MAX1844ETP+中文资料
ETAP帮助手册ch24动态模型
第24章动态模型(Dynamic Models)动态电动机起动、暂态稳定性和发电机起动分析中都要用到电动机动态模型。
发电机动态模型和一些控制单元(如励磁器和调速器等)只在暂态稳定分析中用到。
另外,电动机起动分析和暂态稳定分析也要求有负荷转矩特性。
ETAP为各种分析提供了各种感应电机和同步电机模型以及全面的励磁器和调速器库。
在动态电机加速分析中,只有加速的电动机需要动态模型,也就是说,发电机,励磁器和调速器都不需要动态模型。
在暂态稳定分析中,所有的发电机,励磁器和调速器都是动态模型的。
有动态模型的电动机和在分析案例中被设为动态模型的电动机都会被动态模拟。
在发电机起动和依赖于频率的暂态稳定分析中,所有的发电机、励磁器和调速器都必须是依赖于频率的模型。
本章描述了不同类型的电机模型,电机控制单元模型和负荷模型并解释了他们在电动机起动和暂态稳定性分析中的应用。
也介绍了在选择模型和设定模型参数时所用到的工具。
感应电机模型部分介绍了五种不同的感应电机模型和这些模型的依赖于频率形式,分别是电路模型 (Single1、Single2、DBL1、DBL2) 和特性曲线模型。
在同步电机模型部分,介绍了五种不同的同步电机模型和这些模型的依赖于频率形式。
这些模型分别是等值电路模型,隐极电机的暂态模型,隐极电机的次暂态模型,凸极电机的暂态模型和凸极电机的次暂态模型。
电动机起动分析和暂态稳定性分析也把等效电网系统模拟成一个等值电机。
在等效电网部分介绍了等效电网系统的模型。
在励磁器和自动电压调节器模型部分定义不同类型的励磁器和自动电压调节器模型,包括标准IEEE模型和商用特有模型。
在调速器-涡轮部分列举了以IEEE标准和商用产品手册为准的调速器-涡轮模型。
最后,在机械负荷部分介绍了不同类型的负荷模型。
24.1 感应电机模型(Induction Machine Models)ETAP提供了五种在感应电机设计中较常用的感应电机模型。
UC1844中文资料
UC2842/3/4/5UC3842/3/4/5 Current Mode PWM ControllerFEATURES•Optimized For Off-line And DC To DC Converters•Low Start Up Current (<1mA)•Automatic Feed ForwardCompensation•Pulse-by-pulse Current Limiting •Enhanced Load ResponseCharacteristics•Under-voltage Lockout With Hysteresis•Double Pulse Suppression •High Current Totem PoleOutput•Internally Trimmed Bandgap Reference•500khz Operation•Low R O Error Amp DESCRIPTIONThe UC1842/3/4/5 family of control ICs provides the necessary features to im-plement off-line or DC to DC fixed frequency current mode control schemes with a minimal external parts count. Internally implemented circuits include un-der-voltage lockout featuring start up current less than 1mA, a precision refer-ence trimmed for accuracy at the error amp input, logic to insure latched operation, a PWM comparator which also provides current limit control, and a totem pole output stage designed to source or sink high peak current. The out-put stage, suitable for driving N Channel MOSFET s, is low in the off state. Differences between members of this family are the under-voltage lockout thresholds and maximum duty cycle ranges. The UC1842 and UC1844 have UVLO thresholds of 16V (on) and 10V (off), ideally suited to off-line applica-tions. The corresponding thresholds for the UC1843 and UC1845 are 8.4V and 7.6V. The UC1842 and UC1843 can operate to duty cycles approaching 100%. A range of zero to 50% is obtained by the UC1844 and UC1845 by the addition of an internal toggle flip flop which blanks the output off every otherclock cycle. BLOCK DIAGRAMA/BNote 1: A = DIL-8 Pin Number. B = SO-14 Pin Number. Note 2:Toggle flip flop used only in 1844 and 1845.4/97ABSOLUTE MAXIMUM RATINGS (Note 1)Supply Voltage (Low Impedance Source). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30V Supply Voltage (I CC <30mA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self Limiting Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1A Output Energy (Capacitive Load). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5µJ Analog Inputs (Pins 2, 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.3V Error Amp Output Sink Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA Power Dissipation at T A ≤ 25°C (DIL-8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W Power Dissipation at T A≤ 25°C (SOIC-14). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725mW Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65°C to +150°C Lead Temperature (Soldering, 10 Seconds). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300°C Note 1:All voltages are with respect to Pin 5.All currents are positive into the specified terminal.Consult Packaging Section of Databook for thermal limitations and considerations of packages.CONNECTION DIAGRAMSDIL-8, SOIC-8 (TOP VIEW)N or J Package, D8 Package PLCC-20 (TOP VIEW) Q PackageSOIC-14 (TOP VIEW) D PackagePACKAGE PIN FUNCTIONFUNCTION PIN N/C1 COMP2 N/C3 N/C4 V FB5 N/C6 I SENSE7 N/C8 N/C9 R T/C T10 N/C11 PWR GND12 GROUND13 N/C14 OUTPUT15 N/C16 V C17 V CC18 N/C19 V REF20PARAMETERTEST CONDITIONSUC1842/3/4/5UC2842/3/4/5UC3842/3/4/5UNITSMINTYPMAXMINTYPMAXReference Section Output Voltage T J = 25°C, I O = 1mA 4.955.00 5.05 4.905.00 5.10V Line Regulation 12 ≤ V IN ≤ 25V 620620mV Load Regulation 1 ≤ I 0 ≤ 20mA625625mV Temp. Stability (Note 2) (Note 7)0.20.40.20.4mV/°C Total Output Variation Line, Load, Temp. (Note 2)4.95.14.825.18V Output Noise Voltage 10Hz ≤ f ≤ 10kHz, T J = 25°C (Note2)5050µV Long Term Stability T A = 125°C, 1000Hrs. (Note 2)525525mV Output Short Circuit -30-100-180-30-100-180mAOscillator Section Initial Accuracy T J = 25°C (Note 6)475257475257kHz Voltage Stability 12 ≤ V CC ≤ 25V0.210.21%Temp. Stability T MIN ≤ T A ≤ T MAX (Note 2)55%Amplitude V PIN 4 peak to peak (Note 2)1.71.7VError Amp Section Input Voltage V PIN 1 = 2.5V2.452.50 2.55 2.422.50 2.58V Input Bias Current -0.3-1-0.3-2µA A VOL2 ≤ V O ≤ 4V 65906590dB Unity Gain Bandwidth (Note 2) T J = 25°C 0.710.71MHz PSRR12 ≤ V CC ≤ 25V60706070dB Output Sink Current V PIN 2 = 2.7V, V PIN 1 = 1.1V 2626mA Output Source Current V PIN 2 = 2.3V, V PIN 1 = 5V -0.5-0.8-0.5-0.8mA V OUT High V PIN 2 = 2.3V, R L = 15k to ground 5656V V OUT LowV PIN 2 = 2.7V, R L = 15k to Pin 80.71.10.71.1VCurrent Sense Section Gain(Notes 3 and 4) 2.853 3.15 2.853 3.15V/V Maximum Input Signal V PIN 1 = 5V (Note 3)0.91 1.10.91 1.1V PSRR12 ≤ V CC ≤ 25V (Note 3) (Note 2)7070dB Input Bias Current -2-10-2-10µA Delay to OutputV PIN 3 = 0 to 2V (Note 2)150300150300nsELECTRICAL CHARACTERISTICS:Unless otherwise stated, these specifications apply for -55°C ≤ T A ≤ 125°C for theUC184X; -40°C ≤ T A ≤ 85°C for the UC284X; 0°C ≤ T A ≤ 70°C for the 384X; V CC =15V (Note 5); R T = 10k; C T =3.3nF, T A =T J.Note 2:These parameters, although guaranteed, are