列{c n }的前n 项和T n.21.已知数列}{n a 的前n 项和为n S ,数列}1{+n S 是公比为2的等比数列,2a 是1a 和3a 的等比中项. (1)求数列}{n a 的通项公式; (2)求数列{}n na 的前n 项和n T .22.设数列{}n a 满足11=a )(211*+∈=-N n a a n n n (1)求数列{}n a 的通项公式;(2)令n n b na =,求数列{}n b 的前n 项和n S三、填空题23.已知等比数列{}n a 的各项均为正数,若11a =,34a =,则2________;a =此数列的其前n 项和__________.n S =24.已知等差数列{}n a 中,52=a ,114=a ,则前10项和=10S .25.设等比数列{}n a 的前n 项和为n S ,已知488,12,S S ==则13141516a a a a +++的值为 . 26.设n S 是等差数列{}n a 的前n 项和,且3613S S =,则912S S = .27.等差数列{}n a 中,10120S =,那么29a a += .28.[2014·北京海淀模拟]在等比数列{a n }中,S n 为其前n 项和,已知a 5=2S 4+3,a 6=2S 5+3,则此数列的公比q =________.29.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S = . 30.已知等差数列{}n a 中,已知8116,0a a ==,则18S =________________.31.已知等比数列的前项和为,若,则的值是 .32.已知{a n }是等差数列,a 1=1,公差d≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8= _________ . 33.数列{}n an 项和为9n S =,则n =_________.34.[2014·浙江调研]设S n 是数列{a n }的前n 项和,已知a 1=1,a n =-S n ·S n -1(n≥2),则S n =________.}{n a n n S 62,256382-==S a a a a 1a参考答案1.D【解析】n n n n a n -+=++=111 ,()()111...23)12(-+=-+++-+-=∴n n n S n ,1011=-+n ,解得120=n .【命题意图】本题考查利用裂项抵消法求数列的前n 项和等知识,意在考查学生的简单思维能力与基本运算能力. 2.B 【解析】试题分析:∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B. 考点:等差数列通项公式及前n 项和公式3.B 【解析】试题分析:因为13n n a a +=+,所以13n n a a +-=。
数列的数项求和计算练习题
![数列的数项求和计算练习题](https://img.taocdn.com/s3/m/18134d4c78563c1ec5da50e2524de518964bd3be.png)
数列的数项求和计算练习题一、等差数列求和计算1. 求等差数列 2, 5, 8, 11, ...的前10项之和。
解析:这是一个公差为3的等差数列。
根据等差数列求和公式Sn = n/2(a + l),其中Sn为和,n为项数,a为首项,l为末项。
首项a = 2,末项l可通过等差数列通项公式an = a + (n-1)d求得。
其中d为公差。
代入公式:l = a + (n-1)d= 2 + (10-1)3= 2 + 27= 29求和公式:Sn = n/2(a + l)= 10/2(2 + 29)= 5(31)= 155因此,等差数列2, 5, 8, 11, ...的前10项之和为155。
2. 求等差数列 3, 7, 11, 15, ...的前15项之和。
解析:这是一个公差为4的等差数列。
首项a = 3,末项l可通过等差数列通项公式an = a + (n-1)d求得。
代入公式:l = a + (n-1)d= 3 + (15-1)4= 3 + 56= 59求和公式:Sn = n/2(a + l)= 15/2(3 + 59)= 7.5(62)= 465因此,等差数列3, 7, 11, 15, ...的前15项之和为465。
二、等比数列求和计算1. 求等比数列 2, 4, 8, 16, ...的前5项之和。
解析:这是一个公比为2的等比数列。
根据等比数列求和公式Sn = a(1 - r^n) / (1 - r),其中Sn为和,n为项数,a为首项,r为公比。
首项a = 2,公比r = 2。
求和公式:Sn = a(1 - r^n) / (1 - r)= 2(1 - 2^5) / (1 - 2)= 2(1 - 32) / (1 - 2)= 2(-31) / -1= 62因此,等比数列2, 4, 8, 16, ...的前5项之和为62。
2. 求等比数列 3, 6, 12, 24, ...的前6项之和。
解析:这是一个公比为2的等比数列。
(完整版)数列求和练习题
![(完整版)数列求和练习题](https://img.taocdn.com/s3/m/312551b70722192e4536f6c6.png)
数列求和1.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( ) A.7 B.15 C.20 D.252.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ). A .15B .12C .-12D .-153.数列112,314,518,7116,…的前n 项和S n 为( ).A .n 2+1-12n -1B .n 2+2-12nC .n 2+1-12nD .n 2+2-12n -14.已知数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数n 为( ). A .11B .99C .120D .1215. 已知数列{a n }的通项公式为a n =2n +1,令b n =1n(a 1+a 2+…+a n ),则数列{b n }的前10项和T 10=( )A .70B .75C .80D .856.已知数列{a n }的前n 项和S n =an 2+bn (a 、b ∈R),且S 25=100,则a 12+a 14等于( )A .16B .8C .4D .不确定 7.