《误差理论与测量平差基础》试卷A(答案)

合集下载

误差理论和测量平差试题+问题详解

误差理论和测量平差试题+问题详解

实用标准文案《误差理论与测量平差》(1 )正误判断。

正确“ T ”,错误“ F ”。

(30分) 在测角中正倒镜观测是为了消除偶然误差()。

在水准测量中估读尾数不准确产生的误差是系统误差()。

如果随机变量X 和Y 服从联合正态分布,且()。

观测值与最佳估值之差为真误差()。

X 与Y 的协方差为0 ,则X 与Y 相互独立系统误差可用平差的方法进行减弱或消除( )。

权一定与中误差的平方成反比()。

间接平差与条件平差一定可以相互转换( )。

在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

对同一量的 N 次不等精度观测值的加权平均值与用条件平差所得的结果一定相同无论是用间接平差还是条件平差, 对于特定的平差问题法方程阶数一定等于必要观测数( )。

对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的( )。

观测值L 的协因数阵Q LL 的主对角线元素 Q ii 不一定表示观测值 L i 的权()。

当观测值个数大于必要观测数时,该模型可被唯一地确定()。

定权时6 0可任意给定,它仅起比例常数的作用()。

设有两个水平角的测角中误差相等, 则角度值大的那个水平角相对精度高()。

1. 1. 2 . 3 .4 .5 .6 .7 .8 .9 .101112131415用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为300.158m ±3.5cm; 600.686m ±3.5cm。

则:1•这两段距离的中误差( )。

2.这两段距离的误差的最大限差( )。

3•它们的精度( )。

4•它们的相对精度( )。

17 . 选择填空。

只选择一个正确答案( 25分)。

1•取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权a) d/D b) D/dc) d2/D2d) D2/d 22.有一角度测20测回,得中误差土0.42秒,如果要使其中误差为土0.28秒, 测回数N=( )。

《误差理论与测量平差基础》试卷A(2013)

《误差理论与测量平差基础》试卷A(2013)

精品文档安徽建筑工业学院试卷(试卷A)共 5 页第 1 页(201 2 ——201 3 学年第二学期)考试课程:误差理论与测量平差基础班级: 11测绘、11地信学号:姓名:注:1.请命题老师用黑色的墨水工整的书写,作图准确,以保证试卷字迹清晰。

2.请命题老师在试题后面留出答题空间。

3.学生不得在草稿纸上答题安徽建筑工业学院试卷(试卷A)共 5 页第 2 页考试课程:误差理论与测量平差基础班级: 11测绘、11地信学号:姓名:注:1.请命题老师用黑色的墨水工整的书写,作图准确,以保证试卷字迹清晰。

2.请命题老师在试题后面留出答题空间。

3.学生不得在草稿纸上答题精品文档安徽建筑工业学院试卷(试卷A)共 5 页第 3 页考试课程:误差理论与测量平差基础班级: 11测绘、11地信学号:姓名:注:1.请命题老师用黑色的墨水工整的书写,作图准确,以保证试卷字迹清晰。

2.请命题老师在试题后面留出答题空间。

3.学生不得在草稿纸上答题精品文档安徽建筑工业学院试卷(试卷A)共 5 页第 4 页考试课程:误差理论与测量平差基础班级: 11测绘、11地信学号:姓名:注:1.请命题老师用黑色的墨水工整的书写,作图准确,以保证试卷字迹清晰。

2.请命题老师在试题后面留出答题空间。

3.学生不得在草稿纸上答题精品文档安徽建筑工业学院试卷(试卷A)共 5 页第 5 页考试课程:误差理论与测量平差基础班级: 11测绘、11地信学号:姓名:注:1.请命题老师用黑色的墨水工整的书写,作图准确,以保证试卷字迹清晰。

2.请命题老师在试题后面留出答题空间。

3.学生不得在草稿纸上答题欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

《误差理论与测量平差基础》试卷A(答案)

《误差理论与测量平差基础》试卷A(答案)

《误差理论与测量平差基础》期末考试试题A(参考答案)一、名词解释(每题2分,共10分)1、偶然误差——在相同得观测条件系作一系列得观测,如果误差在大小与符号上都表现出偶然性。

