考研同济五版《线性代数》习题解读(三)

合集下载

线性代数 同济第五版 课后习题答案详解

线性代数 同济第五版 课后习题答案详解

1
2
第一章 行列式
(3) 逆序数为 5: 3 2, 3 1, 4 2, 4 1, 2 1.
(4) 逆序数为 3: 2 1, 4 1, 4 3.
(5)
逆序数为
n(n−1) 2
:
3 2...........................................................................1 个 5 2, 5 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 个 7 2, 7 4, 7 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 个 .................................................................................. (2n − 1) 2, (2n − 1) 4, (2n − 1) 6, . . . , (2n − 1) (2n − 2). . . . . . . . . . . . . .(n − 1) 个
(2)
abc
b c a = acb + bac + cba − bbb − aaa − ccc = 3abc − a3 − b3 − c3.

同济大学数学系《工程数学—线性代数》(第5版)【教材精讲+考研真题解析】讲义与视频课程-矩阵的初等变

同济大学数学系《工程数学—线性代数》(第5版)【教材精讲+考研真题解析】讲义与视频课程-矩阵的初等变

第3章矩阵的初等变换与线性方程组[视频讲解]3.1本章要点详解本章要点■初等变换的概念与性质■矩阵之间的等价关系■初等变换与矩阵乘法的关系■初等变换的应用■矩阵的秩■线性方程组的解重难点导学一、矩阵的初等变换1.初等变换下面三种变换称为矩阵的初等行变换:(1)对调两行(对调i,j两行,记作r i↔r j);(2)以数k≠0乘某一行中的所有元(第i行乘k,记为r i×k);(3)把某一行所有元素的k倍加到另一行对应的元上去(第j行的k倍加到第i行上,记作r i+kr j).把定义中的“行”换成“列”,即得矩阵的初等列变换的定义,矩阵的初等行变换与初等列变换,统称为初等变换.2.矩阵等价(1)定义①若矩阵A经有限次初等行变换变成矩阵B,就称矩阵A与B行等价,记作;②若矩阵A经有限次初等列变换变成矩阵B,就称矩阵A与B列等价,记作;③若矩阵A经有限次初等变换变成矩阵B,则称矩阵A与B等价,记作A~B.(2)矩阵之间的等价关系的性质①反身性A~A;②对称性若A~B,则B~A;③传递性若A~B,B~C,则A~C.(3)矩阵的类型①两个矩阵,矩阵B4和B5都称为行阶梯形矩阵.行阶梯形矩阵B5又称为行最简形矩阵,其特点是:非零行的第一个非零元为1,且非零元所在的列的其他元素都为0.结论:对于任何非零矩阵A m×n总可经过有限次初等行变换把它变为行阶梯形矩阵和行最简形矩阵.②标准形矩阵F称为矩阵B的标准形,其特点是:F的左上角是一个单位矩阵,其余元素全为0.对于m×n矩阵A,总可经过初等变换(行变换和列变换)把它化为标准形此标准形由m,n,r三个数完全确定,其中r就是行阶梯形矩阵中非零行的行数.所有与A 等价的矩阵组成一个集合,标准形F 是这个集合中形状最简单的矩阵.3.初等变换与矩阵乘法的关系(1)定理设A 与B 为m ×n 矩阵,则:①的充分必要条件是存在m 阶可逆矩阵P ,使PA =B ;②的充分必要条件是存在n 阶可逆矩阵Q ,使AQ =B ;③A ~B 的充分必要条件是存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使PAQ =B .(2)初等矩阵由单位矩阵E 经过一次初等变换得到的矩阵称为初等矩阵.(3)性质①设A 是一个m ×n 矩阵,对A 施行一次初等行变换,等价于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,等价于在A 的右边乘以相应的n 阶初等矩阵.②方阵A 可逆的充分必要条件是存在有限个初等矩阵P 1,P 2,…P l ,使A =P 1P 2…P l .③方阵A 可逆的充分必要条件是.4.初等变换的应用当||0A ≠时,由12l A PP P = ,有11111l l P P P A E ----= 及111111l l P P P E A -----= 所以()()()1111111111111111|||l l l l l l P P P A E P P P A P P P E E A -------------== 即对n ×2n 矩阵()|A E 施行初等行变换,当把A 变成E 时,原来的E 就变成A -1.二、矩阵的秩1.秩的定义(1)k阶子式在m×n矩阵A中,任取k行与k列(k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式,称为矩阵A的k阶子式.注:m×n矩阵A的k阶子式共有个.(2)矩阵的秩设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,则D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A).注:零矩阵的秩等于0.(3)最高阶非零子式由行列式的性质可知,在A中当所有r+1阶子式全等于0时,所有高于r+1阶的子式也全等于0,因此把r阶非零子式称为最高阶非零子式,而A的秩R(A)就是A的非零子式的最高阶数.(4)满秩矩阵与降秩矩阵可逆矩阵的秩等于矩阵的阶数,不可逆矩阵的秩小于矩阵的阶数.因此,可逆矩阵又称满秩矩阵,不可逆矩阵(奇异矩阵)又称降秩矩阵.(5)等价矩阵的秩①若A~B,则R(A)=R(B).②若可逆矩阵P,Q使PAQ=B,则R(A)=R(B).2.秩的性质(1)0≤R(A m×n)≤min{m,n}(2)R(A T)=R(A);(3)若A~B,则R(A)=R(B);(4)若P、Q可逆,则R(PAQ)=R(A);(5)max{R(A),R(B)}≤R(A,B)≤R(A)+R(B)特别地,当B=b为非零列向量时,有R(A)≤R(A,b)≤R(A)+1;(6)R(A+B)≤R(A)+R(B);(7)R(AB)≤min{R(A),R(B)};(8)若A m×n B n×l=0,则R(A)+R(B)≤n.3.满秩矩阵矩阵A的秩等于它的列数,称这样的矩阵为列满秩矩阵.当A为方阵时,列满秩矩阵就成为满秩矩阵.4.结论(1)设A为n阶矩阵,则R(A+E)+R(A-E)≥n.(2)若A m×n B n×l=C,且R(A)=n,则R(B)=R(C).。