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( ).A .1-14nB .1-12n C.23⎝ ⎛⎭⎪⎫1-14n D.23⎝ ⎛⎭⎪⎫1-12n二、填空题8.数列{a n }的通项公式为a n =1n +n +1,其前n 项之和为10,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为________.9.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.10.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和S n =________.11.定义运算:⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,若数列{a n}满足⎪⎪⎪⎪⎪⎪a 1122 1=1且⎪⎪⎪⎪⎪⎪3 3a n a n +1=12(n ∈N *),则a 3=________,数列{a n }的通项公式为a n =________.12.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,那么数列{b n }=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和S n 为________.三、解答题13.已知等差数列{a n }的前n 项和为S n ,且a 3=5,S 15=225. (1)求数列{a n }的通项公式;(2)设b n =2a n +2n ,求数列{b n }的前n 项和T n .14.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .15.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=21,a 5+b 3=13.(1)求{a n },{b n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和S n .16.等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960. (1)求a n 与b n ; (2)求1S 1+1S 2+…+1S n.。
数列的通项与求和练习题
![数列的通项与求和练习题](https://img.taocdn.com/s3/m/cfd7607e11661ed9ad51f01dc281e53a59025110.png)
数列的通项与求和练习题数列是数学中一种常见的数学对象,涉及了数学中的许多重要概念与方法。
对于数列的通项与求和问题,我们需要通过理论知识与练习来加深理解与熟练运用。
本文将给出一些数列的通项与求和练习题,帮助读者加深对数列的理解与应用。
一、等差数列1. 设等差数列的首项为a1,公差为d。
该等差数列的第n项是多少?答案:an = a1 + (n-1)d2. 设等差数列的首项为a1,公差为d。
前n项的和是多少?答案:Sn = n/2 * (a1 + an)例题:已知等差数列的前5项分别为2、5、8、11、14。
求该等差数列的通项公式与前20项的和。
解答:首先,根据等差数列的定义可知,公差d=5-2=3。
又已知a1=2,代入等差数列的通项公式an = a1 + (n-1)d,可得通项公式为an = 2 + (n-1) * 3。
其次,利用等差数列前n项和的公式Sn = n/2 * (a1 + an),代入已知条件,即可求得前20项的和。
二、等比数列1. 设等比数列的首项为a1,公比为q。
该等比数列的第n项是多少?答案:an = a1 * q^(n-1)2. 设等比数列的首项为a1,公比为q。
前n项的和是多少?答案:Sn = a1 * (q^n - 1)/(q-1),当q不等于1时;Sn = n * a1,当q=1时。
例题:已知等比数列的第2项为3,公比为2。
求该等比数列的通项公式与前10项的和。
解答:首先,设该等比数列的首项为a1,代入等比数列的通项公式an =a1 * q^(n-1),可得通项公式为an = a1 * 2^(n-1)。
其次,利用等比数列前n项和的公式Sn = a1 * (q^n - 1)/(q-1),代入已知条件,即可求得前10项的和。
三、斐波那契数列1. 斐波那契数列的定义是:F(1) = 1,F(2) = 1,F(n) = F(n-1) + F(n-2),n≥3。
求斐波那契数列的第n项。
数列求和-测试题-练习题汇编
![数列求和-测试题-练习题汇编](https://img.taocdn.com/s3/m/04109c4d7fd5360cba1adbe8.png)
数列求和 测试题 A 级 基础题1.数列{1+2n -1}的前n 项和S n =________.2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=________. 3.数列112,314,518,7116,…的前n 项和S n =________. 4.已知数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数n =________.5.数列{a n },{b n }都是等差数列,a 1=5,b 1=7,且a 20+b 20=60.则{a n +b n }的前20项的和为________.6.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.7.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和S n =________.二、解答题(每小题15分,共45分) 8.已知{a n }为等差数列,且a 3=-6,a 6=0. (1)求{a n }的通项公式;(2)若等比数列{b n }满足b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前n 项和公式.9.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .10.已知首项不为零的数列{a n }的前n 项和为S n ,若对任意的r ,t ∈N *,都有 S r S t =⎝ ⎛⎭⎪⎫r t 2.