人教版八年级下册数学二次根式PPT课件

合集下载

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件
6
观察两者有什么关系?
4×9
36 6 ;
=_________
400 20 ;
16 × 25 =_________
900 30 .
25 × 36 = _________
知识讲解
观察三组式子的结果,我们得到下面三个等式:
(1)
4
(2)
16
(3)
25
9 = 4 9;
25= 16 25;

16a 4a 2 a 2 .
4
4
知识讲解
2. 若长为 24 ,宽为 8 ,求出它的面积.
解:它的面积为 24 × 8 = 24 × 8 =
82 × 3 = 8 3.
随堂训练
−6 = ⋅ −6
1.若
,则 ( A )
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
( D )
6 2
(2) 6 × 12 = _______;
2 6
(3) 3 × 2 2 = _____.
4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):
(1)
5 4

4 5;
(2) 4 2

2 7.
随堂训练
5.计算:(1)2 3 × 5 21;
18
(2)3 3 × (−
);
4
(3)3 2 × 2 10 × 5;
(3) 3 ×
1
=
3
1
3
3 × = .
1
.
3
知识讲解
归纳: 化简二次根式的步骤:
1.把被开方数分解因式(或因数) ;
2.把各因式(或因数)积的算术平方根化为每个因

人教版初二数学8年级下册 第16章(二次根式)二次根式 上课课件(22张PPT)

人教版初二数学8年级下册 第16章(二次根式)二次根式 上课课件(22张PPT)
回忆
⑴什么叫做一个数的平方根?如何表示? 一般地,若一个数的平方等于a,则 这个数就叫做a的平方根.
a的平方根是
⑵什么是一个数的算术平方根?如何表示?
一个正数a的正的平方根叫做它的算术平方根. 0的算术平方根是0

(a≥0)表示正数a的算术平方根.
求下列各数的平方根和算术平方根.
9 的平方根 3 , 算术平方根 3 ;
计算:(1) (5)2 ;(2) (1 2)2 .
解:(1) (5)2 52 5
或 (5)2 -5 5
(2) (1 2)2 = 1- 2 =-(1- 2)= 2-1
例3 先化简再求值:
,其中 x=4.
解:
当 x=4时,x- 4- 4- .
∴当x=4时,
.
练习 1.计算:
2
8 =8
3 2=3
双重非负性
( 4)2 4
1 ( 1 )2 3
3
( 0.01)2 0.01
( 0)2 0
一般地,有
性质1
2
a a (a≥0)
例1.当x为何值时,下列各式在实数范围内Biblioteka 有意义?(1) x 3
(2) x2
解:(1)由题意,得 x+3≥0 ∴x≥-3
∴当x≥-3时, x 2 在实数范围内有意义.
2.当x取怎样的实数时, 2x 3 1 有意义?
x 1
解:由题意得
2x x 1
3 0
0,

X≥
3 2
X ≠-1
∴ x 3,且x 1.
2
方法构想
一个式子中:
若含有几个二次根式,则要求所有被开方数大于等于0; 若含有分式,则要求分母的值不等于0; 若含有零指数或负指数次幂,则要求其底数不为0.

最新人教版八年级数学下16.1二次根式的概念ppt公开课优质课件

最新人教版八年级数学下16.1二次根式的概念ppt公开课优质课件

(2) 2 a 3 2 (4) 5a
3 (1) a-1 0, a 1. (2) 2a 3 0, a . 2
(3) a
(3) a 0, a 0.
(4) 5 a>0, a<5.
5.要画一个面积为24cm2的长方形,使它的长与宽之比为3:2,
想一想:
当x是怎样的实数时, x2 在实数范围内有意义? x3 呢?
前者x为全体实数;后者x为正数和0.
二 二次根式的双重非负性
思考: 二次根式的实质是表示一个非负数(或式)的算术平
方根.对于任意一个二次根式 a ,我们知道: (1)a为被开方数,为保证其有意义,可知a≥0;
(2) a 表示一个数或式的算术平方根,可知 a ≥0.
问题1 上面问题的结果分别是
3, s, 65, h ,它们表示一些 5
正数的算术平方根.那么什么样的数有算术平方根呢? 我们知道,负数没有平方根.因此,在实数范围内开平 方时,被开方数只能是正数或0. 问题2 上面问题的结果分别是
3, s, 65, h ,分别从形式上 5
和被开方数上看有什么共同特点? ①含有“ ” ②被开方数a ≥0
a C D
2 2.式子 3x 6 有意义的条件是
( A ) D.x≤2
A.x>2
3.若
B.x≥2
C.x<2
95 n 是整数,则自然数n的值有 ( D )
B.8个 C.9个 D.10个
A.7个
4.当a是怎样的实数时,下列各式在实数范围内有意义?
(1)
a 1