工程数学线性代数(同济大学第五版)课后习题答案【精品223页PPT

工程数学线性代数(同济大学第五版)课后习题答案【精品223页PPT
工程数学线性代数(同济大学第五版)课 后习题答案【精品
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
Hale Waihona Puke

线性代数(同济版) 课后习题答案 第三章

线性代数(同济版) 课后习题答案 第三章

第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) −−340313021201; (2) −−−−174034301320;(3) −−−−−−−−−12433023221453334311; (4) −−−−−−34732038234202173132.解 (1) −−3403130212011312)3()2(~r r r r −+−+−−−020*********)2()1(32~−÷−÷r r −−01003100120123~r r −−−300031001201 33~÷r −−100031001201323~r r +−1000010012013121)2(~r r r r +−+100001000001(2)−−−−174034301320 1312)2()3(2~r r r r −+−+×−−−310031001320 21233~r r r r ++ 000031001002021~÷r000031005010(3)−−−−−−−−−12433023221453334311 141312323~r r r r r r −−−−−−−−−−−1010500663008840034311 )5()3()4(432~−÷−÷−÷r r r−−−−−221002210022*******12423213~rr r r r r −−−−−−0000000000221003211(4)−−−−−−34732038234202173132 242321232~r r r r r r −−−−−−−−1187701298804202111110 141312782~r r r r r r −−+−−4100041000202011111034221)1(~r r r r r −−×↔−−−−0000041000111102021 32~r r +−−00000410003011020212.在秩是r 的矩阵中,有没有等于0的1−r 阶子式?有没有等于0的r 阶 子式?解 在秩是r 的矩阵中,可能存在等于0的1−r 阶子式,也可能存在等 于0的r 阶子式.例如,=00000000010000100001α3)(=αR 同时存在等于0的3阶子式和2阶子式.3.从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样? 解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得到的,所以在A 中能找到与D r 相同的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.4.求作一个秩是4的方阵,它的两个行向量是)0,0,1,0,1(,)0,0,0,1,1(− 解 设54321,,,,ααααα为五维向量,且)0,0,1,0,1(1=α,)0,0,0,1,1(2−=α,则所求方阵可为,54321=αααααA 秩为4,不妨设===)0,0,0,0,0(),0,0,0,0()0,,0,0,0(55443αααx x 取154==x x 故满足条件的一个方阵为−00000100000100000011001015.求下列矩阵的秩,并求一个最高阶非零子式:(1) −−−443112112013; (2)−−−−−−−815073131213123; (3) −−−02301085235703273812.解 (1) −−−443112112013r r 21~↔−−−443120131211−−−−−−564056401211~12133r r r r 2000056401211~23秩为 −−−−r r 二阶子式41113−=−.(2) −−−−−−−815073131223123−−−−−−−−−15273321059117014431~27122113r r r r r r 200000591170144313~23秩为−−−−−r r .二阶子式71223−=−. (3)−−−02301085235703273812434241322~r r r r r r −−−−−−−−−02301024205363071210 131223~r r r r ++−0230114000016000071210344314211614~r r r r r r r r −÷÷↔↔−0000010000712100231秩为3 三阶子式07023855023085570≠=−=−.6.