即从单个误差瞧,该误差得大小与符号没有规律性,但就大量误差得总体而言,具有一定得统计规律。

这种误差称为偶然误差。

2、函数模型线性化——在各种平差模型中,所列出得条件方程或观测方程,有得就是线性形式,有得就是非线性形式。

在进行平差计算时,必须首先把非线性形式得函数方程按台劳公式展开,取至一次项,转换成线性方程。

这一转换过程,称之为函数模型得线性化。

3、点位误差椭圆——以点位差得极大值方向为横轴X 轴方向,以位差得极值F E 、分别为椭圆得长、短半轴,这样形成得一条椭圆曲线,即为点位误差椭圆。

4、协方差传播律——用来阐述观测值得函数得中误差与观测值得中误差之间得运算规律得数学公式。

如0K KL Z +=,若观测向量得协方差阵为LL D ,则按协方差传播律,应有T LL ZZ K KD D =。

5、权——表示各观测值方差之间比例关系得数字特征,220ii P σσ=。

二、判断正误(只判断)(每题1分,共10分)参考答案:X √X √X X X √√X三、选择题(每题3分,共15分)参考答案:CCDCC四.填空题(每空3分,共15分)参考答案:1、 6个2、 13个3、1/n4、 0、45、 0)()()()(432200=''+∆+∆+-''+-''-W y SX X x SY Y C ACA C C ACA C ρρ,其中AB AC AC X X Y Y W αββ-++--=''4300arctan五、问答题(每题4分,共12分)1、 几何模型得必要元素与什么有关?必要元素数就就是必要观测数吗?为什么?答:⑴几何模型得必要元素与决定该模型得内在几何规律有关;(1分) ⑵必要元素数就就是必要观测数;(1分)⑶几何模型得内在规律决定了要确定该模型,所必须具备得几何要素,称为必要元素,必要元素得个数,称为必要元素数。

误差理论与测量平差基础期末考试试卷样题

误差理论与测量平差基础期末考试试卷样题

误差理论与测量平差基础期末考试试卷样题一、填空题(15分)1、误差的来源主要分为、、。

2、中误差是衡量精度的主要指标之一,中误差越,精度越。

极限误差是指。

】3、在平坦地区相同观测条件下测得两段观测高差及水准路线的长分别为:h1=10.125米,s1=公里,h2=-8.375米,s2=公里,那么h1的精度比h2的精度______,h2的权比h1的权______。

4、间接平差中误差方程的个数等于________________,所选参数的个数等于_______________。

5、在条件平差中,条件方程的个数等于。

【6、平面控制网按间接平差法平差时通常选择________________为未知参数,高程控制网按间接平差法平差时通常选择________________为未知参数。

7、点位方差与坐标系,总是等于。

二、 水准测量中若要求每公里观测高差中误差不超过10mm ,水准路线全长高差`中误差不超过20mm,则该水准路线长度不应超过多少公里(5分)—三、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于(5分):四、观测向量L L L T=()12的权阵为P L =--()3114,若有函数X L L =+12,则函数X 与观测向量L 的互协因数阵Q XL 等于什么 (5分)·五、对某长度进行同精度独立观测,已知一次观测中误差为2mm ,设4次观测值平均值的权为2。

试求:(1)单位权中误差0σ;(2)一次观测值的权;(3)若使平均值的权等于8,应观测多少次 (9分){六、用某全站仪测角,由观测大量得一测回测角中误差为2秒,今用试制的同一类新型仪器测角10测回,得一测回中误差为秒,问新仪器是否比原仪器精度有所提高(α=)(8分))(||=,||=,|(24)|= , |(24)|=χ2(9)=, χ2(9)=, χ2(9)=, χ2(9)=F(15,21)= )·七、附有限制条件的间接平差与概括平差之间的关系(8分)%:八、已知间接平差的模型为l X B V -=∧,采用最小二乘法平差,已知观测值的中误差为ll Q ,参数V X 与∧是否相关,试证明之(8分)`九、如图为一控制网,1、2为已知点,4—5的边长已知,若采用测角网的形式观测,共观测了15个角度。

误差理论与测量平差基础试题

误差理论与测量平差基础试题

误差理论与测量平差基础试题平差练习题及题解第一章1.1.04 用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)尺长不准确;系统误差。

当尺长大于标准尺长时,观测值小,符号为“+”;当尺长小于标准尺长时,观测值大,符号为“-”。

(2)尺不水平;系统误差,符号为“-”。

(3)估读小数不准确;偶然误差,符号为“+”或“-”。

(4)尺垂曲;系统误差,符号为“-”。

(5)尺端偏离直线方向。

系统误差,符号为“-”。

第二章2.6.17 设对某量进行了两组观测,他们的真误差分别为:第一组:3,-3,2,4,-2,-1,0,-4,3,-2第二组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差?1、?2^^^^^和中^?1、?2,并比较两组观测值的精度。

^^解:?1=2.4,?2=2.4,?1=2.7,?2=3.6。

两组观测值的平均误差相同,而中误差不同。

由于中误差对大的误差反应灵敏,故通常采用中误差作为衡量精度的指标。

本题中?1<?2,因此,第一组观测值的精度高。

^^第三章3.2.14 已知观测值向量L1、L2和L3及其协方差阵为n1n2n3D11 D12 D13 D21 D22 D23 D31D32 D ,现组成函数:X=AL1+A0,Y=BL2+B0,Z=CL3+C0,式中A、B、C为系数阵,A0、B0、C0为常数阵。