不是
当m>0时被开 方数是负数
不是
xy<0
(4) -m

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品教学课件课件

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品教学课件课件

36
6
(2)
=(
7
49
),
4
16
(
);
5
25
6
36
(
);
49
7
a
a

b
b
活动探究
二次根式的除法法则:二次根式相除,把被开方数相除,根指数不变.
a
a

( a 0,b>0)
b
b
典例精讲
例1 计算:
(2) 3
(1) 24 ;
3
解: (1)
24
2
24
3
3
3
(2)

2
1

18
8 2 2
1 = 3 1 = 3 18
= 27 =3 3
2
18
2
18
活动探究
探究二:二次根式除法法则的逆运用

a
b

aห้องสมุดไป่ตู้
( a 0,b>0) 反过来,就得到
b
a
a

( a 0,b>0)
b
b
典例精讲
例2 化简:
(1)
3
100
解:(1)
75
27
(2)
3
=
100
75
(2) =
27
3
100
=
a
a

( a 0,b>0)
解:原式=
− × −
= ×
解:原式= − × −
= ×××
=
× ×
=
4、计算: ∙ −
原式= ∙

人教版八年级下册数学 16.1二次根式 (共15张PPT)

人教版八年级下册数学 16.1二次根式  (共15张PPT)
Nhomakorabea方形的边长为
.
;面积为 S 的正
(2)一个长方形的围栏,长是宽的2倍,面积为130m2,
则它的宽为
.
(3)一个物体从高处自由下落,落到地面所用的时间
t(单位:s)与开始落下时离地面的高度h(单位:m)满足
关系h = 5t 2 ,如果用含有h 的式子表示 t,那么t 为
.
观察:
上面几个式子中,被开方数的特点?
3.已知实数a满足 (2012-a)2 a 2013 a, 求a 20122的值.
问题 请比较 a 和0 的大小.
随堂练习
义务教育教科书(RJ)八年级数学上册
作业布置
教材:P5页 习题16.1 第1、3、5、6、7题
安徽省巢湖市第七中学碧桂园分校
义务教育教科书(RJ)八年级数学下册
第十六章 二次根式 16.1 二次根式
安徽省巢湖市第七中学碧桂园分校
知识回顾
什么叫做平方根? 一般地,如果一个数的平方等于a,那
么这个数叫做a的平方根.
什么叫做算术平方根? 如果 x2 = a(x≥0),那么 x 称为 a 的
算术平方根.
用 a (a 0)表示.
做一做
当x为何值时,下列各式在实数范围内有意义. (1) x 2 ; (2) 3 x x 2 ; (3) 1 . 2x 1
已知 a 2 b 1 0,求-a2b的值. 2
典例解析 例1 下列各式中,一定是二次根式的有( )
① -3 ;②-2 a2 ;③ a2 1 ;④ a 1
1.填空题: (1)形如 (2)负数
的式子叫二次根式; 算术平方根(填“有”或者“没有”)
2.当x是怎样的实数时, x 2 在实数范围内有意义?

