高三文科数学11月考试题
高三(十一月)联考数学试题 (文科答案)
数学试题(文科)答案题号 1 2 3 4 5 6 7 8 910 11 12 答案 C D AB AC B DB A D C13. 2 14. a<c<b 15. 54- 16. 23 17、解:(1)()sin cos()cos sin()44y f x x x x x ππ==+++ =sin(2)4x π+T π∴=(2)02x π≤≤ 52444x πππ∴≤+≤sin(2)124x π∴-≤+≤ 故当2x π=时min()2f x =-,当8x π=时,max ()1f x = 18、解:(1)82n na =(2)0(2,)(21,)n nn k k N b a n k k N ++=∈⎧=⎨=-∈⎩12342221n n b b b b b b --∴++++++1321n a a a -=+++141()4114n ⎡⎤-⎢⎥⎣⎦=-161161()343n ⎡⎤=-<⎢⎥⎣⎦19、(1)1tan cos B B ⇒=sin B ⇒=⇒在锐角∆中:23B = (2)原式00sin 70150⎡⎤=⎣⎦1=-20、解:在甲中:连OM ,设(0,)2MOA πθ∠=∈则S 矩200sin 2200θ=≤∴当(0,)42ππθ=∈时 S 矩/max=2200cm 在乙中:连MO ,设2(0,)3MOA α∠=∈∴在OMC ∆中:000sin sin120sin 120)MC MC OM OC OC ααπαα⎧=⎪⎪==⇒⎨⎡⎤--⎪⎣⎦=-⎪⎩又在OCD ∆中,040sin(60)CD α==-∴'S矩01cos(260)2CD MC α⎤=⋅=--⎥⎦ ∴当0030(0,60)α=∈,'S 矩/max2= 'S 矩/max >S 矩/max∴选乙这种方案,且矩形面积最大值为2=21、解:①3()f x x ax =- 2'()3f x x a ∴=-又()f x 在[)1,+∞↑'()0f x ∴≥对[)1,x ∈+∞恒成立即23a x ≤ 3a ∴≤ 又o a < 03a ∴<≤而5()g a a a =+≥当5a a=,即(]0,3a =时,()/min g a = ②设0()f x u =,则0()f u x = 3220000030()(1)x ax ux u x x u u a u au x ⎧-=∴⇒-+++-⎨-=⎩01,1x u ≥≥ 且03a <≤ 220010x x u u a ∴+++->00x u -= 即0x u = 故00()f x x =补注:①可用定义法 ②可用反证法 22、解:(1)()f x 为R 上奇函数,且在R ↑ (2)由(cos 23)(42cos )0f f m m θθ-+->cos232cos 4m m θθ⇒->-,对0,2πθ⎡⎤∈⎢⎥⎣⎦恒成立方法1:2coscos 220m m θθ⇒-+->设cos t θ= 则由0,2πθ⎡⎤∈⎢⎥⎣⎦,设01t ≤≤[]0,1t ∈ 2()22g t t mt m ∴=-+-22()2224m m t m =--+-讨论:(1)、当0(0):22012mg m m <⇒->⇒>矛盾(2)、当012m≤≤时,2()2204224m m g m m =-+->⇒-<≤ (3)、当12m>时,(1)102g m m =->⇒>故由01、02、03有4m >-法2:22cos 24(2cos )2cos 2cos m θθθθ-⎡⎤⇒>=--+⎢⎥--⎣⎦4m ⇒>-。
高三数学11月月考试题 文 3
卜人入州八九几市潮王学校2021届11月考试高三数学文科试题本套试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部。
第一卷1至2页,第二卷3-4页。
试卷总分值是150分。
考试时间是是120分钟。
第I 卷〔选择题,一共60分〕一、选择题:〔本大题一一共12小题,每一小题5分,总分值是60分〕1.集合2{03},{9}P x Z x M x Z x =∈≤<=∈≤,那么PM=〔〕(A){1,2}(B){0,1,2}(C){1,2,3}(D){0,1,2,3}2.“x >0”是“32x >0”成立的()(A)充分非必要条件〔B 〕必要非充分条件(C)非充分非必要条件〔D 〕充要条件3.下面是关于复数21z i =-+12:p z =,222:p z i =,3:p z 的一共轭复数为1i +,4:p z 的虚部为1-.〕〔A 〕23,p p 〔B 〕24,p p 〔C 〕12,p p 〔D 〕34,p p()f x 是R 上周期为5的奇函数,且满足()()11,22f f ==,那么2314()()f f +-=〔〕(A)-1(B)1 (C)-2(D)25.一个四棱锥的侧棱长都相等,底面是正方形,其正〔主〕 视图如下列图,该四棱锥侧面积和体积分别是〔〕(A)45,8(B)845,3〔C 〕84(51),3+(D)8,8221,1,(), 1.x x f x x ax x ⎧+<⎪=⎨+≥⎪⎩假设((0))f f =4a ,那么实数a =〔〕〔A 〕12〔B 〕45(C)2(D)97.a >0,函数2()f x ax bx c =++,假设0x 满足关于x 的方程2ax+b=0〕8.设不等式组0303x y ≤≤⎧⎪⎨≤≤⎪⎩表示的平面区域为D.在区域D 内随机取一个点,那么此点到坐标原点的间隔大于2的概率是()〔A 〕9π〔B 〕99π-〔C 〕6π〔D 〕33π-9.过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线10ax y -+=垂直,那么a =〔A 〕12-〔B 〕1〔C 〕2〔D 〕12()10.假设函数f(x)=212log ,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,假设f(a)>f(-a),那么实数a 的取值范围是()〔A 〕〔-1,0〕∪〔1,+∞〕〔B 〕〔-∞,-1〕∪〔0,1〕 〔C 〕〔-1,0〕∪〔0,1〕〔D 〕〔-∞,-1〕∪〔1,+∞〕11.假设存在x ∈[﹣2,3],使不等式4x ﹣x2≥a 成立,那么实数a 的取值范围是〔〕 〔A 〕[﹣8,+∞〕〔B 〕[3,+∞〕〔C 〕〔﹣∞,﹣12]〔D 〕〔﹣∞,4] 12.向量a ,b 满足||3a =,||1b =,且对任意实数x ,不等式||||a xb a b +≥+恒成立,设a 与b 的夹角为θ,那么tan 2θ=〔〕〔A〔B〕〔C〕〔D〕-第二卷〔非选择题一共90分〕二、填空题:〔本大题一一共4小题,每一小题5分,总分值是20分〕13.设1e ,2e 1e 、2e 的夹角为3π,假设12a e 3e =+,1b 2e =,那么向 量a 在b 方向上的射影为________.14.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,假设从这10个数中 随机抽取一个数,那么它小于8的概率是.15.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x 〔单位:千元〕与月储蓄i y 〔单位:千元〕的数据资料,算得10180ii x==∑,10120ii y==∑,101184i ii x y==∑,1021720ii x==∑.那么家庭的月储蓄y 对月收入x 的线性回归方程为.〔附:线性回归方程y bx a =+中,1221ni ii n i i x ynx yb x nx==-=-∑∑,a y bx =-,其中x ,y 为样本平均值,线性回归方程也可写为y bx a =+.〕16.函数1202sin()()y xπϕϕ=+>的局部图象如右图所示,设P 是图象的最高点,,A B 是图象与x 轴的交点,那么cos APB∠=三、解答题:〔本大题一一共6小题,总分值是70分〕 17.〔此题总分值是10分〕在△ABC 中,内角A,B,C 的对边分别是a,b,c,且bc.〔Ⅰ〕求A ;〔Ⅱ〕设,S 为△ABC 的面积,求S+3cosBcosC 的最大值,并指出此时B 的值. 18.〔此题总分值是12分〕在公差为d 的等差数列{an}中,a1=10,且123225,,a a a +成等比数列.(1)求,nd a ;(2)假设0d<,求123na a a a ++++.19.〔此题总分值是12分〕某校100名学生期中考试语文成绩频率分布直方图如下列图,期中成绩分组区间是:〔1〕求图中a的值;〔2〕根据频率分布直方图,估计这100名学生语文成绩的平均分;〔3〕假设这100名学生语文成绩某些分数段的人数()x与数学成绩相应分数段的人数()y之比方下表所示,求数学成绩在[)5090,之外的人数.20.〔此题总分值是12分〕如图①,在边长为1的等边∆ABC中,,D E分别是,AB AC边上的点,AD AE=,F是BC的中点,AF与DE交于点G,将ABF∆沿AF折起,得到如图②所示的三棱锥A BCF-,其中22BC =.(1)证明:DE//平面BCF;①(2)证明:CF⊥平面ABF;(3)当23AD=时,求三棱锥F DEG-的体积F DEGV-.21.〔此题总分值是12分〕函数f(x)=x2+xsinx+cosx.②〔1〕假设曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值。
四川省成都九中2023届高三2022-2023学年上学期11月阶月考数学(文)试卷
树德中学高2020级高三上学期11月阶段性测试数学(文科)试题命题人:邓连康 审题人:张彬政、常勇、陈杰一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合{}2|560A x x x =-+>,|01x B x x ⎧⎫=<⎨⎬-⎩⎭,则A B ⋂=( ) ().0,1A ().,1B -∞ ().1,2C ().2,3D2.复数z 满足()12i z i -=,则z =( ).1A i -- .1B i -+ .1C i - .1D i +3.ABC 中,点D 满足:3BD DA =,则CB =( ).34A CA CD + .34B CA CD - .34C CA CD -+ .34D CA CD --4.若连续抛掷两次质地均匀的骰子,得到的点数分别为m ,n ,则满足2225m n +<的概率是( )1.2A 5.12B 13.36C 4.9D 5.函数2||()2ln x f x x =+的图象大致为( ) A .B .C .D .6.已知函数()34f x =x x -,()f x 定义域为R ,()2cos 6g x =x π⎛⎫+ ⎪⎝⎭,()g x 定义域为()0,π,()g x 在()()00,x g x 处的切线斜率与()f x 在()()1,1f 处的切线斜率相等,则0x =( ).0A .6B π .2C π2.3D π7.直线1y kx =-与圆22:(3)(3)36C x y ++-=相交于A ,B 两点,则AB 的最小值为( ).6AB .12C .16D8.数列{}n a 及其前n 项和为n S 满足:11a =,当2n ≥时,111n n n a a n -+=-,则12320231111a a a a +++=( )2021.1011A 4044.2023B 2023.1012C 4048.2025D 9.已知函数()2sin 1xxf x e e x -=--+,则关于t 的不等式()()212f t f t +-≤的解集为( )1.,3A ⎛⎤-∞ ⎥⎝⎦2.,3B ⎛⎤-∞ ⎥⎝⎦ 1.,3C ⎡⎫+∞⎪⎢⎣⎭ 2.,3D ⎡⎫+∞⎪⎢⎣⎭10.已知函数()()sin 03f x x πωω⎛⎫=+> ⎪⎝⎭,在(),0π-上恰有3条对称轴,3个对称中心,则ω的取值范围是( )0.17163A ⎛⎤ ⎥⎝⎦, 0.17163B ⎡⎫⎪⎢⎣⎭, 6.711,3C ⎡⎫⎪⎢⎣⎭ 6.7113D ⎛⎤ ⎥⎝⎦, 11.正方体1111ABCD A B C D -,4AB =,定点,M N 在线段AB 上,满足2MA NB ==P 在平面11ABB A 内运动(P 正方形11ABB A 内,不含边界),且4PM PN +=,当三棱锥 P ABC -体积取得最大值时,三棱锥 P ABC -外接球的表面积为( ).40A π .41B π .42C π .43D π12.双曲线()2222:10,0x y C a b a b -=>>的左右焦点分别为12,F F ,离心率为2,过1F 斜率为3的直线交双曲线于,A B ,则2cos AF B ∠=( )1.5A 3.5B 1.8C 3.8D 二、填空题(本大题共4小题,每小题5分,共20分) 13.已知等比数列{}n a 的公比1q ≠,3a ,434a ,512a 成等差数列,则公比q = . 14.实数,x y 满足:300330x y x y x y --≤⎧⎪+≥⎨⎪+-≤⎩,则12x y +的最大值是 .15.已知函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,下列说法中正确的有 (写出相应的编号) ①:将()f x 图象向左平移12π个单位长度,得到的新函数为奇函数 ②:函数()f x 在,63x ππ⎡⎤∈-⎢⎥⎣⎦上的值域为1,22⎡⎤-⎢⎥⎣⎦③:函数()f x 在2,33x ππ⎡⎤∈⎢⎥⎣⎦上单调递减④:0,3x π⎡⎤∈⎢⎥⎣⎦,关于x 的方程()f x m =有两个不等实根,则)2m ∈16.已知曲线xy e =在点11(,)x x e处的切线与曲线ln y x =在点22(,ln )x x 处的切线相同,则12(1)(1)x x +-= .三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤。
2021年高三11月月考数学试题(文理合卷有解析)
2021年高三11月月考数学试题(文理合卷有解析)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|∈R|x<5-|,B={1,2,3,4},则(A)∩B等于( )A.{1,2,3,4}B.{2,3,4}C.{3,4}D.{4}2. 设抛物线的顶点在原点,其焦点F在y轴上,又抛物线上的点P(k,-2)与点F的距离为4,则k等于 ( )A.4 B.4或-4C.-2 D.-2或23.已知点M(a,b)与N关于x轴对称,点P与点N关于y轴对称,点Q与点P关于直线x+y=0对称,则点Q 的坐标为( ) A.(a,b) B.(b,a) C.(-a,-b) D.(-b,-a)4.如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )A .-13 B .-3C.13D .3 5.(理) 若函数f(x)是定义在R 上的偶函数,在(-∞,0]上是减函数,且f(2)=0,则使得f(x)<0的x 的取值范围是( )A.(-∞,2)B.(2,+∞)C.(-∞-2)∪(2,+∞)D.(-2,2)(文).已知函数f(x)=ax 2+bx+c(a ≠0)是偶函数,那么g(x)=ax 3+bx 2+cx 是( ) A.奇函数 B.偶函数C.既奇且偶函数D.非奇非偶函数6.若函数f(x)的反函数为f -1(x)=2x+1,则f(1)的值为( ) A.4 B.-4 C.1 D.-17. θ是任意实数,则方程x 2+y 2cos θ=4的曲线不可能是( ) A .椭圆 B .双曲线 C .抛物线 D .圆8. 已知正整数a 、b 满足4a +b =30,则使得1a +1b 取得最小值的有序数对(a ,b )是( )A .(5,10)B .(6,6)C .(7,2)D .(10,5)9. 过椭圆x 2a 2+y 2b2=1(0<b <a )中心的直线与椭圆交于A 、B 两点,右焦点为F 2(c,0),则△ABF 2的最大面积是( )A .abB .acC .bcD .b 210. (理)已知{a n }是递增的数列,且对于任意n ∈N *,都有a n =n 2+λn 成立,则实数λ的取值范围是( )A.λ>0B.λ<0C.λ=0D.λ>-3(文)已知数列{a n }满足a n+2=-a n (n ∈N *),且a 1=1,a 2=2,则该数列前2 002项的和为( ) A.0 B.-3 C.3 D.111. (理)已知tan α和tan(-α)是方程ax 2+bx+c=0的两个根,则a 、b 、c 的关系是( )A.b=a+cB.2b=a+cC.c=b+aD.c=ab(文)已知f(x)=3sin(x+),则下列不等式中正确的是( )A.f(1)<f(2)<f(3)B.f(2)<f(1)<f(3)C.f(2)<f(3)<f(1)D.f(3)<f(2)<f(1)12.(理)已知向量|a|=1,|b|=2,c=a+b,c⊥a,则a与b的夹角大小为( )A. B.C. D.(文)已知向量a=(3,4),b=(sinα,cosα),且a∥b,则tanα等于( )A. B.-C. D.-第Ⅱ卷(非选择题共90分)二、填空题:(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上.)13.在△ABC中,已知(a+b+c)(b+c-a)=3bc,则∠A=_________________________.14. 如果双曲线-=1上一点P到它的右焦点的距离是8,那么P到它的右准线的距离是15.若不等式|3x-b|<4的解集中的整数有且仅有1,2,3,则b的取值范围为________.16.点(-2,t)在直线2x-3y+6=0的上方,则t的取值范围是_____________.三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)已知集合A=B=(1)当m=3时,求A(R B);(2)若AB ,求实数m的值.18.(本小题满分12分)已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.(1)求实数m的取值范围;(2)求该圆半径r的取值范围;(3)求圆心的轨迹方程.19.(本小题满分12分)已知向量:a=(2sin x,2 sin x),b=(sin x,cos x).为常数)(理, 文)(1)若,求的最小正周期;(理, 文)(2)若在[上最大值与最小值之和为5,求t的值;(理)(3)在(2)条件下先按平移后(︱︱最小)再经过伸缩变换后得到求.20.(本小题满分12分)已知函数满足且对于任意, 恒有成立.(1)求实数的值;(2)解不等式.21.(本小题满分12分)在数列中,,当时,其前项和满足.(理, 文)(1)求;(理, 文)(2)设,求数列的前项和.(理)(3)求;22.(本小题满分12分)已知点分别是椭圆长轴的左、右端点,点是椭圆的右焦点.点在椭圆上,且位于轴的上方,.(1)求点的坐标;(2)设椭圆长轴上的一点, 到直线的距离等于,求椭圆上的点到点的距离的最小值.六盘水市第二中学xx届11月月考数学试题(文理合卷)时间:120分钟分值:150分(祝考生考试成功)第Ⅰ卷(选择题 共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|∈R|x<5-|,B={1,2,3,4},则(A)∩B 等于( ) A.{1,2,3,4} B.{2,3,4} C.{3,4} D.{4}解析: A={x∈R |x≥5-},而5-∈(3,4),∴(A)∩B={4}.答案:D2. 设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点P (k ,-2)与点F 的距离为4,则k 等于( )A .4B .4或-4C .-2D .-2或2 答案 B解析 由题意可设抛物线的方程为x 2=-2py (p >0).则抛物线的准线方程为y =p2,由抛物线的定义知|PF |=p 2-(-2)=p2+2=4,所以p =4,抛物线方程为x 2=-8y ,将y =-2代入,得x 2=16,∴k =x =±4.3.已知点M(a,b)与N 关于x 轴对称,点P 与点N 关于y 轴对称,点Q 与点P 关 于直线x+y=0对称,则点Q 的坐标为( )A.(a,b)B.(b,a)C.(-a,-b)D.(-b,-a) 解析:N(a,-b),P(-a,-b),则Q(b,a)答案:B4.如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )A .-13B .