not 100% tested in production.Note 3:Parameter measured at trip point of latch with V PIN 2 = 0.Note 4:Gain defined asA = ∆ V PIN 1∆ V PIN 3, 0 ≤ V PIN 3 ≤ 0.8VNote 5:Adjust V CC above the start threshold before setting at 15V.Note 6:Output frequency equals oscillator frequency for the UC1842 and UC1843.Output frequency is one half oscillator frequency for the UC1844 and UC1845.Note 7:Temperature stability, sometimes referred to as average temperature coefficient, is described by the equation:Temp Stability =V REF (max ) − V REF (min )T J (max ) − T J (min )V REF (max) and V REF (min) are the maximum and minimum reference voltages measured over the appropriate temperature range. Note that the extremes in voltage do not necessarily occur at the extremes in temperature.PARAMETER TEST CONDITIONUC1842/3/4/5UC2842/3/4/5UC3842/3/4/5UNITSMINTYPMAXMINTYPMAXOutput Section Output Low Level I SINK = 20mA 0.10.40.10.4V I SINK = 200mA 1.5 2.21.52.2V Output High Level I SOURCE = 20mA 1313.51313.5V I SOURCE = 200mA1213.51213.5V Rise Time T J = 25°C, C L = 1nF (Note 2)5015050150ns Fall TimeT J = 25°C, C L = 1nF (Note 2)5015050150nsUnder-voltage Lockout Section Start Threshold X842/415161714.51617.5V X843/57.88.49.07.88.49.0V Min. Operating Voltage After Turn On X842/4910118.51011.5V X843/57.07.68.27.07.68.2VPWM SectionMaximum Duty Cycle X842/395971009597100%X844/5464850474850%Minimum Duty Cycle 0%Total Standby Current Start-Up Current 0.510.51mA Operating Supply CurrentV PIN 2 = V PIN 3 = 0V11171117mA V CC Zener VoltageI CC = 25mA 30343034VNote 2:These parameters, although guaranteed, are not 100% tested in production.Note 3:Parameter measured at trip point of latch with V PIN 2 = 0.Note 4:Gain defined as:A = ∆ V PIN 1∆ V PIN 3; 0 ≤ V PIN 3 ≤ 0.8V.Note 5:Adjust V CC above the start threshold before setting at 15V.Note 6:Output frequency equals oscillator frequency for the UC1842 and UC1843.Output frequency is one half oscillator frequency for the UC1844 and UC1845.ELECTRICAL CHARACTERISTICS:Unless otherwise stated, these specifications apply for −55°C ≤ T A ≤ 125°C for theUC184X; −40°C ≤ T A ≤ 85°C for the UC284X; 0°C ≤ T A ≤ 70°C for the 384X; V CC =15V (Note 5); R T = 10k; C T =3.3nF, T A =T J.ERROR AMP CONFIGURATIONError Amp can Source or Sink up to 0.5mAUNDER-VOLTAGE LOCKOUTCURRENT SENSE CIRCUITOSCILLATOR SECTIONDuring under-voltage lock-out, the output driver is biased to sink minor amounts of current. Pin 6 should be shunted to ground with a bleeder resistor to prevent activating the power switch with extraneous leakage currents.A small RC filter may be required to suppress switch transients .Peak Current (I S ) is Determined By The FormulaI SMAX ≈1.0VR SHigh peak currents associated with capacitive loads necessi-tate careful grounding techniques. Timing and bypass capaci-tors should