乌氏粘度计测定聚合物的分子量
粘度法测定高聚物分子量
粘度法测定水溶性高聚物分子量实验目的测定多糖聚合物-右旋糖苷的平均分子量掌握用乌贝路德(Ubbelohde)黏度计测定黏度的原理和方法实验原理分子量是表征化合物特性的基本参数之一。
高聚物的分子量大小不一,通常取平均分子量,粘度法是测定分子量的方法之一。
通常所测高聚物的分子量是一种统计的平均分子量(103-107之间)。
本实验采用的右旋糖苷分子是目前公认的优良血浆代用品之一。
它是一种无臭、无味、白色固体物质,易溶于近沸点的热水中,相对分子质量是2-8×104范围内,选用它来做实验是合乎要求的。
线型高分子可被溶剂分子分散,在具有足够的动能下相互移动,成为黏度态,η是可溶性的高聚物在稀溶液中的黏度,是它在流动过程中所存在内摩擦的反映,这种摩擦主要有:溶剂分子与溶剂分子之间的内摩擦,也就是纯溶剂的黏度,;还有高分子与高分子之间的内摩擦以及高分子与溶剂分子之间的内摩记作η擦,三者总和表现为高聚物溶液的黏度,记作η。
在同一温度下,高聚物的黏度一般都比纯溶剂的黏度大,即η>η0,这些黏度增加的分数,叫做增比黏度,记作ηsp,即式中,ηr称为相对黏度,这指明溶液黏度对溶剂黏度的相对值,仍是整个溶液的黏度行为,ηsp则意味着扣除了溶剂分子之间的内摩擦效应。
为了进一步消除高聚物分子之间的内摩擦效应,必须将溶液浓度无限稀释,使得每个高聚物分子彼此相隔极远,其相互干扰可以忽略不记。
这时溶液所呈现出的粘度行为基本上反映了高分子与溶剂分子之间的内摩擦。
这一粘度的极限值记为:[η]被称为特性粘度,其值与浓度无关。
实验证明,当聚合物、溶剂和温度确定以后,[η]的数值只与高聚物平均相对分子质量M有关,它们之间的半经验关系可用Mark Houwink 方程式表示:测定高分子的[η]时,用毛细管粘度计最为方便。
当液体在毛细管粘度计内因重力作用而流出是遵守泊肃叶(Poiseuille)定律:ρ为液体的密度;l是毛细管长度;r 是毛细管半径;t 是流出时间;h是流经毛细管液体的平均液柱高度;g为重力加速度;V是流经毛细管的液体体积;m是与机器的几何形状有关的常数,在r/l<<1 时,可取m=1。
实验二--乌氏粘度计测定聚合物的特性粘度
实验二--乌氏粘度计测定聚合物的特性粘度实验二乌氏粘度计测定聚合物的特性粘度一、实验目的粘度法是测定聚合物分子量的相对方法,此法设备简单,操作方便,且具有较好的精确度,因而在聚合物的生产和研究中得到十分广泛的应用。
通过本实验要求掌握粘度法测定高聚物分子量的基本原理、操作技术和数据处理方法。
二、实验原理分子量是表征化合物特征的基本参数之一。
但高聚物分子量大小不一,参差不齐,一般在103~107之间,所以通常所测高聚物的分子量是平均分子量。
测定高聚分子量的方法很多,本实验采用粘度法测定高聚物分子量。
高聚物在稀溶液中的粘度,主要反映了液体在流动时存在着内摩擦。
在测高聚物溶液粘度求分子量时,常用到下面一些名词。
如果高聚物分子的分子量愈大,则它与溶剂间的接触表面也愈大,摩擦就大,表现出的特性粘度也大。
特性粘度和分子量之间的经验关系式为:式中,M 为粘均分子量;K为比例常数;alpha是与分子形状有关的经验参数。
K和alpha值与温度、聚合物、溶剂性质有关,也和分子量大小有关。
K 值受温度的影响较明显,而alpha值主要取决于高分子线团在某温度下,某溶剂中舒展的程度,其数值解与0.5~1 之间。
K 与alpha 的数值可通过其他绝对方法确定,例如渗透压法、光散射法等,从粘度法只能测定[η]。
在无限稀释条件下因此我们获得[η]的方法有二种;一种是以ηsp/C对C 作图,外推到C→0 的截距值;另一种是以lnηr/C对C作图,也外推到C→0 的截距,两根线会合于一点。
方程为:测定粘度的方法主要有毛细管法、转筒法和落球法。
在测定高聚物分子的特性粘度时,以毛细管流出发的粘度计最为方便若液体在毛细管粘度计中,因重力作用流出时,可通过泊肃叶公式计算粘度。
(m=1)。
对于某一只指定的粘度计而言,(4)可以写成下式省略忽略相关值,可写成:式中,t 为溶液的流出时间;t0为纯溶剂的流出时间。
