2013届惠二调(文)数试题及答案
2013年高考全国二卷文科数学试卷与答案
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2) = ( )(A)-1 - i(B)-1 + i(C)1 + i(D)1 - i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)(B)(C)(D)(4)已知双曲线C: = 1(a>0,b>0)的离心率为,则C的渐近线方程为()(A)y=±x (B)y=±x (C)y=±x (D)y=±x (5)已知命题p:,则下列命题中为真命题的是:()(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q(6)设首项为1,公比为的等比数列{an }的前n项和为Sn,则()(A)Sn =2an-1 (B)Sn=3an-2 (C)Sn=4-3an(D)Sn=3-2an(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=4x的焦点,P为C上一点,若丨PF丨=4,则△POF的面积为(A)2 (B)2(C)2(D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b=(A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π2013年高考全国新课标文科数学试题由长春工业大学继续教育学院第一时间整理发布,转载请注明。
2013年普通高等学校招生全国统一考试 全国卷2 数学试卷含答案(文科)
2013年普通高等学校招生全国统一考试(课标全国卷Ⅱ)文 数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=( ) A.{-2,-1,0,1} B.{-3,-2,-1,0} C.{-2,-1,0} D.{-3,-2,-1}2.|21+i|=( )A.2√2B.2C.√2D.13.设x,y 满足约束条件{x -y +1≥0,x +y -1≥0,x ≤3,则z=2x-3y 的最小值是( )A.-7B.-6C.-5D.-34.△ABC 的内角A,B,C 的对边分别为a,b,c,已知b=2,B=π6,C=π4,则△ABC 的面积为( ) A.2√3+2B.√3+1C.2√3-2D.√3-15.设椭圆C:x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ) A.√36B.13C.12D.√336.已知sin 2α=23,则cos 2(α+π4)=( ) A.16B.13C.12D.237.执行右面的程序框图,如果输入的N=4,那么输出的S=( )A.1+12+13+14 B.1+12+13×2+14×3×2 C.1+12+13+14+15D.1+12+13×2+14×3×2+15×4×3×28.设a=log 32,b=log 52,c=log 23,则( ) A.a>c>b B.b>c>a C.c>b>aD.c>a>b9.一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )10.设抛物线C:y 2=4x 的焦点为F,直线l 过F 且与C 交于A,B 两点.若|AF|=3|BF|,则l 的方程为( ) A.y=x-1或y=-x+1 B.y=√33(x-1)或y=-√33(x-1)C.y=√3(x-1)或y=-√3(x-1)D.y=√22(x-1)或y=-√22(x-1)11.已知函数f(x)=x 3+ax 2+bx+c,下列结论中错误的是( ) A.∃x 0∈R, f(x 0)=0B.函数y=f(x)的图象是中心对称图形C.若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D.若x 0是f(x)的极值点,则f '(x 0)=012.若存在正数x 使2x (x-a)<1成立,则a 的取值范围是( ) A.(-∞,+∞) B.(-2,+∞) C.(0,+∞)D.(-1,+∞)第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是 . 14.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ = . 15.已知正四棱锥O-ABCD 的体积为3√22,底面边长为√3,则以O 为球心,OA 为半径的球的表面积为 .16.函数y=cos(2x+φ)(-π≤φ<π)的图象向右平移π个单位后,与函数y=sin (2x +π)的图象重合,则φ= .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (Ⅰ)求{a n }的通项公式; (Ⅱ)求a 1+a 4+a 7+…+a 3n-2.18.(本小题满分12分)如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB,BB 1的中点. (Ⅰ)证明:BC 1∥平面A 1CD;(Ⅱ)设AA 1=AC=CB=2,AB=2√2,求三棱锥C-A 1DE 的体积.19.(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品,以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57 000元的概率.20.(本小题满分12分)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2√2,在y轴上截得线段长为2√3. (Ⅰ)求圆心P的轨迹方程;,求圆P的方程.(Ⅱ)若P点到直线y=x的距离为√2221.(本小题满分12分)已知函数f(x)=x2e-x.(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.请从下面所给的22、23、24三题中选定一题作答,多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D,E,F 分别为弦AB 与弦AC 上的点,且BC·AE=DC·AF,B,E,F,C 四点共圆. (Ⅰ)证明:CA 是△ABC 外接圆的直径;(Ⅱ)若DB=BE=EA,求过B,E,F,C 四点的圆的面积与△ABC 外接圆面积的比值.23.(本小题满分10分) 选修4—4:坐标系与参数方程已知动点P,Q 都在曲线C:{x =2cost ,y =2sint (t 为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M 为PQ 的中点. (Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.24.(本小题满分10分) 选修4—5:不等式选讲设a,b,c 均为正数,且a+b+c=1.证明:(Ⅰ)ab+bc+ca≤13;(Ⅱ)a 2b +b 2c +c 2a≥1.2013年普通高等学校招生全国统一考试(课标全国卷Ⅱ)一、选择题1.C 由题意得M∩N={-2,-1,0}.选C.2.C |21+i|=|2(1-i )2|=|1-i|=√2.选C.3.B 由约束条件得可行域(如图),当直线2x-3y-z=0过点A(3,4)时,z min =2×3-3×4=-6.故选B.4.B 由正弦定理b sinB =csinC及已知条件得c=2√2.又sin A=sin(B+C)=12×√22+√32×√22=√2+√64,从而S △ABC =12bcsin A=12×2×2√2×√2+√64=√3+1.故选B.5.D 在Rt△PF 2F 1中,令|PF 2|=1,因为∠PF 1F 2=30°,所以|PF 1|=2,|F 1F 2|=√3.所以e=2c 2a =|F 1F 2||PF 1|+|PF 2|=√33.故选D. 6.A cos 2(α+π4)=1+cos(2α+π2)2=1-sin2α2=16.选A.评析 本题考查了三角函数的化简求值,考查了降幂公式、诱导公式的应用. 7.B 由框图知循环情况为:T=1,S=1,k=2;T=12,S=1+12,k=3;T=12×3,S=1+12+12×3,k=4;T=12×3×4,S=1+12+12×3+12×3×4,k=5>4,故输出S.选B. 8.D∵√3<2<3,1<2<√5,3>2,∴log 3√3<log 32<log 33,log 51<log 52<log 5√5,log 23>log 22,∴12<a<1,0<b<12,c>1,∴c>a>b.故选D.9.A 在空间直角坐标系中,易知O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1)恰为单位正方体的四个顶点.因此该几何体以zOx 平面为投影面所得的正视图为A.评析 本题考查了三视图和直观图,考查了空间想象能力.把几何体补成正方体是求解的关键.10.C 设直线AB 与抛物线的准线x=-1交于点C.分别过A,B 作AA 1垂直准线于A 1,BB 1垂直准线于B 1.由抛物线的定义可设|BF|=|BB 1|=t,|AF|=|AA 1|=3t.由三角形的相似得|BC ||AB |=|BC |4t=12,∴|BC|=2t,∴∠B 1CB=π6,∴直线的倾斜角α=π3或23π.又F(1,0),∴直线AB 的方程为y=√3(x-1)或y=-√3(x-1).故选C.11.C 由三次函数的值域为R 知, f(x)=0必有解,A 项正确;因为f(x)=x 3+ax 2+bx+c 的图象可由曲线y=x 3平移得到,所以y=f(x)的图象是中心对称图形,B 项正确;若y=f(x)有极值点,则其导数y=f '(x)必有2个零点,设为x 1,x 2(x 1<x 2),则有f '(x)=3x 2+2ax+b=3(x-x 1)(x-x 2),所以f(x)在(-∞,x 1)上递增,在(x 1,x 2)上递减,在(x 2,+∞)上递增,则x 2为极小值点,所以C 项错误,D 项正确.选C.评析 本题考查了三次函数的图象和性质,考查了利用导数研究函数的单调性和极值.掌握基本初等函数的图象和性质是解题关键.12.D 由2x(x-a)<1得a>x-12x ,令f(x)=x-12x ,即a>f(x)有解,则a>f(x)min ,又y=f(x)在(0,+∞)上递增,所以f(x)>f(0)=-1,所以a>-1,选D.评析 本题考查了函数的值域与最值的求法,考查了分离参变量的方法,熟悉基本初等函数的单调性是解题关键. 二、填空题 13.答案 0.2解析 任取两个不同的数的情况有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种,其中和为5的有2种,所以所求概率为210=0.2. 14.答案 2解析 解法一:AE ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =(AD ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ )·(AD ⃗⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ )=AD ⃗⃗⃗⃗⃗ 2-12AB ⃗⃗⃗⃗⃗ 2+0=22-12×22=2. 解法二:以A 为原点建立平面直角坐标系(如图).则A(0,0),B(2,0),C(2,2),D(0,2),E(1,2).∴AE ⃗⃗⃗⃗⃗ =(1,2),BD⃗⃗⃗⃗⃗⃗ =(-2,2). 从而AE ⃗⃗⃗⃗⃗ ·BD⃗⃗⃗⃗⃗⃗ =(1,2)·(-2,2)=1×(-2)+2×2=2. 评析 本题考查了向量的基本运算.向量的运算可以利用运算法则也可以利用坐标运算. 15.答案 24π解析 设底面中心为E,则|AE|=12|AC|=√62,∵体积V=13×|AB|2×|OE|=|OE|=3√22,∴|OA|2=|AE|2+|OE|2=6.从而以|OA|为半径的球的表面积S=4π·|OA|2=24π.评析 本题考查了正四棱锥和球,考查了表面积和体积,考查了空间想象能力和运算求解能力.计算错误是失分的主要原因. 16.答案 56π解析 令y=f(x)=cos(2x+φ),将其图象向右平移π2个单位后得f (x -π2)=cos [2(x -π2)+φ]=cos(2x+φ-π)=sin [(2x +φ-π)+π2]=sin (2x +φ-π2)的图象,因为其与y=sin (2x +π3)的图象重合,所以φ-π2=π3+2kπ(k∈Z),所以φ=2kπ+56π(k∈Z),又-π≤φ<π,所以φ=56π. 三、解答题17.解析 (Ⅰ)设{a n }的公差为d.由题意得,a 112=a 1a 13, 即(a 1+10d)2=a 1(a 1+12d). 于是d(2a 1+25d)=0.又a 1=25,所以d=0(舍去)或d=-2. 故a n =-2n+27.(Ⅱ)令S n =a 1+a 4+a 7+…+a 3n-2.由(Ⅰ)知a3n-2=-6n+31,故{a3n-2}是首项为25,公差为-6的等差数列.从而S n=n2(a1+a3n-2)=n2(-6n+56)=-3n2+28n.18.解析(Ⅰ)证明:连结AC 1交A1C于点F,则F为AC1中点.又D是AB中点,连结DF,则BC1∥DF.因为DF⊂平面A1CD,BC1⊄平面A1CD,所以BC1∥平面A1CD.(Ⅱ)因为ABC-A1B1C1是直三棱柱,所以AA1⊥CD.由于AC=CB,D为AB的中点,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.由AA1=AC=CB=2,AB=2√2得∠ACB=90°,CD=√2,A1D=√6,DE=√3,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D.所以V C-A1DE =13×12×√6×√3×√2=1.评析本题考查了三棱柱的性质,考查了直线与平面平行的判定和体积的计算,考查了空间想象能力和运算求解能力.正确地选择方法和规范化解题至关重要.19.解析(Ⅰ)当X∈[100,130)时,T=500X-300(130-X)=800X-39 000.当X∈[130,150]时,T=500×130=65 000.所以T={800X-39000,100≤X<130, 65000,130≤X≤150.(Ⅱ)由(Ⅰ)知利润T不少于57 000元当且仅当120≤X≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于 57 000元的概率的估计值为0.7.20.解析 (Ⅰ)设P(x,y),圆P 的半径为r.由题设得y 2+2=r 2,x 2+3=r 2.从而y 2+2=x 2+3.故P 点的轨迹方程为y 2-x 2=1.(Ⅱ)设P(x 0,y 0),由已知得00√2=√22. 又P 在双曲线y 2-x 2=1上,从而得{|x 0-y 0|=1,y 02-x 02=1.由{x 0-y 0=1,y 02-x 02=1得{x 0=0,y 0=-1.此时,圆P 的半径r=√3. 由{x 0-y 0=-1,y 02-x 02=1得{x 0=0,y 0=1.此时,圆P 的半径r=√3. 故圆P 的方程为x 2+(y-1)2=3或x 2+(y+1)2=3.21.解析 (Ⅰ)f(x)的定义域为(-∞,+∞),f '(x)=-e -x x(x-2).