令W=[X Y Z],试求协方差阵DWW 解答:XX DXY DXZ 11A AD12B AD13CDWW = DYX DYY DYZ = BD21A BD22B BD23CZX DZY D 31A CD32B CD33C3.2.19 由已知点A(无误差)引出支点P,如图3-3所示。

其中误差为?0,?0为起算方位角,观测角β和边长S的中误差分别为??和?S,试求P点坐标X、Y的协方差阵。

TTTTTTTTTT图3-1解答:令P点坐标X、Y的协方差阵为2 ?xyx2xy ?2???XAP2222?02 式中:?x=()?S+?YAP-2+?YAP2 ?S?22???YAP2222?02)?S+?XAP-2+?XAP2 ?y=(?S?2???XAP?YAP?022)?S-?XAP?YAP2-?XAPYAP2 ?xy=(2?S?2?xy=?yx3.5.62 设有函数F=f1x+f2y,其中x??1L1??2L2????nLn,y??1L1??2L2????nLn,?i,?i(i?1,2,?n)为无误差的常数,而L1,L2?Ln的权分别为P1,P2?Pn,试求函数F的权倒数1。

误差理论与测量平差基础习题

误差理论与测量平差基础习题

《误差理论与测量平差基础》课程试卷《误差理论与测量平差基础》课程试卷答案武 汉 大 学2007年攻读硕士学位研究生入学考试试题考试科目:测量平差 科目代码: 844注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。

可使用计算器。

一、填空题(本题共40分,共8个空格,每个空格5分)1.在图1所示水准路线中,A 、B 为已知点,为求C 点高程,观测了高差1h 、2h ,其观测中误差分别为1σ、2σ。

已知1212σσ=,取单位权中误差02σσ=。

要求平差后P 点高程中误差2C mm σ≤, 则应要求1σ≤ ① 、2σ≤ ② 。

2.已知观测值向量1,13,12,1X Z Y ⎡⎤⎢⎥=⎢⎥⎣⎦的协方差阵310121013ZZD -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,12,12Y Y Y ⎡⎤=⎢⎥⎣⎦,若设权11Y P =,则权阵XX P = ③ ,YY P = ④ ,协因数阵12Y Y Q = ⑤ ,1Y X Q = ⑥ 。

3.已知平差后某待定点P 的坐标的协因数和互协因数为PX Q ˆ、PY Q ˆ和PP Y X Q ˆˆ,则当PPY X Q Q ˆˆ=,0ˆˆ<PP Y X Q 时,P 点位差的极大方向值=E ϕ ⑦ ,极小方向值=F ϕ ⑧ 。

二、问答题(本题共45分,共3小题,每小题15分)1.在图2所示三角形中,A 、B 为已知点,C 为待定点,同精度观测了1234,,,L L L L测量平差 共3页 第1页共4个方位角,1S 和2S 为边长观测值,若按条件平差法平差:(1)应列多少个条件方程;(2)试列出全部条件方程(不必线性化)。

2.在上题中,若设BAC ∠、ABC ∠和ACB ∠为 参数1X 、2X 、3X ,(1)应采用何种函数模型平差;(2)列出平差所需的全部方程(不必线性化)。

3. 对某控制网进行了两期观测。

由第一期观测值得到的法方程为111111ˆT T B PB X B PL =,由第二期观测值得到的法方程为222222ˆT T B P B X B P L =。

(完整word版)误差理论和测量平差试卷及答案6套 试题+答案(word文档良心出品)

(完整word版)误差理论和测量平差试卷及答案6套  试题+答案(word文档良心出品)

《误差理论与测量平差》课程自测题(1)一、正误判断。

正确“T”,错误“F”。

(30分)1.在测角中正倒镜观测是为了消除偶然误差()。

2.在水准测量中估读尾数不准确产生的误差是系统误差()。

3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。

4.观测值与最佳估值之差为真误差()。

5.系统误差可用平差的方法进行减弱或消除()。

6.权一定与中误差的平方成反比()。

7.间接平差与条件平差一定可以相互转换()。

8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。

13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

14.定权时σ0可任意给定,它仅起比例常数的作用()。

15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

二、用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。

则:1.这两段距离的中误差()。

2.这两段距离的误差的最大限差()。

3.它们的精度()。

4.它们的相对精度()。

三、选择填空。

只选择一个正确答案(25分)。

1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。

a) d/D b) D/d c) d 2/D 2d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。

《误差理论与测量平差基础》试卷A(答案)

《误差理论与测量平差基础》试卷A(答案)

《误差理论与测量平差基础》期末考试试题A(参考答案)一、名词解释(每题2分,共10分)1、偶然误差——在相同的观测条件系作一系列的观测,如果误差在大小和符号上都表现出偶然性。