be connected close to pin 5 in a single point ground. The transistor and 5k potentiometer are used to sam-ple the oscillator waveform and apply an adjustable ramp to pin 3.Shutdown of the UC1842 can be accomplished by two meth-ods; either raise pin 3 above 1V or pull pin 1 below a voltage two diode drops above ground. Either method causes the out-put of the PWM comparator to be high (refer to block diagram). The PWM latch is reset dominant so that the output will remain low until the next clock cycle after the shutdown condition at pin 1 and/or 3 is removed. In one example, an externally latched shutdown may be accomplished by adding an SCR which will be reset by cycling V CC below the lower UVLO threshold. At this point the reference turns off, allowing the SCR to reset.OUTPUT SATURATION CHARACTERISTICS ERROR AMPLIFIER OPEN-LOOP FREQUENCY RESPONSEOPEN-LOOP LABORATORY FIXTURE SHUT DOWN TECHNIQUESUNITRODE CORPORATION7 CONTINENTAL BLVD. • MERRIMACK, NH 03054TEL. (603) 424-2410 • FAX (603) 424-3460OFFLINE FLYBACK REGULATORSLOPE COMPENSATIONA fraction of the oscillator ramp can be resistivelysummed with the current sense signal to provide slope compensation for converters requiring duty cycles over 50%.Note that capacitor, C forms a filter with R2 to suppress the leading edge switch spikes.Power Supply Specifications1. Input Voltage95VAC to 130VA (50 Hz/60Hz)2. Line Isolation3750V 3. Switching Frequency 40kHz 4. Efficiency @ Full Load70%5. Output Voltage:A. +5V, ±5%; 1A to 4A load Ripple voltage: 50mV P-P MaxB. +12V, ±3%; 0.1A to 0.3A load Ripple voltage: 100mV P-P MaxC. -12V ,±3%; 0.1A to 0.3A load Ripple voltage: 100mV P-P MaxIMPORTANT NOTICETexas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.Copyright © 1999, Texas Instruments Incorporated。
MXT2144中文手册
1、特点z分辨率:14 bitz工作电压:3.3V电源z转换速率:可达210MHzz满量程输出电流可调整范围:2mA~20mAz输入类型:并行输入z工作模式:电流型z功耗:150mW@3.3Vz兼容AD97442、功能描述MXT2144是一种14位电流输出型、CMOS D/A转换器,最大刷新率至少可达200MSPS,工作电压支持3.3伏,在3.3伏电压下工作时功耗小于160毫瓦。
在待机模式下,其功耗约为20mW。
该D/A转换器采用了分段电流沉结构,可以有效的减小电流开关的数量,从而减小开关电流的浪涌,改善建立时间,提高转换器的精度.该D/A转换器主要应用在通讯、仪器仪表、高分辨率图像系统、波形发生器等方面。
该电路在工作时,输入的14位数字信号存放在内部寄存器,然后控制电流源阵列的电流源打开或关断,从而控制电流的增加或减小。
整个电路可以分为电压基准源、偏置电路、电流源阵列、电流开关和高速锁存器等部分。
MXT2144内部寄存器在时钟上升沿进行刷新。
如果驱动时钟或数字输入的线电阻有50Ω,为了减小反射,建议在管脚附近用50Ω电阻接地。
另外,也建议把数字电源与模拟电源,数字地与模拟地分开,以使其性能最优化。
为了减小电源噪声,最好在靠近AVDD和DVDD管脚处分别对模拟地和数字地接0.1uF的电容。
MXT2144内部带隙电压参考源为1.22V,在整个温度范围温度系数为±50ppm/℃。
管脚16 VREFLO是参考选择端,如果VREFLO接地,则为内部参考;若接模拟电源,则为使用外部参考源,由17管脚输入。
输出I OUT的电流由18管脚的FSADJ端所接的R SET来设置,满量程范围为2~20mA可调。
如果采用内部参考,则V FSADJ约为1.22V;如用外部参考,则V FSADJ约等于外参考电压。
满量程输出电流 I OUTFS=(V FSADJ/R SET) X 32当满量程电流为20mA时,输入码与输出电流的对应关系表(表1):表1INPUT CODE(D13-D0) IOUTA(mA) IOUTB(mA)1111 11111 11111 20 01000 00000 00000 10 100000 00000 00000 0 20IOUTA与IOUTB为互补电流输出端,它们的和总是等于满量程电流减去1LSB。
艾默生 24448 系列可编程交流电源用户手册说明书