(1)判断{a n }是否是等差数列,并证明你的结论;(2)若a 1=1,b 1=1,数列{b n }的第n 项是数列{a n }的第b n -1项(n ≥2),求b n ; (3)求和T n =a 1b 1+a 2b 2+…+a n b n .B 级 创新题1.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________.2.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为________. 3.数列1,11+2,11+2+3,…的前n 项和S n =________. 4.在等比数列{a n }中,a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.5.已知S n 是等差数列{a n }的前n 项和,且S 11=35+S 6,则S 17的值为________. 6.等差数列{a n }的公差不为零,a 4=7,a 1,a 2,a 5成等比数列,数列{T n }满足条件T n =a 2+a 4+a 8+…+a 2n ,则T n =________.7.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=21,a 5+b 3=13.(1)求{a n },{b n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和S n .8.在各项均为正数的等比数列{a n }中,已知a 2=2a 1+3,且3a 2,a 4,5a 3成等差数列.(1)求数列{a n }的通项公式;(2)设b n =log 3a n ,求数列{a n b n }的前n 项和S n . 参考答案 A 组1. 解析 S n =n +1-2n1-2=n +2n -1.答案 n +2n -12. 解析 设b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15. 答案 153. 解析 由题意知已知数列的通项为a n =2n -1+12n ,则S n =n (1+2n -1)2+12⎝ ⎛⎭⎪⎫1-12n 1-12=n 2+1-12n . 答案 n 2+1-12n 4. 解析 ∵a n =1n +n +1=n +1-n ,∴S n =a 1+a 2+…+a n =(2-1)+(3-2)+…+(n +1-n )=n +1-1.令n +1-1=10,得n =120.答案 1205. 解析 由题意知{a n +b n }也为等差数列,所以{a n +b n }的前20项和为: S 20=20(a 1+b 1+a 20+b 20)2=20×(5+7+60)2=720.答案 7206. 解析 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1,又∵a 1=1适合上式.∴a n =2n -1,∴a 2n =4n -1.∴数列{a 2n }是以a 21=1为首项,以4为公比的等比数列. ∴a 21+a 22+…+a 2n =1·(1-4n)1-4=13(4n-1).答案 13(4n -1)7. 解析 设等比数列{a n }的公比为q ,则a 4a 1=q 3=27,解得q =3.所以a n =a 1q n -1=3×3n -1=3n ,故b n =log 3a n =n ,所以1b n b n +1=1n (n +1)=1n -1n +1.则数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和为1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.答案nn +18. 解 (1)设等差数列{a n }的公差为d . 因为a 3=-6,a 6=0,所以⎩⎨⎧a 1+2d =-6,a 1+5d =0.解得a 1=-10,d =2.所以a n =-10+(n -1)·2=2n -12. (2)设等比数列{b n }的公比为q . 因为b 2=a 1+a 2+a 3=-24,b 1=-8,所以-8q =-24,即q =3.所以{b n }的前n 项和公式为S n =b 1(1-q n )1-q=4(1-3n ).9. 解 (1)设q 为等比数列{a n }的公比,则由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍去),因此q =2. 所以{a n }的通项为a n =2·2n -1=2n (n ∈N *) (2)S n =2(1-2n )1-2+n ×1+n (n -1)2×2=2n +1+n 2-2.10. 解 (1){a n }是等差数列. 证明如下:因为a 1=S 1≠0,令t =1,r =n ,则由S r S t =⎝ ⎛⎭⎪⎫r t 2,得S nS 1=n 2,即S n =a 1n 2,所以当n ≥2时,a n =S n -S n -1=(2n -1)a 1,且n =1时此式也成立,所以a n +1-a n =2a 1(n ∈N *),即{a n }是以a 1为首项,2a 1为公差的等差数列. (2)当a 1=1时,由(1)知a n =a 1(2n -1)=2n -1, 依题意,当n ≥2时,b n =ab n -1=2b n -1-1, 所以b n -1=2(b n -1-1),又b 1-1=2,所以{b n -1}是以2为首项,2为公比的等比数列,所以b n -1 =2·2n -1,即b n =2n +1.(3)因为a n b n =(2n -1)(2n +1)=(2n -1)·2n +(2n -1)T n =[1·2+3·22+…+(2n -1)·2n ]+[1+3+…+(2n -1)],即T n =[1·2+3·22+…+(2n -1)·2n ]+n 2,①2T n =[1·22+3·23+…+(2n -1)·2n +1]+2n 2,② ②-①,得T n =(2n -3)·2n +1+n 2+6. B 组1. 解析 设数列{a n }的公比为q .由题意可知q ≠1,且9(1-q 3)1-q =1-q 61-q,解得q=2,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公比的等比数列,由求和公式可得S 5=3116.答案 3116 2. 解析 a n=2n -1,设b n =1a n a n +1=⎝ ⎛⎭⎪⎫122n -1,则T n =b 1+b 2+…+b n =12+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫122n -1=12⎝⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n . 