2019高考数学文一轮分层演练:第5章平面向量 第1讲 Word版含解析
浙江专版2019版高考数学一轮复习学案:第五章平面向量+Word版含答案
第五章平面向量第一节平面向量的概念及其线性运算1.向量的有关概念平行四边形法则向量a(a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa. [小题体验]1.下列四个命题中,正确的命题是( ) A .若a ∥b ,则a =b B .若|a|=|b|,则a =b C .若|a|=|b|,则a ∥b D .若a =b ,则|a|=|b|答案:D2.若m ∥n ,n ∥k ,则向量m 与向量k ( ) A .共线 B .不共线 C .共线且同向 D .不一定共线答案:D3.若D 是△ABC 的边AB 上的中点,则向量CD ―→等于( ) A .-BC ―→+12BA ―→B .-BC ―→-12 BA ―→C .BC ―→ -12BA ―→D .BC ―→+12 BA ―→答案:A4.已知a 与b 是两个不共线的向量,且向量a +λb 与-(b -3a)共线,则λ=________. 答案:-131.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误. 2.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个. 3.要注意向量共线与三点共线的区别与联系. [小题纠偏]1.若菱形ABCD 的边长为2,则|AB ―→-CB ―→+CD ―→|=________. 解析:|AB ―→-CB ―→+CD ―→|=|AB ―→+BC ―→+CD ―→|=|AD ―→|=2. 答案:22.已知a ,b 是非零向量,命题p :a =b ,命题q :|a +b|=|a|+|b|,则p 是q 的________条件.解析:若a =b ,则|a +b|=|2a|=2|a|,|a|+|b|=|a|+|a|=2|a|,即p ⇒q . 若|a +b|=|a|+|b|,由加法的运算知a 与b 同向共线,即a =λb ,且λ>0,故q ⇒/ p . ∴p 是q 的充分不必要条件. 答案:充分不必要考点一 平面向量的有关概念基础送分型考点——自主练透[题组练透]1.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a|a 0;③若a 与a 0平行且|a|=1,则a =a 0.假命题的个数是( )A .0B .1C .2D .3解析:选D 向量是既有大小又有方向的量,a 与|a|a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a|a 0,故②③也是假命题.综上所述,假命题的个数是3.2.下列说法中错误的是( )A .有向线段可以表示向量但不是向量,且向量也不是有向线段B .若向量a 和b 不共线,则a 和b 都是非零向量C .长度相等但方向相反的两个向量不一定共线D .方向相反的两个非零向量必不相等解析:选C 选项A 中向量与有向线段是两个完全不同的概念,故正确;选项B 中零向量与任意向量共线,故a ,b 都是非零向量,故正确;选项C 中是共线向量,故错误;选项D 中既然方向相反就一定不相等,故正确.3.(易错题)给出下列命题: ①若a =b ,b =c ,则a =c ;②若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→是四边形ABCD 为平行四边形的充要条件; ③a =b 的充要条件是|a|=|b|且a ∥b ; ④若a ∥b ,b ∥c ,则a ∥c. 其中正确命题的序号是________.解析:①正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c.②正确.∵AB ―→=DC ―→,∴|AB ―→|=|DC ―→|且AB ―→∥DC ―→, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则AB ―→∥DC ―→且|AB ―→|=|DC ―→|,因此,AB ―→=DC ―→.③不正确.当a ∥b 且方向相反时,即使|a|=|b|,也不能得到a =b ,故|a|=|b|且a ∥b 不是a =b 的充要条件,而是必要不充分条件.④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②. 答案:①②[谨记通法]向量有关概念的5个关键点 (1)向量:方向、长度.(2)非零共线向量:方向相同或相反. (3)单位向量:长度是一个单位长度. (4)零向量:方向没有限制,长度是0.(5)相等相量:方向相同且长度相等.如“题组练透”第3题易混淆有关概念. 考点二 向量的线性运算基础送分型考点——自主练透[题组练透]1.(2018·武汉调研)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内的任意一点,则OA ―→+OB ―→+OC ―→+OD ―→等于( )A .OM ―→B .2OM ―→C .3OM ―→D .4OM ―→解析:选D 因为M 是平行四边形ABCD 对角线AC ,BD 的交点,所以OA ―→+OC ―→=2OM ―→,OB ―→+OD ―→=2OM ―→,所以OA ―→+OB ―→+OC ―→+OD ―→=4OM ―→.2.(2018·温州模拟)在等腰梯形ABCD 中,AB ―→=-2CD ―→,M 为BC 的中点,则AM ―→=( ) A.12AB ―→+12AD ―→ B .34AB ―→+12AD ―→C.34AB ―→+14AD ―→ D.12AB ―→+34AD ―→ 解析:选B 因为AB ―→=-2CD ―→,所以AB ―→=2DC ―→.又M 是BC 的中点,所以AM ―→=12(AB―→+AC ―→)=12(AB ―→+AD ―→+DC ―→)=12⎝ ⎛⎭⎪⎫AB ―→+AD ―→+12 AB ―→ =34AB ―→+12AD ―→.3.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE ―→=λ1AB ―→+λ2AC ―→(λ1,λ2为实数),则λ1+λ2的值为________.解析:DE ―→=DB ―→+BE ―→=12AB ―→+23BC ―→=12AB ―→+23(BA ―→+AC ―→)=-16AB ―→+23AC ―→,所以λ1=-16,λ2=23,即λ1+λ2=12.答案:12[谨记通法]1.平面向量的线性运算技巧(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来求解.2.利用平面向量的线性运算求参数的一般思路 (1)没有图形的准确作出图形,确定每一个点的位置.(2)利用平行四边形法则或三角形法则进行转化,转化为要求的向量形式. (3)比较、观察可知所求.考点三 共线向量定理的应用重点保分型考点——师生共研[典例引领]1.在△ABC 中,点D 在线段BC 的延长线上,且BC ―→=3CD ―→,点O 在线段CD 上(与点C ,D 不重合),若AO ―→=x AB ―→+(1-x )·AC ―→,则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫0,13C.⎝ ⎛⎭⎪⎫-12,0 D.⎝ ⎛⎭⎪⎫-13,0 解析:选 D 设CO ―→=y BC ―→,∵AO ―→=AC ―→+CO ―→=AC ―→+y BC ―→=AC ―→+y (AC ―→-AB ―→)=-y AB ―→+(1+y ) AC ―→,∵BC ―→=3CD ―→,点O 在线段CD 上(与点C ,D 不重合),∴y ∈⎝ ⎛⎭⎪⎫0,13,∵AO ―→=x AB ―→+(1-x )AC ―→,∴x ∈⎝ ⎛⎭⎪⎫-13,0.2.设两个非零向量a 与b 不共线,(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3(a -b), 求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 同向.解:(1)证明:∵AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b ,∴BD ―→=BC ―→+CD ―→=2a +8b +3a -3b =5(a +b)=5AB ―→. ∴AB ―→,BD ―→共线,又∵它们有公共点B ,∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 同向,∴存在实数λ(λ>0),使k a +b =λ(a +k b), 即k a +b =λa +λk b.∴(k -λ)a =(λk -1)b. ∵a ,b 是不共线的两个非零向量,⎩⎪⎨⎪⎧k -λ=0,λk -1=0,解得⎩⎪⎨⎪⎧k =1,λ=1或⎩⎪⎨⎪⎧k =-1,λ=-1,又∵λ>0,∴k =1.[由题悟法]共线向量定理的3个应用(1)证明向量共线:对于向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线. (2)证明三点共线:若存在实数λ,使AB ―→=λAC ―→,则A ,B ,C 三点共线. (3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值. [提醒] 证明三点共线时,需说明共线的两向量有公共点.[即时应用]1.已知向量e 1与e 2不共线,且向量AB ―→=e 1+me 2,AC ―→=ne 1+e 2,若A ,B ,C 三点共线,则实数m ,n 满足的条件是( )A .mn =1B .mn =-1C .m +n =1D .m +n =-1解析:选A 因为A ,B ,C 三点共线,所以一定存在一个确定的实数λ,使得AB ―→=λAC ―→,所以有e 1+me 2=n λe 1+λe 2,由此可得⎩⎪⎨⎪⎧1=n λ,m =λ,所以mn =1.2.如图,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE ―→=23AD ―→,AB ―→=a ,AC ―→=b.(1)用a ,b 表示向量AD ―→,AE ―→,AF ―→,BE ―→,BF ―→; (2)求证:B ,E ,F 三点共线. 解:(1)延长AD 到G ,使AD ―→=12AG ―→,连接BG ,CG ,得到▱ABGC , 所以AG ―→=a +b , AD ―→=12AG ―→=12(a +b),AE ―→=23AD ―→=13(a +b),AF ―→=12AC ―→=12b ,BE ―→=AE ―→-AB ―→=13(a +b)-a =13(b -2a),BF ―→=AF ―→-AB ―→=12b -a =12(b -2a).(2)证明:由(1)可知BE ―→=23BF ―→,又因为BE ―→,BF ―→有公共点B , 所以B ,E ,F 三点共线.一抓基础,多练小题做到眼疾手快1.在平行四边形ABCD 中,对角线AC 与BD 交于点O ,若AB ―→+AD ―→=λAO ―→,则λ=( ) A .1 B .2 C .4D .6解析:选B 根据向量加法的运算法则可知,AB ―→+AD ―→=AC ―→=2AO ―→,故λ=2. 2.在△ABC 中,AD ―→=2DC ―→,BA ―→=a ,BD ―→=b ,BC ―→=c ,则下列等式成立的是( ) A .c =2b -a B .c =2a -b C .c =32a -12bD .c =32b -12a解析:选D 依题意得BD ―→-BA ―→=2(BC ―→-BD ―→), 即BC ―→=32BD ―→-12BA ―→=32b -12a.3.在四边形ABCD 中,AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 的形状是( )A .矩形B .平行四边形C .梯形D .以上都不对解析:选C 由已知,得AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b =2(-4a -b)=2BC ―→,故AD ―→∥BC ―→.又因为AB ―→与CD ―→不平行,所以四边形ABCD 是梯形.4.(2018·扬州模拟)在△ABC 中,N 是AC 边上一点且AN ―→=12NC ―→,P 是BN 上一点,若AP―→=m AB ―→+29AC ―→,则实数m 的值是________.解析:如图,因为AN ―→=12NC ―→,P 是BN ―→上一点.所以AN ―→=13AC ―→,AP ―→=m AB ―→+29AC ―→=m AB ―→+23AN ―→,因为B ,P ,N 三点共线,所以m +23=1,则m =13.答案:135.已知▱ABCD 的对角线AC 和BD 相交于O ,且OA ―→=a ,OB ―→=b ,则DC ―→=________,BC ―→=________.(用a ,b 表示)解析:如图,DC ―→=AB ―→=OB ―→-OA ―→=b -a ,BC ―→=OC ―→-OB ―→=-OA ―→-OB ―→=-a -b.答案:b -a -a -b二保高考,全练题型做到高考达标1.已知向量a ,b ,且AB ―→=a +2b ,BC ―→=-5a +6b ,CD ―→=7a -2b ,则一定共线的三点是( )A .A ,B ,D B .A ,B ,C C .B ,C ,DD .A ,C ,D解析:选A AD ―→=AB ―→+BC ―→+CD ―→=3a +6b =3AB ―→.因为AB ―→与AD ―→有公共点A ,所以A ,B ,D 三点共线.2.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 共线反向,则实数λ的值为( )A .1B .-12C .1或-12D .-1或-12解析:选B 由于c 与d 共线反向,则存在实数k 使c =kd (k <0),于是λa +b =k []a +λ-b .整理得λa +b =k a +(2λk -k )b.由于a ,b 不共线,所以有⎩⎪⎨⎪⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.又因为k <0,所以λ<0,故λ=-12.3.如图,已知|OA ―→|=|OB ―→|=1,OA ―→与OB ―→的夹角为120°,OC ―→与OA ―→的夹角为30°,若OC ―→=λOA ―→+μOB ―→(λ,μ∈R),则λμ等于( )A.32B .233C.12D .2解析:选D 过C 作OB 的平行线交OA 的延长线于点D .由题意可知,∠COD =30°,∠OCD =90°,∴OD =2CD ,又∵OD ―→=λOA ―→,DC ―→=μOB ―→,∴λ|OA ―→|=2μ|OB ―→|,即λ=2μ,故λμ=2.4.(2018·遂昌期初)已知a ,b 是两个不共线的非零向量,且起点在同一点上,若a ,t b ,13(a +b)三向量的终点在同一直线上,则实数t 的值为( )A .2B .1 C.23D.12解析:选D 由题可设13(a +b)=λa +μt b ,因为a ,t b ,13(a +b)三向量的终点在同一直线上,所以有λ+μ=1.所以13=λ,μ=23,所以13=23t ,解得t =12.5.设O 在△ABC 的内部,D 为AB 的中点,且OA ―→+OB ―→+2OC ―→=0,则△ABC 的面积与△AOC 的面积的比值为( )A .3B .4C .5D .6解析:选B ∵D 为AB 的中点,则OD ―→=12(OA ―→+OB ―→),又OA ―→+OB ―→+2OC ―→=0,∴OD ―→=-OC ―→,∴O 为CD 的中点, 又∵D 为AB 中点, ∴S △AOC =12S △ADC =14S △ABC ,则S △ABCS △AOC=4. 6.在▱ABCD 中,AB ―→=a ,AD ―→=b ,AN ―→=3NC ―→,M 为BC 的中点,则MN ―→=________(用a ,b 表示).解析:由AN ―→=3NC ―→,得AN ―→=34AC ―→=34(a +b),AM ―→=a +12b ,所以MN ―→=AN ―→-AM ―→=34(a +b)-⎝ ⎛⎭⎪⎫a +12b =-14a +14b.答案:-14a +14b7.设点M 是线段BC 的中点,点A 在直线BC 外,BC ―→2=16,|AB ―→+AC ―→|=|AB ―→-AC ―→|,则|AM ―→|=________.解析:由|AB ―→+AC ―→|=|AB ―→-AC ―→|可知,AB ―→⊥AC ―→, 则AM 为Rt △ABC 斜边BC 上的中线, 因此,|AM ―→|=12|BC ―→|=2.答案:28.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC ―→=a ,CA ―→=b ,给出下列命题:①AD ―→=12a -b ;②BE ―→=a +12b ;③CF ―→=-12a +12b ;④AD ―→+BE ―→+CF ―→=0.其中正确命题的个数为________.解析:BC ―→=a ,CA ―→=b ,AD ―→=12CB ―→+AC ―→=-12a -b ,故①错;BE ―→=BC ―→+12CA ―→=a +12b ,故②正确;CF ―→=12(CB ―→+CA ―→)=12(-a +b)=-12a +12b ,故③正确;AD ―→+BE ―→+CF ―→=-b -12a +a +12b +12b -12a =0,故④正确.∴正确命题为②③④. 答案:39.设e 1,e 2是两个不共线的向量,已知AB ―→=2 e 1-8 e 2,CB ―→=e 1+3 e 2,CD ―→=2e 1-e 2.(1)求证:A ,B ,D 三点共线;(2)若BF ―→=3 e 1-k e 2,且B ,D ,F 三点共线,求k 的值.解:(1)证明:由已知得BD ―→=CD ―→-CB ―→=(2 e 1-e 2)-(e 1+3 e 2)=e 1-4 e 2, ∵AB ―→=2 e 1-8 e 2, ∴AB ―→=2BD ―→.又∵AB ―→与BD ―→有公共点B , ∴A ,B ,D 三点共线.(2)由(1)可知BD ―→=e 1-4 e 2,∵BF ―→=3 e 1-k e 2,且B ,D ,F 三点共线, ∴BF ―→=λBD ―→(λ∈R), 即3 e 1-k e 2=λe 1-4λe 2,得⎩⎪⎨⎪⎧λ=3,-k =-4λ.解得k =12.10.已知P 为△ABC 内一点,且3AP ―→+4BP ―→ +5CP ―→=0,延长AP 交BC 于点D ,若AB ―→=a ,AC ―→=b ,用a ,b 表示向量AP ―→,AD ―→.