求解下列齐次线性方程组:(1) =+++=−++=−++;0222,02,02432143214321x x x x x x x x x x x x (2) =−++=−−+=−++;05105,0363,02432143214321x x x x x x x x x x x x(3) =−+−=+−+=−++=+−+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)=++−=+−+=−+−=+−+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x 解 (1) 对系数矩阵实施行变换:−−212211121211−−−3410013100101~即得 ==−==4443424134334x x xx x x x x 故方程组的解为−=1343344321k x x x x(2) 对系数矩阵实施行变换:−−−−5110531631121 −000001001021~ 即得===+−=4432242102x x x x x x x x故方程组的解为+ −=10010012214321k k x x x x (3) 对系数矩阵实施行变换:−−−−−74216314721351321000010000100001~即得 ====00004321x xxx故方程组的解为====00004321x x xx (4) 对系数矩阵实施行变换:−−−−−3127161311423327543−−000000001720171910171317301~ 即得==−=−=4433432431172017191713173x x x x x x x x x x故方程组的解为 −−+=1017201713011719173214321k k x x x x7.求解下列非齐次线性方程组:(1)=+=+−=−+;8311,10213,22421321321x x x x x x x x (2) −=+−=−+−=+−=++;694,13283,542,432z y x z y x z y x z y x(3) =−−+=+−+=+−+;12,2224,12w z y x w z y x w z y x (4)−=+−+=−+−=+−+;2534,4323,12w z y x w z y x w z y x解 (1) 对系数的增广矩阵施行行变换,有−−−−−−60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2) 对系数的增广矩阵施行行变换:−−−−−69141328354214132−−0000000021101201~ 即得=+=−−=zz z y z x 212亦即 −+ −= 021112k z y x(3) 对系数的增广矩阵施行行变换:−−−−111122122411112−000000100011112~ 即得===++−=0212121w z z y y z y x 即 + + −=00021010210012121k k w z y x(4) 对系数的增广矩阵施行行变换:−−−− −−−−−000007579751025341253414312311112~−−−−000007579751076717101~ 即得 ==−−=++=w w z z w z y w z x 757975767171 即 −+ −+=00757610797101757121k k w z y x8.λ取何值时,非齐次线性方程组=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1) 0111111≠λλλ,即2,1−≠λ时方程组有唯一解.(2) )()(B R A R <=21111111λλλλλB+−+−−−−22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+−=+−λλλλ 得2−=λ时,方程组无解.(3) 3)()(<=B R A R ,由0)1)(1()2)(1(2=+−=+−λλλλ, 得1=λ时,方程组有无穷多个解.9.非齐次线性方程组=−+=+−−=++−23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解+−−−−− −−−−=)2)(1(000)1(321101212111212112~2λλλλλλB方程组有解,须0)2)(1(=+−λλ得2,1−==λλ当1=λ时,方程组解为+ =001111321k x x x当2−=λ时,方程组解为+ =022111321k x x x10.