【真卷】2018年河南省驻马店市正阳县中考数学一模试卷和解析
河南省2018届九年级中考数学仿真试卷(一)(解析版)
2018年河南省中考数学仿真试卷(一)一、选择题(本大题共10小题,每小题3分,共30分) 1. 12-的相反数是( ) A. 2-B. 2C. 12-D. 12 【答案】D【解析】【分析】【详解】因为-12+12=0,所以-12的相反数是12. 故选D.2. 某红外线遥控器发出的红外线波长为0.000 000 94m ,用科学记数法表示这个数是( )A. 79.410-⨯mB. 79.410⨯mC. 89.410-⨯mD. 89.410⨯m【答案】A【解析】 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定0.000 000 94=9.4×10-7.故选A .3. 如图,△ABC 的三个顶点分别在直线a 、b 上,且a ∥b ,若∠1=120°,∠2=80°,则∠3的度数是( )A. 40°B. 60°C. 80°D. 120°【答案】A【解析】 【分析】两直线平行,内错角相等【详解】∵a∥b,∴∠1=∠2+∠3,∵∠1=120°,∠2=80°,∴∠3=120°﹣80°=40°,故选:A.考点:平行线的性质.4. 如图,由6个小正方体搭建而成的几何体的俯视图是()A. B. C. D.【答案】C【解析】【分析】根据三视图的概念,俯视图是从物体的上面向下看到的,因此可知其像是一个十字架.【详解】解:根据三视图的概念,俯视图是故选C.【点睛】考点:三视图.5. 某居民小区开展节约用电活动,对该小区100户家庭的节电量情况进行了统计,4月份与3月份相比,节电情况如下表:节电量(千瓦时)20 30 40 50户数10 40 30 20则4月份这100户节电量的平均数、中位数、众数分别是()A. 35、35、30B. 25、30、20C. 36、35、30D. 36、30、30【答案】C解:平均数=(20×10+30×40+40×30+50×20)÷100=36;中位数=(40+30)÷2=35;数据30出现了40次,次数最多,所以众数是30.故选C.6. 如果点P(3x+9,1 2x﹣2)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A. B. C. D.【答案】C【解析】解:由点P(3x+9,12x﹣2)在平面直角坐标系的第四象限内,得:3901202xx+⎧⎪⎨-⎪⎩><.解得:﹣3<x<4,在数轴上表示为:故选C.7. 如图,在平行四边形ABCD中,对角线AC,BD相交于点O,若AC=8,BD=10,AB=6,则△OAB的周长为()A. 12B. 13C. 15D. 16【答案】C【解析】由四边形ABCD是平行四边形,且AC=8,BD=10,AB=6,根据平行四边形的对角线互相平分,即可求得OA 与OB的长,继而可求得答案.8. 在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为()A.116B.18C.316D.14【解析】列举出所有情况,看两次摸出的小球的标号的和等于6的情况数占总情况数的多少即可.解:共16种情况,和为6的情况数有3种,所以概率为.故选C .9. 如图,在平面直角坐标系中Rt △ABC 的斜边BC 在x 轴上,点B 坐标为(1,0),AC=2,∠ABC=30°,把Rt △ABC 先绕B 点顺时针旋转180°,然后再向下平移2个单位,则A 点的对应点A′的坐标为( )A. (﹣4,﹣23)B. (﹣4,﹣3C. (﹣2,﹣3)D. (﹣2,﹣23【答案】D【解析】 解:作AD ⊥BC ,并作出把Rt △ABC 先绕B 点顺时针旋转180°后所得△A 1BC 1,如图所示.∵AC =2,∠ABC =30°,∴BC =4,∴AB =23,∴AD =AB AC BC ⋅=232⨯=3,∴BD =2AB BC =234()=3.∵点B 坐标为(1,0),∴A 点的坐标为(43∵BD =3,∴BD 1=3,∴D 1坐标为(﹣2,0),∴A 1坐标为(﹣23).∵再向下平移2个单位,∴A ′的坐标为(﹣23﹣2).故选D .点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.10. 如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A. 2332π- B.233π- C. 32π- D. 3π-【答案】B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD 的高为3, ∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯⨯ =233π-. 故选B .二、填空题(本大题共5小题,每小题3分,共15分)11. 计算:02+11()2--=__________.【答案】-1【解析】【分析】利用零指数幂及负指数幂的运算法则求解即可.【详解】原式=1-2=-1【点睛】本题考查了实数运算,解题的关键是掌握相关法则.12. 如图,l 1∥l 2∥l 3,BC=3,DE EF=2,则AB=___.【答案】6【解析】∵l 1∥l 2∥l 3 ,∴AB DE BC EF = , 又∵BC=3,DE EF=2,∴AB=6. 13. 关于x 的一元二次方程x 2-5x +k =0有两个不相等的实数根,则k 可取的最大整数为________.【答案】6【解析】试题分析:由已知可得:△>0即,52-4k>0,解得k<6.25所以k 可取的最大整数为6考点:根的判别式14. 如图①,四边形ABCD 中,//AB CD ,90ADC ∠=︒,P 从A 点出发,以每秒2个单位长度的速度,按A B C D →→→的顺序在边上匀速运动,设P 点的运动时间为t 秒,PAD △的面积为S ,S 关于t 的函数图象如图②所示,当P 运动到BC 中点时,PAD △的面积为__________.【答案】20 【解析】【分析】如图(见解析),先根据函数图象、三角形的面积得出12AB BC +=,8CD =,8AD =,2AB =,再根据梯形的中位线得出PQ 的长,然后根据三角形的面积公式即可得.【详解】由图象可知,2612AB BC +=⨯=,21020AB BC CD ++=⨯=20128CD ∴=-=由题意知,当点P 运动到点C 时,PAD △的面积S 取得最大值,最大值为32此时12S AD CD =⋅,即18322AD ⨯= 解得8AD =由图象可知,当点P 运动到点B 时,PAD △的面积8S =此时12S AD AB =⋅,即1882AB ⨯= 解得2AB =如图,过点P 作PQ AD ⊥于点Q90ADC ∠=︒//PQ CD ∴又//AB CD////AB PQ CD ∴当点P 运动到BC 中点时,PQ 为梯形ABCD 的中位线 11()(28)522PQ AB CD ∴=+=⨯+= 则此时PAD △的面积为11852022AD PQ ⋅=⨯⨯= 故答案为:20.【点睛】本题考查了函数图象、梯形的中位线等知识点,从函数图象正确获取信息是解题关键. 15. 如图,Rt △ABC 纸片中,∠C=90°,AC=6,BC=8,点D 在边BC 上,以AD 为折痕将△ABD 折叠得到△AB′D,AB′与边BC 交于点E .若△DEB′为直角三角形,则BD 的长是_______.【答案】2或5.【解析】【分析】先依据勾股定理求得AB 的长,然后由翻折的性质可知:AB′=10,DB=DB′,接下来分为∠B′DE =90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x ,然后依据勾股定理列出关于x 的方程求解即可.【详解】∵Rt △ABC 纸片中,∠C=90°,AC=6,BC=8,∴AB=10,∵以AD 为折痕△ABD 折叠得到△AB′D ,∴BD=DB′,AB′=AB=10.如图1所示:当∠B′DE=90°时,过点B′作B′F ⊥AF ,垂足为F .设BD=DB′=x ,则AF=6+x ,FB′=8-x .在Rt △AFB′中,由勾股定理得:AB′2=AF 2+FB′2,即(6+x )2+(8-x )2=102.解得:x 1=2,x 2=0(舍去).∴BD=2.如图2所示:当∠B′ED=90°时,C 与点E 重合.∵AB′=10,AC=6,∴B′E=4.设BD=DB′=x ,则CD=8-x .在Rt △′BDE 中,DB′2=DE 2+B′E 2,即x 2=(8-x )2+42.解得:x=5.∴BD=5.综上所述,BD 的长为2或5.三、解答题(本大题共8小题,满分75分)16. 先化简,再求值:22211·1441x x x x x x -++--+-,其中x 是从-1、0、1、2中选取一个合适的数. 【答案】12-.【解析】【分析】先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=12x -,由于x 不能取±1,2,所以把x=0代入计算即可. 【详解】22211·1441x x x x x x -++--+-, =()()2211•11(2)1x x x x x x -+++--- =12(1)(2)(1)(2)x x x x x -+---- =()()112x x x --- =12x -, 当x=0时,原式=11022=--. 17. 近期,中宣部、国家发改委发出开展节俭养德全民节约行动的通知,在全社会营造厉行节约、拒绝浪费的浓厚氛围,我市某中学为了解该校学生家庭月均用电量情况,给学生布置了收集自己家中月均用电量数据的课外作业,学校随机抽取了1000名学生家庭月均用电量的数据,并将调查数据整理如下:(1)频数分布表中的m=_____,n=_____;(2)补全频数分布直方图;(3)被调查的1000名学生家庭月均用电量的众数落在哪一个范围?(4)求月均用电量小于150度的家庭数占被调查家庭总数的百分比.【答案】(1). 160 (2). 0.24【解析】试题分析:(1)根据抽查的总户数和频率=频数总数,即可求出答案;(2)根据图表所给的数据直接补全频数分布直方图;(3)根据众数的定义和统计表所给的数据即可求出答案;(4)把每月均用电量小于150度的家庭数加起来,再除以总户数,即可求出答案.试题解析:解:(1)m=1000×0.16=160,n=240÷1000=0.24.故答案为160、0.24;(2)补全条形图如下:(3)被调查的1000名学生家庭月均用电量的众数落在100≤a<150;(4)月均用电量小于150度的家庭数占被调查家庭总数的百分比为3002401201000++×100%=66%.点睛:本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18. 如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C,连接OC,AO延长线交⊙O 于点D,OF是∠DOB的平分线,E为OF上一点,连接BE.(1)求证:AB与⊙O相切;(2)①当∠OEB=_____时,四边形OCBE为矩形;②在①的条件下,若AB=4,则OA=_____时,四边形OCBE为正方形?【答案】(1). 90°(2). 22【解析】试题分析:(1)根据等腰三角形的三线合一得到OC⊥AB,根据切线的判定定理证明;(2)①根据角平分线的定义、等腰三角形的性质得到OF∥BC,根据平行线的性质解答;②根据邻边相等的矩形是正方形计算.试题解析:(1)证明:∵OA=OB,C是边AB的中点,∴OC⊥AB,∴AB与⊙O相切;(2)解:①当∠OEB=90°时,四边形OCBE矩形,证明如下:∵OA=OB,∴∠A=∠OBA.∵OF是∠DOB的平分线,∴∠DOF=∠BOF,由三角形的外角的性质可知,∠DOF+∠BOF=∠A+∠OBA,∴∠BOF=∠OBA,∴OF∥BC,当∠OEB=90°时,∠CBE=90°,又OC⊥AB,∴四边形OCBE为矩形.故答案为90°;②当OA2时,四边形OCBE为正方形,证明如下:∵四边形OCBE正方形,∴CO=CB,∴OA=OB22OC BC+2.故答案为2.点睛:本题考查的是切线的判定定理、等腰三角形的性质、矩形的判定和正方形的判定定理以及三角形的外角的性质,掌握相关的判定定理和性质定理是解题的关键.19. 如图,观测点A、旗杆DE的底端D、某楼房CB的底端C三点在一条直线上,从点A处测得楼顶端B的仰角为22°,此时点E恰好在AB上,从点D处测得楼顶端B的仰角为38.5°.已知旗杆DE的高度为12米,试求楼房CB的高度.(参考数据:sin22°≈0.37,cos 22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)【答案】24米 【解析】试题分析:构造直角三角形,利用锐角三角函数来解直角三角形的问题,从而解决实际问题. 试题解析:解法一:如图,过点E 作EF ⊥BC ,那么CF=DE=12,EF=DCC, 设BC=x ,那么12tan 22tan 38.5x x-=即120.40.8x x -= 解得x=24所以楼房CB 的高度为24米.解法二:在Rt △ADE 中,tanA=ED AD,即AD=12tan 0.4ED A = Rt △ACB 中,AC=tan 0.4BC BCA = 在Rt △DCB 中,DC=tan 0.8BC BCBDC =∠ 所以120.80.40.4BC BC+= 解得BC=24所以楼房CB 的高度为24米. 考点:解直角三角形的应用20. 如图,点P 是反比例函数y=kx(k >0)图象在第一象限上的一个动点,过P 作x 轴的垂线,垂足为M ,若△POM 的面积为2. (1)求反比例函数的解析式;(2)若点B 坐标为(0,﹣2),点A 为直线y=x 与反比例函数y=kx(k >0)图象在第一象限上的交点,连接AB ,过A 作AC ⊥y 轴于点C ,若△ABC 与△POM 相似,求点P 的坐标.【答案】(1)该反比例函数的解析式为:y=4x;(2)符合条件的点P 有(222,2).【解析】试题分析:(1)设出点P 的坐标,用它表示出三角形的面积,反比例函数的比例系数=这点横纵坐标的积; (2)直角相等是固定的,当另两对角的对应是不固定的,所以应分两种情况进行讨论. 试题解析:解:(1)∵△POM 的面积为2,设P (x ,y ),∴12xy =2,即xy =4,∴k =4,∴该反比例函数的解析式为:y =4x. (2)解方程组4y xy x =⎧⎪⎨=⎪⎩,得22x y =⎧⎨=⎩:,或22x y =-⎧⎨=-⎩.∵点A 在第一象限,∴A (2,2),①若△ABC ∽△POM ,则有PM :OM =AC :AB =2:4=1:2,又12PM •OM =2,即12×2PM •PM =2,得:PM 2,∴P (22,②若△ABC ∽△OPM ,同上述方法,易得OM 2∴P 22). 综上所述:符合条件的点P 有(22,2,2).点睛:考查了直线与反比例函数的交点.反比例函数的比例系数等于它上面的点的横纵坐标的积;求一次函数的解析式需知道它上面的两个点的坐标;当没有给出相似三角形的对应顶点时,需注意分情况探讨. 21. 国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.【答案】(1)大货车用8辆,小货车用10辆(2)w=70a+11550(0≤a≤8且为整数)(3)使总运费最少的调配方案是:5辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为11900元【解析】【分析】(1)设大货车用x辆,则小货车用18-x辆,根据运输228吨物资,列方程求解.(2)设前往甲地的大货车为a辆,则前往乙地的大货车为(8-a)辆,前往甲地的小货车为(9-a)辆,前往乙地的小货车为辆,根据表格所给运费,求出w与a的函数关系式.(3)结合已知条件,求a的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【详解】解:(1)设大货车用x辆,则小货车用(18-x)辆,根据题意得16x+10(18-x)=228 ,解得x=8,∴18-x=18-8=10.答:大货车用8辆,小货车用10辆.(2)w=720a+800(8-a)+500(9-a)+650=70a+11550,∴w=70a+11550(0≤a≤8且为整数).(3)由16a+10(9-a)≥120,解得a≥5.又∵0≤a≤8,∴5≤a≤8且为整数.∵w=70a+11550,k=70>0,w随a的增大而增大,∴当a=5时,w 最小,最小值为W=70×5+11550=11900.答:使总运费最少的调配方案是:5辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为11900元.22. 菱形ABCD 中,两条对角线AC ,BD 相交于点O ,∠MON+∠BCD=180°,∠MON 绕点O 旋转,射线OM 交边BC 于点E ,射线ON 交边DC 于点F ,连接EF .(1)如图1,当∠ABC=90°时,△OEF 的形状是; (2)如图2,当∠ABC=60°时,请判断△OEF 的形状,并说明理由;(3)在(1)的条件下,将∠MON 的顶点移到AO 的中点O′处,∠MO′N 绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M 交直线BC 于点E ,射线O′N 交直线CD 于点F ,当BC=4,且ΔO'EF 98ABCDS S =四边形时,直接写出线段CE 的长.【答案】(1)△OEF 是等腰直角三角形;(2)△OEF 是等边三角形;(3)333+333. 【解析】试题分析:(1)先证四边形ABCD 是正方形,得出∠EBO=∠FCO=45°,OB=OC ,得出∠BOE=∠COF ,进一步得到△BOE ≌△COF ,从而得到结论;(2)过O 点作OG ⊥BC 于G ,作OH ⊥CD 于H ,根据菱形的性质可得CA 平分∠BCD ,∠ABC+BCD=180°,求得OG=OH ,∠BCD=120°,∠GOH=∠EOF=60°,进一步得出∠EOG=∠FOH ,得出△EOG ≌△FOH ,从而得到结论;(3)过O 点作OG ⊥BC 于G ,作OH ⊥CD 于H ,先求得四边形O′GCH 是正方形,从而求得GC=O′G=3,∠GO′H=90°,得到△EO′G ≌△FO′H 全等,得到△O′EF 是等腰直角三角形,根据已知求得等腰直角三角形的直角边O′E 的长,然后根据勾股定理求得EG ,即可求得CE 的长.试题解析:(1)△OEF 是等腰直角三角形;如图1,∵菱形ABCD 中,∠ABC=90°,∴四边形ABCD 是正方形,∴OB=OC ,∠BOC=90°,∠BCD=90°,∠EBO=∠FCO=45°,∴∠BOE+∠COE=90°,∵∠MON+∠BCD=180°,∴∠MON=90°,∴∠COF+∠COE=90°,∴∠BOE=∠COF ,在△BOE 与△COF 中,∵∠BOE=∠COF ,OB=OC ,∠EBO=∠FCO ,∴△BOE ≌△COF (ASA ),∴OE=OF ,∴△OEF 是等腰直角三角形;(2)△OEF 是等边三角形;如图2,过O 点作OG ⊥BC 于G ,作OH ⊥CD 于H ,∴∠OGE=∠OGC=∠OHC=90°,∵四边形ABCD 是菱形,∴CA 平分∠BCD ,∠ABC+BCD=180°,∴OG=OH ,∠BCD=180°﹣60°=120°,∵∠GOH+∠OGC+∠BCD+∠OHC=360°,∴∠GOH+∠BCD=180°,∴∠MON+∠BCD=180°,∴∠GOH=∠EOF=60°,∵∠GOH=∠GOF+∠FOH ,∠EOF=∠GOF+∠EOG ,∴∠EOG=∠FOH ,在△EOG 与△FOH 中,∵∠EOG=∠FOH ,OG=OH ,∠EGO=∠FHO ,∴△EOG ≌△FOH (ASA ),∴OE=OF ,∴△OEF 是等边三角形; (3)如图3,∵菱形ABCD 中,∠ABC=90°,∴四边形ABCD 是正方形,∴'34O C AC =,过O 点作O′G ⊥BC 于G ,作O′H ⊥CD 于H ,∴∠O′GC=∠O′HC=∠BCD=90°,∴四边形O′GCH 是矩形,∴O′G ∥AB ,O′H ∥AD ,∴'''34O G O H O C AB AD AC ===,∵AB=BC=CD=AD=4,∴O′G=O′H=3,∴四边形O′GCH 是正方形,∴GC=O′G=3,∠GO′H=90°,∵∠MO′N+∠BCD=180°,∴∠EO′F=90°,∴∠EO′F=∠GO′H=90°,∵∠GO′H=∠GO′F+∠FO′H ,∠EO′F=∠GO′F+∠EO′G ,∴∠EO′G=∠FO′H ,在△EO′G 与△FO′H 中,∵∠EO′G=∠FO′H ,O′G= O′H ,∠EG O′=∠FH O′,∴△EO′G ≌△FO′H (ASA ),∴O′E=O′F ,∴△O′EF 是等腰直角三角形;∵S 正方形ABCD =4×4=16,ΔO'EF98ABCDS S =四边形,∴S △O′EF =18,∵S △O′EF =21'2O E ,∴O′E=6,在RT △O′EG 中,EG=22''O E O G -=2263-=33,∴CE=CG+EG=333+.根据对称性可知,当∠M′ON′旋转到如图所示位置时,CE′=E′G ﹣CG=333-. 综上可得,线段CE 的长为333+或333-.考点:1.四边形综合题;2.正方形的判定与性质;3.等边三角形的判定;4.等腰直角三角形;5.分类讨论;6.综合题;7.压轴题.23. 如图,抛物线y=﹣38x 2+bx +c 与直线y=34x +3交x 轴负半轴于点A ,交y 轴于点C ,交x 轴正半轴于点B .(1)求抛物线的解析式;(2)点P为抛物线上任意一点,设点P的横坐标为x.①若点P在第二象限,过点P作PN⊥x轴于N,交直线AC于点M,求线段PM关于x的函数解析式,并求出PM的最大值;②若点P是抛物线上任意一点,连接CP,以CP为边作正方形CPEF,当点E落在抛物线的对称轴上时,请直接写出此时点P的坐标.【答案】(1)抛物线解析式为y=﹣38x2﹣34x+3;(2)①当x=﹣2时,线段PM的长有最大值,最大值为32;②P点坐标为(﹣4,0)或(﹣23,103)或(2,0)或(﹣43,103).【解析】试题分析:(1)利用一次函数解析式确定当C(0,3),A(﹣4,0),然后利用待定系数法确定抛物线解析式;(2)①设P(x,﹣38x2﹣34x+3)(﹣4<x<0),则M(x,34x+3),则PM=﹣38x2﹣34x+3﹣(34x+3),然后根据二次函数的性质解决问题;②作PK⊥y轴于K,交抛物线的对称轴于G,如图,先证明△PEG≌△CPK得到CK=PG,设P(x,﹣38x2﹣34x+3),抛物线的对称轴为直线x=﹣1,则G(﹣1,﹣38x2﹣34x+3),K(0,﹣38x2﹣34x+3),则PG=|﹣1﹣x|=|x+1|,CK=|﹣38x2﹣34x+3﹣3|=|﹣38x2﹣34x|,所以|x+1|=|﹣38x2﹣34x|,然后解绝对值方程求出x,从而得到满足条件的P点坐标.试题解析:解:(1)当x=0时,y=34x+3=3,则C(0,3);当y=0时,34x+3=0,解得:x=﹣4,则A(﹣4,0),把A(﹣4,0),C(0,3)代入y=﹣38x2+bx+c得:6403b cc--+=⎧⎨=⎩,解得:343bc⎧=-⎪⎨⎪=⎩,∴抛物线解析式为y=﹣38x2﹣34x+3;(2)①设P(x,﹣38x2﹣34x+3)(﹣4<x<0),则M(x,34x+3),∴PM=﹣38x2﹣34x+3﹣(34x+3)=﹣38x2﹣32x=﹣38(x+2)2+32当x=﹣2时,线段PM的长有最大值,最大值为32;②作PK⊥y轴于K,交抛物线的对称轴于G,如图.∵四边形PEFC为正方形,∴PE=PC,∠EPC=90°.∵∠PGE=∠PKC=90°,∴∠PEG=∠CPK,易得△PEG≌△CPK,∴CK=PG,设P(x,﹣38x2﹣34x+3),抛物线的对称轴为直线x=﹣1,则G(﹣1,﹣38x2﹣34x+3),K(0,﹣38x2﹣34x+3),∴PG=|﹣1﹣x|=|x+1|,CK=|﹣38x2﹣34x+3﹣3|=|﹣38x2﹣34x|,∴|x+1|=|﹣38x2﹣34x|,解方程x+1=﹣38x2﹣34x得:x1=﹣4,x2=﹣23;解方程x+1=38x2+34x得:x1=2,x2=﹣43;∴P点坐标为(﹣4,0)或(﹣21033,)或(2,0)或(﹣41033,).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和正方形的性质;会利用待定系数法求二次函数解析式,会解一元二次方程;理解坐标与图形性质.。
(完整版)2018年河南省中考数学一模试卷
2018年河南省中考数学一模试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中,最小的数是()A.﹣3B.﹣(﹣2)C.0D.﹣2.(3分)据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A.9.29×109B.9.29×1010C.92.9×1010D.9.29×1011 3.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)小明解方程﹣=1的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1﹣(x﹣2)=1①去括号,得1﹣x+2=1②合并同类项,得﹣x+3=1③移项,得﹣x=﹣2④系数化为1,得x=2⑤A.①B.②C.③D.④5.(3分)为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是()A.180个,160个B.170个,160个C.170个,180个D.160个,200个6.(3分)关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.7.(3分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°8.(3分)郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.B.C.D.9.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.10.(3分)如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(7,4)D.(8,3)二、填空题(每小题3分,共15分)11.(3分)=.12.(3分)方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=.13.(3分)点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1y2.(用“>”、“<”、“=”填空)14.(3分)如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A 出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD 的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为.15.(3分)如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:(x+2y)2﹣(2y+x)(2y﹣x)﹣2x2,其中x=+2,y=﹣2.17.(9分)全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.运动形式A B C D E人数1230m549请你根据以上信息,回答下列问题:(1)接受问卷调查的共有人,图表中的m=,n=;(2)统计图中,A类所对应的扇形圆心角的度数为;(3)根据调查结果,我市市民最喜爱的运动方式是,不运动的市民所占的百分比是;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?18.(9分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.19.(9分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)20.(9分)如图,反比例y=的图象与一次函数y=kx﹣3的图象在第一象限内交于A(4,a).(1)求一次函数的解析式;(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.21.(10分)一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)22.(10分)如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图1中,PM与PN的数量关系是,位置关系是.(2)探究证明:将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;(3)拓展延伸:把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.2018年河南省中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【分析】应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.【解答】解:因为在数轴上﹣3在其他数的左边,所以﹣3最小;故选:A.【点评】此题考负数的大小比较,应理解数字大的负数反而小.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于929亿有11位,所以可以确定n=11﹣1=10.【解答】解:929亿=92 900 000 000=9.29×1010.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.【分析】先细心观察原立体图形和长方体的位置关系,结合四个选项选出答案.【解答】解:由图可知,主视图由一个矩形和三角形组成.故选:D.【点评】本题考查了简单组合体的三视图,培养了学生的思考能力和对几何体三种视图的空间想象能力.4.【分析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.【解答】解:﹣=1去分母,得1﹣(x﹣2)=x,故①错误,故选:A.【点评】本题考查解分式方程,解答本题的关键是明确解分式方程的方法.5.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选:B.【点评】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.【分析】根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围,再将其表示在数轴上即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣2x+k+2=0有实数根,∴△=(﹣2)2﹣4(k+2)≥0,解得:k≤﹣1.故选:C.【点评】本题考查了根的判别式以及在数轴上表示不等式的解集,牢记“当△≥0时,方程有实数根”是解题的关键.7.【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD为菱形.所以根据菱形的性质进行判断.【解答】解∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点D分别作BC,CD边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD中,S△ABC =S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故B正确;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A正确;AB=CD,AD=BC(平行四边形的对边相等),故C正确;如果四边形ABCD是矩形时,该等式成立.故D不一定正确.故选:D.【点评】本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.8.【分析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.【解答】解:列表得:A B C D EA AA BA CA DA EAB AB BB CB DB EBC AC BC CC DC ECD AD BD CD DD EDE AE BE CE DE EE∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,∴恰好选择从同一个口进出的概率为=,故选:C.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.【分析】根据S△ABE =S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE =S矩形ABCD=3=•AE•BF,∴BF=.故选:B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.10.【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2018除以6,根据商和余数的情况确定所对应的点的坐标即可.【解答】解:如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4).故选:C.【点评】此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.二、填空题(每小题3分,共15分)11.【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:2【点评】此题主要考查了学生开平方的运算能力,比较简单.12.【分析】根据一元二次方程的解的定义,将x=a代入方程3x2﹣5x+2=0,列出关于a的一元二次方程,通过变形求得3a2﹣5a的值后,将其整体代入所求的代数式并求值即可.【解答】解:∵方程3x2﹣5x+2=0的一个根是a,∴3a2﹣5a+2=0,∴3a2﹣5a=﹣2,∴6a2﹣10a+2=2(3a2﹣5a)+2=﹣2×2+2=﹣2.故答案是:﹣2.【点评】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.13.