答案 23⎝ ⎛⎭⎪⎫1-14n3. 解析 由于数列的通项a n =11+2+3+…+n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1, ∴S n =2⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1= 2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. 答案 2n n +14. 解析 ∵a 4a 1=q 3=-8,∴q =-2.∴|a 1|+|a 2|+…+|a n |=12(1-2n )1-2=2n -1-12.答案 -2 2n -1-125. 解析 因S 11=35+S 6,得11a 1+11×102d =35+6a 1+6×52d ,即a 1+8d =7,所以S 17=17a 1+17×162d =17(a 1+8d )=17×7=119. 答案 1196. 解析 设{a n }的公差为d ≠0,由a 1,a 2,a 5成等比数列,得a 22=a 1a 5,即(7-2d )2=(7-3d )(7+d ) 所以d =2或d =0(舍去). 所以a n =7+(n -4)×2=2n -1.又a 2n =2·2n -1=2n +1-1,故T n =(22-1)+(23-1)+(24-1)+…+(2n +1-1) =(22+23+…+2n +1)-n =2n +2-n -4. 答案 2n +2-n -47. 解 (1)设{a n }的公差为d ,{b n }的公比为q ,则依题意有q >0且⎩⎨⎧ 1+2d +q 4=21,1+4d +q 2=13,解得⎩⎨⎧d =2,q =2.所以a n =1+(n -1)d =2n -1,b n =q n -1=2n -1.(2)a n b n=2n -12n -1,S n =1+321+522+…+2n -32n -2+2n -12n -1,①2S n =2+3+52+…+2n -32n -3+2n -12n -2.②②-①,得S n =2+2+22+222+…+22n -2-2n -12n -1=2+2×⎝ ⎛⎭⎪⎫1+12+122+…+12n -2-2n -12n -1=2+2×1-12n -11-12-2n -12n -1=6-2n +32n -1. 8. 解 (1)设{a n }公比为q ,由题意,得q >0,且⎩⎨⎧a 2=2a 1+3,3a 2+5a 3=2a 4,即⎩⎨⎧a 1(q -2)=3,2q 2-5q -3=0. 解得⎩⎨⎧a 1=3,q =3或⎩⎪⎨⎪⎧a 1=-65,q =-12(舍去).所以数列{a n }的通项公式为a n =3·3n -1=3n ,n ∈N *. (2)由(1)可得b n =log 3a n =n ,所以a n b n =n ·3n .所以S n =1·3+2·32+3·33+…+n ·3n . 所以3S n =1·32+2·33+3·34+…+n ·3n +1两式相减,得2S n =-3-(32+33+…+3n )+n ·3n +1=-(3+32+33+…+3n )+n ·3n +1=-3(1-3n )1-3+n ·3n +1=3+(2n -1)·3n +12.所以数列{a n b n }的前n 项和为S n =3+(2n -1)·3n +14.。
数列求和数列的综合应用练习题
![数列求和数列的综合应用练习题](https://img.taocdn.com/s3/m/9615fadd783e0912a2162af0.png)
5. 已知二次函数f(x) 3x 2 2x ,数列{a n }的前n 项和为S n ,点(n,S n ) ( n * ) 在函数y f (x)的图像上.(1)球数列{a n }的通项公式;(2)设b n—,T n 是数列{b n }的前n 项和,求使「—对所有na n a n 1 20立的最小正整数m .数列 求和、 数列的 综合应用练习 题1.数列a 1 2, , a k 2k,,a 10 20共十项,且其和为240,则a 1a ka10的值为( )A.31B.120C.130D.1852.已知正数等差数列{a n }的前20项的和为 ,100,那么a y a 14的最大值是 ()A.25B.50C.100D.不存在3.设函数 f(X) lOg m X(m 0,且 m 1),数列{a n }的公比是m 的等比数列,^若 f (a〔a 3a 2009)8, 则 f(a ;) f(a |) f(a ;010)的值等于( )A.-1974B.-1990C.2022D.2042a i a 3 a 94.设等差数列{a n }的公差d 0 ,又a i ,a 2,a 9成等比数列,a 2 a 4 a io都成6.(2014广东湛江模拟)已知数列{a.}各项均为正,其前n项和为S n,且满足4S n (a. 1)2.(1)求{a n}的通项公式;(2)设b n 1,求数列{b n}的前n项和T n及T n的最小值.a n a n 17.(2014安徽,18,12分)数列{a n}满足印1,na. 1 (n 1总(1)证明:数列岂是等差数列;n(2)设b n 3n■ an,求数列{b n}的前n项和为S n .8. (2014湖北,19,12分)已知等差数列{a n}满足:32,比数列.(1)求数列{a n}的通项公式;n(n 1),n且a1, a2, a5成等(2)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n 60n 800 ?若存在,求n的最小值;若不存在,说明理由9.(2014湖南师大附中第二次月考,19)甲、乙两超市同时开业,第一年的年销售额都为a万元.由于经营方式不同,甲超市前n (n *)年的总销售额为訶n 2)万元;从第二年起,乙超市第n年的销售额比前一年的销售额多(1)设甲、乙两超市第n年的销售额分别是a n,b n,求a n,b n的表达式;(2)若在同一年中,某一超市的年销售额不足另一个超市的年销售额的50% 则该超市将于当年年底被另一家超市收购.问:在今后若干年内,乙超市能否被甲超市收购?若能,请推算出在哪一年年底被收购;若不能,请说明理由.10.从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入比上年减少-,本年5度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今1后的旅游业收入每年会比上年增加 -.411.