设−−=−+−−=−−+=−+−,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解时求解.解−−−−−−−−−154224521222λλλλ初等行变换~−−−−−−−−−2)4)(1(2)10)(1(00111012251λλλλλλλλ当0≠A ,即02)10()1(2≠−−λλ 1≠∴λ且10≠λ时,有唯一解.当02)10)(1(=−−λλ且02)4)(1(≠−−λλ,即10=λ时,无解.当02)10)(1(=−−λλ且02)4)(1(=−−λλ,即1=λ时,有无穷多解.此时,增广矩阵为−000000001221原方程组的解为+ + −=00110201221321k k x x x (R k k ∈21,)11.试利用矩阵的初等变换,求下列方阵的逆矩阵:(1)323513123; (2)−−−−−1210232112201023. 解 (1) 100010001323513123−−−101011001200410123~−−−−10121121023200010023~−−−−2102121129227100010003~−−−−21021211233267100010001~故逆矩阵为 −−−−2102121123326711(2)−−−−−10000100001000011210232112201023 −−−−00100301100001001220594012102321~ −−−−−−−−20104301100001001200110012102321~ −−−−−−−106124301100001001000110012102321~ −−−−−−−−−−10612631110`1022111000010000100021~−−−−−−−106126311101042111000010000100001~ 故逆矩阵为−−−−−−−1061263111010421112.(1) 设−−= −−=132231,113122214B A ,求X 使B AX =;12 (2) 设−= −−−=132321,433312120B A ,求X 使B XA =. 解 (1) () −−−−=132231113122214B A 初等行变换~ −−412315210100010001−−==∴−4123152101B A X (2)−−−−= 132321433312120B A 初等列变换~−−−474112100010001−−−==∴−4741121BA X .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研同济五版《线性代数》习题解读(三)
考研同济五版《线性代数》习题解读(三)
1、用初等变换把矩阵化为最简行阶梯形,基本运算地练习,实际上也可以化为阶梯行而不一定非要最简,这类计算要多加练习,需纯熟掌握.
2、3表面上是要求一个能使已知矩阵化为行最简形地可逆阵,实际上是考察初等矩阵,因为化为行最简形地过程就是初等变换过程,对应地是一系列初等矩阵地乘积,把这一过程搞清楚了,要求地矩阵也就相应清楚了.要知道一个初等矩阵对应一个初等变换,其逆阵也是,从这个意义上去理解可以有效解决很多问题.b5E2R.
4、求矩阵地逆阵地第二种方法(第一种是伴随阵),基本题,同时建议把这两种方法地来龙去脉搞清楚(书上相应章节有解释),即为什么可以通过这两种方法求逆阵.p1Ean.
5、6是解矩阵方程,关键还是求逆,复习过一遍线代地同学就不用拘泥于一种方法了,选择自己习惯地做法即可.DXDiT.
7、考察矩阵秩地概念,所以矩阵地秩一定要搞清楚:是不为零地子式地最高阶数.所以秩为r地话只需要有一个不为零地r阶子式,但所有地r+1阶子式都为零;至于r-1阶子式,也是有可能为零地,但不可能所有地都为零,否则秩就是r-1而不是r了.RTCrp.
8、还是涉及矩阵地秩,矩阵减少一行,秩最多减1,也可能不减,不难理解,但自己一定要在头脑中把这个过程想清楚.5PCzV.
9、主要考查矩阵地秩和行(列)向量组地秩地关系,实际上它们是一致地,因为已经知道地两个向量是线性无关地,这样此题就转化为一个简单问题:在找两个行向量,与条件中地两个行向量组成地向量组线性无关,最后由于要求方阵,所以还要找一个向量,与前面四个向量组和在一起则线性相关,最容易想到地就是0向量了.jLBHr.
10、矩阵地秩是一个重要而深刻地概念,它能够反映一个矩阵地最主要信息,所以如何求矩阵地秩也就相应地是一类重要问题.矩阵地初等行(列)变换都不会改变其秩,所以可以混用行、列变化把矩阵化为最简形来求出秩.xHAQX.