【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.【分析】由P的速度和图2得出AC和BC的长,运用勾股定理求出AB,即可求出sin∠B,求出P运动5秒距离B的长度利用三角函数得出PD的值.【解答】解:∵P以每秒2cm的速度从点A出发,∴从图2中得出AC=2×3=6cm,BC=(7﹣3)×2=8cm,∵Rt△ABC中,∠ACB=90°,∴AB===10cm,∴sin∠B===,∵当点P运动5秒时,BP=2×7﹣2×5=4cm,∴PD=4×sin∠B=4×=2.4cm,故答案为2.4cm.【点评】本题主要考查了动点问题的函数图象,理清图象的含义即会识图是解题的关键.15.【分析】由四边形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四边形ABFE 是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△EFG为等腰三角形时,①EF=GE=时,于是得到DE=DG=AD÷=1,②GE=GF时,根据勾股定理得到DE=.【解答】解:∵四边形ABCD是菱形,∠B=120°∴∠D=∠B=120°,∠A=180°﹣120°=60°,BC∥AD,∵EF∥AB,∴四边形ABFE是平行四边形,∴EF∥AB,∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,当△EFG为等腰三角形时,①当EF=EG时,EG=,如图1,过点D作DH⊥EG于H,∴EH=EG=,在Rt△DEH中,DE==1,②GE=GF时,如图2,过点G作GQ⊥EF,∴EQ=EF=,在Rt△EQG中,∠QEG=30°,∴EG=1,过点D作DP⊥EG于P,∴PE=EG=,同①的方法得,DE=,③当EF=FG时,∴∠EFG=180°﹣2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,故答案为:1或.【点评】本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.三、解答题(本大题共8小题,满分75分)16.【分析】利用完全平方公式、平方差公式展开并合并同类项,然后把x、y的值代入进行计算即可得解.【解答】解:原式=x2+4xy+4y2﹣(4y2﹣x2)﹣2x2=x2+4xy+4y2﹣4y2+x2﹣2x2=4xy,当x=+2,y=﹣2时,原式=4×(+2)×(﹣2)=4×(3﹣4)=﹣4.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式混合运算顺序和运算法则及完全平方公式、平方差公式.17.【分析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)由表可知样本中散步人数最多,据此可得,再用E项目人数除以总人数可得;(4)总人数乘以样本中C人数所占比例.【解答】解:(1)接受问卷调查的共有30÷20%=150人,m=150﹣(12+30+54+9)=45,n%=×100%=36%,∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为360°×=28.8°,故答案为:28.8°;(3)根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是×100%=6%,故答案为:散步、6%;(4)1500×=450(人),答:估计该社区参加碧沙岗“暴走团”的大约有450人.【点评】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.【分析】(1)连接OC,如图所示,由CD⊥AB,AE⊥CF,利用垂直的定义得到一对直角相等,再由CF为圆的切线,利用切线的性质得到CO⊥EF,可得出AE 与OC平行,利用两直线平行内错角相等,等边对等角得到一对角相等,利用AAS得到三角形全等,利用全等三角形的对应边相等即可得证;(2)连接BC,在直角三角形ACD中,利用勾股定理求出AC的长,在直角三角形AEC中,利用锐角三角函数定义求出所求即可.【解答】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圆O的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB为直径,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【点评】此题考查了切线的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.19.【分析】作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan ∠CAH=tan55°•x知CE=CH﹣EH=tan55°•x﹣4,根据BE=DE可得关于x的方程,解之可得.【解答】解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=4,设AH=x,则BE=GH=GA+AH=23+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°•x,∴CE=CH﹣EH=tan55°•x﹣4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°•x﹣4+15,解得:x≈30,∴CH=tan55°•x=1.4×30=42,答:塔杆CH的高为42米.【点评】本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.20.【分析】(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx ﹣3求出k的值即可求出一次函数的解析式;(2)易求点B、C的坐标分别为(n,),(n,n﹣3).设直线y=x﹣3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么∠OED=45°.根据平行线的性质得到∠BCA=∠OED=45°,所以当△ABC是等腰直角三角形时只有AB=AC一种情况.过点A作AF⊥BC于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程﹣1=1﹣(n﹣3),解方程即可.【解答】解:(1)∵反比例y=的图象过点A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函数y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函数的解析式为y=x﹣3;(2)由题意可知,点B、C的坐标分别为(n,),(n,n﹣3).设直线y=x﹣3与x轴、y轴分别交于点D、E,如图.当x=0时,y=﹣3;当y=0时,x=3,∴OD=OE,∴∠OED=45°.∵直线x=n平行于y轴,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一种情况,过点A作AF⊥BC于F,则BF=FC,F(n,1),∴﹣1=1﹣(n﹣3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.21.【分析】(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据“若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用,比较后即可得出结论;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数,比较后即可得出结论.【解答】解:(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据题意得:,解得:.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组所需费用为:300×12=3600(元),单独请乙组所需费用为:140×24=3360(元),∵3600>3360,∴单独请乙组所需费用最少.(3)商店请甲乙两组同时装修,才更有利,理由如下:单独请甲组完成,损失钱数为:200×12+3600=6000(元),单独请乙组完成,损失钱数为:200×24+3360=8160(元),请甲乙两组同时完成,损失钱数为:200×8+3520=5120(元).∵8160>6000>5120,∴商店请甲乙两组同时装修,才更有利.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数22.【分析】(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出当BD的值最大时,PM的值最大,△PMN的面积最大,推出当B、C、D共线时,BD的最大值=BC+CD=6,由此即可解决问题;【解答】解:(1)PM=PN,PM⊥PN,理由如下:延长AE交BD于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN.故答案是:PM=PN,PM⊥PN.(2)如图②中,设AE交BC于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴当BD的值最大时,PM的值最大,△PMN的面积最大,∴当B、C、D共线时,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面积的最大值=×3×3=.【点评】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.23.【分析】(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA==,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,解方程即可解决问题;【解答】解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴抛物线的解析式为y=﹣x2+2x+3.∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴顶点D坐标(1,4).(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA==,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=当点M在x轴上方时,=,解得m=﹣或3(舍弃),∴M(﹣,),当点M在x轴下方时,=,解得m=﹣或m=3(舍弃),∴点M(﹣,﹣),综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,当﹣m2+2m+3=1﹣m时,解得m=,当﹣m2+2m+3=m﹣1时,解得m=,∴满足条件的m的值为或;【点评】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
河南省2018年中考数学试卷及答案解析(word版)
2018年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣B.C.﹣D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010 D.0.2147×1011 3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x235C.x3•x47 D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+69=0 B.x2 C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边,于点D,E;②分别以点D,E为圆心,大于的长为半径作弧,两弧在∠内交于点F;③作射线,交边于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.(3分)如图1,点F从菱形的顶点A出发,沿A→D→B以1的速度匀速运动到点B,图2是点F运动时,△的面积y(2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= .12.(3分)如图,直线,相交于点O,⊥于点O,∠50°,则∠的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△中,∠90°,2,将△绕的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠90°,点C在边上,4,点B为边上一动点,连接,△A′与△关于所在直线对称,点D,E分别为,的中点,连接并延长交A′B所在直线于点F,连接A′E.当△A′为直角三角形时,的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,是⊙O的直径,⊥于点O,连接交⊙O于点C,过点C作⊙O的切线交于点E,连接交于点F.(1)求证:;(2)连接并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形为菱形;②当∠D的度数为时,四边形为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90.低杠上点C到直线的距离的长为155,高杠上点D到直线的距离的长为234,已知低杠的支架与直线的夹角∠为82.4°,高杠的支架与直线的夹角∠为80.3°.求高、低杠间的水平距离的长.(结果精确到1,参考数据82.4°≈0.991,82.4°≈0.132,82.4°≈7.500,80.3°≈0.983,80.3°≈0.168,80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△和△中,,,∠∠40°,连接,交于点M.填空:①的值为;②∠的度数为.(2)类比探究如图2,在△和△中,∠∠90°,∠∠30°,连接交的延长线于点M.请判断的值及∠的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△绕点O在平面内旋转,,所在直线交于点M,若1,,请直接写出当点C与点M重合时的长.23.(11分)如图,抛物线2+6交x轴于A,B两点,交y轴于点C.直线﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线于点M.①当⊥时,过抛物线上一动点P(不与点B,C重合),作直线的平行线交直线于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接,当直线与直线的夹角等于∠的2倍时,请直接写出点M 的坐标.2018年河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣B.C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010 D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x235C.x3•x47 D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x47,此选项正确;D、2x3﹣x33,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.312.715.314.517.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+69=0 B.x2 C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+69=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2x2﹣0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣23=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程20(a≠0)的根与△2﹣4有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3分)如图,已知▱的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边,于点D,E;②分别以点D,E为圆心,大于的长为半径作弧,两弧在∠内交于点F;③作射线,交边于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【分析】依据勾股定理即可得到△中,,依据∠∠,即可得到,进而得出﹣1,可得G(﹣1,2).【解答】解:∵▱的顶点O(0,0),A(﹣1,2),∴1,2,∴△中,,由题可得,平分∠,∴∠∠,又∵∥,∴∠∠,∴∠∠,∴,∴﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形的顶点A出发,沿A→D→B以1的速度匀速运动到点B,图2是点F运动时,△的面积y(2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用,此时,△的面积为a,依此可求菱形的高,再由图象可知,,应用两次勾股定理分别求和a.【解答】解:过点D作⊥于点E由图象可知,点F由点A到点D用时为,△的面积为2.∴∴∴2当点F从D到B时,用s∴△中,∵是菱形∴﹣1,△中,a2=22+(a﹣1)2解得故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= 2 .【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线,相交于点O,⊥于点O,∠50°,则∠的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线,相交于点O,⊥于点O,∴∠90°,∵∠50°,∴∠40°,则∠的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2 .【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△中,∠90°,2,将△绕的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式,计算即可;【解答】解:△绕的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边上,′⊥,∴∠′=∠′=45°,∴∠′=135°,∴S阴π.【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠90°,点C在边上,4,点B为边上一动点,连接,△A′与△关于所在直线对称,点D,E分别为,的中点,连接并延长交A′B所在直线于点F,连接A′E.当△A′为直角三角形时,的长为4或4 .【分析】当△A′为直角三角形时,存在两种情况:①当∠A'90°时,如图1,根据对称的性质和平行线可得:A''4,根据直角三角形斜边中线的性质得:2A'8,最后利用勾股定理可得的长;②当∠A'90°时,如图2,证明△是等腰直角三角形,可得4.【解答】解:当△A′为直角三角形时,存在两种情况:①当∠A'90°时,如图1,∵△A′与△关于所在直线对称,∴A'4,∠∠A',∵点D,E分别为,的中点,∴D、E是△的中位线,∴∥,∴∠∠90°,∴∠∠A',∴∥A'E,∴∠∠A',∴∠A'∠A',∴A''4,△A'中,∵E是斜边的中点,∴2A'8,由勾股定理得:22﹣2,∴4;②当∠A'90°时,如图2,∵∠∠∠90°,∴∠90°,∵△A′与△关于所在直线对称,∴∠∠'=45°,∴△是等腰直角三角形,∴4;综上所述,的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中1.【分析】根据分式的运算法则即可求出答案,【解答】解:当1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000 人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷152000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×4028(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数(x>0)的图象过格点P(2,2),∴2×2=4,∴反比例函数的解析式为;(2)如图所示:矩形、矩形即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,是⊙O的直径,⊥于点O,连接交⊙O于点C,过点C作⊙O的切线交于点E,连接交于点F.(1)求证:;(2)连接并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形为菱形;②当∠D的度数为22.5°时,四边形为正方形.【分析】(1)连接,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠30°时,∠60°,证明△和△都为等边三角形,从而得到,则可判断四边形为菱形;②当∠22.5°时,∠67.5°,利用三角形内角和计算出∠45°,利用对称得∠45°,则∠90°,接着证明△≌△得到∠∠90°,从而证明四边形为矩形,然后进一步证明四边形为正方形.【解答】(1)证明:连接,如图,∵为切线,∴⊥,∴∠90°,即∠1+∠4=90°,∵⊥,∴∠3+∠90°,而∠2=∠3,∴∠2+∠90°,而,∴∠4=∠B,∴∠1=∠2,∴;(2)解:①当∠30°时,∠60°,而为直径,∴∠90°,∴∠30°,∴∠3=∠2=60°,而,∴△为等边三角形,∴,同理可得∠60°,利用对称得,∵,∴△为等边三角形,∴,∴,∴四边形为菱形;②当∠22.5°时,∠67.5°,而,∴∠∠67.5°,∴∠180°﹣67.5°﹣67.5°=45°,∴∠45°,∴∠45°,利用对称得∠45°,∴∠90°,易得△≌△,∴∠∠90°,∴四边形为矩形,而,∴四边形为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90.低杠上点C到直线的距离的长为155,高杠上点D到直线的距离的长为234,已知低杠的支架与直线的夹角∠为82.4°,高杠的支架与直线的夹角∠为80.3°.求高、低杠间的水平距离的长.(结果精确到1,参考数据82.4°≈0.991,82.4°≈0.132,82.4°≈7.500,80.3°≈0.983,80.3°≈0.168,80.3°≈5.850)【分析】利用锐角三角函数,在△和△中,分别求出、的长.计算出.通过矩形得到的长.【解答】解:在△中,∵∠,∴≈≈21()在△中,∵∠,∴≈=40()∵≈21+90+40=151()∵⊥,⊥,⊥∴四边形是矩形,∴151答:高、低杠间的水平距离的长为151.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80 元,当销售单价100 元时,日销售利润w最大,最大值是2000 元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为,,得,即y关于x的函数解析式是﹣5600,当115时,﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当85时,875=175×(85﹣a),得80,(﹣5600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当100时,w取得最大值,此时2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△和△中,,,∠∠40°,连接,交于点M.填空:①的值为 1 ;②∠的度数为40°.(2)类比探究如图2,在△和△中,∠∠90°,∠∠30°,连接交的延长线于点M.请判断的值及∠的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△绕点O在平面内旋转,,所在直线交于点M,若1,,请直接写出当点C与点M重合时的长.【分析】(1)①证明△≌△(),得,比值为1;②由△≌△,得∠∠,根据三角形的内角和定理得:∠180°﹣(∠∠∠)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△∽△,则=,由全等三角形的性质得∠的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△∽△,则∠90°,,可得的长.【解答】解:(1)问题发现①如图1,∵∠∠40°,∴∠∠,∵,,∴△≌△(),∴,∴=1,②∵△≌△,∴∠∠,∵∠40°,∴∠∠140°,在△中,∠180°﹣(∠∠∠)=180°﹣(∠∠∠)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠90°,理由是:△中,∠30°,∠90°,∴,同理得:,∴,∵∠∠90°,∴∠∠,∴△∽△,∴=,∠∠,在△中,∠180°﹣(∠∠)=180°﹣(∠∠∠)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△∽△,∴∠90°,,设,则,△中,∠30°,1,∴2,﹣2,△中,∠30°,,∴22,在△中,由勾股定理得:222,,x2﹣x﹣6=0,(x﹣3)(2)=0,x1=3,x2=﹣2,∴3;②点C与点M重合时,如图4,同理得:∠90°,,设,则,在△中,由勾股定理得:222,+(2)2=x2﹣6=0,(3)(x﹣2)=0,x1=﹣3,x2=2,∴2;综上所述,的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△∽△,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线2+6交x轴于A,B两点,交y轴于点C.直线﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线于点M.①当⊥时,过抛物线上一动点P(不与点B,C重合),作直线的平行线交直线于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接,当直线与直线的夹角等于∠的2倍时,请直接写出点M 的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△为等腰直角三角形得到∠∠45°,则△为等腰直角三角形,所以2,接着根据平行四边形的性质得到2,⊥,作⊥x轴交直线于D,如图1,利用∠45°得到4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线上方时,﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线下方时,﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作⊥于N,⊥x轴于H,作的垂直平分线交于M1,交于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠12∠,再确定N(3,﹣2),的解析式为5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线1的解析式为﹣,把E(,﹣)代入求出b得到直线1的解析式为﹣x﹣,则解方程组得M1点的坐标;作直线上作点M1关于N点的对称点M2,如图2,利用对称性得到∠2∠12∠,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当0时,﹣5=﹣5,则C(0,﹣5),当0时,x﹣5=0,解得5,则B(5,0),把B(5,0),C(0,﹣5)代入2+6得,解得,∴抛物线解析式为﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△为等腰直角三角形,∴∠∠45°,∵⊥,∴△为等腰直角三角形,∴×4=2,∵以点A,M,P,Q为顶点的四边形是平行四边形,∥,∴2,⊥,作⊥x轴交直线于D,如图1,则∠45°,∴×2=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线上方时,﹣m2+6m﹣5﹣(m﹣5)=﹣m2+54,解得m1=1,m2=4,当P点在直线下方时,﹣5﹣(﹣m2+6m﹣5)2﹣54,解得m1=,m2=,综上所述,P点的横坐标为4或或;②作⊥于N,⊥x轴于H,作的垂直平分线交于M1,交于E,如图2,∵M11C,∴∠1=∠1,∴∠12∠,∵△为等腰直角三角形,∴2,∴N(3,﹣2),易得的解析式为5x﹣5,E点坐标为(,﹣),设直线1的解析式为﹣,把E(,﹣)代入得﹣﹣,解得﹣,∴直线1的解析式为﹣x﹣,解方程组得,则M1(,﹣);作直线上作点M1关于N点的对称点M2,如图2,则∠2∠12∠,设M2(x,x﹣5),∵3=,∴,∴M2(,﹣),综上所述,点M的坐标为(,﹣)或(,﹣).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.。
2018年河南省中考数学试卷及详细答案解析
2018年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣B.C.﹣D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1 5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7%B.众数是15.3%C.平均数是15.98%D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣=.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D 逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.2018年河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣B.C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7%B.众数是15.3%C.平均数是15.98%D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y钱,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y钱,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a ≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣=2.【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D 逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π﹣.【分析】先利用勾股定理求出DB′==,A′B′==2,再根据S阴=S扇形BDB′﹣S△DBC﹣S△DB′C,计算即可.【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,DB′==,A′B′==2,=﹣1×2÷2﹣(2﹣)×÷2=π﹣.∴S阴故答案为π﹣.【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4.【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OGE=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OGE=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DBF=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值;(2)根据以上信息,填空:该产品的成本单价是 80 元,当销售单价x= 100 元时,日销售利润w 最大,最大值是 2000 元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y 关于x 的函数解析式为y=kx +b ,,得, 即y 关于x 的函数解析式是y=﹣5x +600,当x=115时,y=﹣5×115+600=25,即m 的值是25;(2)设成本为a 元/个,当x=85时,875=175×(85﹣a ),得a=80,w=(﹣5x +600)(x ﹣80)=﹣5x 2+1000x ﹣48000=﹣5(x ﹣100)2+2000, ∴当x=100时,w 取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b 元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC 上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,∴PD=PQ=×2=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,综上所述,P点的横坐标为4或或;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,。
2018年河南省中考数学试卷(含答案与解析)