①当x∈(-∞,0)或x∈(2,+∞)时, f '(x)<0;当x∈(0,2)时, f '(x)>0.所以f(x)在(-∞,0),(2,+∞)上单调递减,在(0,2)上单调递增.故当x=0时, f(x)取得极小值,极小值为f(0)=0;当x=2时, f(x)取得极大值,极大值为f(2)=4e -2.(Ⅱ)设切点为(t, f(t)),则l 的方程为y=f '(t)(x-t)+f(t).所以l 在x 轴上的截距为m(t)=t-f (t )f '(t )=t+tt -2=t-2+2t -2+3.由已知和①得t∈(-∞,0)∪(2,+∞).令h(x)=x+2x (x≠0),则当x∈(0,+∞)时,h(x)的取值范围为[2√2,+∞);当x∈(-∞,-2)时,h(x)的取值范围是(-∞,-3).所以当t∈(-∞,0)∪(2,+∞)时,m(t)的取值范围是(-∞,0)∪[2√2+3,+∞).综上,l 在x 轴上的截距的取值范围是(-∞,0)∪[2√2+3,+∞). 评析 本题考查了导数的应用,均值定理求最值,考查了综合解题的能力,正确地求导是解题的关键.22.解析 (Ⅰ)证明:因为CD 为△ABC 外接圆的切线,所以∠DCB=∠A,由题设知BC FA =DCEA ,故△CDB∽△AEF,所以∠DBC=∠EFA.因为B,E,F,C 四点共圆,所以∠CFE=∠DBC,故∠EFA=∠CFE=90°.所以∠CBA=90°,因此CA 是△ABC 外接圆的直径.(Ⅱ)连结CE,因为∠CBE=90°,所以过B,E,F,C 四点的圆的直径为CE,由DB=BE,有CE=DC,又BC 2=DB·BA=2DB 2,所以CA 2=4DB 2+BC 2=6DB 2.而DC 2=DB·DA=3DB 2,故过B,E,F,C 四点的圆的面积与△ABC 外接圆面积的比值为12.23.解析 (Ⅰ)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α),因此M(cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为{x =cosα+cos2α,y =sinα+sin2α(α为参数,0<α<2π). (Ⅱ)M 点到坐标原点的距离d=√x 2+y 2=√2+2cosα(0<α<2π).当α=π时,d=0,故M 的轨迹过坐标原点.24.证明 (Ⅰ)由a 2+b 2≥2ab,b 2+c 2≥2bc,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab+bc+ca.由题设得(a+b+c)2=1,即a 2+b 2+c 2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca≤13. (Ⅱ)因为a 2b +b≥2a,b 2c +c≥2b,c 2a +a≥2c, 故a 2b +b 2c +c 2a +(a+b+c)≥2(a+b+c), 即a 2b +b 2c +c 2a ≥a+b+c.所以a 2b +b 2c +c 2a ≥1.。
广东省惠州市2013届高三第二次调研考试数学试题
广东省惠州市2013届高三第二次调研考试数学试题(文科)第Ⅰ卷(选择题,共50分)一.选择题:本大题共l0小题,在每小题给出的四个选项中.只有一项是符合题目要求的.每小题5分,满分50分.1.命题“”的否命题是( ).A. B.C. D.2.为确保信息安全,信息需加密传输,发送方由明文密文(加密),接受方由密文明文(解密),已知加密规则为:明文对应密文,例如,明文对应密文.当接受方收到密文时,则解密得到的明文为().A.4,6,1,7 B.7,6,1,4 C.6,4,1,7 D.1,6,4,73.已知向量,,若,则实数的值等于().A. B. C. D.4.已知椭圆的长轴长是短轴长的倍,则椭圆的离心率等于().A.B.C.D.5.在一次射击训练中,一小组的成绩如下表:环数已知该小组的平均成绩为环,那么成绩为环的人数是().....6. 下列函数为奇函数的是().....7. 下列四个几何体中,每个几何体的三视图有且仅有两个视图相同的是().A.①②B.①③C.①④D.②④8.如果执行下面的程序框图,那么输出的().A.2450 B.2500 C.2550 D.26529.将函数的图象先向左平移,然后将所得图象上所有的点的横坐标变为原来的倍(纵坐标不变),则所得到的图象对应的函数解析式为().A.B.C.D.10.已知全集R,集合,若a>b>0,则有( ).A. B. C. D.第Ⅱ卷(非选择题,共100分)二.填空题:本大题共5小题,其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.每小题5分,满分20分.11.化简:.12. 已知是定义在R上的函数,且对任意,都有:,又则.13.若实数满足条件,则目标函数的最大值为_____ .14. (坐标系与参数方程选做题)极坐标系中,圆上的动点到直线的距离的最大值是.15. (几何证明选讲选做题)如右图所示,是圆的直径,,,,则.三.解答题:本大题共6小题,满分80分.解答须写出文字说明.证明过程和演算步骤.16.(本小题12分)在△ABC中,是角所对的边,且满足.(Ⅰ)求角的大小;(Ⅱ)设,求的最小值.17.(本小题14分)已知:正方体,,E为棱的中点.(Ⅰ) 求证:;(Ⅱ) 求证:平面;(Ⅲ)求三棱锥的体积.18.(本小题12分)有朋自远方来,已知他乘火车、轮船、汽车、飞机来的概率分别是.(Ⅰ)求他乘火车或飞机来的概率;(Ⅱ)求他不乘轮船来的概率;(Ⅲ)如果他来的概率为,请问他有可能是乘何种交通工具来的?19.(本小题14分)设函数的图象关于原点对称,的图象在点处的切线的斜率为,且当时有极值.(Ⅰ)求的值;(Ⅱ)求的所有极值.20. (本小题14分)已知圆:和圆,直线与圆相切于点;圆的圆心在射线上,圆过原点,且被直线截得的弦长为.(Ⅰ)求直线的方程(Ⅱ)求圆的方程.21.(本小题14分)已知数列是等差数列,;数列的前n项和是,且.(Ⅰ) 求数列的通项公式;(Ⅱ) 求证:数列是等比数列;(Ⅲ) 记,求的前n项和.广东省惠州市2013届高三第二次调研考试数学试题(文科)参考答案答案1.解析:命题“”的否命题是:“”,故选C.2.解析:由已知,得:,故选.3.解析:若,则,解得.故选.4.解析:由题意得,又.故选.5.解析:设成绩为环的人数是,由平均数的概念,得:.故选.6.解析:是偶函数;是指数函数;是对数函数.故选.7.解析:①的三视图均为正方形;②的三视图中正视图.侧视图为相同的等腰三角形,俯视图为圆;④的三视图中正视图.侧视图为相同的等腰三角形,俯视图为正方形.故选.8.解析:程序的运行结果是,选.9.解析:的图象先向左平移,横坐标变为原来的倍.答案:.10.解析:特殊值法:令,有.故选.题号11 12 13 14 15答案11.解析:.12.解析:令,则,令,则,同理得即当时,的值以为周期,所以.13.解析:由图象知:当函数的图象过点时,取得最大值为2.14. (坐标系与参数方程选做题)解析:将极坐标方程转化成直角坐标方程,圆上的动点到直线的距离的最大值就是圆心到直线的距离再加上半径.故填.15. (几何证明选讲选做题)解析:连结,则在和中:,且,所以,故.三.解答题:本大题共6小题,满分80分.解答须写出文字说明.证明过程和演算步骤.16.析:主要考察三角形中的边角关系、向量的坐标运算、二次函数的最值.解:(Ⅰ)∵,∴,………………3分又∵,∴.……………………………………………5分(Ⅱ)……………………………………………6分,………………………8分∵,∴.……………10分∴当时,取得最小值为.…………12分17.析:主要考察立体几何中的位置关系、体积.解:(Ⅰ)证明:连结,则// ,…………1分∵是正方形,∴.∵面,∴.又,∴面.………………4分∵面,∴,∴.…………………………………………5分(Ⅱ)证明:作的中点F,连结.∵是的中点,∴,∴四边形是平行四边形,∴.………7分∵是的中点,∴,又,∴.∴四边形是平行四边形,// ,∵,,∴平面面.…………………………………9分又平面,∴面.………………10分(3).……………………………11分.……………………………14分18.析:主要考察事件的运算、古典概型.解:设“朋友乘火车、轮船、汽车、飞机来”分别为事件,则,,,,且事件之间是互斥的.(Ⅰ)他乘火车或飞机来的概率为………4分(Ⅱ)他乘轮船来的概率是,所以他不乘轮船来的概率为.………………8分(Ⅲ)由于,所以他可能是乘飞机来也可能是乘火车或汽车来的.…………………12分19.析:主要考察函数的图象与性质,导数的应用.解:(Ⅰ)由函数的图象关于原点对称,得,………………1分∴,∴.…………2分∴,∴.……………………………4分∴,即.……………………6分∴. (7)0 + 0↘极小↗极大↘∴.………………………14分20.析:主要考察直线.圆的方程,直线与圆的位置关系.解:(Ⅰ)(法一)∵点在圆上,…………………………2分∴直线的方程为,即.……………………………5分(法二)当直线垂直轴时,不符合题意.……………………………2分当直线与轴不垂直时,设直线的方程为,即.则圆心到直线的距离,即:,解得,……4分∴直线的方程为.……………………………………………5分(Ⅱ)设圆:,∵圆过原点,∴.∴圆的方程为.…………………………7分∵圆被直线截得的弦长为,∴圆心到直线:的距离:.…………………………………………9分整理得:,解得或.……………………………10分∵,∴.…………………………………………………………13分∴圆:.……………………………………14分21.析:主要考察等差、等比数列的定义、式,求数列的和的方法.解:(Ⅰ)设的公差为,则:,,∴.…………………………………………4分(Ⅱ)当时,,由,得.…………………5分当时,,,∴,即.…………………………7分∴.……………………………………………………………8分∴是以为首项,为公比的等比数列.…………………………………9分(Ⅲ)由(2)可知:.……………………………10分∴.…………………………………11分∴.…14分。
2013年(全国卷II)(含答案)高考文科数学
2013年普通高等学校招生全国统一考试(1 新课标Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( ). A .{-2,-1,0,1} B .{-3,-2,-1,0} C .{-2,-1,0} D ..{-3,-2,-1} 2.21i+=( ). A .22 B .2 C .2 D ..13.设x ,y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩则z =2x -3y 的最小值是( ).A .-7B .-6C .-5D .-3 4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,π6B =,π4C =,则△ABC 的面积为( ).A .23+2B .3+1C .232-D .31-5.设椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ).A .36 B .13 C .12 D .336.已知sin 2α=23,则2πcos 4α⎛⎫+ ⎪⎝⎭=( ). A .16 B .13 C .12 D .237.执行下面的程序框图,如果输入的N =4,那么输出的S =( ).A .1111+234++B.1111+232432++⨯⨯⨯C.1111 1+2345+++D.11111+2324325432+++⨯⨯⨯⨯⨯⨯8.设a=log32,b=log52,c=log23,则().A.a>c>b B.b>c>a C.c>b>a D.c>a>b9.一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为().10.设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为().A.y=x-1或y=-x+1B.y=3(1)3x-或y=3(1)3x--C.y=3(1)3x-或y=3(1)3x--D.y=2(1)2x-或y=2(1)2x--11.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是().A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=012.若存在正数x使2x(x-a)<1成立,则a的取值范围是().A.(-∞,+∞) B.(-2,+∞)C .(0,+∞)D .(-1,+∞)二、填空题:本大题共4小题,每小题5分.13.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是__________.14.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=__________. 15.已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为__________.16.函数y =cos(2x +φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y =πsin 23x ⎛⎫+ ⎪⎝⎭的图像重合,则φ=__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.18.(本小题满分12分)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(1)证明:BC1∥平面A1CD;(2)设AA1=AC=CB=2,AB=22,求三棱锥C-A1DE的体积.19.(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率.20.(本小题满分12分)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为22在y轴上截得线段长为23.(1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为22,求圆P的方程.21.(本小题满分12分)已知函数f(x)=x2e-x.(1)求f(x)的极小值和极大值;(2)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.22.(本小题满分10分)选修4—1:几何证明选讲如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F 分别为弦AB与弦AC上的点,且BC·AE=DC·AF,B,E,F,C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.23.(本小题满分10分)选修4—4:坐标系与参数方程已知动点P,Q都在曲线C:2cos,2sinx ty t=⎧⎨=⎩(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.(本小题满分10分)选修4—5:不等式选讲设a,b,c均为正数,且a+b+c=1.