-3 C.13D .3解析:设直线方程为y =kx +b ,由向左平移三个单位,向上平移1个单位,可得直线方程y =k (x +3)+b +1=kx +b +3k +1.由两直线重合即有3k +1=0⇒k =-13.答案:A5.(理) 若函数f(x)是定义在R 上的偶函数,在(-∞,0]上是减函数,且f(2)=0,则使得f(x)<0的x 的取值范围是( )A.(-∞,2)B.(2,+∞)C.(-∞-2)∪(2,+∞)D.(-2,2) 解析:由图象法可解,由函数的性质可画出其图象如图所示. 显然f(x)<0的解集为{x|-2<x<2},故选D.答案:D(文).已知函数f(x)=ax 2+bx+c(a ≠0)是偶函数,那么g(x)=ax 3+bx 2+cx 是( ) A.奇函数 B.偶函数 C.既奇且偶函数 D.非奇非偶函数解析:由f(x)为偶函数,知b=0,有g(x)=ax 3+cx(a ≠0)为奇函数.答案:A6.若函数f(x)的反函数为f -1(x)=2x+1,则f(1)的值为( ) A.4 B.-4 C.1 D.-1解析:令2x+1=1x=-1,∴f(1)=-1.故选D.答案:D7. θ是任意实数,则方程x 2+y 2cos θ=4的曲线不可能是( )A .椭圆B .双曲线C .抛物线D .圆 答案 C 解析 由于没有x 或y 的一次项,方程不可能是抛物线,故选C.8. 已知正整数a 、b 满足4a +b =30,则使得1a +1b取得最小值的有序数对(a ,b )是( )A .(5,10)B .(6,6)C .(7,2)D .(10,5)答案:A解析:依题意得1a +1b =130⎝⎛⎭⎫1a +1b (4a +b )=130(4+b a +4a b +1)≥310,当且仅当b a =4ab时取最小值,即b =2a ,再由4a +b =30,解得⎩⎪⎨⎪⎧a =5b =10.9. 过椭圆x 2a 2+y 2b2=1(0<b <a )中心的直线与椭圆交于A 、B 两点,右焦点为F 2(c,0),则△ABF 2的最大面积是( )A .abB .acC .bcD .b 2 答案 C 解析 S △ABF 2=S △OAF 2+S △OBF 2 =12c ·|y 1|+12c ·|y 2|(y 1、y 2分别为A 、B 两点的纵坐标),∴S △ABF 2=12c |y 1-y 2|≤12c ·2b =bc . 10. (理)已知{a n }是递增的数列,且对于任意n ∈N *,都有a n =n 2+λn 成立,则实数λ的取值范围是( )A.λ>0B.λ<0C.λ=0D.λ>-3 解析:由题意知a n <a n+1恒成立,即2n+1+λ>0恒成立,得λ>-3.答案:D(文)已知数列{a n }满足a n+2=-a n (n ∈N *),且a 1=1,a 2=2,则该数列前2 002项的和为( ) A.0 B.-3 C.3 D.1 解析:由题意,我们发现:a 1=1,a 2=2,a 3=-a 1=-1,a 4=-a 2=-2,a 5=-a 3=1,a 6=-a 4=2,…,a 2 001=-a 1 999=1,a 2 002=-a 2 000=2,a 1+a 2 +a 3+a 4=0.∴a 1+a 2+a 3+…+a 2 002=a xx +a 2 002=a 1+a 2=1+2=3.答案:C11. (理)已知tan α和tan(-α)是方程ax 2+bx+c=0的两个根,则a 、b 、c 的关系是( ) A.b=a+c B.2b=a+c C.c=b+a D.c=ab 解析: ∴tan==1. ∴-=1-,-b=a-c.∴c=a+b.答案:C(文)已知f(x)=3sin(x+),则下列不等式中正确的是( ) A.f(1)<f(2)<f(3) B.f(2)<f(1)<f(3) C.f(2)<f(3)<f(1) D.f(3)<f(2)<f(1) 解析:f(x)=3sin(x+),则f(1)=3sin(+)=,f(2)=3sin(π+)=-,f(3)=-3cos=-,∴f(1)>f(3)>f(2),故选C.答案:C 12. (理)已知向量|a|=1,|b|=2,c=a+b,c ⊥a,则a 与b 的夹角大小为( ) A. B. C. D.解析:c ⊥a,则c ·a=0,即(a+b)·a=0,即a 2=-a ·b.∴a ·b=-a 2=-1,即|a||b|cos θ=-1.∴cos θ=-=-.∴θ=. 答案:D(文)已知向量a=(3,4),b=(sin α,cos α),且a ∥b,则tan α等于( ) A. B.- C. D.- 解析:由a ∥b,∴3cos α=4sin α.∴tan α=.答案:A第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上.) 13. 在△ABC 中,已知(a+b+c)(b+c-a)=3bc,则∠A=_________________________. 解析:由已知得(b+c)2-a 2=3bc,∴b 2+c 2-a 2=bc.∴=.∴∠A=.答案:14. 如果双曲线-=1上一点P 到它的右焦点的距离是8,那么P 到它的右准线的距离是 解析:利用双曲线的第二定义知P 到右准线的距离为=8×=.15.若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为________.解析:不等式|3x -b |<4⇒-4<3x -b <4⇒b -43<x <b +43,若不等式的整数解只有1,2,3,则b 应满足0≤b -43<1且3<b +43≤4,即4≤b <7且5<b ≤8,即5<b <7.答案:(5,7)16.点(-2,t )在直线2x-3y+6=0的上方,则t 的取值范围是_____________.解析:(-2,t )在2x-3y+6=0的上方,则2×(-2)-3t+6<0,解得t >. 答案:t >三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)已知集合A=B=(1)当m=3时,求A(R B); (2)若AB ,求实数m 的值. 解 由得∴-1<x ≤5,∴A=. 2分 (1)当m=3时,B=, 3分 则R B=, 4分 ∴A (R B )=. 6分(2)∵A=∴有42-2×4-m=0,解得m=8. 8分 此时B=,符合题意, 9分故实数m 的值为8. 10分18.(本小题满分12分)已知方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示一个圆. (1)求实数m 的取值范围; (2)求该圆半径r 的取值范围; (3)求圆心的轨迹方程.解析:(1)将圆方程配方得,[x -(m +3)]2+[y -(4m 2-1)]2=-7m 2+6m +1,由-7m 2+6m +1>0,得m 的取值范围是-17<m <1. 4分(2)由于r =-7⎝⎛⎭⎫m -372+167≤477,∴0<r ≤477. 8分 (3)设圆心为(x ,y ),则⎩⎪⎨⎪⎧x =m +3,y =4m 2-1,消m ,得y =4(x -3)2-1,由于-17<m <1,∴207<x <4.故所求的轨迹方程为y =4(x -3)2-1⎝⎛⎭⎫207<x <4. 12分 19.(本小题满分12分)已知向量:a =(2sin x,2 sin x ),b =(sin x ,cos x ).为常数) (理, 文)(1)若,求的最小正周期; (理, 文)(2)若在[上最大值与最小值之和为5,求t 的值; (理)(3)在(2)条件下先按平移后(︱︱最小)再经过伸缩变换后得到求. 解:t x t x x x f +-=-++-=)62sin(212sin 32cos 1)(π2分3分(1)最小正周期 4分6分 (2)]6,65[62]3,32[2]6,3[πππππππ-∈-⇒-∈⇒-∈x x x 5分8分6分10分即 8分12分(3) 10分12分 20.(本小题满分12分)已知函数满足且对于任意, 恒有成立.(1)求实数的值; (2)解不等式. 解:(1) 由知, …① 1分∴…② 2分 又恒成立, 有恒成立,故. 4分 将①式代入上式得:,即故. 6分 即, 代入② 得,. 7分 (2)即∴ 9分解得: , 11分 ∴不等式的解集为. 12分 21.(本小题满分12分) 在数列中,,当时,其前项和满足. (理, 文)(1)求; (理, 文)(2)设,求数列的前项和. (理)(3)求;解:(1)当时,,∴22111111()()222n n n n n n n n n S S S S S S S S S ---=--=--+, 1分2分∴,∴,即数列为等差数列, 2分3分,∴,∴, 4分6分 (2)=, 6分9分 ∴111111[(1)()()]23352121n T n n =-+-++--+。
广西桂林中学届高三月月考试题 数学文
桂林中学11月考数学文科试题命题人:曹海平 审题人:周小英(考试时间:9:00-—--—11:00)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}{}()===B A C U,则,,2,31A ,2,3,4,51U ( )A .{3}B .{5}C .{1,2,4,5}D .{1,2,3,4}2.已知a R ∈,则“2a >"是“22a a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件3.已知数列{a n }满足a 1 =0,n a an n 21+=+,那么2011a 的值是()A .2009×2010B .20112C .2010×2011D .2011×20124.已知等比数列{}na 中有31174a aa =,数列{}nb 是等差数列,且77a b =,则59b b +=( )A .2B .4C.8D .165.已知集合21{|216},0,3x A x x B xx⎧+⎫=-<=≤⎨⎬-⎩⎭则=B C A R( )A .517,3,222⎛⎤⎛⎫-- ⎪⎥⎝⎦⎝⎭B .517,3,222⎛⎫⎡⎫-- ⎪⎪⎢⎝⎭⎣⎭ C .1,32⎛⎤- ⎥⎝⎦D .1,32⎛⎫- ⎪⎝⎭6.设函数()6)(-=x x x f ,若()f x 在0x =处的切线斜率为( )A .0B .1-C .3D .6-7.已知322log 2,log 3,log 5a b c ===,下面不等式成立的是( )A .a b c <<B .a c b <<C .b a c <<D .b c a <<8.函数211y x x =++的最大值是 ( )A .45B .54C .34D .439.已知命题p :关于x 的函数234y xax =-+在[1,+∞)上是增函数,命题q :关于x 的函数(21)xy a =-在R 上为减函数,若p 且q 为真命题,则a 的取值范围是 ( )A .23a ≤B .102a << C .1223a <≤ D .112a <<10.设函数()2f x x x a =++-的图象关于直线2x =对称,则a 的值为( )A .6B .4C .2D .2- 11.函数12()1log ()2xf x xg x -=+=与在同一直角坐标系下的图象大致是( ) 12.设曲线1(*)n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则201012010220102009log log ......log x x x +++的值为( ) A .2010log 2009-B .1-C .()2010log20091-( D .1第Ⅱ卷二、填空题:(本大题共4小题;每小题5分,满分20分) 13.函数3)4lg(--=x x y 的定义域是 .14.记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =_____________15.设{na }为公比q 〉1的等比数列,若2008a 和2009a 是方程24830xx -+=的两根,则20102011aa +=__________。
高三(上)11月月考数学(文科)试卷(含答案与解析)
的中点,若=+(,OP xOA yOB x y∈12131312满足120PF PF=,若()f x ()()f x k f x +>E PB AE22x y131>++1ln n(Ⅰ)求满足条件的实数t 集合T ;(Ⅱ)若11m n >>,,且对于t T ∀∈,不等式33log log m n t ≥恒成立,试求m n +的最小值.1cos 1cos 3sin sin 222A B BA +++=sin sin cos cos sinB A B A B A +++sin sin()3sin A A BC +++=BC PC C =,1133226ABC EF =⨯20为直径的圆经过坐标原点,所以0OP OQ =,即23)0m =﹣, 2224(3)34m k -+212+43x y y +2234(3)434m k-+212)4x x -+10x x <<,2(1()1t -=++5,,n ,11111+++1ln 1223(1)n n n n++>=-⨯⨯-,111ln n ++>1>,得证.33log m nt ≥恒成立,33max log m nt ≥,33log 1m n≥,11n >>,n33(log log m n ≤2)4mn ≥,高三(上)11月月考数学(文科)试卷解析1.【分析】首先确定集合A,由此得到log2k>4,由此求得k的取值范围.【解答】解:∵集合A={x∈N|1<x<log2k},集合A中至少有3个元素,∴A={2,3,4},∴log2k>4,∴k>16.2.【分析】利用复数代数形式的乘除运算化简,求出原复数的共轭复数得答案.【解答】解:∵=,∴复数的共轭复数为﹣i,虚部为﹣1.3.【分析】利用特称命题的否定是全称命题写出结果即可.【解答】解:f(x)=x﹣sinx,x∈(0,),f′(x)=1﹣cosx>0,∴f(x)是(0,)上是增函数,∵f(0)=0,∴f(x)>0,∴命题p:∃x∈(0,),f(x)<0是假命题,¬p:∀x∈(0,),f(x)≥0,4.【分析】设出塔顶灯的盏数,由题意可知灯的盏数自上而下构成等比数列,且公比为2,然后由等比数列的前7项和等于381列式计算即可.【解答】解:由题意设塔顶有a盏灯,由题意由上往下数第n层就有2n﹣1•a盏灯,∴共有(1+2+4+8+16+32+64)a=381盏灯,即.解得:a=3.5.【分析】由条件利用正弦函数的周期性、单调性、以及图象的对称性,y=Asin(ωx+φ)的图象变换规律,得出结论【解答】解:根据函数f(x)=sin(2x﹣)的周期为=π,可得A错误;在区间(﹣,)上,2x﹣∈(﹣,),故f(x)没有单调性,故B错误;把函数g(x)=sin2x的图象向右平移个单位,可得y=sin(2x﹣)的图象,故C错误;令x=,可得f(x)=sin(2x﹣)=0,图象C关于点(,0)对称,故D正确,6.【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=b=2时不满足条件a≠b,输出a的值为2.【解答】解:模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.7.【分析】作出两平面区域,计算两区域的公共面积,得出芝麻落在区域Γ内的概率.【解答】解:作出平面区域Ω如图:则区域Ω的面积为S△ABC==.区域Γ表示以D()为圆心,以为半径的圆,则区域Ω和Γ的公共面积为S′=+=.∴芝麻落入区域Γ的概率为=.∴落在区域Γ中芝麻数约为360×=30π+20≈114.8.【分析】设扇形的中心角弧度数为α,半径为r,可得2r+αr=4,α=,因此S=αr2=(2﹣r)r,再利用基本不等式的性质即可得出.则2r+αr=4,∴α=,∴S=αr2=××r2=(2﹣r)r≤()2=1,.【分析】配方可得2cos2(x+y﹣1)==(x﹣y+1)+x﹣y+1,由基本不等式可得(x﹣y+1)+x﹣y+1≤2,或(x﹣y+1)+x﹣y+1≤﹣2,进而可得cos(x+y﹣1)=±1,x=y=,由此可得xy的表达式,取k=0可得最值.π1(2k x x +=时,xy 的最小值.【分析】若P 在线段AB 上,设=λ,则有=,由于=x +y ,则有x+y=1,上,设BP PA λ= 则有()OP OB BP OB PA OB OA OP λλ=+=+=+-, ∴1OB OAOP λλ+=+,由于(,OP xOA yOB x y =+∈,11y λλλλ==++,故有设=MP PN λ,则有OM ON OP λ+=x 则=x+y=x +y(x ,y ∈R ),则x=, y=,故有x+y=2,当x=2,y=0时有最小值,当x=0,y=2时,有最大值故范围为]则∈.11.【分析】设P为双曲线的右支上一点,由向量垂直的条件,运用勾股定理和双曲线的定义,可得|PF1|+|PF2|,|PF1|•|PF2|,再由三角形的面积公式,可得内切圆的半径,再由直角三角形的外接圆的半径即为斜边的一半,由条件结合离心率公式,计算即可得到所求值.【解答】解:设P为双曲线的右支上一点,=0,即为⊥,由勾股定理可得|PF1|2+|PF2|2=|F1F2|2=4c2,①由双曲线的定义可得|PF1|﹣|PF2|=2a,②①﹣②2,可得|PF1|•|PF2|=2(c2﹣a2),可得|PF1|+|PF2|=,由题意可得△PF1F2的外接圆的半径为|F1F2|=c,设△PF1F2的内切圆的半径为r,可得|PF1|•|PF2|=r(|PF1|+|PF2|+|F1F2|),解得r=(﹣2c),即有=,化简可得8c2﹣4a2=(4+2)c2,即有c2=a2,则e===+1.12.【分析】①利用面面垂直的判定定理去证明EF⊥平面BDD'B'.②四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可.③判断周长的变化情况.④求出四棱锥的体积,进行判断.【解答】解:①连结BD,B'D',则由正方体的性质可知,EF⊥平面BDD'B',所以平面MENF⊥平面BDD'B',所以①正确.②连结MN,因为EF⊥平面BDD'B',所以EF⊥MN,四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF的面积最小.所以②正确.③因为EF⊥MN,所以四边形MENF是菱形.当x∈0,]时,EM的长度由大变小.当x∈,1]时,EM的长度由小变大.所以函数L=f(x)不单调.所以③错误.④连结C'E,C'M,C'N,则四棱锥则分割为两个小三棱锥,它们以C'EF为底,以M,N分别为顶点的两个小棱锥.因为三角形C'EF的面积是个常数.M,N到平面C'EF的距离是个常数,所以四棱锥C'﹣MENF 的体积V=h(x)为常函数,所以④正确.所以四个命题中③假命题.13.【分析】确定双曲线中的几何量,即可求出焦距、渐近线方程.【解答】解:双曲线=1中,a=,b=1,c=,∴焦距是2c=2,渐近线方程是y=±x.14.【分析】取AD的中点O,连结OB.OC.由线面垂直的判定与性质,证出AB⊥BD且AC⊥CD,得到△ABD与△ACD是具有公共斜边的直角三角形,从而得出OA=OB=OC=OD=AD,所以A.B.C.D四点在以O为球心的球面上,再根据题中的数据利用勾股定理算出AD长,即可得到三棱锥A﹣BCD外接球的半径大小.【解答】解:取AD的中点O,连结OB.OC∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD,又∵BC⊥CD,AB∩BC=B,∴CD⊥平面ABC,∵AC⊂平面ABC,∴CD⊥AC,∵OC是Rt△ADC的斜边上的中线,OC=AD.同理可得:Rt△ABD中,OB=AD,∴OA=OB=OC=OD=AD,可得A.B.C.D四点在以O为球心的球面上.Rt△ABD中,AB=2且BD=2,可得AD==2,由此可得球O的半径R=AD=,∴三棱锥A﹣BCD的外接球体积为=4π.15.【分析】由直方图可以看出11时至12时的销售额应为9时至10时的销售额的4倍,利用9时至10时的销售额即可求出11时至12时的销售额【解答】解:由直方图可以看出11时至12时的销售额应为9时至10时的销售额的4倍,因为9时至10时的销售额为2.5万元,故11时至12时的销售额应为2.5×4=10,16.【分析】由题意可以得到再由定义存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”.对所给的问题分自变量全为正,全为负,一正一负三类讨论,求出参数所满足的共同范围即可.