即从单个误差看,该误差的大小和符号没有规律性,但就大量误差的总体而言,具有一定的统计规律。

这种误差称为偶然误差。

2、函数模型线性化——在各种平差模型中,所列出的条件方程或观测方程,有的是线性形式,有的是非线性形式。

在进行平差计算时,必须首先把非线性形式的函数方程按台劳公式展开,取至一次项,转换成线性方程。

这一转换过程,称之为函数模型的线性化。

3、点位误差椭圆——以点位差的极大值方向为横轴轴方向,以位差的极值分别为椭圆的长、短半轴,这样形成的一条椭圆曲线,即为点位误差椭圆。

4、协方差传播律——用来阐述观测值的函数的中误差与观测值的中误差之间的运算规律的数学公式。

如,若观测向量的协方差阵为,则按协方差传播律,应有。

5、权——表示各观测值方差之间比例关系的数字特征,。

二、判断正误(只判断)(每题1分,共10分)参考答案:X √X √X X X √√X三、选择题(每题3分,共15分)参考答案:CCDCC四.填空题(每空3分,共15分)参考答案:1. 6个2. 13个3.1/n4. 0.45. ,其中五、问答题(每题4分,共12分)1. 几何模型的必要元素与什么有关?必要元素数就是必要观测数吗?为什么?答:⑴几何模型的必要元素与决定该模型的内在几何规律有关;(1分) ⑵必要元素数就是必要观测数;(1分)⑶几何模型的内在规律决定了要确定该模型,所必须具备的几何要素,称为必要元素,必要元素的个数,称为必要元素数。

实际工程中为了确定该几何模型,所必须观测的要素个数,称为必要观测数,X F E 、0K KL Z +=LL D T LL ZZ K KD D =220ii P σσ=0)()()()(4320020=''+∆+∆+-''+-''-W y SX X x SY Y C ACA C C ACA C ρρABAC AC X X Y Y W αββ-++--=''4300arctan其类型是由必要元素所决定的,其数量,必须等于必要元素的个数。

误差理论与测量平差试题+答案

误差理论与测量平差试题+答案

《误差理论与测量平差》(1)1.正误判断。

正确“T”,错误“F”。

(30分)2.在测角中正倒镜观测是为了消除偶然误差()。

3.在水准测量中估读尾数不准确产生的误差是系统误差()。

4.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。

5.观测值与最佳估值之差为真误差()。

6.系统误差可用平差的方法进行减弱或消除()。

7.权一定与中误差的平方成反比()。

8.间接平差与条件平差一定可以相互转换()。

9.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

10.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

11.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

12.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

13.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。

14.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

15.定权时σ0可任意给定,它仅起比例常数的作用()。

16.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

17.用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。

则:1.这两段距离的中误差()。

2.这两段距离的误差的最大限差()。

3.它们的精度()。

4.它们的相对精度()。

18. 选择填空。

只选择一个正确答案(25分)。

1.取一长为d 的直线之丈量结果的权为1,则长为D 的直线之丈量结果的权P D =( )。

a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。

误差理论和测量平差习题集(含答案)

误差理论和测量平差习题集(含答案)

误差理论和测量平差习题集(含答案)1.1 观测条件是由那些因素构成的?它与观测结果的质量有什么联系?1.2 观测误差分为哪⼏类?它们各⾃是怎样定义的?对观测结果有什么影响?试举例说明。

1.3⽤钢尺丈量距离,有下列⼏种情况使得结果产⽣误差,试分别判定误差的性质及符号:(1)尺长不准确;(2)尺不⽔平;(3)估读⼩数不准确;(4)尺垂曲;(5)尺端偏离直线⽅向。

1.4 在⽔准了中,有下列⼏种情况使⽔准尺读书有误差,试判断误差的性质及符号:(1)视准轴与⽔准轴不平⾏;(2)仪器下沉;(3)读数不准确;(4)⽔准尺下沉。

1.5 何谓多余观测?测量中为什么要进⾏多余观测?答案:1.3 (1)系统误差。

当尺长⼤于标准尺长时,观测值⼩,符号为“+”;当尺长⼩于标准尺长时,观测值⼤,符号为“-”。

(2)系统误差,符号为“-”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”(5)系统误差,符号为“-”1.4 (1)系统误差,当i⾓为正时,符号为“-”;当i⾓为负时,符号为“+”(2)系统误差,符号为“+”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”2.1 为了鉴定经纬仪的精度,对已知精确测定的⽔平⾓'"450000α=作12次同精度观测,结果为:'"450006 '"455955'"455958'"450004'"450003455958'"455959 '"455959 '"450006 '"450003设a 没有误差,试求观测值的中误差。

2.2 已知两段距离的长度及中误差分别为300.465m ±4.5cm 及660.894m ±4.5cm ,试说明这两段距离的真误差是否相等?他们的精度是否相等?2.3 设对某量进⾏了两组观测,他们的真误差分别为:第⼀组:3,-3,2,4,-2,-1,0,-4,3,-2 第⼆组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差1?θ、2θ和中误差1?σ、2?σ,并⽐较两组观测值的精度。