证明:(1)ab+bc+ca≤13;(2)222a b cb c a++≥1.2013年普通高等学校招生全国统一考试(1 新课标Ⅱ卷)数学(文)试题答案解析:第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:C解析:由题意可得,M ∩N ={-2,-1,0}.故选C. 2.答案:C 解析:∵21i +=1-i ,∴21i+=|1-i|=2. 3.答案:B解析:如图所示,约束条件所表示的区域为图中的阴影部分,而目标函数可化为233z y x =-,先画出l 0:y =23x ,当z 最小时,直线在y 轴上的截距最大,故最优点为图中的点C ,由3,10,x x y =⎧⎨-+=⎩可得C (3,4),代入目标函数得,z min =2×3-3×4=-6.4.答案:B解析:A =π-(B +C )=ππ7ππ6412⎛⎫-+=⎪⎝⎭,由正弦定理得sin sin a bA B=, 则7π2sinsin 1262πsin sin 6b A a B ===+, ∴S △ABC =112sin 2(62)31222ab C =⨯⨯+⨯=+. 5.答案:D解析:如图所示,在Rt △PF 1F 2中,|F 1F 2|=2c , 设|PF 2|=x ,则|PF 1|=2x , 由tan 30°=212||3||23PF x F F c ==,得233x c =.而由椭圆定义得,|PF 1|+|PF 2|=2a =3x , ∴332a x c ==,∴333c c e a c===. 6.答案:A解析:由半角公式可得,2πcos 4α⎛⎫+ ⎪⎝⎭=π21cos 211sin 21232226αα⎛⎫++-⎪-⎝⎭===. 7.答案:B解析:由程序框图依次可得,输入N =4, T =1,S =1,k =2;12T =,11+2S =,k =3; 132T =⨯,S =111+232+⨯,k =4; 1432T =⨯⨯,1111232432S =+++⨯⨯⨯,k =5;输出1111232432S =+++⨯⨯⨯. 8.答案:D解析:∵log 25>log 23>1,∴log 23>1>21log 3>21log 5>0,即log 23>1>log 32>log 52>0,∴c >a >b .9.答案:A解析:如图所示,该四面体在空间直角坐标系O -xyz 的图像为下图:则它在平面zOx 的投影即正视图为,故选A.10.答案:C解析:由题意可得抛物线焦点F (1,0),准线方程为x =-1. 当直线l 的斜率大于0时,如图所示,过A ,B 两点分别向准线x =-1作垂线,垂足分别为M ,N ,则由抛物线定义可得,|AM |=|AF |,|BN |=|BF |.设|AM |=|AF |=3t (t >0),|BN |=|BF |=t ,|BK |=x ,而|GF |=2, 在△AMK 中,由||||||||NB BK AM AK =,得34t x t x t =+,解得x =2t ,则cos ∠NBK =||1||2NB t BK x ==, ∴∠NBK =60°,则∠GFK =60°,即直线AB 的倾斜角为60°. ∴斜率k =tan 60°=3,故直线方程为y =3(1)x -.当直线l 的斜率小于0时,如图所示,同理可得直线方程为y =3(1)x --,故选C.11.答案:C解析:若x 0是f (x )的极小值点,则y =f (x )的图像大致如下图所示,则在(-∞,x 0)上不单调,故C 不正确.12.答案:D解析:由题意可得,12xa x ⎛⎫>- ⎪⎝⎭(x >0).令f (x )=12xx ⎛⎫- ⎪⎝⎭,该函数在(0,+∞)上为增函数,可知f (x )的值域为(-1,+∞),故a >-1时,存在正数x 使原不等式成立.二、填空题:本大题共4小题,每小题5分. 13.答案:0.2解析:该事件基本事件空间Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)}共有10个,记A =“其和为5”={(1,4),(2,3)}有2个,∴P (A )=210=0.2. 14.答案:2解析:以{},AB AD为基底,则0AB AD ⋅= ,而12AE AB AD =+ ,BD AD AB =- ,∴1()()2AE BD AB AD AD AB ⋅=+⋅- 22221122222AB AD =-+=-⨯+= .15.答案:24π解析:如图所示,在正四棱锥O -ABCD 中,V O -ABCD =13×S 正方形ABCD ·|OO 1|=13×2(3)×|OO 1|=322,∴|OO 1|=322,|AO 1|=62, 在Rt △OO 1A 中,OA =2211||||OO AO +=22326622⎛⎫⎛⎫+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,即6R =,∴S 球=4πR 2=24π. 16.答案:5π6解析:y =cos(2x +φ)向右平移π2个单位得,πcos 22y x ϕ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦=cos(2x -π+φ)=ππsin 2π++=sin 222x x ϕϕ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭,而它与函数πsin 23y x ⎛⎫=+ ⎪⎝⎭的图像重合,令2x +φ-π2=2x +π3+2k π,k ∈Z ,得5π+2π6k ϕ=,k ∈Z . 又-π≤φ<π,∴5π6ϕ=. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.解:(1)设{a n }的公差为d .由题意,211a =a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ). 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列.从而S n =2n (a 1+a 3n -2)=2n (-6n +56)=-3n 2+28n . 18.解:(1)连结AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,连结DF ,则BC 1∥DF . 因为DF ⊂平面A 1CD ,BC 1平面A 1CD , 所以BC 1∥平面A 1CD .(2)因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD . 由已知AC =CB ,D 为AB 的中点,所以CD ⊥AB . 又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,22AB =得∠ACB =90°,2CD =,16A D =,3DE =,A 1E =3,故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D .所以VC -A 1DE =1163232⨯⨯⨯⨯=1.19.解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000.当X ∈[130,150]时,T =500×130=65 000.所以80039000,100130,65000,130150.X X T X -≤<⎧=⎨≤≤⎩(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150. 由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.20.解:(1)设P (x ,y ),圆P 的半径为r . 由题设y 2+2=r 2,x 2+3=r 2. 从而y 2+2=x 2+3.故P 点的轨迹方程为y 2-x 2=1. (2)设P (x 0,y 0).由已知得00||222x y -=. 又P 点在双曲线y 2-x 2=1上,从而得002210||1,1.x y y x -=⎧⎨-=⎩ 由0022001,1x y y x -=⎧⎨-=⎩得000,1.x y =⎧⎨=-⎩ 此时,圆P 的半径r = 3. 由0022001,1x y y x -=-⎧⎨-=⎩得000,1.x y =⎧⎨=⎩ 此时,圆P 的半径3r =.故圆P 的方程为x 2+(y -1)2=3或x 2+(y +1)2=3. 21.解:(1)f (x )的定义域为(-∞,+∞), f ′(x )=-e -x x (x -2).①当x ∈(-∞,0)或x ∈(2,+∞)时,f ′(x )<0; 当x ∈(0,2)时,f ′(x )>0.所以f (x )在(-∞,0),(2,+∞)单调递减,在(0,2)单调递增. 故当x =0时,f (x )取得极小值,极小值为f (0)=0; 当x =2时,f (x )取得极大值,极大值为f (2)=4e -2. (2)设切点为(t ,f (t )),则l 的方程为y =f ′(t )(x -t )+f (t ). 所以l 在x 轴上的截距为m (t )=()223'()22f t t t t t f t t t -=+=-++--. 由已知和①得t ∈(-∞,0)∪(2,+∞).令h (x )=2x x+(x ≠0),则当x ∈(0,+∞)时,h (x )的取值范围为[22,+∞);当x ∈(-∞,-2)时,h (x )的取值范围是(-∞,-3). 所以当t ∈(-∞,0)∪(2,+∞)时,m (t )的取值范围是(-∞,0)∪[223+,+∞).综上,l 在x 轴上的截距的取值范围是(-∞,0)∪[223+,+∞). 请从下面所给的22、23、24三题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.解:(1)因为CD 为△ABC 外接圆的切线, 所以∠DCB =∠A . 由题设知BC DCFA EA=, 故△CDB ∽△AEF ,所以∠DBC =∠EF A . 因为B ,E ,F ,C 四点共圆,所以∠CFE =∠DBC ,故∠EF A =∠CFE =90°.所以∠CBA =90°,因此CA 是△ABC 外接圆的直径. (2)连结CE ,因为∠CBE =90°,所以过B ,E ,F ,C 四点的圆的直径为CE ,由DB =BE ,有CE =DC ,又BC 2=DB ·BA =2DB 2,所以CA 2=4DB 2+BC 2=6DB 2.而DC 2=DB ·DA =3DB 2,故过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值为12.23.解:(1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+sin 2α). M 的轨迹的参数方程为cos cos 2,sin sin 2,x y αααα=+⎧⎨=+⎩(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =2222cos x y α+=+(0<α<2π).当α=π时,d =0,故M 的轨迹过坐标原点.24.解:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , 得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为22a b a b +≥,22b c b c +≥,22c a c a+≥,故222()a b c a b c b c a+++++≥2(a +b +c ), 即222a b c b c a ++≥a +b +c . 所以222a b c b c a++≥1.。
2013惠州二模文科数学试题及答案
惠州市2013届高三第二次调研考试试题数 学(文科)一、选择题:1.已知复数(1)z i i =+ (i 为虚数单位),则z 在复平面上对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限2.集合{}{}4,5,3,9,3M m N =-=-,若M N ⋂≠∅,则实数m 的值为( ) A .3或1- B .3 C .3或3- D .1-3.等差数列{}n a 的前n 项和为n S ,且316,4S a == 则公差d 等于( )A .1B .53C .2-D .3 4.已知向量()()2,1,1,a b k ==- ,若()//2a a b -,则k 等于( )A .12-B .12C .12-D .125.集合ππ|ππ,42k k k Z αα⎧⎫+≤≤+∈⎨⎬⎩⎭, 中的角所表示的范围(阴影部分)是( )A.B.C. D. 6.如图所示的算法流程图中, 若2()2,()xf xg x x ==则(3)h 的值等于( ) A .8B .9C .1-D .17.已知两条不同直线1l 和2l 及平面α,则直线12//l l 的一个充分条件是( ) A .α//1l 且α//2l B .α⊥1l 且α⊥2l C .α//1l 且α⊄2lD .α//1l 且α⊂2l开始输入x f(x)>g(x)h(x)=f(x)h(x)=g(x)输出h(x)结束是否8.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .-2B .2C .-4D .49.已知点(1,2),(5,6)A B -到直线:10l ax y ++=的距离相等,则实数a 的值等于( ) A .2-或1 B .2或1C .2-或1-D .2或1- 10. 已知函数2()1,()43xf x eg x x x =-=-+-,若有()()f a g b =,则b 的取值范围为( )A.(2+ B.[22 C .[1,3] D .(1,3) 二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.请将答案填在答题卡相应位置. 11.甲、乙两名篮球运动员在某几场比赛得分的茎叶图如图所示,则甲、乙两人这几场比赛得分的中位数之和是 . 12.给出命题:①异面直线是指空间既不平行又不相交的直线;②两异面直线b a ,,如果a 平行于平面α,那么b 不平行平面α; ③两异面直线b a ,,如果⊥a 平面α,那么b 不垂直于平面α; ④两异面直线在同一平面内的射影不可能是两条平行直线 。
2013年高考全国Ⅱ文科数学试题及答案(word解析版)6645.docx