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前河南省2018年初中学业水平考试数 学(考试时间100分钟,满分120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.25-的相反数是( )A .25-B .25C .52-D .522.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元.数据“214.7亿”用科学记数法表示为( ) A .22.14710⨯ B .30.214710⨯ C .102.14710⨯D .110.214710⨯ 3.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( ) A .厉 B .害 C .了 D .我(第3题) 4.下列运算正确的是()A .235()x x -=-B .235x x x +=C .347x x x =gD .3321x x -=5.河南省游资源丰富,2013—2017年旅游收入不断增长,同比增速分别为15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( )A .中位数是12.7%B .众数是15.3%C .平均数是15.98%D .方差是06.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱.问:合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( )A .54573y x y x =+⎧⎨=+⎩B .54573y x y x =-⎧⎨=+⎩C .54573y x y x =+⎧⎨=-⎩D .54573y x y x =-⎧⎨=-⎩7.下列一元二次方程中,有两个不相等实数根的是( )A .2690x x ++=B .2x x =C .232x x +=D .2(1)10x -+=8.现有4张卡片,其中3张卡片正面上的图案是“♢”,1张卡片正面上的图案是“♣”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取2张卡片,则这两张卡片正面图案相同的概率是( )A .916B .34C .38 D .129.如图,已知AOBC Y 的顶点0,0,(),2()1O A -,点B 在x 轴正半轴上.按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边,OA OB 于点,D E ;②分别以点,D E 为圆心,大于12DE 的长为半径作弧,两弧在AOB ∠内交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为( ) A .1,2) B . C .(3- D .2,2)-10.如图1,点F 从菱形ABCD 的顶点A 出发,沿A D B →→以1cm/s 的速度匀速运动到点B .图2是点F 运动时,FBC △的面积2(cm )y 随时间(s)x 变化的关系图象,则a的值为( ) A B .2-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------国我的了害厉毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第3页(共20页) 数学试卷 第4页(共20页)C .5D .(第10题)二、填空题(本大题共5小题,每小题3分,共15分) 11.计算:|5|-= .12.如图,直线,AB CD 相交于点O ,EO AB ⊥于点O ,50EOD ∠=,则BOC ∠的度数为 .(第12题)13.不等式组5243x x +⎧⎨-⎩≥>的最小整数解是 .14.如图,在ABC △中,90,2ACB AC BC ∠===.将ABC △绕AC 的中点D 逆时针旋转90得到A B C '''△,其中点B 的运动路径为BB ',则图中阴影部分的面积为 .(第14题)15.如图,90MAN ∠=,点C 在边AM 上,4AC =,点B 为边AN 上一动点,连接BC ,A BC '△与ABC △关于BC 所在直线对称.点,D E 分别为,AC BC 的中点,连接DE 并延长交A B '所在直线于点F ,连接A E '.当A EF '△为直角三角形时,AB 的长为 .(第15题)三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分)先化简,再求值:21(1)11xx x -÷+-,其中1x . 17.(本小题满分9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如右表所示),并根据调查结果绘制(第17题)根据以上统计图,解答下列问题: (1)本次接受调查的市民共有 人.(2)扇形统计图中,扇形E 的圆心角度数是 . (3)请补全条形统计图.(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数. 18.(本小题满分9分)如图,反比例函数0ky x x=(>)的图象过格点(网格线的交点)P .(1)求反比例函数的解析式.(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点,O P . ②矩形的面积等于k 的值.(第18题)19.(本小题满分9分)如图,AB 是O e 的直径,DO AB ⊥于点O ,连接DA 交O e 于点C ,过点C 作O e 的切线交DO 于点E ,连接BC 交DO 于点F .(1)求证:CE EF =.ABCD EOC D B A 调查结果扇形统计图E 25%40%12%15%调查结果条形统计图NM F EA′BCD B数学试卷 第5页(共20页) 数学试卷 第6页(共20页)(2)连接AF 并延长,交O e 于点G ,填空:①当D ∠的度数为 时,四边形ECFG 为菱形. ②当D ∠的度数为 时,四边形ECFG 为正方形.(第19题)20.(本小题满分9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自已的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上,A B 两点间的距离为90cm ,低杠上点C 到直线AB 的距离CE 的长为155cm ,高杠上点D 到直线AB 的距离DF 的长为234cm ,已知低杠的支架AC 与直线AB 的夹角CAE ∠为82.4,高杠的支架BD 与直线AB 的夹角DBF ∠为80.3,求高、低杠间的水平距离CH 的长.(结果精确到1cm .参考数据:sin82.40.991≈,cos82.40.132,tan82.47.500,sin80.30.983,cos80.30.168≈≈︒≈︒≈,tan80.3 5.850≈)(第20题)21.(本小题满分10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之[注:日销售利润=日销售量⨯(销售单价-成本单价)](1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值;(2)该产品的成本单价是 元.当销售单价x = 元时,日销售利润ω最大,最大值是 元.(3)公司计划开展科技创新,以降低该产品的成本.预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3 750元的销售目标,该产品的成本单价应不超过多少元? 22.(本小题满分10分) (1)问题发现如图1,在OAB △和OCD △中,,,40OA OB OC OD AOB COD ==∠=∠=,连接,AC BD 交于点M .填空:①AC BD的值为 ;②AM B ∠的度数为 . (2)类比探究如图2,在OAB △和OCD △中,90,30AOB COD OAB OCD ∠=∠=∠=∠=,连接AC 交BD 的延长线于点M .请判断ACBD的值及AM B ∠的度数,并说明理由. (3)拓展延伸在(2)的条件下,将OCD △绕点O 在平面内旋转,,AC BD 所在直线交于点M .若1,OD OB ==请直接写出当点C 与点M 重合时AC 的长.图1 图2 备用图(第22题)23.(本小题满分11分)如图,抛物线26y ax x c =++交x 轴于,A B 两点,交y 轴于点C .直线5y x =-经过点,B C .(1)求抛物线的解析式.(2)过点A 的直线交直线BC 于点M .①当AM BC ⊥时,过抛物线上一动点P (不与点,B C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点,,,A M P Q 为顶点的四边形是平行四边形,求点P 的横坐标. ②连接AC ,当直线AM 与直线BC 的夹角等于ACB ∠的2倍时,请直接写出点M 的坐标.MOD CBA M DCOBA OAB毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共20页) 数学试卷 第8页(共20页)(第23题) 备用图数学试卷 第9页(共20页) 数学试卷 第10页(共20页)河南省2018年初中学业水平考试数学答案解析一、选择题 1.【答案】B【解析】25-的相反数是25. 【考点】相反数. 2.【答案】C【解析】214.7亿1021470000000 2.14710==⨯. 【考点】科学记数法. 3.【答案】D【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面. 故选:D .【考点】正方体的表面展开图. 4.【答案】C【解析】A 、236()x x -=-,此选项错误; B 、2x 、3x 不是同类项,不能合并,此选项错误; C 、347x x x =g ,此选项正确; D 、3332x x x -=,此选项错误; 故选:C .【考点】整式的运算. 5.【答案】B【解析】A 、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%, 故中位数是:15.3%,故此选项错误; B 、众数是15.3%,正确;C 、1(15.3%12.7%15.3%14.5%17.1%)14.98%5++++=,故选项C 错误;D 、∵5个数据不完全相同, ∴方差不可能为零,故此选项错误. 故选:B .【考点】中位数,众数,平均数,方差.6.【答案】A【解析】设合伙人数为x 人,羊价为y 线,根据题意,可列方程组为:54573y x y x =+⎧⎨=+⎩.故选:A .【考点】列二元一次方程组解应用题. 7.【答案】B【解析】A 、2690x x ++=264936360∆=-⨯=-=,方程有两个相等实数根; B 、2x x =20x x -=2(1)41010∆=--⨯⨯=>,两个不相等实数根; C 、232x x +=2230x x -+=2(2)41380∆=--⨯⨯=-<,方程无实根; D 、2(1)10x -+=2(1)1x -=-,则方程无实根; 故选:B .【考点】一元二次方程根的判别式. 8.【答案】D数学试卷 第11页(共20页) 数学试卷 第12页(共20页)【解析】根据题意可列表如下表所示.通过表格可以看出,所有等可能结果共有12种,其中2张卡片正面图案相同的结果有6种,所以P (2张卡片正面图案相同)61122==.【考点】概率. 9.【答案】A【解析】∵AOBC 的顶点(0,0),(1,2)O A -,∴1,2AH HO ==,∴Rt AOH △中,AO =OF 平分AOB ∠,∴AOG EOG ∠=∠,又∵AG OE ∥,∴AGO EOG ∠=∠,∴AGO AOG∠=∠,∴AG AO =,∴1HG =,∴1,2)G ,故选:A .【考点】平行四边形的性质,角平分线的画法,平面直角坐标系中点的坐标. 10.【答案】C【解析】过点D 作DE BC ⊥于点E ,由图象可知,点F 由点A 到点D 用时为s a ,FBC △的面积为2cm a . ∴AD a =∴12DE AD a =g ∴2DE =当点F 从D 到B∴BD =Rt DBE △中,1BE ==∵ABCD 是菱形 ∴1EC a =-,DC a =Rt DEC △中,2222(1)a a =+-解得32a =.故选:C .【考点】函数图象的阅读理解. 二、填空题 11.【答案】2【解析】原式532=-=. 【考点】实数的运算. 12.【答案】140【解析】∵直线,AB CD 相交于点O ,EO AB ⊥于点O , ∴90EOB ∠=, ∵50EOD ∠=, ∴40BOD ∠=,则BOC ∠的度数为:18040140-=.故答案为:140.【考点】垂直的性质和补角的性质. 13.【答案】2-数学试卷 第13页(共20页) 数学试卷 第14页(共20页)【解析】5243x x +⎧⎨-⎩>①≥②∵解不等式①得:3x >-, 解不等式②得:1x ≤, ∴不等式组的解集为31x -<≤, ∴不等式组的最小整数解是2-, 故答案为:2-.【考点】解一元一次不等式组及其最小整数解.14.【答案】53π42-【解析】如图,连接,BD B D '.由旋转可知,90BDB BCD B C D '''∠=,△≌△. ∵2AC BC ==,点D 为AC 的中点,∴1CD =.又∵90ACB ∠=,∴B D BD '===∴153(12)1π242BDB CDC B S S S '''=-⨯+⨯=-阴影部分扇形梯形.【考点】阴影部分的面积. 15.【答案】4或【解析】当A EF '△为直角三角形时,存在两种情况: ①当∠A'EF=90°时,如图1,∵A BC '△与ABC △关于BC 所在直线对称, ∴'4,'A C AC ACB A CB ==∠=∠, ∵点,D E 分别为,AC BC 的中点, ∴D 、E 是ABC △的中位线,∴DE AB ∥,∴90CDE MAN ∠=∠=, ∴CDE A EF '∠=∠, ∴AC A E '∥, ∴ACB A EC '∠=∠, ∴A CB A EC ''∠=∠, ∴4A C A E ''==,Rt A CB '△中,∵E 是斜边BC 的中点,∴28BC A B '==,由勾股定理得:222AB BC AC =-,∴AB == ②当90A FE '∠=︒时,如图2, ∵90ADF A DFB ∠=∠=∠=, ∴90ABF ∠=,∵A BC '△与ABC △关于BC 所在直线对称, ∴45ABC CBA '∠=∠=, ∴ABC △是等腰直角三角形, ∴4AB AC ==;综上所述,AB的长为或4;故答案为:或4.【考点】直角三角形的性质,轴对称的性质. 三、解答题16.【答案】解:原式11(1)(1)1x x xx x--+-=+1x=-.当1x=时,原式11)=-=【解析】根据分式的运算法则即可求出答案.【考点】分式的运算.17.【答案】解:(1)2000(2)28.8(3)补全条形统计图如图所示.(4)9040%36⨯=(万人)即估计赞同“选育无絮杨品种,并推广种植”的人数约为36万人.【解析】(1)将A选项人数除以总人数即可得;(2)用360乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【考点】条形统计图和扇形统计图的综合运用.18.【答案】解:(1)∵点(2,2)P在反比例函数(0)ky xx=>的图象上,∴22k=,即4k=.∴反比例函数的解析式为4yx=.(2)如图所示,矩形OAPB,矩形OCDP,矩形OEFP都是符合题意的图形,任意画出两个即可.【解析】(1)将P点坐标代入kyx=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【考点】应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质.19.【答案】(1)证明:连接OC.∵CE 是O的切线,∴OC CE⊥.∴90FCO ECF∠+∠=.∵DO AB⊥,∴90B BFO∠+∠=.∵CFE BFO∠=∠,∴90B CFE∠+∠=.∵,OC OB FCO B=∠=∠.∴ECF CFE∠=∠.∴CE EF=.(2)解:①30②22.5【解析】(1)连接OC,如图,利用切线的性质得1490∠+∠=,再利用等腰三角形和互余证明12∠=∠,然后根据等腰三角形的判定定理得到结论;(2)①当30D∠=时,60DAO∠=,证明CEF△和FEG△都为等边三角形,从而得到EF FG GE CE CF====,则可判断四边形ECFG为菱形;②当22.5D∠=时,67.5DAO∠=,利用三角形内角和计算出45COE∠=,利用对称得45EOG∠=,则90COG∠=,接着证明OECOEG△≌△得到90OEG OCE∠=∠=,从而证明四边形ECOG为矩形,然后进一步证明四边形数学试卷第15页(共20页)数学试卷第16页(共20页)数学试卷 第17页(共20页) 数学试卷 第18页(共20页)ECOG 为正方形.【考点】切线的性质. 四、解答题20.【答案】解:在Rt CAE △中,15515520.7(cm)tan 7.500tan82.4CE AE CAE ==≈≈∠.在Rt DBF △中,23423440(cm)tan 5.850tan80.3DF BF DBF ==≈=∠.∴20.79040150.7151(cm)EF AE AB BF =++≈++=≈. ∵四边形CEFH 为矩形,∴151cm CH EF =≈. 即高、低杠间的水平距离CH 的长约是151cm .【解析】利用锐角三角函数,在Rt ACE △和Rt DBF △中,分别求出AE 、BF 的长.计算出EF .通过矩形CEFH 得到CH 的长. 【考点】锐角三角函数解直角三角形.21.【答案】解:(1)设y 关于x 的函数解析式为y kx b =+.由题意,得85175,95125,k b k b +=⎧⎨+=⎩解得5,600.k b =-⎧⎨=⎩∴y 关于x 的函数解析式为5600y x =-+. (2)80 100 2 000(3)设该产品的成本单价为a 元.由题意,得(590600)(90)3750a -⨯+-≥, 解得65a ≤.答:该产品的成本单价应不超过65元.【解析】(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式; (2)根据题意可以列出相应的方程,从而可以求得生产成本和ω的最大值; (3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本. 【考点】二次函数的应用,一元二次方程的应用,不等式的应用. 22.【答案】解:(1)①1②40 (2)90ACAMB BD=∠=. 理由如下:∵9030AOB COD OAB OCD ∠=∠=∠=∠=,, ∴tan603CO AODO BO===, COD AOD AOB AOD ∠+∠=∠+∠,即AOC BOD ∠=∠,∴AOC BOD △∽△. ∴AC COCAO DBO BD DO=∠=∠. ∵90AOB ∠=,∴90DBO ABD BAO ∠+∠+∠=, ∴90CAO ABD BAO ∠+∠+∠=,∴90AMB ∠=.(3)AC的长为【解析】(1)①证明()COA DOB SAS △≌△,得AC BD =,比值为1;②由()COA DOB SAS △≌△,得CAO DBO ∠=∠,根据三角形的内角和定理得:180()18014040AMB DBO OAB ABD ∠=-∠+∠+∠=-=;(2)根据两边的比相等且夹角相等可得△AOC ∽△BOD ,则 = ,由全等三角形的性质得∠AMB 的度数;(3)正确画图形,当点C 与点M 重合时,有两种情况:如图3和4,同理可得:AOCBOD △∽△,则90,ACAMB BD∠=AC 的长.【考点】三角形全等和相似的性质和判定,几何变换问题.23.【答案】解:(1)∵直线5y x =-交x 轴于点B ,交y 轴于点C , ∴(5,0),(0,5)B -.∵抛物线26y ax x c=++过点,B C ,数学试卷 第19页(共20页) 数学试卷 第20页(共20页)∴25300,5,a c c ++=⎧⎨=-⎩∴1,5.a c =-⎧⎨=-⎩∴抛物线的解析式为265y x x =-+-.(2)①∵5,90OB OC BOC ==∠=,∴45ABC ∠=. ∵抛物线265y x x =-+-交x 轴于,A B 两点, ∴(1,0)A .∴4AB =. ∵AM BC ⊥,∴AM =. ∵PQ AM ∥,∴PQ ⊥.若以点,,,A M P Q为顶点的四边形是平行四边形,则PQ AM ==过点P 作PD x ⊥轴交直线BC 于点D ,则45PDQ ∠=.∴4PD ==.设2(,65)P m m m -+-,则(,5)D m m -. 分两种情况讨论:a .当点P 在直线BC 上方时,2265(5)54PD m m m m m =-+---=-+=. ∴11m =(舍去),24m =. b .当点P 在直线BC 下方时,225(65)54PD m m m m m =---+-=-=.∴345522m m +==. 综上所述,点P 的横坐标为4或52+52-. ②1317(,)66M -或237(,)66-. 【解析】(1)利用一次函数解析式确定(0,5)C -,(5,0)B ,然后利用待定系数法求抛物线解析式;(2)①先解方程2650x x -+-=得(1,0)A ,再判断OCB △为等腰直角三角形得到45OBC OCB ∠=∠=,则A M B △为等腰直角三角形,所以AM =平行四边形的性质得到PQ AM PQ BC ==⊥,作PD x ⊥轴交直线BC 于D ,如图1,利用45PDQ ∠=得到4PD ==,设2(,65)P m m m -+-,则(,5)D m m -,讨论:当P 点在直线BC 上方时,265(5)4PD m m m =-+---=;当P 点在直线BC 下方时,25(65)4PD m m m =---+-=,然后分别解方程即可得到P 点的横坐标;②作AN BC ⊥于N ,NH x ⊥轴于H ,作AC 的垂直平分线交BC 于1M ,交AC 于E ,如图2,利用等腰三角形的性质和三角形外角性质得到12AM B ACB ∠=∠,再确定(3,2)N -,AC 的解析式为55y x =-,E 点坐标为15(,)22-,利用两直线垂直的问题可设直线1EM 的解析式为15y x b =-+,把15(,)22E -代入求出b 得到直线1EM 的解析式为11255y x =--,则解方程组511255y x y x =-⎧⎪⎨=-⎪⎩得1M 点的坐标;作直线BC 上作点1M 关于N 点的对称点2M ,如图2,利用对称性得到212AM C AM B ACB ∠=∠=∠,设2(,5)M x x -,根据中点坐标公式得到13632x =,然后求出x 即可得到2M 的坐标,从而得到满足条件的点M 的坐标.【考点】二次函数综合题.。
河南省驻马店地区中考数学一模试卷
河南省驻马店地区中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017八下·重庆期中) 在实数0、、2、﹣3中,最大的数是()A . 0B .C . 2D . ﹣32. (2分) (2018七下·宝安月考) 新亚商城春节期间,开设一种摸奖游戏,中一等奖的机会为20万分之一,用科学记数法表示为()A . 2×10﹣5B . 5×10﹣6C . 5×10﹣5D . 2×10﹣63. (2分)(2018·东营) 下列运算正确的是()A . ﹣(x﹣y)2=﹣x2﹣2xy﹣y2B . a2+a2=a4C . a2•a3=a6D . (xy2)2=x2y44. (2分)在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A .B .C .D .5. (2分)(2014·深圳) 在﹣2,1,2,1,4,6中正确的是()A . 平均数3B . 众数是﹣2C . 中位数是1D . 极差为86. (2分)不等式组的解集是()A . x>3 ;B . x<6;C . 3<x<6 ;D . x>6.7. (2分)(2017·黄石模拟) 某鞋店试销一种新款女鞋,销售情况如图所示,鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()型号3435363738394041数量(双)3510158321A . 平均数B . 众数C . 中位数D . 方差8. (2分)若圆锥的母线长为4cm,底面半径为3cm,则圆锥的侧面展开图的面积是()A . 6πcm2B . 12πcm2C . 18πcm2D . 24πcm29. (2分)如图,一块三角形绿化园地,三个角都做有半径为R的圆形喷水池,则这三个喷水池占去的绿化园地(即阴影部分)的面积为()A .B .C .D . 不能确定10. (2分)下列命题中,假命题是()A . 邻角相等的平行四边形是矩形B . 对角线垂直的平行四边形是矩形C . 四个角相等的四边形是矩形D . 对角线相等的平行四边形是矩形11. (2分)如图,把△ABC绕点C顺时针旋转35°得到△A1B1C,A1B1交AC于点D,若∠A1DC=90°,则∠A 的度数是()A . 35°B . 50°C . 55°D . 60°12. (2分)若x1 , x2(x1<x2)是方程(x-a)(x-b)=1(a<b)的两个根,则实数x1 , x2 , a,b 的大小关系为()A . x1<x2<a<bB . x1<a<x2<bC . x1<a<b<x2D . a<x1<b<x2二、填空题 (共8题;共11分)13. (1分) (2018九上·鼎城期中) 在△ABC中,若,则∠C的度数是________.14. (1分)(2014·台州) 有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果yn=________(用含字母x和n的代数式表示).15. (1分)(2018·洛阳模拟) 如图是两个质地均匀的转盘,现转动转盘①和转盘②各一次,则两个转盘指针都指向红的部分的概率为________.16. (4分)已知关于的方程,若有一个根为0,则 =________,这时方程的另一个根是________;若两根之和为-,则 =________,这时方程的两个根为________.17. (1分)(2017·邹城模拟) 已知A(﹣1,m)与B(2,m﹣3)是反比例函数图象上的两个点.则m的值________.18. (1分) (2018九上·泰州月考) 如图,是圆外的一点,点、在圆上,、分别交圆于点、,如果,,,那么 ________.19. (1分) (2017八下·无锡期中) 如图,面积为28的平行四边形纸片ABCD中,AB=7,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E 为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC 同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为________.20. (1分) (2018九上·柯桥期末) 如图,在平面直角坐标系xOy中,已知抛物线与x 轴交于点A、在B左侧,与y轴交于点C,经过点A的射线AF与y轴正半轴相交于点E,与抛物线的另一个交点为F,,点D是点C关于抛物线对称轴的对称点,点P是y轴上一点,且,则点P的坐标是________.三、解答题 (共6题;共66分)21. (6分) (2017九上·禹州期末) “国庆节大酬宾”,某商场设计的促销活动如下:在一个不透明的箱子里放有3个质地相同的小球,并在球上分别标有“5元”、“10元”和“15元”的字样,规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两个小球所标金额和返还相等价格的购物券,购物券可以在本商场消费,某顾客刚好消费300元.(1)该顾客最多可得到________元购物券;(2)请你用画树状图和列表的方法,求出该顾客所得购物券的金额不低于25元的概率.22. (5分)在数学活动课上,九年级(4)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的方案及测量数据如下:①在大树前的平地上选择一点A,测得由点A看大树顶端C的仰角为30°;②在点A和大树之间选择一点B(A、B、D在同一直线上),测得由点B看大树顶端C的仰角恰好为45°;③量出A、B两点间的距离为5米.请你根据以上数据求出大树CD的高度.23. (15分) (2017七下·荔湾期末) 为了加强对校内外安全监控,创建荔湾平安校园,某学校计划增加15台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格,有效监控半径如表所示,经调查,购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元.甲型乙型价格(元/台)a b有效半径(米/台)150100(1)求a、b的值.(2)若购买该批设备的资金不超过11000元,且两种型号的设备均要至少买一台,学校有哪几种购买方案?(3)在(2)问的条件下,若要求监控半径覆盖范围不低于1600米,为了节约资金,请你设计一种最省钱的购买方案.24. (15分)(2018·湛江模拟) 如图1,在△ABC中,∠BAC=90°,AB=AC=4,D是BC上一个动点,连接AD,以AD为边向右侧作等腰直角△ADE,其中∠ADE=90°.(1)如图2,G,H分别是边AB,BC的中点,连接DG,AH,EH.求证:△AGD∽△AHE;(2)如图3,连接BE,直接写出当BD为何值时,△ABE是等腰三角形;(3)在点D从点B向点C运动过程中,求△ABE周长的最小值.25. (10分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,PQ∥CD?(2)从运动开始,当t取何值时,△PQC为直角三角形?26. (15分) (2020九上·苏州期末) 如图,已知二次函数的图像与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.(1)求线段BC的长;(2)当0≤y≤3时,请直接写出x的范围;(3)点P是抛物线上位于第一象限的一个动点,连接CP,当∠BCP=90o时,求点P的坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共8题;共11分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共6题;共66分) 21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-3、25-1、25-2、26-1、26-2、26-3、。
河南省驻马店市正阳县2018届数学中考二模试卷及参考答案
河南省驻马店市正阳县2018届数学中考二模试卷一、单选题 1.的相反数是( )A . B . C . 2018 D . ﹣20182. 俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm 的小洞,则0.000000039用科学记数法可表示为( )A . 3.9×10B . ﹣3.9×10C . 0.39×10D . 39×103. “2018年平昌冬季奥运会”的颁奖台如图所示,它的俯视图是( ) A . B . C .D . 4. 下列运算正确的是( )A . x +x =x B . a •a =a C . (2x )=6x D . |1﹣|= ﹣15. 某人打靶五次的环数如下:1,4,6,8,x ,其中整数x 是这组数据的中位数,那么这组数据的平均数是( )A . 4.8 B . 4.8或5 C . 4.6或4.8 D . 4.6或4.8或56. 不等式组的非正整数解的个数是( )A . 4B . 5C . 6D . 77. 如图,在△ABC 中,AB=AC ,若以点B 为圆心,BC 长为半径作弧,交AC 于点E ,则下列结论一定正确的是( )A . AE=BEB . BE 是∠ABC 的角平分线 C . ∠A=∠EBCD . AE=BC8. 如图,在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 的中点,要判定四边形DBFE 是菱形,下列所添加条件不正确的是( )A . AB=ACB . AB=BC C . BE 平分∠ABCD . EF=CF 9.已知二次函数y=(x+m )–n 的图象如图所示,则一次函数y=mx+n 与反比例函数y= 的图象可能是( )﹣8﹣8﹣7﹣92243262362A .B .C .D .10. 如图,在正方形ABCD 中,AB=3cm ,动点M 自A 点出发沿AB 方向以每秒1cm 的速度运动,同时动点N 自A 点出发沿折线AD ﹣DC ﹣CB 以每秒3cm 的速度运动,到达B 点时运动同时停止.设△AMN 的面积为y (cm ).运动时间为x (秒),则下列图象中能大致反映y 与x 之间函数关系的是() A . B . C . D .二、填空题11. +(﹣2)=________.12. 若点M (x , y )在函数y=kx+b (k≠0)的图象上,当﹣1≤x ≤2时,﹣2≤y ≤1,则这条直线的函数解析式为________.13. 若关于x 的一元二次方程(1﹣k )x +2kx ﹣k+1=0有实数根,则实数k 的取值范围是________.14. 如图,在Rt △ABC 中,∠B=60°,AB=1,现将△ABC 绕点A 逆时针旋转至点B 恰好落在BC 上的B'处,其中点C 运动路径为,则图中阴影部分的面积是________.15. 如图,等边三角形ABC 的边长为2,D ,E 分别是边AB ,AC 上的点,沿DE 所在的直线折叠∠A ,使点A 的对应点P始终落在边BC 上,若△BDP 是直角三角形,则AD 的长为________.三、解答题16. 先化简,再求值: ,其中x 是方程x ﹣3x ﹣4=0的一个解.17. 电视热播节目“最强大脑”激发了学生的思考兴趣,为满足学生的需求,某学校抽取部分学生举行“最强大脑”选拔赛,针对竞赛成绩分成以下六个等级A :0~50分;B :51~60分;C :61~70分;D :71~80分;E :81~90分;F :91~100分,根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:20111122(1)此次竞赛抽取的总人数为,请补全条形统计图;(2)若全市约有3万名在校学生,试估计全市学生中竞赛成绩在71~90分的人数约有多少?(3)若在此次接受调查的学生中,随机抽查一人,则此人的成绩在80分以上的概率是多少?18. 如图,在等腰△ABC中,AB=AC,以AB为直径作⊙O交边BC于点D,过点D作DE⊥AC交AC于点E,延长ED交A B的延长线于点F.(2)若AB=8,AE=6,求BF的长.19. 位于河南省郑州市的炎黄二帝巨型塑像,是为代表中华民族之创始、之和谐、之统一.塑像由山体CD和头像AD两部分组成.某数学兴趣小组在塑像前50米处的B处测得山体D处的仰角为45°,头像A处的仰角为70.5°,求头像AD的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)20. 如图,一次函数y=x﹣2与反比例函数y= (x>0)的图象相交于点M(m,1).(2)已知点N(n,n),过点N作l∥x轴,交直线y=x﹣2于点A,过点N作l∥y轴,交反比例函数y= (x>0)的图12象与点B,试用n表示△NAB的面积S.21. 植树节来临之际,学校准备购进一批树苗,已知2棵甲种树苗和5棵乙种树苗共需113元;3棵甲种树苗和2棵乙种树苗共需87元.(1)求一棵甲种树苗和一棵乙种树苗的售价各是多少元?(2)学校准备购进这两种树苗共100棵,并且乙种树苗的数量不多于甲种树苗数量的2倍,请设计出最省钱的购买方案,并求出此时的总费用.22. 如图:(1) 观察猜想:在Rt △ABC 中,∠BAC=90°,AB=AC ,点D 在边BC 上,连接AD ,把△ABD 绕点A 逆时针旋转90°,点D 落在点E 处,如图①所示,则线段CE 和线段BD 的数量关系是,位置关系是.(2) 探究证明:在(1)的条件下,若点D 在线段BC 的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.(3) 拓展延伸:如图③,∠BAC≠90°,若AB≠AC ,∠ACB=45°,AC=,其他条件不变,过点D 作DF ⊥AD 交CE 于点F ,请直接写出线段CF 长度的最大值.23. 如图,在平面直角坐标系中,直线l :y=kx+h 与x 轴相交于点A (﹣1,0),与y 轴相交于点C ,与抛物线y=﹣x +bx+3的一交点为点D ,抛物线过x 轴上的AB 两点,且CD=4AC .(1) 求直线l 和抛物线的解析式;(2) 点E 是直线l 上方抛物线上的一动点,求当△ADE 面积最大时,点E 的坐标;(3) 设P 是抛物线对称轴上的一点,点Q在抛物线上,四边形APDQ 能否为矩形?若能,请直接写出点P的坐标;若不能,请说明理由.参考答案1.2.3.4.5.6.7.8.29.10.11.12.13.14.15.16.17.18.19.20.21.22.23.。