(1)设n年内(本年度为第一年)总投入为 a n万元,旅游业总收入为b n万元,写出a n , b n的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?11. (2014四川,19,12分)设等差数列{a n}的公差为d,点⑶,^)在函数f(x) 2x的图像上(n *).(1)证明:数列{b n}为等比数列;1 (2)若a1 1,函数f(x)的图像在点(a2,b2)处的切线在x轴上的截距为2 —,In 2 求数列{a n b:}的前n项和S n.12.(2014江西上饶六校第二次联考,18)已知等差数列{a.}的前n项和为S n ,1n 1且 a2 2,S5 13 14 15,数列{b n}满足 0 -, b n 1 一 -b n.22n(1)求数列{a n}, {b n}的通项公式;(2)记T n为数列{b n}的前n项和,f(n) 空,试问f(n)否存在最大值,n 2若存在,求出最大值,若不存在请说明理由.13 (2012四川,12,5分)设函数f(x) (x 3)3x 1,数列©}是公差不为0的等差数列,f(aj f(a2) f(a7)14,则 a a? a? ( )A.0B.7C.14D.2114 (2012山东,20,12分)已知等差数列{a n}的前5项和为105,且a?。
求和练习题
![求和练习题](https://img.taocdn.com/s3/m/55e6cc8d85254b35eefdc8d376eeaeaad0f31615.png)
求和练习题一、基础求和题1. 计算下列各数列的和:1 +2 +3 + + 102 + 4 + 6 + + 203 + 6 + 9 + + 365 + 10 + 15 + + 502. 求下列等差数列的和:首项为2,末项为20,公差为2首项为3,末项为30,公差为3首项为4,末项为40,公差为4首项为5,末项为45,公差为5 3. 求下列等比数列的和:首项为2,公比为2,项数为5首项为3,公比为3,项数为4首项为4,公比为4,项数为3首项为5,公比为5,项数为2二、混合求和题4. 计算下列各数列的和:1 + 3 + 5 + + 19 + 212 + 4 + 6 + + 18 + 203 + 6 + 9 + + 24 + 274 + 8 + 12 + + 40 + 445. 求下列等差数列和等比数列的和:等差数列:首项为2,末项为20,公差为2;等比数列:首项为3,公比为3,项数为5等差数列:首项为3,末项为30,公差为3;等比数列:首项为4,公比为4,项数为4等差数列:首项为4,末项为40,公差为4;等比数列:首项为5,公比为5,项数为3等差数列:首项为5,末项为45,公差为5;等比数列:首项为6,公比为6,项数为26. 求下列混合数列的和:1 +2 +3 + + 10 + 2^1 + 2^2 + 2^3 + + 2^103 + 6 + 9 + + 36 + 3^1 + 3^2 + 3^3 + + 3^64 + 8 + 12 + + 40 + 4^1 + 4^2 + 4^3 + + 4^55 + 10 + 15 + + 50 + 5^1 + 5^2 + 5^3 + + 5^4三、复杂求和题7. 求下列数列的和:1^2 + 2^2 + 3^2 + + 10^21^3 + 2^3 + 3^3 + + 5^31^4 + 2^4 + 3^4 + + 4^41^5 + 2^5 + 3^5 + + 3^58. 求下列数列的和:1/1 + 1/2 + 1/3 + + 1/101/2 + 1/4 + 1/6 + + 1/201/3 + 1/6 + 1/9 + + 1/271/4 + 1/8 + 1/12 + + 1/409. 求下列数列的和:sin(1) + sin(2) + sin(3) + + sin(10)cos(1) + cos(2) + cos(3) + + cos(10)tan(1) + tan(2) + tan(3) + + tan(5)cot(1) + cot(2) + cot(3) + + cot(4)四、四、多项式求和题10. 求下列多项式的和:(1 + 2x + 3x^2) + (4 + 5x + 6x^2) + + (10 + 11x + 12x^2)(x^3 + 2x^2 + 3x) + (4x^3 + 5x^2 + 6x) + + (10x^3 + 11x^2 + 12x)(1 + x + x^2 + x^3) + (2 + 2x + 2x^2 + 2x^3) + + (5 + 5x + 5x^2 + 5x^3)(x^4 + 2x^3 + 3x^2 + 4x + 5) + (2x^4 + 3x^3 + 4x^2 + 5x + 6) + + (5x^4 + 6x^3 + 7x^2 + 8x + 9)五、分数求和题11. 求下列分数数列的和:1/1 + 1/2 + 1/3 + + 1/1001/2 + 1/4 + 1/6 + + 1/2001/3 + 1/6 + 1/9 + + 1/3001/4 + 1/8 + 1/12 + + 1/40012. 求下列分数数列的和:1/1 1/2 + 1/3 1/4 + + 1/99 1/1001/2 1/4 + 1/6 1/8 + + 1/198 1/2001/3 1/6 + 1/9 1/12 + + 1/297 1/3001/4 1/8 + 1/12 1/16 + + 1/396 1/400六、特殊数列求和题13. 求下列特殊数列的和:Fibonacci数列前20项的和(Fibonacci数列:1, 1, 2, 3, 5, 8, 13, )Catalan数列前10项的和(Catalan数列:1, 1, 2, 5, 14, 42, )Lucas数列前15项的和(Lucas数列:2, 1, 3, 4, 7,11, )Harmonic数列前30项的和(Harmonic数列:1, 1/2, 1/3, 1/4, )14. 求下列数列的和:平方数的和:1^2 + 2^2 + 3^2 + + 50^2立方数的和:1^3 + 2^3 + 3^3 + + 20^3第四次幂的数列和:1^4 + 2^4 + 3^4 + + 10^4第五次幂的数列和:1^5 + 2^5 + 3^5 + + 8^5七、组合求和题15. 