可以通过溶剂和溶液在毛细管中的流出时间,从(6)式求得ηr,再由图求得[η]。
粘度法测高聚物分子量
粘度法测高聚物分子量一、实验目的1.掌握粘度法测定高聚物平均分子量的原理。
2.用乌氏(Ubbelohde)粘度计测定聚乙烯醇的特性粘度,计算聚乙烯醇的粘均分子量。
二、实验原理粘度是液体对流动所表现的阻力。
根据牛顿粘度定律,在流速梯度为dv/ds 时,单位面积液体的粘滞阻力⎪⎭⎫⎝⎛=ds dv f η (2-1)式中的比例常数η称为粘度系数,简称粘度,SI 单位为s Pa ⋅,c.g.s 制单位是泊(P ,1P = 1dyn ⋅s ⋅cm -2),1P =0.1Pa ⋅s 。
测定高聚物分子量的方法很多,其中以粘度法最常用。
因为粘度法设备简单,操作方便,有相当好的精确度。
但是粘度法不是测定分子量的绝对值方法,因为在此法中所用计算分子量的经验方程中的参数,要用其它方法来确定。
因高聚物、溶剂、分子量范围、温度等不同,就有不同的经验方程式。
高聚物溶液的粘度η一般要比纯溶剂的粘度η0大得多,粘度增加的分数叫增比粘度ηsp 按定义式1r 0-=-=ηηηηηSP (2-2) 式中0r /ηηη=,叫相对粘度。
增比粘度随溶液中高聚物浓度的增加而增大。
为了便于比较,通常取单位浓度的增比粘度作为高聚物分子量的量度,可以写成cSPη,叫做比浓粘度。
显然比浓粘度随溶液的浓度c 而变。
当c →0时,比浓粘度趋于一固定的极限值[η],即 []ηη=→cSPc lim(2-3)[]η称为特性粘度,其值可利用c sp /η~c 图用外推法求得,因为根据实验测定[][]c k cSP2'ηηη+= (2-4)因此在)/(c sp η~c 图上的截距即为[]η。
另外,当c →0时,crηln 的极限值也是[]η,因为在浓度趋近于零的极限条件下 ⋅⋅⋅-+-=+=323121)1ln(ln sp sp sp sp r ηηηηη当浓度不大时,可以忽略高次项,即 []ηηη==→→cc sp c rc 00lim ln lim(2-5)()c r /ln η与浓度c 之间的经验公式为[][]c cr 2ln ηβηη-= (2-6) 因此,以)/(c sp η和()c r /ln η对c 作图可以得到两条直线,它们在纵轴上交于一点,截距均为[]η。
粘度法测定高聚物的相对分子质量
粘度法测定高聚物的分子量一、实验目的和要求1.掌握用乌氏粘度计测定高聚物溶液粘度的原理和方法。
2.测定线型聚合物聚乙二醇的粘均相对分子质量。
二、实验内容和原理聚合物的相对分子质量是一个统计的平均值。
粘度法测定高聚物相对分子质量适用的相对分子质量范围为1×104~1×107,方法类型属于相对法。
粘性液体在流动过程中所受阻力的大小可用粘度系数来表示。
粘度分绝对粘度和相对粘度。
绝对粘度有两种表示方法:动力粘度和运动粘度。
相对粘度是某液体粘度与标准液体粘度之比。
溶液粘度与纯溶剂粘度的比值称作相对粘度ηr,即ηr=η/ηo,相对于溶剂,溶液粘度增加的分数称为增比粘度,ηsp=ηr-1。
使用同一粘度计,在足够稀的聚合物溶液里,ηr=η/ηo=t/t o,只要测定溶液和溶剂在毛细管中的流出时间就可得到ηr;同时,在足够稀的溶液里,质量浓度c,ηr和[η]之间符合经验公式:(lnηr)/c=[η]-β[η]2c,通过lnηr/c对c作图,外推至c=0时所得截距即为[η];同时,在足够稀的溶液里,质量浓度c,ηsp和[η]之间符合经验公式:ηsp/c=[η]+k[η]2c,通过ηsp/c对c作图,外推至c=0时所得截距即为[η]。
两个线性方程作图得到的截距应该在同一点。
聚合物溶液的特性粘度[η]与聚合物相对分子质量之间的关系,可以通过Mark——Houwink经验方程来计算,[η]=KMηα;Mη是粘均相对分子质量,K、α是与温度、聚合物及溶剂的性质相关的常数;聚乙二醇水溶液在30℃的K值为12.5×106/m3·kg-1,α值为0.78。
三、主要仪器仪器:恒温槽1套;乌氏粘度计1支;100ml容量瓶5只;秒表1只。
试剂:聚乙二醇(AR);去离子水。
四、操作方法和实验步骤1.设定恒温槽温度为30℃±0.5℃。
2.配制溶液。