解:∵BP ―→=AP ―→-AB ―→=AP ―→-a ,CP ―→=AP ―→-AC ―→=AP ―→-b ,又3AP ―→+4BP ―→+5CP ―→=0,∴3AP ―→+4(AP ―→-a)+5(AP ―→-b)=0,∴AP ―→=13a +512b.设AD ―→=t AP ―→ (t ∈R),则AD ―→=13t a +512t b.①又设BD ―→=k BC ―→ (k ∈R),由BC ―→=AC ―→-AB ―→=b -a , 得BD ―→=k (b -a).而AD ―→=AB ―→+BD ―→=a +BD ―→. ∴AD ―→=a +k (b -a)=(1-k )a +k b.② 由①②得⎩⎪⎨⎪⎧13t =1-k ,512t =k ,解得t =43.代入①得AD ―→=49a +59b.∴AP ―→=13a +512b ,AD ―→=49a +59b.三上台阶,自主选做志在冲刺名校1.如图,在△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于点F ,设AB ―→=a ,AC ―→=b ,AF ―→=x a +y b ,则(x ,y )为( )A.⎝ ⎛⎭⎪⎫12,12 B .⎝ ⎛⎭⎪⎫23,23 C.⎝ ⎛⎭⎪⎫13,13 D.⎝ ⎛⎭⎪⎫23,12 解析:选C 令BF ―→=λBE ―→,则AF ―→=AC ―→+BF ―→=AB ―→+λBE ―→=AB ―→+λ⎝ ⎛⎭⎪⎫12 AC ―→-AC ―→ =(1-λ)AB ―→+12λAC ―→;令CF ―→=μCD ―→,则AF ―→=AC ―→+CF ―→=AC ―→+μCD ―→=AC ―→+μ⎝ ⎛⎭⎪⎫12 AB ―→-AC ―→ =12μAB―→+(1-μ)AC ―→.由对应系数相等可得⎩⎪⎨⎪⎧1-λ=12μ,12λ=1-μ,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以AF ―→=13AB ―→+13AC ―→.故选C.2.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE ―→=AD ―→+μAB ―→,则μ的取值范围是________.解析:由题意可求得AD =1,CD =3,所以AB ―→=2DC ―→. ∵点E 在线段CD 上, ∴DE ―→=λDC ―→(0≤λ≤1). ∵AE ―→=AD ―→+DE ―→,又AE ―→=AD ―→+μAB ―→=AD ―→+2μDC ―→=AD ―→+2μλDE ―→,∴2μλ=1,即μ=λ2. ∵0≤λ≤1,∴0≤μ≤12.即μ的取值范围是⎣⎢⎡⎦⎥⎤0,12. 答案:⎣⎢⎡⎦⎥⎤0,12 3.已知O ,A ,B 是不共线的三点,且OP ―→=m OA ―→+n OB ―→(m ,n ∈R). (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1. 证明:(1)若m +n =1,则OP ―→=m OA ―→+(1-m )OB ―→=OB ―→+m (OA ―→-OB ―→), ∴OP ―→-OB ―→=m (OA ―→-OB ―→), 即BP ―→=m BA ―→,∴BP ―→与BA ―→共线. 又∵BP ―→与BA ―→有公共点B , ∴A ,P ,B 三点共线. (2)若A ,P ,B 三点共线, 则存在实数λ,使BP ―→=λBA ―→, ∴OP ―→-OB ―→=λ(OA ―→-OB ―→). 又OP ―→=m OA ―→+n OB ―→.故有m OA ―→+(n -1)OB ―→=λOA ―→-λOB ―→, 即(m -λ)OA ―→+(n +λ-1)OB ―→=0. ∵O ,A ,B 不共线,∴OA ―→,OB ―→不共线,∴⎩⎪⎨⎪⎧m -λ=0,n +λ-1=0,∴m +n =1.第二节平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1 e 1+λ2 e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2), λa =(λx 1,λy 1),|a|=x 21+y 21. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=x 2-x 12+y 2-y 12.3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0. [小题体验]1.已知a =(4,2),b =(-6,m ),若a ∥b ,则m 的值为______. 答案:-32.(教材习题改编)已知a =(2,1),b =(-3,4),则3a +4b =________. 答案:(-6,19)3.设e 1,e 2是平面内一组基向量,且a =e 1+2 e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b.解析:由题意,设e 1+e 2=m a +n B .因为a =e 1+2 e 2,b =-e 1+e 2,所以e 1+e 2=m (e 1+2 e 2)+n (-e 1+e)=(m -n ) e 1+(2m +n ) e 2.由平面向量基本定理,得⎩⎪⎨⎪⎧m -n =1,2m +n =1,所以⎩⎪⎨⎪⎧m =23,n =-13.答案:23 -134.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b)∥c ,则m =________. 答案:-11.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.[小题纠偏]1.设e 1,e 2是平面内一组基底,若λ1 e 1+λ2 e 2=0,则λ1+λ2=________. 答案:02.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R),则m -n 的值为________.解析:∵m a +n b =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3.答案:-3考点一 平面向量基本定理及其应用基础送分型考点——自主练透[题组练透]1.如图,在三角形ABC 中,BE 是边AC 的中线,O 是BE 边的中点,若AB ―→=a ,AC ―→=b ,则AO ―→=( )A.12a +12b B.12a +13b C.14a +12b D.12a +14b 解析:选D ∵在三角形ABC 中,BE 是AC 边上的中线,∴AE ―→=12AC ―→.∵O 是BE 边的中点,∴AO ―→=12(AB ―→+AE ―→)=12AB ―→+14AC ―→=12a +14b.2.在△ABC 中,点M ,N 满足AM ―→=2MC ―→,BN ―→=NC ―→.若MN ―→=x AB ―→+y AC ―→,则x =________;y =________.解析:∵AM ―→=2MC ―→,∴AM ―→=23AC ―→.∵BN ―→=NC ―→,∴AN ―→=12(AB ―→+AC ―→),∴MN ―→=AN ―→-AM ―→=12(AB ―→+AC ―→)-23AC ―→=12AB ―→-16AC ―→. 又MN ―→=x AB ―→+y AC ―→, ∴x =12,y =-16.答案:12 -163.(易错题)如图,以向量OA ―→=a ,OB ―→=b 为邻边作▱OADB ,BM ―→=13BC ―→,CN ―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→.解:∵BA ―→=OA ―→-OB ―→=a -b ,BM ―→=16BA ―→=16a -16b ,∴OM ―→=OB ―→+BM ―→=16a +56b.∵OD ―→=a +b , ∴ON ―→=OC ―→+13CD ―→=12OD ―→+16OD ―→ =23OD ―→=23a +23b , ∴MN ―→=ON ―→-OM ―→=23a +23b -16a -56b =12a -16b.综上,OM ―→=16a +56b ,ON ―→=23a +23b ,MN ―→=12a -16b.[谨记通法]用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理,如“题组练透”第3题.考点二 平面向量的坐标运算基础送分型考点——自主练透[题组练透]1.向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b 为( ) A .(-3,4) B .(3,4) C .(3,-4)D .(-3,-4)解析:选A 由a +b =(-1,5),a -b =(5,-3),得2b =(-1,5)-(5,-3)=(-6,8),∴b =12(-6,8)=(-3,4),故选A.2.已知点M (5,-6)和向量a =(1,-2),若MN ―→=-3a ,则点N 的坐标为( ) A .(2,0) B .(-3,6) C .(6,2)D .(-2,0)解析:选A MN ―→=-3a =-3(1,-2)=(-3,6), 设N (x ,y ),则MN ―→=(x -5,y +6)=(-3,6),所以⎩⎪⎨⎪⎧x -5=-3,y +6=6,即⎩⎪⎨⎪⎧x =2,y =0.3.已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b ,(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN ―→的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c , ∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b ,∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN ―→=(9,-18).[谨记通法]平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 考点三 平面向量共线的坐标表示重点保分型考点——师生共研[典例引领]1.已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC ―→=2AB ―→.设点D 的坐标为(x ,y ),则DC ―→=(4-x ,2-y ),AB ―→=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).答案:(2,4)2.已知a =(1,0),b =(2,1).(1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值. 解:(1)∵a =(1,0),b =(2,1), ∴k a -b =k (1,0)-(2,1)=(k -2,-1), a +2b =(1,0)+2(2,1)=(5,2), ∵k a -b 与a +2b 共线, ∴2(k -2)-(-1)×5=0, ∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3), BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴AB ―→∥BC ―→, ∴8m -3(2m +1)=0,∴m =32.[由题悟法]向量共线的充要条件 (1)a ∥b ⇔a =λb(b ≠0);(2)a ∥b ⇔x 1y 2-x 2y 1=0(其中a =(x 1,y 1),b =(x 2,y 2)).当涉及向量或点的坐标问题时一般利用(2)比较方便.[即时应用]1.(2018·丽水质检)已知a =(1,-2),b =(x,1),若(a +b)∥b ,则实数x 的值为( ) A .-12B.12 C .2D .-2解析:选A 因为a =(1,-2),b =(x,1),所以a +b =(x +1,-1).因为(a +b)∥b ,所以x +1-(-x )=2x +1=0,解得x =-12.2.(2018·贵阳监测)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )∥(m -n ),则λ=________.解析:因为m +n =(2λ+3,3),m -n =(-1,-1), 又(m +n )∥(m -n ),所以(2λ+3)×(-1)=3×(-1),解得λ=0. 答案:03.设向量a ,b 满足|a|=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为________. 解析:∵a 与b 方向相反,∴可设a =λb(λ<0), ∴a =λ(2,1)=(2λ,λ).由|a|=5λ2=25,解得λ=-2或λ=2(舍去), 故a =(-4,-2). 答案:(-4,-2)4.若三点A (2,2),B (a ,0),C (0,b)(ab ≠0)共线,则1a +1b的值等于________.解析:AB ―→=(a -2,-2),AC ―→=(-2,b -2),依题意,有(a -2)(b -2)-4=0,即ab -2a -2b =0,所以1a +1b =12.答案:12一抓基础,多练小题做到眼疾手快1.在平行四边形ABCD 中,AC 为对角线,若AB ―→=(2,4),AC ―→=(1,3),则BD ―→=( ) A .(-2,-4) B .(-3,-5) C .(3,5)D .(2,4)解析:选 B 由题意得BD ―→=AD ―→-AB ―→=BC ―→-AB ―→=(AC ―→-AB ―→)-AB ―→=AC ―→-2AB ―→=(1,3)-2(2,4)=(-3,-5).2.已知A (-1,-1),B (m ,m +2),C (2,5)三点共线,则m 的值为( ) A .1 B .2 C .3D .4解析:选A AB ―→=(m ,m +2)-(-1,-1)=(m +1,m +3), AC ―→=(2,5)-(-1,-1)=(3,6),∵A ,B ,C 三点共线,∴AB ―→∥AC ―→,∴3(m +3)-6(m +1)=0, ∴m =1.故选A.3.如图,在△OAB 中,P 为线段AB 上的一点,OP ―→=x OA ―→+y OB ―→,且BP ―→=2PA ―→,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14解析:选A 由题意知OP ―→=OB ―→+BP ―→,又BP ―→=2PA ―→,所以OP ―→=OB ―→+23BA ―→=OB ―→+23(OA ―→-OB ―→)=23OA ―→+13OB ―→,所以x =23,y =13. 4.(2015·全国卷Ⅱ)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.解析:∵λa +b 与a +2b 平行,∴λa +b =t (a +2b),即λa +b =t a +2t b ,∴⎩⎪⎨⎪⎧λ=t ,1=2t ,解得⎩⎪⎨⎪⎧λ=12,t =12.答案:125.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________. 解析:因为a =(1,2),b =(x,1),u =a +2b ,v =2a -b , 所以u =(1,2)+2(x,1)=(2x +1,4),v =2(1,2)-(x,1)=(2-x,3).又因为u ∥v ,所以3(2x +1)-4(2-x )=0, 即10x =5,解得x =12.答案:12二保高考,全练题型做到高考达标1.(2018·温州十校联考)已知a =(-3,1),b =(-1,2),则3a -2b =( ) A .(7,1) B .(-7,-1) C .(-7,1)D .(7,-1)解析:选B 由题可得,3a -2b =3(-3,1)-2(-1,2)=(-9+2,3-4)=(-7,-1). 2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,m =(3b -c ,cos C ),n =(a ,cos A ),m ∥n ,则cos A 的值等于( ) A.36 B .34C.33D.32解析:选C 由m ∥n ,得(3b -c )cos A -a cos C =0,再由正弦定理得 3sin B cos A =sin C cos A +cos C sin A ⇒3sin B ·cos A =sin(C +A )=sin B ,即cos A =33. 3.已知A (7,1),B (1,4),直线y =12a x 与线段AB 交于点C ,且AC ―→=2CB ―→,则实数a等于( )A .2B .1 C.45D.53解析:选A 设C (x ,y ),则AC ―→=(x -7,y -1),CB ―→=(1-x,4-y ),∵AC ―→=2CB ―→,∴⎩⎪⎨⎪⎧x -7=-x ,y -1=-y ,解得⎩⎪⎨⎪⎧x =3,y =3.∴C (3,3).又∵点C 在直线y =12ax 上,∴3=12a ×3,∴a =2.4.已知点A (2,3),B (4,5),C (7,10),若AP ―→=AB ―→+λAC ―→(λ∈R),且点P 在直线x -2y =0上,则λ的值为( )A.23 B .-23C.32D .-32解析:选B 设P (x ,y ),则由AP ―→=AB ―→+λAC ―→, 得(x -2,y -3)=(2,2)+λ(5,7)=(2+5λ,2+7λ), ∴x =5λ+4,y =7λ+5. 又点P 在直线x -2y =0上, 故5λ+4-2(7λ+5)=0,解得λ=-23.故选B.5.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC ―→=a ,BD ―→=b ,则AF ―→=( )A.14a +12b B .12a +14b C.23a +13b D.13a +23b 解析:选C 如图,∵AC ―→=a ,BD ―→=b ,∴AD ―→=AO ―→+OD ―→=12AC ―→+12BD ―→=12a +12b.∵E 是OD 的中点, ∴|DE ||EB |=13, ∴|DF |=13|AB |.∴DF ―→=13AB ―→=13(OB ―→-OA ―→)=13×⎣⎢⎡⎦⎥⎤-12 BD ―→-⎝ ⎛⎭⎪⎫-12 AC ―→ =16AC ―→-16BD ―→=16a -16b ,∴AF ―→=AD ―→+DF ―→=12a +12b +16a -16b =23a +13b ,故选C.6.已知向量a =(1,3),b =(-2,1),c =(3,2).若向量c 与向量k a +b 共线,则实数k =________,若c =x a +y b ,则x +y 的值为________.解析:k a +b =k (1,3)+(-2,1)=(k -2,3k +1),因为向量c 与向量k a +b 共线,所以2(k -2)-3(3k +1)=0,解得k =-1.