【解答】解:∵f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x﹣a|﹣2a,∴又f(x)为R上的“2011型增函数”,当x>0时,由定义有|x+2011﹣a|﹣2a>|x﹣a|﹣2a,即|x+2011﹣a|>|x﹣a|,其几何意义为到点a小于到点a﹣2011的距离,由于x>0故可知a+a﹣2011<0得a<当x<0时,分两类研究,若x+2011<0,则有﹣|x+2011+a|+2a>﹣|x+a|+2a,即|x+a|>|x+2011+a|,其几何意义表示到点﹣a的距离小于到点﹣a﹣2011的距离,由于x<0,故可得﹣a﹣a﹣2011>0,得a<;若x+2011>0,则有|x+2011﹣a|﹣2a>﹣|x+a|+2a,即|x+a|+|x+2011﹣a|>4a,其几何意义表示到到点﹣a的距离与到点a﹣2011的距离的和大于4a,当a≤0时,显然成立,当a>0时,由于|x+a|+|x+2011+a|≥|﹣a﹣a+2011|=|2a﹣2011|,故有|2a﹣2011|>4a,必有2011﹣2a>4a,解得综上,对x∈R都成立的实数a的取值范围是17.【分析】(Ⅰ)利用正弦定理以及两角和与差的三角函数,三角形的内角和,化简求解即可.(Ⅱ)利用三角形的面积以及余弦定理化简求解即可.1cos 1cos 3sin sin 222A B BA +++=sin sin cos cos sinB A B A B A +++=sin sin()3sin A A BC +++= (Ⅱ)(II )取BC 的中点F ,连接EF ,AF ,则可证EF ⊥平面ABCD ,即∠EAF 为AE 与平面∠平面ABCD 所成的角,利用勾股定理求出AF ,则EF=AF .由E 为PB 的中点可知V P ﹣ACE =V E ﹣ABC =.PC ⊥AC ⊂1133226ABC EF =⨯【分析】(I )运用离心率公式和基本量a ,b ,c 的关系,代入点,解方程可得a ,b ,即可得到椭圆方程;(II )设A (x 1,y 1),B (x 2,y 2),可得,由于以PQ 为直径的圆经过坐标原点,所以,运用数量积为0,联立直线方程和椭圆方程,运用判别式大于0,韦达定理和弦长公式,点到直线的距离公式,三角形的面积公式,化简整理,即可得到定值.【解答】解:(I )由题意知e==,a 2﹣b 2=c 2,即又,22即有椭圆的方程为+=1;为直径的圆经过坐标原点,所以0OP OQ =,即23)0m =﹣, 2224(3)34m k -+代入12+4x x +2234(3)434m k -+212)4x x -+.【分析】(1)求出函数的导数,问题转化为即a≤2x﹣恒成立,求出a的范围即可;(2)求出a,得到f′()=﹣,问题转化为证明>ln,令t=,∵0<x1<x2,∴0<t<1,即证明u(t)=+lnt<0在0<t<1上恒成立,根据函数的单调性证明即可;(3)令a=1,得到lnx≤x2﹣x,得到x>1时,>,分别令x=2,3,4,5,…n,累加即可.,()x∈+∞(1)f x10x x <<,2(1()1t -=++11111+++1ln 1223(1)n n n n++>=-⨯⨯-,111ln n ++>1>,得证.33(log log mn ≤33log m n t ≥恒成立,33max log m n t ≥,33log 1m n ≥,11n >>,n33(loglogm n≤2)4 mn≥,。
高三数学11月月考试卷含解析 试题
2021-2021学年天一中学高三11月月考数学试题考前须知:1.在答题之前,先将本人的姓名、准考证号填写上在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的规定的正确位置。
2.选择题的答题:每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目之答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的答题:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.在在考试完毕之后以后,请将本试题卷和答题卡一并上交。
一、填空题 1.设集合,那么_______.2.命题:“使得〞的否认为__________.3.函数的定义域为_________.4.曲线在处的切线的斜率为_________.5.假设函数是偶函数,那么实数______.6.,函数和存在一样的极值点,那么________.7.函数.假设,那么实数的最小值为______.8.函数与函数的图象交于三点,那么的面积为________.9.f 〔x 〕是定义在R 上的偶函数,且在区间〔−,0〕上单调递增.假设实数a 满足f 〔2|a-1|〕>f 〔〕,那么a 的取值范围是______.10.0y x π<<<,且tan tan 2x y =, 1sin sin 3x y =,那么x y -=______. 11.在平行四边形ABCD 中,AC AD AC BD ⋅=⋅3=,那么线段AC 的长为 .12.,,且,那么的最大值为______.13.设是自然对数的底数,函数有零点,且所有零点的和不大于6,那么的取值范围为______.14.设函数〔〕.假设存在,使,那么的取值范围是____.二、解答题15.,.〔1〕求的值;〔2〕设函数,,求函数的单调增区间. 16.如图,在中,是边上的一点,,,求:此卷只装订不密封 班级 姓名 准考证号 考场号 座位号〔1〕的长;〔2〕的面积.17.在平面直角坐标系中,向量,设向量,其中.〔1〕假设,,求的值;〔2〕假设,务实数的最大值,并求取最大值时的值.18.对于函数,假设在定义域内存在实数,满足,那么称为“部分奇函数〞.〔Ⅰ〕二次函数,试判断是否为“部分奇函数〞?并说明理由;〔Ⅱ〕假设是定义在区间上的“部分奇函数〞,务实数的取值范围;〔Ⅲ〕假设为定义域上的“部分奇函数〞,务实数的取值范围.19.如图,、是海岸线、上的两个码头,为海中一小岛,在水上旅游线上.测得,,到海岸线、的间隔分别为,.〔1〕求水上旅游线的长;〔2〕海中,且处的某试验产生的强水波圆,生成小时时的半径为.假设与此同时,一艘游轮以小时的速度自码头开往码头,试研究强水波是否涉及游轮的航行?20.函数,.〔1〕求曲线在点处的切线方程;〔2〕证明:当时,曲线恒在曲线的下方;〔3〕当时,不等式恒成立,务实数的取值范围.2021-2021学年天一中学高三11月月考数学试题数学答案参考答案1.【解析】【分析】直接利用集合并集的定义求解即可.【详解】因为集合,所以,故答案为.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,此题本质求满足属于集合或者属于集合的元素的集合.2.【解析】【分析】根据特称命题的否认是全称命题,既要改写量词,又要否认结论,可得原命题的否认形式.【详解】因为特称命题的否认是全称命题,既要改写量词,又要否认结论,故命题“ 〞的否认是,故答案为.【点睛】此题主要考察特称命题的否认,属于简单题.全称命题与特称命题的否认与命题的否认有一定的区别,否认全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否认结论,而一般命题的否认只需直接否认结论即可.3.【解析】【分析】直接由根式内部的代数式大于等于0 ,分式的分母不等于0 ,列不等式求解即可得结果.【详解】要使函数有意义,那么解得,函数的定义域为,故答案为.【点睛】此题主要考察详细函数的定义域、不等式的解法,属于中档题.定义域的三种类型及求法:(1)函数的解析式,那么构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 假设函数的定义域为,那么函数的定义域由不等式求出.4.1【解析】【分析】求出原函数的导函数,可得到曲线在处的导数值,根据导数的几何意义可得结果.【详解】因为曲线在处的切线的斜率就是曲线在处的导数值,由得 ,,即曲线在处的切线的斜率为1,故答案为1.【点睛】此题考察了利角导数研究曲线上某点处的切线斜率,曲线在某点处的导数值,即为曲线上以该点为切点的切线的斜率,是中档题.5.1【解析】【分析】由函数是偶函数,利用求得,再验证即可得结果.【详解】是偶函数,,即,解得,当时,是偶函数,合题意,故答案为1.【点睛】此题主要考察函数的奇偶性,属于中档题. 函数的奇偶性求参数,主要方法有两个,一是利用:〔1〕奇函数由恒成立求解,〔2〕偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.6.3【解析】【分析】(1)求出函数的导数,可得极值点,通过与有一样的极值点,列方程求的值.【详解】,那么,令,得或者,可得在上递增;可得在递减,极大值点为,极小值点为,因为函数和存在一样的极值点,而在处有极大值,所以,所以,故答案为3.【点睛】极值的步骤:(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义域内的所有根;(4) 列表检查在的根左右两侧值的符号,假如左正右负〔左增右减〕,那么在处取极大值,假如左负右正〔左减右增〕,那么在处取极小值. 〔5〕假如只有一个极值点,那么在该处即是极值也是最值.7.【解析】试题分析:由题意得,实数的最小值为考点:三角函数周期8.【解析】联立方程与可得,解之得,所以,因到轴的间隔为,所以的面积为,应填答案。
2021年高三11月月考数学(文)试题 含解析
2021年高三11月月考数学(文)试题含解析一、选择题:本大题共10小题,每小题5分,共50分,1.(5分)设全集U=R,A={x|x(x+3)<0},B={x|x<﹣1},则图中阴影部分表示的集合为()A.(﹣1,0)B.(﹣3,﹣1)C.[﹣1,0)D.(﹣∞,﹣1)考点:Venn图表达集合的关系及运算.专题:计算题;图表型.分析:先解不等式求出A={x|﹣3<x<0},再通过图象知道所求为A,B的公共部分,即取交集,结合集合B即可得到答案.解答:解:因为x(x+3)<0⇒﹣3<x<0∴A={x|﹣3<x<0},由图得:所求为A,B的公共部分,即取交集.∵B={x|x<﹣1},∴A∩B={x|﹣3<x<﹣1},故选:B.点评:本题主要考查不等式的解法以及Venn图表达集合的关系及运算.这一类型题目一般出现在前三题中,属于送分题.2.(5分)下列函数中,在其定义域内既是奇函数又是减函数的是()A.y=﹣x3,x∈R B.y=sinx,x∈R C.y=x,x∈R D.考点:函数的图象与图象变化;奇函数.分析:根据基本函数的性质逐一对各个答案进行分析.解答:解:A在其定义域内既是奇函数又是减函数;B在其定义域内是奇函数但不是减函数;C在其定义域内既是奇函数又是增函数;D在其定义域内是非奇非偶函数,是减函数;故选A.点评:处理这种题目的关键是熟练掌握各种基本函数的图象和性质,其处理的方法是逐一分析各个函数,排除掉错误的答案.3.(5分)若a=20.5,b=logπ3,c=log2()则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a考点:对数的运算性质;对数值大小的比较.专题:计算题.分析:根据指数函数与对数函数的单调性质将a,b,c分别与1与0比较即可.解答:解:∵a=20.5>20=1,0=logπ1<b=logπ3<logππ=1,c=log2()<log21=0,∴a>b>c.故选A.点评:本题考查对数的运算性质,考查指数函数与对数函数的单调性,属于基础题.4.(5分)(xx•湖南)命题“若α=,则tanα=1”的逆否命题是()A.若α≠,则tanα≠1 B.若α=,则tanα≠1 C.若tanα≠1,则α≠D.若tanα≠1,则α=考点:四种命题.专题:应用题.分析:首先否定原命题的题设做逆否命题的结论,再否定原命题的结论做逆否命题的题设,写出新命题就得到原命题的逆否命题.解答:解:命题:“若α=,则tanα=1”的逆否命题为:若tanα≠1,则α≠故选C点评:考查四种命题的相互转化,命题的逆否命题是对题设与结论分别进行否定且交换特殊与结论的位置,本题是一个基础题.5.(5分)(2011•金台区模拟)函数f(x)=lnx﹣的零点所在的大致区间是()A.(1,2)B.(2,3)C.(e,3)D.(e,+∞)考点:函数的零点与方程根的关系.专题:数形结合.分析:分别画出对数函数lnx和函数的图象其交点就是零点.解答:解:根据题意如图:当x=2时,ln2<1,当x=3时,ln3>,∴函数f(x)=lnx﹣的零点所在的大致区间是(2,3),故选B.点评:此题利用数形结合进行求解,主要考查了函数的零点与方程根的关系,是一道好题.6.(5分)若函数y=ax与y=﹣在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上是()A.增函数B.减函数C.先增后减D.先减后增考点:函数单调性的判断与证明.专题:计算题;数形结合.分析:根据y=ax与y=﹣在(0,+∞)上都是减函数,得到a<0,b<0,对二次函数配方,即可判断y=ax2+bx在(0,+∞)上的单调性.解答:解:∵y=ax与y=﹣在(0,+∞)上都是减函数,∴a<0,b<0,∴y=ax2+bx的对称轴方程x=﹣<0,∴y=ax2+bx在(0,+∞)上为减函数.故答案B点评:此题是个基础题.考查基本初等函数的单调性,考查学生熟练应用知识分析解决问题的能力.7.(5分)已知,则f(3)=()A.3B.2C.1D.4考点:函数的值.专题:计算题.分析:根据解析式先求出f(3)=f(5),又因5<6,进而求出f(5)=f(7),由7>6,代入第一个关系式进行求解.解答:解:根据题意得,f(3)=f(5)=f(7)=7﹣4=3,故选A.点评:本题考查了分段函数求函数的值,根据函数的解析式和自变量的范围,代入对应的关系式进行求解,考查了观察问题能力.8.(5分)(xx•四川)函数y=a x﹣a(a>0,a≠1)的图象可能是()A.B.C.D.考点:指数函数的图像变换.专题:函数的性质及应用.分析:通过图象经过定点(1,0),排除不符合条件的选项,从而得出结论.解答:解:由于当x=1时,y=0,即函数y=a x﹣a 的图象过点(1,0),故排除A、B、D.故选C.点评:本题主要考查指数函数的图象和性质,通过图象经过定点(1,0),排除不符合条件的选项,是一种简单有效的方法,属于中档题.9.(5分)(2011•河南模拟)若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x﹣1,则f (x﹣1)<0的解集是()A.(﹣1,0)B.(﹣∞,0)∪(1,2)C.(1,2)D.(0,2)考点:奇偶性与单调性的综合.专题:计算题.分析:先画出函数f(x)的图象,根据f(x﹣1)的图象是由f(x)的图象向右平移1个单位,画出其图象求解.解答:解:先画出函数f(x)的图象,根据f(x﹣1)的图象是由f(x)的图象向右平移1个单位,画出其图象,如图所示,f(x﹣1)<0的解集是(0,2)故答案为:(0,2)点评:本题主要考查函数的图象变换和数形结合法解不等式.10.(5分)设a>1,函数f(x)=log a x在区间[a,3a]上的最大值与最小值之差为,则a等于()A.B.3C.3D.9考点:对数函数的值域与最值.专题:压轴题;函数的性质及应用.分析:由已知中底数的范围,可以判断出对数函数的单调性,进而可求出函数在区间[a,3a]上的最大值与最小值,结合已知构造方程,解方程可得答案.解答:解:∵a>1,∴函数f(x)=log a x在区间[a,3a]上单调递增∴f(x)max=f(3a),f(x)min=f(a),∴f(3a)﹣f(a)=log a3a﹣log a a=log a3=解得a=9故选D点评:本题考查的知识点是对数函数的值域与最值,其中熟练掌握对数函数的单调性与底数的关系是解答的关键.二、填空题:本大题共5小题,每小题5分,共25分,11.(5分)函数的定义域为[﹣1,0)∪(0,+∞).考点:函数的定义域及其求法.专题:计算题;函数的性质及应用.分析:直接利用分式的分母不为0,无理式大于等于0,求解即可得到函数的定义域.解答:解:要使函数有意义,必须,解得x∈[﹣1,0)∪(0,+∞).函数的定义域为:[﹣1,0)∪(0,+∞).故答案为:[﹣1,0)∪(0,+∞).点评:本题考查函数的定义域的求法,考查计算能力.12.(5分)当x∈(0,+∞)时,幂函数y=(m2﹣m﹣1)x﹣m﹣1为减函数,则实数m=2.考点:幂函数的性质.专题:计算题;阅读型.分析:因为给出的函数是幂函数,所以系数等于1,又函数在x∈(0,+∞)时为减函数,所以幂指数小于0,联立后可求解m的值.解答:解:由当x∈(0,+∞)时,幂函数y=(m2﹣m﹣1)x﹣m﹣1为减函数,得:,解得:m=2.故答案为2.点评:本题考查了幂函数的性质,考查了幂函数的定义,解答此题的关键是对幂函数的定义和性质的掌握,此题是基础题.13.(5分)函数f(x)=x3﹣x2+mx在R内是增函数,则m的取值范围为[,+∞).考点:利用导数研究函数的单调性.专题:函数的性质及应用.分析:函数f(x)=x3﹣x2+mx在R内是增函数,则恒有f′(x)≥0,由此即可求得a的范围.解答:解:f′(x)=3x2﹣2x+m.因为函数f(x)=x3﹣x2+mx在R内是增函数,所以f′(x)=3x2﹣2x+m≥0在R上恒成立,故有△=4﹣12m≤0,即m.所以m的取值范围为[,+∞).故答案为[,+∞)点评:本题考查导数与函数单调性的关系,属基础题,难度不大.可导函数f(x)在某区间上单调递增的充要条件是f′(x)≥0(不恒为0).14.(5分)函数f(x)=(x+a)(x﹣4)为偶函数,则实数a=4.考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据偶函数f(x)的定义域为R,则∀x∈R,都有f(﹣x)=f(x),建立等式,解之即可.解解:因为函数f(x)=(x+a)•(x﹣4)是偶函数,答:所以∀x∈R,都有f(﹣x)=f(x).所以∀x∈R,都有(﹣x+a)•(﹣x﹣4)=(x+a)•(x﹣4)即x2+(4﹣a)x﹣4a=x2+(a﹣4)x﹣4a所以a=4.故答案为:4点评:本题主要考查了函数奇偶性的性质,同时考查了运算求解的能力,属于基础题.15.(5分)函数f(x)对任意的x∈R,恒有f(x+2)=﹣f(x),且f(1)=2,则f(11)=﹣2.考点:函数的值.专题:函数的性质及应用.分析:利用f(x+2)=﹣f(x),即可把f(11)化为﹣f(1),进而得出答案.解答:解:∵函数f(x)对任意的x∈R,恒有f(x+2)=﹣f(x),∴f(11)=f(8+3)=f (3)=f(1+2)=﹣f(1)=﹣2.故答案为﹣2.点评:充分利用已知条件和函数的周期性是解题的关键.三.解答题:本大题共6个小题,满分75分.解答应写出文字说明、证明过程或演算步骤. 16.(12分)计算:(1)(2)(a>0,b>0)考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用对数运算法则进行计算;(2)利用有理数指数幂的运算法则进行计算;解答:解:(1)原式=+log50.25++ =++3=log525++3=2++3=.(2)原式==4a.点评:本题考查对数运算法则及有理数指数幂的运算法则,熟练掌握相关运算法则是解决该类题目的基础.17.(12分)已知p:﹣2≤x≤3;q:﹣m≤x≤1+m,(m>0),若p是q的充分不必要条件,求实数m的取值范围.考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:通过p是q的充分不必要条件,列出关系式,即可求解m的范围.解答:解:因为p:﹣2≤x≤3;q:﹣m≤x≤1+m,(m>0),p是q的充分不必要条件,所以,所以m≥2.当m=2时,p是q的充要条件,又m>0所以实数m的取值范围:(2,+∞).点评:本题考查充要条件的应用,注意两个命题的端点值不能同时成立,这是易错点.18.(12分)m为何值时,f(x)=x2+2mx+3m+4(1)有且仅有一个零点(2)有两个零点且均比﹣1大.考点:函数的零点;函数零点的判定定理.专题:计算题.分析:(1)f(x)=x2+2mx+3m+4,有且仅有一个零点,二次函数图象开口向上,可得△=0,求出m的值;(2)有两个零点且均比﹣1大,根据方程根与系数的关系,列出不等式,求出m的范围;解答:解:(1)∵f(x)=x2+2mx+3m+4,有且仅有一个零点说明二次函数与x轴只有一个交点,可得△=(2m)2﹣4×(3m+4)=0解得m=4或m=﹣1;(2)∵f(x)=x2+2mx+3m+4,有两个零点且均比﹣1大.