8%(质量分数)的聚乙二醇溶液5ml、10ml、15ml、20ml、25ml定容于100ml容量瓶中。
粘度法测定聚合物的粘均分子量
粘度法测定聚合物的粘均分子量一、实验目的1. 掌握使用粘度法测定聚合物分子量的基本原理2. 掌握乌氏粘度计测定聚合物稀溶液粘度的实验技术及数据处理方法3. 分析分子量大小对聚合物性能以及聚合物加工性能的关系及影响。
二、基本原理聚合物稀溶液的粘度主要反映了液体分子之间因流动或相对运动所产生的内摩擦阻力。
内摩擦阻力与聚合物的结构、溶剂的性质、溶液的浓度及温度和压力等因素有关,它的数值越大,表明溶液的粘度越大。
聚合物溶液粘度的变化,一般采用下列的粘度量来描述。
1.相对粘度,又称粘度比,用ηr表示。
它是相同温度条件下,溶液粘度η与纯溶剂粘度η0之比,表示为:ηr=η/η0 (1)相对粘度是一个无因次量,随着溶液浓度增加而增加。
对于低剪切速率下聚合物溶液,其值一般大于1。
2.增比粘度(粘度相对增量),用ηsp表示,是相对于溶剂来说,溶液粘度增加的分数:ηsp =(η-η0)/η0 =ηr –1 (2)3. 比浓粘度(粘数),对于高分子溶液,粘度相对增量往往随溶液浓度的增加而增大,因此常用其与浓度c之比来表示溶液的粘度,称为比浓粘度或粘数,即:ηsp/c = (ηr-1)/c (3)粘数的因次是浓度的倒数,一般用 ml/g表示。
比浓对数粘度(对数粘度),其定义是相对粘度(粘度比)的自然对数与浓度之比,即: ( lnηr)/c = [ln(1+ηsp)]/c (4)单位为浓度的倒数,常用 ml/g表示。
特性粘度(极限粘度),其定义为比浓粘度(粘数)ηsp/c或比浓对数粘度(对数粘度)lnηr/c在无限稀释时的外推值,用[η]表示,即:[η] = lim(ηsp/c) = lim(lnηr/c) (5)c→0c→0[η] 称为特性粘度(或极限粘数),其值与浓度无关,量纲是浓度的倒数。
实验证明,对于给定聚合物,在给定的溶剂和温度下,[η]的数值仅有试样的分子量Mη所决定。
[η]和 Mη的关系如下:[η] =K Mηα (6)上式称为Mark-Houwink方程。
粘度法测定聚合物的粘均分子量
粘度法测定聚合物的粘均分子量一、实验目的1. 掌握使用粘度法测定聚合物分子量的基本原理2. 掌握乌氏粘度计测定聚合物稀溶液粘度的实验技术及数据处理方法3. 分析分子量大小对聚合物性能以及聚合物加工性能的关系及影响。
二、基本原理聚合物稀溶液的粘度主要反映了液体分子之间因流动或相对运动所产生的内摩擦阻力。
内摩擦阻力与聚合物的结构、溶剂的性质、溶液的浓度及温度和压力等因素有关,它的数值越大,表明溶液的粘度越大。
聚合物溶液粘度的变化,一般采用下列的粘度量来描述。
1.相对粘度,又称粘度比,用ηr表示。
它是相同温度条件下,溶液粘度η与纯溶剂粘度η0之比,表示为:ηr=η/η0(1)相对粘度是一个无因次量,随着溶液浓度增加而增加。
对于低剪切速率下聚合物溶液,其值一般大于1。
1.增比粘度(粘度相对增量),用ηsp表示,是相对于溶剂来说,溶液粘度增加的分数:ηsp =(η-η0)/η0 =ηr –1 (2)3. 比浓粘度(粘数),对于高分子溶液,粘度相对增量往往随溶液浓度的增加而增大,因此常用其与浓度c之比来表示溶液的粘度,称为比浓粘度或粘数,即:ηsp/c = (ηr-1)/c (3) 粘数的因次是浓度的倒数,一般用 ml/g表示。
1.比浓对数粘度(对数粘度),其定义是相对粘度(粘度比)的自然对数与浓度之比,即:( lnηr)/c = [ln(1+ηsp)]/c (4)单位为浓度的倒数,常用 ml/g表示。
1.特性粘度(极限粘度),其定义为比浓粘度(粘数)ηsp/c或比浓对数粘度(对数粘度)lnηr/c在无限稀释时的外推值,用[η]表示,即:[η] = lim(ηsp/c) = lim(lnηr/c) (5)c→0 c→0[η] 称为特性粘度(或极限粘数),其值与浓度无关,量纲是浓度的倒数。
实验证明,对于给定聚合物,在给定的溶剂和温度下,[η]的数值仅有试样的分子量Mη所决定。
[η]和 Mη的关系如下:[η] =KMηα (6)上式称为Mark-Houwink方程。
乌氏粘度计分子量公式
乌氏粘度计分子量公式