因为c =x a +y b ,所以(3,2)=(x -2y,3x +y ),即x -2y =3,3x +y =2,解得x =1,y =-1,所以x +y =0.答案:-1 07.已知向量OA ―→=(1,-3),OB ―→=(2,-1),OC ―→=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.解析:若点A ,B ,C 能构成三角形,则向量AB ―→,AC ―→不共线. ∵AB ―→=OB ―→-OA ―→=(2,-1)-(1,-3)=(1,2), AC ―→=OC ―→-OA ―→=(k +1,k -2)-(1,-3)=(k ,k +1), ∴1×(k +1)-2k ≠0,解得k ≠1. 答案:k ≠18.给定两个长度为1的平面向量OA ―→和OB ―→,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧上变动.若OC ―→=x OA ―→+y OB ―→,其中x ,y ∈R ,则x +y的最大值是________.解析:以O 为坐标原点,OA 所在的直线为x 轴,OA ―→的方向为x 轴的正方向,建立平面直角坐标系(图略),则可知A (1,0),B ⎝ ⎛⎭⎪⎫-12,32,设C (cos α,sin α)⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤0,2π3,则有x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin ⎝⎛⎭⎪⎫α+π6,所以当α=π3时,x +y 取得最大值2.答案:29.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)求满足a =m b +n c 的实数m ,n ; (2)若(a +k c)∥(2b -a),求实数k .解:(1)由题意得(3,2)=m (-1,2)+n (4,1),所以⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,解得⎩⎪⎨⎪⎧m =59,n =89.(2)a +k c =(3+4k,2+k ),2b -a =(-5,2), 由题意得2×(3+4k )-(-5)×(2+k )=0, 解得k =-1613.10.如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.设BA ―→=a ,BC ―→=b ,试用a ,b 为基底表示向量EF ―→,DF ―→,CD ―→.解:EF ―→=EA ―→+AB ―→+BF ―→=-16b -a +12b =13b -a ,DF ―→=DE ―→+EF ―→=-16b +⎝ ⎛⎭⎪⎫13 b -a =16b -a ,CD ―→=CF ―→+FD ―→=-12b -⎝ ⎛⎭⎪⎫16 b -a =a -23b. 三上台阶,自主选做志在冲刺名校1.如图,G 是△OAB 的重心,P ,Q 分别是边OA ,OB 上的动点,且P ,G ,Q 三点共线.设OP ―→=x OA ―→,OQ ―→=y OB ―→,则1x +1y=________.解析:∵点P ,G ,Q 在一条直线上, ∴PG ―→=λPQ ―→ ⎝ ⎛⎭⎪⎫13≤λ≤23.∴OG ―→=OP ―→+PG ―→=OP ―→+λPQ ―→=OP ―→+λ(OQ ―→-OP ―→) =(1-λ)OP ―→+λOQ ―→=(1-λ)x OA ―→+λy OB ―→,① 又∵G 是△OAB 的重心, ∴OG ―→=23OM ―→=23×12(OA ―→+OB ―→)=13OA ―→+13OB ―→.② 而OA ―→,OB ―→不共线,∴由①②,得⎩⎪⎨⎪⎧-λx =13,λy =13.解得⎩⎪⎨⎪⎧1x =3-3λ,1y =3λ.∴1x +1y=3.答案:32.设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3―→=λA 1A 2―→ (λ∈R),A 1A 4―→=μA 1A 2―→(μ∈R),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知点C (c,0),D (d,0)(c ,d∈R)调和分割点A (0,0),B (1,0),则下面说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上解析:选D 根据已知得(c,0)-(0,0)=λ[(1,0)-(0,0)],即(c,0)=λ(1,0),从而得c =λ.(d,0)-(0,0)=μ[(1,0)-(0,0)],即(d,0)=μ(1,0),得d =μ.根据1λ+1μ=2,得1c +1d =2.线段AB 的方程是y =0,x ∈[0,1].若C 是线段AB 的中点,则c =12,代入1c +1d=2得,1d=0,此等式不可能成立,故选项A 的说法不正确;同理选项B 的说法也不正确;若C ,D 同时在线段AB 上,则0< c ≤1,0<d ≤1,此时1c ≥1,1d ≥1,1c +1d ≥2,若等号成立,则只能c =d =1,根据定义,C ,D 是两个不同的点,矛盾,故选项C 的说法也不正确;若C ,D 同时在线段AB 的延长线上,即c >1,d >1,则1c +1d <2,与1c +1d =2矛盾,若c <0,d <0,则1c +1d是负值,与1c +1d =2矛盾,若c >1,d <0,则1c<1,1d <0,此时1c +1d <1,与1c +1d=2矛盾,故选项D 的说法是正确的.3.已知三点A (a ,0),B (0,b ),C (2,2),其中a >0,b >0.(1)若O 是坐标原点,且四边形OACB 是平行四边形,试求a ,b 的值; (2)若A ,B ,C 三点共线,试求a +b 的最小值. 解:(1)因为四边形OACB 是平行四边形, 所以OA ―→=BC ―→,即(a,0)=(2,2-b ),⎩⎪⎨⎪⎧a =2,2-b =0,解得⎩⎪⎨⎪⎧a =2,b =2.故a =2,b =2.(2)因为AB ―→=(-a ,b ),BC ―→=(2,2-b ), 由A ,B ,C 三点共线,得AB ―→∥BC ―→, 所以-a (2-b )-2 b =0,即2(a +b )=a b , 因为a >0,b >0,所以2(a +b )=a b ≤⎝⎛⎭⎪⎫a +b 22,即(a +b )2-8(a +b )≥0,解得a +b ≥8或a +b ≤0. 因为a >0,b >0,所以a +b ≥8,即a +b 的最小值是8. 当且仅当a =b =4时,“=”成立.第三节平面向量的数量积与平面向量应用举例1.向量的夹角3.向量数量积的运算律(1)a·b=b· a.(2)(λa)·b=λ(a·b)=a·(λb).(3)(a+b)·c=a·c+b· c.4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.|x1x2+y1y2|≤x21+y21x22+y22[小题体验]1.已知|a|=2,|b|=6,a·b=-63,则a与b的夹角θ为( )A.π6B.π3C.2π3D.5π6答案:D2.已知|a|=5,|b|=4,a与b的夹角为120°,则a·b=_____.答案:-103.(2016·山东高考)已知向量a=(1,-1),b=(6,-4).若a⊥(t a+b),则实数t的值为________.解析:∵a =(1,-1),b =(6,-4),∴t a +b =(t +6,-t -4). 又a ⊥(t a +b),则a ·(t a +b)=0,即t +6+t +4=0,解得t =-5. 答案:-54.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b.若b ·c =0,则t =________. 解析:因为向量a ,b 为单位向量,所以b 2=1,又向量a ,b 的夹角为60°,所以a ·b =12,由b ·c =0,得b ·[t a +(1-t )b]=0,即t a ·b +(1-t )b 2=0,所以12t +(1-t )=0,所以t =2.答案:25.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE ―→·BD ―→=________.解析:选向量的基底为AB ―→,AD ―→,则BD ―→=AD ―→-AB ―→,AE ―→=AD ―→+12AB ―→,所以AE ―→·BD―→=⎝ ⎛⎭⎪⎫AD ―→+12 AB ―→ ·(AD ―→-AB ―→)=2.答案:21.数量积运算律要准确理解、应用,例如,a ·b =a ·c(a ≠0)不能得出b =c ,两边不能约去一个向量.2.两个向量的夹角为锐角,则有a ·b>0,反之不成立;两个向量夹角为钝角,则有a ·b<0,反之不成立.3.a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b. 4.在用|a|=a 2求向量的模时,一定要把求出的a 2再进行开方. [小题纠偏]1.若a ,b 是两个互相垂直的非零向量,给出以下式子:①a ·b =0;②a +b =a -b ;③|a +b|=|a -b|;④a 2+b 2=(a +b)2.其中正确的个数是( )A .1B .2C .3D .4解析:选C 因为a ,b 是两个互相垂直的非零向量,所以a ·b =0;所以(a +b)2=a 2+b 2+2a ·b =a 2+b 2;(a -b)2=a 2+b 2-2a ·b =a 2+b 2;所以(a +b)2=(a -b)2,即|a +b|=|a -b|.故①③④是正确的,②是错误的.2.(2016·北京高考)已知向量a =(1,3),b =(3,1),则a 与b 夹角的大小为________. 解析:由题意得|a|=1+3=2,|b|=3+1=2, a ·b =1×3+3×1=2 3.设a 与b 的夹角为θ,则cos θ=232×2=32.∵θ∈[0,π],∴θ=π6.答案:π6考点一 平面向量的数量积的运算基础送分型考点——自主练透[题组练透]1.设a =(1,-2),b =(-3,4),c =(3,2),则(a +2b )·c =( ) A .(-15,12) B .0 C .-3D .-11解析:选C ∵a +2b =(1,-2)+2(-3,4)=(-5,6), ∴(a +2b )·c =(-5,6)·(3,2)=-3.2.(2015·山东高考)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD ―→·CD ―→=( ) A .-32a 2B .-34a 2C.34a 2 D.32a 2 解析:选D 由已知条件得BD ―→·CD ―→=BD ―→·BA ―→=3a ·ac os 30°=32a 2,故选D.3.已知向量a 与b 的夹角为60°,且a =(-2,-6),|b|=10,则a ·b =________;(2a -b )·(a +b)=__________.解析:因为a =(-2,-6), 所以|a|=-2+-2=210,又|b |=10,向量a 与b 的夹角为60°,所以a ·b =|a |·|b |·c os 60°=210×10×12=10.(2a -b )·(a +b)=2a 2+a ·b -b 2=80+10-10=80. 答案:10 804.如图,在等腰直角三角形ABC 中,∠C =90°,AC =2,D 为BC 的中点,则AB ―→·AD ―→=________.解析:法一:由题意知,AC =BC =2,AB =22, ∴AB ―→·AD ―→=AB ―→·(AC ―→+CD ―→)=AB ―→·AC ―→+AB ―→·CD ―→=|AB ―→|·|AC ―→|c os 45°+|AB ―→|·|CD ―→|c os 45° =22×2×22+22×1×22=6. 法二:建立如图所示的平面直角坐标系, 由题意得A (0,2),B (-2,0),D (-1,0),∴AB ―→=(-2,0)-(0,2)=(-2,-2), AD ―→=(-1,0)-(0,2)=(-1,-2), ∴AB ―→·AD ―→=-2×(-1)+(-2)×(-2)=6. 答案:6[谨记通法]向量数量积的2种运算方法[锁定考向]平面向量的夹角与模的问题是高考中的常考内容,题型多为选择题、填空题,难度适中,属中档题.常见的命题角度有: (1)平面向量的模; (2)平面向量的夹角; (3)平面向量的垂直;(4)与最值、范围有关问题.[题点全练]角度一:平面向量的模1.已知 e 1,e 2是单位向量,且e 1·e 2=12.若向量b 满足b ·e 1=b ·e 2=1,则|b|=________.解析:法一:∵e 1·e 2=12,∴|e 1||e 2|c1,e 2=12,∴1,e 2=60°.又∵b ·e 1=b ·e 2=1>0,∴b ,e 1=b ,e 2=30°.由b ·e 1=1,得|b||e 1|c os 30°=1,∴|b|=132=233.法二:由题可得,不妨设e 1=(1,0),e 2=⎝ ⎛⎭⎪⎫12,32,b =(x ,y ).因为b ·e 1=b ·e 2=1,所以x =1,12x +32y =1,解得y =33.所以b =⎝ ⎛⎭⎪⎫1,33,所以|b|= 1+13=233. 答案:233角度二:平面向量的夹角2.(2018·山西四校联考)已知|a|=1,|b|=2,且a ⊥(a -b),则向量a 与向量b 的夹角为( )A.π6 B.π4 C.π3D.2π3解析:选B ∵a ⊥(a -b),∴a ·(a -b)=a 2-a ·b =1-2c a ,b =0,∴c a ,b =22,∴a ,b =π4. 3.已知e 1,e 2是夹角为2π3的两个单位向量,a =e 1-2e 2,b =k e 1+e 2,若a ·b =0,则实数k 的值为________.解析:∵e 1,e 2的模为1,且其夹角θ=2π3.∴a ·b =(e 1-2e 2)·(k e 1+e 2)=k e 21+e 1·e 2-2k e 1·e 2-2e 22 =k +(1-2k )cos 2π3-2=2k -52.又∵a ·b =0,∴2k -52=0,即k =54.答案:54角度三:平面向量的垂直4.(2016·山东高考)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13,若n ⊥(t m+n),则实数t 的值为( )A .4B .-4 C.94D .-94解析:选B ∵n⊥(t m +n),∴n ·(t m +n)=0,即t m ·n +| n |2=0,∴t|m || n |cos 〈m ,n 〉+| n |2=0. 又4|m|=3| n |,∴t ×34|n|2×13+| n |2=0,解得t =-4.故选B.5.已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b|=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. 解:(1)证明:由题意得|a -b|2=2, 即(a -b)2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a|2=|b|2=1, 所以2-2a ·b =2, 即a ·b =0,故a ⊥b.(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1,由此得,cos α=cos(π-β),由0<β<π,得0<π-β<π,又0<α<π,故α=π-β.代入sin α+sin β=1,得sin α=sin β=12,而α>β,所以α=5π6,β=π6.角度四:与最值、范围有关问题6.(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA ―→·(PB ―→+PC ―→)的最小值是( )。
2019版高考数学大一轮复习人教B版全国通用文档:第五章 平面向量5.1
§5.1平面向量的概念及线性运算1.向量的有关概念2.向量的线性运算3.平行向量基本定理如果a=λb,则a∥b;反之,如果a∥b,且b≠0,则一定存在唯一一个实数λ,使a=λb.知识拓展1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →,特别地,一个封闭图形,首尾连接而成的向量和为零向量.2.若P 为线段AB 的中点,O 为平面内任一点,则OP →=12(OA →+OB →).3.OA →=λOB →+μOC →(λ,μ为实数),若点A ,B ,C 共线,则λ+μ=1.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.( × ) (2)|a |与|b |是否相等与a ,b 的方向无关.( √ ) (3)若a ∥b ,b ∥c ,则a ∥c .( × )(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( √ ) (6)若两个向量共线,则其方向必定相同或相反.( × ) 题组二 教材改编2.已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=______,BC →=________.(用a ,b 表示) 答案 b -a -a -b解析 如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .3.在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________. 答案 矩形解析 如图,因为AB →+AD →=AC →,AB →-AD →=DB →,所以|AC →|=|DB →|. 由对角线长相等的平行四边形是矩形可知,四边形ABCD 是矩形.题组三 易错自纠4.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 若a +b =0,则a =-b ,所以a ∥b .若a ∥b ,则a +b =0不一定成立,故前者是后者的充分不必要条件. 5.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.6.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________. 答案 12解析 DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →, ∴λ1=-16,λ2=23,即λ1+λ2=12.题型一 平面向量的概念1.给出下列四个命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是( )A .②③B .①②C .③④D .②④ 答案 A解析 ①不正确.两个向量的长度相等,但它们的方向不一定相同; ②正确.∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形, 反之,若四边形ABCD 为平行四边形, 则AB →∥DC →且|AB →|=|DC →|,∴AB →=DC →;③正确.∵a =b ,∴a ,b 的长度相等且方向相同,又b=c,∴b,c的长度相等且方向相同,∴a,c的长度相等且方向相同,故a=c;④不正确.当a∥b且方向相反时,即使|a|=|b|,也不能得到a=b,故|a|=|b|且a∥b不是a =b的充要条件,而是必要不充分条件.综上所述,正确命题的序号是②③.故选A.2.设a0为单位向量,①若a为平面内的某个向量,则a=|a|a0;②若a与a0平行,则a=|a|a0;③若a与a0平行且|a|=1,则a=a0.上述命题中,假命题的个数是()A.0 B.1 C.2 D.3答案 D解析向量是既有大小又有方向的量,a与|a|a0的模相同,但方向不一定相同,故①是假命题;若a与a0平行,则a与a0的方向有两种情况:一是同向,二是反向,反向时a=-|a|a0,故②③也是假命题.综上所述,假命题的个数是3.思维升华向量有关概念的关键点(1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制.(3)相等向量的关键是方向相同且长度相等.(4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任何向量共线.题型二平面向量的线性运算命题点1向量的线性运算典例 (1)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →等于( ) A.23b +13c B.53c -23b C.23b -13c D.13b +23c 答案 A解析 ∵BD →=2DC →,∴AD →-AB →=BD →=2DC →=2(AC →-AD →),∴3AD →=2AC →+A B →,∴AD →=23AC →+13AB →=23b +13c .(2)(2017·西宁一模)如图,在△ABC 中,点D 在BC 边上,且CD =2DB ,点E 在AD 边上,且AD =3AE ,则用向量AB →,AC →表示CE →为( )A.29AB →+89AC →B.29AB →-89AC →C.29AB →+79AC →D.29AB →-79AC → 答案 B解析 由平面向量的三角形法则及向量共线的性质可得CE →=AE →-AC →=13AD →-AC →=13(AB →+13BC →)-AC →=13⎣⎡⎦⎤AB →+13(AC →-AB →)-AC →=29AB →-89AC →. 命题点2 根据向量线性运算求参数典例 (1)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =______. 答案 12 -16解析 MN →=MC →+CN → =13AC →+12CB → =13AC →+12(AB →-AC →) =12AB →-16AC →=xAB →+yAC →, ∴x =12,y =-16.(2)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( ) A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫0,13 C.⎝⎛⎭⎫-12,0 D.⎝⎛⎭⎫-13,0 答案 D解析 设CO →=yBC →, ∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →) =-yAB →+(1+y )AC →.∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),∴y ∈⎝⎛⎭⎫0,13,∵AO →=xAB →+(1-x )AC →, ∴x =-y ,∴x ∈⎝⎛⎭⎫-13,0. 思维升华 平面向量线性运算问题的常见类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值.跟踪训练 (1)如图,在正方形ABCD 中,点E 是DC 的中点,点F 是BC 上的一个靠近点B 的三等分点,那么EF →等于( )A.12AB →-13AD →B.14AB →+12AD →C.13AB →+12DA →D.12AB →-23AD → 答案 D解析 在△CEF 中,有EF →=EC →+CF →. 因为点E 为DC 的中点,所以EC →=12DC →.因为点F 为BC 上的一个靠近点B 的三等分点, 所以CF →=23CB →.所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →,故选D. (2)如图,直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F 两点,且与对角线AC 交于点K ,其中,AE →=25AB →,AF →=12AD →,AK →=λAC →,则λ的值为______.答案 29解析 ∵AE →=25AB →,AF →=12AD →,∴AB →=52AE →,AD →=2AF →.由向量加法的平行四边形法则可知, AC →=AB →+AD →, ∴AK →=λAC →=λ(AB →+AD →) =λ⎝⎛⎭⎫52AE →+2AF → =52λAE →+2λAF →, ∵E ,F ,K 三点共线, ∴52λ+2λ=1,∴λ=29. 题型三 平行向量基本定理的应用典例 设两个非零向量a 与b 不共线. (1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), 求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.(1)证明 ∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5AB →, ∴AB →,BD →共线.又∵它们有公共点B ,∴A ,B ,D 三点共线. (2)解 假设k a +b 与a +k b 共线, 则存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)b .又a ,b 是两个不共线的非零向量, ∴k -λ=λk -1=0.消去λ,得k 2-1=0,∴k =±1. 引申探究若将本例(1)中“BC →=2a +8b ”改为“BC →=a +m b ”,则m 为何值时,A ,B ,D 三点共线? 解 BC →+CD →=(a +m b )+3(a -b )=4a +(m -3)b , 即BD →=4a +(m -3)b .若A ,B ,D 三点共线,则存在实数λ,使BD →=λAB →. 即4a +(m -3)b =λ(a +b ).∴⎩⎪⎨⎪⎧4=λ,m -3=λ,解得m =7. 故当m =7时,A ,B ,D 三点共线.思维升华 (1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系.当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立,若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.跟踪训练 (1)(2017·资阳模拟)已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则( ) A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线 D .B ,C ,D 三点共线答案 B解析 ∵BD →=BC →+CD →=2a +6b =2(a +3b )=2AB →, ∴BD →,AB →共线,又有公共点B , ∴A ,B ,D 三点共线.故选B.(2)已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为( ) A .{0} B .∅ C .{-1} D .{0,-1}答案 C解析 ∵BC →=OC →-OB →,∴x 2OA →+xOB →+OC →-OB →=0, 即OC →=-x 2OA →-(x -1)OB →,∵A ,B ,C 三点共线, ∴-x 2-(x -1)=1,即x 2+x =0,解得x =0或x =-1.当x =0时,x 2OA →+xOB →+BC →=0,此时B 1,C 两点重合,不合题意,舍去.故x =-1.故选C.容易忽视的零向量典例 下列叙述错误的是________.(填序号)①若非零向量a 与b 方向相同或相反,则a +b 与a ,b 之一的方向相同; ②|a |+|b |=|a +b |⇔a 与b 方向相同;③向量b 与向量a 共线的充要条件是有且只有一个实数λ,使得b =λa ; ④AB →+BA →=0; ⑤若λa =λb ,则a =b .现场纠错解析 对于①,当a +b =0时,其方向任意,它与a ,b 的方向都不相同. 对于②,当a ,b 之一为零向量时结论不成立.对于③,当a =0且b =0时,λ有无数个值;当a =0但b ≠0或a ≠0但b =0时,λ不存在. 对于④,由于两个向量之和仍是一个向量, 所以AB →+BA →=0.对于⑤,当λ=0时,不管a 与b 的大小与方向如何,都有λa =λb ,此时不一定有a =b .故①②③④⑤均错. 答案 ①②③④⑤纠错心得 在考虑向量共线问题时,要注意考虑零向量.1.(2018·济南调研)以下命题:①|a |与|b |是否相等与a ,b 的方向无关;②两个具有公共终点的向量,一定是共线向量;③两个向量不能比较大小,但它们的模能比较大小;④单位向量都是共线向量.其中正确命题的个数是( )A .0B .1C .2D .3 答案 C解析 ②④错误.2.设a 是非零向量,λ是非零实数,下列结论中正确的是( ) A .a 与λa 的方向相反 B .a 与λ2a 的方向相同 C .|-λa |≥|a | D .|-λa |≥|λ|·a答案 B解析 对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反;B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小.3.(2017·海南校级模拟)在四边形ABCD 中,设AD →=a ,BC →=b ,那么AC →+BD →等于( ) A .a -b B .a +b C .b -a D .不能确定答案 B解析 AC →=AB →+BC →=AB →+b ,BD →=BA →+AD →=-AB →+a ,∴AC →+BD →=AB →+b +(-AB →+a )=a +b .故选B.4.已知AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则下列一定共线的三点是( ) A .A ,B ,C B .A ,B ,D C .B ,C ,D D .A ,C ,D答案 B解析 因为AD →=AB →+BC →+CD →=3a +6b =3(a +2b )=3AB →,又AB →,AD →有公共点A ,所以A ,B ,D 三点共线.5.(2018·济宁模拟)如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为( )A .1B .2C .3D .4答案 B解析 ∵O 为BC 的中点, ∴AO →=12(AB →+AC →)=12(mAM →+nAN →)=m 2AM →+n 2AN →, ∵M ,O ,N 三点共线,∴m 2+n2=1,∴m +n =2.6.(2018·聊城质检)设a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值为( ) A .-2 B .-1 C .1 D .2答案 B解析 ∵BC →=a +b ,CD →=a -2b , ∴BD →=BC →+CD →=2a -b .又∵A ,B ,D 三点共线,∴AB →,BD →共线. 设AB →=λBD →, ∴2a +p b =λ(2a -b ), ∵a ,b 不共线,∴2=2λ,p =-λ,∴λ=1,p =-1.7.已知两个非零向量a ,b 满足|a +b |=|a -b |,则下列结论正确的是________.(填序号) ①a ∥b ;②a ⊥b ;③|a |=|b |;④a +b =a -b . 答案 ②解析 根据向量加法、减法的几何意义可知,|a +b |与|a -b |分别为以向量a ,b 为邻边的平行四边形的两条对角线的长,因为|a +b |=|a -b |,所以该平行四边形为矩形,所以a ⊥b . 8.(2018·青岛质检)已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →=b ,给出下列命题:①AD →=12a -b ;②BE →=a +12b ;③CF →=-12a +12b ;④AD →+BE →+CF →=0.其中正确命题的序号为________. 答案 ②③④解析 BC →=a ,CA →=b , AD →=12CB →+AC →=-12a -b ,BE →=BC →+12CA →=a +12b ,CF →=12(CB →+CA →)=12(-a +b )=-12a +12b ,所以AD →+BE →+CF →=-b -12a +a +12b +12b -12a =0.所以正确命题的序号为②③④.9.如图所示,在△ABC 中,D 为BC 边上的一点,且BD =2DC ,若AC →=mAB →+nAD →(m ,n ∈R ),则m -n =________.答案 -2解析 由于BD =2DC ,则BC →=-3CD →, 其中BC →=AC →-AB →,CD →=AD →-AC →, 那么BC →=-3CD →可转化为 AC →-AB →=-3(AD →-AC →), 可以得到-2AC →=-3AD →+AB →,即AC →=-12AB →+32AD →,则m =-12,n =32,那么m -n =-12-32=-2.10.在直角梯形ABCD 中,A =90°,B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________. 答案 ⎣⎡⎦⎤0,12 解析 由题意可求得AD =1,CD =3,∴AB →=2DC →, ∵点E 在线段CD 上,∴DE →=λDC →(0≤λ≤1). ∵AE →=AD →+DE →,又AE →=AD →+μAB →=AD →+2μDC →=AD →+2μλDE →,∴2μλ=1,即μ=λ2,∵0≤λ≤1, ∴0≤μ≤12.即μ的取值范围是⎣⎡⎦⎤0,12. 11.设a ,b 是不共线的两个非零向量.(1)若OA →=2a -b ,OB →=3a +b ,OC →=a -3b ,求证:A ,B ,C 三点共线; (2)若AB →=a +b ,BC →=2a -3b ,CD →=2a -k b ,且A ,C ,D 三点共线,求k 的值. (1)证明 由已知得,AB →=OB →-OA →=3a +b -2a +b =a +2b , BC →=OC →-OB →=a -3b -3a -b =-2a -4b , 故BC →=-2AB →, 又BC →与AB →有公共点B , 所以A ,B ,C 三点共线.(2)解 AC →=AB →+BC →=3a -2b ,CD →=2a -k b . 因为A ,C ,D 三点共线,所以AC →=λCD →, 即3a -2b =2λa -kλb ,所以⎩⎪⎨⎪⎧3=2λ,2=kλ,所以⎩⎨⎧λ=32,k =43.综上,k 的值为43.12.(2018·重庆调研)如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解 由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝⎛⎭⎫b -12a =-12k 1a +k 1b (k 1为实数), 同理,可设BO →=k 2BF →=k 2(AF →-AB →) =k 2⎝⎛⎭⎫12b -a =-k 2a +12k 2b (k 2为实数),① 又BO →=BD →+DO →=-12a +⎝⎛⎭⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,②所以由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b ,即12(1+k 1-2k 2)a +⎝⎛⎭⎫12k 2-k 1b =0. 又a ,b 不共线,所以⎩⎨⎧12(1+k 1-2k 2)=0,12k 2-k 1=0,解得⎩⎨⎧k 1=13,k 2=23.所以BO →=-23a +13b .所以AO →=AB →+BO →=a +⎝⎛⎭⎫-23a +13b =13(a +b ).13.(2017·福建福州一中模拟)已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________. 答案 3解析 由MA →+MB →+MC →=0知,点M 为△ABC 的重心,设点D 为边BC 的中点, 则AM →=23AD →=23×12(AB →+AC →)=13(AB →+AC →),所以AB →+AC →=3AM →,故m =3.14.(2018·泉州模拟)已知点D 为△ABC 所在平面上一点,且满足AD →=15AB →-45CA →,若△ACD的面积为1,则△ABD 的面积为________. 答案 4解析 由AD →=15AB →-45CA →,得5AD →=AB →+4AC →,所以AD →-AB →=4(AC →-AD →),即BD →=4DC →. 所以点D 在边BC 上,且|BD →|=4|DC →|, 所以S △ABD =4S △ACD =4.15.(2018·太原质检)设G 为△ABC 的重心,且sin A ·GA →+sin B ·GB →+sin C ·GC →=0,则角B的大小为______.答案 60°解析 ∵G 是△ABC 的重心,∴GA →+GB →+GC →=0,GA →=-(GB →+GC →),将其代入sin A ·GA →+sin B ·GB →+sin C ·GC →=0,得(sin B -sin A )GB →+(sin C -sin A )GC →=0.又GB →,GC →不共线, ∴sin B -sin A =0,sin C -sin A =0,则sin B =sin A =sin C .根据正弦定理知,b =a =c ,∴△ABC 是等边三角形,则B =60°.16.(2017·河北百校联盟联考)已知在△ABC 中,点D 满足2BD →+CD →=0,过点D 的直线l与直线AB ,AC 分别交于点M ,N ,AM →=λAB →,AN →=μAC →.若λ>0,μ>0,求λ+μ的最小值.解 因为2BD →+CD →=0,所以BD →=13BC →, AD →=AB →+BD →=AB →+13BC → =AB →+13(AC →-AB →) =23AB →+13AC →. 因为D ,M ,N 三点共线,所以存在x ∈R ,使AD →=xAM →+(1-x )AN →,则AD →=xλAB →+(1-x )μAC →,所以xλAB →+(1-x )μAC →=23AB →+13AC →, 所以xλ=23,(1-x )μ=13,所以x =23λ,1-x =13μ, 所以23λ+13μ=1,所以λ+μ=13(λ+μ)⎝⎛⎭⎫2λ+1μ=13⎝⎛⎭⎫3+2μλ+λμ ≥3+223,当且仅当λ=2μ时等号成立, 所以λ+μ的最小值为3+223.。