2013年普通高等学校招生全国统一考试(全国II )数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2013年全国Ⅱ,文1,5分】已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N =( )(A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 【答案】C【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N {2,1,0}=--,故选C . (2)【2013年全国Ⅱ,文2,5分】21i=+( ) (A) (B )2 (C(D )1 【答案】C【解析】22(1i)2(1i)1i 1i (1i)(1i)2--===-+-+,所以21i =+C . (3)【2013年全国Ⅱ,文3,5分】设,x y 满足约束条件10103x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )(A )7- (B )6- (C )5- (D )3- 【答案】B【解析】由23z x y =-得32y x z =-,即233z y x =-.作出可行域如图,平移直线233zy x =-,由图象可知当直线233z y x =-经过点B 时,直线233zy x =-的截距最大,此时z 取得最小值,由103x y x -+=⎧⎨=⎩得34x y =⎧⎨=⎩,即(3,4)B ,代入直线23z x y =-得32346z =⨯-⨯=-,故选B .(4)【2013年全国Ⅱ,文4,5分】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则 ABC ∆的面积为( )(A)2 (B1 (C)2 (D1【答案】B【解析】因为,64B C ππ==,所以712A π=.由正弦定理得sin sin 64b c ππ=,解得c =117sin 2sin 2212bc A π=⨯⨯.因为711sin sin())123422πππ=+,所以11sin )1222bc A =+=+,故选B . (5)【2013年全国Ⅱ,文5,5分】设椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( )(A(B )13(C )12 (D【答案】D【解析】因为21212,30PF F F PF F ⊥∠=,所以2122tan30,PF c PF ===.又122PF PF a+==,所以c a ==,故选D . (6)【2013年全国Ⅱ,文6,5分】已知2sin 23α=,则2cos ()4πα+=( )(A )16 (B )13(C )12 (D )23【答案】A【解析】因为21cos2()1cos(2)1sin 242cos ()4222ππααπαα++++-+===,所以2211sin 213cos ()4226παα--+===,故选A .(7)【2013年全国Ⅱ,文7,5分】执行右面的程序框图,如果输入的4N =,那么输出的S =( )(A )1111234+++ (B )1111232432+++⨯⨯⨯ (C )111112345++++ (D )111112324325432++++⨯⨯⨯⨯⨯⨯ 【答案】B【解析】第一次循环,1,1,2T S k ===;第二次循环,11,1,322T S k ==+=;第三次循环,111,1,423223T S k ==++=⨯⨯,第四次循环,1111,1,5234223234T S k ==+++=⨯⨯⨯⨯⨯,此时满足条件输出1111223234S =+++⨯⨯⨯,故选B . (8)【2013年全国Ⅱ,文8,5分】设3log 2a =,5log 2b =,2log 3c =,则( )(A )4 (B )5 (C )6 (D )7 【答案】D【解析】因为321log 21log 3=<,521log 21log 5=<,又2log 31>,所以c 最大.又221log 3log 5<<,所以2211log 3log 5>,即a b >,所以c a b >>,故选D . (9)【2013年全国Ⅱ,文9,5分】一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是()1,0,1,()1,1,0,()0,1,1,()0,0,0,画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )(A ) (B ) (C ) (D )【答案】A【解析】在空间直角坐标系中,先画出四面体O ABC -的直观图,以zOx 平面为投影面,则得到正视图(坐标系中红色部分),故选A .(10)【2013年全国Ⅱ,文10,5分】设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若||3||AF BF =,则l 的方程为( ) (A )1y x =-或1y x =-+(B)1)y x =-或1)y x =-(C )1)y x =-或1)y x =-(D)1)y x =-或1)y x =- 【答案】C【解析】抛物线24y x =的焦点坐标为10(,),准线方程为1x =-,设11A x y (,),22B x y (,),则因为3AF BF =, 所以12131x x +=+(),所以1232x x =+,因为123y y =,129x x =,所以13x =,213x =,当13x =时,2112y =,所以此时1y ==±,若1y =1(,3A B ,此时AB k =,此时直线方程为1)y x =-.若1y =-,则1(3,()3A B -,此时AB k =,此时直线方程为1)y x =-.所以l 的方程是1)y x =-或1)y x =-,故选C .(11)【2013年全国Ⅱ,文11,5分】已知函数32()f x x ax bx c =+++,下列结论中错误的是( )(A )0x R ∃∈,0()0f x = (B )函数()y f x =的图象是中心对称图形 (C )若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减(D )若0x 是()f x 的极值点,则0'()0f x = 【答案】C【解析】若0c =则有(0)0f =,所以A 正确.由32()f x x ax bx c =+++得32()f x c x ax bx -=++,因为函数32y x ax bx =++的对称中心为0,0(),所以32()f x x ax bx c =+++的对称中心为(0,)c ,所以B 正确.由三次函数的图象可知,若0x 是()f x 的极小值点,则极大值点在0x 的左侧,所以函数在区间0,x -∞()单调递减是错误的,D 正确,故选C .(12)【2013年全国Ⅱ,文12,5分】若存在正数x 使2()1x x a -<成立,则a 的取值范围是( ) (A )(,)-∞+∞ (B )(2,)-+∞ (C )(0,)+∞ (D )(1,)-+∞【答案】D【解析】解法一:因为20x >,所以由2()1x x a -<得122x x x a --<=,在坐标系中,作出函数 (),()2xf x x ag x -=-=的图象,当0x >时,()21x g x -=<,所以如果存在0x >,使2()1x x a -<,则有1a -<,即1a >-,故选D . 解法二:由题意可得,()102xa x x ⎛⎫>-> ⎪⎝⎭.令()12xf x x ⎛⎫=- ⎪⎝⎭,该函数在(0)∞,+上为增函数,可知()f x 的值域为()1∞-,+,故1a >-时,存在正数x 使原不等式成立,故选D .第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上 (13)【2013年全国Ⅱ,文13,5分】从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是______.【答案】15【解析】从5个正整中任意取出两个不同的数,有2510C =种,若取出的两数之和等于5,则有(1,4),(2,3),共有2个,所以取出的两数之和等于5的概率为21105=.(14)【2013年全国Ⅱ,文14,5分】已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=__ ____. 【答案】2【解析】在正方形中,12AE AD DC =+,BD BA AD AD DC =+=-,所以2222111()()222222AE BD AD DC AD DC AD DC ⋅=+⋅-=-=-⨯=.(15)【2013年全国Ⅱ,文15,5分】已知正四棱锥O ABCD -则以O 为球心,OA 为半径的球的表面积为_______.【答案】24π【解析】设正四棱锥的高为h ,则213h ⨯,解得高h =.=所以OA =2424ππ=. (16)【2013年全国Ⅱ,文16,5分】函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ=_______.【答案】56π【解析】函数cos(2)y x ϕ=+,向右平移2π个单位,得到sin(2)3y x π=+,即sin(2)3y x π=+向左平移2π个单位得到函数cos(2)y x ϕ=+,sin(2)3y x π=+向左平移2π个单位,得sin[2()]sin(2)233y x x ππππ=++=++sin(2)cos(2)323x x πππ=-+=++5cos(2)6x π=+,即56πϕ=. 三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2013年全国Ⅱ,文17,12分】已知等差数列{}n a 的公差不为零,125a =,且11113,,a a a 成等比数列.(1)求{}n a 的通项公式; (2)求14732+n a a a a -++⋅⋅⋅+.解:(1)设{}n a 的公差为d .由题意,211113a a a =,即2111()1012()a d a a d +=+.于是1225(0)d a d +=.又125a =,所以0d = (舍去),2d =-.故227n a n =-+.(2)令14732n n S a a a a -=+++⋯+.由(1)知32631n a n -=-+,故32{}n a -是首项为25,公差为6-的等差数列.从而()()2132656328n n S a a n n n -=+=-+=-+.(18)【2013年全国Ⅱ,文18,12分】如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点.(1)证明:1//BC 平面11A CD ;(2)设12AA AC CB ===,AB =1C A DE -的体积.解:(1)连结1AC 交1A C 于点F ,则F 为1AC 中点.又D 是AB 中点,连结DF ,则1//BC DF .因为DF ⊂平面1ACD ,1BC ⊄平面1ACD ,所以1//BC 平面1ACD . (2)因为111ABC A B C -是直三棱柱,所以1AA CD ⊥.由已知AC CB =,D 为AB 的中点,所以CD AB ⊥.又1AA AB A =,于是CD ⊥平面11ABB A .由12AA AC CB ===,AB =90ACB ∠=︒,CD =,1A D =DE =,13A E =,故22211A D DE A E +=,即1D E A D ⊥. 所以111132C A DE V -⨯==.(19)【2013年全国Ⅱ,文19,12分】经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润 (1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率.解:(1)当[)10,30X ∈时,()50030013080039000T X X X =--=-,当[]130,5X ∈时,50013065000T =⨯=. 所以80039000,10013065000,130150X X T X -≤<⎧=⎨≤≤⎩.1(2)由(1)知利润T 不少于57000元当且仅当120150X ≤≤.由直方图知需求量[]120,150X ∈的频率为0.7,所以下一个销售季度内的利润T 不少于57000元的概率的估计值为0.7.(20)【2013年全国Ⅱ,文20,12分】在平面直角坐标系xOy 中,已知圆P 在x轴上截得线段长为在y 轴上截得线段长为(1)求圆心P 的轨迹方程;(2)若P 点到直线y x =的距离为2,求圆P 的方程. 解:(1)设()P x y ,,圆P 的半径为r .由题设222y r +=,223x r +=.从而2223y x +=+.故P 点的轨迹方程为221y x -=. (2)设00()P x y ,2=.又P 点在双曲线221y x -=上,从而得002210||11x y y x -=⎧⎨-=⎩ 由00220011x y y x -=⎧⎨-=⎩得0001x y =⎧⎨=-⎩,此时,圆P 的半径r =3.由00220011x y y x -=-⎧⎨-=⎩得001x y =⎧⎨=⎩,此时,圆P的半径r =. 故圆P 的方程为()2213x y +-=或()2213x y ++=.(21)【2013年全国Ⅱ,文21,12分】已知函数2()x f x x e -=.(1)求()f x 的极小值和极大值;(2)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.解:(1)()f x 的定义域为()-∞+∞,,()()2x f x e x x -'=--.① 当)0(x ∈-∞,或2()x ∈+∞,时,()0f x '<;当)2(0x ∈,时,()0f x '>.所以()f x 在()0-∞,,(2)+∞,单调递减,在(0)2,单调递增.故当0x =时,()f x取得极小值,极小值为()00f =;当2x =时,()f x 取得极大值,极大值为()224f e -=.(2)设切点为()()t f t ,,则l 的方程为()()()y f t x t f t ='-+.所以l 在x 轴上的截距为()()223'()22f t t t t t f t t m t t -=+=-++--=.由已知和①得()02()t ∈-∞+∞,,.令()()20h x x x x+=≠, 则当0()x ∈+∞,时,()h x的取值范围为⎡⎤+∞⎣⎦;当2()x ∈-∞-,时,()h x 的取值范围是()3-∞-,. 所以当()02()t ∈-∞+∞,,时,()m t 的取值范围是0()223,⎡⎤+-+∞⎦∞⎣,. 综上,l 在x 轴上的截距的取值范围是0()223,⎡⎤+-+∞⎦∞⎣,. 请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个 题目计分,做答时请写清题号. (22)【2013年全国Ⅱ,文22,10分】(选修4-1:几何证明选讲)如图,CD 为ABC ∆外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且··BC AE DC AF =,B , E ,F ,C 四点共圆.(1)证明:CA 是ABC ∆外接圆的直径;(2)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC ∆外接圆面积的比值.解:(1)因为CD 为ABC ∆外接圆的切线,所以DCB A ∠=∠,由题设知BC DCFA EA=,故CDB AEF ∆∆∽, 所以DBC EFA ∠=∠.因为B ,E ,F ,C 四点共圆,所以CFE DBC ∠=∠,故90EFA CFE ∠=∠=︒. 所以90CBA ∠=︒,因此CA 是ABC ∆外接圆的直径.(2)连结CE ,因为90CBE ∠=︒,所以过B ,E ,F ,C 四点的圆的直径为CE ,由D B B E =,有C E D C =又22·2BC DB BA DB ==,所以222246CA DB BC DB =+=.而22·3DC DB DA DB ==,故过B ,E ,F , C 四点的圆的面积与ABC ∆外接圆面积的比值为12.(23)【2013年全国Ⅱ,文23,10分】(选修4-4:坐标系与参数方程)已知动点P Q 、都在曲线2cos :2sin x tC y t=⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02απ<<),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解:(1)依题意有2cos (n )2si P αα,,2cos2(2)2sin Q αα,,因此cos cos ()2sin sin2M αααα++,.M 的轨迹的参数方程为cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩(α为参数,02απ<<).(2)M 点到坐标原点的距离)02d απ=<<.当απ=时,0d =,故M 的轨迹过坐标原点.(24)【2013年全国Ⅱ,文24,10分】(选修4-5:不等式选讲)设a ,b ,c 均为正数,且1a b c ++=,证明:(1)13ab bc ac ++≤;(2)2221a b c b c a++≥.解:(1)由222a b ab +≥,222b c bc +≥,222c a ca +≥,得222a b c ab bc ca ++≥++.由题设得()21a b c ++=,即2222221a b c a b b c c a +++++=.()31ab bc ca ∴++≤,即13a b b c c a ++≤. (2)因为22a b a b +≥,22b c b c +≥,22c a c a +≥,故()222(2)a b c a a b c c a b c b +≥++++++,即222a b c a b c b c a ≥++++.所以2221a b c b c a++≥.。