人教版八年级下册数学课件:16.1二次根式(1)(共19张PPT)

人教版八年级下册数学课件:16.1二次根式(1)(共19张PPT)
16.1二次根式(1)
数的数
学四统
家则治
的运着
全算整
部则个
装可量
备以的
。看世
作界
麦 克 斯 韦

, 而 算 数
获一数 得组学 结公是 论设一 -,门 -经演 -过绎 -逻的 陈辑学 省的问 身推,
理从
—-
麦克斯韦,英国物理学家、数 学家。经典电动力学的创始人, 与牛顿齐名。普遍认为是对二十 世纪最有影响力物理学家。
练习2 当x 是什么实数时,下列各式有意义.
(1)
3- 4 x
;(2) x
x -1

(3) - x 2 ; (4) x-2- 2-x .
练习3 若 16-4n 是整数,则自然数n 的值为 ___________.
畅谈收获 发表感言
通过这节课的学习,你收获了什么?
当堂测验我不怕
学案纸第2页——达标测试
陈苏省步身青,,美中籍国华科裔学数学大师, 2院0 世院纪士,伟中大国的杰数出学家,继 欧的几数里学德家、,高被斯誉、为黎曼之后 几数何学学王又. 一曾获里1程97碑8式的人物。 年全国科学大会奖.
回忆:
⑴什么叫做一个数的平方根?如何表示? 一般地,若一个数的平方等于a,则 这个数就叫做a的平方根。
当a>0 时, a 表示a 的算术平方根,因此 a >0; 当a =0 时, a 表示0 的算术平方根,因此 a =0; 这就是说, a (a≥0)是一个非负数.
双重非负性
大显身手 都能行
练习1 判断下列各式哪些是二次根式:
(1) - 1 6
× ( 3) a 2 + 1 √
(2) a+10( a > 0)√ (4) -x(x≤ 0)√

人教版八年级数学下册16.1《二次根式》课件(共23张PPT)

人教版八年级数学下册16.1《二次根式》课件(共23张PPT)

C. a>-2或a≠ 0
【解析】选D.要使式子
D. a≥-2且a≠ 0
a2 a
有意义,须同时
满足a+2≥0,a≠0两个条件,解两个不等式
可得a≥-2且a≠0 。
巩固提高:
1.分别求下列二次根式中的字母的取值范围 (1) (
3 2x )
2
(2) (1 x) 2
3 (1). 3 2 x 0 x (2).x为全体实数 2 (3).x 3 0且x 2 x 3且x 2
2
(5) xy (x,y 异号), (7)
3
5
在实数范围内,负数没有平方根
1、判断下列代数式中哪些是二次根式?


1 2
2

16
x ( x 0)
a9
a 2a 2 ⑷
2
⑸ m 3

a 1 (a 3)
2.下列式子一定是二次根式的是( A.

2
x 2
4. a≥0, a ≥0
( 双重非负性)
小结:
1.怎样的式子叫二次根式?
形如 a (a 0)的式子叫做二次根式 .
2.怎样判断一个式子是不是二次根式?
(1). 形式上含有二次根号
(2).被开方数a为非负数, 3.如何确定二次根式中字母的取值范围?
从左看到右;从上看到下
看到分数线,分母不为0 看到偶次根式,被开方数大于等于0
2
2、如果 x 3,那么 x 3 ;
2
3、如果 x a(a 0) ,
2
那么 x a 。
用带有根号的式子填空,看看结果有什么特点:
1.面积为3的正方形的边长为—— 3。 2.如图所示的值表示正方形的 面积,则正方形的边长是 b 3