用户手册Rev1.0系列可编程交流电源用户手册版权所有翻印必究如有变更恕不通知目录1.联系我们 (25)2.保修与安全信息 (26)2.1有限售后保证 (26)2.2安全 (28)2.3安全规则 (28)2.4安全标识的含义 (28)2.5安全信息 (29)2.6安全注意事项 (31)3.产品概述 (39)3.1一般说明 (39)3.2产品特点 (40)13.3功能方框图 (41)3.4操作描述 (42)3.5测量与数据 (42)3.6附件 (42)3.7远程控制扩展接口 (43)4.技术规格 (45)4.1产品型号 (45)4.2技术规格 (46)4.3外形尺寸 (55)4.4输出电压与电流曲线 (56)4.5输出电压与频率曲线 (58)4.6输出电压THD与功率 (61)24.7输出电压THD与频率曲线 (62)4.8输出电压频率与功率曲线 (62)4.9输出电压精度与频率 (65)4.10谐波幅值误差与谐波次数关系曲线 (66)4.11直流模式输出功率曲线 (69)4.12输入电压与输出功率降额曲线 (71)4.13输出过流保护延迟曲线 (71)4.14环境 (72)4.15输出降额与环境温度 (73)4.15.1音频噪声与环境温度 (74)4.15.2音频噪声与输出功率 (75)4.15.3音频噪声与输出频率 (76)34.16安规及认证 (77)5.开箱和安装 (78)5.1检查 (78)5.2搬运说明 (79)5.3检查交流输入 (80)5.4交流输入连接 (80)5.5接地要求 (83)5.5.1机壳接地 (83)5.5.2输出中点接地 (84)5.6输入开关 (85)5.7桌面使用 (86)5.8通风 (87)45.9噪声水平 (87)5.10液体防护 (88)5.11清洁 (88)5.12负载连接 (89)5.12.1输出接线和建议线径 (89)5.12.2三相Y形负载连接 (90)5.12.3三相Δ形负载连接 (92)5.12.4单相/直流负载连接 (94)5.13远端补偿连接 (96)5.14异常状况处理 (96)6.前操作面板 (97)6.1前面板布局 (97)56.2开机/关机/复位按钮及操作 (99)6.2.1待机状态指示 (99)6.2.2开机状态指示 (101)6.2.3故障状态指示 (102)6.3输出使能按钮 (103)6.3.1输出状态指示 (103)6.3.2输出时序 (104)6.3.3输出响应时间 (104)6.4菜单键 (105)6.4.1测量键(MEAS) (105)6.4.2编程键(PROG) (106)6.4.3配置键(CONF) (107)66.4.4系统键(UTIL) (108)6.5功能键 (109)6.5.1方向键 (110)6.5.2返回键 (110)6.5.3确认键(OK) (110)6.5.4翻页键 (110)6.6数字键 (111)6.6.1数字键 (111)6.6.2取消键 (111)6.6.3消除按键 (111)6.6.4回车键 (112)6.7飞梭 (112)76.7.1电压飞梭旋钮 (112)6.7.2频率飞梭旋钮 (112)7.显示屏 (113)7.1测量 (113)7.1.1测量页面 (120)7.1.2电压页面 (121)7.1.3电流页面 (124)7.1.4功率页面 (127)7.1.5谐波页面 (128)7.2配置 (131)7.2.1稳态参数页面 (131)7.2.2输出设置页面 (137)87.2.3保护设置页面 (138)7.2.4波形数据页面 (139)7.2.5校准页面 (142)7.3编程 (149)7.3.1暂态List页面 (150)7.3.2暂态Pulse页面 (155)7.3.3暂态Step页面 (159)7.3.4谐波页面 (165)7.3.5间谐波页面 (167)7.3.6编程数据页面 (171)7.3.7触发设置页面 (178)7.4系统 (180)97.4.1通讯设置页面 (180)7.4.2参数存取页面 (184)7.4.3扩展设置页面 (186)7.4.4本地设置页面 (187)7.4.5系统信息页面 (189)8.后面板 (190)8.1输入连接器 (190)8.2输出连接器 (191)8.2.1电缆尺寸 (192)8.2.2连接步骤 (193)8.3接地端子 (193)8.4线缆固定 (194)108.5远端补偿接口 (194)8.6多功能接口 (195)8.6.1触发终端 (196)9.远端控制 (199)9.1概述 (199)9.2通信规约 (199)9.2.1常用符号 (199)9.2.2参数格式 (201)9.2.3SCPI指令介绍 (202)9.2.4执行次序 (206)9.3共同指令 (206)9.4仪器指令 (209)119.4.1测量指令 (209)9.4.2编程指令 (230)9.4.3设置指令 (260)9.4.4系统指令 (302)9.4.5状态指令 (306)9.4.6输出指令 (309)9.4.7触发指令 (310)9.4.8初始化指令 (314)9.5SCPI指令树 (316)10.附录1-内置谐波示例 (324)11.附录2-编程示例 (332)11.1电压暂降示例 (332)1211.2电压短时中断示例 (339)11.3短期供电电压变化试验示例 (341)13图1断开交流电源后的交流输入滤波器剩余电压检查示意图 (35)图2PAC系列功能框图 (41)图3PAC0115~PAC0315外型尺寸图 (55)图4恒功率曲线图 (57)图5PAC0115三相模式下单相输出电压与输出功率的关系 (59)图6PAC0215三相模式下单相输出电压与输出功率的关系 (60)图7PAC0315三相模式下单相输出电压与输出功率的关系 (61)图8输出频率与输出电压THD百分比关系 (62)图9PAC0315恒功率条件下输出电压与输出电流的关系 (63)图10输出频率与输出功率关系15 u-70 u (64)图11输出频率与输出功率关系70 u-5000 u (65)图1250/60 u谐波幅值误差与次数的关系 (67)14图13400 u谐波幅值误差与频次关系 (68)图14直流恒压模式下输出电压与输出电流关系 (70)图15降额曲线—输入电压 (71)图16过流保护延迟曲线 (72)图17温度与输出功率曲线 (74)图18环境温度与噪声曲线 (75)图19输出功率与噪声曲线 (76)图20PAC包装拆解示意图 (79)图21后面板接口说明图 (82)图22输出中点接地示意图 (85)图23输入开关图 (86)图24Y形负载连接示意图 (91)15图25Δ形负载连接示意图 (93)图26单相/直流负接线示意图 (95)图27远端补偿连接示意图 (96)图28功能及区域分划图 (98)图29输入开关-开机状态 (100)图30开机/关机/复位按钮-待机状态 (100)图31开机过程示意图 (101)图32开机结束示意图 (102)图33接通状态示意图 (103)图34电源输出时序图 (104)图35测量首页面 (106)图36编程首页面 (107)16图37配置首页面 (108)图38设置首页面 (109)图39页面区域功能分布示图 (114)图40测量-测量页面 (120)图41测量-电压页面 (121)图42电压波形信息图 (122)图43测量-电流页面 (124)图44电流波形信息图 (125)图45测量-功率页面 (127)图46测量-谐波页面 (129)图47稳态参数页面 (131)图48三角波对称度波形示例 (134)17图49交流分量斜率示例 (135)图50输出摆率示例 (136)图51输出设置页面 (137)图52保护设置页面 (139)图53波形数据页面 (140)图54外部存储页面 (141)图55外部波形存储页面 (142)图56解锁校准页面 (143)图57校准页面 (144)图58校准电压零偏接线示意图 (145)图59校准电压增益接线示意图 (147)图60暂态List页面 (150)18图61暂态List页面-更多设置 (151)图62暂态Pulse-基波页面 (155)图63暂态Pulse-脉冲页面 (156)图64暂态Pulse页面-更多设置 (157)图65暂态Step-交流页面 (160)图66暂态Step-直流页面 (161)图67暂态Step-频率页面 (162)图68谐波页面 (165)图69谐波存储界面 (167)图70间谐波页面 (168)图71间谐波页面-更多设置 (169)图72编程数据-暂态List数据列表 (172)19图73编程数据-暂态Pulse数据列表 (173)图74编程数据-暂态Step数据列表 (174)图75编程数据-暂态谐波数据列表 (175)图76编程数据-间谐波数据列表 (176)图77编程数据-外部存储-暂态 (177)图78触发设置页面 (178)图79通讯设置-RS232 (180)图80通讯设置-LAN (182)图81通讯设置-USB (183)图82参数存取页面 (184)图83扩展设置页面 (187)图84本地设置页面 (188)20图85系统信息页面 (189)图86补偿线缆连接顺序及色标 (195)图87触发终端前面板功能划分 (196)图88触发终端后面板功能划分 (198)图89指令结构 (203)21表1附件名称及数量表 (43)表2PAC系列型号表 (45)表3PAC系列尺寸重量表 (46)表4技术规格总揽表 (47)表5PAC工作环境表 (73)表6测量级页面快捷键功能 (115)表7电源故障信息 (116)表8电源状态信息表 (116)表9数据栏数值颜色含义 (118)表10电压波形信息计算方法表 (122)表11电流波形信息计算方法表 (126)表12功率信息计算方法表 (127)22表13谐波显示次数与频率的关系 (129)表14谐波显示数据范围表 (130)表15波形类型与频率范围关系表 (132)表16交流(V)与工作频率范围关系表 (152)表17有效值模式说明表 (154)表18交流(V)与工作频率范围关系表 (158)表19有效值模式说明表 (159)表20有效值模式说明表 (164)表21工作频率与可设谐波次数的关系 (166)表22输出连接器连接数据限值表 (192)表23编程指令的数字格式 (201)表24可用的共同指令 (206)23表25可用的SCPI子系统指令 (209)表26触发执行指令发送方式 (233)表27谐波编程电源设置 (254)表28电源输出频率与可设谐波次数间的关系 (254)表29电源输出频率与交流电压给定范围间的关系 (266)241.联系我们地址:中国·陕西·西安新型工业园区信息大道12号邮编:710119电话:+86(029)856918708569187185691872传真:+86(029)85692080网址:邮箱:******************252.保修与安全信息2.1有限售后保证西安爱科赛博电气股份有限公司对所制造及销售的PAC产品自交货之日起一年内,保证正常使用情况下产生故障或损坏,负责免费维修。
Eaton Memera全金属消费者单元和保护设备说明书
EatonMemera full metal consumer units and protective devices Consumer unit solutionsto meet the requirements of the18th edition wiring regulations2EATON Memera full metal consumer units and protective devices - August 2020Memera full metal consumer unitsand protective devicesBS7671:2018Tested to BS EN 61439-3Fully complies with BS7671:2018(IET wiring Regulations 18th Edition)Contents1. Product overview (3)2. Memera full metal consumer unit range (6)3. Circuit protection devices and accessories (7)4. Consumer unit accessory selection (8)5. T echnical data (9)1 Product overview100A type A RCCB’s• Three new versions of the Memera 10, 14 and16 way dual RCCB boards are now also availablepre fitted with 100A type A RCCB’s for usewhere the installation is required to have type ARCD protection.Memera full metal consumer unitsThe Eaton range of full metal consumer units provide asuite of products to meet the requirements of BS7671:201818th Edition IET wiring regulations.Todays 18th edition consumer units incorporate anenclosure manufactured from non-combustible material,i.e. a full metal enclosure.Eaton consumer unit features• Full compliance with BS EN 61439-3.