高考数学(人教A版理科)一轮复习真题演练集训:第五章平面向量5-1Word版含答案
真题操练集训→ →1.设 D 为△ ABC 所在平面内一点, BC =3CD ,则 ()→→→14A. AD =- 3AB + 3AC→→→14B. AD = 3AB - 3AC→→→41C.AD = 3AB + 3AC→→→41D.AD = 3AB - 3AC 答案: A→ → → →→ →→ →→→→→114114分析: AD =AC + CD = AC + 3BC = AC +3( AC - AB ) = 3AC - 3AB =- 3AB + 3AC . 应选 A.→ →2.设 D , E ,F 分别为△ ABC 的三边 BC ,CA , AB 的中点,则 EB + FC =()→→1A. ADB. 2AD→ →C.BCD. 21BC→ → 1 → → 1 → →1→ → →答案: A分析: + ++ ) = ,应选 A.= ( ) + ( + )=(EBFC 2 AB CB2 AC BC 2 AB AC AD→ 1 → → → → 3.已知, , 为圆 O 上的三点,若 = ( + ) ,则 与 的夹角为 ________.A B CAO 2 AB AC AB AC 答案: 90°→→ →1分析:∵ AO = 2( AB + AC ) , ∴点 O 是△ ABC 边 BC 的中点,→ →∴BC 为直径,依据圆的几何性质有〈AB , AC 〉= 90°.课外拓展阅读专题一平面向量与三角形问题的综合→ →→17已知 P 是△ ABC 内一点,且 AP = 3AB + 18AC ,△ PBC 的面积是 2 015 ,则△ PAB 的面积是________.△PBC ,△ PAB 分别与△ ABC 共底边于 BC , AB ,由平面几何知识,将每组共底边的三角形面积之比转变为共底边上的对应高的比,即可得出头积关系,从而计算出△PAB 的面积.设 S △ ABC =S , S △ PBC =S 1= 2 015 ,S △ PAB = S 2.解法一: ( 适合切入,从“三点共线”打破) 如下图,→延伸 AP 交 BC 于 D ,由平面几何知识,得 S 1 | PD |S=→ .| AD |由 A , P , D 三点共线,可得→→→7→1 + μ ( μ ∈ R) .①AD = μ AP = μ 183 AB AC由 B , D , C 三点共线,可得→→ →AD = λ AB + (1 -λ ) AC ( λ∈ R) .②16,λ = 3μ ,λ =13 联立①和②,有7解得181-λ = 18μ ,μ =13.→→→ → → → →185则AD = μ AP =13AP , PD =AD - AP = 13AP ,→|PD | 5那么=,→18| AD |18于是 S = 5 S 1.→|PE |7同理,延伸 CP 交 AB 于 E ,计算可得→= 18,| CE |因此2=7 .S18S77 18 77于是 S 2= 18S = 18×5 S 1= 5S 1 = 5×2 015 = 2 821.解法二: ( 奇妙结构,引出向量“投影”取胜) 如下图,→→ →→结构一个单位向量e ( 此中e ⊥BC ) ,那么 BP , BA 在单位向量e方向上的投影长度|e · BP |→与 | e ·BA | 分别是△ PBC ,△ ABC 的公共底边上的高,→ →1则 S = 2| BC | ·|e · BA |→ → →1= 2| BC || e || BA ||cos 〈 e , BA 〉 |→ →1= 2| BC | ·|BA |sin ∠ ABC ;→ → → →→→17因为 BP = BA +AP = BA + 3AB + 18AC→→→ →17=BA + 3AB + 18( AB + BC )→→57= 18BA + 18BC ,→→1因此 S 1= 2| BC | e ·BP→= 1| BC | e · 5 → 7 →218BA + 18BC1 →→= 2| BC | e · 5BA18→→→15=BA |cos 〈 e ,BA 〉 | 2| BC | 185 1→ →= BC || BA |sin ∠ ABC18 2|5= 18S .→7设 i 为与向量 AB 垂直的单位向量,同理,能够推出 S 2= 18S .于是 2= 7 7 18 7 7= × 1= 1= ×2 015 = 2 821.S18S18 5 S 5S5解法三: ( 划归转变,牵手三角形“重心”巧解)→→→17由AP = 3AB + 18AC ,→ → →可得 5PA + 6PB + 7PC = 0.→→→→→→令PA ′ = 5PA , PB ′ =6PB , PC ′= 7PC ,连结 A ′ B ′, B ′ C ′, C ′ A ′,如下图,→ → →于是 PA ′ +PB ′ + PC ′ = 0.即 P 是△ A ′B ′ C ′的重心,S △PA ′B ′=S △ PB ′ C ′ ,依据已知条件,得→ →1S 1=2| PB || PC |sin ∠ BPC1 1→ 1→= ′′ sin ∠BPC2 6PB7PC1→→=421| PB ′ || PC ′ |sin ∠ BPC 21 =S △ PB ′ C ′ ,42因此 S △ PB ′ C ′ = 42S 1,同理可得 S △PA ′B ′=30S 2.42于是 S 2= 30S 1= 2 821. 故填 2 821.2 821温馨提示在找寻三个三角形面积之间的关系时,能够从多方面思虑:①能够从“三点共线”打破,运用三点共线向量式求解,思想起点低,思路直接,如解法一;②能够从向量“投影”得出关系,结构出一此中介性协助元素单位向量e ,i ,如解法二;→→→→ →→17③能够转变条件形式, 将 AP = 3AB + 18AC 转变成 5PA + 6PB + 7PC =0,利用三角形“重心”性质引出巧解,如解法三.专题二用几何法求解向量填空题利用向量加法的几何意义或向量减法的几何意义,能够将一些向量问题转变为几何问题,利用数形联合的方法,迅速获得答案,防止繁琐的运算和因为运算而产生的错误.已知 a , b 是两个非零向量,且 | a| = |b| =|a - b| ,则 a 与 a + b 的夹角是 ________.→ →令 OA = a ,OB = b ,以 OA , OB 为邻边作平行四边形 OACB ,则 OC = a + b ,BA = a -b ,又 |a| =|b| = |a - b| ,因此△ OAB 是正三角形,由向量加法的几何意义,可知是∠的均分线,因此a 与 a +b的夹角是π.OCAOB6π6已知两个非零向量,b 知足|a+b|=|a-b|,则下边结论正确的选项是________.a①a∥b;②a⊥b;③|a| =|b| ;④a+ b=a- b.依据向量加法、减法的几何意义可知,|a +b| 与 |a - b| 分别为以向量 a, b 为邻边的平行四边形的两条对角线的长,因为|a +b| = |a -b|. 因此该平行四边形为矩形,因此a⊥b.②。
2019高考数学(理)(全国通用)大一轮复习高考试题汇编 第五章 平面向量 Word版含解析
第五章 平面向量第一节 平面向量的线性运算及其坐标表示题型59 向量的概念及共线向量 题型60 平面向量的线性表示——暂无 题型61 向量共线的应用1.(2017全国3理12)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为( ). A .3B.D .2解析 解法一:由题意,作出图像,如图所示.设BD 与C 切于点E ,联结CE .以点A 为坐标原点,AD 为x 轴正半轴,AB 为y 轴正半轴建立直角坐标系,则点C 坐标为(2,1).因为||1CD =,||2BC =.所以BD =BD 切C 于点E .所以CE⊥BD .所以CE 是Rt BCD △斜边BD上的高.1222BCDBC CDS EC BD BD ⋅⋅⋅====△ 即C.因为点P 在C 上.所以点P 的轨迹方程为224(2)(1)5x y -+-=.设点P 的坐标为00(,)x y ,可以设出点P坐标满足的参数方程0021x y θθ⎧=⎪⎪⎨⎪=+⎪⎩,而00(,)AP x y =,(0,1)AB =,(2,0)AD =. 因为(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=,所以0112x μθ==+,01y λθ==.两式相加得()112λμθθθϕ+=++=++= 2sin()3θϕ++≤ (其中sin ϕ=,cos ϕ=,当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值为3.故选A.解法二:如图所示,考虑向量线性分解的等系数和线,可得λμ+的最大值为3.2.(2017浙江理15)已知向量a ,b 满足1=a ,2=b ,则++-a b a b的最小值是 ,最大值是 .解析 解法一:如图所示,a +b 和-a b 是以,a b 为邻边的平行四边形的两条对角线,则()2222210++-=+=a b a b a b,A 是以O 为圆心的单位圆上的一动点,构造2个全等的平行四边形AOBD ,平行四边形ECOA .所以AB AC +-=+a +b a b . 易知当A ,B ,C 三点共线时,AB AC +最小,此时4AB AC BC +==; 当AO BC ⊥时,AB AC+最大,此时2AB AC AB +==解法二:()2222++-=++-++-=a b a b a b a b a b a b ()222++a b1010+=+θ是向量a ,b 的夹角).所以当2cos 1θ=时,++-a b a b 取得最小值4;当2cos 0θ=时,++-a b a b 取得最大值a题型62 平面向量基本定理及应用1.(2017江苏12)如图所示,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1OA 与OC 的夹角为α,且t a n 7α=,OB 与OC 的夹角为45︒.若O C m O An O =+(),mn ∈R , 则m n += .B解析 解法一:由题意OC OA mOA OA nOB OAOC OB mOA OB nOB OB⎧⋅=⋅+⋅⎪⎨⋅=⋅+⋅⎪⎩ (*)而由tan 7α=,得sin α=,cos α=,11cos 4OA OB απ⎛⎫⋅=⨯⨯+ ⎪⎝⎭3cos cos sin sin 445ααππ=⋅-⋅=-.将(*)式化简为13 5531 5m n m n ⎧=-⎪⎪⎨⎪=-+⎪⎩①②式①加式②,得3m n +=.故填3.解法二(坐标法):如图所示,以OA 所在的直线为x 轴,过O 且垂直于OA 的直线为y 轴建立平面直角坐标系,由题意结合解法一可得()1,0A ,17,55C ⎛⎫⎪⎝⎭,34,55B ⎛⎫- ⎪⎝⎭,由OC mOA nOB =+,得()1734,1,0,5555m n ⎛⎫⎛⎫=+-⎪ ⎪⎝⎭⎝⎭,即13557455m n n⎧=-⎪⎪⎨⎪=⎪⎩,解得5474m n ⎧=⎪⎪⎨⎪=⎪⎩,故3m n +=.故填3.解法三(解三角形):由tan 7α=,可得sin α=,cos α=,如图所示,根据向量的分解,易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩2100n m +=⎪⎪=,即510570n m n m +=⎧⎨-=⎩,解得57,44m n ==,所以3m n +=.题型63 平面向量的坐标运算1.(2017江苏13)在平面直角坐标系xOy 中,点()12,0A -,()0,6B ,点P 在圆22:50O x y +=上.若20PA PB ⋅…,则点P 的横坐标的取值范围是 .解析 不妨设()00,P x y ,则220050x y +=,且易知0x ⎡∈-⎣.因为PA PB AP BP =⋅⋅()()000012,,6x y x y =+⋅-=220000126x x y y ++-005012620x y =+-…,故00250x y -+….所以点()00,P x y 在圆22:50O x y +=上,且在直线250x y -+=的左上方(含直线).联立2250250x y x y ⎧+=⎨-+=⎩,得15x =-,21x =,如图所示,结合图形知0x ⎡⎤∈-⎣⎦.故填⎡⎤-⎣⎦.2评注 也可以理解为点P 在圆22000012620x y x y +=+-的内部来解决,与解析中的方法一致.题型64 向量共线(平行)的坐标表示——暂无第二节 平面向量的数量积题型65 平面向量的数量积1.(2017天津理13)在ABC △中,60A =∠,3AB =,2AC =.若2BD DC =,()AE AC AB λλ∈=-R ,且4AD AE ⋅=-,则λ的值为___________.解析 解法一:如图所示,以向量AB ,AC 为平面向量的基底,则依题意可得1cos 603232AB AC AB AC ⋅==⨯⨯=.又因为2BD DC =, 则()22213333AD AB BD AB BC AB AC AB AC AB =+=+=+-=+, 则22212114533333AD AE AC AB AC AB λλλ⎛⎫-=⋅=-+-⋅=- ⎪⎝⎭,解得311λ=.DCBA解法二:以点A 为坐标原点,以AB 所在的直线为x 轴,建立直角坐标系(如图所示).依题意易得()0,0A ,()3,0B,(C ,()=3,0AB,(BC =-,(=1,3AC .则可得2533AD AB BD AB BC ⎛=+=+= ⎝⎭,()AE AC AB λλ=-=-,于是有()511432533AD AE λλλ-=⋅=-+=-,解得311λ=.2.(2017北京理6)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的( ). A.充分而不必要条件B.必要而不充分条件C. 充分必要条件D.既不充分也不必要条件解析若0λ∃<,使λ=m n ,即两向量方向相反,夹角为180,则0⋅<m n .若0⋅<m n ,也可能夹角为(90,180⎤⎦,方向并不一定相反,故不一定存在.故选A.3.(2017全国1理13)13.已知向量a ,b 的夹角为60,2=a , 1=b ,则2+=a b .解析 ()22222(2)22cos602+=+=+⋅⋅⋅+a b a b a a b b221222222=+⨯⨯⨯+=444++=12,所以2+=a b .4.(2017全国2理12)已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( ).A.2-B.32-C. 43- D.1-解析 解法一(几何法):如图所示,取BC 的中点D ,联结AD ,取AD 的中点E ,由2PB PC PD +=,则()()()22PA PB PC PD PA PE ED PE EA ⋅+=⋅=+⋅+=()222PE ED-=2221132422PE AD AD ⎛⎫--=- ⎪⎝⎭…,当且仅当20PE =,即点P 与点E 重合时,取得最小值为32-,故选B.解法二(解析法):建立如图所示的直角坐标系,以的BC 的中点为坐标原点, 所以(0A ,()10B -,,()10C ,.设点()P x y ,,()PA x y =-,()1PB x y =---,,()1PC x y =--,,所以()2222PA PB PC x y ⋅+=-+22324x y ⎡⎤⎛⎢⎥=+-- ⎢⎥⎝⎭⎣⎦, 则其最小值为33242⎛⎫⨯-=- ⎪⎝⎭,此时0x =,y =.故选B.5.(2017全国3理12)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为( ). A .3B.D .2解析 解法一:由题意,作出图像,如图所示.设BD 与C 切于点E ,联结CE .以点A 为坐标原点,AD 为x 轴正半轴,AB 为y 轴正半轴建立直角坐标系,则点C 坐标为(2,1).因为||1CD =,||2BC =.所以BD =BD 切C 于点E .所以CE⊥BD .所以CE 是Rt BCD △斜边BD上的高.1222BCDBC CDS EC BD BD ⋅⋅⋅====△ 即C.因为点P 在C 上.所以点P 的轨迹方程为224(2)(1)5x y -+-=.设点P 的坐标为00(,)x y ,可以设出点P坐标满足的参数方程0021x y θθ⎧=⎪⎪⎨⎪=+⎪⎩,而00(,)AP x y =,(0,1)AB =,(2,0)AD =. 因为(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=,所以0112x μθ==+,01y λθ==.两式相加得()112λμθθθϕ+=++=++=2sin()3θϕ++≤ (其中sin ϕ=,cos ϕ=,当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值为3.故选A.解法二:如图所示,考虑向量线性分解的等系数和线,可得λμ+的最大值为3.λ+μ=2λ+μ=3DCBA6.(2017山东理12)已知12,e e 是互相垂直的单位向量,12-e 与12λ+e e 的夹角为60,则实数λ的值是. 解析)()221212112122λλλ-⋅+=+⋅-⋅-=e e e e e e e e ,122-===e,12λ+===e e2cos601λ==+λ=.7.(2017浙江理10)如图所示,已知平面四边形ABCD,AB BC⊥,2AB BC AD===,3CD=,AC与BD 交于点O,记1·I O A O B=,2·I OBOC=,3·I OCOD=,则().A.123I I I<<B.132I I I<<C.312I I I<<D.213I I I<<解析如图所示,动态研究问题:D D¢®,O O¢®.此时有90AOB?o,90BOC?o,90COD?o,且CO AO>,DO BO>.故OB OC OA OB OC OD???u u u r u u u r u u r u u u r u u u r u u u r.8.(2017浙江理15)已知向量a,b满足1=a,2=b,则++-a b a b的最小值是,最大值是.解析解法一:如图所示,a+b和-a b是以,a b为邻边的平行四边形的两条对角线,则()2222210++-=+=a b a b a b,A是以O为圆心的单位圆上的一动点,构造2个全等的平行四边形AOBD,平行四边形ECOA.所以AB AC+-=+a+b a b.易知当A,B,C三点共线时,AB AC+最小,此时4AB AC BC+==;当AO BC⊥时,AB AC+最大,此时2AB AC AB+==Aa解法二:()2222++-=++-++-=a b a b a b a b a b a b ()222++a b1010+=+θ是向量a ,b 的夹角).所以当2cos 1θ=时,++-a b a b 取得最小值4;当2cos 0θ=时,++-a b a b 取得最大值题型66 向量与三角形的四心——暂无。