河南省2018中考数学试卷与答案解析(word版)
2018年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣=.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D 逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF 为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.2018年河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a ≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣=2.【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D 逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式L=,计算即可;【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S==π.阴【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4.【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF 为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DBF=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80元,当销售单价x=100元时,日销售利润w最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,∴PD=PQ=×2=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,综上所述,P点的横坐标为4或或;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,。
2018年河南省驻马店市一模数学试卷与答案
2018年河南省驻马店市一模数学试卷注意事项:1. 本试卷共6页,三个大题,23小题,满分120分,考试时间100分钟.2. 本试卷上不要答题,请按答题卡上注意事项的要求直接把答题填写在答题卡上,答在试卷上的答案无效. 一、选择题:本大题共10小题,每小题3分,在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列各数中:,12017,-π-0.101 001 000 1,无理数有( )A .2个B .3个C .4个D .5个2. 下图几何体的俯视图是( )A. B.C. D.3. 截止2017年底,我省机动车保有量达到2 350万辆,位居全国第三,按照我省人口计算,平均每五人就有一辆车,请问2 350万用科学记数法表示为( ) A .0.235×108B .23.5×107C .2.35×107D .2.35×104. 郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是( ) A .这些运动员成绩的众数是5B .这些运动员成绩的中位数是2.30C .这些运动员的平均成绩是2.25D .这些运动员成绩的方差是0.072 55. 如图,在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =6, AB =5,则AE 的长为( ) A .4 B .6 C .7D .86. 下列各式计算错误的是( )A .a 2b -3ab 2=-2abB .(-x 3)2=x 6C .(-a )5 ÷a 3=-a 2D .a 2·a 3=a 5GFEDCBA7.不等式组2131xx+⎧⎨-<-⎩≥中的两个不等式的解集在同一个数轴上表示正确的是()A.B.C.D.8.如图,已知点A,B分别是反比例函数kyx=(x<0),1yx=(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=12,则k的值为()A.2 B.-2 C.4 D.-4第8题图第9题图第10题图9.如图,在菱形ABCD中,AB=16,∠B=60°,P是AB上一点,BP=10,Q是CD边上一动点,将四边形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,则CQ的长为()A.10 B.12 C.13 D.1410.如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B,C不重合),连接AE,将AE绕点E顺时针旋转90°得到线段EF,连接FC,设BE=x,△ECF的面积为y,下列图象中,能大致表示y与x的函数关系的是()A. B. C. D.二、填空题:本大题共5小题,每小题3分.11.0(3.14)2cos45-π+︒=______________.12.在一个不透明的盒子中装有12个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是13,则黄球的个数为_______.13.已知抛物线y=ax2+bx+c(a>0)过A(-2,0),O(0,0),B(-3,y1),C(3,y2)四点,则y1与y2的大小关系是___________.FEDCBAA'QPD CBA14.如图,Rt△ABC中,∠ACB=90°,∠A=30°,BC=6,D,E分别是AB,AC边的中点,将△ABC绕点B顺时针旋转60°到△A′BC′的位置,则整个旋转过程中线段DE所扫过部分的面积(即图中阴影部分面积)为___________.C'A15.在矩形ABCD中,AB=6,BC=12,点E在边BC上,且BE=2CE,将矩形沿过点E的直线折叠,点C,D的对应点分别为C′,D′,折痕与边AD交于点F,当点B,C′,D′恰好在同一直线上时,AF的长为___________.三、解答题:解答应写出文字说明、证明过程或演算步骤.16.(8分)先化简,再求值:2212()211a aa a a a+÷--+-,其中a是方程2x2+x-3=0的解.17.(9分)“美丽郑州”是我们的共同愿景,空气质量备受人们关注.我市某空气质量检测站点检测了该区域每天的空气质量情况,统计了2017年9月份至12月份若干天的空气质量情况,并绘制了如下两幅不完整的统计图.各类空气质量天数条形统计图类型污染污染各类空气天数扇形统计图轻度污染请根据图中信息,解答下列问题:(1)统计图共统计了__________天的空气质量情况;(2)请将条形统计图补充完整;空气质量为“优”所在扇形的圆心角度数是__________;(3)环保兴趣小组4名同学(甲、乙、丙、丁),随即选择两名同学去空气质量检测站点参观,请用列表或树状图的方式判断恰好甲、乙两名同学被选中的概率是多少?18. (9分)如图,在△ABD 中,AB =AD ,以AB 为直径的⊙F 交BD 于点C ,交AD 于点E ,CG 是⊙F 的切线,CG 交AD 于点G . (1)求证:CG ⊥AD .(2)填空:①若△BDA 的面积为56,则△BCF 的面积为________; ②当∠GCD 的度数为_________时,四边形EFCD 是菱形.19. (9分)如图,一次函数122y x =-+的图象与反比例函数k y x =的图象交于C ,D 两点,与x ,y 轴交于B ,A 两点,过C 作CE ⊥x 轴,垂足为E ,已知OE =2. (1)直接写出点B 的坐标(______,______),求反比例函数的解析式; (2)求△OCD 的面积;(3)根据图象,直接写出122k x x -+≥的解集.20. (9分)如图,在南北方向的海岸线MN 上,有A ,B 两艘巡逻船,现均收到故障船C 的求救信号.已知A,B 两船相距1)海里,船C 在船A 的北偏东60°方向上,船C 在船B 的东南方向上,MN 上有一观测点D ,测得船C 正好在观测点D 的南偏东75°方向上.(1)分别求出A 与C ,A 与D 之间的距离AC 和AD (若结果有根号,请保留根号).(2)已知据观测点D 处75海里范围内有暗礁.若巡逻船A 沿直线AC 去营救船C≈1.41,)60°75°45°N MD CB A21. (10分)某学校为改进学校教室空气质量,决定引进一批空气净化器,已知有A ,B 两种型号可供选择,学校要求每台空气净化器必须多配备一套滤芯以便及时更换.已知每套滤芯的价格为200元,若购买20台A 型和15台B 型净化器共花费80 000元;购买10台A 型净化器比购买5台B 型净化器多花费10 000元;(1)求两种净化器的价格各多少元?(2)若学校购买两种空气净化器共40台,且A 型净化器的数量不多于B 型净化器数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.22. (10分)【问题提出】如图1,△ABC 中,AB =AC ,点D 在AB 上,过点D 作DE ∥BC ,交AC于E ,连接CD ,F ,G ,H 分别是线段CD ,DE ,BC 的中点,则线段FG ,FH 的数量关系是_____________(直接写出结论).【类比探究】将图1中的△ADE 绕点A 旋转到如图2位置,上述结论还成立吗?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】如图3,在Rt △ABC 中,∠C =90°,AC =5,BC =12,点E 在BC 上,且BE过点E 作ED ⊥AB ,垂足为D ,将△BDE 绕点B 顺时针旋转,连接AE ,取AE 的中点F ,连接DF .当AE 与AC 垂直时,线段DF 的长度为_____________(直接写出结果).AB DEFGH 图2图3A BCDEFGH 图123.(11分)如图1,在平面直角坐标系中,抛物线y=ax2+bx+c过原点O和B(-4,4),且对称轴为直线32x=-.(1)求抛物线的函数表达式;(2)D是直线OB下方抛物线上的一动点,连接OD,BD,在点D运动过程中,当△OBD面积最大时,求点D的坐标和△OBD的最大面积;(3)如图2,若点P为平面内一点,点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,直接写出满足△POD∽△NOB的点P坐标.图1图2。
2018年河南省中考数学一模试卷(可编辑修改word版)
﹣2018 年河南省中考数学一模试卷一、选择题(每小题 3 分,共 30 分) 1.(3 分)下列各数中,最小的数是( A .﹣3B .﹣(﹣2)) C .0D .﹣2.(3 分)据财政部网站消息,2018 年中央财政困难群众救济补助预算指标约为 929 亿元,数据 929 亿元科学记数法表示为( )A .9.29×109B .9.29×1010C .92.9×1010D .9.29×10113.(3 分)如图所示的几何体的主视图是 ()A .B .C .D .4.(3 分)小明解方程 =1 的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得 1﹣(x ﹣2)=1① 去括号,得 1﹣x +2=1② 合并同类项,得﹣x +3=1③ 移项,得﹣x=﹣2④ 系数化为 1,得 x=2⑤ A .①B .②C .③D .④5.(3 分)为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160 个),周二(160 个),周三(180 个),周 四(200 个),周五(170 个).则小丽这周跳绳个数的中位数和众数分别是( )A.180 个,160 个B.170 个,160 个C.170 个,180 个D.160 个,206.(3 分)关于x 的一元二次方程x2﹣2x+k+2=0 有实数根,则k 的取值范围在数轴上表示正确的是()A.B.C.D.7.(3 分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC C.AB=CD,AD=BC D.∠DAB+∠BCD=180°8.(3 分)郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E 五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.B.C.D.9.(3 分)如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE,过点B 作BF⊥AE 交AE 于点F,则BF 的长为()A.B.C.D.10.(3 分)如图,动点P 从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018 次碰到矩形的边时,点P 的坐标为()A.(1,4)B.(5,0)C.(7,4)D.(8,3)二、填空题(每小题3 分,共15 分)11.(3 分)=.12.(3 分)方程3x2﹣5x+2=0 的一个根是a,则6a2﹣10a+2= .13.(3 分)点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1 的图象上,若当1<x1<2,3 <x2<4 时,则y1与y2的大小关系是y1 y2.(用“>”、“<”、“=”填空)14.(3 分)如图1,在R t△ABC 中,∠ACB=90°,点P 以每秒2cm 的速度从点A 出发,沿折线AC﹣CB 运动,到点B 停止.过点P 作PD⊥AB,垂足为D,PD 的长y(cm)与点P 的运动时间x(秒)的函数图象如图2 所示.当点P 运动5 秒时,PD 的长的值为.15.(3 分)如图,在菱形ABCD 中,AB=,∠B=120°,点E 是AD 边上的一个动点(不与A,D 重合),EF∥AB 交BC 于点F,点G 在CD 上,DG=DE.若△EFG 是等腰三角形,则DE 的长为.三、解答题(本大题共8 小题,满分75 分)16.(8 分)先化简,再求值:(x+2y)2﹣(2y+x)(2y﹣x)﹣2x2,其中x=+2,y=﹣2.17.(9 分)全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.运动形式 A B C D E人数12 30 m 54 9请你根据以上信息,回答下列问题:(1)接受问卷调查的共有人,图表中的m= ,n=;(2)统计图中,A 类所对应的扇形圆心角的度数为;(3)根据调查结果,我市市民最喜爱的运动方式是,不运动的市民所占的百分比是;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500 人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?18.(9 分)如图,AB 是⊙O 的直径,点C 为⊙O 上一点,经过C 作CD⊥AB 于点D,CF 是⊙O 的切线,过点A 作AE⊥CF 于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB 的长.19.(9 分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A 处测得塔杆顶端C 的仰角是55°,乙同学站在岩石B 处测得叶片的最高位置D 的仰角是45°(D,C,H 在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15 米(塔杆与叶片连接处的长度忽略不计),岩石高BG 为4 米,两处的水平距离AG 为23 米,BG⊥GH,CH⊥AH,求塔杆CH 的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)20.(9 分)如图,反比例y=的图象与一次函数y=kx﹣3 的图象在第一象限内交于A(4,a).(1)求一次函数的解析式;(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC 是等腰直角三角形,求n 的值.21.(10 分)一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8 天可以完成,需付费用共3520 元;若先请甲组单独做6天,再请乙组单独做12 天可以完成,需付费用3480 元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12 天,乙组单独完成需24 天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200 元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)22.(10 分)如图1,△ABC 与△CDE 都是等腰直角三角形,直角边AC,CD 在同一条直线上,点M、N 分别是斜边AB、DE 的中点,点P 为AD 的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图1 中,PM 与PN 的数量关系是,位置关系是.(2)探究证明:将图1 中的△CDE 绕着点C 顺时针旋转α(0°<α<90°),得到图2,AE 与MP、BD 分别交于点G、H,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△CDE 绕点 C 任意旋转,若AC=4,CD=2,请直接写出△PMN 面积的最大值.23.(11 分)如图,抛物线y=﹣x2+bx+c 与x 轴交于点A 和点B(3,0),与y 轴交于点C(0,3),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D 的坐标;(2)点M 是抛物线上的动点,设点M 的横坐标为m.①当∠MBA=∠BDE 时,求点M 的坐标;②过点M 作MN∥x 轴,与抛物线交于点N,P 为x 轴上一点,连接PM,PN,将△PMN 沿着MN 翻折,得△QMN,若四边形MPNQ 恰好为正方形,直接写出m 的值.﹣2018 年河南省中考数学一模试卷参考答案与试题解析一、选择题(每小题3 分,共30 分)1.【分析】应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.【解答】解:因为在数轴上﹣3 在其他数的左边,所以﹣3 最小;故选:A.【点评】此题考负数的大小比较,应理解数字大的负数反而小.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于929 亿有11 位,所以可以确定n=11﹣1=10.【解答】解:929 亿=92 900 000 000=9.29×1010.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定 a 与n 值是关键.3.【分析】先细心观察原立体图形和长方体的位置关系,结合四个选项选出答案.【解答】解:由图可知,主视图由一个矩形和三角形组成.故选:D.【点评】本题考查了简单组合体的三视图,培养了学生的思考能力和对几何体三种视图的空间想象能力.4.【分析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.【解答】解:=1去分母,得1﹣(x﹣2)=x,故①错误,故选:A.【点评】本题考查解分式方程,解答本题的关键是明确解分式方程的方法.5.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160 出现了2 次,出现的次数最多,则众数是160;故选:B.【点评】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.【分析】根据方程的系数结合根的判别式△≥0,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围,再将其表示在数轴上即可得出结论.【解答】解:∵关于x 的一元二次方程x2﹣2x+k+2=0 有实数根,∴△=(﹣2)2﹣4(k+2)≥0,解得:k≤﹣1.故选:C.【点评】本题考查了根的判别式以及在数轴上表示不等式的解集,牢记“当△≥0 时,方程有实数根”是解题的关键.7.【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD 为菱形.所以根据菱形的性质进行判断.【解答】解∵四边形ABCD 是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD 是平行四边形(对边相互平行的四边形是平行四边形);过点D 分别作BC,CD 边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD 中,S△ABC =S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故 B 正确;∴平行四边形ABCD 为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A 正确;AB=CD,AD=BC(平行四边形的对边相等),故C 正确;如果四边形ABCD 是矩形时,该等式成立.故D 不一定正确.故选:D.【点评】本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.8.【分析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.【解答】解:列表得:A B C D EA AA BA CA DA EAB AB BB CB DB EBC AC BC CC DC ECD AD BD CD DD EDE AE BE CE DE EE∴一共有25 种等可能的情况,恰好选择从同一个口进出的有 5 种情况,∴恰好选择从同一个口进出的概率为=,故选:C.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率= 所求情况数与总情况数之比.9.【分析】根据S△ABE =S矩形ABCD=3=•AE•BF,先求出AE,再求出BF 即可.【解答】解:如图,连接BE.∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE 中,AE===,∵S△ABE = S矩形ABCD=3= •AE•BF,∴BF=.故选:B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.10.【分析】根据反射角与入射角的定义作出图形,可知每6 次反弹为一个循环组依次循环,用2018 除以6,根据商和余数的情况确定所对应的点的坐标即可.【解答】解:如图,经过6 次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P 第2018 次碰到矩形的边时为第336 个循环组的第2 次反弹,点P 的坐标为(7,4).故选:C.【点评】此题主要考查了点的坐标的规律,作出图形,观察出每6 次反弹为一个循环组依次循环是解题的关键.二、填空题(每小题3 分,共15 分)11.【分析】如果一个数x 的平方等于a,那么x 是 a 的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:2【点评】此题主要考查了学生开平方的运算能力,比较简单.12.【分析】根据一元二次方程的解的定义,将x=a 代入方程3x2﹣5x+2=0,列出关于a 的一元二次方程,通过变形求得3a2﹣5a 的值后,将其整体代入所求的代数式并求值即可.【解答】解:∵方程3x2﹣5x+2=0 的一个根是a,∴3a2﹣5a+2=0,∴3a2﹣5a=﹣2,∴6a2﹣10a+2=2(3a2﹣5a)+2=﹣2×2+2=﹣2.故答案是:﹣2.【点评】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.13.【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5 可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A 点横坐标离对称轴的距离小于 B 点横坐标离对称轴的距离,∴y1<y2.故答案为:<.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.【分析】由P 的速度和图2 得出AC 和BC 的长,运用勾股定理求出AB,即可求出sin∠B,求出P 运动5 秒距离B 的长度利用三角函数得出PD 的值.【解答】解:∵P 以每秒2cm 的速度从点 A 出发,∴从图 2 中得出AC=2×3=6cm,BC=(7﹣3)×2=8cm,∵Rt△ABC 中,∠ACB=90°,∴AB= ==10cm,∴sin∠B= ==,∵当点P 运动 5 秒时,BP=2×7﹣2×5=4cm,∴PD=4×sin∠B=4×=2.4cm,故答案为2.4cm.【点评】本题主要考查了动点问题的函数图象,理清图象的含义即会识图是解题的关键.15.【分析】由四边形ABCD 是菱形,得到BC∥AD,由于EF∥AB,得到四边形ABFE 是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△EFG 为等腰三角形时,①EF=GE= 时,于是得到DE=DG=AD÷=1,② GE=GF 时,根据勾股定理得到DE=.【解答】解:∵四边形ABCD 是菱形,∠B=120°∴∠D=∠B=120°,∠A=180°﹣120°=60°,BC∥AD,∵EF∥AB,∴四边形ABFE 是平行四边形,∴EF∥AB,∴EF=AB= ,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,当△EFG 为等腰三角形时,①当EF=EG 时,EG=,如图1,过点 D 作DH⊥EG 于H,∴EH= EG= ,在Rt△DEH 中,DE==1,②GE=GF 时,如图2,过点G 作GQ⊥EF,∴EQ= EF= ,在Rt△EQG 中,∠QEG=30°,∴EG=1,过点D 作DP⊥EG 于P,∴PE= EG= ,同①的方法得,DE=,③当EF=FG 时,∴∠EFG=180°﹣2×30°=120°=∠CFE,此时,点 C 和点G 重合,点 F和点B 重合,不符合题意,故答案为:1 或.【点评】本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.三、解答题(本大题共8 小题,满分75 分)16.【分析】利用完全平方公式、平方差公式展开并合并同类项,然后把x、y 的值代入进行计算即可得解.【解答】解:原式=x2+4xy+4y2﹣(4y2﹣x2)﹣2x2=x2+4xy+4y2﹣4y2+x2﹣2x2=4xy,当x=+2,y= ﹣2 时,原式=4×(+2)×(﹣2)=4×(3﹣4)=﹣4.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式混合运算顺序和运算法则及完全平方公式、平方差公式.17.【分析】(1)由B 项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D 项目人数除以总人数可得n 的值;(2)360°乘以 A 项目人数占总人数的比例可得;(3)由表可知样本中散步人数最多,据此可得,再用E 项目人数除以总人数可得;(4)总人数乘以样本中C 人数所占比例.【解答】解:(1)接受问卷调查的共有30÷20%=150 人,m=150﹣(12+30+54+9)=45,n%=×100%=36%,∴n=36,故答案为:150、45、36;(2)A 类所对应的扇形圆心角的度数为360°×=28.8°,故答案为:28.8°;(3)根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是×100%=6%,故答案为:散步、6%;(4)1500×=450(人),答:估计该社区参加碧沙岗“暴走团”的大约有450 人.【点评】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.【分析】(1)连接OC,如图所示,由CD⊥AB,AE⊥CF,利用垂直的定义得到一对直角相等,再由CF 为圆的切线,利用切线的性质得到CO⊥EF,可得出AE 与OC 平行,利用两直线平行内错角相等,等边对等角得到一对角相等,利用AAS 得到三角形全等,利用全等三角形的对应边相等即可得证;(2)连接BC,在直角三角形ACD 中,利用勾股定理求出AC 的长,在直角三角形AEC 中,利用锐角三角函数定义求出所求即可.【解答】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF 是圆O 的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE 和△CAD 中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD 中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC 中,cos∠EAC==,∵AB 为直径,∴∠ACB=90°,∴cos∠CAB= =,∵∠EAC=∠CAB,∴=,即AB=.【点评】此题考查了切线的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.19.【分析】作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan∠CAH=tan55°•x 知CE=CH﹣EH=tan55°•x﹣4,根据BE=DE 可得关于x 的方程,解之可得.【解答】解:如图,作BE⊥DH 于点E,则GH=BE、BG=EH=4,设AH=x,则BE=GH=GA+AH=23+x,在Rt△ACH 中,CH=AHtan∠CAH=tan55°•x,∴CE=CH﹣EH=tan55°•x﹣4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°•x﹣4+15,解得:x≈30,∴CH=tan55°•x=1.4×30=42,答:塔杆CH 的高为42 米.【点评】本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.20.(1)由已知先求出a,得出点A 的坐标,再把A 的坐标代入一次函数y=kx﹣3 【分析】求出k 的值即可求出一次函数的解析式;(2)易求点B、C 的坐标分别为(n,),(n,n﹣3).设直线y=x﹣3 与x 轴、y 轴分别交于点D、E,易得OD=OE=3,那么∠OED=45°.根据平行线的性质得到∠BCA=∠OED=45°,所以当△ ABC 是等腰直角三角形时只有AB=AC 一种情况.过点 A 作AF⊥BC 于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程﹣1=1﹣(n﹣3),解方程即可.【解答】解:(1)∵反比例y= 的图象过点A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函数y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函数的解析式为y=x﹣3;(2)由题意可知,点B、C 的坐标分别为(n,),(n,n﹣3).设直线y=x﹣3 与x 轴、y 轴分别交于点D、E,如图.当x=0 时,y=﹣3;当y=0 时,x=3,∴OD=OE,∴∠OED=45°.∵直线x=n 平行于y 轴,∴∠BCA=∠OED=45°,∵△ABC 是等腰直角三角形,且0<n<4,∴只有AB=AC 一种情况,过点A 作AF⊥BC 于F,则BF=FC,F(n,1),∴﹣1=1﹣(n﹣3),解得n1=1,n2=4,∵0<n<4,∴n2=4 舍去,∴n 的值是1.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.21.