• All metal enclosure to meet requirements of BS7671regulation 421.1.201.• Sturdy steel enclosure with ample cable entry knockoutsto accommodate cable entry from top, bottom or rearface of the enclosure.• Multiple large apertures in rear face of enclosure to allowflexible cable entry from the rear, with dual knockouts toaccommodate both round glands as well as trunking ontop/bottom faces.• “Snap - able” busbars enabling easy on-site configuration.• Dual RCCB units come with three Neutral bars asstandard for High Integrity configuration.• Comprehensive label kit to complete the installation.• Polyester powder coat paint finish which complieswith industry standards for low smoke density, flamepropagation and toxic fume emission. RAL 9010 (Purewhite).• Available in single rail and dual rail surface and flushmounting variants up to a maximum of 38 outgoing ways.Arc Fault Detection Device (AFDD) solutionsSurge Protection Device (SPD) solutions• A 280V 20kA 2 pole type 2 Surge Protection Device isalso available as a kit to enable an Eaton SPD to be fittedinto any consumer unit even when fitted with AFDD’s.Installation kits are detailed in section 5.Command and control devices• The full range of Eaton modular command and controldevices such as transformers, timers, contactors andrelays can be installed in any unused ways. For detailssee main Single phase product catalogue.• Bus bars and connection links are available to simplify theinstallation of Eaton’s AFDD’s within Memera consumerunits as detailed in section 5.• Additional accessory connection kits are also available toprovide internal connectivity for consumer units equippedwith AFDD’s as well as MCB’s, RCBO’s and SPD’s.3EATONMemera full metal consumer units and protective devices - August 20204.1Circuit Protection devicesThe Eaton Memera range of consumer units can be equipped with the standard range of EAD 6kA MCB’s with ratings up to 63A at 6KA in both B and C curve, along with a full range of single module 6kA RCBO’s rated up to 45A in B and C curve with both AC and A current type characteristics.A new addition to the circuit protection portfolio is Eaton’s range of AFDD’s rated up to 40A can now also be accommodated using the additional accessory kits detailed further in this guide.In addition to the protection devices above the wide range of Eaton DIN rail modular accessories including SPD’s, timers and contactors etc., can also be accommodated within the consumer unit enclosure due to the flexible nature of the design. Fitting of AFDD’s into consumer unitsIn order to comply with the requirements of BS7671 for the inclusion of