2.2.2配方法(3) 一元二次方程的解法
一元二次方程有四种解法
一元二次方程有四种解法:1 、直接开平方法;2 、配方法; 3、公式法; 4 、因式分解法 .1、直接开平方法:例•解方程(3x+1)A2;=7(3乂+1)人2=7/•(3x+1)A2=7•••3x+仁±辺(注意不要丢解符号).•.x=(- 1 ±v7 ) /32 •配方法:例.用配方法解方程3x2-4x-2=0将常数项移到方程右边 3x 2-4x=2方程两边都加上一次项系数一半的平方: x2-( 4/3 ) x+( 4/6) 2=2 +(4/6 ) 2 配方: (x-4/6) 2= 2 +(4/6 ) 2直接开平方得:x-4/6= ± v(2 +(4/6 ) 2 ]•••x= 4/6 ± V[2 +(4/6 ) 2 ]3 •公式法:例 .用公式法解方程2x 2-8x=-5将方程化为一般形式: 2x2-8x+5=0• a=2,b=-8,c=5b 24ac=(-8) 2-4 X2 X5=64-40=24>0•••x=[(-b ±v(b2-4ac)]/(2a)4 •因式分解法:, 右边为零 ) 例.用因式分解法解下列方程:(1) (x+3)(x-6)=-8 (1)(x+3)(x-6)=-8化简整理得 x2-3x-10=0 ( 方程左边为二次三项式 (x-5)(x+2)=0 ( 方程左边分解因式 )•••x -5=0 或x+2=0 (转化成两个一元一次方程) •••X 仁5,x2=-2 是原方程的解.学习课件等等 THANKS !!! 致力为企业和个人提供合同协议, 策划案计划书,打造全网一站式需求欢迎您的下载,资料仅供参考。
一元二次方程的解法(二)配方法(基础)
一元二次方程的解法(二)配方法—知识讲解(基础)【学习目标】1.了解配方法的概念,会用配方法解一元二次方程;2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力.【要点梳理】知识点一、一元二次方程的解法---配方法1.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±.知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.【典型例题】类型一、用配方法解一元二次方程1.用配方法解方程:2x2+3x﹣1=0.【思路点拨】首先把方程的二次项系数化为1,移项,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.【答案与解析】解:2x2+3x﹣1=0x2+x2+)x+x1=【点评】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行:(1)把形如ax2+bx+c=0(a≠0)的方程中二次项的系数化为1;(2)把常数项移到方程的右边;(3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n≥0)的方程;(4)用直接开平方的方法解此题.举一反三:【变式】用配方法解方程.(1)x2-4x-2=0; (2)x2+6x+8=0.【答案】(1)方程变形为x2-4x=2.两边都加4,得x2-4x+4=2+4.利用完全平方公式,就得到形如(x+m)2=n的方程,即有(x-2)2=6.解这个方程,得x-2=或x-2=-.于是,原方程的根为x=2+或x=2-.(2)将常数项移到方程右边x2+6x=-8.两边都加“一次项系数一半的平方”=32,得 x2+6x+32=-8+32,∴ (x+3)2=1.用直接开平方法,得x+3=±1,∴ x=-2或x=-4.类型二、配方法在代数中的应用2.若代数式221078M a b a =+-+,2251N a b a =+++,则M N -的值( )A.一定是负数 B.一定是正数 C.一定不是负数 D.一定不是正数【答案】B ;【解析】(作差法)22221078(51)M N a b a a b a -=+-+-+++ 2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>.故选B.【点评】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.3.用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0. 【答案与解析】 解:﹣8x 2+12x ﹣5=﹣8(x 2﹣x )﹣5=﹣8[x 2﹣x+()2]﹣5+8×()2=﹣8(x ﹣)2﹣,∵(x ﹣)2≥0,∴﹣8(x ﹣)2≤0,∴﹣8(x ﹣)2﹣<0,即﹣8x 2+12﹣5的值一定小于0.【点评】利用配方法将代数式配成完全平方式后,再分析代数式值的符号. 注意在变形的过程中不要改变式子的值.举一反三:【高清ID 号:388499关联的位置名称(播放点名称):配方法与代数式的最值—例4变式1】【变式】求代数式 x 2+8x+17的最小值【答案】x 2+8x+17= x 2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴当(x+4)2=0时,代数式 x 2+8x+17的最小值是1.4.已知223730216b a a b -+-+=,求4a b -的值. 【思路点拨】解此题关键是把3716拆成91416+ ,可配成两个完全平方式. 【答案与解析】将原式进行配方,得2291304216b a a b ⎛⎫⎛⎫-++-+= ⎪ ⎪⎝⎭⎝⎭, 即2231024a b ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, ∴ 302a -=且104b -=, ∴ 32a =,14b =.∴ 3312222a -=-=-=-. 【点评】本题可将原式用配方法转化成平方和等于0的形式,进而求出a .b 的值.一元二次方程的解法(二)配方法—巩固练习(基础)【巩固练习】一、选择题1. (2015•滨州)用配方法解一元二次方程x 2﹣6x ﹣10=0时,下列变形正确的为( )A .(x+3)2=1B .