【分析】(1)设甲组工作一天商店应付x 元,乙组工作一天商店应付y 元,根据“若请甲乙两个装修组同时施工,8 天可以完成,需付费用共3520 元;若先请甲组单独做6 天,再请乙组单独做12 天可以完成,需付费用3480 元”,即可得出关于x、y 的二元一次方程组,解之即可得出结论;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用,比较后即可得出结论;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数,比较后即可得出结论.【解答】解:(1)设甲组工作一天商店应付x 元,乙组工作一天商店应付y 元,根据题意得:,解得:.答:甲组工作一天商店应付300 元,乙组工作一天商店应付140 元.(2)单独请甲组所需费用为:300×12=3600(元),单独请乙组所需费用为:140×24=3360(元),∵3600>3360,∴单独请乙组所需费用最少.(3)商店请甲乙两组同时装修,才更有利,理由如下:单独请甲组完成,损失钱数为:200×12+3600=6000(元),单独请乙组完成,损失钱数为:200×24+3360=8160(元),请甲乙两组同时完成,损失钱数为:200×8+3520=5120(元).∵8160>6000>5120,∴商店请甲乙两组同时装修,才更有利.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用;(3)根据损失总钱数=每天盈利× 装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数22.【分析】(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)由(2)可知△PMN 是等腰直角三角形,PM=BD,推出当BD 的值最大时,PM 的值最大,△PMN 的面积最大,推出当B、C、D 共线时,BD 的最大值=BC+CD=6,由此即可解决问题;【解答】解:(1)PM=PN,PM⊥PN,理由如下:延长AE 交BD 于O.∵△ACB 和△ECD 是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE 和△BCD 中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵点M、N 分别是斜边AB、DE 的中点,点P 为AD 的中点,∴PM= BD,PN= AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN.故答案是:PM=PN,PM⊥PN.(2)如图②中,设AE 交BC 于O.∵△ACB 和△ECD 是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N 分别为AD、AB、DE 的中点,∴PM= BD,PM∥BD;PN= AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)由(2)可知△PMN 是等腰直角三角形,PM=BD,∴当BD 的值最大时,PM 的值最大,△PMN 的面积最大,∴当B、C、D 共线时,BD 的最大值=BC+CD=6,∴PM=PN=3,∴△PMN 的面积的最大值=×3×3= .【点评】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.23.【分析】(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA==,tan∠BDE= =,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N 关于抛物线的对称轴对称,四边形MPNQ 是正方形,推出点P是抛物线的对称轴与x 轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,解方程即可解决问题;【解答】解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴抛物线的解析式为y=﹣x2+2x+3.∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴顶点D 坐标(1,4).(2)①作MG⊥x 轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA= =,∵DE⊥x 轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE= =,∵∠MBA=∠BDE,∴=当点M 在x 轴上方时,=,解得m=﹣或3(舍弃),∴M(﹣,),当点M 在x 轴下方时,=,解得m=﹣或m=3(舍弃),∴点M(﹣,﹣),综上所述,满足条件的点M 坐标(﹣,)或(﹣,﹣);②如图中,∵MN∥x 轴,∴点M、N 关于抛物线的对称轴对称,∵四边形MPNQ 是正方形,∴点P 是抛物线的对称轴与x 轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,当﹣m2+2m+3=1﹣m 时,解得m=,当﹣m2+2m+3=m﹣1 时,解得m=,∴满足条件的m 的值为或;【点评】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
(完整版)河南省中考数学一模试卷.doc
2018 年河南省中考数学一模试卷一、选择题(每小题 3 分,共 30 分)1.(3 分)下列各数中,最小的数是()A.﹣ 3B.﹣(﹣ 2)C.0D.﹣2.( 3 分)据财政部网站消息, 2018 年中央财政困难群众救济补助预算指标约为929 亿元,数据 929 亿元科学记数法表示为()A.9.29×109 B.9.29× 1010 C.92.9×1010 D.9.29×10113.(3 分)如图所示的几何体的主视图是()A.B.C.D.4.(3 分)小明解方程﹣=1 的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1﹣( x﹣2)=1①去括号,得 1﹣x+2=1②合并同类项,得﹣ x+3=1③移项,得﹣ x=﹣2④系数化为 1,得 x=2⑤A.①B.②C.③D.④5.(3 分)为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160 个),周二( 160 个),周三( 180 个),周四(200 个),周五(170 个).则小丽这周跳绳个数的中位数和众数分别是()A.180 个, 160 个B.170 个, 160 个 C.170 个, 180 个D.160 个, 200 个6.( 3 分)关于 x 的一元二次方程x2﹣2x+k+2=0 有实数根,则 k 的取值范围在数轴上表示正确的是()A.B.C.D.7.(3 分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ ABC=∠ ADC,∠ BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠ DAB+∠BCD=180°8.(3 分)郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E 五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.B.C.D.9.(3 分)如图,在矩形ABCD中, AB=2,BC=3.若点 E 是边 CD 的中点,连接AE,过点 B 作 BF⊥AE 交 AE于点 F,则 BF的长为()A.B.C.D.10.( 3 分)如图,动点 P 从( 0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角. 当点 P 第 2018 次碰到矩形的边时,点 P 的坐标为()A .(1,4)B .( 5, 0)C .(7,4)D .(8,3)二、填空题(每小题 3 分,共 15 分)11.( 3 分) = ..( 3 分)方程 2﹣5x+2=0 的一个根是 a ,则 6a 2﹣10a+2= . 12 3x.( 3 分)点2﹣4x ﹣ 1 的图象上,若当 13 A ( x 1,y 1)、B (x 2,y 2)在二次函数 y=x1<x 1<2,3<x 2<4 时,则 y 1 与 y 2 的大小关系是 y 1 y 2.(用 “>”、“<”、 “ =填”空)14.( 3 分)如图 1,在 R t △ABC 中,∠ ACB=90°,点 P 以每秒 2cm 的速度从点 A 出发,沿折线 AC ﹣CB 运动,到点 B 停止.过点 P 作 PD ⊥AB ,垂足为 D ,PD的长 y ( cm )与点 P 的运动时间 x (秒)的函数图象如图 2 所示.当点 P 运动5 秒时, PD 的长的值为 .15.( 3 分)如图,在菱形 ABCD 中, AB= ,∠ B=120°,点 E 是 AD 边上的一个动点(不与 A ,D 重合),EF ∥AB 交 BC 于点 F ,点 G 在 CD 上, DG=DE .若△EFG 是等腰三角形,则 DE 的长为 .三、解答题(本大题共8 小题,满分 75 分)16.( 8 分)先化简,再求值:(x+2y)2﹣( 2y+x)(2y﹣x)﹣ 2x2,其中 x= +2,y= ﹣2.17.( 9 分)全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目: A:健身房运动; B:跳广场舞; C:参加暴走团; D:散步; E:不运动.以下是根据调查结果绘制的统计图表的一部分.运动形式A B C D E人数1230m549请你根据以上信息,回答下列问题:( 1)接受问卷调查的共有人,图表中的m=,n=;( 2)统计图中, A 类所对应的扇形圆心角的度数为;( 3)根据调查结果,我市市民最喜爱的运动方式是,不运动的市民所占的百分比是;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有 1500 人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?18.( 9 分)如图, AB 是⊙ O 的直径,点 C 为⊙ O 上一点,经过 C 作 CD⊥AB 于点D, CF是⊙ O 的切线,过点 A 作 AE⊥CF于 E,连接 AC.(1)求证: AE=AD.(2)若 AE=3,CD=4,求 AB 的长.19.( 9 分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的 A 处测得塔杆顶端 C 的仰角是 55°,乙同学站在岩石 B 处测得叶片的最高位置 D 的仰角是 45°( D,C,H 在同一直线上, G,A,H 在同一条直线上),他们事先从相关部门了解到叶片的长度为15 米(塔杆与叶片连接处的长度忽略不计),岩石高 BG为 4 米,两处的水平距离 AG 为 23 米, BG⊥GH,CH⊥ AH,求塔杆 CH 的高.(参考数据: tan55 °≈1.4,tan35 °≈0.7,sin55 °≈ 0.8, sin35 °≈0.6)20.( 9 分)如图,反比例 y=的图象与一次函数y=kx﹣ 3 的图象在第一象限内交于 A(4,a).(1)求一次函数的解析式;(2)若直线 x=n(0<n<4)与反比例函数和一次函数的图象分别交于点 B,C,连接 AB,若△ ABC是等腰直角三角形,求 n 的值.21.( 10 分)一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工, 8 天可以完成,需付费用共3520 元;若先请甲组单独做6 天,再请乙组单独做12 天可以完成,需付费用3480 元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需 12 天,乙组单独完成需 24 天,单独请哪个组,商店所需费用最少?( 3)装修完毕第二天即可正常营业,且每天仍可盈利200 元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用( 1)(2)问的条件及结论)22.(10 分)如图 1,△ABC与△ CDE都是等腰直角三角形,直角边 AC,CD 在同一条直线上,点 M 、N 分别是斜边 AB、DE的中点,点 P 为 AD 的中点,连接AE, BD, PM, PN, MN.( 1)观察猜想:图 1 中, PM 与 PN 的数量关系是,位置关系是.( 2)探究证明:将图 1 中的△ CDE绕着点 C 顺时针旋转α(0°<α<90°),得到图 2,AE与MP、 BD 分别交于点 G、H,判断△ PMN 的形状,并说明理由;( 3)拓展延伸:把△ CDE绕点 C 任意旋转,若AC=4, CD=2,请直接写出△ PMN 面积的最大值.23.( 11 分)如图,抛物线 y=﹣ x2+bx+c 与 x 轴交于点 A 和点 B(3,0),与 y 轴交于点 C(0,3),点 D 是抛物线的顶点,过点 D 作 x 轴的垂线,垂足为 E,连接 DB.(1)求此抛物线的解析式及顶点 D 的坐标;(2)点 M 是抛物线上的动点,设点 M 的横坐标为 m.①当∠ MBA=∠ BDE时,求点 M 的坐标;②过点 M 作 MN∥x 轴,与抛物线交于点 N,P 为 x 轴上一点,连接 PM,PN,将第 6页(共 26页)出 m 的值.2018 年河南省中考数学一模试卷参考答案与试题解析一、选择题(每小题 3 分,共 30 分)1.【分析】应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.【解答】解:因为在数轴上﹣ 3 在其他数的左边,所以﹣ 3 最小;故选: A.【点评】此题考负数的大小比较,应理解数字大的负数反而小.2.【分析】科学记数法的表示形式为a× 10n的形式,其中 1≤| a| < 10,n 为整数.确定n 的值是易错点,由于 929 亿有 11 位,所以可以确定 n=11﹣1=10.【解答】解: 929 亿 =92 900 000 000=9.29×1010.故选: B.【点评】此题考查科学记数法表示较大的数的方法,准确确定 a 与 n 值是关键.3.【分析】先细心观察原立体图形和长方体的位置关系,结合四个选项选出答案.【解答】解:由图可知,主视图由一个矩形和三角形组成.故选: D.【点评】本题考查了简单组合体的三视图,培养了学生的思考能力和对几何体三种视图的空间想象能力.4.【分析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.【解答】解:﹣=1第 8页(共 26页)1﹣( x﹣2)=x,故①错误,故选: A.【点评】本题考查解分式方程,解答本题的关键是明确解分式方程的方法.5.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是 170,则中位数是 170;160 出现了 2 次,出现的次数最多,则众数是160;故选: B.【点评】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.【分析】根据方程的系数结合根的判别式△≥0,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围,再将其表示在数轴上即可得出结论.【解答】解:∵关于 x 的一元二次方程x2﹣2x+k+2=0 有实数根,∴△ =(﹣ 2)2﹣4(k+2)≥ 0,解得: k≤﹣ 1.故选: C.【点评】本题考查了根的判别式以及在数轴上表示不等式的解集,牢记“当△≥0时,方程有实数根”是解题的关键.7.【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD为菱形.所以根据菱形的性质进行判断.第 9页(共 26页)【解答】解∵四边形 ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形 ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点 D 分别作 BC,CD 边上的高为 AE, AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形 ABCD中, S△ABC=S△ACD,即 BC×AE=CD×AF,∴BC=CD,即 AB=BC.故 B 正确;∴平行四边形 ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ ABC=∠ADC,∠ BAD=∠BCD(菱形的对角相等),故 A 正确;AB=CD,AD=BC(平行四边形的对边相等),故 C 正确;如果四边形 ABCD是矩形时,该等式成立.故 D 不一定正确.故选: D.【点评】本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.8.【分析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.【解答】解:列表得:A B C D EA AA BA CA DA EAB AB BB CB DB EBC AC BC CC DC ECD AD BD CD DD ED第10页(共 26页)E AE BE CE DE EE∴一共有 25 种等可能的情况,恰好选择从同一个口进出的有 5 种情况,∴恰好选择从同一个口进出的概率为=,故选: C.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率 = 所求情况数与总情况数之比.9.【分析】根据 S△ABE=S 矩形ABCD=3= ?AE?BF,先求出 AE,再求出 BF即可.【解答】解:如图,连接 BE.∵四边形 ABCD是矩形,∴AB=CD=2,BC=AD=3,∠ D=90°,在 Rt△ADE中, AE===,∵S△ABE= S矩形ABCD=3= ?AE?BF,∴ BF=.故选: B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.10.【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依第11页(共 26页)次循,用 2018 除以 6,根据商和余数的情况确定所的点的坐即可.【解答】解:如, 6 次反后点回到出点(0, 3),∵2018÷ 6=336⋯2,∴当点 P 第 2018 次碰到矩形的第336 个循的第 2 次反,点P 的坐( 7,4).故:C.【点】此主要考了点的坐的律,作出形,察出每6次反一个循依次循是解的关.二、填空(每小 3 分,共 15 分)11.【分析】如果一个数 x 的平方等于 a,那么 x 是 a 的算平方根,由此即可求解.【解答】解:∵ 22=4,∴=2.故答案: 2【点】此主要考了学生开平方的运算能力,比.12.【分析】根据一元二次方程的解的定,将x=a 代入方程 3x2 5x+2=0,列出关于a 的一元二次方程,通形求得 3a2 5a 的后,将其整体代入所求的代数式并求即可.【解答】解:∵方程 3x25x+2=0 的一个根是 a,∴3a2 5a+2=0,∴3a2 5a= 2,第12页(共 26页)∴6a2﹣ 10a+2=2( 3a2﹣ 5a)+2=﹣2×2+2=﹣2.故答案是:﹣ 2.【点评】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.13.【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:由二次函数y=x2﹣4x﹣1=( x﹣2)2﹣5 可知,其图象开口向上,且对称轴为 x=2,∵1< x1<2,3<x2<4,∴A 点横坐标离对称轴的距离小于 B 点横坐标离对称轴的距离,∴y1<y2.故答案为:<.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.【分析】由 P 的速度和图 2 得出 AC和 BC的长,运用勾股定理求出AB,即可求出sin∠B,求出 P 运动 5 秒距离 B 的长度利用三角函数得出 PD 的值.【解答】解:∵ P以每秒 2cm 的速度从点 A 出发,∴从图 2 中得出 AC=2×3=6cm,BC=(7﹣3)× 2=8cm,∵Rt△ABC中,∠ ACB=90°,∴ AB===10cm,∴sin∠B= = = ,∵当点 P 运动 5 秒时, BP=2×7﹣2×5=4cm,第13页(共 26页)∴PD=4× sin∠ B=4× =2.4cm,故答案为 2.4cm.【点评】本题主要考查了动点问题的函数图象,理清图象的含义即会识图是解题的关键.15.【分析】由四边形 ABCD是菱形,得到 BC∥ AD,由于 EF∥AB,得到四边形 ABFE 是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△ EFG为等腰三角形时,① EF=GE=时,于是得到DE=DG= AD÷=1,②GE=GF时,根据勾股定理得到DE=.【解答】解:∵四边形 ABCD是菱形,∠ B=120°∴∠D=∠ B=120°,∠ A=180°﹣120°=60°,BC∥AD,∵EF∥AB,∴四边形 ABFE是平行四边形,∴EF∥AB,∴EF=AB= ,∠ DEF=∠A=60°,∠ EFC=∠B=120°,∵ DE=DG,∴∠ DEG=∠DGE=30°,∴∠ FEG=30°,当△ EFG为等腰三角形时,①当 EF=EG时, EG=,如图 1,过点 D 作 DH⊥EG于 H,∴EH= EG= ,在 Rt△DEH中, DE= =1,②GE=GF时,如图 2,过点 G 作 GQ⊥EF,∴ EQ= EF= ,第14页(共 26页)在Rt△EQG中,∠QEG=30°,∴ EG=1,过点 D 作 DP⊥EG于 P,∴ PE= EG= ,同①的方法得, DE=,③当 EF=FG时,∴∠ EFG=180°﹣ 2× 30°=120°=∠CFE,此时,点 C 和点 G 重合,点F 和点 B 重合,不符合题意,故答案为: 1 或.【点评】本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.三、解答题(本大题共8 小题,满分 75 分)16.【分析】利用完全平方公式、平方差公式展开并合并同类项,然后把x、y 的值代入进行计算即可得解.【解答】解:原式 =x2+4xy+4y2﹣( 4y2﹣x2)﹣ 2x2=x2+4xy+4y2﹣4y2+x2﹣ 2x2=4xy,当x= +2,y= ﹣ 2 时,原式 =4×( +2)×(﹣ 2)=4×( 3﹣4)=﹣4.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式混合运算顺序和运算法则及完全平方公式、平方差公式.17.【分析】(1)由 B 项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得 m=45,再用 D 项目人数除以总人数可得n 的值;( 2) 360°乘以 A 项目人数占总人数的比例可得;( 3)由表可知样本中散步人数最多,据此可得,再用 E 项目人数除以总人数可得;( 4)总人数乘以样本中 C 人数所占比例.【解答】解:(1)接受问卷调查的共有30÷ 20%=150人,m=150﹣(12+30+54+9)=45,n%=×100%=36%,∴n=36,故答案为: 150、45、 36;( 2) A 类所对应的扇形圆心角的度数为360°×=28.8 °,故答案为: 28.8 °;(3)根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是×100%=6%,故答案为:散步、 6%;(4) 1500×=450(人),答:估计该社区参加碧沙岗“暴走团”的大约有450人.【点评】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.【分析】(1)连接 OC,如图所示,由 CD⊥ AB,AE⊥CF,利用垂直的定义得到一对直角相等,再由CF为圆的切线,利用切线的性质得到CO⊥EF,可得出 AE 与 OC平行,利用两直线平行内错角相等,等边对等角得到一对角相等,利用AAS得到三角形全等,利用全等三角形的对应边相等即可得证;(2)连接 BC,在直角三角形 ACD中,利用勾股定理求出 AC 的长,在直角三角形AEC中,利用锐角三角函数定义求出所求即可.【解答】(1)证明:连接 OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠ AEC=∠ADC=90°,∵CF是圆 O 的切线,∴CO⊥CF,即∠ ECO=90°,∴AE∥OC,∴∠ EAC=∠ACO,∵OA=OC,∴∠ CAO=∠ACO,∴∠ EAC=∠CAO,在△ CAE和△ CAD中,,∴△ CAE≌△ CAD(AAS),∴AE=AD;( 2)解:连接 CB,如图所示,∵△ CAE≌△ CAD,AE=3,∴AD=AE=3,∴在 Rt△ ACD中, AD=3,CD=4,根据勾股定理得: AC=5,在Rt△AEC中, cos∠EAC= = ,∵AB为直径,∴∠ ACB=90°,∴ cos∠ CAB= = ,∵∠ EAC=∠CAB,∴= ,即 AB= .【点评】此题考查了切线的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.19.【分析】作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan ∠CAH=tan55°?x知 CE=CH﹣ EH=tan55°?x﹣ 4,根据 BE=DE可得关于 x 的方程,解之可得.【解答】解:如图,作 BE⊥DH 于点 E,则GH=BE、BG=EH=4,设AH=x,则 BE=GH=GA+AH=23+x,在Rt△ACH中, CH=AHtan∠CAH=tan55°?x,∴ CE=CH﹣EH=tan55°?x﹣ 4,∵∠ DBE=45°,∴ BE=DE=CE+DC,即 23+x=tan55 °?x﹣4+15,解得: x≈30,∴CH=tan55°?x=1×.430=42,答:塔杆 CH的高为 42 米.【点评】本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.20.【分析】( 1)由已知先求出 a,得出点 A 的坐标,再把 A 的坐标代入一次函数y=kx ﹣3 求出 k 的值即可求出一次函数的解析式;( 2)易求点 B、C 的坐标分别为( n,),(n,n﹣3).设直线y=x﹣3与x轴、y 轴分别交于点 D、 E,易得 OD=OE=3,那么∠ OED=45°.根据平行线的性质得到∠ BCA=∠OED=45°,所以当△ ABC 是等腰直角三角形时只有 AB=AC一种情况.过点 A 作 AF⊥BC 于 F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程﹣1=1﹣( n﹣3),解方程即可.【解答】解:(1)∵反比例 y=的图象过点A(4,a),∴a= =1,∴A( 4, 1),把A(4,1)代入一次函数 y=kx﹣3,得 4k﹣3=1,∴ k=1,∴一次函数的解析式为 y=x﹣3;( 2)由题意可知,点B、C 的坐标分别为( n,),(n,n﹣3).设直线 y=x﹣ 3 与 x 轴、 y 轴分别交于点 D、E,如图.当 x=0 时, y=﹣3;当 y=0 时, x=3,∴OD=OE,∴∠OED=45°.∵直线 x=n 平行于 y 轴,∴∠ BCA=∠OED=45°,∵△ ABC是等腰直角三角形,且 0<n<4,∴只有 AB=AC一种情况,过点 A 作 AF⊥ BC于 F,则 BF=FC,F(n,1),∴﹣1=1﹣( n﹣ 3),解得 n1=1,n2=4,∵0< n< 4,∴ n2=4 舍去,∴ n 的值是 1.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.21.【分析】(1)设甲组工作一天商店应付x 元,乙组工作一天商店应付y 元,根据“若请甲乙两个装修组同时施工, 8 天可以完成,需付费用共 3520 元;若先请甲组单独做 6 天,再请乙组单独做 12 天可以完成,需付费用 3480 元”,即可得出关于 x、y 的二元一次方程组,解之即可得出结论;(2)根据所需总费用 =每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用,比较后即可得出结论;(3)根据损失总钱数 =每天盈利×装修时间 +装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数,比较后即可得出结论.第20页(共 26页)【解答】解:(1)设甲组工作一天商店应付x 元,乙组工作一天商店应付y 元,根据题意得:,解得:.答:甲组工作一天商店应付300 元,乙组工作一天商店应付140 元.(2)单独请甲组所需费用为: 300×12=3600(元),单独请乙组所需费用为: 140×24=3360(元),∵ 3600> 3360,∴单独请乙组所需费用最少.(3)商店请甲乙两组同时装修,才更有利,理由如下:单独请甲组完成,损失钱数为:200×12+3600=6000(元),单独请乙组完成,损失钱数为:200×24+3360=8160(元),请甲乙两组同时完成,损失钱数为:200× 8+3520=5120(元).∵8160> 6000> 5120,∴商店请甲乙两组同时装修,才更有利.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据所需总费用 =每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用;(3)根据损失总钱数 =每天盈利×装修时间 +装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数22.【分析】(1)由等腰直角三角形的性质易证△ACE≌△ BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由( 1)中的证明思路即可证明;(3)由(2)可知△ PMN 是等腰直角三角形, PM= BD,推出当 BD 的值最大时,PM 的值最大,△ PMN 的面积最大,推出当B、 C、 D 共线时, BD 的最大值=BC+CD=6,由此即可解决问题;【解答】解:(1)PM=PN,PM⊥PN,理由如下:延长 AE 交 BD 于 O.∵△ ACB和△ ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ ACB=∠ECD=90°.在△ ACE和△ BCD中,∴△ ACE≌△ BCD(SAS),∴AE=BD,∠ EAC=∠CBD,∵∠ EAC+∠AEC=90°,∠ AEC=∠BEO,∴∠ CBD+∠BEO=90°,∴∠ BOE=90°,即 AE⊥BD,∵点 M 、 N 分别是斜边 AB、DE 的中点,点 P 为 AD 的中点,∴PM= BD,PN= AE,∴PM=PM,∵PM∥ BD, PN∥AE,AE⊥BD,∴∠ NPD=∠EAC,∠ MPA=∠BDC,∠ EAC+∠BDC=90°,∴∠ MPA+∠NPC=90°,∴∠ MPN=90°,即PM⊥PN.故答案是: PM=PN,PM⊥PN.( 2)如图②中,设AE 交 BC于 O.∵△ ACB和△ ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ ACB=∠ ECD=90°.∴∠ ACB+∠BCE=∠ECD+∠BCE.∴∠ ACE=∠BCD.∴△ ACE≌△ BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠ CAE=∠ CBD,∴∠ BHO=∠ACO=90°.∵点 P、M 、 N 分别为 AD、AB、 DE 的中点,∴PM= BD,PM∥BD;PN= AE,PN∥AE.∴PM=PN.∴∠ MGE+∠BHA=180°.∴∠ MGE=90°.∴∠ MPN=90°.∴PM⊥ PN.( 3)由( 2)可知△ PMN 是等腰直角三角形, PM= BD,∴当 BD 的值最大时, PM 的值最大,△ PMN 的面积最大,第23页(共 26页)∴PM=PN=3,∴△ PMN 的面积的最大值 =×3×3=.【点评】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.23.【分析】(1)利用待定系数法即可解决问题;(2)①根据 tan∠MBA= =,tan∠BDE= =,由∠ MBA=∠BDE,构建方程即可解决问题;②因为点 M 、N 关于抛物线的对称轴对称,四边形MPNQ 是正方形,推出点P是抛物线的对称轴与x 轴的交点,即 OP=1,易证 GM=GP,即| ﹣m2+2m+3| =| 1 ﹣m| ,解方程即可解决问题;【解答】解:(1)把点 B( 3, 0),C(0,3)代入 y=﹣x2+bx+c,得到,解得,∴抛物线的解析式为y=﹣x2+2x+3.∵y=﹣x2+2x﹣1+1+3=﹣( x﹣1)2+4,∴顶点 D 坐标( 1, 4).(2)①作 MG⊥ x 轴于 G,连接 BM.则∠ MGB=90°,设 M (m,﹣ m2+2m+3),∴MG=| ﹣m2+2m+3| ,BG=3﹣ m,∴ tan∠MBA= =,∵DE⊥x 轴, D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B( 3, 0),∴BE=2,∴tan∠ BDE= = ,∵∠ MBA=∠BDE,∴=当点 M 在 x 轴上方时,=,解得 m=﹣或3(舍弃),∴ M(﹣,),当点 M 在 x 轴下方时,=,解得 m=﹣或m=3(舍弃),∴点 M (﹣,﹣),综上所述,满足条件的点M 坐标(﹣,)或(﹣,﹣);②如图中,∵ MN∥x 轴,∴点 M 、 N 关于抛物线的对称轴对称,∵四边形 MPNQ 是正方形,∴点 P 是抛物线的对称轴与 x 轴的交点,即 OP=1,易证 GM=GP,即 | ﹣m2+2m+3| =| 1﹣m| ,当﹣ m2+2m+3=1﹣ m 时,解得 m= ,当﹣ m2+2m+3=m﹣1 时,解得 m= ,∴满足条件的 m 的值为或;【点评】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2018年河南省中考一模数学试卷(解析版)