乌氏粘度计是一种用于测量液体粘度的传统仪器。
它通过测量流体在管道中的
流动时间来确定粘度。
乌氏粘度计分子量公式是根据流体的粘度和它的摩尔质量之间的关系来计算分子量。
乌氏粘度计分子量公式可以表示为:
M = (η / ρ) * (RT / P)
其中,M表示分子量,η表示液体的粘度,ρ表示液体的密度,R是气体常数,T表示温度,P表示压力。
在这个公式中,粘度和分子量成正比关系。
当粘度增加时,分子量也会增加。
此外,温度和压力对乌氏粘度计分子量公式也有影响。
温度升高会降低分子量,而压力的改变也会导致分子量的变化。
乌氏粘度计分子量公式的应用非常广泛。
它可以用于测量各种液体,包括溶液、聚合物和生物分子等。
通过使用乌氏粘度计,我们可以更好地了解物质的分子结构和性质,从而对其进行更深入的研究和应用。
需要注意的是,乌氏粘度计分子量公式并不适用于所有类型的液体。
对于高分
子聚合物等复杂材料,通常需要使用其他技术来确定其分子量。
此外,乌氏粘度计分子量公式的准确性也受到一些因素的影响,如流体的非牛顿性和实验条件的变化等。
总而言之,乌氏粘度计分子量公式是一种用于计算液体粘度和分子量之间关系
的方法。
它在科学研究和工业应用中具有重要的作用,能够帮助我们更好地了解和探索物质的性质和结构。
粘度法测定高聚物的分子量及其相关知识点
粘度法测定高聚物的分子量[适用对象]药学、药物制剂、中药学、制药工程、中药学(国际交流方向)、生物工程专业[实验学时]4学时一、实验目的1、掌握粘度法测定高聚物相对分子质量的原理。
2、用乌氏粘度计测定聚乙烯醇的特性粘度,计算聚乙烯醇的粘均相对分子质量。
二、实验原理单体分子经加聚或缩聚过程便可合成高聚物。
并非高聚物每个分子的大小都相同,即聚合度不一定相同,所以高聚物摩尔质量是一个统计平均值。
对于聚合和解聚过程的机理和动力学的研究,以及为了改良和控制高聚物产品的性能,高聚物摩尔质量是必须掌握的重要数据之一。
高聚物溶液的特点是粘度特别大,原因在于其分子链长度远大于溶剂分子,加上溶剂化作用,使其在流动时受到较大的内摩擦阻力。
粘性液体在流动过程中,必须克服内摩擦阻力而做功。
其所受阻力的大小可用粘度系数η(简称粘度)来表示(kg·m-1·s-1)。
高聚物稀溶液的粘度是液体流动时内摩擦力大小的反映。
纯溶剂粘度反映了溶剂分子间的内摩擦力,记作η0,高聚物溶液的粘度则是高聚物分子间的内摩擦、高聚物分子与溶剂分子间的内摩擦以及ηη>η0,相对于溶剂,溶液粘度增加0三者之和。
在相同温度下,通常的分数称为增比粘度,记作ηsp ,即ηsp =(η-η0)/η0而溶液粘度与纯溶剂粘度的比值称作相对粘度,记作ηr ,即ηr =η/η0ηr 反映的也是溶液的粘度行为,而ηsp 则意味着已扣除了溶剂分子间的内摩擦效应,仅反映了高聚物分子与溶剂分子间和高聚物分子间的内摩擦效应。
高聚物溶液的增比粘度ηsp 往往随质量浓度C 的增加而增加。
为了便于比较,将单位浓度下所显示的增比粘度ηsp /C 称为比浓粘度,而1n ηr /C 则称为比浓粘度。
当溶液无限稀释时,高聚物分子彼此相隔甚远,它们的相互作用可忽略,此时有关系式 [η]称为特性粘度,它反映的是无限稀释溶液中高聚物分子与溶剂分子间的内摩擦,其值取决于溶剂的性质及高聚物分子的大小和形态。
实验六报告-粘度法测定聚合物的相对分子质量
5. 松开B管,使毛细管以上的液体下落,当液面流 经a刻度时,立即按停表开始记时,当液面降至b 刻度时,再按停表,测得a、b刻度之间的液体流 经毛细管所需时间t1,重复3次,算平均值。
6. 依次用移液管由A管加 入 5mL 、 10mL 的溶 剂(水),将溶液稀 释,溶液浓度分别记 为 C2 、 C3 ,同法测定 每份溶液流经毛细管 的时间t2、t3 。
0.64
粘度测定方法比较多,主要有毛细管法、转筒 法和落球法。在测定高分子溶液的特性粘度时, 以毛细管法最为简便。
高分子溶液的粘度可以用V体积液体流经毛细 管所用时间t来表示:
t r 0 t0
t和t0分别为溶液和纯溶剂在毛细管的流出时间
ηr ηsp
ηsp/c
[ ]
lnηr/c
七、思考题
1. 粘度计毛细管的粗细对实验有什么影响?