求下列组合数列的和:C(1,1) + C(2,1) + C(3,1) + + C(10,1)C(2,2) + C(3,2) + C(4,2) + + C(9,2)C(3,3) + C(4,3) + C(5,3) + + C(8,3)C(4,4) + C(5,4) + C(6,4) + + C(7,4)16. 求下列组合数列的和:C(5,0) + C(6,1) + C(7,2) + + C(10,5)C(6,0) + C(7,1) + C(8,2) + + C(11,6)八、函数求和题17. 求下列函数在指定区间内的和:f(x) = x 在区间 [1, 10] 上的和g(x) = x^2 在区间 [1, 5] 上的和h(x) = x^3 在区间 [1, 3] 上的和j(x) = sin(x) 在区间[0, π] 上的和18. 求下列函数在指定区间内的和:f(x) = e^x 在区间 [0, 1] 上的和g(x) = ln(x) 在区间 [1, e] 上的和h(x) = √x 在区间 [1, 10] 上的和j(x) = cos(x) 在区间[0, 2π] 上的和九、数列变换求和题19. 求下列数列变换后的和:原数列:1, 2, 3, , 100;变换后数列:1^2, 2^2, 3^2, , 100^2原数列:2, 4, 6, , 100;变换后数列:2^3, 4^3, 6^3, , 100^3原数列:3, 6, 9, , 99;变换后数列:3^4, 6^4, 9^4, , 99^4原数列:4, 8, 12, , 100;变换后数列:4^5, 8^5,12^5, , 100^520. 求下列数列变换后的和:原数列:1/1, 1/2, 1/3, , 1/100;变换后数列:1/1^2, 1/2^2, 1/3^2, , 1/100^2原数列:1/2, 1/4, 1/6, , 1/100;变换后数列:1/2^3, 1/4^3, 1/6^3, , 1/100^3原数列:1/3, 1/6, 1/9, , 1/99;变换后数列:1/3^4, 1/6^4, 1/9^4, , 1/99^4原数列:1/4, 1/8, 1/12, , 1/100;变换后数列:1/4^5, 1/8^5, 1/12^5, , 1/100^5十、综合求和题21. 求下列数列的和:1 + 3 + 5 + + 97 + 99 + 2/1 + 2/2 + 2/3 + + 2/502 + 4 + 6 + + 98 + 100 + 3/1 + 3/2 + 3/3 + + 3/333 + 6 + 9 + + 96 + 99 + 4/1 + 4/2 + 4/3 + + 4/254 + 8 + 12 + + 100 + 104 + 5/1 + 5/2 + 5/3 + +5/2022. 求下列数列的和:(1 + 2 + 3 + + 50) (1/1 + 1/2 + 1/3 + + 1/50)(1 + 2 + 3 + + 100) (1/1 + 1/2 + 1/3 + + 1/100)(1 + 2 + 3 + + 150) (1/1 + 1/2 + 1/3 + + 1/150)(1 + 2 + 3 + + 200) (1/1 + 1/2 + 1/3 + + 1/200)十一、矩阵求和题23. 求下列矩阵所有元素的和:3x3 矩阵:[ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]4x4 矩阵:[ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16] ]5x5 矩阵:[ [1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25] ] 6x6 矩阵:[ [1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12], [13, 14, 15, 16, 17, 18], [19, 20, 21, 22, 23, 24], [25, 26, 27, 28, 29, 30], [31, 32, 33, 34, 35, 36] ]24. 求下列矩阵对角线元素的和:主对角线:3x3 矩阵:[ [1, 2, 3], [4, 5, 6], [7, 8,9] ]副对角线:4x4 矩阵:[ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16] ]主对角线:5x5 矩阵:[ [1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25] ]副对角线:6x6 矩阵:[ [1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12], [13, 14, 15, 16, 17, 18], [19, 20, 21, 22, 23, 24], [25, 26, 27, 28, 29, 30], [31, 32, 33, 34, 35, 36] ]十二、多项式乘积求和题25. 求下列多项式乘积的和:(x + 1)(x + 2)(x + 3) + (x + 2)(x + 3)(x + 4) + +(x + 10)(x + 11)(x + 12)(x^2 + 1)(x^2 + 2)(x^2 + 3) + (x^2 + 2)(x^2 + 3)(x^2 + 4) + + (x^2 + 5)(x^2 + 6)(x^2 + 7)(x^3 + 1)(x^3 + 2)(x^3 + 3) + (x^3 + 2)(x^3 + 3)(x^3 + 4) + + (x^3 + 4)(x^3 + 5)(x^3 + 6)(x^4 + 1)(x^4 + 2)(x^4 + 3) + (x^4 + 2)(x^4 + 3)(x^4 + 4) + + (x^4 + 3)(x^4 + 4)(x^4 + 5)26. 求下列多项式乘积的和:(1 + x)(1 + 2x)(1 + 3x) + (2 + x)(2 + 2x)(2 + 3x) + + (10 + x)(10 +答案:一、基础求和题1. 552. 2103. 9454. 220二、混合求和题5. 1056. 2807. 330三、复杂求和题8. 3859. 9.6462510. 1.57079633四、多项式求和题11. 33012. 33013. 33014. 330五、分数求和题15. 2.8289682516. 1.48829558六、特殊数列求和题17. 1771018. 22019. 489520. 816七、组合求和题21. 20422. 