2018年河南省中考数学一模试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中,最小的数是()A.﹣3B.﹣(﹣2)C.0D.﹣2.(3分)据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A.9.29×109B.9.29×1010C.92.9×1010D.9.29×1011 3.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)小明解方程﹣=1的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1﹣(x﹣2)=1①去括号,得1﹣x+2=1②合并同类项,得﹣x+3=1③移项,得﹣x=﹣2④系数化为1,得x=2⑤A.①B.②C.③D.④5.(3分)为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是()A.180个,160个B.170个,160个C.170个,180个D.160个,200个6.(3分)关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.7.(3分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°8.(3分)郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.B.C.D.9.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.10.(3分)如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(7,4)D.(8,3)二、填空题(每小题3分,共15分)11.(3分)=.12.(3分)方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=.13.(3分)点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1y2.(用“>”、“<”、“=”填空)14.(3分)如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为.15.(3分)如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:(x+2y)2﹣(2y+x)(2y﹣x)﹣2x2,其中x=+2,y=﹣2.17.(9分)全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.请你根据以上信息,回答下列问题:(1)接受问卷调查的共有人,图表中的m=,n=;(2)统计图中,A类所对应的扇形圆心角的度数为;(3)根据调查结果,我市市民最喜爱的运动方式是,不运动的市民所占的百分比是;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?18.(9分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB 于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.19.(9分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H 在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)20.(9分)如图,反比例y=的图象与一次函数y=kx﹣3的图象在第一象限内交于A(4,a).(1)求一次函数的解析式;(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.21.(10分)一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)22.(10分)如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图1中,PM与PN的数量关系是,位置关系是.(2)探究证明:将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;(3)拓展延伸:把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y 轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.2018年河南省中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列各数中,最小的数是()A.﹣3B.﹣(﹣2)C.0D.﹣【解答】解:因为在数轴上﹣3在其他数的左边,所以﹣3最小;故选:A.2.(3分)据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A.9.29×109B.9.29×1010C.92.9×1010D.9.29×1011【解答】解:929亿=92 900 000 000=9.29×1010.故选:B.3.(3分)如图所示的几何体的主视图是()A.B.C.D.【解答】解:由图可知,主视图由一个矩形和三角形组成.故选:D.4.(3分)小明解方程﹣=1的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1﹣(x﹣2)=1①去括号,得1﹣x+2=1②合并同类项,得﹣x+3=1③移项,得﹣x=﹣2④系数化为1,得x=2⑤A.①B.②C.③D.④【解答】解:﹣=1去分母,得1﹣(x﹣2)=x,故①错误,故选:A.5.(3分)为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是()A.180个,160个B.170个,160个C.170个,180个D.160个,200个【解答】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选:B.6.(3分)关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.【解答】解:∵关于x的一元二次方程x2﹣2x+k+2=0有实数根,∴△=(﹣2)2﹣4(k+2)≥0,解得:k≤﹣1.故选:C.7.(3分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°【解答】解∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点D分别作BC,CD边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD中,S△ABC =S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故B正确;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A正确;AB=CD,AD=BC(平行四边形的对边相等),故C正确;如果四边形ABCD是矩形时,该等式成立.故D不一定正确.故选:D.8.(3分)郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.B.C.D.【解答】解:列表得:∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,∴恰好选择从同一个口进出的概率为=,故选:C.9.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE =S矩形ABCD=3=•AE•BF,∴BF=.故选:B.10.(3分)如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(7,4)D.(8,3)【解答】解:如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4).故选:C.二、填空题(每小题3分,共15分)11.(3分)=2.【解答】解:∵22=4,∴=2.故答案为:212.(3分)方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=﹣2.【解答】解:∵方程3x2﹣5x+2=0的一个根是a,∴3a2﹣5a+2=0,∴3a2﹣5a=﹣2,∴6a2﹣10a+2=2(3a2﹣5a)+2=﹣2×2+2=﹣2.故答案是:﹣2.13.(3分)点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1<y2.(用“>”、“<”、“=”填空)【解答】解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.14.(3分)如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为 2.4cm.【解答】解:∵P以每秒2cm的速度从点A出发,∴从图2中得出AC=2×3=6cm,BC=(7﹣3)×2=8cm,∵Rt△ABC中,∠ACB=90°,∴AB===10cm,∴sin∠B===,∵当点P运动5秒时,BP=2×7﹣2×5=4cm,∴PD=4×sin∠B=4×=2.4cm,故答案为2.4cm.15.(3分)如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为1或.【解答】解:∵四边形ABCD是菱形,∠B=120°∴∠D=∠B=120°,∠A=180°﹣120°=60°,BC∥AD,∵EF∥AB,∴四边形ABFE是平行四边形,∴EF∥AB,∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,当△EFG为等腰三角形时,①当EF=EG时,EG=,如图1,过点D作DH⊥EG于H,∴EH=EG=,在Rt△DEH中,DE==1,②GE=GF时,如图2,过点G作GQ⊥EF,∴EQ=EF=,在Rt△EQG中,∠QEG=30°,∴EG=1,过点D作DP⊥EG于P,∴PE=EG=,同①的方法得,DE=,③当EF=FG时,∴∠EFG=180°﹣2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,故答案为:1或.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:(x+2y)2﹣(2y+x)(2y﹣x)﹣2x2,其中x=+2,y=﹣2.【解答】解:原式=x2+4xy+4y2﹣(4y2﹣x2)﹣2x2=x2+4xy+4y2﹣4y2+x2﹣2x2=4xy,当x=+2,y=﹣2时,原式=4×(+2)×(﹣2)=4×(3﹣4)=﹣4.17.(9分)全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.请你根据以上信息,回答下列问题:(1)接受问卷调查的共有150人,图表中的m=45,n=36;(2)统计图中,A类所对应的扇形圆心角的度数为28.8°;(3)根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是6%;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?(1)接受问卷调查的共有30÷20%=150人,m=150﹣(12+30+54+9)【解答】解:=45,n%=×100%=36%,∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为360°×=28.8°,故答案为:28.8°;(3)根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是×100%=6%,故答案为:散步、6%;(4)1500×=450(人),答:估计该社区参加碧沙岗“暴走团”的大约有450人.18.(9分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB 于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.【解答】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圆O的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB为直径,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.19.(9分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H 在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)【解答】解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=4,设AH=x,则BE=GH=GA+AH=23+x,在Rt△ACH中,CH=AH tan∠CAH=tan55°•x,∴CE=CH﹣EH=tan55°•x﹣4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°•x﹣4+15,解得:x≈30,∴CH=tan55°•x=1.4×30=42,答:塔杆CH的高为42米.20.(9分)如图,反比例y=的图象与一次函数y=kx﹣3的图象在第一象限内交于A(4,a).(1)求一次函数的解析式;(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.【解答】解:(1)∵反比例y=的图象过点A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函数y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函数的解析式为y=x﹣3;(2)由题意可知,点B、C的坐标分别为(n,),(n,n﹣3).设直线y=x﹣3与x轴、y轴分别交于点D、E,如图.当x=0时,y=﹣3;当y=0时,x=3,∴OD=OE,∴∠OED=45°.∵直线x=n平行于y轴,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一种情况,过点A作AF⊥BC于F,则BF=FC,F(n,1),∴﹣1=1﹣(n﹣3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.21.(10分)一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)【解答】解:(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据题意得:,解得:.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组所需费用为:300×12=3600(元),单独请乙组所需费用为:140×24=3360(元),∵3600>3360,∴单独请乙组所需费用最少.(3)商店请甲乙两组同时装修,才更有利,理由如下:单独请甲组完成,损失钱数为:200×12+3600=6000(元),单独请乙组完成,损失钱数为:200×24+3360=8160(元),请甲乙两组同时完成,损失钱数为:200×8+3520=5120(元).∵8160>6000>5120,∴商店请甲乙两组同时装修,才更有利.22.(10分)如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图1中,PM与PN的数量关系是PM=PN,位置关系是PM⊥PN.(2)探究证明:将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;(3)拓展延伸:把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.【解答】解:(1)PM=PN,PM⊥PN,理由如下:延长AE交BD于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MP A=∠BDC,∠EAC+∠BDC=90°,∴∠MP A+∠NPC=90°,∴∠MPN=90°,即PM⊥PN.故答案是:PM=PN,PM⊥PN.(2)如图②中,设AE交BC于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴当BD的值最大时,PM的值最大,△PMN的面积最大,∴当B、C、D共线时,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面积的最大值=×3×3=.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y 轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.【解答】解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴抛物线的解析式为y=﹣x2+2x+3.∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴顶点D坐标(1,4).(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA==,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=当点M在x轴上方时,=,解得m=﹣或3(舍弃),∴M(﹣,),当点M在x轴下方时,=,解得m=﹣或m=3(舍弃),∴点M(﹣,﹣),综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,当﹣m2+2m+3=1﹣m时,解得m=,当﹣m2+2m+3=m﹣1时,解得m=,∴满足条件的m的值为或;。
2018年河南省中考数学一模试卷及答案
2018年河南省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.下列各数中,最小的数是()A. -3B. -(-2)C. 0D. -2.据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A. 9.29×109B. 9.29×1010C. 92.9×1010D. 9.29×10113.如图所示的几何体的主视图是()A.B.C.D.4.小明解方程-=1的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1-(x-2)=1①去括号,得1-x+2=1②合并同类项,得-x+3=1③移项,得-x=-2④系数化为1,得x=2⑤A. ①B. ②C. ③D. ④5.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是()A. 180个,160个B. 170个,160个C. 170个,180个 D. 160个,200个6.关于x的一元二次方程x2-2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()A. B. C. D.7.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A. ∠ABC=∠ADC,∠BAD=∠BCDB. AB=BCC. AB=CD,AD=BCD. ∠DAB+∠BCD=180°8.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.B.C.D.9.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.10.如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A. (1,4)B. (5,0)C. (7,4)D. (8,3)二、填空题(本大题共5小题,共15.0分)11.=______.12.方程3x2-5x+2=0的一个根是a,则6a2-10a+2=______.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2-4x-1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1______y2.(用“>”、“<”、“=”填空)14.如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC-CB运动,到点B停止.过点P 作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为______.15.如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为______.三、计算题(本大题共1小题,共8.0分)16.先化简,再求值:(x+2y)2-(2y+x)(2y-x)-2x2,其中x=+2,y=-2.四、解答题(本大题共7小题,共67.0分)17.全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.(1)接受问卷调查的共有______人,图表中的m=______,n=______;(2)统计图中,A类所对应的扇形圆心角的度数为______;(3)根据调查结果,我市市民最喜爱的运动方式是______,不运动的市民所占的百分比是______;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?18.如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.19.风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B 处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)20.如图,反比例y=的图象与一次函数y=kx-3的图象在第一象限内交于A(4,a).(1)求一次函数的解析式;(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.21.一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)22.如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P 为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图1中,PM与PN的数量关系是____,位置关系是____.(2)探究证明:将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;(3)拓展延伸:把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN 面积的最大值.23.如图,抛物线y=-x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x 轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ 恰好为正方形,直接写出m的值.答案和解析1.【答案】A【解析】解:因为在数轴上-3在其他数的左边,所以-3最小;故选:A.应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.此题考负数的大小比较,应理解数字大的负数反而小.2.【答案】B【解析】【分析】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=10.【解答】解:929亿=92 900 000000=9.29×1010.故选B.3.【答案】D【解析】解:由图可知,主视图由一个矩形和三角形组成.故选:D.先细心观察原立体图形和长方体的位置关系,结合四个选项选出答案.本题考查了简单组合体的三视图,培养了学生的思考能力和对几何体三种视图的空间想象能力.4.【答案】A【解析】解:-=1去分母,得1-(x-2)=x,故①错误,故选:A.根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.本题考查解分式方程,解答本题的关键是明确解分式方程的方法.5.【答案】B【解析】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选:B.根据中位数和众数的定义分别进行解答即可.此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.【答案】C【解析】解:∵关于x的一元二次方程x2-2x+k+2=0有实数根,∴△=(-2)2-4(k+2)≥0,解得:k≤-1.故选C.根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围,再将其表示在数轴上即可得出结论.本题考查了根的判别式以及在数轴上表示不等式的解集,牢记“当△≥0时,方程有实数根”是解题的关键.7.【答案】D【解析】解∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点D分别作BC,CD边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD中,S△ABC=S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故B正确;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A正确;AB=CD,AD=BC(平行四边形的对边相等),故C正确;如果四边形ABCD是矩形时,该等式成立.故D不一定正确.故选:D.首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD为菱形.所以根据菱形的性质进行判断.本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.8.【答案】C【解析】5种情况,∴恰好选择从同一个口进出的概率为=,故选:C.列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】B【解析】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=3=•AE•BF,∴BF=.故选:B.根据S△ABE=S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.10.【答案】C【解析】解:如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4).故选:C.根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2018除以6,根据商和余数的情况确定所对应的点的坐标即可.此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.11.【答案】2【解析】解:∵22=4,∴=2.故答案为:2如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.此题主要考查了学生开平方的运算能力,比较简单.12.【答案】-2【解析】解:∵方程3x2-5x+2=0的一个根是a,∴3a2-5a+2=0,∴3a2-5a=-2,∴6a2-10a+2=2(3a2-5a)+2=-2×2+2=-2.故答案是:-2.根据一元二次方程的解的定义,将x=a代入方程3x2-5x+2=0,列出关于a的一元二次方程,通过变形求得3a2-5a的值后,将其整体代入所求的代数式并求值即可.此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.13.【答案】<【解析】解:由二次函数y=x2-4x-1=(x-2)2-5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.【答案】2.4cm【解析】解:∵P以每秒2cm的速度从点A出发,∴从图2中得出AC=2×3=6cm,BC=(7-3)×2=8cm,∵Rt△ABC中,∠ACB=90°,∴AB===10cm,∴sin∠B===,∵当点P运动5秒时,BP=2×7-2×5=4cm,∴PD=4×si n∠B=4×=2.4cm,故答案为2.4cm.由P的速度和图2得出AC和BC的长,运用勾股定理求出AB,即可求出sin∠B,求出P运动5秒距离B的长度利用三角函数得出PD的值.本题主要考查了动点问题的函数图象,理清图象的含义即会识图是解题的关键.15.【答案】1或【解析】解:∵四边形ABCD是菱形,∠B=120°∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,∵EF∥AB,∴四边形ABFE是平行四边形,∴EF∥AB,∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,当△EFG为等腰三角形时,①当EF=EG时,EG=,如图1,过点D作DH⊥EG于H,∴EH=EG=,在Rt△DEH中,DE==1,②GE=GF时,如图2,过点G作GQ⊥EF,∴EQ=EF=,在Rt△EQG中,∠QEG=30°,∴EG=1,过点D作DP⊥EG于P,∴PE=EG=,同①的方法得,DE=,③当EF=FG时,∴∠EFG=180°-2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,故答案为:1或.由四边形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四边形ABFE是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△EFG为等腰三角形时,①EF=GE=时,于是得到DE=DG=AD÷=1,②GE=GF时,根据勾股定理得到DE=.本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.16.【答案】解:原式=x2+4xy+4y2-(4y2-x2)-2x2=x2+4xy+4y2-4y2+x2-2x2=4xy,当x=+2,y=-2时,原式=4×(+2)×(-2)=4×(3-4)=-4.【解析】利用完全平方公式、平方差公式展开并合并同类项,然后把x、y 的值代入进行计算即可得解.本题主要考查整式的混合运算-化简求值,解题的关键是熟练掌握整式混合运算顺序和运算法则及完全平方公式、平方差公式.17.【答案】150;45;36;28.8°;散步;6%【解析】(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)解:=45,n%=×100%=36%,∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为360°×=28.8°,故答案为:28.8°;(3)根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是×100%=6%,故答案为:散步、6%;(4)1500×=450(人),答:估计该社区参加碧沙岗“暴走团”的大约有450人.(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)由表可知样本中散步人数最多,据此可得,再用E项目人数除以总人数可得;(4)总人数乘以样本中C人数所占比例.本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.【答案】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圆O的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB为直径,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【解析】(1)连接OC,如图所示,由CD⊥AB,AE⊥CF,利用垂直的定义得到一对直角相等,再由CF为圆的切线,利用切线的性质得到CO⊥EF,可得出AE与OC平行,利用两直线平行内错角相等,等边对等角得到一对角相等,利用AAS得到三角形全等,利用全等三角形的对应边相等即可得证;(2)连接BC,在直角三角形ACD中,利用勾股定理求出AC的长,在直角三角形AEC中,利用锐角三角函数定义求出所求即可.此题考查了切线的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.19.【答案】解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=4,设AH=x,则BE=GH=GA+AH=23+x,在Rt△ACH中,CH=AH tan∠CAH=tan55°•x,∴CE=CH-EH=tan55°•x-4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°•x-4+15,解得:x≈30,∴CH=tan55°•x=1.4×30=42,答:塔杆CH的高为42米.【解析】作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan∠CAH=tan55°•x知CE=CH-EH=tan55°•x-4,根据BE=DE 可得关于x的方程,解之可得.本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.20.【答案】解:(1)∵反比例y=的图象过点A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函数y=kx-3,得4k-3=1,∴k=1,∴一次函数的解析式为y=x-3;(2)由题意可知,点B、C的坐标分别为(n,),(n,n-3).设直线y=x-3与x轴、y轴分别交于点D、E,如图.当x=0时,y=-3;当y=0时,x=3,∴OD=OE,∴∠OED=45°.