(x ﹣3)2=1C .(x+3)2=19D .(x ﹣3)2=192.下列各式是完全平方式的是( )A .277x x ++B .244m m --C .211216n n ++ D .222y x -+ 3.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .3±D .以上都不对4.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-15.把方程x 2+3=4x 配方,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=26.用配方法解方程x 2+4x=10的根为( )A .2.-2..二、填空题7.(1)x 2+4x+ =(x+ )2;(2)x 2-6x+ =(x- )2;(3)x 2+8x+ =(x+ )2.8.若223(2)1x mx x ++=--,那么m =________.9.若226x x m ++是一个完全平方式,则m 的值是________.10.求代数式2x 2-7x+2的最小值为 .11.(2014•资阳二模)当x= 时,代数式﹣x 2﹣2x 有最大值,其最大值为 . 12.已知a 2+b 2-10a-6b+34=0,则的值为 .三、解答题13. 用配方法解方程(1) (2)221233x x +=14. (2014秋•西城区校级期中)已知a 2+b 2﹣4a+6b+13=0,求a+b 的值.15.已知a ,b ,c 是△ABC 的三边,且2226810500a b c a b c ++---+=.(1)求a ,b ,c 的值;(2)判断三角形的形状.【答案与解析】一、选择题1.【答案】D ;【解析】方程移项得:x 2﹣6x=10,配方得:x 2﹣6x+9=19,即(x ﹣3)2=19,故选D .2.【答案】C ; 【解析】211216n n ++214n ⎛⎫=+ ⎪⎝⎭. 3.【答案】C ;【解析】 若x 2+6x+m 2是一个完全平方式,则m 2=9,解得m=3±;4.【答案】A ;【解析】a 2-4a+5= a 2-4a+22-22+5=(a-2)2+1 ;5.【答案】C ;【解析】方程x 2+3=4x 化为x 2-4x=-3,x 2-4x+22=-3+22,(x-2)2=1.6.【答案】B ;【解析】方程x 2+4x=10两边都加上22得x 2+4x+22=10+22,x=-214二、填空题7.【答案】(1)4;2; (2)9;3; (3)16;4.【解析】配方:加上一次项系数一半的平方.8.【答案】-4;【解析】22343x mx x x ++=-+,∴ 4m =-.9.【答案】±3;【解析】2239m ==.∴ 3m =±.10.【答案】-338;【解析】∵2x 2-7x+2=2(x 2-72x )+2=2(x-74)2-338≥-338,∴最小值为-338, 11.【答案】-1,1【解析】∵﹣x 2﹣2x=﹣(x 2+2x )=﹣(x 2+2x+1﹣1)=﹣(x+1)2+1,∴x=﹣1时,代数式﹣x 2﹣2x 有最大值,其最大值为1;故答案为:﹣1,1.【解析】 -3x 2+5x+1=-3(x-56)2+3712≤3712,• ∴最大值为3712. 12.【答案】4.【解析】∵a 2+b 2-10a-6b+34=0∴a 2-10a+25+b 2-6b+9=0∴(a-5)2+(b-3)2=0,解得a=5,b=3,∴=4.三、解答题13.【答案与解析】(1)x 2-4x-1=0x 2-4x+22=1+22(x-2)2=5x-2=5 x 1=5x 2=5(2) 221233x x += 226x x +=2132x x += 222111()3()244x x ++=+ 2149()416x += 1744x +=± 132x = 22x =-14.【答案与解析】解:∵a 2+b 2﹣4a+6b+13=0,∴a 2﹣4a+4+b 2+6b+9=0,∴(a ﹣2)2+(b+3)2=0,∴a ﹣2=0,b+3=0,∴a=2,b=﹣3,∴a+b=2﹣3=﹣1.15.【答案与解析】(1)由2226810500a b c a b c ++---+=,得222(3)(4)(5)0a b c -+-+-= 又2(3)0a -≥,2(4)0b -≥,2(5)0c -≥,∴ 30a -=,40b -=,50c -=,∴ 3a =,4b =,5c =.(2)∵ 222345+= 即222a b c +=,∴ △ABC 是以c 为斜边的直角三角形.。
2022年九年级数学上册第二章一元二次方程2.2用配方法求解一元二次方程第1课时直接开平方法与配方法
0,
1 3
y
2
1
5,
①
1 y 1 5, ②
3
1 y 1 5, ③
3
y 3 5 1, ④
解:不对,从开始错,应改为
1 3
y
1
5,
y1 3 5 3, y2 3 5 3.
5.解下列方程:
1 x2 4x 4 5
x 22 解5, : x 2 5,
x 2 5, x 2 5,
第二章 一元二次方程
2.2用配方法求解一元二次方程
(第1课时 直接开平方法与配方法(1))
学习目标
1.会用直接开平方法解形如(x+m)2=n (n>0)的方程. (重点) 2.理解配方法的基本思路.(难点) 3.会用配方法解二次项系数为1的一元二次方程. (重点)
复习引入
导入新课
1.如果 x2=a,则x叫作a的 平方根 .
(B) (x-2)2=4,解方程,得x-2=2,x=4
(C)
4(x-1)2=9,解方程,得4(x-1)=
±3,
1
x1=4
;
x2=
7 4
(D) (2x+3)2=25,解方程,得2x+3=±5, x1= 1;x2=-4
2.填空:
(1)方程x2=0.25的根是 x1=0.5,x2=-0.5 . (2)方程2x2=18的根是x1=3,x2=-3 . (3)方程(2x-1)2=9的根是x1=2,x2=-1 .
的实数根 x1 p ,x2 p ;
(2)当p=0 时,方程(I)有两个相等的实数根 x1 x2 =0;
(3)当p<0 时,因为任何实数x,都有x2≥0 ,所以
方程(I)无实数根.