函数开口向上,对称轴为x=﹣m,∴,即解得﹣5<m<﹣1;点评:此题主要考查二次函数的性质及其对称轴的应用,是一道基础题;19.(13分)设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)﹣f′(x)是奇函数.(1)求b、c的值;(2)求g(x)极值.考点:函数在某点取得极值的条件;函数奇偶性的性质.专题:导数的概念及应用.分(1)先求出f′(x),从而得到g(x),由g(x)为奇函数,可得g(﹣x)=﹣g(x)析:总成立,从而可求出b,c值;(2)由(1)写出g(x),求g′(x),由导数求出函数g(x)的单调区间,由此可得到极值.解答:解:(1)f′(x)=3x2+2bx+c,g(x)=f(x)﹣f′(x)=x3+bx2+cx﹣3x2﹣2bx﹣c=x3+(b﹣3)x2+(c﹣2b)x﹣c,因为g(x)为奇函数,所以g(﹣x)=﹣g(x),即﹣x3+(b﹣3)x2﹣(c﹣2b)x﹣c=﹣[x3+(b﹣3)x2+(c﹣2b)x﹣c],也即2(b﹣3)x2=2c,所以b=3,c=0.(2)由(1)知,g(x)=x3﹣6x,g′(x)=3x2﹣6=3(x+)(x﹣),令g′(x)=0,得x=﹣或x=,当x<﹣或x>时,g′(x)>0,当﹣<x<时,g′(x)<0,所以g(x)在(﹣∞,﹣),(,+∞)上单调递增,在(﹣,)上单调递减,所以当x=﹣时,g(x)取得极大值g(﹣)=4;当x=时,g(x)取得极小值g()=﹣4.点评:本题考查导数与函数的极值及函数的奇偶性,可导函数f(x)在点x0处取得极值的充要条件是f′(x0),且导数在x0左右两侧异号.20.(13分)已知函数f(x)=ax,其中a>0.(1)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a≠0时,求f(x)的单调区间.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.专题:导数的综合应用.分析:(1)当a=1时,求出函数的解析式及导函数的解析式,代入x=2,可得切点坐标和切线的斜率(导函数值),进而可得直线的点斜式方程.(2)解方程f′(x)=0,由a>0可得x=,讨论f′(x)在各区间上的符号,进而由导函数符号与原函数单调区间的关系得到答案.解答:解:(1)当a=1时,函数f(x)=x,∴f′(x)=3x2﹣3x,∴f(2)=3,即切点坐标为(2,3)f′(2)=6,即切线的方程为6故曲线y=f(x)在点(2,f(2))处的切线方程为y﹣3=6(x﹣2),即6x﹣y﹣9=0 (2)∵f(x)=ax,∴f′(x)=3ax2﹣3x=3x(ax﹣1),令f′(x)=0,则x=0,或x=∵a>0,即>0,∵当x∈(﹣∞,0)∪(,+∞)时,f′(x)>0;当x∈(0,)时,f′(x)<0;∴函数y=f(x)的单调递增区间为(﹣∞,0),(,+∞),单调递减区间为(0,)点评:本题考查的知识点是利用导数研究曲线上某点的切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.21.(13分)(xx•重庆)某工厂生产某种产品,已知该产品的产量x(吨)与每吨产品的价格P(元/吨)之间的关系为,且生产x吨的成本为R=50000+200x元.问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入﹣成本)考点:基本不等式在最值问题中的应用.分析:将实际问题转化成数学最值问题,利用导数求最值解答:解:设生产x吨产品,利润为y元,则y=px﹣R=(50000+200x)=+24000x﹣50000(x>0)+24000,由y'=0,得x=200∵0<x<200时y'>0,当x≥200时y'<0∴当x=200时,y max=3150000(元)答:该厂每月生产200吨产品才能使利润达到最大,最大利润是3150000(元)点评:本题考查建立数学模型,三次函数的最值用导数来求.25211 627B 扻29591 7397 玗37013 9095 邕.xi 20299 4F4B 佋21639 5487 咇39245 994D 饍27890 6CF2 泲I40754 9F32 鼲38521 9679 陹7。
2021年高三(下)第11次月考数学试卷(文科) 含解析
2021年高三(下)第11次月考数学试卷(文科)含解析一、选择题(本大题共10个小题,每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},A)∩B=()则(CuA. {2} B. {4,6} C. {l,3,5} D. {4,6,7,8}2.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A. 100 B. 150 C. 200 D. 2503.已知向量=(x,2),=(2,x),则“x=2”是“∥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.实数m是[0,6]上的随机数,则关于x的方程x2﹣mx+4=0有实根的概率为()A.B.C.D.5.已知双曲线的离心率为,则双曲线的渐近线方程为()A.B.C.y=±2x D.6.三棱锥S﹣ABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为()A. 2 B. 4 C.D.167.执行如图所示的程序框图,若输出S的值是11,则输入n的值是()A.7 B. 6 C. 5 D. 48.在△ABC中,=3,D,则=()A.﹣1 B.C.D. 19.已知函数f(x)=lnx,x1,x2∈(0,),且x1<x2,则下列结论中正确的是()A.(x1﹣x2)[f(x1)﹣f(x2)]<0 B.f()<f()C.x1f(x2)>x2f(x1)D.x2f(x2)>x1f(x1)10.已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P向圆引切线PQ,且满足|PQ|=|PA|,若以P为圆心所作的圆P与圆O有公共点,则圆P半径的最小值为()A.﹣1 B. 1 C. 2 D.二、填空题(本大题共5个小题,每小题5分,共25分.把答案填在答题卡中对应题号后的横线上)11.复数z=的虚部为.12.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+2x,则f(﹣1)=.13.已知直线l1:(t为参数)与直线l2:(s为参数)垂直,则实数k=.14.设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为8,则ab的最大值为.15.记S k=1k+2k+3k+…+n k,当k=1,2,3,…时,观察下列等式:S1=n,S2=n,S3=,S4=n,S5=An6+,…可以推测,A﹣B=.三、解答题(本大题共6个小题,共75分.解答题应写出必要的文字说明、证明过程或演算步骤)16.已知数列{a n}是递增等比数列,且a1,a3是方程x2﹣10x+16=0的两根.(1)求数列{a n}的通项公式;(2)若数列b n=2log2a n﹣1,记数列的前n项和为S n,求使S n>成立的最小正整数n的值.17.已知某保险公司每辆车的投保金额均为2800元,公司利用简单随机抽样的方法,对投保车辆进行抽样,样本中每辆车的赔付结果统计如下:赔付金额(元)0 1000 xx 3000 4000车辆数500 150 200 100 50(1)试根据样本估计赔付金额大于投保金额的概率;(2)保险公司在赔付金额为xx元、3000元和4000元的样本车辆中,发现车主是新司机的比例分别为1%、2%和4%,现从新司机中任取两人,则这两人的赔付金额之和不小于投保金额之和的概率是多少?18.如图,在直角梯形ABCD中,BC∥AD,BC=CD=AD=2,E为AD中点,现将△ABE 沿BE折起,使平面ABE⊥平面BCDE.(1)求证:BE⊥AD(2)若F为AD的中点,求三棱锥B﹣ACF的体积.19.如图,在半径为,圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点N,M在OB上,设矩形PNMQ的面积为y,∠POB=θ.(Ⅰ)将y表示成θ的函数关系式,并写出定义域;(Ⅱ)在△ABC中,角A,B,C所对的边分别是a,b,c,若y取最大值时A=θ+,且a=,cosB=,D为AC中点,求BD的值.20.已知椭圆C:+=1(a>b>0)的右焦点F2是抛物线y2=4x的焦点,过点F2垂直于x轴的直线被椭圆C所截得的线段长度为3.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线l:y=kx+m与椭圆C有且只有一个公共点P,且与直线x=2相交于点Q.请问:在x轴上是否存在定点M,使得为定值?若存在,求出点M的坐标;若不存在,请说明理由.21.已知函数f(x)=mx﹣αlnx﹣m,g(x)=,其中m,α均为实数.(1)求g(x)的极值;(2)设m=1,α<0,若对任意的x1,x2∈[3,4](x1≠x2),|f(x2)﹣f(x1)|<|﹣|恒成立,求a的最小值;(3)设α=2,若对任意给定的x0∈(0,e],在区间(0,e]上总存在t1、t2(t1≠t2),使得f (t1)=f(t2)=g(x0)成立,求m的取值范围.xx学年湖南省株洲二中高三(下)第11次月考数学试卷(文科)参考答案与试题解析一、选择题(本大题共10个小题,每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则(C u A)∩B=()A.{2} B.{4,6} C.{l,3,5} D.{4,6,7,8}考点:交、并、补集的混合运算.专题:计算题.分析:由全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},知C U A={4,6,7,8},由此能求出(C u A)∩B.解答:解:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴C U A={4,6,7,8},∴(C u A)∩B={4,6}.故选B.点评:本题考查交、并、补集的混合运算,是基础题,解题时要认真审题,仔细解答,注意合理地进行等价转化.2.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100 B.150 C.200 D.250考点:分层抽样方法.专题:概率与统计.分析:计算分层抽样的抽取比例和总体个数,利用样本容量=总体个数×抽取比例计算n值.解答:解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故选:A.点评:本题考查了分层抽样方法,熟练掌握分层抽样方法的特征是关键.3.已知向量=(x,2),=(2,x),则“x=2”是“∥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:平面向量及应用;简易逻辑.分析:根据充分条件和必要条件的定义进行判断即可.解答:解:若∥,则2×2﹣x2=0,即x2=4,解得x=2或x=﹣2,即“x=2”是“∥”的充分不必要条件,故选:A点评:本题主要考查充分条件和必要条件的判断,根据向量关系的等价条件是解决本题的关键.4.实数m是[0,6]上的随机数,则关于x的方程x2﹣mx+4=0有实根的概率为()A.B.C.D.考点:几何概型.专题:概率与统计.分析:根据几何概型计算公式,首先求出方程有实根的m的范围,然后用符合题意的基本事件对应的区间长度除以所有基本事件对应的区间长度,即可得到所求的概率.解答:解:∵方程x2﹣mx+4=0有实根,∴判别式△=m2﹣16≥0,∴m≤﹣4或m≥4时方程有实根,∵实数m是[0,6]上的随机数,区间长度为6,[4,6]的区间长度为2,∴所求的概率为P==.故选:B.点评:本题着重考查了几何概型计算公式及其应用的知识,给出在区间上取数的事件,求相应的概率值.关键是明确事件对应的是区间长度或者是面积或者体积.5.已知双曲线的离心率为,则双曲线的渐近线方程为()A.B.C.y=±2x D.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线离心率为,根据双曲线的离心率公式算出b=a,结合双曲线的渐近线公式即可得到该双曲线的渐近线方程.解答:解:∵双曲线的方程为,∴c=,结合离心率为,得e===,化简得b=a∴该双曲线的渐近线方程为y=±,即故选:B点评:本题给出双曲线的离心率,求它的渐近线方程,着重考查了双曲线的标准方程与简单几何性质等知识,属于基础题.6.三棱锥S﹣ABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为()A. 2 B. 4 C.D.16考点:简单空间图形的三视图.专题:空间位置关系与距离.分析:由已知中的三视图可得SC⊥平面ABC,底面△ABC为等腰三角形,SC=4,△ABC 中AC=4,AC边上的高为2,进而根据勾股定理得到答案.解答:解:由已知中的三视图可得SC⊥平面ABC,且底面△ABC为等腰三角形,在△ABC中AC=4,AC边上的高为2,故BC=4,在Rt△SBC中,由SC=4,可得SB=4,故选B点评:本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键.7.执行如图所示的程序框图,若输出S的值是11,则输入n的值是()A.7 B. 6 C. 5 D. 4考点:程序框图.专题:算法和程序框图.分析:由已知中的程序框图,可知:该程序的功能是计算并输出变量S的值,模拟程序的运行过程,分析出各变量的变化情况,可得答案.解答:解:当i=1,S=1时,不满足输出条件,故进行循环,执行完循环体后,S=1,i=2;当i=2,S=1时,不满足输出条件,故进行循环,执行完循环体后,S=2,i=3;当i=3,S=2时,不满足输出条件,故进行循环,执行完循环体后,S=4,i=4;当i=4,S=4时,不满足输出条件,故进行循环,执行完循环体后,S=7,i=5;当i=5,S=7时,不满足输出条件,故进行循环,执行完循环体后,S=11,i=6;当i=6,S=11时,满足输出条件,故进行循环的条件应为:i≤5,即输入n的值是5,故选:C点评:本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.8.在△ABC中,=3,D,则=()A.﹣1 B.C.D. 1考点:平面向量数量积的运算.专题:平面向量及应用.分析:将,分别用,表示,然后进行平面向量的数量积运算求值.解答:解:由已知得到=1,=3,=,,则====﹣1;故选:A.点评:本题考查了平面向量的三角形法则以及数量积的运算;关键是正确利用向量表示所求,进行数量积的运算.9.已知函数f(x)=lnx,x1,x2∈(0,),且x1<x2,则下列结论中正确的是()A.(x1﹣x2)[f(x1)﹣f(x2)]<0 B.f()<f()C.x1f(x2)>x2f(x1)D.x2f(x2)>x1f(x1)考点:对数函数的单调性与特殊点.专题:函数的性质及应用.分析:根据函数的单调性可得A不正确;根据函数的图象是下凹的,可得B不正确;利用导数判断函数在(0,+∞)上是增函数,故有>,化简可得x1f(x2)>x2f(x1),故C正确、且D不正确.解答:解:由于已知函数f(x)=lnx在定义域(0,+∞)上是增函数,x1,x2∈(0,),且x1<x2 ,可得[f(x1)﹣f(x2)]<0,故(x1﹣x2)[f(x1)﹣f(x2)]>0,故A不正确.由于已知函数f(x)=lnx的增长速度较慢,图象是下凹型的,故有f()>f(),故B不正确.∵已知函数f(x)=lnx,x1,x2∈(0,),且x1<x2 ,则′==>0,∴函数在(0,+∞)上是增函数,故有>,化简可得x1f(x2)>x2f(x1),故C正确、且D不正确.故选C.点评:本题主要考查导数的运算法则的应用,利用导数研究函数的单调性,函数的单调性的应用,属于中档题.10.已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P向圆引切线PQ,且满足|PQ|=|PA|,若以P为圆心所作的圆P与圆O有公共点,则圆P半径的最小值为()A.﹣1 B. 1 C. 2 D.考点:圆的标准方程.专题:计算题;直线与圆.分析:由题意可得:|PQ|2=|PO|2﹣1=a2+b2﹣1,又PQ=PA,可得2a+b﹣3=0.因为以P为圆心所作的圆P和圆O有公共点,所以圆P与圆O外切时,可使圆P的半径最小.又因为PO=1+圆P的半径,所以当圆P的半径最小即为PO最小,即点O到直线2a+b﹣3=0的距离最小,进而解决问题.解答:解:由题意可得:过圆O外一点P(a,b)向圆O引切线PQ,切点为Q,所以|PQ|2=|PO|2﹣1=a2+b2﹣1.又因为|PA|2=(a﹣2)2+(b﹣1)2,并且满足PQ=PA,所以整理可得2a+b﹣3=0.因为以P为圆心所作的圆P和圆O有公共点,所以两圆相切或相交,即圆P与圆O外切时,可使圆P的半径最小.又因为PO=1+圆P的半径,所以当圆P的半径最小即为PO最小,即点O到直线2a+b﹣3=0的距离最小,并且距离的最小值为,所以圆P的半径的最小值为﹣1.故选:A.点评:解决此类问题的关键是熟练掌握直线与圆、圆与圆的位置关系,以及两点之间的距离公式.二、填空题(本大题共5个小题,每小题5分,共25分.把答案填在答题卡中对应题号后的横线上)11.复数z=的虚部为4.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接由复数代数形式的除法运算化简,求得z后即可求出虚部.解答:解:由题意得,z===3+4i,∴复数z=的虚部为4,故答案为:4.点评:本题考查了复数代数形式的除法运算:分母实数化,是基础题.12.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+2x,则f(﹣1)=﹣3.考点:函数奇偶性的性质;函数的值.专题:函数的性质及应用.分析:结合函数的奇偶性先求出函数f(x)在x<0时的解析式,再将x=﹣1代入即可.解答:解:令x<0,则﹣x>0,∴f(﹣x)=(﹣x)2+2(﹣x)=x2﹣2x,又∵f(x)是奇函数,∴f(﹣x)=﹣f(x),∴f(x)=﹣x2+2x,(x<0),∴f(﹣1)=﹣1﹣2=﹣3,故答案为:﹣3.点评:本题考查了求函数的解析式,函数的奇偶性问题,求出函数的解析式是解题的关键,本题是一道基础题.13.已知直线l1:(t为参数)与直线l2:(s为参数)垂直,则实数k=﹣1.考点:直线的参数方程.专题:坐标系和参数方程.分析:把直线l1、l2的参数方程化为普通方程,再由l1与l2垂直,斜率之积为﹣1,求出k 的值.解答:解:直线l1的参数方程(t为参数)化为普通方程是y=﹣x+2;直线l2的参数方程(s为参数)化为普通方程是y=﹣2x+5;又l1与l2垂直,所以,﹣•(﹣2)=﹣1解得k=﹣1.故答案为:﹣1.点评:本题考查了直线的参数方程的应用问题,也考查了直线垂直的应用问题,是基础题目.14.设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为8,则ab的最大值为4.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用z的几何意义确定取得最大值的条件,然后利用基本不等式进行求则ab的最大值.解答:解:由z=ax+by(a>0,b>0)得,∵a>0,b>0,∴直线的斜率,作出不等式对应的平面区域如图:平移直线得,由图象可知当直线经过点A时,直线的截距最大,此时z最大.由,解得,即A(1,4),此时目标函数z=ax+by(a>0,b>0)的最大值为8,即a+4b=8,∴8=a+4b=4,∴即ab≤4,当且仅当a=4b=4,即a=4,b=1时取等号.故答案为:4点评:本题主要考查线性规划的基本应用,以及基本不等式的应用,利用数形结合求出目标函数取得最大值的条件是解决本题的关键.15.记S k=1k+2k+3k+…+n k,当k=1,2,3,…时,观察下列等式:S1=n,S2=n,S3=,S4=n,S5=An6+,…可以推测,A﹣B=.