2019年高考数学真题分类汇编:专题(05)平面向量(文科)及答案
2019届高考数学北师大版文大一轮复习讲义:第五章 平面向量 第1讲 平面向量的概念及线性运算-1 含答案 精品
§5.1平面向量的概念及线性运算1.向量的有关概念2.向量的线性运算3.向量共线的判定定理a 是一个非零向量,若存在一个实数λ,使得b =λa ,则向量b 与非零向量a 共线. 知识拓展1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n →=A 1A n →,特别地,一个封闭图形,首尾连接而成的向量和为零向量.2.若P 为线段AB 的中点,O 为平面内任一点,则OP →=12(OA →+OB →).3.OA →=λOB →+μOC →(λ,μ为实数),若点A ,B ,C 共线,则λ+μ=1.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.( × ) (2)|a |与|b |是否相等与a ,b 的方向无关.( √ ) (3)若a ∥b ,b ∥c ,则a ∥c .( × )(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( √ ) (6)若两个向量共线,则其方向必定相同或相反.( × ) 题组二 教材改编2.已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=______,BC →=________.(用a ,b 表示) 答案 b -a -a -b解析 如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .3.在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________. 答案 矩形解析 如图,因为AB →+AD →=AC →,AB →-AD →=DB →,所以|AC →|=|DB →|.由对角线长相等的平行四边形是矩形可知,四边形ABCD 是矩形. 题组三 易错自纠4.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件答案 A解析 若a +b =0,则a =-b ,所以a ∥b .若a ∥b ,则a +b =0不一定成立,故前者是后者的充分不必要条件. 5.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.6.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.答案 12解析 DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →, ∴λ1=-16,λ2=23,即λ1+λ2=12.题型一 平面向量的概念1.有下列命题:①两个相等向量,它们的起点相同,终点也相同;②若|a |=|b |,则a =b ;③若|AB →|=|DC →|,则四边形ABCD 是平行四边形;④若m =n ,n =k ,则m =k ;⑤若a ∥b ,b ∥c ,则a ∥c ;⑥有向线段就是向量,向量就是有向线段.其中,假命题的个数是( ) A .2 B .3 C .4 D .5答案 C解析 对于①,两个相等向量,它们的起点相同,终点也相同,①正确;对于②,若|a |=|b |,方向不确定,则a ,b 不一定相等,∴②错误;对于③,若|AB →|=|DC →|,AB →,DC →不一定相等,∴四边形ABCD 不一定是平行四边形,③错误;对于④,若m =n ,n =k ,则m =k ,④正确;对于⑤,若a ∥b ,b ∥c ,当b =0时,a ∥c 不一定成立,∴⑤错误;对于⑥,有向线段不是向量,向量可以用有向线段表示,∴⑥错误.综上,假命题是②③⑤⑥,共4个,故选C.2.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( ) A .0 B .1 C .2 D .3 答案 D解析 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3. 思维升华向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制.(3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任何向量共线.题型二 平面向量的线性运算命题点1 向量的线性运算典例 (1)(2018届贵州遵义航天高级中学一模)如图所示,向量OA →=a ,OB →=b ,OC →=c ,A ,B ,C 在一条直线上,且AC →=-3CB →,则( )A .c =32b -12aB .c =32a -12bC .c =-a +2bD .c =a +2b答案 A解析 由AC →=-3CB →,可得OC →-OA →=-3(OB →-OC →), 则OC →=32OB →-12OA →=32b -12a ,故选A.(2)(2017·青海西宁一模)如图,在△ABC 中,点D 在BC 边上,且CD =2DB ,点E 在AD 边上,且AD =3AE ,则用向量AB →,AC →表示CE →为( )A.29AB →+89AC →B.29AB →-89AC →C.29AB →+79AC →D.29AB →-79AC → 答案 B解析 由平面向量的三角形法则及向量共线的性质可得CE →=AE →-AC →=13AD →-AC →=13(AB →+13BC →)-AC →=13⎣⎡⎦⎤AB →+13(AC →-AB →)-AC →=29AB →-89AC →.命题点2 根据向量线性运算求参数典例 (1)(2018届河北省武邑中学调研)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ等于( )A .1 B.34 C.23 D.12答案 B解析 ∵E 为线段AO 的中点, ∴BE →=12BA →+12BO →=12BA →+12⎝⎛⎭⎫12BD → =12BA →+14BD →=λBA →+μBD →, ∴λ+μ=12+14=34,故选B.(2)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( ) A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫0,13 C.⎝⎛⎭⎫-12,0 D.⎝⎛⎭⎫-13,0 答案 D解析 设CO →=yBC →, ∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →) =-yAB →+(1+y )AC →.∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合), ∴y ∈⎝⎛⎭⎫0,13, ∵AO →=xAB →+(1-x )AC →, ∴x =-y ,∴x ∈⎝⎛⎭⎫-13,0. 思维升华平面向量线性运算问题的常见类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值.跟踪训练 (1)(2017·江西赣州二模)如图,已知AB →=a ,AC →=b ,DC →=3BD →,AE →=2EC →,则DE →等于( )A.34b -13aB.512a -34b C.34a -13b D.512b -34a 答案 D解析 由平面向量的三角形法则可知, DE →=DC →+CE →=34BC →+⎝⎛⎭⎫-13AC → =34(AC →-AB →)-13AC →=-34AB →+512AC →=-34a +512b ,故选D.(2)如图,直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F 两点,且与对角线AC 交于点K ,其中,AE →=25AB →,AF →=12AD →,AK →=λAC →,则λ的值为______.答案 29解析 ∵AE →=25AB →,AF →=12AD →,∴AB →=52AE →,AD →=2AF →.由向量加法的平行四边形法则可知, AC →=AB →+AD →,∴AK →=λAC →=λ(AB →+AD →) =λ⎝⎛⎭⎫52AE →+2AF → =52λAE →+2λAF →, ∵E ,F ,K 三点共线,∴52λ+2λ=1,∴λ=29.题型三 向量共线定理的应用典例设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), 求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.(1)证明 ∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5AB →, ∴AB →,BD →共线.又∵它们有公共点B ,∴A ,B ,D 三点共线. (2)解 假设k a +b 与a +k b 共线, 则存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)b .又a ,b 是两个不共线的非零向量, ∴k -λ=λk -1=0.消去λ,得k 2-1=0,∴k =±1. 引申探究若将本例(1)中“BC →=2a +8b ”改为“BC →=a +m b ”,则m 为何值时,A ,B ,D 三点共线? 解 BC →+CD →=(a +m b )+3(a -b )=4a +(m -3)b , 即BD →=4a +(m -3)b .若A ,B ,D 三点共线,则存在实数λ,使BD →=λAB →. 即4a +(m -3)b =λ(a +b ).∴⎩⎪⎨⎪⎧4=λ,m -3=λ,解得m =7. 故当m =7时,A ,B ,D 三点共线.思维升华 (1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系.当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立,若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.跟踪训练 (1)(2017·资阳模拟)已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则( ) A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线 D .B ,C ,D 三点共线答案 B解析 ∵BD →=BC →+CD →=2a +6b =2(a +3b )=2AB →, ∴BD →,AB →共线,又有公共点B , ∴A ,B ,D 三点共线.故选B.(2)已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为( ) A .{0} B .∅ C .{-1} D .{0,-1}答案 C解析 ∵BC →=OC →-OB →,∴x 2OA →+xOB →+OC →-OB →=0, 即OC →=-x 2OA →-(x -1)OB →,∵A ,B ,C 三点共线, ∴-x 2-(x -1)=1,即x 2+x =0,解得x =0或x =-1.当x =0时,x 2OA →+xOB →+BC →=0,此时B 1,C 两点重合,不合题意,舍去.故x =-1.故选C.容易忽视的零向量典例下列叙述错误的是________.(填序号)①若非零向量a 与b 方向相同或相反,则a +b 与a ,b 之一的方向相同; ②|a |+|b |=|a +b |⇔a 与b 方向相同;③向量b 与向量a 共线的充要条件是有且只有一个实数λ,使得b =λa ; ④AB →+BA →=0; ⑤若λa =λb ,则a =b .现场纠错解析 对于①,当a +b =0时,其方向任意,它与a ,b 的方向都不相同. 对于②,当a ,b 之一为零向量时结论不成立.对于③,当a =0且b =0时,λ有无数个值;当a =0但b ≠0或a ≠0但b =0时,λ不存在. 对于④,由于两个向量之和仍是一个向量, 所以AB →+BA →=0.对于⑤,当λ=0时,不管a 与b 的大小与方向如何,都有λa =λb ,此时不一定有a =b . 故①②③④⑤均错. 答案 ①②③④⑤纠错心得 在考虑向量共线问题时,要注意考虑零向量.1.给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③λa =0(λ为实数),则λ必为零;④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中正确的命题的个数为( ) A .1 B .2 C .3 D .4答案 A解析 因为两个向量终点相同,起点若不在一条直线上,则也不共线,命题①错误;由于两个向量不能比较大小,但它们的模能比较大小,因此②是正确的;若λa =0(λ为实数),则a 也可以为零向量,因此命题③是错误的;若λ,μ为0,尽管有λa =μb ,则a 与b 也不一定共线,即命题④是错误的,故选A.2.(2018·安徽淮北第一中学模拟)设a ,b 都是非零向量,下列四个条件,使a |a |=b|b |成立的充要条件是( ) A .a =bB .a =2bC .a ∥b 且|a |=|b |D .a ∥b 且方向相同答案 D 解析a |a |表示a 方向的单位向量,因此a |a |=b|b |的充要条件是a 与b 同向即可,故选D. 3.(2018·四川乐山调研)如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →等于( )A .a -12bB.12a -b C .a +12bD.12a +b 答案 D解析 连接OC ,OD ,CD ,由点C ,D 是半圆弧的三等分点,可得∠AOC =∠COD =∠BOD =60°,且△OAC 和△OCD 均为边长等于圆O 半径的等边三角形,所以四边形OACD 为菱形,所以AD →=AO →+AC →=12AB →+AC →=12a +b ,故选D.4.已知AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则下列一定共线的三点是( ) A .A ,B ,C B .A ,B ,D C .B ,C ,D D .A ,C ,D答案 B解析 因为AD →=AB →+BC →+CD →=3a +6b =3(a +2b )=3AB →,又AB →,AD →有公共点A ,所以A ,B ,D 三点共线.5.(2018·济宁模拟)如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为( )A .1B .2C .3D .4答案 B解析 ∵O 为BC 的中点, ∴AO →=12(AB →+AC →)=12(mAM →+nAN →)=m 2AM →+n 2AN →, ∵M ,O ,N 三点共线,∴m 2+n2=1,∴m +n =2.6.(2018届南宁二中、柳州高中联考)已知a ,b 是不共线的向量,AB →=λa +2b ,AC →=a +(λ-1)b ,且A ,B ,C 三点共线,则λ等于( ) A .-1 B .-2 C .-2或1 D .-1或2答案 D解析 由于A ,B ,C 三点共线,故AB →=μAC →, 即λ·(λ-1)-2×1=0,解得λ=-1或2.故选D.7.已知两个非零向量a ,b 满足|a +b |=|a -b |,则下列结论正确的是________.(填序号) ①a ∥b ;②a ⊥b ;③|a |=|b |;④a +b =a -b . 答案 ②解析 根据向量加法、减法的几何意义可知,|a +b |与|a -b |分别为以向量a ,b 为邻边的平行四边形的两条对角线的长,因为|a +b |=|a -b |,所以该平行四边形为矩形,所以a ⊥b . 8.(2018·青岛质检)已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →=b ,给出下列命题:①AD →=12a -b ;②BE →=a +12b ;③CF →=-12a +12b ;④AD →+BE →+CF →=0.其中正确命题的序号为________. 答案 ②③④解析 BC →=a ,CA →=b , AD →=12CB →+AC →=-12a -b ,BE →=BC →+12CA →=a +12b ,CF →=12(CB →+CA →)=12(-a +b )=-12a +12b ,所以AD →+BE →+CF →=-b -12a +a +12b +12b -12a =0.所以正确命题的序号为②③④.9.(2018·辽宁大连双基测试)在锐角△ABC 中,CM →=3MB →,AM →=xAB →+yAC →,则x y =________.答案 3解析 由题设可得CA →+AM →=3(AB →-AM →), 即4AM →=3AB →+AC →,亦即AM →=34AB →+14AC →,则x =34,y =14,故xy=3.10.在直角梯形ABCD 中,A =90°,B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________. 答案 ⎣⎡⎦⎤0,12 解析 由题意可求得AD =1,CD =3,∴AB →=2DC →, ∵点E 在线段CD 上,∴DE →=λDC →(0≤λ≤1). ∵AE →=AD →+DE →,又AE →=AD →+μAB →=AD →+2μDC →=AD →+2μλDE →,∴2μλ=1,即μ=λ2,∵0≤λ≤1, ∴0≤μ≤12.即μ的取值范围是⎣⎡⎦⎤0,12. 11.