一元二次方程的解法(二)配方法—知识讲解(提高)
一元二次方程的解法(二)配方法—知识讲解(提高)责编:常春芳【学习目标】1.了解配方法的概念,会用配方法解一元二次方程;2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力。
【要点梳理】知识点一、一元二次方程的解法---配方法1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±.知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.【典型例题】类型一、用配方法解一元二次方程1. 用配方法解方程:(1)(2015•岳池县模拟)2x 2﹣4x ﹣3=0; (2)(2015春•泰山区期中)3x 2﹣12x ﹣3=0.【思路点拨】方程(1) (2)的的次项系数不是1,必须先化成1,才能配方,这是关键的一步.配方时,方程左右两边同时加上一次项系数一半的平方,目的是把方程化为2()(0)mx n P P +=≥的形式,然后用直接开平方法求解.【答案与解析】解:(1)∵2x 2﹣4x ﹣3=0,∴,∴,∴x ﹣1=±,∴.(2)3x 2﹣12x ﹣3=0,3x 2﹣12x=3,x 2﹣4x=1,x 2﹣4x+4=1+4,(x ﹣2)2=5,x ﹣2=,x 1=2+,x 2=2﹣;【点评】配方要注意一次项的符号决定了左边的完全平方式中是两数和的平方还是两数差的平方.举一反三:【高清ID 号:388499关联的位置名称(播放点名称):用配方法解一般的一元二次方程例2、用配方法解含字母系数的一元二次方程例3】【变式】 用配方法解方程(1) (2)20x px q ++=2x 2+3=5x 【答案】(1)2235x x +=2253x x -=-25322x x -=- 2225535((2424x x -+=-+ 251()416x -= 5144x -=± 123,12x x ==.(2)20x px q ++=222()(22p p x px q ++=-+224()24p p q x -+=①当240p q -≥时,此方程有实数解,12x x ==;②当240p q -<时,此方程无实数解.类型二、配方法在代数中的应用2. 用配方法证明21074x x -+-的值小于0.【思路点拨】本题不是用配方法解一元二次方程,但所用的配方法思想与自己学的配方法大同小异,即思路一致.【答案与解析】 22271074(107)410410x x x x x x ⎛⎫-+-=-+-=--- ⎪⎝⎭A 27494910410400400x x ⎛⎫=--+-- ⎪⎝⎭ 274910420400x ⎡⎤⎛⎫=----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 2274971111041020402040x x ⎛⎫⎛⎫=--+-=--- ⎪ ⎪⎝⎭⎝⎭.∵ 2710020x ⎛⎫--≤ ⎪⎝⎭,∴ 271111002040x ⎛⎫---< ⎪⎝⎭,即210740x x -+-<.故21074x x -+-的值恒小于0.【点评】证明一个代数式大于零或小于零,常用方法就是利用配方法得到一个含完全平方式和一个常数的式子来证明.举一反三:【变式】试用配方法证明:代数式223x x -+的值不小于238.【答案】 22123232x x x x ⎛⎫-+=-+ ⎪⎝⎭22211123244x x ⎡⎤⎛⎫⎛⎫=-+-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦21123416x ⎡⎤⎛⎫=--+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2112348x ⎛⎫=--+ ⎪⎝⎭2123248x ⎛⎫=-+ ⎪⎝⎭.∵ 1204x ⎛⎫-≥ ⎪⎝⎭,∴ 2123232488x ⎛⎫-+≥ ⎪⎝⎭.即代数式223x x -+的值不小于238. 3. (2015春•宜兴市校级月考)若把代数式x 2+2bx+4化为(x﹣m )2+k 的形式,其中m ,k 为常数,则k﹣m 的最大值是 .【答案】;【解析】解:x 2+2bx+4=x 2+2bx+b 2﹣b 2+4=(x+b )2﹣b 2+4;∴m=﹣b ,k=﹣b 2+4,则k ﹣m=﹣(b ﹣)2+.∵﹣(b ﹣)2≤0,∴当b=时,k ﹣m 的最大值是.故答案为:.【点评】此题考查利用完全平方公式配方,注意代数式的恒等变形.举一反三:【高清ID 号:388499关联的位置名称(播放点名称):配方法与代数式的最值提高练习】【变式】(1)的最小值是 ;(2)的最大值是 . 2x 2+6x ‒3‒x 2+4x +5【答案】(1)222222333152632(3)323(()32()2222x x x x x x x ⎡⎤+-=+-=++--=+-⎢⎥⎣⎦; 所以的最小值是152-2x 2+6x ‒3(2)22222245(4)5(422)5(2)9x x x x x x x -++=--+=--+-+=--+ 所以的最大值是9.‒x 2+4x +5 4. 分解因式:42221x x ax a +++-.【答案与解析】42221x x ax a +++-4222221x x x ax a =+-++-4222212x x x ax a =++--+()()2221x x a =+--()()22(1)(1)x x a x x a =++-+-+.【点评】这是配方法在因式分解中的应用,通过添项、配成完全平方式,进而运用平方差公式分解因式.。
解一元二次方程的方法
解一元二次方程的方法
一元二次方程是高中数学中的重要内容,解一元二次方程是我
们学习数学时需要掌握的基本技能。
本文将介绍两种解一元二次方
程的方法,因式分解法和求根公式法。
首先,我们来看因式分解法。
对于一元二次方程ax^2+bx+c=0,我们可以先利用因式分解的方法将其分解为两个一次因式相乘的形式,即(ax+m)(x+n)=0,然后令ax+m=0和x+n=0,分别求出x的值,即可得到方程的解。
举个例子,对于方程x^2+5x+6=0,我们可以将其分解为
(x+2)(x+3)=0,然后令x+2=0和x+3=0,解得x=-2和x=-3,即方程
的解为x=-2和x=-3。
其次,我们来看求根公式法。
一元二次方程ax^2+bx+c=0的根
可以通过求根公式x=(-b±√(b^2-4ac))/(2a)来求解。
其中,b^2-
4ac被称为判别式,当判别式大于0时,方程有两个不相等的实根;当判别式等于0时,方程有两个相等的实根;当判别式小于0时,
方程没有实根,但有两个共轭复根。
举个例子,对于方程x^2-4x+4=0,我们可以利用求根公式x=(-(-4)±√((-4)^2-414))/(21),化简后得到x=2,即方程的解为x=2。
综上所述,解一元二次方程的方法包括因式分解法和求根公式法。
通过掌握这两种方法,我们可以轻松解决一元二次方程的问题,提高数学解题的效率和准确性。
希望本文对大家有所帮助,谢谢阅读!。
一元二次方程配方法
一元二次方程配方法
一元二次方程配方法是解决一元二次方程的一种常见方法,通过配方法可以将一元二次方程变形为完全平方 trinomial,从而更容易求解。
下面我们来看一些例子,以便更好地理解一元二次方程配方法的应用。
例1:
将方程 x^2 + 6x + 9 = 0 进行配方法变形。
解:
首先,我们发现 x^2 + 6x + 9 是一个完全平方 trinomial,可以
写成 (x+3)^2。
所以,方程可以写成 (x+3)^2 = 0。
进一步化简可得 x+3 = 0,解得 x = -3。
例2:
将方程 x^2 - 4x + 4 = 0 进行配方法变形。
解:
同样地,我们可以发现 x^2 - 4x + 4 是一个完全平方 trinomial,可以写成 (x-2)^2。
所以,方程可以写成 (x-2)^2 = 0。
进一步化简可得 x-2 = 0,解得 x = 2。
通过以上两个例子,我们可以看到一元二次方程配方法的应用。
希望通过这些例子能够帮助大家更好地理解和掌握一元二次方程配方法。
一元二次方程的解法(用配方法解一元二次方程)
用配方法解 2x2 x 1 0 时,配方结果正确的是( D )
( A) ( x 1 )2 3 24
(B) ( x 1)2 3 44
(C ) ( x 1 )2 17 4 16
(D) ( x 1)2 9 4 16
例6、用配方法解下列一元二次方程
∴ x+1= 10 , 或 x+1=- 10
2
2
x2-8/3x +16/9=25/9 即:(x -4/3)2=25/9 ∴ x - 4/3= 5/3
或 x - 4/3= - 5/3
∴ x1= -1+
10 ,
2
x2=-1-
10 2
∴ x1=3 ,x2= -1/3
1.用配方法解下列方程:
(1)x2 + 6x + 3 = 0
解:(1)方程两边都加上16,得
x2- 8x+16=4+16,即(x-4)2=20 则 x 4 2 5, 或 x 4 2 5;
解得 x1 4 2 5, x2 4 2 5
解:(2)化简,得 x2 -5x=6,
方程两边同时加上 25 ,得
x2
-5x
+
25 4
25
=6+ 4
,
4
即(
x
-
5 2
引例、解方程5x2 =10x+1
解:方程两边都除以5,得 x2=2x+1/5
移项,得 x2 -2x=1/5 两边都加上1,
一除
二移
得x2-2x+1=1/5+1,即(x-1)2=6/5
三配
x 1 30 , 或 x 1 30
2.2.2配方法
2.二次三项式x2-10x+36的最小值是 .