2013高考全国卷2文科数学试卷及答案
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)文科数学注意事项:1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名、准考证号填写在答题卡上。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4。
考试结束,将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的.(1)已知集合M={x|—3<X〈1},N={—3,—2,—1,0,1},则M∩N=(A){-2,—1,0,1}(B){—3,-2,—1,0}(C){—2,-1,0}(D){—3,—2,—1 }(2)||=(A)2(B)2 (C)(D)1(3)设x,y满足约束条件,则z=2x-3y的最小值是(A) (B)-6 (C)(D)-(4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为(A)2+2 (B)(C)2(D)-1(5)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30。
,则C的离心率为(A)(B)(C)(D)(6)已知sin2α=,则cos2(α+)=(A)(B)(C)(D)(7)执行右面的程序框图,如果输入的N=4,那么输出的S=(A)1(B)1+(C)1++++(D)1++++(8)设a=log32,b=log52,c=log23,则(A)a>c>b (B) b>c>a (C)c>b>a (D)c>a>b(9)一个四面体的顶点在点间直角坐系O—xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可为(A)(B)(C) (D)( 10)设抛物线C:y2=4x的焦点为F,直线L过F且与C交于A,B两点。
广东省惠州市2013届高三第二次调研考试数学试题(文科)2007.11
广东省惠州市2013届高三第二次调研考试数学试题(文科)2013.4第Ⅰ卷(选择题,共50分)一.选择题:本大题共l0小题,在每小题给出的四个选项中.只有一项是符合题目要求的.每小题5分,满分50分.1.命题“,11a b a b >->-若则”的否命题是( ).A.,11a b a b >-≤-若则B.,11a b a b >-<-若则C.,11a b a b ≤-≤-若则D. ,11a b a b <-<-若则2.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接受方由密文→明文(解密),已知加密规则为:明文d c b a ,,,对应密文d d c c b b a 4,32,2,2+++,例如,明文1,2,3,4对应密文5,7,18,16.当接受方收到密文14,9,23,28时,则解密得到的明文为( ). A . 4,6,1,7 B . 7,6,1,4 C . 6,4,1,7 D . 1,6,4,73.已知向量(21,4)c x →=+,(2,3)d x →=-,若//c d →→,则实数x 的值等于( ).A. 21-B. 21C. 61 D. 61- 4.).A .12 BCD5.在一次射击训练中,一小组的成绩如下表:已知该小组的平均成绩为81.环,那么成绩为8环的人数是( ). A .5 B .6 C .4 D .76. 下列函数为奇函数的是( ).A.00x y x <=≥))B .3x y =C .xy 2= D .x y 2log =7. 下列四个几何体中,每个几何体的三视图有且仅有两个视图相同的是( ).A .①②B .①③C .①④D .②④8.如果执行下面的程序框图,那么输出的S =( ). A.2450 B.2500 C.2550 D.26529.将函数sin(2)3y x π=-的图象先向左平移6π,然后将所得图象上所有的点的横坐标变为原来的2倍(纵坐标不变),则所得到的图象 对应的函数解析式为( ). A .cos y x =- B .sin 4y x = C .sin y x = D .sin()6y x π=-10.已知全集R,集合a+bE={x|b<x<}2≤,,若a>b>0, 则有( ).A .M=E FB .M=E FC .R M=E (F) ðD .R M=(E)F ð第Ⅱ卷(非选择题,共100分)二.填空题:本大题共5小题,其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.每小题5分,满分20分.11.化简:2(1)i i+= .12. 已知)(x f y =是定义在R 上的函数,且对任意R x ∈,都有:1()(2)1()f x f x f x -+=+,又,41)2(,21)1(==f f 则=)2007(f . 13.若实数x y 、满足条件012-2+10x y x y ≥⎧⎪≤⎨⎪≤⎩,则目标函数2z x y =+的最大值为_____ .①正方体 ②圆锥 ③三棱台 ④正四棱锥14. (坐标系与参数方程选做题)极坐标系中,圆22cos 30ρρθ+-=上的动点到直线cos sin 70ρθρθ+-=的距离的最大值是 .15. (几何证明选讲选做题)如右图所示,AB 是圆O 的直径,AD DE=,10AB =,8BD =,则cos BCE ∠= .三.解答题:本大题共6小题,满分80分.解答须写出文字说明.证明过程和演算步骤. 16.(本小题12分) 在△ABC 中,a b c 、、是角A B C 、、所对的边,且满足222a cb ac +-=. (Ⅰ)求角B 的大小;(Ⅱ)设(sin ,cos2),(6,1)m A A n ==-- ,求m n ⋅的最小值.17.(本小题14分)已知:正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点. (Ⅰ) 求证:11B D AE ⊥; (Ⅱ) 求证://AC 平面1B DE ; (Ⅲ)求三棱锥A-BDE 的体积.18.(本小题12分)有朋自远方来,已知他乘火车、轮船、汽车、飞机来的概率分别是0.30.20.10.4、、、.(Ⅰ)求他乘火车或飞机来的概率; (Ⅱ)求他不乘轮船来的概率;(Ⅲ)如果他来的概率为0.4,请问他有可能是乘何种交通工具来的?19.(本小题14分)设函数d cx bx x a x f +++=43)(23的图象关于原点对称,)(x f 的图象在点(1,)P m 处的切线的斜率为6-,且当2=x 时)(x f 有极值. (Ⅰ)求a b c d 、、、的值; (Ⅱ)求()f x 的所有极值.20. (本小题14分)已知圆1C :222x y +=和圆2C ,直线l 与圆1C 相切于点(1,1);圆2C 的圆心在射线20(0)x y x -=≥上,圆2C 过原点,且被直线l 截得的弦长为 (Ⅰ)求直线l 的方程;(Ⅱ)求圆2C 的方程.21.(本小题14分)已知数列{}n a 是等差数列, 256,18a a ==;数列{}n b 的前n 项和是n T ,且112n n T b +=. (Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 求证:数列{}n b 是等比数列;(Ⅲ) 记n n n c a b =⋅,求{}n c 的前n 项和n S .广东省惠州市2013届高三第二次调研考试数学试题(文科)参考答案 2007.111.解析:命题“,11a b a b >->-若则”的否命题是:“,11a b a b ≤-≤-若则”,故选C .2.解析:由已知,得:2146294232314287a b a b c b c d c d d +==⎧⎧⎪⎪+==⎪⎪⇒⎨⎨+==⎪⎪⎪⎪==⎩⎩,故选C . 3.解析:若//c d →→,则3(21)4(2)0x x +--=,解得12x =.故选B .4.解析:由题意得2a a =⇒=,又2222a b c b c a e =+⇒=⇒=⇒=. 故选B .5.解析:设成绩为8环的人数是x ,由平均数的概念,得:728938.1(23)5x x x ⨯++⨯=++⇒=.故选A .6.解析:A 是偶函数;C 是指数函数;D 是对数函数.故选B .7.解析:①的三视图均为正方形;②的三视图中正视图.侧视图为相同的等腰三角形,俯视图为圆;④的三视图中正视图.侧视图为相同的等腰三角形,俯视图为正方形.故选D .8.解析:程序的运行结果是2550100642=+⋅⋅⋅+++=s ,选C . 9.解析:sin(2)3y x π=-的图象先向左平移sin[2()]sin 2663y x x πππ⇒=+-=,横坐标变为原来的2倍1sin 2()sin 2y x x ⇒==.答案:C .10.解析:特殊值法:令2,1a b ==,有3E={x |1<x <}F ={x |2<x <2},M =2}2≤,.故选C .11.解析:2(1)22i ii i+==.12.解析:令1=x ,则1(1)1(3)1(1)3f f f -==+,令2=x ,则1(2)3(4)1(2)5f f f -==+,同理得,41)6(,21)5(==f f 即当*N x ∈时,)(n f 的值以4为周期, 所以1(2007)(50143)(3)3f f f=⨯+==.13.解析:由图象知:当函数2z x y =+的图象过点1(,1)2时,2z x y =+取得最大值为2.14. (坐标系与参数方程选做题)解析:将极坐标方程转化成直角坐标方程,圆22(1)4x y ++=上的动点到直线70x y +-=的距离的最大值就是圆心(1,0)-到直线70x y +-=的距离d 再加上半径2r =.故填2.15.(几何证明选讲选做题)解析:连结AD BE 、, 则在ABD ∆和BCE ∆中:090ADB BEC ∠=∠=, 且ABD CBE ∠=∠,所以DAB ECB ∠=∠, 故3cos cos 5BCE DAB ∠=∠=. 三.解答题:本大题共6小题,满分80分.解答须写出文字说明.证明过程和演算步骤. 16.析:主要考察三角形中的边角关系、向量的坐标运算、二次函数的最值.x解:(Ⅰ)∵222a cb ac +-=,∴2221cos 22a cb B ac +-==, ………………3分 又∵0B π<<,∴3B π=. ……………………………………………5分(Ⅱ)6sin cos2m n A A ⋅=--……………………………………………6分223112sin 6sin 12(sin )22A A A =--=--, ………………………8分∵203A π<<,∴0sin 1A <≤. ……………10分∴当sin 1A =时,取得最小值为5-. …………12分17.析:主要考察立体几何中的位置关系、体积.解:(Ⅰ)证明:连结BD ,则BD //11B D , …………1分∵ABCD 是正方形,∴AC BD ⊥.∵CE ⊥面ABCD ,∴CE BD ⊥.又C = AC CE ,∴BD ⊥面ACE . ………………4分 ∵AE ⊂面ACE ,∴BD AE ⊥,∴11B D AE ⊥. …………………………………………5分 (Ⅱ)证明:作1BB 的中点F ,连结AF CF EF 、、. ∵E F 、是1BB 1CC 、的中点,∴CE1B F ,∴四边形1B FCE 是平行四边形,∴ 1CF// B E . ………7分 ∵,E F 是1BB 1CC 、的中点,∴//EF BC , 又//BC AD ,∴//EF AD .∴四边形ADEF 是平行四边形,AF ∴//ED , ∵AF CF C = ,1B E ED E = ,∴平面//ACF 面1B DE . …………………………………9分 又AC ⊂平面ACF ,∴//AC 面1B DE . ………………10分 (3)122ABD S AB AD ∆=⋅=. ……………………………11分 A11A EC112333A BDE E ABD ABD ABD V V S CE S CE --∆∆==⋅=⋅=. ……………………………14分18.析:主要考察事件的运算、古典概型.解:设“朋友乘火车、轮船、汽车、飞机来”分别为事件A B C D 、、、,则()0.3P A =,()0.2P B =,()0.1P C =,()0.4P D =,且事件A B C D 、、、之间是互斥的.(Ⅰ)他乘火车或飞机来的概率为1()()()0.30.40.7P P A D P A P D ==+=+= ………4分 (Ⅱ)他乘轮船来的概率是()0.2P B =,所以他不乘轮船来的概率为()1()10.20.8P B P B =-=-=. ………………8分 (Ⅲ)由于0.4()P D ==()P A +()P C ,所以他可能是乘飞机来也可能是乘火车或汽车来的. …………………12分 19.析:主要考察函数的图象与性质,导数的应用.解:(Ⅰ)由函数()f x 的图象关于原点对称,得()()f x f x -=-,………………1分∴32324433a ax bx cx d x bx cx d -+-+=----,∴0,0b d ==. …………2分 ∴3()43a f x x cx =+,∴2'()4f x ax c =+. ……………………………4分∴'(1)46 '(2)440f a c f a c =+=-⎧⎨=+=⎩,即46440a c a c +=-⎧⎨+=⎩. ……………………6分 ∴2,2a c ==-. ……………………………………………………7分 (Ⅱ)由(Ⅰ)知32()83f x x x =-,∴22'()282(4)f x x x =-=-. 由2()0,40f x x >->得 ,∴22x x ><-或. …………………9分∴()(2) ()(2)33f x f f x f =-===-极大极小;. ………………………14分20.析:主要考察直线.圆的方程,直线与圆的位置关系.