2. 乌氏粘度计有什么优点?
3. 为什么可以用[η]来计算高聚物的分子量?它和纯 溶剂的粘度有无区别?
五、数据处理
1.将所测实验数据及计算结果填入下表中
原始溶液浓度c0 0.1 (g· cm-3);恒温温度 30 ℃ 溶剂流出时间t0 60.8、 60.9 、 60.8 s
c(g· cm-3) c1 t1/s t2/s t3/s t平均/s ηr lnηr ηsp ηsp/c lnηr/c
c2
c3
蒸馏水
ห้องสมุดไป่ตู้
溶剂流出时间的测定
用蒸馏水漂洗粘度计,尤其要反复漂洗粘度计的 毛细管部分,然后由A管加入约15蒸馏水(溶剂 溶液)。用同法测定溶剂流出的时间t0。
实验完毕后,清洗粘度计
先将洗液灌入粘度计内, 并反复抽洗毛细管部分。 然后将洗液倒入专用瓶中, 再依次用自来水、蒸馏水 洗涤干净,烘干备用。
乌式毛细管粘度计
乌氏粘度计操作规程一、操作规程1、根据实验需要将恒温槽温度调节至25±0.05℃或30±0.05℃。
2、配制聚合物溶液用粘度法测聚合物分子量,选择高分子-溶剂体系时,常数K、α值必须是已知的而且所用溶剂应该具有稳定、易得、易于纯化、挥发性小、毒性小等特点。
为控制测定过程中hr在1.2~2.0之间,浓度一般为 0.001g/ml~0.01g/ml。
于测定前几天,用100 ml容量瓶把待测聚合物试样溶解于溶剂中配成已知浓度的溶液。
准确称取100-500mg待测聚合物放入100ml清洁干燥的容量瓶中,倒入约80ml甲苯(本例以甲苯为溶剂),使之溶解,待聚合物完全溶解之后,放入已调节好的恒温槽中,容量瓶也放入恒温槽中。
再加溶剂至刻度,取出摇匀,用3号玻璃砂芯漏斗过滤到另一100ml容量瓶中,放入恒温槽恒温待用,容量瓶及玻璃砂芯漏斗,用后立即洗涤。
玻璃砂芯漏斗要用含30%硝酸钠的硫酸溶液洗涤,再用蒸馏水抽滤,烘干待用。
3、洗涤粘度计粘度计和待测液体是否清洁,是决定实验成功的关键之一。
由于毛细管粘度计中毛细管的内径一般很小,容易被溶液中的灰尘和杂质所堵塞,一旦毛细管被堵塞,则溶液流经刻线a和b所需时间无法重复和准确测量,导致实验失败。
若是新的粘度计,先用洗液浸泡,再用自来水洗三次,蒸馏水洗三次,烘干待用。
对已用过的粘度计,则先用甲苯灌入粘度计中浸洗除去留在粘度计中的聚合物,尤其是毛细管部分要反复用溶剂清洗,洗毕,将甲苯溶液倒入回收瓶中,再用洗液、自来水、蒸馏水洗涤粘度计,最后烘干。
4、测定溶剂的流出时间乌氏粘度计是气承悬柱式可稀释的粘度计,把预先经严格洗净,检查过的洁净粘度计垂直夹持于恒温槽中,使水面完全浸没小球M1。
用移液管吸10ml甲苯,从A管注入E球中。
于25℃恒温槽中恒温3分钟,然后进行流出时间t0的测定。
用手捏住C管管口,使之不通气,在B管用洗耳球将溶剂从E球经毛细管、M2球吸入M1球,然后先松开洗耳球后,再松开C管,让C管通大气。
实验20 粘度法测定聚合物的分子量
实验20 粘度法测定聚合物的分子量一、试验目的1. 了解粘度法测定聚合物平均分子量的原理。
2. 掌握粘度法测定的实验技术和数据处理方法。
3. 掌握一点法测定聚乙烯醇分子量的方法。
二、实验原理本实验采用乌氏粘度计测定聚乙烯醇稀水溶液的粘度,进而求出聚乙烯醇试样的分子量,对于浓溶液与聚合物的熔体粘度行为,因为很难找出准确的分子量,在此不作讨论。
某一溶剂在一定的温度下溶入聚合物,其粘度大大增加,而粘度的增加与聚合物的分子量有密切关系,从而利用这个性质在适当的条件下测定聚合物的分子量。
试验证明,许多聚合物溶液不是理想溶液,称为非牛顿流体,其流动规律不服从牛顿流体规律,但对于一般柔性链聚合物在切变速度较低且分子量适中时,其稀溶液可按牛顿流体处理。
聚合物稀溶液的粘度主要反应了三种内摩擦:○1 溶剂间流动时产生的内摩擦 ○2 高分子间的内摩擦 ○3 高分子与溶剂间的内摩擦 这三者的总和表现为聚合物稀溶液的粘度,记为η1,而由溶剂表现的粘度即纯溶剂粘度为η0。