(2018·重庆调研)如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解 由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝⎛⎭⎫b -12a =-12k 1a +k 1b (k 1为实数),同理,可设BO →=k 2BF →=k 2(AF →-AB →) =k 2⎝⎛⎭⎫12b -a =-k 2a +12k 2b (k 2为实数),①又BO →=BD →+DO →=-12a +⎝⎛⎭⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,②所以由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b ,即12(1+k 1-2k 2)a +⎝⎛⎭⎫12k 2-k 1b =0. 又a ,b 不共线,所以⎩⎨⎧12(1+k 1-2k 2)=0,12k 2-k 1=0,解得⎩⎨⎧k 1=13,k 2=23.所以BO →=-23a +13b .所以AO →=AB →+BO →=a +⎝⎛⎭⎫-23a +13b =13(a +b ). 12.设a ,b 是不共线的两个非零向量.(1)若OA →=2a -b ,OB →=3a +b ,OC →=a -3b ,求证:A ,B ,C 三点共线; (2)若AB →=a +b ,BC →=2a -3b ,CD →=2a -k b ,且A ,C ,D 三点共线,求k 的值. (1)证明 由已知得,AB →=OB →-OA →=3a +b -2a +b =a +2b , BC →=OC →-OB →=a -3b -3a -b =-2a -4b , 故BC →=-2AB →, 又BC →与AB →有公共点B , 所以A ,B ,C 三点共线.(2)解 AC →=AB →+BC →=3a -2b ,CD →=2a -k b . 因为A ,C ,D 三点共线,所以AC →=λCD →, 即3a -2b =2λa -kλb ,所以⎩⎪⎨⎪⎧3=2λ,2=kλ, 所以⎩⎨⎧λ=32,k =43.综上,k 的值为43.13.(2017·安徽马鞍山质检)已知P ,Q 为△ABC 中不同的两点,且3P A →+2PB →+PC →=0,QA →+QB →+QC →=0,则S △P AB ∶S △QAB 为( ) A .1∶2 B .2∶1 C .2∶3 D .3∶2 答案 A解析 因为3P A →+2PB →+PC →=2(P A →+PB →)+P A →+PC →=0,所以P 在与BC 平行的中位线上,且是该中位线上的一个三等分点,可得S △P AB =16S △ABC ,QA →+QB →+QC →=0,可得Q 是△ABC的重心,因此S △QAB =13S △ABC ,S △P AB ∶S △QAB =1∶2,故选A.14.(2018·泉州模拟)已知点D 为△ABC 所在平面上一点,且满足AD →=15AB →-45CA →,若△ACD的面积为1,则△ABD 的面积为________. 答案 4解析 由AD →=15AB →-45CA →,得5AD →=AB →+4AC →,所以AD →-AB →=4(AC →-AD →),即BD →=4DC →. 所以点D 在边BC 上,且|BD →|=4|DC →|, 所以S △ABD =4S △ACD =4.15.(2018·太原质检)设G 为△ABC 的重心,且sin A ·GA →+sin B ·GB →+sin C ·GC →=0,则角B 的大小为______. 答案 60°解析 ∵G 是△ABC 的重心,∴GA →+GB →+GC →=0,GA →=-(GB →+GC →),将其代入sin A ·GA →+sin B ·GB →+sin C ·GC →=0,得(sin B -sin A )GB →+(sin C -sin A )GC →=0.又GB →,GC →不共线, ∴sin B -sin A =0,sin C -sin A =0,则sin B =sin A =sin C .根据正弦定理知,b =a =c , ∴△ABC 是等边三角形,则B =60°.16.(2017·河北百校联盟联考)已知在△ABC 中,点D 满足2BD →+CD →=0,过点D 的直线l 与直线AB ,AC 分别交于点M ,N ,AM →=λAB →,AN →=μAC →.若λ>0,μ>0,则λ+μ的最小值为________.答案3+223解析 因为2BD →+CD →=0,所以BD →=13BC →,AD →=AB →+BD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →. 因为D ,M ,N 三点共线,所以存在x ∈R ,使AD →=xAM →+(1-x )AN →,则AD →=xλAB →+(1-x )μAC →, 所以xλAB →+(1-x )μAC →=23AB →+13AC →,所以xλ=23,(1-x )μ=13,所以x =23λ,1-x =13μ,所以23λ+13μ=1,所以λ+μ=13(λ+μ)⎝⎛⎭⎫2λ+1μ=13⎝⎛⎭⎫3+2μλ+λμ≥3+223,当且仅当λ=2μ时等号成立, 所以λ+μ的最小值为3+223.。
2019高考数学文一轮分层演练:第5章平面向量 章末总结 Word版含解析
章末总结一、点在纲上,源在本里二、根置教材,考在变中一、选择题1、(必修4 P 92B 组T 5改编)已知O 为四边形ABCD 所在平面内一点,若OA →+OC →=OB →+OD →,则四边形ABCD 一定为( ) A 、正方形 B 、矩形C 、菱形D 、平行四边形解析:选D.由OA →+OC →=OB →+OD →,得OA →-OB →=OD →-OC →,即BA →=CD →,所以BA ∥CD ,且BA =CD .所以四边形ABCD 一定为平行四边形,故选D.2、(必修4 P 119A 组T 9改编)已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( ) A 、-12a +32bB 、12a -32bC 、-32a -12bD 、-32a +12b解析:选 B.设c =λa +μb ,所以(-1,2)=λ(1,1)+μ(1,-1),所以⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,所以⎩⎨⎧λ=12,μ=-32,所以c =12a -32b . 3、(必修4 P 98例6改编)已知a =(3,4),b =(sin θ,cos θ),若a ∥b ,则sin θ+cos θsin θ-cos θ=( )A 、7B 、17C 、-17D 、-7解析:选D.因为a ∥b ,所以3cos θ-4sin θ=0,即tan θ=34,所以sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=34+134-1=-7.故选D. 4、(必修4 P 119A 组T 11改编)已知|a |=1,|b |=2,且a ⊥(a -b ),则向量a 与向量b 的夹角为( )A 、π6B.π4 C 、π3D.2π3解析:选B.因为a ⊥(a -b ),所以a 2-a ·b =0,又|a |=1,所以a ·b =1,设向量a 与向量b的夹角为θ,由cos θ=a ·b |a |·|b |=12=22,可得θ=π4,即向量a 与b 的夹角为π4.二、填空题 5、已知▱ABCD 的三个顶点A 、B 、C 的坐标分别为(-2,1),(-1,3),(3,4),则|BD |=________、解析:设D (x ,y ),由AB →=DC →得(1,2)=(3-x ,4-y )、所以x =2,y =2,即D 点的坐标为(2,2),所以BD →=(2,2)-(-1,3)=(3,-1),所以|BD |=|BD →|=32+(-1)2=10.答案:106、(必修4 P 120B 组T 4改编)如图,在梯形ABCD 中,AB ∥DC ,AB =3,AD =DC =2,M 是DC 的中点,则AM →·BC →=________、解析:设AB →=a ,AD →=b ,则|a |=3,|b |=2.AM →=AD →+DM →=b +13a ,BC →=AC →-AB →=AD →+DC→-AB →,=b +23a -a =b -13a ,所以AM →·BC →=⎝⎛⎭⎫b +13a (b -13a )=|b |2-19|a |2=22-19×32=3.答案:3三、解答题7、(必修4 P 108A 组T 8改编)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61, (1)求a 与b 的夹角θ; (2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积、 解:(1)因为(2a -3b )·(2a +b )=61, 所以4|a |2-4a ·b -3|b |2=61.又|a |=4,|b |=3,所以64-4a ·b -27=61, 所以a ·b =-6.所以cos θ=a ·b |a ||b |=-64×3=-12.又因为0≤θ≤π,所以θ=2π3.(2)|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13,所以|a +b |=13. (3)因为AB →与BC →的夹角θ=2π3,所以∠ABC =π-2π3=π3.又|AB →|=|a |=4,|BC →|=|b |=3,所以S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=3 3.8、(必修4 P 147A 组T 9改编)已知函数f (x )=2cos 2x +23sin x cos x (x ∈R )、 (1)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的单调递增区间; (2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c =3,f (C )=2,若向量m =(1,sin A )与向量n =(2,sin B )共线,求a ,b 的值、解:(1)f (x )=2cos 2x +3sin 2x =cos 2x +3sin 2x +1=2sin ⎝⎛⎭⎫2x +π6+1,令-π2+2k π≤2x +π6≤π2+2k π,k ∈Z , 解得k π-π3≤x ≤k π+π6,k ∈Z ,因为x ∈⎣⎡⎦⎤0,π2,所以f (x )的单调递增区间为⎣⎡⎦⎤0,π6. (2)由f (C )=2sin ⎝⎛⎭⎫2C +π6+1=2,得sin ⎝⎛⎭⎫2C +π6=12, 而C ∈(0,π),所以2C +π6∈⎝⎛⎭⎫π6,13π6,所以2C +π6=56π,解得C =π3.因为向量m =(1,sin A )与向量n =(2,sin B )共线,所以sin A sin B =12.由正弦定理得a b =12,①由余弦定理得c 2=a 2+b 2-2ab cos π3,即a 2+b 2-ab =9.②联立①②,解得a =3,b =2 3.。
2019届高考数学(北师大版文)大一轮复习讲义第五章 平面向量 高考专题突破二 Word版含答案
高考专题突破二高考中的三角函数与平面向量问题【考点自测】.(·全国Ⅱ)若将函数=的图像向左平移个单位长度,则平移后图像的对称轴为().=-(∈) .=+(∈).=-(∈) .=+(∈)答案解析由题意将函数=的图像向左平移个单位长度后得到函数的解析式为=,由+=π+(∈)得函数的对称轴为=+(∈),故选..(·全国Ⅲ)在△中,=,边上的高等于,则等于().-.-答案解析设边上的高交于点,由题意=,可知=,=,∠=,∠=,=(∠+∠)==-,所以=-..在直角三角形中,点是斜边的中点,点为线段的中点,则等于()....答案解析将△的各边均赋予向量,则======-=-=..(·全国Ⅱ)△的内角,,的对边分别为,,,若=,=,=,则=.答案解析在△中,由=,=,可得=,=,=(+)=+·=,由正弦定理得=)=..若函数=(ω+φ)在一个周期内的图像如图所示,,分别是这段图像的最高点和最低点,且·=(为坐标原点),则=.答案π解析由题意知,,又∵·=×-=,∴=π.题型一三角函数的图像和性质例(·山东)设()=(π-) -( - ).()求()的递增区间;()把=()的图像上所有点的横坐标伸长到原来的倍(纵坐标不变),再把得到的图像向左平移个单位长度,得到函数=()的图像,求的值.解()由()=(π-) -( -)=-(-)=(-)+-=-+-=+-.由π-≤-≤π+(∈),得π-≤≤π+(∈).所以()的递增区间是(∈).()由()知()=+-,把=()的图像上所有点的横坐标伸长到原来的倍(纵坐标不变),得到=+-的图像,再把得到的图像向左平移个单位长度,得到=+-的图像,即()=+-.所以=+-=.思维升华三角函数的图像与性质是高考考查的重点,通常先将三角函数化为=(ω+φ)+的形式,然后将=ω+φ视为一个整体,结合=的图像求解.跟踪训练已知函数()=-+(其中∈),求:()函数()的最小正周期;()函数()的单调区间;()函数()图像的对称轴和对称中心.解()因为()=-(+)+=-(()) ))=,所以函数的最小正周期==π.()由π-≤-≤π+(∈),得π-≤≤π+(∈),。
2019高考数学文一轮课件第5章平面向量第1讲
λa+μa ; __________
λ(a+b)= __________ λa+λb
0 =_____
3.共线向量定理
b=λa 向量 a(a≠0)与 b 共线, 当且仅当有唯一一个实数 λ, 使_______.
(必修 4 P77A 组 T3 改编)如图,D,E,F 分别是△ABC 各 边的中点,则下列结论错误的是 ( → → A.EF=CD → → B.AB与DE共线 → → C.BD与CD是相反向量 → 1→ D.AE= |AC| 2
(2)如图,正方形 ABCD 中,点 E 是 DC 的中点,点 F 是 BC → 的一个靠近 B 点的三等分点,那么EF等于( 1→ 1→ A. AB- AD 2 3 1→ 1→ B. AB+ AD 4 2 1→ 1→ C. AB+ DA 3 2 1→ 2→ D. AB- AD 2 3 )
1→ 4→ → → → 【解析】 (1)法一: 由AD=- AB+ AC, 可得 3AD=-AB+ 3 3 → → → → → → → → → 4AC, 即 4AD-4AC=AD-AB, 则 4CD=BD, 即BD=-4DC, → → → → → 可得BD+DC=-3DC,故BC=-3DC,则 λ=-3,故选 D. 1→ 4→ → AD=-3AB+3AC 法二:由 得, → → BC=λDC → 1→ 4→ λ→ λ→ → → AC-AB=λ AC+ AB- AC =- AC+ AB, 3 3 3 3 λ -3=1 所以 . λ =-1 3
第五章
平面向量
第1讲 平面向量的概念及线性运算
1.向量的有关概念 名称 定义 既有大小又有______ 方向 的量;向 向量 量的大小叫做向量的长度(或 称模) 零向量 长度为 0 的向量; 其方向是任 意的 备注 平面向量是自由向 量,即向量可平移
高考数学文一轮分层演练:第5章平面向量章末总结(1)
章末总结一、点在纲上,源在本里二、根置教材,考在变中 一、选择题1.(必修4 P 92B 组T 5改编)已知O 为四边形ABCD 所在平面内一点,若OA →+OC →=OB →+OD →,则四边形ABCD 一定为( )A .正方形B .矩形C .菱形D .平行四边形解析:选D.由OA →+OC →=OB →+OD →,得OA →-OB →=OD →-OC →,即BA →=CD →,所以BA ∥CD ,且BA =CD .所以四边形ABCD 一定为平行四边形,故选D.2.(必修4 P 119A 组T 9改编)已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( )A .-12a +32bB .12a -32bC .-32a -12bD .-32a +12b解析:选B.设c =λa +μb ,所以(-1,2)=λ(1,1)+μ(1,-1),所以⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,所以⎩⎨⎧λ=12,μ=-32,所以c =12a -32b . 3.(必修4 P 98例6改编)已知a =(3,4),b =(sin θ,cos θ),若a ∥b ,则sin θ+cos θsin θ-cos θ=( )A .7B .17C .-17D .-7解析:选D.因为a ∥b ,所以3cos θ-4sin θ=0,即tan θ=34,所以sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=34+134-1=-7.故选D. 4.(必修4 P 119A 组T 11改编)已知|a |=1,|b |=2,且a ⊥(a -b ),则向量a 与向量b 的夹角为( )A .π6B.π4 C .π3D.2π3解析:选B.因为a ⊥(a -b ),所以a 2-a ·b =0,又|a |=1,所以a ·b =1,设向量a 与向量b 的夹角为θ,由cos θ=a ·b |a |·|b |=12=22,可得θ=π4,即向量a 与b 的夹角为π4.二、填空题5.已知▱ABCD 的三个顶点A 、B 、C 的坐标分别为(-2,1),(-1,3),(3,4),则|BD |=________.解析:设D (x ,y ),由AB →=DC →得(1,2)=(3-x ,4-y ).所以x =2,y =2,即D 点的坐标为(2,2),所以BD →=(2,2)-(-1,3)=(3,-1),所以|BD |=|BD →|=32+(-1)2=10.答案:106.(必修4 P 120B 组T 4改编)如图,在梯形ABCD 中,AB ∥DC ,AB =3,AD =DC =2,M 是DC 的中点,则AM →·BC →=________.解析:设AB →=a ,AD →=b ,则|a |=3,|b |=2.AM →=AD →+DM →=b +13a ,BC →=AC →-AB →=AD →+DC →-AB →,=b +23a -a =b -13a ,所以AM →·BC →=⎝⎛⎭⎫b +13a (b -13a )=|b |2-19|a |2=22-19×32=3.答案:3三、解答题7.(必修4 P 108A 组T 8改编)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61, (1)求a 与b 的夹角θ; (2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积. 解:(1)因为(2a -3b )·(2a +b )=61, 所以4|a |2-4a ·b -3|b |2=61. 又|a |=4,|b |=3,所以64-4a ·b -27=61, 所以a ·b =-6.所以cos θ=a ·b |a ||b |=-64×3=-12.又因为0≤θ≤π,所以θ=2π3.(2)|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13,所以|a +b |=13. (3)因为AB →与BC →的夹角θ=2π3,所以∠ABC =π-2π3=π3.又|AB →|=|a |=4,|BC →|=|b |=3,所以S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=3 3.8.(必修4 P 147A 组T 9改编)已知函数f (x )=2cos 2x +23sin x cos x (x ∈R ). (1)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的单调递增区间; (2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c =3,f (C )=2,若向量m =(1,sin A )与向量n =(2,sin B )共线,求a ,b 的值.解:(1)f (x )=2cos 2x +3sin 2x =cos 2x +3sin 2x +1=2sin ⎝⎛⎭⎫2x +π6+1,令-π2+2k π≤2x +π6≤π2+2k π,k ∈Z , 解得k π-π3≤x ≤k π+π6,k ∈Z ,因为x ∈⎣⎡⎦⎤0,π2,所以f (x )的单调递增区间为⎣⎡⎦⎤0,π6. (2)由f (C )=2sin ⎝⎛⎭⎫2C +π6+1=2,得sin ⎝⎛⎭⎫2C +π6=12, 而C ∈(0,π),所以2C +π6∈⎝⎛⎭⎫π6,13π6,所以2C +π6=56π,解得C =π3.因为向量m =(1,sin A )与向量n =(2,sin B )共线,所以sin A sin B =12.由正弦定理得a b =12,①由余弦定理得c 2=a 2+b 2-2ab cos π3,即a 2+b 2-ab =9.②联立①②,解得a =3,b =2 3.。