解:(Ⅰ)(法一)∵点(1,1)在圆221:2C x y +=上, …………………………2分 ∴直线l 的方程为2x y +=,即20x y +-=. ……………………………5分 (法二)当直线l 垂直x 轴时,不符合题意. ……………………………2分 当直线l 与x 轴不垂直时,设直线l 的方程为1(1)y k x -=-,即10kx y k --+=. 则圆心1(0,0)C 到直线l的距离d r ===解得1k =-,……4分∴直线l 的方程为20x y +-=. ……………………………………………5分(Ⅱ)设圆2C :222()(2)x a y a r -+-=(0)a ≥,∵圆2C 过原点,∴225a r =. ∴圆2C 的方程为222()(2)5x a y a a -+-=(0)a ≥.…………………………7分∵圆2C 被直线l截得的弦长为2(,2)C a a 到直线l :20x y +-=的距离:d ==…………………………………………9分 整理得:212280a a +-=,解得2a =或14a =-. ……………………………10分∵0a ≥,∴2a =. …………………………………………………………13分 ∴圆2C :22(2)(4)20x y -+-=. ……………………………………14分21.析:主要考察等差、等比数列的定义、式,求数列的和的方法. 解:(Ⅰ)设{}n a 的公差为d ,则:21a a d =+,514a a d =+,∵26a =,518a =,∴116418a d a d +=⎧⎨+=⎩,∴12,4a d ==. ………………………2分∴24(1)42n a n n =+-=-. …………………………………………4分 (Ⅱ)当1n =时,11b T =,由11112T b +=,得123b =. …………………5分 当2n ≥时,112n n T b =- ,11112n n T b --=-,∴111=() 2n n n n T T b b ----,即11()2n n n b b b -=-. …………………………7分∴11=3n n b b -. ……………………………………………………………8分∴{}n b 是以23为首项,13为公比的等比数列. …………………………………9分 (Ⅲ)由(2)可知:1211()2()333n nn b -=⋅=⋅. ……………………………10分∴11(42)2()(84)()33n nn n n c a b n n =⋅=-⋅⋅=-⋅. …………………………………11分∴2112111114()12()(812)()(84)()3333n nn n n S c c c c n n --=++++=⨯+⨯++-⨯+-⨯ .∴231111114()12()(812)()(84)()33333n n n S n n +=⨯+⨯++-⨯+-⨯ . ∴231121111148()8()8()(84)()3333333n n n n n S S S n +-==⨯+⨯+⨯++⨯--⨯21111()[1()]41338(84)()13313n n n -+⋅-=+⨯--⨯-118114()(84)()333n n n -+=-⨯--⨯. ………………………………………13分 ∴144(1)()3nn S n =-+⋅. …………………………………………………14分。
2013高考全国卷2文科数学试卷及答案
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)文科数学注意事项: 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名、准考证号填写在答题卡上。
回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共 小题。
每小题 分,在每个小题给出的四个选项中,只有一项是符合要求的。
( )已知集合 {⌧✠},☠{ , , , , },则 ∩☠(✌){ , , } ( ){ , , , } ( ) , , ❝ ( ) , , ❝( ) (✌) ( ) ( ) ( )( )设⌧,⍓满足约束条件,则 ⌧⍓的最小值是(✌) ( ) ( )( )( ) ✌的内角✌的对边分别为♋♌♍已知♌, , ,则 ✌的面积为(✌) ( ) ( ) ( ) ( )设椭圆 : ☎♋>♌> ✆的左、右焦点分别为☞、☞, 是 上的点 ☞⊥☞☞,∠ ☞☞。
,则 的离心率为(✌) ( ) ( ) ( )( )已知♦♓⏹↑,则♍☐♦☎↑✆(✌) ( ) ( ) ( )( )执行右面的程序框图,如果输入的☠,那么输出的 (✌)( ) ( ) ( )( )设♋●☐♑♌●☐♑♍●☐♑则(✌)♋>♍>♌ ( ) ♌>♍>♋ ( )♍>♌>♋( )♍>♋>♌( )一个四面体的顶点在点间直角坐系 ⌧⍓中的坐标分别是( , , ),( ,, ),( , , ),( , , ),画该四面体三视图中的正视图时,以 ⌧平面为投影面,则得到的正视图可为(✌) ( ) ( ) ( )☎ ✆设抛物线 ⍓⌧的焦点为☞,直线☹过☞且与 交于✌ 两点 若 ✌☞☞,则☹的方程为(✌)⍓⌧或⍓⌧ ( )⍓(✠)或⍓(⌧)( )⍓(⌧)或⍓(⌧) ( )⍓(⌧)或⍓(⌧)( )已知函数♐(⌧) ⌧♋⌧♌⌧♍ ,下列结论中错误的是(✌)( )函数⍓♐(⌧)的图像是中心对称图形( )若⌧是♐(⌧)的极小值点,则♐(⌧)在区间( ,⌧)单调递减( )若⌧是♐☎⌧✆的极值点,则♐❼( ⌧) ( )若存在正数⌧使 ⌧(⌧♋)< 成立,则♋ 的取值范围是(✌)( , ) ( )☎ ✆ ☎✆☎ ✆ ☎✆( , )第Ⅱ卷本卷包括必考题和选考题两部分。
广东省惠州市2013届高考语文第二次调研考试题及参考答案
广东省惠州市2013届高考语文第二次调研考试题及参考答案: 试题传真: 2012-10-25 13:20:惠州市2013届高三第二次调研考试语文试卷2012.10本试卷分必考和选考两部分,满分为150分。
考试用时150分钟。
注意事项1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卷的相应位臵上。
2.考生务必用黑色字迹的钢笔或签字笔作答,答案不能答在试卷上,必须写在答题卷的各题目指定区域内相应位臵上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
一、本大题4小题,每小题3分,共12分。
1.下列词语中加点的字,每对读音都不相同...的一组是(3分)A.韵.味/熨.斗警惕./袒裼.度.德量力/暗度.陈仓B.岗.位/天罡.笙.歌/旌.旗意兴.盎然/兴.高采烈C.穴.位/戏谑.立即./既.然风尘仆仆./前仆.后继D.铁锹./悄.然弥.漫/奢靡.创.巨痛深/别创.一格2.下面语段中画线的词语,使用不恰当...的一项是(3分)曹其真直指越是机构臃肿,越人浮于事,猛批政府在处理最近发生的建华新村气体中毒致一死两伤的事件时多个部门互相推诿,对受难家庭的要求臵之不理的态度实在耸人听闻。
在事件发生后的第7天,议员关翠杏就此事召开记者会后,政府才宣布就事件成立“跨部门专责小组”对事件“作深入彻底的调查”。
A.人浮于事 B.推诿 C.置之不理 D.耸人听闻3.下列句子中,没有语病的一项是(3分)A.日前某知名环保组织发布报告称,抽样调查发现,北上广深室内灰尘样本中均含有邻苯二甲酸酯和溴化阻燃剂等四大类有毒有害物质,对人体危害很大。
B.最近中日韩分别爆发出来的民族主义情绪,若成为影响相关外交决策的主流倾向,则东亚加强一体化的大方向将与之背道而驰,不利于各方缓和矛盾、共谋发展。
C.历史宿怨之外,东亚的感情方程式在近年来又增加了一个复杂的系数日本在经历了失落的20年之后,表现出更强的不自信和对未来的迷茫。
2012-2013学年度第二学期高二年级调研测试数学文科试卷(含答案)
2012~2013学年度第二学期高二年级调研测试数学试题(文科)一、填空题:(本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡...相应位置上.)1.若集合{}{}{}0,,2,3,3A m B A B ===I ,则实数=m ▲. 答案:32.已知“凡是9的倍数的自然数都是3的倍数”和“自然数n 是9的倍数”,根据三段论推理规则,我们可以得到的结论是 ▲ . 答案:n 是3的倍数.3.函数0y =的定义域为 ▲ .答案:{}2,x 4x x >-≠且4.用反证法证明命题“若210x -=,则1x =-或1x =”时,假设命题的结论不成立的正确叙述是“ ▲ ”. 答案:假设x ≠-1且x ≠1.5.已知复数22(815)(918)i z m m m m =-++-+为纯虚数,则实数m 的值为 ▲ . 答案: 5.6.已知函数3(0)()(0)xx f x x x ⎧≤⎪=⎨>⎪⎩,则1()4f f ⎡⎤-⎢⎥⎣⎦= ▲ .答案: -12.7.已知集合{}3(,)1,,,(,)2,,4y A x y x R y R B x y y ax x R y R x ⎧-⎫==∈∈==+∈∈⎨⎬-⎩⎭,若A B ⋂=∅,则实数a 的值为 ▲ . 答案:148.已知方程3log 5x x =-的解所在区间为(,1)()k k k N *+ ∈,则k = ▲ . 答案: 3.9.对于大于1的自然数m 的n 次幂可用奇数进行如图所示的“分裂”,仿此,记36的“分裂”中最小的数为a ,而26的“分裂”中最大的数是b ,则a +b = ▲ . 答案:4210.在矩形ABCD 中,5AB =,2BC =,现截去一个角PCQ ∆,使P Q 、分别落在边BC CD 、上,且PCQ ∆的周长为8,设PC x =,CQ y =,则用x 表示y 的表达式为y = ▲ .答案:y=8328x x --(0<x ≤2). 11.给出下列命题:①在区间(0,)+∞上,函数1y x -=,12y x =,2(1)y x =-,3y x =中有三个是增函数;②若log 3log 30m n <<,则01m n <<<;③若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;④函数()()21f x x x x =⋅+--有2个零点. 其中正确命题的序号..为 ▲ . 答案:③④A BCDPQ12.当(34)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是 ▲ . 答案:m ≤-5.13.设1a >,若函数2()log ()a f x ax x =-在区间1,62⎡⎤⎢⎥⎣⎦上是增函数,则a 的取值范围是▲ . 答案: a>2.14.设不等式2(1)0x px p p +--≥对任意正整数x 都成立,则实数p 的取值范围是 ▲ .答案:≤p ≤二、解答题:本大题共6小题,共90分.(解答应写出必要的文字说明,证明过程或演算步骤)15. (本小题满分14分)设全集是实数集R ,22{|2730},{|0}A x x x B x x a =-+≤=+<,(1) 当4a =-时,求A B ; (2) 若()R A B B =r ð,求负数a 的取值范围.解:(1)1{|3}2A x x =≤≤ ………………………………………………4分 当4a =-时,{|22}B x x =-<< …………………………………………………4分{|23}A B x x =-<≤ ………………………………………………… 8分(2) 1{|}2R A x x =<或x>3r ð ………………………………………10分∵0a <,∴{|B x x =<, …………………… 12分当()R A B B =r ð时,有R B A ⊆r ð,要使R B A ⊆r ð,12≤成立, 解得104a -≤<………………14分 16.(本题满分14分)已知复数22(4sin )2(cos 1)z a i θθ=-++,其中a +∈R,),0(πθ∈,i 为虚数单位,且z 是方程2220x x ++=的一个根.(1)求θ与a 的值;(2)若w x yi =+(,x y 为实数),求满足1zw z i-≤+的点(,)x y 表示的图形的面积. 解:(1)由方程x 2+2x+2=0得x=-1±i ………………………………………2分 2(cos 1)0θ+≥∴z=-1+I ……………………………………………………………………4分又z=(a 2-42sin θ)+2(cos θ+1)i∴22a -4sin 1 2(cos 1)1θθ⎧=-⎨+=⎩ …………………………………………………………………… 6分 a ∈(0,+∞),),0(πθ∈∴θ=23π, …………………………………………………………………… 8分(2)1125z i z i i --==+-+ …………………………………………………… 10分∴1w -≤(1,0)为圆心,5为半径的圆,………………………… 12分∴面积为22(55ππ= ………………………… 14分 17.(本题满分14分)已知定义域为R 的函数2()2x x bf x a-=+是奇函数.(1)求,a b 的值;(2) 利用定义判断函数()y f x =的单调性;(3)若对任意[0,1]t ∈,不等式22(2)()0f t kt f k t ++->恒成立,求实数k 的取值范围.解: (1)1101(0)011111(1)(1)221bb a f a a b f f a a -⎧-=⎧⎪===⎧⎪⎪+∴+⎨⎨⎨=⎩⎪⎪-=-=⎩⎪++⎩得(需验证)………………4分 (其它解法酌情给分)12122(22)(21)(21)x x x x -=++(2)由(Ⅰ)知121221(),21x xf x x x R x x -=∀∈<+、,且 121212121221212(22)()()2121(21)(21)x x x x x x x x f x f x ----=-=++++则 12121212,22220,210,210x x x x x x x x <∴<∴-<+>+>1212()()0()()f x f x f x f x ∴-<∴<()y f x R ∴=在上为增函数………………9分(求导数方法酌情给分) (3)22(2)()0f t kt f k t ++->22(2)()f t kt f k t ∴+>--22()()()f x f k t f t k ∴--=-是奇函数22(2)()f t kt f t k ∴+>-()f x 为增函数2222(1)t kt t k k t t ∴∴+>-∴+>-…………10分 [][]220.111,211t t t t k k t t ∈∴+∈∴>-∴<++恒成立-222(1)1(1)11111220111111t t t t t t t t t t t -+-==+=-+=++-≥=++++++……12分 当且仅当0t =时等号成立。
【解析版】广东省惠州市2013年高考数学二模试卷(文科)