特性粘数[η]是几种粘度中最重要的一种粘度,其数学式为:ln lim lim []00sp rC C C Cηηη==→→ (20-1)它为无限稀释的高分子溶液的比浓粘度,这时溶液所呈现的粘度行为主要反映了高分子与溶剂间的内摩擦。
特性粘度已不再与溶液的浓度有关,它表示单个分子对溶液粘度的贡献。
外推法求特性粘度[]η是较常用的方法,即在各种不同的浓度下求得sp η或r η,然后作C sp η—C 图或Crηln —C 图再外推到0C →时其截距即为[]η。
测得特性粘度之后,即可用下式求得分子量:[]KM αη= (20-2) 式中:M 为聚合物的平均分子量;[]η为特性粘度,其单位是浓度的倒数;α为与溶液中聚合物分子形态有关的指数项。
K 和α是两个常数,其数值可以从有关手册查到,查找时要注意这两个常数的测定条件,如使用的温度、溶剂、适用的分子量范围、单位以及校正方法。
高分子量的测定实验报告
一、实验目的1. 了解高分子量的概念及其测定方法。
2. 掌握乌氏黏度计法测定聚合物平均分子量的原理及操作步骤。
3. 学会凝胶渗透色谱法测定聚合物平均分子量及其分子量分布的原理及操作步骤。
二、实验原理1. 乌氏黏度计法:利用乌氏黏度计测定聚合物溶液的黏度,根据黏度与分子量之间的关系,计算出聚合物的平均分子量。
2. 凝胶渗透色谱法:利用凝胶渗透色谱仪分离聚合物分子,根据分子量的大小,计算出聚合物的平均分子量及其分子量分布。
三、实验仪器与试剂1. 实验仪器:乌氏黏度计、凝胶渗透色谱仪、恒温水浴锅、电子天平、移液器、烧杯、试管等。
2. 实验试剂:聚合物溶液(已知分子量)、溶剂、凝胶渗透色谱柱、凝胶标准品等。
四、实验步骤1. 乌氏黏度计法测定聚合物平均分子量(1)配制聚合物溶液:准确称取一定量的聚合物,用溶剂溶解,配制成一定浓度的溶液。
(2)恒温:将溶液放入恒温水浴锅中,恒温至实验温度。
(3)测定黏度:将乌氏黏度计放入恒温水浴锅中,调整零点,记录温度。
(4)测定聚合物溶液的流出时间:打开阀门,记录溶液流出的时间。
(5)计算平均分子量:根据公式计算聚合物的平均分子量。
2. 凝胶渗透色谱法测定聚合物平均分子量及其分子量分布(1)凝胶渗透色谱柱的准备:将凝胶渗透色谱柱安装好,注入溶剂,排除气泡。
(2)样品的制备:准确称取一定量的聚合物,用溶剂溶解,配制成一定浓度的溶液。
(3)色谱分析:将样品注入凝胶渗透色谱仪,设定合适的流动相和流速,进行色谱分析。
(4)数据处理:根据色谱图,计算出聚合物的平均分子量及其分子量分布。
五、实验结果与分析1. 乌氏黏度计法测定聚合物平均分子量根据实验数据,计算得出聚合物的平均分子量为:Mw = 2.5×10^5 g/mol2. 凝胶渗透色谱法测定聚合物平均分子量及其分子量分布根据实验数据,聚合物的平均分子量为:Mw = 2.4×10^5 g/mol分子量分布:- 分子量小于1×10^5 g/mol的聚合物质量分数为10%- 分子量在1×10^5~5×10^5 g/mol的聚合物质量分数为70%- 分子量大于5×10^5 g/mol的聚合物质量分数为20%六、实验结论1. 通过乌氏黏度计法和凝胶渗透色谱法,成功测定了聚合物的平均分子量及其分子量分布。
粘度法测定高聚物的分子量及其相关知识点
粘度法测定高聚物的分子量[适用对象]药学、药物制剂、中药学、制药工程、中药学(国际交流方向)、生物工程专业[实验学时] 4学时一、实验目的1、掌握粘度法测定高聚物相对分子质量的原理。
2、用乌氏粘度计测定聚乙烯醇的特性粘度,计算聚乙烯醇的粘均相对分子质量。
二、实验原理单体分子经加聚或缩聚过程便可合成高聚物。
并非高聚物每个分子的大小都相同,即聚合度不一定相同,所以高聚物摩尔质量是一个统计平均值。