你会解方程:3x2+8x-3=0吗?
第二章 一元二次方程
一元二次方程的解法 2.2 配方法(2)
学习目标:(1分钟) 1.熟练掌握用配方法解二次项系数不是1的 一元二次方程;
2.初步了解一元二次方程的应用.
自学P38的例2,注意第一步的变形;解方程3x2+8x-3=0
解:x2 8 x 1 0. 3
1.化1:把二次项系数化为1;
x2 8 x 1.
2.移项:把常数项移到方程的右边;
x2
3
8 x
4
2 3 3
3 3.配方:方程两边都加上一次项系数
x 4 2 5 2.
一半的平方;
3 3
x 4 5.
5.开方:根据平方根意义,方程两边开平方;
33
x 5 4 或x 5 4 .
33
33
6.求解:解一元一次方程;
x1
1 3
,
x2 3.
7.定解:写出原方程的解.
自学检测1:(6分钟) 1.用配方法解下列方程:P39的随堂练习-1T
①3x2-9x+2=0
②2x2+6=7x
问题解决-2T:印度古算书中有这样一首诗:“一群 猴子分两队,高高兴兴在游戏,八分之一再平方,蹦 蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮. 告我总数共多少,两队”?
解:设总共有 x 只猴子,根据题意得:
1 x 2 12 x. 8
即:x2 - 64x+768=0.
解这个方程,得
x1 =48, x2 =16. 答:一共有猴子48只或者说6只.
北师大版九年级数学上册课件2.2.2解一元二次方程—配方法
3.有n个方程:x2+2x-8=0;x2+2×2x-8×22=0;…;x2 +2nx-8n2=0.小静同学解第一个方程x2+2x-8=0的步骤 为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④ x+1=±3;⑤x=1±3;⑥x1=4,x2=-2.” (1)小静的解法是从步骤______⑤__开始出现错误的; (2)用配方法解第n个方程x2+2nx-8n2=0.(用含有n的式子 表示方程的根)
2.2.2解一元二次方程— 配方 法
例2: 解方程3x2+8x-3=0
思路:将二次项系数化为1
解:方程两边都除以3,得 x2 + 8 x - 1=0.
3
移项得
x2 +
8 3
x =1
配方,得 x2 + 8 x + ( 4 ) 2 = ( 4 )2 +1 ,
3
3
3
(x +
4 3
)2
=
25 9
.
开平方得 所以
4
直接开平方,得2-x= ±3 地∴2-x= 2
∴x1=2- 3, x2=2+ 3.
3或2-x=-
2
,3
2
2
2
(2)原方程可变形为(3x+1)2=8,
直接开平方,得3x+1=±2 2,
∴3x+1=2
2 或3x+1=-2 2
,∴x1=1
2 3
2,x2=
1 2 . 2
3
(3)移项,得3x2+2x=3,
2
二次项系数化为1,得x2+ 3x=1,
2 (1)小静的解法是从步骤____2____开始出现错误1的;2
用配方法求解一元二次方程解法(知识讲解)九年级数学上册基础知识讲与练
专题2.6 用配方法求解一元二次方程(知识讲解)【学习目标】1.了解配方法的概念,会用配方法解一元二次方程;2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力.【要点梳理】知识点一、一元二次方程的解法---配方法在比较大小中二配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解;1、配方法的一般步骤可以总结为:一移、二除、三配、四开;2、把常数项移到等号的右边;3、方程两边都除以二次项系数;4、方程两边都加上一次项系数一半的平方,把左边配成完全平方式;5、若等号右边为非负数,直接开平方求出方程的解。
知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.特别说明:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同时对后期学习二次函数有着重要的作用,同学们一定要把它学好.【典型例题】类型一、用配方法解一元二次方程1.用配方法解方程:2+-=.23220x x【答案】1x =2x =- 【分析】将原方程二次项系数化1,用配方法求解.2x ⎫=⎪⎭22x = 299288x +=+ 2258x ⎛= ⎝x =∴ 1x 2x =-【点拨】本题考查一元二次方程的解法,配方法是常用方法,掌握配方法解方程的步骤是解答此题的关键.举一反三:【变式1】 用配方法解方程:22310x x -+=. 【答案】112x =,21x =. 【分析】利用配方法得到(x ﹣34)2=116,然后利用直接开平方法解方程即可. 解:x 2﹣32x =﹣12, x 2﹣32x +916=﹣12+916, (x ﹣34)2=116x ﹣34=±14, 所以x 1=12,x 2=1. 【点拨】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x +m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.【变式2】 用配方法解方程:2x 2-4x -1=0.【答案】x 11,x 2=1解:根据配方法解方程即可.移项得,2x 2-4x =1,将二次项系数化为1得,2122x x -=, 配方得,x 2-2x +1=12+1,2312x -=(),∴1x -=,∴1211x x =+= 类型二、配方法在代数中的应用2.我们在学习一元二次方程的解法时,了解到配方法.“配方法”是解决数学问题的一种重要方法.请利用以上提示解决下题:求证:()1不论m 取任何实数,代数式()24419m m -++的值总是正数()2当m 为何值时,此代数式的值最小,并求出这个最小值.【答案】(1)证明见分析;(2)4.【分析】(1)此题考查了配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.(2)根据(1)4m 2-4(m+1)+9=(2m -1)2+4得出m 取12时代数式的值最小,最小值是4.解:(1)()24419m m -++ 24449m m =--+2445m m =-+2(21)4m =-+;∴不论m 取任何实数,代数式()24419m m -++的值总是正数.()2由(1)()224419(21)4m m m -++=-+得:12m =时,此代数式的值最小,这个最小值是:4. 【点拨】此题考查了配方法的应用,解题时要根据配方法的步骤进行解答,注意在变形的过程中不要改变式子的值.举一反三:【变式1】 我们可以用以下方法求代数式265x x ++的最小值.()22222652333534x x x x x ++=+⋅⋅+-+=+-∴()230x +≥∴()2443x -≥-+∴当3x =-时,265x x ++有最小值4-.请根据上述方法,解答下列问题:(1)求代数式242x x -+的最小值;(2)求代数式269x x -++的最大或最小值,并指出它取得最大值或最小值时x 的值;(3)求证:无论x 和y 取任何实数,代数式2221066211x y xy x y +---+的值都是正数.