人教版八年级数学下册《二次根式》PPT

人教版八年级数学下册《二次根式》PPT

典例解析
例1 计算:
(1)( 8 3) 6; (2)(4 2 3 6) 2 2.
解:(2) (4 2 3 6) 2 2 4 22 23 62 2
多项式除以 单项式法则
23 3 2
二次根式除法法则
算中思先与考乘有:除理(2,数)中后、,加实每减数一;运步算的一依样据,是在什混么合?运
例2 计算:
思考 二次根式加减,分为几个步骤?
二次根式的加减主要归纳为两个步骤: 第一步,先将二次根式化成最简二次根式; 第二步,再将被开方数相同的二次根式进行合并.
探究1 由(x+y)·z=x·z+y·z=xz+yz,你能求出 的值吗?你是怎样做的?
探究2 由 ,你能求出
的值吗?由此你有何发现?
典例解析
(1) ( 2 3)( 2 - 5) ; (2) ( 5 3)( 5 - 3)
解:(1)( 2 3)( 2 - 5) ( 2)2 3 2 5 2 15 2 2 2 15
13 2 2
思考:(1)中,每一步的依据是什么? 第一步的依据是:多项式乘多项式法则; 第二步的依据是:二次根式化简,合并被开方数 相同的二次根式(依据是:分配律); 第三步的依据是:合并同类项.
(3)( 3 2)2 ( 3)2 2 2 3 22 7 4 3;
(4)(2 5 2)2 (2 5)2 2 2 5 2 ( 2)2 22 4 10
综合应用
(3 10)2015(3 10)2015 解: (3 10)2015(3 10)2015
(3 10)(3 10)2015 (9 10)2015
例3 计算下列各题:
练习
1.计算: (1) 2( 3 5); (3)( 5 3)( 5 2);

人教版数学八年级下册《二次根式的除法》ppt课件

人教版数学八年级下册《二次根式的除法》ppt课件

不是“ a ”,而是“
a 3
a a”3刘敏说:哎呀,真抄错了,好在
不影响结果,反正a和a-3都在根号内.试问:刘敏说得对吗?
解:刘敏说得不对,结果不一样.理由如下:

a
a
3计算,则a≥0,a-3>0或a≤0,a-3<0,解得a>3或a≤0;
而按 a 计算,则a≥0,a-3>0,解得a>3.
a 3
课堂小结
观察三组式子的结果,我们得到下面三个等式:
(1) 4 = 4 ; 99
(2) 16 = 16 ; 25 25
(3)
36 36 . 49 49
猜测 你发现了什么规律?能用字母表示你所发
现的规律吗? 猜测: a a bb
从上面的猜测的规律中,a,b 的取值范 围有没有限制呢?
回顾上节课所讲的二次根式的乘法,我们知道
h 5
40时,此时
他看到的水平线的距离d2是多少?
解:d2 8 40 16 10.
问题3 他从海拔100米处登上海拔200米高的山顶,那么他看到 的水平线的距离是原来的多少倍?
解:
d2 16 10 . d1 16 5
【思考】乘法法则是如何得出的?二次根式的除法该怎样算呢?
除法有没有类似的法则?
(3)若被开方数中含有小数,应先将小数化成分数后再进
行化简,如 0.3 3 30 30 .
10 100 10
巩固练习
在下列各式中,哪些是最简二次根式?哪些不是?对不是
最简二次根式的进行化简.
(1)
45
;
(2) 1 ;
3
(3) 5 ;
2
(4)
0.5
;(5) 1 4
5
.

人教版八年级数学下册《二次根式》PPT课件

人教版八年级数学下册《二次根式》PPT课件
求此三角形的周长.
3 a≥0,
解:由题意得
2a 6≥0,
∴a=3,
∴b=4.
当a为腰长时,三角形的周长为3+3+4=10;
当b为腰长时,三角形的周长为4+4+3=11.
课堂检测
拓 广 探 索 题
先阅读,后回答问题:
当x为何值时, x x 1 有意义?
解:由题意得x(x-1)≥0
解得 m≥2且m≠-1,m≠2, ∴m>2.
(2)无论x取任何实数,代数式
x2 6x m 都有意义,求
m的取值范围.
解:由题意得x2+6x+m≥0,即(x+3)2+m-9≥0.
∵(x+3)2≥0, ∴m-9≥0,即m≥9.
课堂检测
能 力 提 升 题
已知a,b为等腰三角形两条边长,且a,b满足b 3 a 2a 6 4,
双重非负性
二次根式的被开方数非负
二次根式的值非负
a ≥0.
探究新知
考 点 1 利用二次根式的双重非负性求字母的值
若 a 3 b 2 (c 1)2 0 ,求2a -b+3c的值.
提示:多个非负数的和为零,则可得每个非负数均为零.
初中阶段学过的非负数主要有绝对值、偶次幂及二次根式.
人教版 数学 八年级 下册
16.1 二次根式
第1课时
导入新知
电视塔越高,从塔顶发射的电磁波传播得越远,从而能收
看到电视节目的区域越广,电视塔高h(单位:km)与电视节
目信号的传播半径 r(单位:km)之间存在近似关系r= Rh ,
其中地球半径R≈6 400 km.如果两个电视塔的高分别是h1 km、