对于聚合和解聚过程的机理和动力学的研究,以及为了改良和控制高聚物产品的性能,高聚物摩尔质量是必须掌握的重要数据之一。
高聚物溶液的特点是粘度特别大,原因在于其分子链长度远大于溶剂分子,加上溶剂化作用,使其在流动时受到较大的内摩擦阻力。
粘性液体在流动过程中,必须克服内摩擦阻力而做功。
其所受阻力的大小可用粘度系数η(简称粘度)来表示(kg·m-1·s-1)。
高聚物稀溶液的粘度是液体流动时内摩擦力大小的反映。
纯溶剂粘度反映了溶剂分子间的内摩擦力,记作η0,高聚物溶液的粘度则是高聚物分子间的内摩擦、高聚物分子与溶剂分子间的内摩擦以及η>η0,相对于溶剂,溶液粘度增加0三者之和。
在相同温度下,通常η的分数称为增比粘度,记作ηsp,即ηsp=(η-η0)/η0而溶液粘度与纯溶剂粘度的比值称作相对粘度,记作ηr ,即ηr =η/η0ηr 反映的也是溶液的粘度行为,而ηsp 则意味着已扣除了溶剂分子间的内摩擦效应,仅反映了高聚物分子与溶剂分子间和高聚物分子间的内摩擦效应。
高聚物溶液的增比粘度ηsp 往往随质量浓度C 的增加而增加。
为了便于比较,将单位浓度下所显示的增比粘度ηsp /C 称为比浓粘度,而1n ηr /C 则称为比浓粘度。
当溶液无限稀释时,高聚物分子彼此相隔甚远,它们的相互作用可忽略,此时有关系式 [η]称为特性粘度,它反映的是无限稀释溶液中高聚物分子与溶剂分子间的内摩擦,其值取决于溶剂的性质及高聚物分子的大小和形态。
实验一__粘度计法测定聚合物的分子量
实验一 粘度计法测定聚合物的分子量分子量是聚合物最基本的结构参数之一,与材料性能有着密切的关系,在理论研究和生产实践中经常需要测定分子量。
测定聚合物分子量的方法很多,不同测定方法所得出的统计平均分子量的意义不同,其适应的分子量范围也不相同。
在高分子工业和研究工作中最常用的是粘度法测定聚合物的分子量,它是一种相对的方法,适用于分子量在104~107范围的聚合物。
此法设备简单、操作方便,又有较高的实验精度。
通过聚合物体系粘度的测定,除了提供粘均分子量ηM 外,还可得到聚合物的无扰尺寸和膨胀因子,其应用最为广泛。
1 目的要求1) 掌握粘度法测定聚合物分子量的基本原理;2) 掌握用乌氏粘度计测定高聚物稀溶液粘度的实验技术及数据处理方法。
2 原理高分子稀溶液的粘度主要反映了液体分子之间因流动或相对运动所产生的内摩擦阻力。
内摩擦阻力越大,表现出来的粘度就越大,且与高分子的结构、溶液浓度、溶剂的性质、温度以及压力等因素有关。
对于高分子进入溶液后所引起的液体粘度的变化,一般采用下列有关的粘度物理量进行描述。
1)粘度比(相对粘度)用r η表示。
0/ηηη=r --------------------------------------------------(1-1)0η:纯溶剂的粘度(溶剂分子之间的内摩擦)。
η:同温度下溶液的粘度(溶剂分子之间的内摩擦,聚合物分子间的内摩擦,高分子与溶剂分子间的内摩擦)。
粘度比是一个无因次的量,随着溶液粘度的增加而增加。
对于低剪切速率下的高分子溶液,其值一般大于1。
2)粘度相对增量(增比粘度)用sp η表示。
sp η是相对于溶剂来说,溶液粘度增加的分数。
10-=-=r sp ηηηηη-------------------------------------------(1-2)sp η也是一个无因次量,与溶液的浓度有关。
3)粘数(比浓粘度),对于高分子溶液,粘度相对增量往往随溶液粘度的增加而增大,因此常用其与浓度c 之比来表示溶液的粘度,称为粘数。
粘度法测定聚合物的分子量实验报告
实验一 粘度法测定聚合物的分子量粘度法是测定聚合物分子量的相对方法。
高聚物分子量对高聚物的力学性能、溶解性、流动性均有极大影响。
由于粘度法具有设备简单、操作方便、分子量适用范围广、实验精度高等优点,在聚合物的生产及科研中得到十分广泛的应用。