【答案】(1)-2 (2)当3x =时,269x x -++有最大值18 (3)证明见分析【分析】(1)根据题中所给方法进行求解即可;(2)由题中所给方法可得()2269318x x x -++=--+,然后问题可求解;(3)由题意可得()()()22222210662113131x y xy x y x y x y +---+=-+-+-+,进而问题可求解.(1) 解:由题意得: ()22222422222222x x x x x -+=-⋅⋅+-+=--,∴()220x -≥∴()2222x --≥-∴当2x =时,242x x -+有最小值2-.(2) 由题意得:()2269318x x x -++=--+,∴()230x --≤∴()231818x --+≤∴当3x =时,269x x -++有最大值18.(3) 由题意得:2221066211x y xy x y +---+ =22222169169x y y x xy y x +-++++--+=()()()2223131x y x y -+-+-+;∴()()()22230,10,30x y x y -≥-≥-≥∴()()()22231311x y x y +-+--+≥,∴无论x 和y 取任何实数,代数式2221066211x y xy x y +---+的值都是正数.【点拨】本题主要考查配方法的应用及完全平方公式,熟练掌握配方法及完全平方公式是解题的关键.【变式2】 先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∴(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?【答案】(1)154;(2)5;(3)当x=5m时,花园的面积最大,最大面积是50m2【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值;(3)根据题意列出关系式,配方后根据完全平方式恒大于等于0,即可求出最大值以及x的值即可.解:(1)m2+m+4=(m+12)2+154,∴(m+12)2≥0,∴(m+12)2+154≥154,则m2+m+4的最小值是154;(2)4﹣x2+2x=﹣(x﹣1)2+5,∴﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∴﹣2x2+20x=﹣2(x﹣5)2+50∴﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.【点拨】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.类型三、配方法在几何中的应用3.如图所示,点P的坐标为(1,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.(1)写出点Q的坐标是________;M m n落(2)若把点Q向右平移a个单位长度,向下平移a个单位长度后,得到的点(,)在第四象限,求a的取值范围;(3)在(2)条件下,当a取何值,代数式2+25m n+取得最小值.【答案】(1)Q(-3,1)(2)a>3(3)0【分析】(1)如图,作PA∴x轴于A,QB∴x轴于B,则∴PAO=∴OBQ=90°,证明∴OBQ∴∴PAO(AAS),从而可得OB=PA,QB=OA,继而根据点P的坐标即可求得答案;(2)利用点平移的规律表示出Q′点的坐标,然后根据第四象限点的坐标特征得到a的不等式组,再解不等式即可;(3)由(2)得,m=-3+a,n=1-a,代入所求式子得225=-(),继而根据偶次方a++2m n4的非负性即可求得答案.解:(1)如图,作PM∴x轴于A,QN∴x轴于B,则∴PAO=∴OBQ=90°,∴∴P+∴POA=90°,由旋转的性质得:∴POQ=90°,OQ=OP,∴∴QOB+∴POA=90°,∴∴QOB=∴P,∴∴OBQ∴∴PAO(AAS),∴OB=PA,QB=OA,∴点P的坐标为(1,3),∴OB=PA=3,QB=OA=1,∴点Q的坐标为(-3,1);(2)把点Q(-3,1)向右平移a个单位长度,向下平移a个单位长度后,得到的点M的坐标为(-3+a,1-a),而M在第四象限,所以-30 10aa+>⎧⎨-<⎩,解得a>3,即a的范围为a>3;(3)由(2)得,m=-3+a,n=1-a,∴2225(3)2(1)5m n a a++=-+-+269225a a a=-++-+2816a a=-+24a=-(),∴240a-≥(),∴当a=4时,代数式225m n++的最小值为0.【点拨】本题考查了坐标与图形变换-旋转,象限内点的坐标特征,解不等式组,配方法在求最值中的应用等,综合性较强,熟练掌握相关知识是解题的关键.举一反三:【变式1】我们已经学习了利用配方法解一元二次方程,其实配方法还有其他重要应用.例:已知x可取任何实数,试求二次三项式x2+6x﹣1最小值.解:x2+6x﹣1=x2+2×3•x+32﹣32﹣1=(x+3)2﹣10∴无论x取何实数,总有(x+3)2≥0.∴(x+3)2﹣10≥﹣10,即x2+6x﹣1的最小值是﹣10.即无论x取何实数,x2+6x﹣1的值总是不小于﹣10的实数.问题:(1)已知:y =x 2﹣4x +7,求证:y 是正数.知识迁移:(2)如图,在Rt △ABC 中,∴C =90°,AC =6cm ,BC =4cm ,点P 在边AC 上,从点A 向点C 以2cm/s 的速度移动,点Q 在CB的速度从点C 向点B 移动.若点P ,Q 均以同时出发,且当一点移动到终点时,另一点也随之停止,设△PCQ 的面积为S cm 2,运动时间为t 秒,求S 的最大值.【答案】(1)见分析;(2)当t =32时,S 【分析】(1)根据例题中的配方求最值;(2)根据三角形的面积公式求出S 和t 的关系式,再利用配方求最值.解:(1)y =x 2﹣4x +7=x 2﹣4x +4+3=(x ﹣2)2+3.∴(x ﹣2)2≥0.∴y ≥0+3=3.∴y >0.∴y 是正数.(2)由题意:AP =2t ,CQ,PC =6﹣2t .(0≤t ∴S =12PC •CQ .=12(6﹣2t )2t 2﹣3t )t ﹣32)2 ∴(t ﹣32)2≥0.∴当t =32时,S 【点拨】本题考查利用配方求最值,正确配方是求解本题的关键.【变式2】 已知a 、b 是等腰∴ABC 的两边长,且满足a 2+b 2-8a -4b+20=0,求a 、b 的值.【答案】a=4,b=2.【分析】利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a、b,计算即可解:a2+b2-8a-4b+20=0,a2-8a+16+b2-4b+4=0,(a-4)2+(b-2)2=0a-4=0,b-2=0,a=4,b=2.【点拨】本题考查的是配方法的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键.。
一元二次方程的解法(配方法)
x2 9x ___4___ (x __2___)2
x2
3
x
9
__1_6__
(x
3
___4__)2
2
x2 6 2x __18___ (x _3__2__)2
例2、用配方法解下列方程:
⑴ x2 6x 7 0 ⑵ x2 3x 1 0 ⑶ x2 4x 3 0
一半的平方,使左边成为完全平方. 3、如果方程的右边整理后是非负数,
用直接开平方法解之,
如果右边是个负数,
则指出原方程无实根.