11题是一个重要命题,经常可以直接拿来用,至于它本身地证明,可以从等价地定义出发:等价是指两个矩阵可以经过初等变换互相得到,而初等变换是不改变矩阵地秩地,所以等价则秩必相等.实际上11题因为太过常用,以至于我们常常认为秩相等才是等价地定义,不过既然是充分必要条件,这样理解也并无不可.LDAYt.
12、选取合适地参数值来确定矩阵地秩,方法不止一种,题目不难但比较典型.
13、14题是求解齐次、非齐次方程组地典型练习,务必熟练掌握.
15、线性方程组地逆问题,即已知解要求写出方程,把矩阵地系数看做未知数来反推即可,因为基础解系中自由未知量地个数和有效方程正好是对应地,个人感觉这类题不太重要.Zzz6Z.
16、17、18题是线性方程组地一类典型题,考研常见题型,讨论不同参数取值时解地情况,要熟练掌握这类题目.dvzfv.
19、证明本身不是很重要,重要地是由题目得到地启示:由一个向量及其转置(或一个列向量一个行向量)生成地矩阵其秩一定是1.这实际上也不难理解,矩阵地秩是1意味着每行(或每列)都对应成比例,即可以写成某一列向量乘行向量地形式,列向量地元素就是每行地比例系数,反过来也一样,这个大家可自行写一些具体地例子验证,加深印象.另外值得注意地是:列向量乘行向量生成地是矩阵,而行向量乘列向量生成地是数.rqyn1.
20、考察地是矩阵地运算对矩阵秩地影响,抓住R(AB)〈=min(R(A),R(B))这个关键命题即可.或者从同解方程组角度出发,即要证明两个矩阵秩相等,可证其方程组同解.Emxvx.
21、注意A是否可逆未知,故不能用求逆地方法证明,这是易犯地错误之一.实际上该
题考察地还是方程组只有零解地条件:满秩.关键一步在于把条件改写为A(X-Y)=0SixE2.
前两章地习题以锻炼计算能力为主,从第三章开始理解层面地内容逐渐增多,很多概念要引起重视.
凯程教育:
凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位地考研服务.6ewMy.
凯程考研地宗旨:让学习成为一种习惯;
凯程考研地价值观口号:凯旋归来,前程万里;
信念:让每个学员都有好最好地归宿;
使命:完善全新地教育模式,做中国最专业地考研辅导机构;
激情:永不言弃,乐观向上;
敬业:以专业地态度做非凡地事业;
服务:以学员地前途为已任,为学员提供高效、专业地服务,团队合作,为学员服务,为学员引路.
如何选择考研辅导班:
在考研准备地过程中,会遇到不少困难,尤其对于跨专业考生地专业课来说,通过报辅导班来弥补自己复习地不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你地辅导班.kavU4.
师资力量:师资力量是考察辅导班地首要因素,考生可以针对辅导名师地辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择.判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底地,是一批教师配合地结果.还要深入了解教师地学术背景、资料著述成就、辅导成就等.凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课.而有地机构只是很普通地老师授课,对知识点把握和命题方向,欠缺火候.y6v3A.
对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校.在考研辅导班中,从来见过如此辉煌地成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站.在凯程官方网站地光荣榜,成功学员经验谈视频特别多,都是凯程战绩地最好证明.对于如此高地成绩,凯程集训营班主任邢老师说,凯程如此优异地成绩,是与我们凯程严格地管理,全方位地辅导是分不开地,很多学生本科都不是名校,某些学生来自二本三本甚至不知名地院校,还有很多是工作了多年才回来考地,大多数是跨专业考研,他们地难度大,竞争激烈,没有严格地训练和同学们地刻苦学习,是很难达到优异地成绩.最好地办法是直接和凯程老师详细沟通一下就清楚了.M2ub6. 建校历史:机构成立地历史也是一个参考因素,历史越久,积累地人脉资源更多.例如,凯程教育已经成立10年(2005年),一直以来专注于考研,成功率一直遥遥领先,同学们有兴趣可以联系一下他们在线老师或者电话.0YujC.
有没有实体学校校区:有些机构比较小,就是一个在写字楼里上课,自习,这种环境是不太好地,一个优秀地机构必须是在教学环境,大学校园这样环境.凯程有自己地学习校区,有吃住学一体化教学环境,独立卫浴、空调、暖气齐全,这也是一个考研机构实力地体现.此外,最好还要看一下他们地营业执照.eUts8.。

相关文档
最新文档