误差理论与测量平差基础试卷

误差理论与测量平差基础试卷

考试试卷…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………课程名称(含档次) 误差理论与测量平差基础 课程代号 0809021专 业 测绘工程 层次(本、专) 本 考试方式(开、闭卷) 闭 一、 正误判断(正确“T ”,错误“F ”每题1分,共10 分)。

1.已知两段距离的长度及中误差分别为128.286m ±4.5cm 与218.268m ±4.5cm ,则其真误差与精度均相同( )。

2.如果X 与Y 的协方差0xy σ=,则其不相关( )。

3.水准测量中,按公式i icp s =(i s 为水准路线长)来定权,要求每公里高差精度相同( )。

4.可用误差椭圆来确定待定点与待定点之间的某些精度指标( )。

5.在某一平差问题中,观测数为n ,必要观测数为t ,参数个数u <t 且不独立,则该平差问题可采用附有参数的条件平差的函数模型。

( )。

6.由于同一平差问题采用不同的平差方法得到的结果不同,因此为了得到最佳平差结果,必须谨慎选择平差方法( )。

7.根据公式()222220cos sin 0360E F θσθθθ=+≤≤得到的曲线就是误差椭圆( )。

8.对于特定的平面控制网,如果按间接平差法解算,则误差方程的个数是一定的( )。

9.对于同一个观测值来说,若选定一定权常数0σ,则权愈小,其方差愈小,其精度愈高( )。

10.设观测值向量,1n L 彼此不独立,其权为()1,2,,i P i n =,12(,,,)n Z f L L L =,则有22211221111Z n nf f f P L P L P L P ⎛⎫⎛⎫⎛⎫∂∂∂=+++ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭( )。

二、填空题(每空2分,共24分)。

1、设对某三角网进行同精度观测,得三角形角度闭合差分别为:3秒,-3秒,2秒,4秒,-2秒,-1秒,0秒,-4秒,3秒,-2秒,则测角中误差为 秒。

[精品]误差理论与测量平差基础试题

[精品]误差理论与测量平差基础试题

黑龙江工程学院期末考试卷2003-2004学年 第 一 学期 考试科目:测 量 平 差(三) 一、选择题(每小题3分,共18分)1、用钢尺量得两段距离的长度:L m cm L m cm 12100051005=±=±,,选出正确答案:A)由于σσ12=,故两个边长的观测精度相同。

B)由于L L 12>,故L 2的精度比L 1的精度高。

C)由于σσ1122//L L <,故L 1的精度比L 2的精度高。

D)由于它们的中误差相同,所以它们的精度相同。

答:_____2、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于?(A)1/4 (B)2 (C)1/2 (D)4 答:_____3、观测向量L L L T=()12的权阵为P L =--()3114,若有函数X L L =+12,则函数X 与观测向量L 的互协因数阵Q XL 等于什么? (A)()34 (B)()511411 (C)()311411 (D)()3411答:____ 4、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。

A BCDA)应列出4个条件方程, B)应列出5个线性方程C)有5个多余观测 , D)应列出5个角闭合条件 答:_____ 5、已知误差方程为:⎧⎨⎪⎩⎪=-=+=-+-===v x v x v x x p p p 1122312123567121,法方程为:A)2113250012--⎡⎣⎢⎤⎦⎥⎡⎣⎢⎤⎦⎥+--⎡⎣⎢⎤⎦⎥=⎡⎣⎢⎤⎦⎥x x , B)2113250012--⎡⎣⎢⎤⎦⎥⎡⎣⎢⎤⎦⎥+⎡⎣⎢⎤⎦⎥=⎡⎣⎢⎤⎦⎥x x C)2003250012⎡⎣⎢⎤⎦⎥⎡⎣⎢⎤⎦⎥+--⎡⎣⎢⎤⎦⎥=⎡⎣⎢⎤⎦⎥x x , D)2003250012⎡⎣⎢⎤⎦⎥⎡⎣⎢⎤⎦⎥+⎡⎣⎢⎤⎦⎥=⎡⎣⎢⎤⎦⎥x x 答:____ 6、已知条件方程为:v v v v v v v S S 1231227006080716012++-=-++-+=⎧⎨⎩.....权:p p p p S 123121====,(秒22/cm ),p S 205=.(秒22/cm ),解算其法方程得:K T=-0805..,据此可求出v 2为:A)0.8秒 B)-0.5厘米 C)0.5秒 D)0.9秒 答:_____ 二、填空题(每空2分,共10分) 1、n 个独立观测值的方差阵是个________阵,而n 个相关观测值的方差阵是个_____阵。