高考数学(人教A版文科)一轮复习真题演练集训:第五章平面向量5-1Word版含解析
真题操练集训→1.[2015·新课标全国卷Ⅰ]设D 为△ ABC所在平面内一点, BC =→3CD ,则 ()→ 1→ 4→ A. AD =- 3AB +3AC → 1→ 4→ B. AD =3AB -3AC→4→1→C.AD =3AB +3AC→4→ 1→D.AD =3AB -3AC答案: A→→→=→→→→→ =4 →→分析: AD =++1=+1--1AC CD AC3BCAC3(ACAB)3AC3AB1→ 4→=-3AB +3AC.应选 A.2.[2014 ·福建卷 ] 设 M 为平行四边形 ABCD 对角线的交点, O 为→ → → →平行四边形 ABCD 所在平面内随意一点,则 OA +OB +OC +OD 等于()→ → → → A. OM B .2OM C .3OM D .4OM 答案: D分析: 由于点 M 为平行四边形 ABCD 对角线的交点,因此点M→ →→ →是AC和BD的中点,由平行四边形法例知, OA +OC =2OM ,OB +→ → → → → → → OD =2OM ,故 OA +OC +OB +OD =4OM.3.[2015 ·新课标全国卷Ⅱ]设向量 a ,b 不平行,向量 λa +b 与 a+ 2b 平行,则实数 λ=________.1答案: 2分析: ∵λa +b 与 a +2b 平行,∴λa +b =t(a +2b ),即 λa +b =t a +2t b ,1λ=t ,λ=2,∴1=2t ,解得1t =2.→4.[2014 ·新课标全国卷Ⅰ]已知 A ,B ,C 为圆 O 上的三点,若 AO=1→→ →→+AC ,则 AB 与AC 的夹角为 ________.2(AB)答案: 90°→1 → →分析: ∵AO =2(AB +AC),∴点O 是△ABC 中边 BC 的中点,→ →∴BC 为直径,依据圆的几何性质有〈 AB ,AC 〉= 90°.。
近年届高考数学大一轮复习第五章平面向量第1讲平面向量的概念及线性运算配套练习文北师大版(2021年
2019届高考数学大一轮复习第五章平面向量第1讲平面向量的概念及线性运算配套练习文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学大一轮复习第五章平面向量第1讲平面向量的概念及线性运算配套练习文北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学大一轮复习第五章平面向量第1讲平面向量的概念及线性运算配套练习文北师大版的全部内容。
第1讲平面向量的概念及线性运算一、选择题1.已知下列各式:①错误!+错误!+错误!;②错误!+错误!+错误!+错误!;③错误!+错误!+错误!+错误!;④错误!-错误!+错误!-错误!,其中结果为零向量的个数为() A.1 B.2 C.3 D.4解析由题知结果为零向量的是①④,故选B.答案B2.设a是非零向量,λ是非零实数,下列结论中正确的是( ) A.a与λa的方向相反B.a与λ2a的方向相同C.|-λa|≥|a|D.|-λa|≥|λ|·a解析对于A,当λ>0时,a与λa的方向相同,当λ<0时,a与λa 的方向相反,B正确;对于C,|-λa|=|-λ||a|,由于|-λ|的大小不确定,故|-λa|与|a|的大小关系不确定;对于D,|λ|a 是向量,而|-λa|表示长度,两者不能比较大小.答案B3.如图,在正六边形ABCDEF中,错误!+错误!+错误!=()A.0 B。
错误!C。
错误! D.错误!解析由题图知错误!+错误!+错误!=错误!+错误!+错误!=错误!+错误!=错误!。
答案D4.设a0为单位向量,下述命题中:①若a为平面内的某个向量,则a=|a|a;②若a与a0平行,则a=|a|a0;③若a与a0平行且|a|=1,则a 0=a0。
2019高考【文科数学】《第5章平面向量 第1讲 》(解析版)
一、选择题1.如图,向量a -b 等于( )A .-4e 1-2e 2B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2 解析:选C.由题图可知a -b =e 1-3e 2.故选C. 2.(2017·高考全国卷Ⅱ)设非零向量a ,b 满足|a +b |=|a -b |,则( ) A .a ⊥b B .|a |=|b | C .a ∥b D .|a|>|b| 解析:选A.依题意得(a +b )2-(a -b )2=0,即4a ·b =0,a ⊥b ,选A.3.已知向量a ,b 不共线,c =k a +b (k ∈R ),d =a -b ,如果c ∥d ,那么( ) A .k =1且c 与d 同向 B .k =1且c 与d 反向 C .k =-1且c 与d 同向 D .k =-1且c 与d 反向解析:选D.由题意可设c =λd ,即k a +b =λ(a -b ),(λ-k )a =(λ+1)b .因为a ,b 不共线,所以⎩⎪⎨⎪⎧λ-k =0,λ+1=0.所以k =λ=-1,所以c 与d 反向,故选D.4.如图所示,已知向量AB →=2BC →,OA →=a ,OB →=b ,OC →=c ,则下列等式中成立的是( )A .c =32b -12aB .c =2b -aC .c =2a -bD .c =32a -12b解析:选A.由AB →=2BC →得AO →+OB →=2(BO →+OC →),即2OC →=-OA →+3OB →,所以OC →=32OB→-12OA →,即c =32b -12a .故选A. 5.如图所示,在△ABC 中,AN →=13AC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为( )A .911B.511 C .311D.211解析:选B.注意到N ,P ,B 三点共线,因此AP →=mAB →+211AC →=mAB →+611AN →,从而m+611=1⇒m =511.故选B. 6.如图,正方形ABCD 中,M 是BC 的中点,若AC →=λAM →+μBD →,则λ+μ等于( )A .43B .53C .158D .2解析:选B.因为AC →=λAM →+μBD →=λ(AB →+BM →)+μ(BA →+AD →)=λ⎝⎛⎭⎫AB →+12AD →+μ(-AB →+AD →)=(λ-μ)AB →+⎝⎛⎭⎫12λ+μAD →,所以⎩⎪⎨⎪⎧λ-μ=1,12λ+μ=1,解得⎩⎨⎧λ=43,μ=13,λ+μ=53.故选B. 二、填空题7.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →=b ,给出下列命题:①AD →=12a -b ;②BE →=a +12b ;③CF →=-12a +12b ;④AD →+BE →+CF →=0.其中正确命题的个数为________.解析:BC →=a ,CA →=b ,AD →=12CB →+AC →=-12a -b ,故①错;BE →=BC →+12CA →=a +12b ,故②正确;CF →=12(CB →+CA →)=12(-a +b )=-12a +12b ,故③正确;所以AD →+BE →+CF →=-b -12a +a +12b +12b -12a =0.故④正确.所以正确命题为②③④.答案:38.若|AB →|=|AC →|=|AB →-AC →|=2,则|AB →+AC →|=________.解析:因为|AB →|=|AC →|=|AB →-AC →|=2,所以△ABC 是边长为2的正三角形,所以|AB →+AC →|为△ABC 的边BC 上的高的2倍,所以|AB →+AC →|=2 3.答案:2 39.如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,则△ABC 与△AOC 的面积之比为________.解析:取AC 的中点D ,连接OD ,则OA →+OC →=2OD →,所以OB →=-OD →,所以O 是AC 边上的中线BD 的中点,所以S △ABC =2S △OAC ,所以△ABC 与△AOC 面积之比为2.答案:210.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________.解析:由题意可求得AD =1,CD =3,所以AB →=2DC →. 因为点E 在线段CD 上,所以DE →=λDC →(0≤λ≤1). 因为AE →=AD →+DE →,又AE →=AD →+μAB →=AD →+2μDC →=AD →+2μDE →,所以2μλ=1,即μ=λ2.因为0≤λ≤1,所以0≤μ≤12.答案:⎣⎡⎦⎤0,12 三、解答题11.如图,在平行四边形ABCD 中,O 是对角线AC ,BD 的交点,N 是线段OD 的中点,AN 的延长线与CD 交于点E ,若AE →=mAB →+AD →,求实数m 的值.解:由N 是OD 的中点得AN →=12AD →+12AO →=12AD →+14(AD →+AB →)=34AD →+14AB →,又因为A ,N ,E 三点共线,故AE →=λAN →,即mAB →+AD →=λ(34AD →+14AB →),所以⎩⎨⎧m =14λ,1=34λ,解得⎩⎨⎧m =13,λ=43,故实数m =13.12.已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →(m ,n ∈R ). (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1.证明:(1)若m +n =1,则OP →=mOA →+(1-m )OB →=OB →+m (OA →-OB →),所以OP →-OB →=m (OA →-OB →),即BP →=mBA →,所以BP →与BA →共线.又因为BP →与BA →有公共点B ,所以A ,P ,B 三点共线. (2)若A ,P ,B 三点共线,则存在实数λ,使BP →=λBA →, 所以OP →-OB →=λ(OA →-OB →). 又OP →=mOA →+nOB →.故有mOA →+(n -1)OB →=λOA →-λOB →, 即(m -λ)OA →+(n +λ-1)OB →=0.因为O ,A ,B 不共线,所以OA →,OB →不共线,所以⎩⎪⎨⎪⎧m -λ=0,n +λ-1=0.所以m +n =1.结论得证.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学文一轮分层演练:
一、选择题
1.如图,向量a -b 等于( )
A .-4e 1-2e 2
B .-2e 1-4e 2
C .e 1-3e 2
D .3e 1-e 2
解析:选C.由题图可知a -b =e 1-3e 2.故选C.
2.(2017·高考全国卷Ⅱ)设非零向量a ,b 满足|a +b |=|a -b |,则( ) A .a ⊥b B .|a |=|b | C .a ∥b D .|a|>|b| 解析:选A.依题意得(a +b )2-(a -b )2=0,即4a ·b =0,a ⊥b ,选A.
3.已知向量a ,b 不共线,c =k a +b (k ∈R ),d =a -b ,如果c ∥d ,那么( ) A .k =1且c 与d 同向 B .k =1且c 与d 反向 C .k =-1且c 与d 同向 D .k =-1且c 与d 反向 解析:选D.由题意可设c =λd ,即k a +b =λ(a -b ),(λ-k )a =(λ+1)b .因为a ,b 不共线,
所以⎩⎪⎨⎪⎧λ-k =0,λ+1=0.
所以k =λ=-1,所以c 与d 反向,故选D.
4.如图所示,已知向量AB →=2BC →,OA →=a ,OB →=b ,OC →=c ,则下列等式中成立的是( )
A .c =32b -12a
B .c =2b -a
C .c =2a -b
D .c =32a -1
2
b
解析:选A.由AB →=2BC →得AO →+OB →=2(BO →+OC →),即2OC →=-OA →+3OB →,所以OC →=32OB
→
-12OA →,即c =32b -1
2
a .故选A.
5.如图所示,在△ABC 中,AN →=13AC →,P 是BN 上的一点,若AP →=mAB →+211AC →
,则实数
m 的值为( )
A .9
11
B.511 C .311
D.211
解析:选B.注意到N ,P ,B 三点共线,因此AP →=mAB →+211AC →=mAB →+611AN →
,从而m
+611=1⇒m =5
11
.故选B. 6.如图,正方形ABCD 中,M 是BC 的中点,若AC →=λAM →+μBD →
,则λ+μ等于( )
A .43
B .53
C .158
D .2
解析:选B.因为AC →=λAM →+μBD →=λ(AB →+BM →)+μ(BA →+AD →)=λ⎝⎛⎭⎫AB →+12AD →+μ(-AB →+AD →)=(λ-μ)AB →+⎝⎛⎭⎫12λ+μAD →
,所以⎩⎪⎨⎪⎧λ-μ=1,12λ+μ=1,解得⎩⎨⎧λ=4
3,μ=13,
λ+μ=53.故选B. 二、填空题
7.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →
=b ,给出下列命题:①AD →=12a -b ;②BE →=a +12b ;③CF →=-12a +12
b ;④AD →+BE →+CF →
=0.
其中正确命题的个数为________.
解析:BC →=a ,CA →=b ,AD →=12CB →+AC →=-12a -b ,故①错;BE →=BC →+12CA →
=a +12b ,
故②正确;CF →=12(CB →+CA →)=12(-a +b )=-12a +12b ,故③正确;所以AD →+BE →+CF →
=-b -
12
a +a +12
b +12b -1
2
a =0.故④正确.所以正确命题为②③④.
答案:3
8.若|AB →|=|AC →|=|AB →-AC →|=2,则|AB →+AC →
|=________.
解析:因为|AB →|=|AC →|=|AB →-AC →|=2,所以△ABC 是边长为2的正三角形,所以|AB →+AC →
|为△ABC 的边BC 上的高的2倍,所以|AB →+AC →
|=2 3.
答案:2 3
9.如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →
,则△ABC 与△AOC 的面积之比为________.
解析:取AC 的中点D ,连接OD ,则OA →+OC →=2OD →,所以OB →=-OD →
,所以O 是AC 边上的中线BD 的中点,所以S △ABC =2S △OAC ,所以△ABC 与△AOC 面积之比为2.
答案:2
10.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →
,则μ的取值范围是________.
解析:由题意可求得AD =1,CD =3,所以AB →=2DC →
. 因为点E 在线段CD 上,所以DE →=λDC →
(0≤λ≤1). 因为AE →=AD →+DE →,
又AE →=AD →+μAB →=AD →+2μDC →=AD →+2μλDE →,
所以2μλ=1,即μ=λ2.因为0≤λ≤1,所以0≤μ≤12.
答案:⎣⎡⎦⎤0,12 三、解答题
11.如图,在平行四边形ABCD 中,O 是对角线AC ,BD 的交点,N 是线段OD 的中点,AN 的延长线与CD 交于点E ,若AE →=mAB →+AD →
,求实数m 的值.
解:由N 是OD 的中点得AN →=12AD →+12AO →=12AD →+14(AD →+AB →)=34AD →+14AB →
,又因为A ,
N ,E 三点共线,故AE →=λAN →,即mAB →+AD →
=λ(34AD →+14AB →),所以⎩
⎨⎧m =14
λ,
1=34
λ,解得⎩
⎨⎧m =1
3,
λ=4
3,故
实数m =1
3
.
12.已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →
(m ,n ∈R ). (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1.
证明:(1)若m +n =1,则OP →=mOA →+(1-m )OB →=OB →+m (OA →-OB →),所以OP →-OB →
=m (OA →-OB →),即BP →=mBA →,所以BP →与BA →
共线.
又因为BP →与BA →
有公共点B ,所以A ,P ,B 三点共线. (2)若A ,P ,B 三点共线,则存在实数λ,使BP →=λBA →
, 所以OP →-OB →=λ(OA →-OB →). 又OP →=mOA →+nOB →.
故有mOA →+(n -1)OB →=λOA →-λOB →
, 即(m -λ)OA →+(n +λ-1)OB →
=0.
因为O ,A ,B 不共线,所以OA →,OB →
不共线,
所以⎩
⎪⎨⎪⎧m -λ=0,n +λ-1=0.所以m +n =1.结论得证.。