《最简二次根式》二次根式PPT课件

《最简二次根式》二次根式PPT课件

2.被开方数是分数的二次根式化简
例 2 化简 1125. 分析:因为,125=5×5×5=52×5,所以,只需 分子、分母同乘以 5 就可以了.
解法一: 1125= 513××55=255.
3.被开方数是小数的二次根式化简
例 3 化简 1.5.
分析:被开方数是小数时,常把小数化成相 应的分数,然后进行求解.
1 8x3
x
0
0.8 4 45 2 5 5 55 5
4 1 9 92 3 2 2 2 22 2
20a2b 4a2 5b c 2 a 5bc 2a 5bc
c
cc
c
c
x2
1 8x3
x2
1 2x x2 8x3 2x 4x2
2x
2x 4
1.最简二次根式的概念.
满足下列条件的二次根式,叫做最简二次根式。
(2) 1 6x 9x2 (x 1) 3
(2)3x 1
(3) x 32 1 x2 1 x 3 (3)2
2、如果 a3 a2 a a 1, 那么a的取值范围是 ( D )
A. a 0 C. a 1
B. a 1
D. 1 a 0
3.化简 1 x3 x
错解:原式 1 x x2 x
18
32
被开方数不 含开得尽方 的因数
a 3
b2
(b 0)
9a
3a 3
ba
(b 0)
3a
被开方数 不含分母
(1)被开方数各因式的指数都为1. (2)被开方数不含分母.
被开方数满足上述两个条件的二次根式,叫 做最简二次根式.
如:1 x2 y √
4
6m(a2 b2 ) √
1 4
x2 y x 4

人教版八年级数学下册 16.1 二次根式 课件(共21张ppt)

人教版八年级数学下册 16.1 二次根式 课件(共21张ppt)

x-2 想一想: 假如把题目改为: 要使 有意义, x-1 字母 x 的取值必须满足什么条件? x≥2
想一想:一个正数的算术平方根是 正数 。 零的算术平方根是
0。
没有 负数有没有算术平方根?
做一做: 要使下列各式有意义,字母的取值必 须满足什么条件? 1、 x+3 3、 1 x 2、 2-5x 4、 a2+1 x-1 6、 x-2
原式 b c a a b c b c a 3b a c
这一类问题注意把二次根式的运算搭载在三角形三边之间的关系 这个知识点上,特别要应用好。
x y 的值吗? 1.已知 y x 4 4 x,你能求出 2
2.已 知 x 2 y 9 与 x y 3互为相反数, 求 x 、y 的值.
思考:若 (m 4) 4 m,
2
则m的取值范围是 _________
1.若
(1 x ) 1 x,则x的取值范围为 ( A
2
)
(A) x≤1 (B) x≥1 (C) 0≤x≤1 (D)一切有理数 2.实数a、b、c在数轴上的位置如图所示,化简
a
2
b
c
2
(a b) (b c) c a
想一想: 10 、 -5 、 8
2
3
5 3 、 (-2)2
a (a<0﹚、
a +0.1 、 -a (a<0﹚是不是二次根式?
例1 : 判断,下列各式中那些是二次根式?
a 10,04 04,, 0
a a ,,
3
aa ,
2
2
,
8.
叫做二次根式.
a (a 0)
其中a叫做被开方式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.1二次根式
2020/10/19
自学指导
内容:精读课本 P2页的内容 要求: 1.理解二次根式的概念 2.找出二次根式有意义的条件 a 0 3.二次根式的双重非负性是什么? a 0(a 0)
2020/10/19
自学效果检测 1.面积为3的正方形的边长为
的正方形的边长为___S__。
,面积为S
? a a ( 0)2 0
2
(a≥0)
观测上述等式 的两4边2 ,你4 能得 0.012 0.01 到什么启示?
1 2
1
3 3
02 0
a2 a (a≥0)
2020/10/19
( a)2与 a2有区别吗?
2020/10/19
1:从运算顺序来看,
2 a
先开方,后平方
a2 先平方,后开方
2.从取值范围来看,
2 a
a≥0
2020/10/19
a2
a取任何实数
3.从运算结果来看:
a 2 =a
a (a≥ 0)
a2 =∣a∣=
-a (a<0)
思考:若 (m 4)2 4 m,则m的取值范围是 _m____4____
2020/10/19
例2:
(1)计算 2
2
3
(2)已知a,b, c为△ABC的三边长, 化简 (a b c)2 (b a c)2
解:
2 a 0, b 2 0
而 2a b2 0
b2 0
2a0 , b20
a 2, b 2
原式 a2
2020/10/19
b1 2
2 2 21 2 21 3
已知 1 有意义,那A(a, a
在 二 象限.
∵由题意知a<0 ∴点A(-,+)
2020/10/19
a )
已知y 2 x x 2 5,
(1) a 1 (2) 1
1 2a
(3) (a 3)2
4 2 5x 5 2x 12 6 2x 1 1 x
7 x 5 3 2x (8)
你有什么收获?
①被开方数大于等于零;
202②0/10分/19 母中有字母时,要保证分母不为零。
1
( 4)2 4
(
0.01)2 0.01 (
3 1 )2
3
2.一长方形围栏,长是宽的2倍,
面积为130,则它的宽为 __6_5___
h 3.h=5t2,则t=_____5__
2020/10/19
自学效果检测
3S
h 65 5
你认为所得的各式有哪些共同点?
表示一些正数的算术平方根
2020/10/19
自学归纳 形如 a(a 0) 的式子叫做二次根式. a叫被开方数 定义包含三个内容:

y x
5
___2_
2-X≥0
x ≤2
∴x=2, y=5
X-2≥0
x≥2
2020/10/19
实数p在数轴上的位置如图所示,化

(1 p)2
2
2 p
1 p (2 p)
p 1 2 p
2020/10/19
1
在实数范围内分解因式:4 x2 - 3
解: ∵ 3
2
3
∴ 4x2 3 (2x)2
2
3
(2x 3)(2x 3)
2020/10/19
பைடு நூலகம்
一路下来,我们结识了很多新知识, 你能谈谈自己的收获吗?说一说,让大 家一起来分享。
2020/10/19
二次根式的定义:
形如 a (a 0) 的式子叫做二次根式 .
二次根式的性质:
a 0, a 0(. 双重非负性)
2 a a(a 0) a (a≥ 0) a2 =∣a∣= -a (a<0)
1.必需含有二次根号 “ ”. 2.被开方数a≥0. 3.a可以是数,也可以是含有字母的式子.
2020/10/19
凭着你已有的知识, 说说对二次根式 a 的认识,好吗?
?
2020/10/19
形如 a (a 0)的式子叫做二次根式.
1.表示a的算术平方根 2. a可以是数,也可以是式. 3. 形式上含有二次根号
4. a≥0, a ≥0 ( 双重非负性)
2020/10/19
试一试
下列式子中,哪些一定是二次根式?
① 5
② 3x (x<0)③
14
④ a 1

a 32⑥
xy(x, y同号)
⑦二x次2 根1式根⑧号内字母4的取⑨值范围必须x2满1足:
被开方数大于或等于零.
2020/10/19
隋堂练习 1
练习1:求下列二次根式中字母的取值范围:
2020/10/19
下列式子 2x 6 1 中字母x的 2x
取值范围是__3_____x____0

2x+6≥0 -2x>0

x≥-3 x<0
2020/10/19
2020/10/19
练习:用心算一算:
1 25 5 2 72 7
33
2
2
18
4
1
2
2
2 1
5 x2 2xy y2 (x﹤y) 2020/10/19
yx
已知a.b为实数,且满足 a 2b 1 1 2b 1 求a 的值.
2020/10/19
若a.b为实数,且 2 a
求 a2 b2 2b 1的值
相关文档
最新文档