考点:归纳推理.专题:计算题;压轴题.分析:通过观察归纳出:各等式右边各项的系数和为1;最高次项的系数为该项次数的倒数;列出方程求出A,B的值,进一步得到A﹣B.解答:解:根据所给的已知等式得到:各等式右边各项的系数和为1;最高次项的系数为该项次数的倒数;所以A=,解得B=,所以A﹣B=,故答案为:点评:本题考查通过观察、归纳猜想结论,并据猜想的结论解决问题,属于基础题.三、解答题(本大题共6个小题,共75分.解答题应写出必要的文字说明、证明过程或演算步骤)16.已知数列{a n}是递增等比数列,且a1,a3是方程x2﹣10x+16=0的两根.(1)求数列{a n}的通项公式;(2)若数列b n=2log2a n﹣1,记数列的前n项和为S n,求使S n>成立的最小正整数n的值.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(1)由x2﹣10x+16=0,解得x=2,8,可得a1,a3,再利用等比数列的通项公式即可得出;(2)数列b n=2log2a n﹣1=2n﹣1,可得==,再利用“裂项求和”、不等式的性质、数列的单调性即可得出.解答:解:(1)由x2﹣10x+16=0,解得x=2,8.∵a1,a3是方程x2﹣10x+16=0的两根,且a1<a3.∴a1=2,a3=8.设等比数列{a n}的公比为q>0,则8=2q2,解得q=2.∴.(2)数列b n=2log2a n﹣1=2n﹣1,∴==,∴数列的前n项和为S n=++…+=1﹣.由使S n>,可得,化为2n+1>6,解得,其最小正整数n=3.∴使S n>成立的最小正整数n的值为3.点评:本题考查了递推式的应用、等比数列的通项公式、“裂项求和”、不等式的性质、数列的单调性,考查了推理能力与计算能力,属于中档题.17.已知某保险公司每辆车的投保金额均为2800元,公司利用简单随机抽样的方法,对投保车辆进行抽样,样本中每辆车的赔付结果统计如下:赔付金额(元)0 1000 xx 3000 4000车辆数500 150 200 100 50(1)试根据样本估计赔付金额大于投保金额的概率;(2)保险公司在赔付金额为xx元、3000元和4000元的样本车辆中,发现车主是新司机的比例分别为1%、2%和4%,现从新司机中任取两人,则这两人的赔付金额之和不小于投保金额之和的概率是多少?考点:互斥事件的概率加法公式.专题:概率与统计.分析:(1)设A表示事件“赔付金额为3000元,”B表示事件“赔付金额为4000元”,以频率估计概率,求得P(A),P(B),再根据投保额为2800元,赔付金额大于投保金额得情形是3000元和4000元,问题得以解决.(2)先计算从新司机中任取两人的方法总数,及这两人的赔付金额之和不小于投保金额之和方法个数,代入古典概型概率计算公式,可得答案.解答:解:(1)设A表示事件“赔付金额为3000元,”B表示事件“赔付金额为4000元”,以频率估计概率得P(A)==0.1,P(B)==0.05,由于投保额为2800元,赔付金额大于投保金额得情形是3000元和4000元,所以其概率为P(A)+P(B)=0.1+0.05=0.15.(2)由已知,样本车辆中车主为新司机的有1%×200+2%×100+4%×50=6人,计赔付金额为xx元、3000元和4000元的分别为:A,B,C,D,E,F,则从新司机中任取两人共有=15种不同的取法,分别为:AB,AC,AD,AE,AF,BC,BD,BD,BF,CD,CE,CF,DE,DF,EF,其中这两人的赔付金额之和不小于投保金额之和的事件有:CD,CE,CF,DE,DF,EF,共6种,故这两人的赔付金额之和不小于投保金额之和的概率P==点评:本题主要考查了用频率来表示概率,古典概率的概率计算公式,难度不大,属于基础题.18.如图,在直角梯形ABCD中,BC∥AD,BC=CD=AD=2,E为AD中点,现将△ABE 沿BE折起,使平面ABE⊥平面BCDE.(1)求证:BE⊥AD(2)若F为AD的中点,求三棱锥B﹣ACF的体积.考点:棱柱、棱锥、棱台的体积;直线与平面垂直的性质.专题:综合题;空间位置关系与距离.分析:(1)证明BE⊥平面AED,即可证明⊥AD(2)若F为AD的中点,利用等体积转换,即可求三棱锥B﹣ACF的体积.解答:(1)证明:∵AE⊥DE,BE⊥ED,AE∩DE=E∴BE⊥平面AED,∵AD⊂平面AED,∴BE⊥AD(2)解:△ABC中,AB⊥BC,AB=2,BC=2,∴S△ABC==2∵E到平面ABC的距离为,F为AD的中点,∴F到平面ABC的距离为,∴三棱锥B﹣ACF的体积==.点评:本题考查线面垂直的判定与性质,考查三棱锥B﹣ACF的体积,正确转化是关键.19.如图,在半径为,圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点N,M在OB上,设矩形PNMQ的面积为y,∠POB=θ.(Ⅰ)将y表示成θ的函数关系式,并写出定义域;(Ⅱ)在△ABC中,角A,B,C所对的边分别是a,b,c,若y取最大值时A=θ+,且a=,cosB=,D为AC中点,求BD的值.考点:函数模型的选择与应用.专题:三角函数的图像与性质;解三角形.分析:(Ⅰ)在Rt△PON中,PN=OPsinθ=,ON=cosθ.在Rt△OQM中,=sinθ.可得MN=0N﹣0M=.可得矩形PNMQ的面积y=PN•NM=,再利用倍角公式、两角和差的正弦公式即可得出.(Ⅱ)当=时,y取得最大值,θ=.可得A=.由cosB=,可得.由正弦定理可得:.利用两角和差的正弦公式可得sinC=sin(A+B)=sinAcosB+cosAsinB.由正弦定理可得:.在△ABD 中,由余弦定理可得:BD2=AB2+AD2﹣2AB•ADcosA.解答:解:(Ⅰ)在Rt△PON中,PN=OPsinθ=,ON=cosθ.在Rt△OQM中,==sinθ.∴MN=0N﹣0M=.∴矩形PNMQ的面积y=PN•NM==3sinθcosθ﹣==﹣,.(Ⅱ)当=时,y取得最大值,θ=.∴A==.∵cosB=,∴=.由正弦定理可得:,∴==2.sinC=sin(A+B)=sinAcosB+cosAsinB=+=.由正弦定理可得:,∴==.在△ABD中,由余弦定理可得:BD2=AB2+AD2﹣2AB•ADcosA=+12﹣2××=13.∴BD=.D为AC中点,求BD的值.点评:本题综合考查了直角三角形的边角关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理余弦定理,考查了推理能力与计算能力,属于难题.20.已知椭圆C:+=1(a>b>0)的右焦点F2是抛物线y2=4x的焦点,过点F2垂直于x 轴的直线被椭圆C所截得的线段长度为3.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线l:y=kx+m与椭圆C有且只有一个公共点P,且与直线x=2相交于点Q.请问:在x轴上是否存在定点M,使得为定值?若存在,求出点M的坐标;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题;椭圆的简单性质.专题:平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程.分析:(Ⅰ)求得抛物线的焦点,由题意可得,椭圆C过点(1,±),代入椭圆方程,解方程可得a,b,进而得到椭圆方程;(Ⅱ)假设在x轴上存在定点M(x1,0)满足条件,设P(x0,y0),则Q(2,2k+m),联立直线l方程和椭圆方程,运用判别式为0,求得m,k的关系,再由向量的数量积的坐标表示,化简整理,即可得到定值.解答:解:(Ⅰ)抛物线y2=4x的焦点坐标为(1,0),则由题意可得,椭圆C过点(1,±),则,解得,∴椭圆C的方程为+=1;(Ⅱ)假设在x轴上存在定点M(x1,0)满足条件,设P(x0,y0),则Q(2,2k+m),由,得(3+4k2)x2+8kmx+4m2﹣12=0,∴△=64k2m2﹣4(3+4k2)(4m2﹣12)=0,即3+4k2=m2,m≠0.此时x0=﹣=﹣,y0=kx0+m=,则P(﹣,),∴=(﹣﹣x1,),=(2﹣x1,2k+m),∴=(﹣﹣x1)(2﹣x1)+(2k+m)=(4x1﹣2)•+x12﹣2x1+3,∴当4x1﹣2=0即x1=时,x12﹣2x1+3=.∴存在点M(,0),使得为定值.点评:本题考查椭圆的方程和性质,主要考查椭圆的焦点和点满足椭圆方程,同时考查直线方程和椭圆方程联立,运用判别式为0和向量数量积的坐标表示,考查运算能力,属于中档题.21.已知函数f(x)=mx﹣αlnx﹣m,g(x)=,其中m,α均为实数.(1)求g(x)的极值;(2)设m=1,α<0,若对任意的x1,x2∈[3,4](x1≠x2),|f(x2)﹣f(x1)|<|﹣|恒成立,求a的最小值;(3)设α=2,若对任意给定的x0∈(0,e],在区间(0,e]上总存在t1、t2(t1≠t2),使得f (t1)=f(t2)=g(x0)成立,求m的取值范围.考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:导数的概念及应用.分析:(1)对于第一问非常简单,只需按求解极值的定义求解即可.(2)在所给式子中含绝对值,一般考虑去掉绝对值,x1,x2是任给的两个数,所以可考虑用函数单调性.去掉绝对值之后,注意观察式子,你会发现,只要做适当变形,便可利用函数单调性的定义,得到一个新的函数的单调性,再结合导数求a的范围即可.(3)通过第三问的条件,你会得到f(x)在区间(0,e]不是单调函数的结论,并要求f(x)的值域需包含g(x)的值域便可.接下来就是看怎样让f(x)的值域包含g(x)的值域,即能求出m的范围.解答:解:(1)g′(x)=,令,解得x=1,∵e x>0,∴x∈(﹣∞,1)时,g′(x)>0;x∈(1,+∞)时,g′(x)<0,根据极大值的定义知:g(x)极大值是g(1)=1,无极小值.(2)当m=1,a<0时,f(x)=x﹣alnx﹣1,所以在[3,4]上f′(x)=>0,所以f(x)在[3,4]上是增函数.设h(x)=,所以在[3,4]上h′(x)=>0,所以h(x)在[3,4]上为增函数.设x2>x1,则恒成立,变成恒成立,即:f(x2)﹣f(x1)<h(x2)﹣h(x1)恒成立,即:f(x2)﹣h(x2)<f(x1)﹣h(x1).设u(x)=f(x)﹣h(x)=,则u(x)在[3,4]上为减函数.∴u′(x)=1﹣≤0在[3,4]上恒成立.∴恒成立.设v(x)=x﹣,所以v′(x)=1﹣=,因为x∈[3,4],所以,所以v′(x)<0,所以v(x)为减函数.∴v(x)在[3,4]上的最大值为v(3)=.∴a≥,∴a的最小值为:.(3)由(1)知g(x)在(0,1]上单调递增,在(1,e]单调单调递减,又g(0)=0,g (e)=,所以g(x)的值域是(0,1].∵f(x)=mx﹣2lnx﹣m;∴当m=0时,f(x)=﹣2lnx,在(0,e]为减函数,由题意知,f(x)在(0,e]不是单调函数;故m=0不合题意;当m≠0时,f′(x)=,由于f(x)在(0,e]上不单调,所以,即;①此时f(x)在(0,)递减,在(,e]递增;∴f(e)≥1,即me﹣2﹣m≥1,解得;②所以由①②,得;∵1∈(0,e],∴f()≤f(1)=0满足条件.下证存在t∈(0,]使得f(t)≥1;取t=e﹣m,先证,即证2e m﹣m>0;③设w(x)=2e x﹣x,则w′(x)=2e x﹣1>0在[,+∞)时恒成立;∴w(x)在[,+∞)上递增,∴w(x)≥>0,所以③成立;再证f(e﹣m)≥1;∵f,∴时,命题成立.所以m的取值范围是:[,+∞).点评:本题用到的知识点有:1.极值的定义.2.用倒数求函数单调区间,判断单调性的方法.3.单调函数定义的运用.4.会对式子做适当变形,从而解决问题.A28022 6D76 浶34719 879F 螟37845 93D5 鏕l 25789 64BD 撽r28468 6F34 漴38738 9752 青37760 9380 鎀27660 6C0C 氌27213 6A4D 橍23195 5A9B 媛U。
高中高三数学11月联考试卷 文含解析 试题
2021届高三重点高中11月联考数学试卷〔文科〕第一卷〔选择题一共60分〕一、选择题:本大题一一共12个小题,每一小题5分,一共60分.在每一小题中给出的四个选项里面,只有一项是哪一项符合题目要求的.1. 设集合,,那么=〔〕A. B. C. D.【答案】A【解析】由集合得:,那么=应选2. 假设复数满足,那么等于〔〕A. B. C. D.【答案】C【解析】应选3. 等差数列的前项和为,假设,,那么的公差为〔〕A. B. C. D.【答案】C【解析】,此题选择C选项.4. :“函数在上是增函数〞,:“〞,那么是的〔〕A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B...............反之,能得到函数在上是增函数.即是的必要不充分条件.此题选择B选项.5. 平面向量,满足,,,那么向量,的夹角为〔〕A. B. C. D.【答案】A【解析】,那么应选点睛:此题中,由的坐标可得到的模,又因为求两个向量的夹角,由向量的数量积的计算公式可以求得答案。
着重考察了平面向量数量积的运算和两个向量夹角等知识,属于根底题。
6. ,,那么=〔〕A. B. C. D.【答案】D【解析】,,应选7. 在中,角,,所对的边长分别为,,,假设,,,那么=〔〕A. 2B. 4C. 5D. 6【答案】C【解析】由余弦定理可得:.即.解得:.应选C.8. 将函数的图象向右平移个单位长度后,得到函数的图象,那么=〔〕A. B. C. D.【答案】B【解析】把函数的图象向右平移个单位长度后可得:应选9. 在公比为整数的等比数列中,,,那么的前5项和为〔〕A. 10B.C. 11D. 12【答案】C【解析】,,,即解得或者舍去,那么应选10. 假设函数〔,且〕的值域是,那么实数的取值范围是〔〕A. B. C. D.【答案】A【解析】由可得当时,故可得的值域是的子集,当时,时,即,解得即当时,即,解得,不合题意,综上所述,应选11. 如图,在中,点为的中点,点在上,,点在上,,那么等于〔〕A. B. C. D.【答案】D【解析】此题选择D选项.12. 假设函数在上是增函数,那么实数的取值范围是〔〕A. B. C. D.【答案】D【解析】假设,那么,在上是增函数,故可以排除假设,那么当时,获得最小值为即在上是增函数,故可以排除应选点睛:此题运用了排除法来解答,要证函数是增函数,分类讨论参量的情况,利用导数进展验证,从而求得参量的取值范围。
高三数学文科11月考试卷 试题
本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
中学2021—2021学年度高三11月考试试卷数 学〔文〕分值:150分时间是:120分钟一.选择题:本大题一一共10小题,每一小题5分,一共50分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.},1|1||{R x x x A ∈≤-=,},1log |{2R x x x B ∈≤=,那么“x A ∈〞是“x B ∈〞的〔A 〕充分非必要条件 〔B 〕必要非充分条件 〔C 〕充分必要条件 〔D 〕既非充分也非必要条件2.函数()sin y x =ω+ϕ0,02π⎛⎫ω><ϕ≤ ⎪⎝⎭,且此函数的图象如下图,那么点(),ωϕ的坐标是〔A 〕4,4π⎛⎫ ⎪⎝⎭ 〔B 〕2,2π⎛⎫⎪⎝⎭〔C 〕2,4π⎛⎫ ⎪⎝⎭ 〔D 〕4,2π⎛⎫ ⎪⎝⎭3.对任意的)1,0(∈x 以下不等式恒成立的是 〔A 〕12->xx〔B 〕12-<xx〔C 〕x x <-)4tan(ππ〔D 〕x x >-)4tan(ππ4.设2()lg()1f x a x=+-〔0≠x 〕是奇函数,那么使()0f x <的x 的取值范围是 〔A 〕(1,0)- 〔B 〕(0,1) 〔C 〕(,0)-∞ 〔D 〕(,0)(1,)-∞+∞5.函数[]1,0,1)(2∈+=x x x f 的反函数为),(1x f-那么函数[])2()(121x f x f y --+=的值域是〔A 〕[]1,0 〔B 〕]31,1[+ 〔C 〕[]2,1 〔D 〕{}1 6.等差数列}{n a ,n S 表示前n 项的和,,0,0993<>+S a a ,那么n S S S ,,,21 中最小的是 〔A 〕4S 〔B 〕5S 〔C 〕6S 〔D 〕9S 7.函数()3sin 2f x x π⎛⎫=- ⎪3⎝⎭的图象为C , ① 图象C 关于直线1112x =π对称; ②函数()f x 在区间5ππ⎛⎫-⎪1212⎝⎭,内是增函数; ③由3sin 2y x =的图象向右平移π3个单位长度可以得到图象C . 以上三个论断中,正确论断的个数是 〔A)0 〔B 〕1 〔C 〕2 〔D 〕38.假设非零向量b a ,=+,那么〔A 〕a +>2 〔B 〕a +<2 〔C 〕+> 〔D 〕+<9.假设关于x 的方程242+=-kx x 只有一个实根,那么实根k 的取值为 〔A 〕0=k〔B 〕0=k 或者1>k〔C 〕1>k 或者1->k〔D 〕0=k 或者1>k 或者1-<k10.04)(21]1,(2>-++-∞∈xxa a ,x 不等式时恒成立,那么a 的取值范围是 〔A 〕)41,1(-〔B 〕)23,21(-〔C 〕]41,(-∞〔D 〕]6,(-∞二、填空题:本大题一一共5小题,每一小题5分 ,一共25分,把答案填在答题卡中对应题号后的横线上.11.全集{}0,1,2,3,4,5U =,集合}3,0{)(|,5,3,0{==N C M M U ,那么满足条件的集合N 一共有_________个. 12.λλ则垂直与要使的夹角为与,a a b b a b a -==,45,2||,2|| = .13.==-a a 2cos ,53)2sin(则π 。
高三上学期11月联考试题数学(文)Word版含答案