实验手册: P16 练习2
A/1,2 思考B/3,4,5
课程结束
驶向胜利的彼岸
练习
①填空:
(1) x2 6x 2
(2) x2 -8x+( )= x 2
∵ (x 1)2 0
2
∴ 2(x 1)2 1 0
22
2(x2 x 1 ) 1 2 1
∴代数式的值 恒大于0.
4
4
2(x 1 )2 1 22
课堂小结 配方法解一元二次方程的步骤:
1、把常数项移到方程右边, 用二次项系数除方程的两边
使新方程的二次项系数为1. 2、在方程的两边各加上一次项系数的
(3) x2 +x+( )=(x+ )2
(4)4 x2-6x+( )=4(x- )2
②用配方法解方程:
(1) x2+8x-2=0
(2) x2-5 x-6=0
(3) x2 7 6x
(4) x2 10 2 6x
试一试
用配方法解方程x2+px+q=0(p2- 4q≥0).
这里为什么要规定p2-4q≥0?
2.2.2_一元二次方程的解法-公式法
b b2 4ac x 2a
3x 7x 8 0
2
这里
a 3、 b= - 7、 c= 8
49 96 - 47 0
2 b2 4ac ( 7 ) 4 3 8
方程没有实数解。
随堂 练习 用公式法解下列方程:
(1)2x2-9x+8=0; (2)9x2+6x+1=0; (3)16x2+8x=3.
b b 4ac 3、代入求根公式 : x 2a
2
x2 4、写出方程的解: x1、
b b2 4ac x 2a
例 2 解方程:
(1) : 9 x 12 x 4 0
2
(2) : x 程: x 21 3 x 6
2
2
即
用配方法解一般形式的一元二次方程
ax bx c 0 2 当b 4ac 0时,
2
b b 4ac x 2a 4a 2 2 b b 4ac 即 x 2a 2a
2
特别提醒
一元二次方程的 求根公式
b b 4ac x 2a
2
若b 4ac 0时, x的值??
2
公式法
一般地,对于一元二次方程 ax2+bx+c=0(a≠0)
当b 4ac 0时, 它的根是 :
2
上面这个式子称为一元二次方程的求根公式. 用求根公式解一元二次方程的方法称为公式法
b b 4ac 2 x . b 4ac 0 . 2a
2
提示: 用公式法解一元二次方程的前提是: 1.必需是一般形式的一元二次方程: ax2+bx+c=0(a≠0). 2.b2-4ac≥0.由求根公式可知,一元二次方程最多有两个实数
一元二次方程的基本概念与常见求解方法
一元二次方程的基本概念与常见求解方法知识点睛一元二次方程的定义只含有一个未知数,并且未知数的最高次数是 2,最高次数的项系数不为 0 的整式方程叫做一元二次方程.一元二次方程的一般形式2(0)0ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项.(1)要判断一个方程是否是一元二次方程,必须符合以下四个标准:一元二次方程是整式方程,即方程的两边都是关于未知数的整式.一元二次方程是一元方程,即方程中只含有一个未知数.一元二次方程是二次方程,也就是方程中未知数的最高次数是2.一元二次方程最高次数的项系数不为0.(2)任何一个关于x 的一元二次方程经过整理都可以化为一般式2(0)0ax bx c a ++=≠. 要特别注意对于关于 x 的方程2(0)0ax bx c a ++=≠.当0a ≠时,方程是一元二次方程;当00a b =≠且时,方程是一元一次方程. (3)关于x 的一元二次方程2(0)0ax bx c a ++=≠的项与各项的系数.ax 2 为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项.一元二次方程的解法(1)直接开平方法:适用于解形如 (ax +b )2 = ()00a c ≠, 的一元二次方程. (2)配方法:解形如2 )00(ax bx c a ++=≠的一元二次方程,运用配方法解一元二次方程的一般步骤是:① 二次项系数化为1.② 常数项右移.③ 配方 (两边同时加上一次项系数一半的平方).④ 化成 (x +m )2 = n 的形式.⑤ 若0n ≥,直接开平方得出方程的解。
(3)公式法:设一元二次方程为2 )00(ax bx c a ++=≠,其根的判别式为:2124b ac x x ∆=-,, 是方程的两根,则:1. ∆ > 0 ⇔ 方程 2)00(ax bx c a ++=≠有两个不相等的实数根 x = 2. ∆ = 0 ⇔ 方程 2 )00(ax bx c a ++=≠有两个相等的实数根 122b x x a==-; 3. ∆ < 0 ⇔ 方程2 )00(ax bx c a ++=≠ 没有实数根.运用公式法解一元二次方程的一般步骤是:① 把方程化为一般形式.② 确定 a 、b 、c 的值.③ 计算24b ac -的值.④ 若 240b ac -≥,则代入公式求方程的根.⑤ 若240b ac -<,则方程无实数根.(4)因式分解法:适用于方程一边是零,另一边是一个易于分解的多项式.因式分解法的一般步骤:① 将方程化为一元二次方程的一般形式;② 把方程的左边分解为两个一次因式的积;③ 令每一个因式分别为零,得到两个一元一次方程;④ 解出这两个一元一次方程得到原方程的解. 一元二次方程解法的灵活运用直接开平方法,公式法,配方法,因式分解法.在具体解题时,应当根据题目的特点选择适当的解法.(1)直接开平方法:用于缺少一次项以及形如 ax 2 = b 或 (x +a )2 = b (0)b ≥ 或 (ax +b )2 =(cx +d )2 的方程,能利用平方根的意义得到方程的解.(2)配方法:配方法是解一元二次方程的基本方法,而公式是由配方法演绎得到的.把一元二次方程的一般形式 ax 2 +bx +c = 0(a 、b 、c 为常数,0a ≠) 转化为它的简单形式 Ax 2 = B ,这种转化方法就是配方,之后再用直接开平方法就可得到方程的解.(3)公式法:适用于任何形式的一元二次方程,但必须先将方程化为一般形式,并计算 24b ac -的值.(4)因式分解法:适用于右边为 0(或可化为 0),而左边易分解为两个一次因式积的方程,缺常数项或含有字母系数的方程用因式分解法较为简便,它是一种最常用的方法.【例 1】(1) 若 x 2a +b -3x a-b +1 = 0 是关于 x 的一元二次方程,求 a 、b 的值.(2) 若 n (n ≠0) 是关于 x 的方程 x 2 +mx +2n = 0 的根,则 m +n 的值为 ( )A. 1B. 2C. -1D. -2(3) 已知 43x =,则2421x x x ++的值是 .(4) 当 111552n n x -⎛⎫=- ⎪⎝⎭时,(.n x = ( n 为自然数)【例 2】(1) 用直接开平方法解方程:2269(5) 2x x x -+=-. (2) 用配方法解方程:22310x x ++=.(3) 用分解因式法解方程:2()2136x x -=-. (4) 用公式法解方程:161432)2(2x x x x ⎛⎫++-=+ ⎪⎝⎭例 3】(1) 解关于 x 的方程: 21 213()()0m x m x m -+-+-=. (2) 解关于 x 的方程22656223200x xy y x y --++-=. 