页眉内容2013年广东省惠州市高考数学二模试卷(文科)一.选择题:本大题共l0小题,在每小题给出的四个选项中.只有一项是符合题目要求的.每小题5分,满分50分.2.(5分)(2006•陕西)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,,解得3.(5分)(2013•惠州二模)已知向量=(2x﹣1,4),=(2﹣x,3),若,则实数x的值等于()B.解:因为,=,解得.B.=解:∵椭圆的长轴长是短轴长的2a= b==e=6.(5分)(2013•惠州二模)下列函数为奇函数的是()B满足7.(5分)(2013•惠州二模)下列四个几何体中,每个几何体的三视图有且仅有两个视图相同的是()8.(5分)(2007•海南)如果执行程序框图,那么输出的S=()××9.(5分)(2013•惠州二模)将函数的图象先向左平移,然后将所得图象上所有的.x+)﹣倍,即得所求函数的解析式.将函数的图象先向左平移,x+]×x10.(5分)(2013•惠州二模)已知全集R,集合E={x|b<x<},F={x|<x<a},M={x|b<x},E={x|F={x|F={x|}{x|2}={x|二.填空题:本大题共5小题,其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.每小题5分,满分20分.11.(5分)(2013•惠州二模)化简:=2.=12.(5分)(2013•惠州二模)已知y=f(x)是定义在R上的函数,且对任意x∈R,都有:,又,则f(2007)=.,则同理得所以故答案为:.13.(5分)(2013•惠州二模)若实数x、y满足条件,则目标函数z=2x+y的最大值为2.解:由线性约束条件条件的图象过点14.(5分)(2013•惠州二模)极坐标系中,圆ρ2+2ρcosθ﹣3=0上的动点到直线ρcosθ+ρsinθ﹣7=0的距离的最大值是.=4故圆上的动点到直线的距离的最大值等于故答案为15.(2013•惠州二模)(几何证明选讲选做题)如图所示,AB是圆O的直径,,AB=10,BD=8,则cos∠BCE=.DAB==故答案为:.三.解答题:本大题共6小题,满分80分.解答须写出文字说明.证明过程和演算步骤.16.(12分)(2013•惠州二模)在△ABC中,a,b,c是角A,B,C所对的边,且满足a2+c2﹣b2=ac.(1)求角B的大小;(2)设,求的最小值.)利用向量的数量积的运算,求得,∴,∴),17.(14分)(2013•惠州二模)正方体ABCD_A1B1C1D1,AA1=2,E为棱CC1的中点.(Ⅰ)求证:B1D1⊥AE;(Ⅱ)求证:AC∥平面B1DE;(Ⅲ)求三棱锥A﹣BDE的体积.V=••EC=••18.(12分)(2013•惠州二模)有朋自远方来,已知他乘火车、轮船、汽车、飞机来的概率分别是0.3、0.2、0.1、0.4.(Ⅰ)求他乘火车或飞机来的概率;(Ⅱ)求他不乘轮船来的概率;(Ⅲ)如果他来的概率为0.4,请问他有可能是乘何种交通工具来的?则他不乘轮船的概率为19.(14分)(2013•惠州二模)设函数的图象关于原点对称,f(x)的图象在点P(1,m)处的切线的斜率为﹣6,且当x=2时f(x)有极值.(Ⅰ)求a、b、c、d的值;(Ⅱ)求f(x)的所有极值.,∴,即.∴(Ⅱ)由(Ⅰ)知,∴20.(14分)(2013•惠州二模)已知圆C1:x2+y2=2和圆C2,直线l与C1切于点M(1,1),圆C2的圆心在射线2x﹣y=0(x≥0)上,且C2经过坐标原点,如C2被l截得弦长为.(1)求直线l的方程;(2)求圆C2的方程.的斜率为:d=×=⇒21.(14分)(2013•惠州二模)已知数列{a n}是等差数列,a2=6,a5=18;数列{b n}的前n项和是T n,且T n+b n=1.(1)求数列{a n}的通项公式;(2)求证:数列{b n}是等比数列;(3)记c n=a n•b n,求{c n}的前n项和S n.的关系式整理的,∴,由,得时,∵,,即.是以为首项,为公比的等比数列.)可知:.=.∴.。
2013新课标全国2卷高考文科数学试题、解析与分析(最新、最全、最专业)
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数 学 (文科)1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则MN =( )(A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 【答案】C【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以MN {2,1,0}=--,选C.2、21i=+( ) (A)(B )2 (C(D )1 【答案】C 【解析】22(1)2(1)11(1)(1)2i i i i i i --===-+-+,所以21i =+ C. 3、设,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )(A )7- (B )6- (C )5- (D )3- 【答案】B【解析】由z=2x-3y 得3y=2x-z ,即233zy x =-。
作出可行域如图,平移直线233z y x =-,由图象可知当直线233z y x =-经过点B 时,直线233zy x =-的截距最大,此时z 取得最小值,由103x y x -+=⎧⎨=⎩得34x y =⎧⎨=⎩,即(3,4)B ,代入直线z=2x-3y 得32346z =⨯-⨯=-,选B.4、ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )(A )232 (B 31 (C )232 (D 31 【答案】B 【解析】因为,64B C ππ==,所以712A π=.由正弦定理得sin sin 64b c ππ=,解得22c =所以三角形的面积为117sin 2222212bc A π=⨯⨯.因为73221231sinsin()()123422222πππ=+=+=,所以1231sin 22()3122bc A =+=,选B. 5、设椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( )(A 3 (B )13 (C )12(D 3【答案】D【解析】因为21212,30PF F F PF F ⊥∠=,所以2123432tan 30,PF c PF ===。
2013年高考全国二卷文科数学试卷与答案2013年高考全国二卷文科数学试卷与答案
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( )(A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2) = ( )(A)-1 - i(B)-1 + i(C)1 + i(D)1 - i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)(B)(C)(D)(4)已知双曲线C: = 1(a>0,b>0)的离心率为,则C的渐近线方程为()(A)y=±x (B)y=±x (C)y=±x (D)y=±x(5)已知命题p:,则下列命题中为真命题的是:()(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q(6)设首项为1,公比为的等比数列{an }的前n项和为Sn,则()(A)Sn =2an-1 (B)Sn=3an-2 (C)Sn=4-3an(D)Sn=3-2an(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=4x的焦点,P为C上一点,若丨PF丨=4,则△POF的面积为(A)2 (B)2(C)2(D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b=(A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π2013年高考全国新课标文科数学试题由长春工业大学继续教育学院第一时间整理发布,转载请注明。
2013高考全国卷2文科数学试卷及答案
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)文科数学注意事项:1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名、准考证号填写在答题卡上。
2。
回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效.3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4。
考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题.每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
(1)已知集合M={x|—3〈X<1},N={—3,-2,-1,0,1},则M∩N=(A){—2,-1,0,1} (B){-3,—2,-1,0}(C){-2,—1,0} (D){-3,—2,-1 }(2)||=(A)2(B)2 (C)(D)1(3)设x,y满足约束条件,则z=2x—3y的最小值是(A)(B)—6 (C)(D)—(4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为(A)2+2 (B)(C)2(D)—1(5)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30。
,则C的离心率为(A)(B)(C)(D)(6)已知sin2α=,则cos2(α+)=(A)(B)(C)(D)(7)执行右面的程序框图,如果输入的N=4,那么输出的S=(A)1(B)1+(C)1++++(D)1++++(8)设a=log32,b=log52,c=log23,则(A)a>c>b (B) b>c>a (C)c>b>a (D)c>a>b(9)一个四面体的顶点在点间直角坐系O—xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可为(A) (B)(C)(D)(10)设抛物线C:y2=4x的焦点为F,直线L过F且与C交于A,B两点。
2013文科数学高考真题全国卷Ⅱ试卷答案
2013年全国统一考试数学文史类答案(新课标全国卷II)2013年普通高等学校夏季招生全国统一考试数学文史类(新课标全国卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:C解析:由题意可得,M ∩N ={-2,-1,0}.故选C. 2.答案:C解析:∵21i+=1-i ,∴21i +=|1-i|.3.答案:B解析:如图所示,约束条件所表示的区域为图中的阴影部分,而目标函数可化为233zy x =-,先画出l 0:y =23x ,当z 最小时,直线在y 轴上的截距最大,故最优点为图中的点C ,由3,10,x x y =⎧⎨-+=⎩可得C (3,4),代入目标函数得,z min =2×3-3×4=-6.4. 答案:B解析:A =π-(B +C )=ππ7ππ6412⎛⎫-+= ⎪⎝⎭,由正弦定理得sin sin a bA B=,则7π2sinsin 12πsin sin 6b A a B === ∴S △ABC=11sin 21222ab C =⨯⨯⨯=. 5. 答案:D解析:如图所示,在Rt △PF 1F 2中,|F 1F 2|=2c , 设|PF 2|=x ,则|PF 1|=2x ,由tan 30°=212||||2PF x F F c ==,得3x c =.而由椭圆定义得,|PF 1|+|PF 2|=2a =3x ,∴32a x ==,∴3c e a ===. 6. 答案:A解析:由半角公式可得,2πcos 4α⎛⎫+ ⎪⎝⎭=π21cos 211sin 21232226αα⎛⎫++- ⎪-⎝⎭===. 7. 答案:B解析:由程序框图依次可得,输入N =4, T =1,S =1,k =2;12T =,11+2S =,k =3;132T =⨯,S =111+232+⨯,k =4; 1432T =⨯⨯,1111232432S =+++⨯⨯⨯,k =5; 输出1111232432S =+++⨯⨯⨯. 8.答案:D解析:∵log 25>log 23>1,∴log 23>1>21log 3>21log 5>0,即log 23>1>log 32>log 52>0,∴c >a >b . 9. 答案:A解析:如图所示,该四面体在空间直角坐标系O -xyz 的图像为下图:则它在平面zOx 的投影即正视图为,故选A. 10. 答案:C解析:由题意可得抛物线焦点F (1,0),准线方程为x =-1. 当直线l 的斜率大于0时,如图所示,过A ,B 两点分别向准线x =-1作垂线,垂足分别为M ,N ,则由抛物线定义可得,|AM |=|AF |,|BN |=|BF |.设|AM |=|AF |=3t (t >0),|BN |=|BF |=t ,|BK |=x ,而|GF |=2,在△AMK 中,由||||||||NB BK AM AK =,得34t xt x t=+, 解得x =2t ,则cos ∠NBK =||1||2NB t BK x ==, ∴∠NBK =60°,则∠GFK =60°,即直线AB 的倾斜角为60°.∴斜率k y 1)x -.当直线l 的斜率小于0时,如图所示,同理可得直线方程为y =1)x -,故选C.11. 答案:C解析:若x 0是f (x )的极小值点,则y =f (x )的图像大致如下图所示,则在(-∞,x 0)上不单调,故C 不正确.12. 答案:D解析:由题意可得,12xa x ⎛⎫>- ⎪⎝⎭(x >0).令f (x )=12xx ⎛⎫- ⎪⎝⎭,该函数在(0,+∞)上为增函数,可知f (x )的值域为(-1,+∞),故a >-1时,存在正数x 使原不等式成立.第Ⅱ卷本卷包括必考题和选考题两部分。
2013高考全国卷2文科数学试卷及答案
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)文科数学注意事项:1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名、准考证号填写在答题卡上。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4。
考试结束,将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的.(1)已知集合M={x|—3<X〈1},N={—3,—2,—1,0,1},则M∩N=(A){-2,—1,0,1}(B){—3,-2,—1,0}(C){—2,-1,0}(D){—3,—2,—1 }(2)||=(A)2(B)2 (C)(D)1(3)设x,y满足约束条件,则z=2x-3y的最小值是(A) (B)-6 (C)(D)-(4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为(A)2+2 (B)(C)2(D)-1(5)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30。
,则C的离心率为(A)(B)(C)(D)(6)已知sin2α=,则cos2(α+)=(A)(B)(C)(D)(7)执行右面的程序框图,如果输入的N=4,那么输出的S=(A)1(B)1+(C)1++++(D)1++++(8)设a=log32,b=log52,c=log23,则(A)a>c>b (B) b>c>a (C)c>b>a (D)c>a>b(9)一个四面体的顶点在点间直角坐系O—xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可为(A)(B)(C) (D)( 10)设抛物线C:y2=4x的焦点为F,直线L过F且与C交于A,B两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