误差理论与测量平差基础考试试卷

误差理论与测量平差基础考试试卷

误差理论测量与测量平差基础考试试卷学年 下 学期期末考试试题 时间100分钟误差理论与测量平差基础 课程56 学时3.5学分 考试形式:闭卷 专业年级:测绘工程1401、1402、遥感1401 、测绘实验班1401 总分100分,占总评成绩 70 %注:此页不作答题纸,请将答案写在答题纸上一、 简答题(每题5分,共15分)1、 何谓极限误差?设某一观测值中误差8σ''=,则观测值真误差的取值范围为多少?2、 测量平差的数学模型包含哪些?是如何定义的?3、 何谓方差-协方差传播律?和误差传播律区别在哪里?二、 填空题(每空2分,共26分)1、 间接分组平差时,要求第一组误差方程个数( )、条件分组平差对分组的条件式个数( )。

2、 水准测量定权的公式i i c P s =,其中i s 代表( ),C 代表( )。

3、 设有两条边长观测值及其中误差分别为:11S 1000.234m,3mm σ==,22S 1200.456m,3mm σ==,则1S 比2S 的精度( ),原因是( )。

4、 观测向量[]T 123L L L L =的方差阵为LL 322D 232223⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,202σ=。

则LL Q = ( ),对应的2L P =( )。

5、 如下图所示水准网,条件平差时,条件方程式为( ),评定P 点高程平差值精度时的平差值函数式为( )。

间接平差时,选P 点高程平差值为参数,则误差方程式为( )和( ),评定P 点高程平差值精度时的未知数函数式为( )。

三、 计算题(每题15分,共30分)1、(15分)下图所示为某隧道横截面,通过弓高弦长法测定圆弧的半径。

已知测得s S 3.6m,24mm σ==,H H 0.3m,4mm σ==,试求半径的测量精度R σ。

(已知弓高弦长法求半径的公式为2H S R 28H=+)2、(15分)误差椭圆描述的是待定点和已知点的精度关系,相对误差椭圆是表示待定 点之间相对位置的精度分布。

《误差理论与测量平差基础》考试试卷

《误差理论与测量平差基础》考试试卷

《误差理论与测量平差基础》考试试卷3一、填空题(每空3分,共15分)1、有一段距离,其观测值及其中误差为 ,该观测值的相对中误差为 (1) 。

2、已知常系数矩阵A 和B ,随机向量L 的方差阵LL D ,并有随机向量的函数L A x T,L B y T 。

x 和y 的互协方差阵为 (2) 。

3、已知独立观测值 T L L L 211,2 的方差阵160064LL D,单位权方差420 ,则其权阵LL P 为 (3) 。

4、设有某个物理量同精度观测了n 次,得),,2,1(n i L i ,若每次观测的精度为 ,权为p ,则其算术平均值L 的权为 (3) 。

5、已知某三角网中P 点坐标的协因数阵为22ˆˆ 2.100.25/"0.25 1.60XX Q cm,单位权方差的估值为22"0ˆ 1.0,位差的极大值方向E 为 (5) 。

二、单选题(每题3分,共15分)1、设有观测向量 TL L X 211,2 ,已知2ˆ1 L,4ˆ2 L ,2)'('2ˆ21 L L ,其协方差阵XX D 为( )。

A 、4222 , B 、 4222 , C 、44416 , D 、16224 2、设有观测向量L ,其协方差阵为432LLD 。

函数11233F L L L 的方差为( )。

A 、9 ,B 、41 ,C 、 17 ,D 、25mm m 153003、已知观测向量L 的权阵为5224LL P ,观测值的权1L p 和2L p 分别为( )。

A 、165和4, B 、41和51, C 、 165和41, D 、4和54、有图(1)所示的三角网,其中B 、C 为已知点,A 、D 、E 为待定点,观测角)10,,2,1( i L i 。

则网中必要观测数和多余观测数分别是( )。

A 、6和4,B 、4和6,C 、5和 5 ,D 、7和35、下列说法错误的是( )。

A 、一个平差问题中,必要观测的个数取决于该问题本身的性质,与观测值的多少无关。

误差理论和测量平差习题集(含答案)

误差理论和测量平差习题集(含答案)

1.1 观测条件是由那些因素构成的?它与观测结果的质量有什么联系?1.2 观测误差分为哪几类?它们各自是怎样定义的?对观测结果有什么影响?试举例说明。

1.3用钢尺丈量距离,有下列几种情况使得结果产生误差,试分别判定误差的性质及符号:(1)尺长不准确;(2)尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。

1.4 在水准了中,有下列几种情况使水准尺读书有误差,试判断误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沉。