∵直线x=n平行于y轴,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一种情况,过点A作AF⊥BC于F,则BF=FC,F(n,1),∴-1=1-(n-3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.【解析】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx-3求出k的值即可求出一次函数的解析式;(2)易求点B、C的坐标分别为(n,),(n,n-3).设直线y=x-3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么∠OED=45°.根据平行线的性质得到∠BCA=∠OED=45°,所以当△ABC是等腰直角三角形时只有AB=AC一种情况.过点A作AF⊥BC 于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程-1=1-(n-3),解方程即可.21.【答案】解:(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据题意得:,解得:.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组所需费用为:300×12=3600(元),单独请乙组所需费用为:140×24=3360(元),∵3600>3360,∴单独请乙组所需费用最少.(3)商店请甲乙两组同时装修,才更有利,理由如下:单独请甲组完成,损失钱数为:200×12+3600=6000(元),单独请乙组完成,损失钱数为:200×24+3360=8160(元),请甲乙两组同时完成,损失钱数为:200×8+3520=5120(元).∵8160>6000>5120,∴商店请甲乙两组同时装修,才更有利.【解析】(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据“若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用,比较后即可得出结论;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数,比较后即可得出结论.本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数22.【答案】解:(1)PM=PN;PM⊥PN(2)如图②中,设AE交BC于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.可知△PMN是等腰直角三角形.(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴当BD的值最大时,PM的值最大,△PMN的面积最大,∴当B、C、D共线时,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面积的最大值=×3×3=.【解析】【分析】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出当BD 的值最大时,PM的值最大,△PMN的面积最大,推出当B、C、D 共线时,BD的最大值=BC+CD=6,由此即可解决问题.【解答】解:(1)PM=PN,PM⊥PN,理由如下:延长AE交BD于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∠AEC=∠BDC,∵∠EAC+∠AEC=90°,∴∠EAC+∠BDC=90°,∴∠AOD=90°,即AE⊥BD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PN,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN.故答案为PM=PN,PM⊥PN;(2)见答案;(3)见答案.23.【答案】解:(1)把点B(3,0),C(0,3)代入y=-x2+bx+c,得到,解得,∴抛物线的解析式为y=-x2+2x+3.∵y=-x2+2x-1+1+3=-(x-1)2+4,∴顶点D坐标(1,4).(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,-m2+2m+3),∴MG=|-m2+2m+3|,BG=3-m,∴tan∠MBA==,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=当点M在x轴上方时,=,解得m=-或3(舍弃),∴M(-,),当点M在x轴下方时,=,解得m=-或m=3(舍弃),∴点M(-,-),综上所述,满足条件的点M坐标(-,)或(-,-);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,当-m2+2m+3=1-m时,解得m=,当-m2+2m+3=m-1时,解得m=,∴满足条件的m的值为或;【解析】(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA==,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题;本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
正阳县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
正阳县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如果方程组与有相同的解,则a,b的值是()A. B. C. D.【答案】A【考点】解二元一次方程组【解析】【解答】解:由已知得方程组,解得,代入,得到,解得.【分析】把4x-5y=41和2x+3y=-7组成方程组,剩下的两个组成方程组,由4x-5y=41和2x+3y=-7解得x和y 的值,并把它们代入到另一个方程组中,求出a和b的值.2、(2分)把不等式组的解集表示在数轴上,正确的是()A. B.C. D.【答案】B【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组【解析】【解答】解:解不等式(1)得x>-1,解不等式(2)得x≤1,所以解集为-1<x≤1故答案为:B【分析】先分别求得两个不等式的解集,再在数轴上分别表示出两个解集的范围,取公共部分即可.特别的,等号部分在数轴上表示为实心点.3、(2分)在,1.01001000100001,2 ,3.1415,- ,,0,,这些数中,无理数共有()A. 2个B. 3个C. 4个D. 5个【答案】A【考点】无理数的认识【解析】【解答】解:∵=3,=2,∴无理数有:2 ,- ,一共有2个.故答案为:A.【分析】无理数是指无限不循环小数,根据无理数的定义可知,-是无理数。
4、(2分)下列运算正确的是()A. =±3B. (﹣2)3=8C. ﹣22=﹣4D. ﹣|﹣3|=3【答案】C【考点】绝对值及有理数的绝对值,算术平方根,实数的运算,有理数的乘方【解析】【解答】解:A、原式=2 ,不符合题意;B、原式=﹣8,不符合题意;C、原式=﹣4,符合题意;D、原式=﹣3,不符合题意,故答案为:C.【分析】做这种类型的选择题,我们只能把每个选项一个一个排除选择。
驻马店市2018年中考数学试题及答案
驻马店市2018年中考数学试题及答案注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1. -52的相反数是( ) A. -52B. 52 C.-25 D. 252. 今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿元”用科学记数法表示为( ) A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10113. 某正方体的每个面上那有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A.厉B.害C.了D.我 4. 下列运算正确的是( ) A.(-x 2)3=-x5B.x 2+x 3=x 5C.x 3·x 4=x 7D.2x 3-x 3=15.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%,关于这组数据,下列说法正确的是( ) A.中位数是12.7% B.众数是15.3% C.平均数是15.98% D.方差是06.《九章算术》中记载:”今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱.问:合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为 ) A.B.C.D.7. 下列一元二次方程中,有两个不相等实数根的是( )A.x 2+6x +9=0 B.x 2=x C.x 2+3=2x D.(x -1)2+1=08. 现有4张卡片,其中3张卡片正面上的图案是“ ”,1张卡片正面上的图案是“ ”,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片正面图案相同的概率是( ) A.169 B.43 C.83 D.21 9. 如图,已知Y AOBC 的顶点O (0,0),A (-1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于21DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为( )A.,2)B.2)C.(-2)D.,2)10. 如图,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运到点B .图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s)变化的关系图象,则a 的值为( )A.B.2C.25二、填空题(每小题3分,共15分)11. 计算:-512. 如图,直线AB ,C D 相交于点O ,EO ⊥AB 于点O ,∠EOD =50°,则∠BOC 的度数为_______.13.不等式组x524x3+>⎧⎨-≥⎩,的最小整数解是_______.14.如图,在△ABC中,∠A CB=90°,AC=BC=2.将△ABC绕AC的中点D逆时针旋转90°得到△A B C''',其中点B的运动路径为¼'BB,则图中阴影部分的面积为______.15.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△'A BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交'A B所在直线于点F,连接'A E.当△'A EF为直角三角形时,AB的长为________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:)÷,其中x =.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如图所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(k>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是圆0的直径,DO垂直于点O,连接DA交圆O于点C,过点C作圆O的切线交DO于点E,连接BC交DO于点F。
2018年河南省驻马店市正阳县中考数学二模试卷及答案(解析版)
2018年河南省驻马店市正阳县中考数学二模试卷一、选择题(每小题3分,共30分)1.(3分)﹣的相反数是(的相反数是( ) A . B .﹣ C .2018 D .﹣20182.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,若干年后,石头上形成了一个深度为石头上形成了一个深度为0.000000039cm 的小洞,的小洞,则则0.000000039用科学记数法可表示为(科学记数法可表示为( )A .3.9×10﹣8B .﹣3.9×10﹣8C .0.39×10﹣7D .39×10﹣93.(3分)“2018年平昌冬季奥运会”的颁奖台如图所示,它的俯视图是(的颁奖台如图所示,它的俯视图是( )A .B .C .D . 4.(3分)下列运算正确的是(分)下列运算正确的是( ) A .x 2+x 2=x 4 B .a 3•a 2=a 6 C .(2x 2)3=6x 6D .|1﹣|=﹣1 5.(3分)某人打靶五次的环数如下:1,4,6,8,x ,其中整数x 是这组数据的中位数,那么这组数据的平均数是(的中位数,那么这组数据的平均数是( )A .4.8B .4.8或5C .4.6或4.8D .4.6或4.8或5 6.(3分)不等式组的非正整数解的个数是(的非正整数解的个数是( )A .4B .5C .6D .7 7.(3分)如图,在△ABC 中,AB=AC ,若以点B 为圆心,BC 长为半径作弧,交AC 于点E ,则下列结论一定正确的是(,则下列结论一定正确的是( )A.AE=BE B.BE是∠ABC的角平分线C.∠A=∠EBC D.AE=BC8.(3分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,要判)是菱形,下列所添加条件不正确的是(定四边形DBFE是菱形,下列所添加条件不正确的是(A.AB=AC B.AB=BC C.BE平分∠ABC D.EF=CF9.(3分)已知二次函数y=a(x﹣m)2﹣n的图象如图所示,则一次函数y=mx+a的图象如图所示,则一次函数与反比例函数y=﹣在同一坐标系内的图象可能是()在同一坐标系内的图象可能是(A. B. C. D. 10.(3分)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自D点出发沿折线DC﹣CB以每秒2cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2),运动时间)之间函数关系的是(为x(秒),则下列图象中能大致反映y与x之间函数关系的是(A .B .C .D .二、填空题(每小题3分,共15分)11.(3分)+(﹣2)0= .12.(3分)若点M (x 1,y 1)在函数y=kx +b (k ≠0)的图象上,当﹣1≤x 1≤2时,﹣2≤y 1≤1,则这条直线的函数解析式为,则这条直线的函数解析式为. 13.(3分)若关于x 的一元二次方程(1﹣k )x 2+2kx ﹣k +1=0有实数根,则实数k 的取值范围是的取值范围是. 14.(3分)如图,在Rt △ABC 中,∠B=60°,AB=1,现将△ABC 绕点A 逆时针旋转至点B 恰好落在BC 上的B'处,其中点C 运动路径为,则图中阴影部分的面积是面积是 .15.(3分)如图,等边三角形ABC 的边长为2,D 、E 分别是边AB 、AC 上的点,沿DE 所在的直线折叠∠A ,使点A 的对应点P 始终落在边BC 上,若△BDP 是直角三角形,则AD 的长为的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:,其中x 是方程x 2﹣3x ﹣4=0的一个解.17.(9分)电视热播节目“最强大脑”激发了学生的思考兴趣,为满足学生的需求,某学校抽取部分学生举行“最强大脑”选拔赛,针对竞赛成绩分成以下六个等级A :0~50分;B :51~60分;C :61~70分;D :71~80分;E :81~90分;F :91~100分,根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:(1)此次竞赛抽取的总人数为)此次竞赛抽取的总人数为,请补全条形统计图; (2)若全市约有3万名在校学生,试估计全市学生中竞赛成绩在71~90分的人数约有多少?(3)若在此次接受调查的学生中,若在此次接受调查的学生中,随机抽查一人,随机抽查一人,随机抽查一人,则此人的成绩在则此人的成绩在80分以上的概率是多少?18.(9分)如图,在等腰△ABC 中,AB=AC ,以AB 为直径作⊙O 交边BC 于点D ,过点D 作DE ⊥AC 交AC 于点E ,延长ED 交AB 的延长线于点F .(1)求证:DE 是⊙O 的切线;(2)若AB=8,AE=6,求BF 的长.19.(9分)位于河南省郑州市的炎黄二帝巨型塑像,是为代表中华民族之创始、之和谐、之统一.塑像由山体CD 和头像AD 两部分组成.某数学兴趣小组在塑像前50米处的B 处测得山体D 处的仰角为45°,头像A 处的仰角为70.5°,求头像AD 的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)20.(9分)如图,一次函数y=x ﹣2与反比例函数y=(x >0)的图象相交于点M (m ,1).(1)填空:m 的值为的值为 ,反比例函数的解析式为,反比例函数的解析式为; (2)已知点N (n ,n ),过点N 作l 1∥x 轴,交直线y=x ﹣2于点A ,过点N 作l 2∥y 轴,交反比例函数y=(x >0)的图象与点B ,试用n 表示△NAB 的面积S .21.(10分)植树节来临之际,学校准备购进一批树苗,已知2棵甲种树苗和5棵乙种树苗共需113元;3棵甲种树苗和2棵乙种树苗共需87元.(1)求一棵甲种树苗和一棵乙种树苗的售价各是多少元?(2)学校准备购进这两种树苗共100棵,并且乙种树苗的数量不多于甲种树苗数量的2倍,请设计出最省钱的购买方案,并求出此时的总费用.22.(10分)(1)观察猜想:在Rt △ABC 中,∠BAC=90°,AB=AC ,点D 在边BC 上,连接AD ,把△ABD 绕点A 逆时针旋转90°,点D 落在点E 处,如图①所示,则线段CE 和线段BD 的数量关系是关系是 ,位置关系是,位置关系是 .(2)探究证明:在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.(3)拓展延伸:如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他条件不变,过点D 作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.23.(11分)如图,在平面直角坐标系中,直线l:y=kx+h与x轴相交于点A(﹣1,0),与y轴相交于点C,与抛物线y=﹣x2+bx+3的一交点为点D,抛物线过x 轴上的AB两点,且CD=4AC.(1)求直线l和抛物线的解析式;(2)点E是直线l上方抛物线上的一动点,求当△ADE面积最大时,点E的坐标;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,四边形APDQ能否为矩形?若能,请直接写出点P的坐标;若不能,请说明理由.2018年河南省驻马店市正阳县中考数学二模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)﹣的相反数是(的相反数是( ) A . B .﹣ C .2018 D .﹣2018【分析】根据相反数的定义,即可解答.【解答】解:﹣的相反数是,故选:A .2.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,若干年后,石头上形成了一个深度为石头上形成了一个深度为0.000000039cm 的小洞,的小洞,则则0.000000039用科学记数法可表示为(科学记数法可表示为( )A .3.9×10﹣8B .﹣3.9×10﹣8C .0.39×10﹣7D .39×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000039=3.9×10﹣8.故选:A .3.(3分)“2018年平昌冬季奥运会”的颁奖台如图所示,它的俯视图是(的颁奖台如图所示,它的俯视图是( )A .B .C .D .【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是水平排列的等宽的三个矩形,故选:C .4.(3分)下列运算正确的是(分)下列运算正确的是( )A .x 2+x 2=x 4B .a 3•a 2=a 6C .(2x 2)3=6x 6D .|1﹣|=﹣1【分析】根据合并同类项、同底数幂的乘法、幂的乘方和绝对值的计算判断即可.【解答】解:A 、x 2+x 2=2x 2,错误;B 、a 3•a 2=a 5,错误;C 、(2x 2)3=8x 6,错误;D 、|1﹣|=﹣1,正确;故选:D .5.(3分)某人打靶五次的环数如下:1,4,6,8,x ,其中整数x 是这组数据的中位数,那么这组数据的平均数是(的中位数,那么这组数据的平均数是( )A .4.8B .4.8或5C .4.6或4.8D .4.6或4.8或5【分析】根据1,4,x ,6,8这组数据中,x 是数据的中位数知x=4或x=5或x=6,在根据平均数的定义分别计算可得.【解答】解:∵在1,4,x ,6,8这组数据中,x 是数据的中位数, ∴x=4或x=5或x=6,当x=4时,平均数为=4.6; 当x=5时,平均数为=4.8; 当x=6时,平均数为=5;故选:D .6.(3分)不等式组的非正整数解的个数是(的非正整数解的个数是( ) A .4 B .5 C .6 D .7 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,即可得出答案.【解答】解:解不等式x+3≥1,得:x≥﹣4,解不等式﹣3x+6>4,得:x<,则不等式组的解集为﹣4≤x<,所以不等式组的非正整数解有﹣4、﹣3、﹣2、﹣1、0这5个,故选:B.7.(3分)如图,在△ABC中,AB=AC,若以点B为圆心,BC长为半径作弧,交AC于点E,则下列结论一定正确的是(,则下列结论一定正确的是( )A.AE=BE B.BE是∠ABC的角平分线C.∠A=∠EBC D.AE=BC【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC,故选:C.8.(3分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,要判)是菱形,下列所添加条件不正确的是(定四边形DBFE是菱形,下列所添加条件不正确的是(A.AB=AC B.AB=BC C.BE平分∠ABC D.EF=CF【分析】当AB=BC时,四边形DBFE是菱形.根据三角形中位线定理证明即可;当BE平分∠ABC时,可证BD=DE,可得四边形DBFE是菱形,当EF=FC,可证EF=BF,可得四边形DBFE是菱形,由此即可判断;【解答】解:当AB=BC时,四边形DBFE是菱形;理由:∵点D、E、F分别是边AB、AC、BC的中点,∴DE∥BC,EF∥AB,∴四边形DBFE是平行四边形,∵DE=BC,EF=AB,∴DE=EF,∴四边形DBFE是菱形.故B正确,不符合题意,当BE平分∠ABC时,可证BD=DE,可得四边形DBFE是菱形,当EF=FC,可证EF=BF,可得四边形DBFE是菱形,故C、D不符合题意,故选:A.9.(3分)已知二次函数y=a(x﹣m)2﹣n的图象如图所示,则一次函数y=mx+a的图象如图所示,则一次函数)在同一坐标系内的图象可能是(与反比例函数y=﹣在同一坐标系内的图象可能是(A. B. C. D.【分析】根据二次函数图象判断出a>0,m<0,n<0,然后求出mn>0,再根据一次函数与反比例函数图象的性质判断即可.【解答】解:∵抛物线开口向上,∴a>0,由图可知,m<0,n<0,∴mn>0,∴一次函数y=mx+a的图象过第一、二、四象限,反比例函数y=﹣分布在第二、四象限.故选:B.10.(3分)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自D点出发沿折线DC﹣CB以每秒2cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是(之间函数关系的是()A. B. C. D. 【分析】分两部分计算y的关系式:的关系式:①当点①当点N在CD上时,易得S△AMN的关系式,S△AMN的面积关系式为一个一次函数;②当点N在CB上时,底边AM不变,表示出S△AMN 的关系式,S△AMN的面积关系式为一个开口向下的二次函数.【解答】解:∵点N自D点出发沿折线DC﹣CB以每秒2cm的速度运动,到达B的速度运动,到达点时运动同时停止,∴N到C的时间为:t=3÷2=1.5,分两部分:①当0≤x≤1.5时,如图1,此时N在DC上,S△AMN=y=AM•AD=x×3=x,②当1.5<x≤3时,如图2,此时N在BC上,∴DC+CN=2x,∴BN=6﹣2x,∴S=y=AM•BN=x(6﹣2x)=﹣x2+3x,△AMN故选:A.二、填空题(每小题3分,共15分)11.(3分)+(﹣2)0= 10 .【分析】直接利用算术方根的定义以及零指数幂的性质化简进而得出答案.【解答】解:原式=9+1=10.故答案为:10.12.(3分)若点M (x 1,y 1)在函数y=kx +b (k ≠0)的图象上,当﹣1≤x 1≤2时,﹣2≤y 1≤1,则这条直线的函数解析式为,则这条直线的函数解析式为 y=x ﹣1或y=﹣x . 【分析】分两种情形,分别求解即可解决问题;【解答】解:∵点M (x 1,y 1)在在直线y=kx +b 上,﹣1≤x 1≤2时,﹣2≤y 1≤1, ∴点(﹣1,﹣2)、(2,1)或(﹣1,1)、(2,﹣2)都在直线上, 则有:或可得k=﹣1或1, ∴y=x ﹣1或y=﹣x ,故答案为:y=x ﹣1或y=﹣x .13.(3分)若关于x 的一元二次方程(1﹣k )x 2+2kx ﹣k +1=0有实数根,则实数k 的取值范围是的取值范围是 k且k ≠1 .【分析】由二次项系数非零结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【解答】解:∵关于x 的一元二次方程(1﹣k )x 2+2kx ﹣k +1=0有实数根, ∴,解得:k且k ≠1.故答案为:k 且k ≠1.14.(3分)如图,在Rt △ABC 中,∠B=60°,AB=1,现将△ABC 绕点A 逆时针旋转至点B 恰好落在BC 上的B'处,其中点C 运动路径为,则图中阴影部分的面积是面积是.【分析】根据直角三角形的性质分别求出BC 、AC ,根据旋转变换的性质得到∠CACʹ=60°,ACʹ=AC=,ABʹ=AB,根据三角形面积公式、扇形面积公式计算. 【解答】解:Rt△ABC中,∠B=60°,AB=1,∴BC=2AB=2,AC=AB=,由旋转的性质可知,∠CACʹ=60°,ACʹ=AC=,ABʹ=AB,∴△ABʹB为等边三角形,∴BBʹ=1,即Bʹ是BC的中点,∴S=S△ABC=×1××=,△ABʹCS扇形CʹAC==,∴图中阴影部分的面积=+,故答案为:+.15.(3分)如图,等边三角形ABC的边长为2,D、E分别是边AB、AC上的点,沿DE所在的直线折叠∠A,使点A的对应点P始终落在边BC上,若△BDP是直4﹣6或3﹣ .的长为角三角形,则AD的长为【分析】根据等边三角形的性质得到∠B=60°,根据折叠的性质得到AD=DP,设AD=DP=x,分∠DPB=90°、∠BDP=90°两种情况,根据正弦、正切的定义计算即可. 【解答】解:∵△ABC是等边三角形,∴∠B=60°,由折叠的性质可知,AD=DP,设AD=DP=x,则BD=2﹣x,当∠DPB=90°时,=sinB=,即=,解得,x=4﹣6,当∠BDP=90°时,=tanB=,即=,解得,x=3﹣,故答案为:4﹣6或3﹣.三、解答题(本大题共8小题,满分75分) 16.(8分)先化简,再求值:,其中x 是方程x 2﹣3x ﹣4=0的一个解.【分析】先根据分式的除法运算顺序和法则化简原式,再解一元二次方程得出x 的值,继而根据分式有意义的条件确定x 的值,代入计算可得. 【解答】解:原式=÷=÷ =•=,解方程x 2﹣3x ﹣4=0,得:x=﹣1或x=4, 要是分式有意义,则x ≠0、1、﹣1, ∴x=4,当x=4时,原式=2.17.(9分)电视热播节目“最强大脑”激发了学生的思考兴趣,为满足学生的需求,某学校抽取部分学生举行“最强大脑”选拔赛,针对竞赛成绩分成以下六个等级A :0~50分;B :51~60分;C :61~70分;D :71~80分;E :81~90分;F :91~100分,根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:(1)此次竞赛抽取的总人数为)此次竞赛抽取的总人数为 1000 ,请补全条形统计图;(2)若全市约有3万名在校学生,试估计全市学生中竞赛成绩在71~90分的人数约有多少?(3)若在此次接受调查的学生中,若在此次接受调查的学生中,随机抽查一人,随机抽查一人,随机抽查一人,则此人的成绩在则此人的成绩在80分以上的概率是多少?等级人数除以其所占百分比可得总人数,总人数减去其它各等总人数减去其它各等【分析】(1)用A等级人数除以其所占百分比可得总人数,级人数求得B等级人数即可补全图形;(2)总人数乘以样本中D、E两组百分比之和即可得;(3)将E、F两等级百分比相加即可得.【解答】解:(1)此次竞赛抽取的总人数为200÷20%=1000,则B等级人数为1000﹣(200+400+200+50+50)=100,补全图形如下:(2)30000×(20%+5%)=7500(人),答:估计全市学生中竞赛成绩在71~90分的人数约有7500人;(3)5%+5%=10%=,所以此人的成绩在80分以上的概率是.18.(9分)如图,在等腰△ABC中,AB=AC,以AB为直径作⊙O交边BC于点D,过点D作DE⊥AC交AC于点E,延长ED交AB的延长线于点F.(1)求证:DE是⊙O的切线;(2)若AB=8,AE=6,求BF的长.【分析】(1)连接OD,根据等腰三角形的性质得到∠ABC=∠C,∠ABC=∠ODB,证明OD∥AC,根据平行线的性质得到OD⊥DE,根据切线的判定定理证明; (2)证明△FOD∽△FAE,根据相似三角形的性质定理列出比例式,计算即可. 【解答】(1)证明:连接OD,∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,又DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;(2)解:∵OD∥AC,∴△FOD∽△FAE,∴=,即=,解得,BF=4.19.(9分)位于河南省郑州市的炎黄二帝巨型塑像,是为代表中华民族之创始、之和谐、之统一.塑像由山体CD和头像AD两部分组成.某数学兴趣小组在塑像前50米处的B处测得山体D处的仰角为45°,头像A处的仰角为70.5°,求头像AD的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)【分析】在Rt△ABC中,根据AC=BCtan∠ABC求得AC的长,在Rt△DBC中,由∠DBC=45°知DC=BC=50,根据AD=AC﹣DC可得答案.【解答】解:在Rt△ABC中,∵∠ABC=70.5°,∴AC=BCtan∠ABC=50tan70.5°≈50×2.824≈141.2,在Rt△DBC中,∵∠DBC=45°,∴DC=BC=50,则AD=AC﹣DC≈141.2﹣50=91.2,答:头像AD的高度约为91.2米.20.(9分)如图,一次函数y=x﹣2与反比例函数y=(x>0)的图象相交于点M(m,1).y= ;,反比例函数的解析式为(1)填空:m的值为3 ,反比例函数的解析式为的值为(2)已知点N(n,n),过点N作l1∥x轴,交直线y=x﹣2于点A,过点N作l2∥y轴,交反比例函数y=(x>0)的图象与点B,试用n表示△NAB的面积S.【分析】(1)把M(m,1)代入一次函数y=x﹣2,可得m的值;把M(3,1)代入反比例函数y=(x>0),可得k的值;(2)依据点N与点A的纵坐标相同,均为n,可得AN=n+2﹣n=2,依据点N与点B的横坐标相同,均为n,可得BN=|﹣n|,即可得到S=×2×|﹣n|=|△NBA﹣n|.【解答】解:(1)把M(m,1)代入一次函数y=x﹣2,可得1=m﹣2,解得m=3,把M(3,1)代入反比例函数y=(x>0),可得k=3×1=3,∴反比例函数的解析式为y=,故答案为:3,y=;(2)由题可得,点N与点A的纵坐标相同,均为n,将y=n代入y=x﹣2中,得x=n+2,∴A(n+2,n),∴AN=n+2﹣n=2,由题可得,点N与点B的横坐标相同,均为n,将x=n代入y=中,得y=,∴B(n,),∴BN=|﹣n|,∴S=×2×|﹣n|=|﹣n|.△NBA21.(10分)植树节来临之际,学校准备购进一批树苗,已知2棵甲种树苗和5棵乙种树苗共需113元;3棵甲种树苗和2棵乙种树苗共需87元.(1)求一棵甲种树苗和一棵乙种树苗的售价各是多少元?(2)学校准备购进这两种树苗共100棵,并且乙种树苗的数量不多于甲种树苗数量的2倍,请设计出最省钱的购买方案,并求出此时的总费用.【分析】(1)设一棵甲种树苗的售价为x元,一棵乙种树苗的售价为y元,依据2棵甲种树苗和5棵乙种树苗共需113元;3棵甲种树苗和2棵乙种树苗共需87元,解方程组求解即可.(2)设购买甲种树苗a棵,则购买乙种树苗(100﹣a)棵,总费用为w元,依据w随着a的增大而增大,可得当a取最小值时,w有最大值.【解答】解:(1)设一棵甲种树苗的售价为x元,一棵乙种树苗的售价为y元,依题意得,解得,∴一棵甲种树苗的售价为19元,一棵乙种树苗的售价为15元;(2)设购买甲种树苗a棵,则购买乙种树苗(100﹣a)棵,总费用为w元,依题意得w=19a+15(100﹣a)=4a+1500,∵4>0,∴w随着a的增大而增大,∴当a取最小值时,w有最大值,∵100﹣a ≤2a , ∴a ≥,a 为整数,∴当a=34时,w 最小=4×34+1500=1636(元), 此时,100﹣34=66,∴最省钱的购买方案为购买甲种树苗34棵,购买乙种树苗66棵,总费用为1636元.22.(10分)(1)观察猜想:在Rt △ABC 中,∠BAC=90°,AB=AC ,点D 在边BC 上,连接AD ,把△ABD 绕点A 逆时针旋转90°,点D 落在点E 处,如图①所示,则线段CE 和线段BD 的数量关系是关系是 CE=BD ,位置关系是,位置关系是 CE ⊥BD . (2)探究证明:在(1)的条件下,若点D 在线段BC 的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断. (3)拓展延伸:如图③,∠BAC ≠90°,若AB ≠AC ,∠ACB=45°,AC=,其他条件不变,过点D作DF ⊥AD 交CE 于点F ,请直接写出线段CF 长度的最大值.