-政和、周宁一中第二次联考文科数学卷考试时间:120分钟;总分:150分; 命题人:倪建才学校:__________ 姓名:__________ 班级:__________ 考号:__________ 一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}022>-=x x x A ,{}33<<-=x x B ,则( )A .∅=⋂B A B .R B A =⋃C .A B ⊆D .B A ⊆2. 记复数z 的虚部为Im()z ,已知复数5221iz i i =--(i 为虚数单位),则Im()z 为( ) A .2 B .-3 C .3i - D .3 3.以下有关命题的说法错误的是( )A .命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”B .“1x =”是“2320x x -+=”的充分不必要条件C .若p q ∧为假命题,则p 、q 均为假命题D .对于命题:p x ∃∈R ,使得210x x ++<,则:p x ⌝∀∈R ,则210x x ++≥ 4.若0sin 3cos =-θθ,则=-)4tan(πθ( ) A .21-B .2-C .21D .25. 设有直线m 、n 和平面α、β.下列四个命题中,正确的是 ( )A .若m ∥α,n ∥α,则m ∥nB .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α 6.执行如图所示的程序框图,则输出的S 值为( )A .1819 B .1920 C .2021 D .1207.下列命题正确的是( )A.若0,1<>>c b a ,则c c b a >B.若,b a >则22b a >C.11,000=+∈∃x x R x D.若0,0>>b a 且1=+b a ,则ba 11+的最小值为4. 8.已知函数()()sin f x x ωϕ=+(0ω>,0ϕπ<<)的最小正周期是π,将函数()f x 的图象向左平移6π个单位长度后所得的函数图象过点()0,1P ,则函数()()sin f x x ωϕ=+( )A .有一个对称中心,012π⎛⎫⎪⎝⎭B .有一条对称轴6x π=C .在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递减 D .在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增 9. 函数的图象大致是( )A .B .C .D .10.已知圆截直线所得线段的长度是,则圆与圆的位置关系是A.内切B.相交C.外切D.相离11.在菱形ABCD 中,2AB =,60DAB ∠=,E 为CD 的中点,则AD AE →→⋅的值是( )AB .5CD .612.已知()f x 是定义在R 上的奇函数,且当(),0x ∈-∞时,不等式()()'0f x xf x +<成立,若(),a f ππ=()()()22,1b f c f =--=,则,,a b c 的大小关系是 ( )A. a b c >>B. c b a >>C. c a b >>D. a c b >>223xx xy e -=二、填空题(每小题5分总共20分)13.设函数⎪⎩⎪⎨⎧≥<=-1,1,2)(1x x x x f x ,则使得2)(≤x f 成立的x 的取值范围是 .14.等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 .15.已知平面直角坐标系上的区域D 由不等式组⎪⎪⎩⎪⎪⎨⎧≤≤≤≤yx y x 2220给定.若M (x ,y )为D 上动点, 点A 的坐标为(,1).则OA OM z ⋅=的最大值为_________. 16.如图所示,网格纸上小正方形的边长为1,粗线画出的是某一几何体的三视图,则该几何体 外接球的表面积为 .三、解答题(总共70分)17、(12分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知1cos 23A =-,3c =,sin 6sin A C =. (1)求a 的值;(2)若角A 为锐角,求b 的值及△ABC 的面积.18、(12分) 已知等差数列{}n a 的前n 项和为n S ,且251,15a S ==,数列{}n b 的前n 项和n T 满足(5)n n T n a =+ (1)求n a ; (2)求数列1{}n na b 的前n 项和.19、(12分)如图所示,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是菱形,60=∠BAD ,2AB =,6=PD .O 为AC 与BD 的交点,E 为棱PB 上一点(1)证明:平面EAC ⊥平面PBD ; (2)若三棱锥P EAD -的体积为22,求证:PD ∥平面EAC .xOy 220、(12分)已知动圆M与圆22:(12N x y +=相切,且经过点P .(1)求点M 的轨迹E 的方程;(2)已知点(0,3)A ,若,B C 为曲线E 上的两点,且23AB AC =,求直线BC 的方程.21、(12分)已知函数22()(2)ln 2f x x x x ax =-⋅++.(Ⅰ)当1a=-时,求()f x 在(1,(1))f 处的切线方程;(Ⅱ)设函数()()2g x f x x =--,①若函数()g x 有且仅有一个零点时,求a 的值; ②在①的条件下,若2ex e -<<,()g x m ≤,求m 的取值范围。
2021年高三11月月考试题数学文
2021年高三11月月考试题数学文一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 函数的定义域为A. B. C. D.2.已知i为虚数单位, 则复数ii在复平面内对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限3.设向量,,则下列结论中正确的是A.B.C.D.4.已知直线经过坐标原点,且与圆相切,切点在第四象限,则直线的方程为A.B.C.D.5.甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲乙丙丁平均环数方差从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是A.甲B.乙C.丙D.丁6.如果执行图1的程序框图,若输入,那么输出的等于A.720 B.360 C.240 D.1207.“”是“”成立的图1A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.定义, 则等于图3N A . B .C .D .9. 某几何体的三视图如图1-2所示,则它的体积为( )A .8-2π3B .8-π3C .8-2π D.2π3 图1-210.若把函数的图象沿轴向左平移个单位,沿轴向下平移1个单位,然后再把图象上每个点的 图1-2 横坐标伸长到原来的2倍(纵坐标保持不变),得到函数 的图象,则的解析式为 A . B . C . D .二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.已知等比数列的公比是,,则的值是 .12.已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为________.13.设函数 若,则的取值范围是 . (二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,四边形内接于⊙,是直径,与⊙相切, 切点为,,则 .15.(坐标系与参数方程选讲选做题(为参数)三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函数 (1)求的值; (2)设56)23(,1310)23(],2,0[,=+=+∈πβπαπβαf f 求的值.17.(本小题满分12分)某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表:(1)用分层抽样的方法在35~50岁年龄段的专业技术人员中抽取一个容量为5的样本,将该样本看成一个总体, 从中任取2人, 求至少有1人的学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取个人,其中35岁以下48人,50岁以上10人,再从这个人中随机抽取出1人,此人的年龄为50岁以上的概率为,求、的值.18.(本小题满分14分)如图所示,在棱长为2的正方体中,、分别为、的中点.(1)求证://平面;(2)求证:;(3)求三棱锥的体积.19.(本小题满分14分)已知数列为等差数列,且,.(1) 求数列的通项公式;(2) 令,求证:数列是等比数列;(3)令,求数列的前项和.20.(本小题满分14分)如图直线l:y=x+b与抛物线C:x2=4y相切于点A.C DBFED1C1B1A A1(1)求实数b的值;(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.21.(本小题满分14分)已知函数R, .(1)求函数的单调区间;(2)若关于的方程为自然对数的底数)只有一个实数根, 求的值.xx 年培正中学高三数学(文科)11月月考参考答案一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分. 二、填空题:11. 12. 153 13. 14. 15.相交三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)解:(1)f ⎝ ⎛⎭⎪⎫5π4=2sin ⎝ ⎛⎭⎪⎫13×54π-π6=2sin π4= 2.(2)∵1013=f 3α+π2=2sin 13×3α+π2-π6=2sin α,65=f (3β+2π)=2sin ⎣⎢⎡⎦⎥⎤13×3β+2π-π6=2sin ⎝⎛⎭⎪⎫β+π2=2cos β, ∴sin α=513,cos β=35,又∵α,β∈⎣⎢⎡⎦⎥⎤0,π2,∴cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫5132=1213, sin β=1-cos 2β=1-⎝ ⎛⎭⎪⎫352=45, 故cos(α+β)=cos αcos β-sin αsin β=35×1213-513×45=1665.17.(本小题满分12分)(1) 解: 用分层抽样的方法在35~50岁中抽取一个容量为5的样本, 设抽取学历为本科的人数为,∴ , 解得. …… 2分∴ 抽取了学历为研究生2人,学历为本科3人,分别记作S 1、S 2 ;B 1、B 2、B 3 .从中任取2人的所有基本事件共10个: (S 1, B 1),(S 1, B 2),(S 1, B 3),(S 2, B 1),(S 2, B 2), (S 2, B 3), (S 1, S 2), (B 1, B 2), (B 2, B 3), (B 1, B 3).其中至少有1人的学历为研究生的基本事件有7个: (S 1, B 1),(S 1, B 2),(S 1, B 3),(S 2, B 1),(S 2, B 2), (S 2, B 3), (S 1, S 2). … 4分 ∴ 从中任取2人,至少有1人的教育程度为研究生的概率为. …… 6分 (2)解: 依题意得: ,解得. …… 8分 ∴ 35~50岁中被抽取的人数为. ∴. … 10分 解得. ∴. …… 12分题号 1 2 3 4 5 6 7 8 9 10 答案ABDCCBACAB18.(本小题满分14分) 解:(1)连结,在中,、分别为,的中点,则11111111////EF D BD B ABC D EF ABC D EF ABC D ⎫⎪⊂⇒⎬⎪⊄⎭平面平面平面……4分 2)1111111,B C AB B C BC AB B C ABC D AB BC B ⊥⎫⎪⊥⎪⎬⊂⎪⎪=⎭平面…………….8分(3)…………….10分且,1B F ===13B E ===,∴,即 ………12分 == …………14分19.(本小题满分14分)解: (1)由⎩⎨⎧y =x +b ,x 2=4y得x 2-4x -4b =0.(*)…..3分因为直线l 与抛物线C 相切,所以Δ=(-4)2-4×(-4b )=0…………. 解得b =-1…………6分(2)由(1)可知b =-1,故方程(*)即为x 2-4x +4=0. 解得x =2,代入x 2=4y ,得y =1, 故点A (2,1).………8分因为圆A 与抛物线C 的准线相切,所以圆A 的半径r 等于圆心A 到抛物线的准线y =-1的距离,…….11分 即r =|1-(-1)|=2………..12分所以圆A 的方程为(x -2)2+(y -1)2=4……….14分20.(本小题满分14分)解: (1)∵数列为等差数列,设公差为, …………………… 1分由,得, ,∴, …………………… 3分 . …………………… 5分(2)∵ , …………………… 6分CDBFED 1C 1B 1AA 1∴ ,…………………… 8分∴数列是首项为9,公比为9的等比数列 . …………………… 9分(3)∵,,∴………………… 12分∴……… 14分21.(本小题满分14分)(1)解: 函数的定义域为.∴.①当, 即时, 得,则.∴函数在上单调递增. ……2分②当, 即时, 令得,解得.(ⅰ) 若, 则.∵, ∴,∴函数在上单调递增.… 4分(ⅱ)若,则时, ;时, ,∴函数在区间上单调递减,在区间上单调递增.…… 6分综上所述, 当时, 函数的单调递增区间为;当时, 函数的单调递减区间为,单调递增区间为…… 8分(2) 解: 由, 得, 化为.令, 则.令, 得.当时, ; 当时, .∴函数在区间上单调递增, 在区间上单调递减.∴当时, 函数取得最大值, 其值为. …… 10分而函数,当时, 函数取得最小值, 其值为. …… 12分∴当, 即时, 方程只有一个根.…… 14分; 22656 5880 墀_aO26952 6948 楈fM28291 6E83 溃34989 88AD 袭38114 94E2 铢24442 5F7A 彺。
高三数学11月月考试题 文含解析 试题
第三中学2021届高三数学11月月考试题文〔含解析〕制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日一、选择题〔本大题一一共12小题,每一小题5分,满分是60分,每一小题只有一个正确答案〕,那么〔〕A. B. C. D.【答案】B【解析】,选B.2.是虚数单位,复数满足,那么的虚部是〔〕A. B. C. D.【答案】D【解析】因为,所以,所以的虚部是,选D.3.,那么〔〕A. B. C. D.【答案】A【解析】分析:利用余弦的二倍角公式可得,进而利用同角三角根本关系,使其除以,转化成正切,然后把的值代入即可.详解:由题意得.∵∴应选A.点睛:此题主要考察了同角三角函数的根本关系和二倍角的余弦函数的公式.解题的关键是利用同角三角函数中的平方关系,完成了弦切的互化.“〞是“〞的充要条件;,那么〔〕A. 为真命题B. 为假命题C. 为真命题D. 为真命题【答案】D【解析】函数是增函数,所以,所以是充要条件,所以命题使正确的,为真命题,由图像可知和关于直线对称,没有交点,所以不存在,使,所以命题使错误的,为假命题,根据复合命题的真假可知是真命题,应选D.,满足,且,那么的最大值为〔〕A. B. C. D.【答案】C【解析】所以过点时,的最大值为5。
应选C。
的公差为,前项和为,且,那么〔〕A. B. C. D.【答案】B【解析】分析:利用向量的线性运算把用表示出来后,由向量相等得出数列的递推关系.详解:∵,∴,即,又,∴,∴,∴.应选B.点睛:等差数列问题可用根本量法求解,即把条件用首项和公差表示并求出即可得通项公式和前项和公式.根本量法的两个公式:,.满足且,的夹角为〔〕A. B. C. D.【答案】C【解析】【分析】运用向量的平方即为模的平方,求得,由向量数量积的夹角公式,计算可得所求值.【详解】由得,①又由得,②将②代入①式,整理得:,即又因为,即应选.【点睛】此题考察向量数列的定义和夹角的求法,考察向量的平方即为模的平方,考察运算才能,属于中档题.,假设是的等比中项,那么的最小值为〔〕A. 8B.C. 1D. 4【答案】D【解析】∵是的等比中项,∴3=3a•3b=3a+b,∴a+b=1.a>0,b>0.∴==2.当且仅当a=b=时取等号.应选D.点睛:在利用根本不等式求最值时,要特别注意“拆、拼、凑〞等技巧,使其满足根本不等式中“正〞(即条件要求中字母为正数)、“定〞(不等式的另一边必须为定值)、“等〞(等号获得的条件)的条件才能应用,否那么会出现错误9.某几何体的三视图如下图,那么该几何体的体积为〔〕A. B. C. D.【答案】B【解析】作出立体图形为:故该几何体的体积为:在上是减函数,那么a的取值范围为A. B. C. D.【答案】B【解析】【分析】令t=,那么由题意可得函数t在区间[-2,+∞〕上为增函数且t〔-2〕>0,由此解得实数a的取值范围.【详解】令t=,那么函数g〔t〕t在区间〔0,+∞〕上为减函数,可得函数t在区间[2,+∞〕上为增函数且t〔-2〕>0,故有,解得﹣4≤a<5,应选:B.【点睛】此题主要考察复合函数的单调性,要注意函数的定义域及复合函数单调性的结论:同增异减的应用,此题属于根底题.,〔为自然对数的底数〕,且,那么实数的取值范围是〔〕A. B. C. D.【答案】C【解析】,那么函数为偶函数且在上单调递增,,,即,两边平方得,解得或者,应选C.,那么方程恰有两个不同的实根时,实数范围是( )A. B. C. D.【答案】C【解析】【分析】由方程f〔x〕=kx恰有两个不同实数根,等价于y=f〔x〕与y=kx有2个交点,又k表示直线y=kx的斜率,数形结合求出k的取值范围.【详解】∵方程f〔x〕=kx恰有两个不同实数根,∴y=f〔x〕与y=kx有2个交点,又∵k表示直线y=kx的斜率,x>1时,y=f〔x〕=lnx,∴y′=;设切点为〔x0,y0〕,那么k=,∴切线方程为y﹣y0=〔x﹣x0〕,又切线过原点,∴y0=1,x0=e,k=,如下图;结合图象,可得实数k的取值范围是.应选:C【点睛】此题考察了函数的图象与性质的应用问题,解题时应结合图象,以及函数与方程的关系,进展解答,属于中档题.二、填空题〔本大题一一共4个小题,每一小题5分,一共20分〕,在高三8次月考的化学成绩用茎叶图表示如图,其中学生的平均成绩与学生的成绩的众数相等,那么__________.【答案】5【解析】由题意,得,解得.的图象上每一点的横坐标缩短为原来的一半,纵坐标不变;再向右平移个单位长度得到的图象,那么_________.【答案】【解析】【分析】由条件根据函数的图象变换规律,,可得的解析式,从而求得的值.【详解】将函数向左平移个单位长度可得的图象;保持纵坐标不变,横坐标伸长为原来的倍可得的图象,故,所以.【点睛】此题主要考察函数〕的图象变换规律,属于中档题.15.三点在半径为5的球的外表上,是边长为的正三角形,那么球心到平面的间隔为__________.【答案】3【解析】设平面截球所得球的小圆半径为,那么,故,那么球心到平面的间隔为,故答案为3.,令,那么称为的“伴随数列〞,假设数列的“伴随数列〞的通项公式为,记数列的前项和为,假设对任意的正整数恒成立,那么实数取值范围为__________.【答案】【解析】由题意得,所以, 相减得-,所以,也满足. 因此数列的前项和为,点睛:给出与的递推关系求,常用思路是:一是利用转化为的递推关系,再求其通项公式;二是转化为的递推关系,先求出与之间的关系,再求. 应用关系式时,一定要注意分两种情况,在求出结果后,看看这两种情况能否整合在一起.三、解答题〔本大题一一共5题,每一小题12分,一共60分〕17.〔此题满分是12分〕在△ABC中,A=,.〔I〕求cosC的值;〔Ⅱ〕假设BC=2,D为AB的中点,求CD的长.【答案】〔1〕〔2〕【解析】试题分析:〔Ⅰ〕在三角形中,,再求出,代入即得;〔Ⅱ〕由〔Ⅰ〕可得,再由正弦定理得,解得.在中,用余弦定理可求得.试题解析:〔Ⅰ〕且,∴2分4分6分〔Ⅱ〕由〔Ⅰ〕可得8分由正弦定理得,即,解得. 10分在中,,所以12分考点:1、三角恒等变换;2、解三角形.18.某贫困地区有1500户居民,其中平原地区1050户,山区450户.为调查该地区2021年家庭收入情况,从而更好地施行“精准扶贫〞,采用分层抽样的方法,搜集了150户家庭2021年年收入的样本数据〔单位:万元〕.〔Ⅰ〕应搜集多少户山区家庭的样本数据?〔Ⅱ〕根据这150个样本数据,得到2021年家庭收入的频率分布直方图〔如下图〕,其中样本数据分组区间为,,,,,,.假如将频率视为概率,估计该地区2021年家庭收入超过1.5万元的概率;〔Ⅲ〕样本数据中,由5户山区家庭的年收入超过2万元,请完成2021年家庭收入与地区的列联表,并判断是否有的把握认为“该地区2021年家庭年收入与地区有关〞?附:【答案】〔Ⅰ〕45;〔Ⅱ〕;〔Ⅲ〕有的把握认为“该地区2021年家庭年收入与地区有关〞.【解析】分析:〔Ⅰ〕利用分层抽样中每层所抽取的比例数相等求得答案;〔Ⅱ〕根据频率分布直方图可得该地区2021年家庭收入超过1.5万元的概率;〔Ⅲ〕由题意列出2×2列联表,计算出的值,结合附表得答案.详解:〔Ⅰ〕由可得每户居民被抽取的概率为0.1,故应手机户山区家庭的样本数据..〔Ⅲ〕样本数据中,年收入超过2万元的户数为户.而样本数据中,有5户山区家庭的年收入超过2万元,故列联表如下:所以,∴有的把握认为“该地区2021年家庭年收入与地区有关〞.点睛:此题主要考察了HY性检验的应用,属于中档题.解决HY性检验的三个步骤:①根据样本数据制成2×2列联表;②根据公式,计算的值;③查值比拟的值与临界值的大小关系,作出判断.满足.〔1〕证明数列是等差数列,并求的通项公式;〔2〕假设数列满足,求数列的前项和.【答案】〔1〕;〔2〕.【解析】分析:〔1〕两边取倒数可得,从而得到数列是等差数列,进而可得的通项公式;〔2〕,利用错位相减法求和即可.详解:〔1〕∵,∴,∴是等差数列,∴,即;〔2〕∵,∴,那么,两式相减得,∴.点睛:用错位相减法求和应注意的问题(1)要擅长识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n〞与“qS n〞的表达式时应特别注意将两式“错项对齐〞以便下一步准确写出“S n-qS n〞的表达式;(3)在应用错位相减法求和时,假设等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.,三棱柱中,侧面为菱形,.(1)证明:;(2)假设,且平面平面,求点到平面的间隔 .【答案】(1)见解析(2).【解析】试题分析:(1) 连结交于,连结,由题意易得,那么有平面,可得;(2)由,那么易得结果.试题解析:(1)连结交于,连结,在菱形中,,∵为中点,∴,又∵,∴平面,∴.(2) ∵侧面为菱形,,∴为等边三角形,即.又∵平面平面,平面平面,又平面,∴平面,在,在,∴为等腰三角形,∴,∴,设到平面的间隔为,那么, ∴.,其中.〔Ⅰ〕当时,判断函数在定义域上的单调性;〔Ⅱ〕当时,求函数的极值点〔Ⅲ〕证明:对任意的正整数,不等式都成立.【答案】〔1〕在定义域上单调递增;〔II〕时,在上有唯一的极小值点;时,有一个极大值点和一个极小值点;时,函数在上无极值点。