1.5 何谓多余观测?测量中为什么要进行多余观测?答案:1.3 (1)系统误差。

当尺长大于标准尺长时,观测值小,符号为“+”;当尺长小于标准尺长时,观测值大,符号为“-”。

(2)系统误差,符号为“-”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”(5)系统误差,符号为“-”1.4 (1)系统误差,当i角为正时,符号为“-”;当i角为负时,符号为“+”(2)系统误差,符号为“+”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”2.1 为了鉴定经纬仪的精度,对已知精确测定的水平角'"450000α=作12次同精度观测,结果为:'"450006 '"455955'"455958'"450004'"450003'"450004'"450000 '"455958'"455959 '"455959 '"450006 '"450003设a 没有误差,试求观测值的中误差。

2.2 已知两段距离的长度及中误差分别为300.465m ±4.5cm 及660.894m ±4.5cm ,试说明这两段距离的真误差是否相等?他们的精度是否相等?2.3 设对某量进行了两组观测,他们的真误差分别为: 第一组:3,-3,2,4,-2,-1,0,-4,3,-2 第二组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差1ˆθ、2ˆθ和中误差1ˆσ、2ˆσ,并比较两组观测值的精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《误差理论与测量平差基础》期末考试试题A(参考答案)一、名词解释(每题2分,共10分)1、偶然误差——在相同的观测条件系作一系列的观测,如果误差在大小和符号上都表现出偶然性。

即从单个误差看,该误差的大小和符号没有规律性,但就大量误差的总体而言,具有一定的统计规律。

这种误差称为偶然误差。

2、函数模型线性化——在各种平差模型中,所列出的条件方程或观测方程,有的是线性形式,有的是非线性形式。

在进行平差计算时,必须首先把非线性形式的函数方程按台劳公式展开,取至一次项,转换成线性方程。

这一转换过程,称之为函数模型的线性化。

3、点位误差椭圆——以点位差的极大值方向为横轴X 轴方向,以位差的极值F E 、分别为椭圆的长、短半轴,这样形成的一条椭圆曲线,即为点位误差椭圆。

4、协方差传播律——用来阐述观测值的函数的中误差与观测值的中误差之间的运算规律的数学公式。

如0K KL Z +=,若观测向量的协方差阵为LL D ,则按协方差传播律,应有T LL ZZ K KD D =。

5、权——表示各观测值方差之间比例关系的数字特征,220ii P σσ=。

二、判断正误(只判断)(每题1分,共10分)参考答案:X √X √X X X √√X三、选择题(每题3分,共15分)参考答案:CCDCC四.填空题(每空3分,共15分)参考答案:1. 6个2. 13个3.1/n4. 0.45. 0)()()()(4320020=''+∆+∆+-''+-''-W y SX X x SY Y C ACA C C ACA C ρρ,其中AB AC AC X X Y Y W αββ-++--=''4300arctan五、问答题(每题4分,共12分)1. 几何模型的必要元素与什么有关?必要元素数就是必要观测数吗?为什么?答:⑴几何模型的必要元素与决定该模型的内在几何规律有关;(1分) ⑵必要元素数就是必要观测数;(1分)⑶几何模型的内在规律决定了要确定该模型,所必须具备的几何要素,称为必要元素,必要元素的个数,称为必要元素数。

实际工程中为了确定该几何模型,所必须观测的要素个数,称为必要观测数,其类型是由必要元素所决定的,其数量,必须等于必要元素的个数。

(2分)2. 简述偶然误差的特性答:⑴在一定条件下,误差绝对值有一定限值。

或者说,超出一定限值的误差,其出现概率为零;(1分) ⑵绝对值较小的误差比绝对值较大的误差出现的概率大;(1分)⑶绝对值相等的正负误差出现的概率相同;(1分)⑷偶然误差的数学期望为零,即0)(=∆E 。