【例 4】(1)如果方程 22()2020x px q x qx p p q -+=-+=≠和 有公共根,则该公共根为 .(2)若方程2222100ax ax x ax a +-=--=和有公共根,求a 的值例 5】(1) 解方程:22132(10)|2|x x ---+=.(2) 解方程:221|4|x x +-=.练习2 高次方程和无理方程知识点睛1.特殊高次方程的解法:一般的高次方程没有统一的求解方法. 对于一些特殊的高次方程, 可通过降次, 转化为一元二次方程或一元一次方程求解,转化的方法有因式分解法(因式定理)、换元法、变换主元法等.2. 特殊分式方程的解法:求解分式方程总的原则是通过去分母或换元, 使其转化为整式方程, 然后再求解. 在这个过程中离不开分式的恒等变形, 如通分、约分及降低分子的次数等等, 这就有可能使方程产生增根(或遗根).3. 特殊无理方程的解法:解无理方程的基本思路是把根式转化为有理方程求解. 转化过程中常用的方法有: 乘方、配方、因式分解、等价变换、换元、增元、对偶、利用比例性质等. 如果变形过程是非等价变形(如方程两边平方), 可能产生增根, 因此应注意验根.精讲精练【例 6】(1) 解方程:43225122560x x x x --++=.(2)解关于 x 的方程 ()()322212 0x t x tx t t +--+-=.(3)解方程 321010x x ++++=【例 7】(1)解方程:(8x + 7)2 (4x + 3)(x + 1)= 29 ;(2)解方程: x x x x x x +-=------2221120102910451069. (3)解方程:222234112283912x x x x x x x x ++-+=+-+.【例 8】(1)解方程:()()222323322x x x x x =+-++--. (2)解方程:22252x x x ⎛⎫+= ⎪+⎝⎭. (3)方程()()3232232?47615180x x x x x x x x -+---++-+=全部实根是 .【例 9】(12=.(2)解方程 266 0x x --+=.【例 10】(1)已知 2x =,求.(2)无理方程 221518x x -=-的解是 。
一元二次方程教案(教案)一元二次方程的解法
一元二次方程教案(教案)一元二次方程的解法第1篇第2篇第3篇第4篇第5篇更多顶部第一篇:配方法解一元二次方程的教案第二篇:一元二次方程复习教案(正式)第三篇:4.2.3一元二次方程的解法(教案)第四篇:教案一元二次方程的应用第五篇:一元二次方程根的分布教案更多相关范文第一篇:配方法解一元二次方程的教案配方法解一元二次方程的教案教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第22章第2节第1课时。
一、教学目标(一)知识目标1、理解求解一元二次方程的实质。
2、掌握解一元二次方程的配方法。
(二)能力目标1、体会数学的转化思想。
2、能根据配方法解一元二次方程的一般步骤解一元二次方程。
(三)情感态度及价值观通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。
二、教学重点配方法解一元二次方程的一般步骤三、教学难点具体用配方法的一般步骤解一元二次方程。
四、知识考点运用配方法解一元二次方程。
五、教学过程(一)复习引入1、复习:解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
2、引入:二次根式的意义:若x2=a(a为非负数),则x叫做a的平方根,即x=±√a。
实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。
(二)新课探究通过实际问题的解答,引出我们所要学习的知识点。
通过问题吸引学生的注意力,引发学生思考。
问题1:一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?问题1重在引出用直接开平方法解一元二次方程。
这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,具体解题步骤:2解:设正方体的棱长为x dm,则一个正方体的表面积为6xdm2列出方程:60x2=1500x2=25x=±5因为x为棱长不能为负值,所以x=5即:正方体的棱长为5dm。
一元二次方程的解法(配方法)
通海中学初二数学导学案班级______授课时间________执笔人:初二备课组审核人: 邵玲备课内容: 22.2.2一元二次方程的解法(第二课时)(配方法)一、教学目标::1、理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.2、掌握配方法。
会把一元二次方程2ax+bx+c=0(a≠0)配方成为a(ex+f)2+c=0型的一元二次方程,求出方程的解.二、重点、难点:1、重点:会把一元二次方程2ax+bx+c=0(a≠0)配方成为a(ex+f)2+c=0型的一元二次方程,求出方程的解.2、难点:配方的过程三、学习过程:(一)、自学指导通过自学课本P32.思考后请同学们完成:例:解方程2x+x6-16=0解:总结:___________________________________________________叫做配方法。
配方法是为了_________,把_________________________________________。
(二)、师生互动例:解方程:(1)2x-x8+1=0;(2)2x2+1=3x;(3)3x2-6x+4=0。
(三)、练习:(1)、x 2+10x+9=0; (2)、x 2-x-47=0(3)、3x 2+6x-4=0; (4)、4x 2-6x-3=0;(5)、x 2+4x-9=2x-11; (6)、x(x+4)=8x+12.(四)、归纳小结掌握配方法的步骤:1、_______________________________________2、_________________________________________________________3、_________________________________________________________4、__________________________________________________________5、_____________________________________________________6、_____________________________________________________。
2.2.3一元二次方程的解法之配方法
= =22xx2- -332x+ 2 + 3252.2
-
3 2
2
+7
∵2
x-
3 2
2
0,∴2x2-6 x+7
5 2
.