惠州市2013届高三第二次调研考试试题数 学(文科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生必须保持答题卡的整洁.考试结束后,将答题卡一并交回. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项.1.已知复数(1)z i i =+ (i 为虚数单位),则z 在复平面上对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限2.集合{}{}4,5,3,9,3M m N =-=-,若M N ⋂≠∅,则实数m 的值为( ) A .3或1- B .3 C .3或3- D .1-3.等差数列{}n a 的前n 项和为n S ,且316,4S a == 则公差d 等于( )A .1B .53C .2-D .3 4.已知向量()()2,1,1,a b k ==-,若()//2a a b - ,则k 等于( )A .12-B .12C .12-D .125.集合ππ|ππ,42k k k Z αα⎧⎫+≤≤+∈⎨⎬⎩⎭, 中的角所表示的范围(阴影部分)是( )A.B.C. D.6.如图所示的算法流程图中, 若2()2,()x f x g x x ==则(3)h 的值等于( ) A .8B .9C .1-D .17.已知两条不同直线1l 和2l 及平面α,则直线12//l l 的一个充分条件是( ) A .α//1l 且α//2l B .α⊥1l 且α⊥2l C .α//1l 且α⊄2lD .α//1l 且α⊂2l8.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .-2B .2C .-4D .49.已知点(1,2),(5,6)A B -到直线:10l ax y ++=的距离相等,则实数a 的值等于( ) A .2-或1 B .2或1C .2-或1-D .2或1- 10. 已知函数2()1,()43xf x eg x x x =-=-+-,若有()()f a g b =,则b 的取值范围为( )A.(2 B.[2 C .[1,3] D .(1,3) 二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.请将答案填在答题卡相应位置. 11.甲、乙两名篮球运动员在某几场比赛得分的茎叶图如图所示,则甲、乙两人这几场比赛得分的中位数之和是 . 12.给出命题:①异面直线是指空间既不平行又不相交的直线;②两异面直线b a ,,如果a 平行于平面α,那么b 不平行平面α; ③两异面直线b a ,,如果⊥a 平面α,那么b 不垂直于平面α; ④两异面直线在同一平面内的射影不可能是两条平行直线 。
上述命题中,真命题的序号是 .开始输入x f(x)>g(x)h(x)=f(x)h(x)=g(x)输出h(x)结束是否第6题图2第11题图13.若函数2()4f x x x a =--的有3个零点,则a = .14. (坐标系与参数方程选做题) 已知直线的极坐标方程为22sin =θρ,则点7(2,)4A π到这条直线的距离为 .15.(几何证明选讲选做题)如图,从圆O 外一点A 引圆的切线AD 和割线ABC,已知AD =6AC =,圆O 的半径为3,则圆心O 到AC 的距离为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)设函数()sin cos f x m x x =+()x R ∈的图象经过点,12π⎛⎫⎪⎝⎭. (1)求()f x 的解析式,并求函数的最小正周期.(2)若()4f πα+=且(0,)2πα∈,求(2)4f πα-的值。
第15题图17.(本小题满分12分)某产品按行业生产标准分成8个等级,等级系数ξ依次为1,2,,8…,产品的等级系数越大表明产品的质量越好.现从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 3 8 3 4 3 4 4 7 56 7该行业规定产品的等级系数7ξ≥的为一等品,等级系数57ξ≤<的为二等品,等级系数35ξ≤<的为三等品,3ξ<为不合格品.(1)试分别估计该厂生产的产品的一等品率、二等品率和三等品率;(2)从样本的一等品中随机抽取2件,求所抽得2件产品等级系数都是8的概率.18.(本小题满分14分)如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,,AB BC D ⊥为AC 的中点,12AA AB ==.(1) 求证:1//AB 平面1BC D ;(2) 若3BC =,求三棱锥1D BC C -的体积。
DC 1A 1B 1CBA第18题图19.(本小题满分14分)已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点()0,1,并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=u u u r u u u r?若存在,求出直线l 的方程;若不存在,说明理由.20.(本小题满分14分)已知等差数列{}n a 的公差大于0,且53,a a 是方程045142=+-x x 的两根,数列{}n b 的前n 项的和为n S ,且*1()2nn b S n N -=∈. (1)求数列{}n a ,{}n b 的通项公式; (2)记n n n b a c ⋅=,求证:n n c c ≤+1; (3)求数列{}n c 的前n 项和n T .21.(本小题满分14分)设函数()(1)xxf x a k a -=--(0a >且1)a ≠是定义域为R 的奇函数.(1)求k 值;(2)若(1)0f <,试判断函数单调性,并求使不等式2()(4)0f x tx f x ++-<恒成立的t 取值范围;(3)若3(1)2f =,且22()2()x xg x a a mf x -=+-在[)1,+∞上的最小值为2-,求m 的值.惠州市2013届高三第二次调研考试数学文科数学答案一、选择题1.【解析】(1)1z i i i =+=-+,所以z 对应的点在复平面的第二象限, 故选B . 2.【解析】由M N ≠∅ 可知39m -=-或33m -=,故选A .3.【解析】31336()2S a a ==+且3112 =4 d=2a a d a =+∴.故选C 4.【解析】2(5,2)a b k -=- ,由()2a a b - 得2(2k)50--=,解得12k =-,故选C5.【解析】选C 分K=2m ,K=2m+1)(z m ∈两种情况讨论可得结果.6.【解析】32(3)28,(3)39,(3)(3),f g f g ====<故(3)(3)9h g ==,故选 B.7.【解析】选B 垂直于同一个平面的两条直线互相平行。
8.【解析】选D 椭圆的右焦点为F (2,0)4,22==∴p p即 9.【解析】选C21,0131165112222-=-=∴=+++++=++-a a a a a a a a 或得10.【解析】选A , 由题可知()11x f x e =->-,22()43(2)11g x x x x =-+-=--+≤,若有()(),f a g b =则()(1,1]g b ∈-,即2431b b -+->-,解得22b < 二、填空题11.64 12. ①③ 13. 4 14.21511.【解析】由图可知甲得分的中位数为36,乙得分中位数为28,故和为64.12.【解析】②两条异面直线可以平行于同一个平面; ③若b a b //,则α⊥,这与a,b 为异面直线矛盾;④两条异面直线在同一个面内的射影可以是:两条平行直线、两条相交直线、一点一直线.13.【解析】数形结合作出函数x x y 42-=的图像,再作出y=a 的图像观察即得.14.【解析】化极坐标方程为直角坐标22=y 及A )2,2(-,再数形结合可得.15.【解析】先用切割线定理求出BC 的长度,然后距离d ==三、解答题16.解:(1) 函数()sin cos f x m x x =+()x R ∈的图象经过点π2⎛⎫ ⎪⎝⎭,1sincos122m ππ∴+= ,1m ∴= …………………….2分()sin cos )4f x x x x π∴=+=+ …………………….3分∴函数的最小正周期2T π= ……………………4分(2)()))4442f ππππαααα+=++=+==………6分 3cos 5α∴=又因为(0,)2πα∈4sin 5α∴==…………………………………………………………9分(2))2cos 444f πππααααα∴-=-+===………12分17.解:(1)由样本数据知,30件产品中,一等品有6件,二等品有9件,三等品有15件. ……………………3分 ∴样本中一等品的频率为60.230=,故估计该厂生产的产品的一等品率为0.2, ……4分 二等品的频率为90.330=,故估计该厂产品的二等品率为0.3, ……………………5分 三等品的频率为150.530=,故估计该厂产品的三等品率为0.5.………………………6分 (2)样本中一等品有6件,其中等级系数为7的有3件,等级系数为8的有3件,…7分 记等级系数为7的3件产品分别为1C 、2C 、3C ,等级系数为8的3件产品分别为1P 、2P 、3P ,则从样本的一等品中随机抽取2件的所有可能为:)(21,C C ,)(31,C C ,)(11,P C ,)(21,P C ,)(31,P C ,)(32,C C ,)(12,P C , )(22,P C ,)(32,P C ,)(13,P C ,)(23,P C ,)(33,P C ,12(,),P P )(31,P P )(32,P P , 共15种, …………10分 记从“一等品中随机抽取2件,2件等级系数都是8”为事件A , 则A 包含的基本事件有 12(,),P P 1323(,),(,)P P P P 共3种, ………11分 故所求的概率31()155P A ==. ……………………12分 18. 解:(1)证明: 连接1B C ,设1B C 与1BC 相交于点O ,连接OD ,…… 1分 ∵ 四边形11BCC B 是平行四边形,∴点O 为1B C 的中点. …… 3分∵D 为AC 的中点,∴OD 为△1AB C 的中位线, ∴ 1//OD AB .∵OD ⊂平面1BCD ,1⊄AB 平面1BC D ,∴1//AB 平面1BC D . …… 7分 (2)∵三棱柱111-ABC A B C ,∴侧棱11CC AA , 又∵1AA ⊥底面ABC ∴侧棱1CC ABC ⊥面,故1CC 为三棱锥1C BCD -的高,112A A CC ==,…… 10分11132222BCD ABC S S BC AB ∆∆⎛⎫=== ⎪⎝⎭ …… 12分 11111321332D BCC C BCD BCD V V CC S --∆∴===⋅⋅=g …… 14分19. 解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线垂足为N ,由题意知: MF MN = ………………2分 即动点M 到定点F 与到定直线1x =-的距离相等,C 1BA由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴动圆圆心的轨迹方程为x y 42= …………5分(2)若直线l 的斜率不存在,则与抛物线C 相切,只有一个交点,不合题意;若直线l 的斜率为0,则与抛物线C 相交,只有一个交点,不合题意;………………………………………………6分 故设直线l 的方程为1(0)y kx k =+≠由214y kx y x=+⎧⎨=⎩得2440ky y -+= ………8分 ∆16160k =->, 1k ∴<且0k ≠………9分设),(11y x P ,),(22y x Q ,则124y y k =,2212122116y y x x k==…11分 由0OP OQ ⋅=,即 ()11,OP x y = ,()22,OQ x y = ,于是12120x x y y +=,…12分 即2410k k +=,解得114k =-< …………13分 ∴ 直线l 存在,其方程为114y x =-+即440x y +-= ………………14分 20.解:(1)∵3a ,5a 是方程045142=+-x x 的两根,且数列}{n a 的公差d >0,∴3a =5,5a =9,公差.23535=--=a a d ∴.12)5(5-=-+=n d n a a n ………3分又当n =1时,有11112b b S -==113b ∴=当).2(31),(21,2111≥=∴-=-=≥---n b b b b S S b n n n n n n n n 有时 ∴数列{n b }是首项113b =,公比13q =等比数列, ∴111.3n n nb b q-==…………6分 (2)由(1)知112121,,33n n n n n n n n c a b c ++-+=== …………8分∴11121214(1)0.333n n n n n n n n c c ++++---=-=≤ ∴.1n n c c ≤+ …………………………10分(3)213n n n n n c a b -==,设数列{}n c 的前n 项和为n T , 12313521 (3333)n n n T -=++++ (1) 13n T ∴=23411352321 (33333)n n n n +--+++++ (2) ………………12分 (1)(2)-得:2312122221.....333333n n n n T +-=++++-=2311111212(.....)33333n n n +-++++- 化简得:113n n n T +=- ………………………14分 21.解:(1)∵()f x 是定义域为R 的奇函数,∴00(0)(1)1(1)0f a k a k =--=--=…… 1分∴2k =…… 2分(2)()(01)x x f x a a a a -=->≠且10,1,0,01,0)1(<<∴≠><-∴<a a a aa f 且又 ,……3分 而x y a =在R 上单调递减,x y a -=在R 上单调递增,故判断()x x f x a a -=-在R 上单调递减,……4分不等式化为2()(4)f x tx f x +<-,24x tx x ∴+>-,2(1)40x t x ∴+-+>恒成立,2(1)16t ∴∆=--,解得35t -<<……8分 (3)Q 3(1)2f =,132a a ∴-=,即22320a a --=, 2a ∴=或12a =-(舍去)……9分 222()222(22)(22)2(22)2x x x x x x x x g x m m ----∴=+--=---+ 令()22x x t f x -==-,由(1)可知()22x x f x -=-为增函数,1x ≥Q ,3(1)2t f ∴≥=……11分令222()22()2h t t mt t m m =-+=-+- (32t ≥)………12分 若32m ≥,当t m =时,2min ()222h t m m =-=-∴=………… 13分 若32m <,当32t =时,min 17253()324122h t m m =-=-∴=>舍去 综上可知2m =…14分。