(1分)3. 在平差的函数模型中,n ,t ,r ,u ,s ,c 等字母代表什么量?它们之间有什么关系? 答:n ——总观测数;t ——必要观测数;r ——多余观测数;u ——未知参数个数; s ——未知参数中具有函数约束的条件数;c ——般约束条件个数 (答对3个1分) 函数关系: r=n-t ,r+u=c+s (每个1分)六.计算题(30分)1. 解:(1)写成矩阵形式,有:[]AL L L L F =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3213211(1分)由方差的传播律,有:[]3632130002000132121=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==T LL FA AD σ(2分)(2)对32123L L L F =两边求全微分,得: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-+=32123213132323212311322333333dL dL dL L L L L L L L dL L L L dL L L dL L L dF (1分)由方差的传播律,有:43222123222123213132232131322293)2(3333000200013331L L L L L L L L L L L L L L L L L L L L ++=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-=σ(2分) 2. 解:由题所给,有:(1)由间接平差法方程公式:pl B X N Tbb =,可得⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--==--2112114682210x x pl B N X T bb (2分) 因此未知数的解为:x1=-1,x2=-2(2)在间接平差数学模型中,有:)(221032][0mm t n vv t n PV V m T =-=-=-=(2分)(3)⎥⎦⎤⎢⎣⎡==⇒⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--==--5114192Q 511438182210Q ˆˆ20ˆˆ1ˆˆX XX X bbX X m D N (2分) []74.314143434ˆˆ2==⇒=⎥⎦⎤⎢⎣⎡=F X X F D σσ(2分)3. 解:(1)条件平差法由题所给,有:n=6;t=P-1=4-1=3,r=n-t=6-3=3,因此条件方程个数为:3列出条件方程为:(1分)⎪⎪⎩⎪⎪⎨⎧=+-=++=++0ˆˆˆ0ˆˆˆ0ˆˆˆ642541321h h h h h h h h h ,由i i i v h h +=ˆ,带入观测值,得误差方程为: 1234561110009100110900101016V V V V V V ⎡⎤⎢⎥⎢⎥-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦(1分)(形式不唯一,只要跟条件方程对应即可)协因数阵为Q=diag(1,1,1,1,1,1) 法方程系数阵311131113T aa N AQA ⎡⎤⎢⎥==-⎢⎥⎢⎥-⎣⎦(1分)法方程为:0699311131113321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--k k k (1分) (2)间接平差法设521ˆˆˆh h h 、、为未知数参数321ˆ,ˆ,ˆX X X ,则可列出观测方程如下: (也可假设一个高程点高程为已知,设其他3个未知点高程为未知数,列对观测方程即可)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++-==+-=+-===)ˆˆˆ(ˆˆˆ)ˆˆ(ˆ)ˆˆ(ˆˆˆˆˆ3216353142132211X X X h X h X X h X X h X h X h (1分),对应误差方程为:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+---==---=+--==-=3ˆˆˆˆ9ˆˆ9ˆˆˆˆ3216353142132211x x x v x v x x v x x v x v x v (1分)误差方程系数矩阵B 及自由项l 分别为:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-------=111100101011010001B ,⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-=309900l (1分)权阵为P=diag(1,1,1,1,1,1)由此,法方程为:ˆTT B PBx B Pl ==>06123312132224321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡x x x (1分) 4. 解:⑴ScP =,由于以2km 观测高差的权为单位权则: 221==>=c c(1分)所以每段观测的权为:5.04211===S c P625.02.3222===S c P 12233===S c P 769.06.2244===S c P 588.04.3255===S c P 往返观测高差差值为:5878854321=-==-=-=d d d d d则[]0.185)5(588.0)8(769.0)7(1)8(625.0)8(5.022222233222211=⨯+-⨯+⨯+-⨯+⨯=++=d p d p d p pdd)(3.4101852][0mm n pdd ±=±=±=σ(1分) ⑵由iip 202σσ=(1分)可得:ii p 10σσ=所以:4.5625.0/13.4122=±==p σσ(1分) ⑶各段观测高差平均值的中误差为:2iσ 因此第二段观测高差平均值的中误差为:8.324.522==σ(1分)⑷每公里观测高差中误差为S S ⋅=22,公里公里由σσσ 得:)(0.323.4220mm ±=±=±=σσ公里(1分) 全长观测高差中误差为:)(7.112.150.3S mm ±=±==全公里全σσ(1分) ⑸全长高差平均值的中误差为:)(3.827.112mm ±=±==全全长平均σσ(1分) 七.证明题(8分)1.证明:设未知量的平差值为Xˆ,由题所给,列出观测方程及误差方程分别为:⎪⎪⎩⎪⎪⎨⎧===X L XL X L nˆˆ......ˆˆˆˆ21, ⎪⎪⎩⎪⎪⎨⎧+-=+-=+-=X L v X L v X L v n n ˆ......ˆˆ2211, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1...11B , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n L L L l ...21(1分)由此有法方程系数证及常数项分别为:[]∑==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==ni i n TbbP P P P PB B N 1211...11...1......11=>∑=-=ni ibb PN 111(1分)[]∑==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=ni i i n n TL P L L L P P P Pl B 12121......1......11(1分) 由此,∑∑==-==ni ini ii T bbpLp Pl B N X 111)(ˆ,得证。

2 证明:设水准点P 位于距A 点距离为1S 的位置,平差后高程为X ,列出观测方程如下:⎪⎩⎪⎨⎧+-=-=BAH X h H X h 21ˆˆ,误差方程:⎩⎨⎧+-=-=2211l x v l x v (1分)得:[]TB 11-=,附和线路权阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=111001S S S P (1分),由此得法方程系数:[]1211111100111SS S S S S SPB B N Tbb+-=⎥⎦⎤⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--===>1211S S S N bb +-=-…(1) (1分)而1-=bb xx N Q (1分)xx xx Q 0σσ= ,所以当max σσ=xx 时,要求max Q Q xx =(1)式中对1S 求自由极值,得当21SS =时,xx Q 取得最大值,得证(1分)。

相关文档
最新文档