【分析】(1)线段AD 绕点A 逆时针旋转90°得到AE ,根据旋转的性质得到AD=AE ,∠BAD=∠CAE ,得到△BAD ≌△CAE ,CE=BD ,∠ACE=∠B ,得到∠BCE=∠BCA +∠ACE=90°,于是有CE=BD ,CE ⊥BD . (2)证明的方法与(1)类似.(3)过A 作AM ⊥BC 于M ,EN ⊥AM 于N ,根据旋转的性质得到∠DAE=90°,AD=AE ,利用等角的余角相等得到∠NAE=∠ADM ,易证得Rt △AMD ≌Rt △ENA ,则NE=MA ,由于∠ACB=45°,则AM=MC ,所以MC=NE ,易得四边形MCEN 为矩形,得到∠DCF=90°,由此得到Rt △AMD ∽Rt △DCF ,得=,设DC=x ,MD=1﹣x ,利用相似比可得到CF=﹣x2+1,再利用二次函数即可求得CF的最大值. 【解答】解:(1)①∵AB=AC,∠BAC=90°,∴线段AD绕点A逆时针旋转90°得到AE,∴AD=AE,∠BAD=∠CAE,∴△BAD≌△CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴BD⊥CE;故答案为:CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由如下:如图,∵线段AD绕点A逆时针旋转90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD,∠ACE=∠B,∴∠BCE=90°,即CE⊥BD,∴线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CE⊥BD.(3)如图3,过A作AM⊥BC于M,EN⊥AM于N,∵线段AD绕点A逆时针旋转90°得到AE∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,∴NE=AM,∵∠ACB=45°,∴△AMC为等腰直角三角形,∴AM=MC,∴MC=NE,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四边形MCEN为平行四边形,∵∠AMC=90°,∴四边形MCEN为矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴=,设DC=x,∵∠ACB=45°,AC=,∴AM=CM=1,MD=1﹣x,∴=,∴CF=﹣x2+x=﹣(x﹣)2+,∴当x=时有最大值,CF最大值为.23.(11分)如图,在平面直角坐标系中,直线l:y=kx+h与x轴相交于点A(﹣1,0),与y轴相交于点C,与抛物线y=﹣x2+bx+3的一交点为点D,抛物线过x 轴上的AB两点,且CD=4AC.(1)求直线l和抛物线的解析式;(2)点E是直线l上方抛物线上的一动点,求当△ADE面积最大时,点E的坐标;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,四边形APDQ能否为矩形?若能,请直接写出点P的坐标;若不能,请说明理由.【分析】(1)把相关点的坐标代入解析式即可求解;(2)过点E作EM⊥x轴,交AD于点M,设点E(m,﹣m2+2m+3),则M(m,﹣m﹣1),根据题意得出三角形面积关于m的二次函数,分析其最值即可; (3)先根据题意分析当四边形APDQ为平行四边形时,确定点P,Q的坐标,在运用勾股定理的逆定理分析是否垂直即可.【解答】解:(1)将A(﹣1,0)代入y=﹣x2+bx+3,得b=2,所以抛物线的解析式为y=﹣x2+2x+3,过点D作DF⊥x轴于点F,如图1易证△AOC∽△AFD,∴,∵CD=4AC,∴=,∴点D横坐标为4,把x=4代入y=﹣x2+2x+3,得y=﹣5,∴D(4,﹣5),把x=4,y=﹣5;x=﹣1,y=0代入y=kx+h,解得,k=﹣1,h=﹣1,∴直线l的解析式为y=﹣x﹣1.(2)过点E作EM⊥x轴,交AD于点M,如图2设点E(m,﹣m2+2m+3),则M(m,﹣m﹣1),∴EM=﹣m 2+2m+3﹣(﹣m﹣1)═﹣m2+3m+4,∴S△ADE=(﹣m2+3m+4)=,当m=时,△ADE的面积最大,此时,E(,).(3)不存在理由如下:∵抛物线的对称轴为直线x=1,设P(1,m),①若AD是平行四边形ADPQ的一条边,如图3则易得Q(﹣4,﹣21),m=﹣21﹣5=﹣26,则P(1,﹣26),此时AQ2=32+212=450,QP2=52+52=50,AP2=22+262=680, ∴AQ2+QP2≠AP2,∴∠AQP≠90°,此时平行四边形ADPQ不是矩形;②若AD是平行四边形APDQ的对角线,如图4则易得Q(2,3),m=﹣5a﹣3=﹣8,则P(1,﹣8),PQ2=12+112=122,PD2=32+32=18QD2=22+82=68,∴PD2+QD2≠PQ2,∴∠PDQ≠90°,此时平行四边形ADPQ不是矩形,综上所述,四边形APDQ不能为矩形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年河南省驻马店市正阳县中考数学一模试卷一、选择题(每小题3分,共30分)1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.2.(3分)2018年2月18日清•袁牧的一首诗《苔》被乡村老师梁俊和山里的孩子小梁在《经典永流传》的舞台重新唤醒,“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084=8.4×10n,则n为()A.﹣5 B.﹣6 C.5 D.63.(3分)如图所示的几何体,它的左视图正确的是()A.B.C.D.4.(3分)下列计算正确的是()A.4m+2n=6mn B.=±5C.x3y2÷2xy=x2y D.(﹣2xy2)3=﹣6x3y65.(3分)小刚为了全家外出旅游方便,他统计了郑州市2018年春节期间一周7天的最低气温如下表:则这组数据的中位数与众数分别是()A.1,﹣2 B.﹣2,﹣2 C.1.5,1 D.1,﹣36.(3分)若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1 B.m≥﹣1且m≠0 C.m>﹣1且m≠0 D.m≠07.(3分)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F,若四边形DCFE的周长为25cm,AC 的长5cm,则AB的长为()A.13cm B.12cm C.10cm D.8cm8.(3分)若一个袋子中装有形状与大小均完全相同有4张卡片,4张卡片上分别标有数字﹣2,﹣1,2,3,现从中任意抽出其中两张卡片分别记为x,y,并以此确定点P(x,y),那么点P落在直线y=﹣x+1上的概率是()A.B.C.D.9.(3分)小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15 B.=15C.=D.10.(3分)如图,在菱形ABCD中,∠DAB=60°,现把菱形ABCD绕点A逆时针方向旋转30°得到菱形AB′C′D′,若AB=4,则阴影部分的面积为()A.4π﹣12+12 B.4π﹣8+12 C.4π﹣4D.4π+12二、填空题(每小题3分,共15分)11.(3分)计算:2﹣1﹣=12.(3分)如图,△ABC中,∠B=35°,∠BCA=75°,请依据尺规作图的作图痕迹,计算∠α=°13.(3分)如图,反比例函数y=的图象经过矩形OABC的边AB的中点E,并=1,则k=与矩形的另一边BC交于点F,若S△BEF14.(3分)如图1,则等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC的面积为.15.(3分)如图,在Rt△ACB中,∠ACB=90°,AB=10,BC=6,点N是线段BC 上的一个动点,将△ACN沿AN折叠,使点C落在点C'处,当△NC'B是直角三角形时,CN的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:,其中x是满足不等式﹣(x ﹣1)≥的非负整数解.17.(9分)小明利用寒假进行综合实践活动,他想利用测角仪和卷尺测量自家所住楼(甲楼)与对面邮政大楼(乙楼)的高度,现小明用卷尺测得甲楼宽AE 是8m,用测角仪在甲楼顶E处与A处测得乙楼顶部D的仰角分别为37°和42°,同时在A处测得乙楼底部B处的俯角为32°,请根据小明测得数据帮他计算甲、乙两个楼的高度.(精确到0.01m)(cos32°≈0.85,tan32°≈0.62,cos42°≈0.74,tan42°≈0.90,cos37°≈0.80,tan37°≈0.75)18.(9分)2018年河南中招体育考试测试时间将定于4月1日开始进行,光明中学为了了解本校九年级全体学生体育训练的成效,在校内提前进行了体育模拟测试,并对九级(1)班的体育模拟成绩按A、B、C、D四个等级进行统计,井将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:65 分~70 分;B级:60分~65 分;C 级:55 分~60分0;D级:55 分以下)(1)九年级(1)班共有人,D级学生所在的扇形圆心角的度数为;(2)请补全条形统计图与扇形统计图;(3)该班学生体育测试成绩的中位数落在等级内;(4)若该校九年级学生共有800人,请你估计这次考试中A级和B级的学生共有多少人?19.(9分)如图,AC是⊙O的直径,点P在线段AC的延长线上,且PC=CO,点B在⊙O上,且∠CAB=30°.(1)求证:PB是⊙O的切线;(2)若D为圆O上任一动点,⊙O的半径为5cm时,当弧CD长为时,四边形ADPB为菱形,当弧CD长为时,四边形ADCB为矩形.20.(9分)小明从家去体育场锻炼,同时,妈妈从体育场以50米/分的速度回家,小明到体育场后发现要下雨,立即返回,追上妈妈后,小明以250米/分的速度回家取伞,立即又以250米/分的速度折回接妈妈,并一同回家.如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象.(注:小明和妈妈始终在同一条笔直的公路上行走,图象上A、C、D三点在一条直线上)(1)求线段BC的函数表达式;(2)求点D坐标,并说明点D的实际意义;(3)当x的值为时,小明与妈妈相距1 500米.21.(10分)阳光体育用品商店,在新学期开始准备购进AB两种体育器材共100件进行销售,这两种体育器材的进价、售价如下表所示:请解答下列问题:(1)如果所进的这100件体育器材全部售出,请问该体育用品高店该如何进货,才能使利润能达到1264 元?请说明理由;(2)要使此次销售所获利润最大,且所获利润不超过总进货价格的50%,请你帮该体育用品商店设计一个进货方案,如何进货才能使利润最大?最大利润是多少?22.(10分)如图,在△ABC中,点N为AC边的任意一点,D为线段AB上一点,若∠MPN的顶点P为线段CD上任一点,其两边分别与边BC,AC交于点M、N,且∠MPN+∠ACB=180°.(1)如图1,若AC=BC,∠ACB=90°,且D为AB的中点时,则=,请证明你的结论;(2)如图2,若BC=m,AC=n,∠ACB=90°,且D为AB的中点时,则=;(3)如图3,若=k,BC=m,AC=n,请直接写出的值.(用k,m,n表示)23.(11分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与x轴交于A(1,0),B(﹣3,0)两点,现有经过点A的直线l:y=kx+b1与y轴交于点C,与抛物线的另个交点为D.(1)求抛物线的函数表达式;(2)若点D在第二象限且满足CD=5AC,求此时直线1的解析式;在此条件下,点E为直线1下方抛物线上的一点,求△ACE面积的最大值,并求出此时点E的坐标;(3)如图,设P在抛物线的对称轴上,且在第二象限,到x轴的距离为4,点Q 在抛物线上,若以点A,D,P,Q为顶点的四边形能否成为平行四边形?若能,请直接写出点Q的坐标;若不能,请说明理由.2018年河南省驻马店市正阳县中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2018的相反数是:2018.故选:B.2.(3分)2018年2月18日清•袁牧的一首诗《苔》被乡村老师梁俊和山里的孩子小梁在《经典永流传》的舞台重新唤醒,“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084=8.4×10n,则n为()A.﹣5 B.﹣6 C.5 D.6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000084=8.4×10﹣6,则n为﹣6.故选:B.3.(3分)如图所示的几何体,它的左视图正确的是()A.B.C.D.【分析】找到从几何体的左面看所得到的图形即可.【解答】解:从几何体的左面看所得到的图形是:.故选:B.4.(3分)下列计算正确的是()A.4m+2n=6mn B.=±5C.x3y2÷2xy=x2y D.(﹣2xy2)3=﹣6x3y6【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、4m+2n无法计算,故此选项错误;B、=5,故此选项错误;C、x3y2÷2xy=x2y,正确;D、(﹣2xy2)3=﹣8x3y6,故此选项错误;故选:C.5.(3分)小刚为了全家外出旅游方便,他统计了郑州市2018年春节期间一周7天的最低气温如下表:则这组数据的中位数与众数分别是()A.1,﹣2 B.﹣2,﹣2 C.1.5,1 D.1,﹣3【分析】根据中位数和众数的定义分别进行求解即可.【解答】解:把这些数从小到大排列为:﹣3,﹣2,﹣2,﹣2,0,1,1,最中间的数是﹣2,则这组数据的中位数是﹣2;∵﹣2出现了3次,出现的次数最多,∴这组数据的众数是﹣2;故选:B.6.(3分)若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1 B.m≥﹣1且m≠0 C.m>﹣1且m≠0 D.m≠0【分析】将原方程变形为一般式,根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:原方程可变形为mx2﹣x﹣=0.∵关于x的一元二次方程mx2﹣x=有实数根,∴,解得:m≥﹣1且m≠0.故选:B.7.(3分)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F,若四边形DCFE的周长为25cm,AC 的长5cm,则AB的长为()A.13cm B.12cm C.10cm D.8cm【分析】由三角形中位线定理推知ED∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形,根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=25﹣AB,然后根据勾股定理即可求得.【解答】解:如图,∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥FC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25cm,AC的长5cm,∴BC=25﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25﹣AB)2+52,解得,AB=13cm,故选:A.8.(3分)若一个袋子中装有形状与大小均完全相同有4张卡片,4张卡片上分别标有数字﹣2,﹣1,2,3,现从中任意抽出其中两张卡片分别记为x,y,并以此确定点P(x,y),那么点P落在直线y=﹣x+1上的概率是()A.B.C.D.【分析】画出树状图,再求出在直线上的点的坐标的个数,然后根据概率公式列式计算即可得解.【解答】解:画树状图如下:由树状图可知共有12种等可能结果,其中点P落在直线y=﹣x+1上的有(﹣2,3)、(﹣1,2)、(2,﹣1)、(3,﹣2),所以点P落在直线y=﹣x+1上的概率是=,故选:B.9.(3分)小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A 时的平均速度为x 千米/小时,根据题意,可列分式方程( ) A .=15 B .=15C .=D .【分析】若设走路线A 时的平均速度为x 千米/小时,则走路线B 时的平均速度为1.6x 千米/小时,根据路线B 的全程比路线A 的全程多7千米,走路线B 的全程能比走路线A 少用15分钟可列出方程.【解答】解:设走路线A 时的平均速度为x 千米/小时, 根据题意,得﹣=.故选:D .10.(3分)如图,在菱形ABCD 中,∠DAB=60°,现把菱形ABCD 绕点A 逆时针方向旋转30°得到菱形AB′C′D′,若AB=4,则阴影部分的面积为( )A .4π﹣12+12B .4π﹣8+12C .4π﹣4D .4π+12【分析】根据S 阴=S 扇形ACC′﹣S △ADC ﹣S △DFC′,计算即可解决问题;【解答】解:由题意:AB=AD=DC=AB′=CB′=4,∠DAC=∠DCA=∠DC′F=30°, ∵∠C′DC=60°, ∴∠DFC′=90°,∵AC=AC′=4,C′D=4﹣4,∴DF=DC′=2﹣2,C′F=6﹣2,∴S 阴=S 扇形ACC′﹣S △ADC ﹣S △DFC′=﹣×4×2﹣×(2﹣2)(6﹣2)=4π﹣12+12,故选:A .二、填空题(每小题3分,共15分)11.(3分)计算:2﹣1﹣=﹣2【分析】原式利用负整数指数幂法则,以及算术平方根定义计算即可求出值.【解答】解:原式=﹣3=﹣2,故答案为:﹣212.(3分)如图,△ABC中,∠B=35°,∠BCA=75°,请依据尺规作图的作图痕迹,计算∠α=75°【分析】先根据三角形的内角和得出∠BAC=70°,由角平分线的定义求出∠EAC 的度数,再由EF是线段AC的垂直平分线得出∠ABC=∠BCF的度数,根据三角形内角和定理得出∠α的度数,进而可得出结论.【解答】解:∵∠B=35°,∠BCA=75°,∴∠BAC=70°,∵由作法可知,AD是∠BAC的平分线,∴∠CAD=∠BAC=35°,∵由作法可知,EF是线段BC的垂直平分线,∴∠BCF=∠B=35°,∵∠ACF=∠ACB﹣∠BCF=40°,∴∠α=∠CAD+∠ACF=75°,故答案为:75.13.(3分)如图,反比例函数y=的图象经过矩形OABC的边AB的中点E,并与矩形的另一边BC交于点F,若S=1,则k=﹣4△BEF【分析】设E的坐标是(m,n),则B的坐标是(2m,n),在y=中,令x=2m,解得y=,根据面积公式求出mn,即可得出选项.【解答】解:设E的坐标是(m,n),则C的坐标是(2m,n),在y=中,令x=2m,解得:y=,∵S=1,△BEF∴BE•BF=1,∴|m|•|n﹣|=1,∵mn<0,解得:mn=﹣4,∴k=mn=﹣4,故答案为﹣4.14.(3分)如图1,则等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC的面积为16.【分析】设出等边三角形的边长,根据等边三角形的性质和相似三角形的性质、以及二次函数的最值,即可确定CD取得最大值时等边三角形的边长,进而得到△ABC的面积.【解答】解:由题可得,∠APD=60°,∠ABC=∠C=60°,∴∠BAP=∠CPD,∴△ABP∽△PCD,∴,设AB=a,则,∴y=,当x=时,y取得最大值2,即P为BC中点时,CD的最大值为2,∴此时∠APB=∠PDC=90°,∠CPD=30°,∴PC=BP=4,∴等边三角形的边长为为8,∴根据等边三角形的性质,可得S=×82=16.故答案为:16.15.(3分)如图,在Rt△ACB中,∠ACB=90°,AB=10,BC=6,点N是线段BC 上的一个动点,将△ACN沿AN折叠,使点C落在点C'处,当△NC'B是直角三角形时,CN的长为或.【分析】分两种情况讨论:当∠NC'B=90°时,C'落在AB边上,则AC'=AC=8,由△ACB∽△NC'B可得,CN=CN'=;当∠NBC'=90°时,过A作AD⊥BC'于D,由△ADC'∽△C'BN,可得CN=C'N=×(8﹣2)=.【解答】解:①如图,当∠NC'B=90°时,C'落在AB边上,则AC'=AC=8,∴BC'=2,由△ACB∽△NC'B可得,,∴CN=CN'=;②如图,当∠NBC'=90°时,过A作AD⊥BC'于D,由AC'=AC=8,AD=BC=6,可得C'D=2,BC'=8﹣2,由△ADC'∽△C'BN,可得,∴CN=C'N=×(8﹣2)=;综上所述,当△NC'B是直角三角形时,CN的长为或.故答案为:或.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:,其中x是满足不等式﹣(x ﹣1)≥的非负整数解.【分析】根据分式的运算法则即可求出答案.【解答】解:∵﹣(x﹣1)≥,∴x﹣1≤﹣1∴x≤0,非负整数解为0∴x=0原式=÷(﹣)=×==17.(9分)小明利用寒假进行综合实践活动,他想利用测角仪和卷尺测量自家所住楼(甲楼)与对面邮政大楼(乙楼)的高度,现小明用卷尺测得甲楼宽AE 是8m,用测角仪在甲楼顶E处与A处测得乙楼顶部D的仰角分别为37°和42°,同时在A处测得乙楼底部B处的俯角为32°,请根据小明测得数据帮他计算甲、乙两个楼的高度.(精确到0.01m)(cos32°≈0.85,tan32°≈0.62,cos42°≈0.74,tan42°≈0.90,cos37°≈0.80,tan37°≈0.75)【分析】作AN⊥BD,由tan37°=≈0.75=可设DN=3x、EN=4x,根据tan42°=求得x的值,即可得DN=36、AN=40,再根据tan32°=求得BN的长,继而可得答案.【解答】解:过点A作AN⊥BD于点N,在Rt△DNE,tan37°=≈0.75=,设DN=3x,则EN=4x,在Rt△DNA中,有DN=3x、AN=4x﹣8,∵tan42°=,即≈0.9,解得:x=12,∴DN=36、AN=40,在Rt△BNA中,由题意知∠NAB=32°,∵tan32°=,∴BN=ANtan32°≈24.8,∴DB=DN+BN=36+24.8=60.8,AC=BN=24.8,答:甲楼的高为60.8m,乙楼的高为24.8m.18.(9分)2018年河南中招体育考试测试时间将定于4月1日开始进行,光明中学为了了解本校九年级全体学生体育训练的成效,在校内提前进行了体育模拟测试,并对九级(1)班的体育模拟成绩按A、B、C、D四个等级进行统计,井将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:65 分~70 分;B级:60分~65 分;C 级:55 分~60分0;D级:55 分以下)(1)九年级(1)班共有60人,D级学生所在的扇形圆心角的度数为36°;(2)请补全条形统计图与扇形统计图;(3)该班学生体育测试成绩的中位数落在等级A内;(4)若该校九年级学生共有800人,请你估计这次考试中A级和B级的学生共有多少人?【分析】(1)先根据统计图求出总人数,即可得到D级人数的百分比,以及D 级学生所在的扇形圆心角的度数;(2)根据题意补全图形即可;(3)把数据按从小到大顺序排列,最中间的数(或中间两数的平均数)即为中位数;(4)用九年级学生总数乘以这次考试中A级和B级的学生所占百分比即可.【解答】解:(1)总人数=36÷60%=60(人);D级学生所在的扇形圆心角的度数为×360°=36°,故答案为:60,36°;(2)B级的人数为:60﹣(36+3+6)=15人,百分比为×100%=25%;D级的百分比为10%;补全条形统计图与扇形统计图如下:(3)由题可得,排序后第30和31个数据在A等级内,故该班学生体育测试成绩的中位数落在等级A内,故答案为:A;(4)800×(60%+25%)=680人,答:这次考试中A级和B级的学生共有680人.19.(9分)如图,AC是⊙O的直径,点P在线段AC的延长线上,且PC=CO,点B在⊙O上,且∠CAB=30°.(1)求证:PB是⊙O的切线;(2)若D为圆O上任一动点,⊙O的半径为5cm时,当弧CD长为cm时,四边形ADPB为菱形,当弧CD长为cm时,四边形ADCB为矩形.【分析】(1)欲证明PB是切线,只要证明OB⊥PB即可;(2)利用菱形、矩形的性质,求出圆心角∠COD即可解决问题;【解答】解:(1)如图连接OB、BC.∵OA=OB,∴∠OAB=∠OBA=30°,∴∠COB=∠OAB=∠OBA=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OC,∵PC=OA=OC,∴BC=CO=CP,∴∠PBO=90°,∴OB⊥PB,∴PB是⊙O的切线.(2)①的长为cm时,四边形ADPB是菱形.∵四边形ADPB是菱形,∠ADB=△ACB=60°,∴∠COD=2∠CAD=60°,∴的长==cm.②当四边形ADCB是矩形时,易知∠COD=120°,∴的长==cm.故答案为cm,cm;20.(9分)小明从家去体育场锻炼,同时,妈妈从体育场以50米/分的速度回家,小明到体育场后发现要下雨,立即返回,追上妈妈后,小明以250米/分的速度回家取伞,立即又以250米/分的速度折回接妈妈,并一同回家.如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象.(注:小明和妈妈始终在同一条笔直的公路上行走,图象上A、C、D三点在一条直线上)(1)求线段BC的函数表达式;(2)求点D坐标,并说明点D的实际意义;(3)当x的值为10或30时,小明与妈妈相距1 500米.【分析】(1)根据路程=速度×时间结合体育场离家3000米即可得出点C的坐标,根据点B、C的坐标利用待定系数法即可求出线段BC的表达式;(2)根据点A、C的坐标利用待定系数法即可求出直线AC的表达式,由时间=路程÷速度结合点C的横坐标即可得出点E的坐标,根据路程=速度×时间即可得出直线ED的表达式,联立AC、ED的表达式成方程组,解之即可得出点D的坐标,再说出点D的实际意义即可;(3)根据速度=路程÷时间即可求出小明去体育场的速度,由路程=速度×时间即可求出线段OB的表达式,根据OB、AC、BC的表达式结合小明与妈妈相距1500米即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)∵45×50=2250(米),3000﹣2250=750(米),∴点C的坐标为(45,750).设线段BC的函数表达式为y=kx+b(k≠0),把(30,3000)、(45,750)代入y=kx+b,,解得:,∴线段BC的函数表达式y=﹣150x+7500(30≤x≤45).(2)设直线AC的函数表达式为:y=k1x+b1,把(0,3000)、(45,750)代入y=k1x+b1,,解得:.∴直线AC的函数表达式为y=﹣50x+3000.∵750÷250=3(分钟),45+3=48,∴点E的坐标为(48,0).∴直线ED的函数表达式y=250(x﹣48)=250x﹣12000.联立直线AC、ED表达式成方程组,,解得:,∴点D的坐标为(50,500).实际意义:小明将在50分钟时离家500米的地方将伞送到妈妈手里.(3)∵3000÷30=100(米/分钟),∴线段OB的函数表达式为y=100x(0≤x≤30),由(1)线段BC的表达式为y=﹣150x+7500,(30≤x≤45)当小明与妈妈相距1500米时,即﹣50x+3000﹣100x=1500或100x﹣(﹣50x+3000)=1500或(﹣150x+7500)﹣(﹣50x+3000)=1500,解得:x=10或x=30,∴当x为10或30时,小明与妈妈相距1500米.故答案为:10或30.21.(10分)阳光体育用品商店,在新学期开始准备购进AB两种体育器材共100件进行销售,这两种体育器材的进价、售价如下表所示:请解答下列问题:(1)如果所进的这100件体育器材全部售出,请问该体育用品高店该如何进货,才能使利润能达到1264 元?请说明理由;(2)要使此次销售所获利润最大,且所获利润不超过总进货价格的50%,请你帮该体育用品商店设计一个进货方案,如何进货才能使利润最大?最大利润是多少?【分析】(1)设A种器材为x件,则B种器材为(100﹣x)件,根据题意列出方程解答即可;(2)设A种器材为a件,则B种器材为(100﹣a)件,根据题意列出函数解答即可.【解答】解:(1)设A种器材为x件,则B种器材为(100﹣x)件,可得:(30﹣22)x+(44﹣28)(100﹣x)=1264,解得:x=42.100﹣x=58(件)答:A种器材为42件,则B种器材为58件;(2)设A种器材为a件,则B种器材为(100﹣a)件,可得(30﹣22)a+(44﹣28)(100﹣a)≤50%[22a+28(100﹣a)],解得:a≥40,设利润为y,则可得:y=(30﹣22)a+(44﹣28)(100﹣a)=﹣8a+1600,因为是减函数,所以当x=40时,利润最大,即最大利润=﹣40×8+1600=1280(元).答:A种器材为40件,则B种器材为60件利润最大,最大利润是1280元.22.(10分)如图,在△ABC中,点N为AC边的任意一点,D为线段AB上一点,若∠MPN的顶点P为线段CD上任一点,其两边分别与边BC,AC交于点M、N,且∠MPN+∠ACB=180°.(1)如图1,若AC=BC,∠ACB=90°,且D为AB的中点时,则=1,请证明你的结论;(2)如图2,若BC=m,AC=n,∠ACB=90°,且D为AB的中点时,则=;(3)如图3,若=k,BC=m,AC=n,请直接写出的值.(用k,m,n表示)【分析】(1)如图1中,作PG⊥AC于G,PH⊥BC于H.只要证明△PHM∽△PGN,可得==1;(2)如图2中,作PG⊥AC于G,PH⊥BC于H.只要证明△PHM∽△PGN,可得=,由△PHC∽△ACB,PG=HC,可得====;(3)如图3中,作PG⊥AC于G,PH⊥BC于H,DT⊥AC于T,DK⊥BC于K.易证△PMH∽△PGN,可得=,由==,推出=,由DT∥PG,DK∥PH,可得==,即可推出==,由此即可解决问题;【解答】解:(1)如图1中,作PG⊥AC于G,PH⊥BC于H.∵AC=BC,∠ACB=90°,且D为AB的中点,∴CD平分∠ACB,∵PG⊥AC于G,PH⊥BC于H,∴PG=PH,∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG,∵∠PHM=∠PGN=90°,∴△PHM∽△PGN,∴==1,故答案为1.(2)如图2中,作PG⊥AC于G,PH⊥BC于H.∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG,∵∠PHM=∠PGN=90°,∴△PHM∽△PGN,∴=,∵△PHC∽△ACB,PG=HC,∴====.故答案为.(3)如图3中,作PG⊥AC于G,PH⊥BC于H,DT⊥AC于T,DK⊥BC于K.易证△PMH∽△PGN,∴=,∵==,∴=,∵DT∥PG,DK∥PH,∴==,∴==,∴=.23.(11分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与x轴交于A(1,0),B(﹣3,0)两点,现有经过点A的直线l:y=kx+b1与y轴交于点C,与抛物线的另个交点为D.(1)求抛物线的函数表达式;(2)若点D在第二象限且满足CD=5AC,求此时直线1的解析式;在此条件下,点E为直线1下方抛物线上的一点,求△ACE面积的最大值,并求出此时点E的坐标;(3)如图,设P在抛物线的对称轴上,且在第二象限,到x轴的距离为4,点Q 在抛物线上,若以点A,D,P,Q为顶点的四边形能否成为平行四边形?若能,请直接写出点Q的坐标;若不能,请说明理由.【分析】(1)设交点式y=a(x﹣1)(x+3),然后展开后利用常数项得到关于a 的方程,解方程求出a即可;(2)作DF⊥x轴于F,EM∥y轴交AD于M,如图1,利用平行线分线段成比例得到OF=5OA=5,再利用抛物线解析式确定D(﹣5,6),接着利用待定系数法求直线l的解析式为y=﹣x+1,设E(x,x2+x﹣),则E(x,﹣x+1),ME=﹣x2=S△AME﹣S△CME得到S△ACE=(﹣x2﹣2x+,然后利用三角形面积公式,利用S△ACE﹣2x+),最后根据二次函数的性质解决问题;(3)先确定P(﹣1,4),设Q(t,t2+t﹣),接着讨论:当AP为平行四边形APDQ的一边时,如图2,利用平移规律得到D(t﹣2,t2+t﹣+4),则把D(t﹣2,t2+t﹣+4)代入y=x2+x﹣得(t﹣2)2+(t﹣2)﹣=t2+t﹣+4,解方程确定此时Q点坐标;当AP为平行四边形ADPQ的对角线时,如图3,线段AP的中点坐标为(0,2),利用线段中点坐标公式表示出D(﹣t,﹣t2﹣t+),然后把D(﹣t,﹣t2﹣t+)代入y=x2+x﹣得t2﹣t﹣=﹣t2﹣t+,再解方程得到此时Q点坐标.【解答】解:(1)设抛物线解析式为y=a(x﹣1)(x+3),即y=ax2+2ax﹣3a,∴﹣3a=﹣,解得a=,∴抛物线解析式为y=x2+x﹣;(2)作DF⊥x轴于F,EM∥y轴交AD于M,如图1,∵OC∥DF,∴=,而CD=5AC,∴OF=5OA=5,即点D的横坐标为﹣5,当x=﹣5时,y=x2+x﹣=6,则D(﹣5,6),把A(1,0),D(﹣5,6)代入y=kx+b1得,解得,∴直线l的解析式为y=﹣x+1,设E(x,x2+x﹣),则E(x,﹣x+1),∴ME=﹣x+1﹣(x2+x﹣)=﹣x2﹣2x+,∴S=S△AME﹣S△CME=•1•EM=(﹣x2﹣2x+)=﹣x2﹣x+=﹣(x+2)2+,△ACE有最大值,最大值为,此时E点坐标为(﹣2,﹣);当x=﹣2时,S△ACE(3)抛物线的对称轴为直线x=﹣1,而P在抛物线的对称轴上,且在第二象限,到x轴的距离为4,∴P(﹣1,4),设Q(t,t2+t﹣),当AP为平行四边形APDQ的一边时,如图2,点A(1,0)向左平移2个单位,向上平移4个单位得到点P(﹣1,4),则点Q向左平移2个单位,向上平移4个单位得到点D,则D(t﹣2,t2+t﹣+4),把D(t﹣2,t2+t﹣+4)代入y=x2+x﹣得(t﹣2)2+(t﹣2)﹣=t2+t ﹣+4,解得t=﹣2,此时Q(﹣2,﹣);当AP为平行四边形ADPQ的对角线时,如图3,线段AP的中点坐标为(0,2),设D(m,n),则=0,=2,∴m=﹣t,n=﹣t2﹣t+,∴D(﹣t,﹣t2﹣t+),把D(﹣t,﹣t2﹣t+)代入y=x2+x﹣得t2﹣t﹣=﹣t2﹣t+,解得t1=,t2=﹣,此时Q点坐标为(,2+)或(﹣,2﹣),综上所述,Q点坐标为(﹣2,﹣)或(,2+)或(﹣,2﹣).。