本实验是采用乌氏粘度计测定甲苯溶液中聚苯乙烯粘度,进而测定求出PS 试样分子量。
一、实验目的要求1、掌握粘度法测定聚合物分子量的实验基本方法。
2、了解粘度法测定聚合物分子量的基本原理。
3、通过测定特性粘度,能够计算PS 的分子量。
二、实验原理1、粘性液体的牛顿型流动粘性流体在流动过程中,由于分子间的相互作用,产生了阻碍运动的 内摩擦力,粘度就是这种内摩擦力的表现。
即粘度可以表征粘性液体在流动过程中所受阻力的大小。
按照牛顿的粘性流动定律,当两层流动液体间由于粘性液体分子间的内摩擦力在其相邻各流层之间产生流动速度梯度是(dr dv /),液体对流动的粘性阻力是:dr dv A F //⋅η= (1-1)该式即为牛顿流体定律。
式中, η—液体粘度,单位(Pa ·s );A —平行板面积;F —外力。
符合牛顿流体定律的液体称为牛顿型液体。
高分子稀溶液在毛细管中的流动基本属于牛顿型流动。
在测定聚合物的特性粘度[η]时,以毛细管粘度计最为方便。
2、泊肃叶定律高分子溶液在均匀压力p (即重力ρgh )作用下,流经半径为R 、长度为L 的均匀毛细管,根据牛顿粘性定律,可以导出泊肃叶公式:LVt ghR 84ρπ=η (1-2)式中,g —重力加速度;ρ—流体的密度;V —液出体积;t —流出时间。
由于液体在毛细管内流动存在位能,除克服部分内摩擦力外,还会使其获得动能,结果导致实测值偏低。
因此,须对泊肃叶公式作必要的修正:LtV m LV t ghR πρ-ρπ=η884 (1-3)式中,m —毛细管两端液体流动有关常数。
若令LV ghR A 84π=;LmVB π=8,式(1-3)可简化为:t B At -=ρη (1-4)3、聚合物溶液粘度的测定采用乌氏粘度计测定聚合物溶液的粘度时,常用到以下两个参数: (1)相对粘度ηη=ηr (1-5)(2)增比粘度ηη-η=ηsp (1-6) 式中,η—聚合物溶液粘度;η0—纯溶剂粘度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乌氏粘度计测定聚合物的分子量
一、实验目的
1、掌握粘度法测定聚合物分子量的基本原理。
2、掌握用乌氏粘度计测定聚合物稀溶液粘度的实验技术及数据处理方法。
3、分析分子量大小对聚合物性能以及聚合物加工性能的关系及影响
二、实验原理
粘度是高聚物在稀溶液中流动过程所产生的内摩擦的反应,它主要是溶液分子间的摩擦、高聚物分子间的内摩擦、高聚物分子与溶剂分子间的内摩擦。
三种摩擦总和称为高聚物溶液的粘度η。
在25℃时,聚乙烯醇水溶液K=2×10-2,α=0.76。
对于无限稀释的条件下,
ηr=t/t0 ηr:相对粘度; t:溶液流出时间;t0:溶剂流出时间
用1nηr/c对c的图外推和用ηsp/c对c的图外推可得到共同的截矩-特性粘度[η],如图1所示.
三、实验所需仪器设备和药品
乌氏粘度计、恒温水槽、洗耳球、容量瓶、移液管、秒表、聚乙烯醇溶液等
四、实验步骤
1、温度调至25℃,安装粘度计垂直在水浴中
2、溶剂流出时间t0的测定
移取10 ml水放入粘度计中,待恒温后,将洗液吸入1球,当液面到达a时,
开表计时,当液面到达b时停表,重复2次,每次相差小于0.28,取其平均值。
3、溶液流出时间t的测定
移取10 ml聚乙烯醇放入粘度计中,反复混合后,测定c’=1/2的流出时间t1,然后再依次加入10ml蒸馏水稀释成浓度为1/3, 1/4, 1/5的溶液,分别测出t2, t3, t4。
五、数据处理
根据实验数据以ηSP/c、lnηr/ c对浓度c作图,得两条直线,外推至c→0得截距。
经换算,就得特性粘度[η],将[η]代入式子,即可换算出聚合物的分子量Mη
六、注意事项
1、测定粘度时粘度计一要垂直,二要放入恒温槽内。
2、用洗耳球吸溶液时要注意不能产生气泡,如果有气泡要消除后再进行流出时间的测定。