204八、函数求和题由于函数求和通常涉及到定积分,这里只给出一些常见函数在指定区间内的和的近似值:17. f(x) = x 在区间 [1, 10] 上的和约为 55g(x) = x^2 在区间 [1, 5] 上的和约为 55h(x) = x^3 在区间 [1, 3] 上的和约为 36j(x) = sin(x) 在区间[0, π] 上的和约为 218. f(x) = e^x 在区间 [0, 1] 上的和约为 e 1g(x) = ln(x) 在区间 [1, e] 上的和约为 e 1h(x) = √x 在区间 [1, 10] 上的和约为 2.82896825 j(x) = cos(x) 在区间[0, 2π] 上的和约为 0九、数列变换求和题19. 945020. 9450十、综合求和题21. 429022. 4290十一、矩阵求和题23. 9, 34, 65, 13624. 15, 15十二、多项式乘积求和题25. 由于这些多项式乘积的和涉及到高阶多项式的展开和求和,通常需要使用数学软件或手动展开来计算,这里只给出一些近似值: (x + 1)(x + 2)(x + 3) + + (x + 10)(x + 11)(x + 12) 的和将是一个关于 x 的多项式,具体值需要展开后计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和 测试题 A 级 基础题1.数列{1+2n -1}的前n 项和S n =________.2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=________. 3.数列112,314,518,7116,…的前n 项和S n =________. 4.已知数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数n =________.5.数列{a n },{b n }都是等差数列,a 1=5,b 1=7,且a 20+b 20=60.则{a n +b n }的前20项的和为________.6.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.7.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和S n =________.二、解答题(每小题15分,共45分) 8.已知{a n }为等差数列,且a 3=-6,a 6=0. (1)求{a n }的通项公式;(2)若等比数列{b n }满足b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前n 项和公式.9.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .10.已知首项不为零的数列{a n }的前n 项和为S n ,若对任意的r ,t ∈N *,都有 S r S t =⎝ ⎛⎭⎪⎫r t 2.(1)判断{a n }是否是等差数列,并证明你的结论;(2)若a 1=1,b 1=1,数列{b n }的第n 项是数列{a n }的第b n -1项(n ≥2),求b n ; (3)求和T n =a 1b 1+a 2b 2+…+a n b n .B 级 创新题1.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________.2.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为________. 3.数列1,11+2,11+2+3,…的前n 项和S n =________. 4.在等比数列{a n }中,a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.5.已知S n 是等差数列{a n }的前n 项和,且S 11=35+S 6,则S 17的值为________. 6.等差数列{a n }的公差不为零,a 4=7,a 1,a 2,a 5成等比数列,数列{T n }满足条件T n =a 2+a 4+a 8+…+a 2n ,则T n =________.7.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=21,a 5+b 3=13.(1)求{a n },{b n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和S n .8.在各项均为正数的等比数列{a n }中,已知a 2=2a 1+3,且3a 2,a 4,5a 3成等差数列.(1)求数列{a n }的通项公式;(2)设b n =log 3a n ,求数列{a n b n }的前n 项和S n . 参考答案 A 组1. 解析 S n =n +1-2n1-2=n +2n -1.答案 n +2n -12. 解析 设b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15. 答案 153. 解析 由题意知已知数列的通项为a n =2n -1+12n ,则S n =n (1+2n -1)2+12⎝ ⎛⎭⎪⎫1-12n 1-12=n 2+1-12n . 答案 n 2+1-12n 4. 解析 ∵a n =1n +n +1=n +1-n ,∴S n =a 1+a 2+…+a n =(2-1)+(3-2)+…+(n +1-n )=n +1-1.令n +1-1=10,得n =120.答案 1205. 解析 由题意知{a n +b n }也为等差数列,所以{a n +b n }的前20项和为: S 20=20(a 1+b 1+a 20+b 20)2=20×(5+7+60)2=720.答案 7206. 解析 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1,又∵a 1=1适合上式.∴a n =2n -1,∴a 2n =4n -1.∴数列{a 2n }是以a 21=1为首项,以4为公比的等比数列.∴a 21+a 22+…+a 2n =1·(1-4n )1-4=13(4n -1). 答案 13(4n-1)7. 解析 设等比数列{a n }的公比为q ,则a 4a 1=q 3=27,解得q =3.所以a n =a 1q n -1=3×3n -1=3n ,故b n =log 3a n =n ,所以1b n b n +1=1n (n +1)=1n -1n +1.则数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和为1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.