即当x= 3时,2x2-6x+7的值最小,最小值为
2
5 2.
拓展训练2
2、用配方法证明 10x2 7x 4 的值恒小于0.
-10x2 7 x 4 10 x
7
2
(2) 2x2 2x 2 0
解解::((12))两两边边同同除除以以0.12得,,得x²+:1x02 x+52=x0;1 0
移移项项,,得得::x²x+210x=2x﹣51
方则两程边x 两同5边加同2加522或25x2,, 5得得::2xx²2+510x2+x25=﹣225+2 251,即 2(2x2 5)2 20
2
即x1:
2x
5
252,x2
32, 2
5可得5 :x
2 2
6 或x 2
2 2
6 2
解得: x 6 2 , x 6 2
12
22
22
例2 已知 4x²+8(n+1)x+16n 是一个关于x 的完全平方式,求常数n的值.
解:4x2 8(n 1)x 16n
4x2 2(n 1)x16n 4x2 2(n 1)x (n 1)2 4(n 1)2 16n
12 12
3 ∴x1= 2
,x2=-
4 3
.
练一练
(2)(x+2)2-2(x+2)=15.
解: (2)配方,得(x+2)2-2(x+2)+1=16, 即(x+2-1)2=16, 由此可得x+1=±4, ∴x1=3,x2=-5.
配方法一元二次方程的解法精选(共14张PPT)
即
2
y22 9
直接开平方,得 y2 23
∴ x1 2 23 x2 2 23
第8页,共14页。
典型例题
例2 解下列方程
3 (1)y2+ 4 2 y-1=0 (2)y2-2 y=24
解(2)配方,得 y 2 2 3 y 3 2 2 4 3 2
直接开平方,得x-2=±3 变形:方程左边分解因式,右边合并同类项
包装纸的长与宽。 变形:方程左边分解因式,右边合并同类项
例1 解下列方程: 问题1:解方程(x+3)2=5 x2+6x = -4 什么样的一元二次方程能用直接开平方法解? 例1 解下列方程:
第13页,共14页。
归纳总结
1、用配方法解一元二次方程,配方时
(4) x2-x=1
问题1:解方程(x+3)2=5
所以x1=5,x2=-1 所以 x1 = ―3+
x2+6x = -4
即 x2+2· x· 3 = -4
例2 解下列方程
例配1方在:方解方程下两列程边方都程的加:上两一次边项都系数加一半上的平一方;次项系数6的一半的平方,即32后,得
式的结构,配方时尤其要注意未知数的一次
第5页,共14页。
典型例题
例1 解下列方程:
(1) x2-4x+3 = 0 (2)x2+3x-1 = 0
解:(1)移项,得x2-4x=-3
配方,得x2-2· x· 2+22=-3+22 即(x-2)2=1
直接开平方,得x-2=±1
∴x1=3,x2=1
第6页,共14页。
典型例题
例1 解下列方程:
(2)x2+3x-1 = 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24x
�
2.已知 是方程 已知m是方程 已知 2+2x- 1 =0 的根 则 x 的根, 4 2的值为 (m+1) .
3.已知 已知 2+y2+4x-6y+13 =0, x 为实数, 且 x , y为实数 为实数 y= . 则x
4.已知 已知 是 一个完全平方式, 一个完全平方式, . 则m=
2+ma+9 a
一元二次方程 的解法
解下列方程: 解下列方程:
1) =6 2 - 6x + 9 = 5 2) x 2 + 2x = 5 3) x 2 - 6x + 4 = 0 4) x
2 (x+1)
填空: 填空: 2 + 6x +( )= (x+ 1) x 2 - 8x +( )= (x2) x 2 + x +( )= (x+ 3) x 2 - 6x +( )=4(x4) 4x 2. =(2x- )
根据: 根据: 直接开平方法
用配方法解方程: 用配方法解方程
1) 10x + 12 = 0 ; 2 + 5x – 1 = 0 ; 2) x 2 - 12x – 1 = 0 . 3) 4x
2x
思考 : 如何用配方法
解下列方程? 解下列方程?
1) 12x – 1 = 0; 2 + 2x - 3 = 0. 2) 3x
2 ) 2 ) 2 ) 2 )
例 用配方法解下列方
程:
1) - 6x - 7 = 0 2 + 3x + 1 = 0 2) x
2 x
用配方法解方程: 用配方法解方程: 2+8x-2=0 (1)x ) - = 2-5 x-6=0. (2)x ) - =
拓展: 拓展:
1.已知关于 的二次 已知关于x 已知关于 2+4kx+k2=0 方程4x 的一根是 –2 ,则 k= . 则
试一试:
用配方法解方程 2 + px + q = 0 x 2 - 4q≥0). (p
若使 成为 完全平方式, 完全平方式, p, q满 满 足什么条件? 足什么条件?
2+px+q x
配方法 前提: 二次项系数为1 前提: 二次项系数为 关键: 关键: 方程两边都加上 一次项系数的一 规律) (规律) 半的平方. 半的平方 理论