2021年高三11月联考数学文试题
2021年高三11月联考数学文试题一、选择题(10题,共50分)1 数列满足且,则的值是()A 1B 4C -3D 62.已知集合,若,则实数的取值范围是( )A. B. C. D.3、若f(cos x)=cos2x,则f(sin) 的值()A.B.C.D.4.已知数列{a n}的通项公式是a n=(-1)n(n+1),则a1+a2+a3+…+a10=( ) A.-55 B.-5 C.5 D.555.函数y=lg|x|x的图象大致是 ( )6.已知集合M={a|a=(1,2)+λ(3,4),λ∈R},N={a|a=(-2,-2)+λ(4,5),λ∈R},则M∩N等于( )A.{(1,1)} B.{(1,1),(-2,-2)}C.{(-2,-2)} D.∅7.已知,其中,则的值为()A. B. C. D.或8.已知函数是定义在上的奇函数,若对于任意给定的不等实数,不等式恒成立,则不等式的解集为()A. B. C. D.9.已知函数的定义域是,函数满足,当时,.设,,,则()A. B. C. D.10.已知函数f(x)=x2+bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列⎩⎨⎧⎭⎬⎫1f (n )的前n 项和为S n ,则S 2011的值为( )A.20092010B.20112012C.20082009D.20102011二、填空题(5题,25分)11. 已知数列为等差数列,若,则的值为 . 12.已知一正整数的数阵如下13 2456 10 9 8 7…则第7行中的第5个数是________.13.如图是函数y =A sin(ωx +φ) (A >0,ω>0,|φ|<π)的图象的一段,求其解析式____14.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°, 再由点C 沿北偏东15°方向走10米到位置D ,测得 ∠BDC =45°,则塔AB 的高是________米.15.设函数,给出下列四个命题: ① 当时,是奇函数;② 当,时,方程只有一个实根; ③ 函数的图象关于点对称;④ 方程至多有两个实根其中正确命题为_______ 三、解答题(75分)16.(12分)设命题p :(4x -3)2≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若p是q 的必要不充分条件,求实数a 的取值范围. 17.(12分)在中, (1)求 的值;(2)求的值。
高三数学11月联考 文 试题
卜人入州八九几市潮王学校丰、樟、高、宜四2021届高三联考数学〔文〕试题一、选择题〔本大题一一共10小题,每一小题5分,一共50分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕 1.设集合{}2,1=A ,那么满足{}3,2,1=B A 的集合B 的个数是〔〕A .1B .3C .4D .82.函数)(x f 中,0)1(=f ,且对任意正整数x 满足x x f x f 2)()1(+=+,那么=)2012(f〔〕A .20112010⨯B .22011C .20122011⨯D .220123.等比数列}{n a 中,各项都是正数,且2312,21,a a a 成等差,那么87109a a a a ++= 〔〕A .21+B .21-C .223+D .223-4.假设)4sin(2cos παα-=-22,那么ααsin cos +的值是〔〕A .-27 B .-21 C .21 D .27 5.32011sin 2012)(x x x f +=,且)1,1(-∈x ,假设0)1()1(2<-+-a f a f ,那么a 的取值范围是〔〕A .)2,0(B .)2,1(- C .)0,2(- D .)2,1(6.〕A .假设直线a ∥平面M ,直线b ∥a ,那么b ∥M ;B .假设a ∥M ,b ∥M ,a ⊂平面N ,b ⊂N ,那么N ∥M ;C .假设两平面P ∩Q =a ,b ⊂P ,b ⊥a ,那么b ⊥Q ;D .假设M ∥N ,a ⊂M ,那么a ∥N .7.a =++-)12(log )122(log 27,那么=-++)12(log )122(log 27 〔〕A .a +1B .a -1C .aD .a -8.设非空集合}{l x m x S ≤≤=满足,当S x ∈时,有S x ∈2①假设1=m ,那么}1{=S ;②假设21-=m ,那么141≤≤l ;③假设l =21,那么022≤≤-m 〕A .①②③B .①②C .②③D .①③9.在ABC ∆中,3,2AB BC AC ===,假设点O 为ABC ∆的内心,那么AO AC ⋅的值是〔〕A .2B .73C .3D .510.函数20114321)(2011432x x x x x x f ++-+-+= ,试问函数()f x 在其定义域内有多少个零点? 〔〕A .0B .1C .2D .3二、填空题〔本大题一一共5小题,每一小题5分,一共25分〕 11.设R a ∈,假设函数R x ax e y x ∈+=,有大于零的极值点,那么实数a 的取值范围是.12.在锐角ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,假设C baa b cos 6=+,那么A C tan tan +BCtan tan =. 13.植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵相距3米,开场时需将树苗集中放在某一树坑旁边,现将树坑从1至20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最正确坑位的编号为.假设集中放在两个树坑旁边〔每坑旁10棵树苗〕,那么最正确坑位编号又分别为、。
高三11月份联考数学文科试题
卜人入州八九几市潮王学校高三年级11月份联考数学文科试题时量:120分钟总分:150分一、选择题〔本大题一一共10小题,每一小题5分,一共50分。
在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的。
〕1.假设集合M={y ︱x 2=y ,x }R ∈,集合N={y ︱x+y=0,x R ∈},那么M N 等于〔〕A .{y ︱y R ∈}B .{(-1,1),(0,0)}C .{(0,0)}D .{x ︱x ≥0} 2⊿ABC 中,∠C>∠22bc >的充分不必要条件那么〔〕A .p 真q 假B .p 假q 真C .“p 或者q 〞为假D .“p 且q 〞为真 3.等差数列{a n }的前n 项和是n S ,假设520S =,那么234a a a ++=〔〕A .9B .12C .15D .184.函数()21log f x x =+与()12x g x -+=在同一直角坐标系下的图象大致是〔〕5.假设两个函数的图象经过假设干次平移后可以重合,那么称这两个函数为“同形〞函数,给出以下三个函数:()1sin cos ,f x x x =+()2f x x =,()3sin f x x =那么〔〕A .()()()123,,f x f x f x 为“同形〞函数B .()()12,f x f x 为“同形〞函数,且它们与()3f x 不为“同形〞函数C .()()13,f x f x 为“同形〞函数,且它们与()2f x 不为“同形〞函数D .()()23,f x f x 为“同形〞函数,且它们与()1f x 不为“同形〞6.向量x y b a y b x a 93,),,4(),2,(+⊥==则若的最小值为〔〕A .22B .2C .2D .37.设点p是双曲线22221x y ab-=〔a>b>0〕上的任意一点,点A(a,0),B(0,b),0为坐标原点,且OP xOA yOB =+,那么点(x,y)的轨迹方程是〔〕A .x-y=lB .1x y a b-= C .22221x y a b-=D .221xy -=8.,m n 是两条不同直线,,,αβγ〕 A .,,m n m n αα若则‖‖‖ B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,mn m n αα⊥⊥若则‖9.一个容量为64的样本数据,分组后,组别与频数如下表:那么样本在(]50,70上的频率为〔〕A .1332B .1532C .12D .173210.),(),(,1)1,1(**N n m N n m f f ∈∈=,且对任意*,N n m ∈都有①;2),()1,(+=+n m f n m f ②)1,(2)1,1(m f m f =+。
高三数学11月月考文科试题
高三11月月考试题文 科 数 学注意事项:1.本次数学考试满分150分,答题时间120分钟。
2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
3.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
4.回答第Ⅱ卷时,将答案写在答题卡指定的边框内上,超出边框或者写在本试题卷上无效。
5.考试结束后,只将答题卡交回。
第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知i 是虚数单位,复数52i-= (A) i -2(B) i +2 (C) -2 (D) 22.命题“若x =300°,则cos x =12”的逆否命题是(A) 若cos x =12,则x =300°(B) 若x =300°,则cos x ≠12(C) 若cos x ≠12,则x ≠300°(D) 若x ≠300°,则cos x ≠123.抛物线22x y =的焦点坐标是(A) )81,0( (B) )21,0( (C) )0,81( (D) )0,21( 4.函数22()log (4)f x x =-定义域为 (A) [2,2]-(B) (2,2)-(C) (,2)(2,)-∞+∞(D) (,2][2,)-∞+∞5.若点(),9a 在函数3xy =的图象上,则6a tan π的值为 (A) 0 (B)33(C) 1 (D) 36.已知x 0是函数1()e x f x x=-的一个零点(其中e 为自然对数的底数),若10(0,)x x ∈,20(,)x x ∈+∞,则(A) 12()0()0f x f x <,< (B) 12()0()0f x f x <,> (C) 12()0()0f x f x >,<(D) 12()0()0f x f x >,>7.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的 距离为(A(B )3 (C(D )3m 8. 设F 为抛物线C 的方程为y 2=3x ,的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则AB = (A(B )6 (C )12 (D)9.已知圆C 的圆心在曲线y =2x 上,圆C 过坐标原点O ,且分别与x 轴、y 轴交于A ,B 两点,则△OAB 的面积等于(A) 2 (B) 3(C) 4(D) 810.P 是△ABC 内一点,△ACP ,△BCP 的面积分别记为S 1,S 2,已知344CP CA CB λλ=+,其中(01)λ∈,,则12SS = (A) 12 (B) 13 (C) 14 (D) 15第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目指示的答题区域内作答。
《精编》北京市东城区高三数学11月联考试题 文 新人教A版.doc
东城区普通校-学年第一学期联考试卷高三数学〔文科〕命题校:北京市崇文门中学 年11月本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部,共 150 分,考试用时 120分钟。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第一卷一、选择题:本大题共8小题,每题5分,共40分.在每题给出的四个选项中,只有一项符合题目要求. 1. 设集合{xx U =}3<, {}1<=x x A ,那么A C U = 〔 〕A .{}31<≤x xB .{}31≤<x xC .}{31<<x x D .{}1x x ≥2. 以下函数中在区间)(0,+∞上单调递增的是 〔 〕A. sinx y =B. 2-x y =C. x y 3log =D. x)21(y =3. 设⎩⎨⎧<>=)0(,3)0(log )(3x x x x f x ,那么)]3([-f f等于 ( )A. 3B. 3-C.31D. 1- 4. 二次函数()x f 的图象如图1所示 , 那么其导函数()x f '的图象大致形状是〔 〕5.“3=a 〞是“函数22)(2+-=ax x x f 在区间[)+∞,3内单调递增〞的〔 〕A .充分而不必要条件B .必要而不充分条件w.w.w.k.s.C .充分必要条件 w.w. .D .既不充分也不必要条件6.函数2)(-+=x e x f x 的零点所在的区间是 〔 〕A. 〔-2,-1〕B. 〔-1,0〕C. 〔1,2〕D. 〔0,1〕7. 将函数x y 2cos =的图象先向左平移2π个单位长度,再向上平移1个单位长度,所得图象对应的函数解析式是 ( ) A. x y 2sin -= B. x y 2cos -= C. x y 2sin 2= D. 22cos y x =- 8. 某企业投入100万元购入一套设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业〔 〕年后需要更新设备. A. 10 B. 11 C. 13 D. 21第二卷二、填空题:本大题共6小题,每题5分,共30分. 9.),2(,135sin ππαα∈=,那么=αtan . 10. 假设数列{}n a 满足11=a ,)(2*1N n a a n n ∈=+,那么3a = ;前5项的和5S = . 11. )(x f 是定义在R 上的偶函数,并满足)()4(x f x f =+,当21≤≤x 时,2)(-=x x f ,那么=)5.6(f .12. 设2log 31=a ,3log 2=b ,3.0)21(=c ,那么a 、b 、c 从小到大的顺序是 .13. 命题021,:0200≤++∈∃x ax R x p . 假设命题p 是假命题,那么实数a 的取值范围是 .14. 函数)(x f 的定义域为A ,假设其值域也为A ,那么称区间A 为)(x f 的保值区间.假设x m x x f ln )(-+=的保值区间是[,)e +∞,那么m 的值为 .三、解答题:本大题共6小题,共80分.解容许写出文字说明、证明过程或演算步骤. 15. (本小题总分值12分)在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且32sin cA a = (Ⅰ) 确定角C 的大小;〔Ⅱ〕假设c =7,且△ABC 的面积为233,求22b a +的值. 16. (本小题总分值13分)函数2()cos 2sin f x x x x =-.〔Ⅰ〕假设角α的终边与单位圆交于点)54,53(p ,求()f α的值; 〔Ⅱ〕假设[,]63x ππ∈-,求()f x 最小正周期和值域. 17. (本小题总分值13分)等差数列{}n a 满足:25a =,4622a a +=.{}n a 的前n 项和为n S . 〔Ⅰ〕求n a 及n S ; 〔Ⅱ〕假设21()1f x x =- ,()n n b f a =〔*n N ∈〕,求数列{}n b 的前n 项和n T . 18. 〔本小题总分值14分〕函数)1,0)(1(log )(),1(log )(≠>-=+=a a x x g x x f a a 且其中〔Ⅰ〕求函数)()(x g x f +的定义域; 〔Ⅱ〕判断函数)()(x g x f -的奇偶性,并予以证明;〔Ⅲ〕求使0)()(<+x g x f 成立的x 的集合.19. 〔本小题总分值14分〕322()2f x x ax a x =+-+.〔Ⅰ〕假设1a =,求曲线)(x f y =在点))1(,1(f 处的切线方程; 〔Ⅱ〕假设0,a ≠ 求函数()f x 的单调区间; 〔Ⅲ〕假设不等式22ln ()1x x f x a '≤++恒成立,求实数a 的取值范围.20.〔本小题总分值14分).数列}{n a 的前n 项和为3,1=a S n 若,n S 和1+n S 满足等式,111+++=+n S nn S n n 〔Ⅰ〕求2S 的值; 〔Ⅱ〕求证:数列}{nS n是等差数列;〔Ⅲ〕假设数列}{n b 满足n a n n a b 2⋅=,求数列}{n b 的前n 项和n T ;〔Ⅳ〕设322+=n n n T C ,求证:.272021>+⋅⋅⋅++n C C C东城区普通校-学年第一学期联考试卷高三数学〔文科〕参考答案〔以下评分标准仅供参考,其它解法自己根据情况相应地给分〕解:〔Ⅰ〕解:∵ 32sin c A a = 由正弦定理得Cc c A a sin 23sin == ………2分 ∴23sin =C ………………4分 ∵ ABC ∆是锐角三角形, ∴ 3π=C ………………6分〔Ⅱ〕解: 7=c , 3π=C 由面积公式得2333sin 21=πab ………………8分 ∴ 6ab = ………………9分由余弦定理得73cos222=-+πab b a ……………11分∴ 1322=+b a ………………12分 16.〔本小题总分值13分〕解:〔Ⅰ〕∵ 角α的终边与单位圆交于点)54,53(p∴ 54sin =α,53cos =α, ………………2分 ∴2()cos 2sin f αααα=-24342()555=⨯-⨯=. ………………4分〔Ⅱ〕2()cos 2sin f x x x x =-cos21x x =+-2sin(2)16x π=+- ………………8分 ∴最小正周期T=π ………………9分∵ [,]63x ππ∈-,所以65626πππ≤+≤-x , ……………10分 ∴ 1sin(2)126x π-≤+≤, ………………12分 ∴ ()f x 的值域是[2,1]-. ………………13分 17.〔本小题总分值13分〕解. 〔Ⅰ〕设等差数列{a n }的首项为a 1,公差为d∵ 25a =,4622a a +=∴ 2282,511=+=+d a d a ………………2分 解得 2,31==d a ………………4分 ∴ 12+=n a n n n S n 22+=, ………………6分 〔Ⅱ〕∵ 21()1f x x =-,()n nb f a = ∴ 211n n b a =- ………………7分 ∵12+=n a n ∴ )1(412+=-n n a n ∴ )1(41+=n n b n 111()41n n =-+ ………………9分 n n b b b b T +⋅⋅⋅+++=321=14(1- 12+ 12- 13+…+1n -11n +) ………………11分=14(1-11n +) =4(1)n n +所以数列{}n b 的前n 项和n T =4(1)nn + . ………………13分18.〔本小题总分值14分〕解:〔Ⅰ〕)()(x g x f +)1(log )1(log x x a a -++=由⎩⎨⎧>->+0101x x 11x -<<得………………2分所求定义域为{}R x x x ∈<<-,11| ………………3分 〔Ⅱ〕令)()()(x g x f x h -=1log (1)log (1)log 1a a ax x x x+=+--=- ………………4分 定义域为{}R x x x ∈<<-,11|()()x h x x a x x x x a x h -=-+-=-⎪⎭⎫⎝⎛-+=+-=-11log111log 11log∴ ()()f x g x -为奇函数 ……………8分〔Ⅲ〕()1log 01log )1)(1(log )()(2a a a x x x x g x f =<-=-+=+……………9分2101-x 1,-1001a x x ∴><<<<<<当时,得或当2011a <<>时,1-x . 