答案nn +18. 解 (1)设等差数列{a n }的公差为d . 因为a 3=-6,a 6=0,所以⎩⎨⎧a 1+2d =-6,a 1+5d =0.解得a 1=-10,d =2.所以a n =-10+(n -1)·2=2n -12. (2)设等比数列{b n }的公比为q . 因为b 2=a 1+a 2+a 3=-24,b 1=-8,所以-8q =-24,即q =3.所以{b n }的前n 项和公式为S n =b 1(1-q n )1-q=4(1-3n ).9. 解 (1)设q 为等比数列{a n }的公比,则由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍去),因此q =2. 所以{a n }的通项为a n =2·2n -1=2n (n ∈N *) (2)S n =2(1-2n )1-2+n ×1+n (n -1)2×2=2n +1+n 2-2.10. 解 (1){a n }是等差数列. 证明如下:因为a 1=S 1≠0,令t =1,r =n ,则由S r S t =⎝ ⎛⎭⎪⎫r t 2,得S nS 1=n 2,即S n =a 1n 2,所以当n ≥2时,a n =S n -S n -1=(2n -1)a 1,且n =1时此式也成立,所以a n +1-a n =2a 1(n ∈N *),即{a n }是以a 1为首项,2a 1为公差的等差数列. (2)当a 1=1时,由(1)知a n =a 1(2n -1)=2n -1, 依题意,当n ≥2时,b n =ab n -1=2b n -1-1, 所以b n -1=2(b n -1-1),又b 1-1=2,所以{b n -1}是以2为首项,2为公比的等比数列,所以b n -1 =2·2n -1,即b n =2n +1.(3)因为a n b n =(2n -1)(2n +1)=(2n -1)·2n +(2n -1)T n =[1·2+3·22+…+(2n -1)·2n ]+[1+3+…+(2n -1)],即T n =[1·2+3·22+…+(2n -1)·2n ]+n 2,①2T n =[1·22+3·23+…+(2n -1)·2n +1]+2n 2,② ②-①,得T n =(2n -3)·2n +1+n 2+6. B 组1. 解析 设数列{a n }的公比为q .由题意可知q ≠1,且9(1-q 3)1-q =1-q 61-q,解得q=2,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公比的等比数列,由求和公式可得S 5=3116.答案 3116 2. 解析a n =2n -1,设b n =1a n a n +1=⎝ ⎛⎭⎪⎫122n -1,则T n =b 1+b 2+…+b n =12+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫122n -1=12⎝⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n . 答案 23⎝ ⎛⎭⎪⎫1-14n3. 解析 由于数列的通项a n =11+2+3+…+n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1, ∴S n =2⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1= 2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1.答案 2n n +14. 解析 ∵a 4a 1=q 3=-8,∴q =-2.∴|a 1|+|a 2|+…+|a n |=12(1-2n )1-2=2n -1-12.答案 -2 2n -1-125. 解析 因S 11=35+S 6,得11a 1+11×102d =35+6a 1+6×52d ,即a 1+8d =7,所以S 17=17a 1+17×162d =17(a 1+8d )=17×7=119. 答案 1196. 解析 设{a n }的公差为d ≠0,由a 1,a 2,a 5成等比数列,得a 22=a 1a 5,即(7-2d )2=(7-3d )(7+d ) 所以d =2或d =0(舍去). 所以a n =7+(n -4)×2=2n -1.又a 2n =2·2n -1=2n +1-1,故T n =(22-1)+(23-1)+(24-1)+…+(2n +1-1) =(22+23+…+2n +1)-n =2n +2-n -4. 答案 2n +2-n -47. 解 (1)设{a n }的公差为d ,{b n }的公比为q ,则依题意有q >0且⎩⎨⎧ 1+2d +q 4=21,1+4d +q 2=13,解得⎩⎨⎧d =2,q =2.所以a n =1+(n -1)d =2n -1,b n =q n -1=2n -1. (2)a n b n=2n -12n -1,S n =1+321+522+…+2n -32n -2+2n -12n -1,①2S n =2+3+52+…+2n -32n -3+2n -12n -2.②②-①,得S n =2+2+22+222+…+22n -2-2n -12n -1=2+2×⎝ ⎛⎭⎪⎫1+12+122+…+12n -2-2n -12n -1=2+2×1-12n -11-12-2n -12n -1=6-2n +32n -1. 8. 解 (1)设{a n }公比为q ,由题意,得q >0,且⎩⎨⎧a 2=2a 1+3,3a 2+5a 3=2a 4,即⎩⎨⎧a 1(q -2)=3,2q 2-5q -3=0. 解得⎩⎨⎧a 1=3,q =3或⎩⎪⎨⎪⎧a 1=-65,q =-12(舍去).所以数列{a n }的通项公式为a n =3·3n -1=3n ,n ∈N *.(2)由(1)可得b n =log 3a n =n ,所以a n b n =n ·3n . 所以S n =1·3+2·32+3·33+…+n ·3n . 所以3S n =1·32+2·33+3·34+…+n ·3n +1两式相减,得2S n =-3-(32+33+…+3n )+n ·3n +1 =-(3+32+33+…+3n )+n ·3n +1 =-3(1-3n )1-3+n ·3n +1=3+(2n -1)·3n +12.所以数列{a n b n }的前n 项和为S n =3+(2n -1)·3n +14.。