不等式解集为空集综上: {}1101a x x >-<<<<当时,不等式的解集为或0 当01a <<时, 不等式的解集为空集 ……………14分 19.〔本小题总分值14分〕解:〔Ⅰ〕 ∵ 1=a ∴2)(23+-+=x x x x f ∴ 123)(2-+='x x x f …………1分∴ =k 4)1(='f , 又3)1(=f ,所以切点坐标为)3,1( ∴ 所求切线方程为)1(43-=-x y ,即014=--y x . …………4分 〔Ⅱ〕22()32()(3)f x x ax a x a x a '=+-=+-由()0f x '= 得x a =- 或3ax =…………5分 (1)当0a >时,由()0f x '<, 得3aa x -<<.由()0f x '>, 得x a <-或3ax >此时()f x 的单调递减区间为(,)3a a -,单调递增区间为(,)a -∞-和(,)3a+∞.…………7分 (2)当0a <时,由()0f x '<,得3ax a <<-. 由()0f x '>,得3ax <或x a >- 此时()f x 的单调递减区间为(,)3a a -,单调递增区间为(,)3a-∞和(,)a -+∞.综上:当0a >时,()f x 的单调递减区间为(,)3aa -,单调递增区间为(,)a -∞-和(,)3a+∞当0a <时,()f x 的单调递减区间为(,)3aa -单调递增区间为(,)3a-∞和(,)a -+∞.…………9分 〔Ⅲ〕依题意),0(+∞∈x ,不等式22ln ()1x x f x a '≤++恒成立, 等价于123ln 22++≤ax x x x 在(0,)+∞上恒成立可得xx x a 2123ln --≥在(0,)+∞上恒成立 ………………11分 设()x x x x h 2123ln --=, 那么()()()22'213121231x x x x x x h +--=+-=………………12分令0)(='x h ,得11,-3x x ==〔舍〕当10<<x 时,0)(>'x h ;当1>x 时,0)(<'x h当x 变化时,)(),(x h x h '变化情况如下表:∴ 当1=x 时,()x h 取得最大值, ()x h max =-2 2-≥∴a∴ a 的取值范围是[)+∞-,2. ………14分 20.〔本小题总分值14分〕解:〔I 〕由:21122228S S a =+=+= …………2分 〔II 〕∵111n n n S S n n++=++ 同除以11:,11=-+++nS n S n nn 则有 …………4分 }{nS n数列∴是以3为首项,1为公差的等差数列. …………6分〔III 〕由〔II 〕可知, 2*2()n S n n n =+∈N ……………7分113n a ∴==当时, 当12,21n n n n a S S n -≥=-=+时经检验,当n=1时也成立 ∴21(*)n a n n N =+∈ ………………9分211213521212(21)2,3252(21)2(21)2na n n n n n n nn n n b a b n T b b b b T n n +--+=⋅∴=+⋅=++⋅⋅⋅++∴=⋅+⋅+⋅⋅⋅+-⋅++⋅32121252)12(2)12(2)32(234++-⋅++⋅-+⋅-+⋅⋅⋅+⋅=n n n n n n n T …………10分解得:.982)9132(32-⋅+=+n n n T …………11分〔Ⅳ〕∵232111()23994n n n n T n C +==+-⋅ 411])41(1[4191912)1(3221--⋅-⋅++⋅=+⋅⋅⋅++∴n n n n n C C C n n n )41(2712719432⋅+-+=.2720271972719432=-≥-+>n n…………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三文科数学月考试题一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 满足()()21i 2z --=(i 为虚数单位),则z 的共轭复数z 为A.1i -B.1+ iC.3i -D.3+ i2.已知集合,A B 均为全集{}12U =,,3,4的子集,且()C U A B ⋃={}4,{}1B =,2,则C U A B ⋂=A .{}3 B.{}4 C. {}34,D.∅ 3.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项和10S =A.85B.135C.95D.234.设0.220.20.2log 2,log 3,2,0.2a b c d ====,则这四个数的大小关系是A.a b c d <<<B.d c a b <<<C.b a c d <<<D.b a d c <<< 5.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是A.若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥B.若//,,,a b αβαγβγ==I I 则//a bC.若//,a b b α⊂,则//a αD.若,,//,//a b a b ββαα⊂⊂,则//βα6.已知向量()2,1=→a ,()1,0=→b ,()2,-=→k c ,若(2+→a →b )⊥→c ,则k =A.2B. 2-C.8D.8-7.给出下列四个结论:①若命题2000:,10p x x x ∃∈++<R ,则2:,10p x x x ⌝∀∈++≥R ;② “()()340x x --=”是“30x -=”的充分而不必要条件;③命题“若0m >,则方程20x x m +-=有实数根”的逆否命题为:“若方程20x x m +-=没有实数根,则m ≤0”;④若0,0,4a b a b >>+=,则ba 11+的最小 值为1.其中正确结论的个数为A.1B.2C. 3D.4 8.将函数()sin(2)6f x x π=+的图像向右平移6π个单位,那么所得的图像所对应的函数解 析式是A.sin 2y x =B.cos 2y x =C.2sin(2)3y x π=+D.sin(2)6y x π=-9.某程序框图如图1所示,若该程序运行后输出的值是95,则 A.4a = B.5a = C.6a = D.7a =10.已知函数)(x f 是定义在(,)-∞+∞上的奇函数,若对于任意的实数0≥x ,都有)()2(x f x f =+,且当[)2,0∈x 时,)1(log )(2+=x x f ,则)2012()2011(f f +-的值为A.1-B. 2-C. 2D.1二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.在区间[]-33,上随机取一个数x ,使得函数()131f x x x =-++-有意义的概率为 .12.设变量,x y 满足约束条件20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数2z x y =+的最大值为 .13.已知双曲线()222210,0x y a b a b-=>>的两条渐近线与抛物线()220y px p =>的准线分别交于,A B 两点,O 为坐标原点.若双曲线的离心率为2,AOB ∆的面积为3,则p = .(二)选做题(14、15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)已知极坐标的极点与平面直角坐标系的原点重合,极轴与x 轴的正半轴重合,且长度单位相同.圆C 的参数方程为13cos (13sin x y ααα=+⎧⎨=-+⎩为参数),点Q 的极坐标为(2,4π). 若点P 是圆C 上的任意一点,,P Q 两点间距离的最小值为 .15.(几何证明选讲选做题)如图2,AB 是⊙O 的直径,P 是AB 延长线上的一点,过点P 作⊙O 的切线,切点为C ,32=PC ,若︒=∠30CAP ,则⊙O 的直径=AB __________ .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<,x ∈R 的最大值是1,最小正周期是2π,其图像经过点(0,1)M .(1)求()f x 的解析式;(2)设A 、B 、C 为△ABC 的三个内角,且3()5f A =,5()13f B =,求()f C 的值.17.(本小题满分12分)某中学作为蓝色海洋教育特色学校,随机抽取100名学生,进行一次海洋知识测试,按测试成绩分组如下:第一组[65,70),第二组 [70,75),第三组[75,80),第四组 [80,85),第五组 [85,90)(假设考试成绩均在[65,90)内),得到频率分布直方图如图3: (1)求测试成绩在[80,85)内的频率;(2)从第三、四、五组同学中用分层抽样的方法抽取6名同学组成海洋知识宣讲小组,定期在校内进行义务宣讲,并在这6名同学中随机选取2名参加市组织的蓝色海洋教育义务宣讲队,求第四组至少有一名同学被抽中的的概率.18.(本小题满分14分)如图,菱形ABCD 的边长为4,60BAD ∠=o,AC BD O =I .将菱形ABCD 沿对角线AC 折起,得到三棱锥B ACD -,点M 是棱BC 的中点,22DM =. (1)求证://OM 平面ABD ; (2)求证:平面DOM ⊥平面ABC ; (3)求三棱锥B DOM -的体积.19.(本小题满分14分)若数列{}n a 的前n 项和为n S ,对任意正整数n 都有612n n S a =-,记12log .n n b a =(1)求1a ,2a 的值;(2)求数列{}n b 的通项公式;(3)若11,0,n n n c c b c +-==求证:对任意*2311132,4n n n N c c c ≥∈+++<L 都有.20.(本小题满分14分)已知椭圆R :()222210x y a b a b +=>>的长轴长为4,且过点12⎫⎪⎭,.(1)求椭圆R 的方程;(2)设A 、B 、M 是椭圆上的三点,若3455OM OA OB −−→−−→−−→=+,点N 为线段AB 的中点,C 、D两点的坐标分别为,02⎛⎫- ⎪ ⎪⎝⎭、2⎛⎫⎪ ⎪⎝⎭,求证:NC ND +=21.(本小题满分14分)已知函数()1ln(02)2xf x x x=+<<-. (1)试问()(2)f x f x +-的值是否为定值?若是,求出该定值;若不是,请说明理由;(2)定义2111221()()()()n n i i n S f f f f n n n n-=-==++⋅⋅⋅+∑,其中*n ∈N ,求2013S ; (3)在(2)的条件下,令12n n S a +=.若不等式2()1n am n a ⋅>对*n ∀∈N 且2n ≥恒成立,求实数m 的取值范围.文科数学参考答案一、选择题:本大题考查共10小题,每小题5分,满分50分.二、填空题:11.2312. 12 13. 2 14. 1 15. 4 三、解答题:.16解:(1)因为函数()f x 的最大值是1,且0A >,所以1A =.因为函数()f x 的最小正周期是2π,且0ω>,所以22T ππω==,解得1ω=.所以()sin()f x x ϕ=+.因为函数()f x 的图像经过点(0,1)M ,所以sin 1ϕ=. 因为0ϕπ<<,所以2πϕ=.所以()sin()cos 2f x x x π=+=.(2)由(1)得()cos f x x =,所以3()cos 5f A A ==,5()cos 13f B B ==.因为,(0,)A B π∈,所以4sin 5A ==,12sin 13B ==.因为,,A B C 为△ABC 的三个内角,所以cos cos[()]cos()C A B A B π=-+=-+. 所以()cos cos()(cos cos sin sin )f C C A B A B A B ==-+=--35412()513513=-⨯-⨯3365=.17.解:(1)测试成绩在[80,85)内的频率为:()10.010.070.060.025-+++⨯ 2分0.2= ………3分(2)第三组的人数等于0.065100=30⨯⨯,第四组的人数等于0.2100=20⨯,第五组的人数等于0.025100=10⨯⨯, …………5分分组抽样各组的人数为第三组3人,第四组2人,第五组1人. …………6分 设第三组抽到的3人为123,,A A A ,第四组抽到的2人为12B B ,,第五组抽到的1人为C . …………7分这6名同学中随机选取2名的可能情况有15种,如下:()()()()()()()()121311121232122,A A A A A B A B A C A A A B A B ,,,,,,,,,,,,,,,()()()()()()()2313231212,,,A C A A B A C B B B C B C ,,B ,,,,,,,,. …………10分设“第四组2名同学至少有一名同学被抽中”为事件M ,事件M 包含的事件个数有9种,即:()11A B ,,()12A B ,,()21A B ,,()22A B ,,()31A B ,,()()3212A B B B ,,,,()1B C ,,()2B C ,. …………11分所以, 事件M 的概率即第四组至少有一名同学被抽中的概率为()93=155P M =. …………12分 18.(1)因为O 为AC 的中点,M 为BC 的中点,所以//OM AB . 因为OM ⊄平面ABD ,AB ⊂平面ABD ,所以//OM 平面ABD .(2)因为在菱形ABCD 中,OD AC ⊥,所以在三棱锥B ACD -中,OD AC ⊥.在菱形ABCD 中,AB =AD =4,60BAD ∠=o ,所以BD =4.因为O 为BD 的中点,所以122OD BD ==.因为O 为AC 的中点,M 为BC 的中点,所以122OM AB ==. 因为2228OD OM DM +==,所以90DOM ∠=o ,即OD OM ⊥.因为AC ⊂平面ABC ,OM ⊂平面ABC ,AC OM O =I ,所以OD ⊥平面ABC . 因为OD ⊂平面DOM ,所以平面DOM ⊥平面ABC .(3)由(2)得,OD ⊥平面BOM ,所以OD 是三棱锥D BOM -的高.因为2OD =,11sin 6022222BOM S OB BM ∆=⨯⨯⨯=⨯⨯⨯=o ,所以11233B DOM D BOM BOM V V S OD --∆==⨯==.19.(本小题14分)解:(1)由11612S a =-,得11612a a =-,解得118a =.…1分 22612S a =-,得()122612a a a +=-,解得2132a =.…3分(2)由612n n S a =- ……①,当2n ≥时,有11612n n S a --=- ……②, …………4分 ①-②得:114n n a a -=, …………5分 ∴数列{}n a 是首项118a =,公比14q =的等比数列 …………6分12111111842n n n n a a q -+-⎛⎫⎛⎫∴==⨯= ⎪⎪⎝⎭⎝⎭, …………7分2111221log log 212n n n b a n +⎛⎫∴===+ ⎪⎝⎭. …………8分(3)Q 1=21n n n c c b n +-=+,∴()11=211n n n c c b n ---=-+, (1)()122=221n n n c c b n ----=-+, (2)…………,322=221c c b -=⨯+,211=211c c b -=⨯+, …………(1n -) …………9分(1)+(2)+ ……+(1n -)得()211=21+2+3++11=1n n c c b n n n --=-+--L ,…………10分 ∴()()=11n c n n -+, …………11分∴()()1111111211n c n n n n ⎛⎫==- ⎪-+-+⎝⎭, …………12分 ∴231111*********=1232435211n c c c n n n n ⎛⎫+++-+-+-++-+- ⎪--+⎝⎭L L 11113111=1+221421n n n n ⎛⎫⎛⎫--=-+ ⎪ ⎪++⎝⎭⎝⎭,…13分Q 111021n n ⎛⎫+> ⎪+⎝⎭, ∴2311134n c c c +++<L 对任意*2,n n N ≥∈均成立. …………14分 20. 解:(1)由已知22241341a ab =⎧⎪⎪⎨⎪+=⎪⎩,2分解得2,1a b ==.4分∴椭圆的方程为2214x y +=,5分 (2)设()()()1122,,,,M M A x y B x y M x y ,,则221114x y +=,222214x y +=.…6分 由3455OM OA OB−−→−−→−−→=+,得12123434,5555M M x x x y y y =+=+,即12123434,5555M x x y y ⎛⎫++ ⎪⎝⎭.…7分Q M 是椭圆R 上一点,所以∴2212123434551455x x y y ⎛⎫+ ⎪⎛⎫⎝⎭++= ⎪⎝⎭,…8分即222222121212123434()214545554x x x x y y y y ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 得22121234342155554x xy y ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故121204x x y y +=.……………9分又线段AB 的中点N 的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭, ……………10分 ∴212222221212121212112212224244x x y y x x x x y y y y +⎛⎫⎪⎛⎫⎛⎫+⎛⎫⎝⎭+=+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,…11分∴线段AB 的中点N 1212,22x x y y ++⎛⎫ ⎪⎝⎭在椭圆22212x y +=上. ……………12分Q 椭圆22212x y +=的两焦点恰为C ⎛⎫⎪ ⎪⎝⎭,D ⎫⎪⎪⎝⎭……………13分∴NC ND += ……………14分21.解(1)()(2)f x f x +-的值为定值2.证明如下:2()(2)1ln1ln 2x x f x f x x x -+-=+++-22ln()2ln122x x x x-=+⋅=+=-. (2)由(1)得()(2)2(02)f x f x x +-=<<. 令i x n=,则()(2)2i if f n n+-=(1,2,,21)i n =⋅⋅⋅-.因为1221()()(2)(2)n S f f f f n n n n =++⋅⋅⋅+-+-①,所以1221(2)(2)()()n S f f f f n n n n=-+-+⋅⋅⋅++②,由①+②得22(21)n S n =-,所以*21()n S n n =-∈N .所以20132201314025S =⨯-=.(3)由(2)得*21()n S n n =-∈N ,所以*1()2n n S a n n +==∈N . 因为当*n ∈N 且2n ≥时,2()121ln(2)0n am n m n m n a n n ⋅>⇔⋅>⇔⋅>ln 2ln 0ln ln 2n mn m n n ⇔+>⇔>-. 所以当*n ∈N 且2n ≥时,不等式ln ln 2n m n >-恒成立minln ln 2n m n ⎛⎫⇔>- ⎪⎝⎭. 设()(0)ln xg x x x=>,则2ln 1()(ln )x g x x -'=. 当0x e <<时,()0g x '<,()g x 在(0,)e 上单调递减;当x e >时,()0g x '>,()g x 在(,)e +∞上单调递增.因为23ln 9ln8(2)(3)0ln 2ln 3ln 2ln 3g g --=-=>⋅,所以(2)(3)g g >,所以当*n ∈N 且2n ≥时,[]min 3()(3)ln 3g n g ==.由[]min ()ln 2m g n >-,得3ln 3ln 2m >-,解得3ln 2ln 3m >-. 所以实数m 的取值范围是3ln 2(,)ln 3-+∞.。