AFDD’s when deemed necessary, Eaton can provide a range of AFDD installation accessory kits to simplify the fitting of these devices into our Memera metal consumer units along with other protective devices as required.The kits include a special 3-4 way AFDD 2 pole busbar kit as well as a number of other interconnection accessory kits that may be required depending upon the consumer unit configuration selected and the devices to be fitted.Full details can be found in section 4 & 5 of this brochure.Requirements for Surge Protection devicesBS7671: 2018 also now places a greater emphasis on Chapter 44 – Protection against voltage disturbances and electromagnetic disturbances.Such disturbances can be temporary as a result of system faults in the LV or HV supply network, or perhaps transient overvoltages of atmospheric origin or else due to switching.The need for the inclusion of a surge protection device in an installation is dependent upon the perceived risk to an installation. The regulations in BS7671 provide detailed guidance on the application of Surge Protection devices and the methodologies relating to risk management and assessment.To make it simple for Installers, Eaton has introduced an SPD kit which includes a standard 2 pole 2 module Type 2 SPD rated at 280 V 20kA complete with the necessary interconnections.Full details can be found in section 5 of this brochure.EAS2PT2SPD - SPD KitEAS2PT2SPD kit includes the SPD and the the 3 pre made connectionsrequired to facilitate the installation of the 2pole SPD into any standardIsolator controlled Memera Consumer unit.EarthNeutralLiveFor SPDoperatinginstructionsconsult literaturesupplied withSPCT2-280/25 EATON Memera full metal consumer units and protective devices - August 20202 Memera metal consumer unit rangeModules Eaton list numberIsolator controlled RCCB controlled Split load Dual RCD Dual tariff Dimensions (mm)Modules Eaton list numberIsolator controlled RCCB controlled Split load Dual RCD Dual tariff Cover dimensions (mm)Back boxdimensions (mm)Full metal consumer unit rangeSurface mountedFlush mounted6EATON Memera full metal consumer units and protective devices - August 20203 Consumer unit circuit protection Devices & AccessoriesEaton Memera MCB’sEaton arc fault detection devices - T ype AEaton Memera RCBO’sTrip curve BTrip curve BAC type trip curve BA type trip curve BConsumer unit SPD and AFDD accessory kitsTrip curve CTrip curve CAC type trip curve CA type trip curve Cote: N Also available as type AC and type A with short time delay.7EATON Memera full metal consumer units and protective devices - August 20208EATON Memera full metal consumer units and protective devices - August 20204 Consumer unit accessory selection tables5 T echnical dataFitting of Consumer unit SPD with and without AFDD’sEarthNeutralLiveFor SPD operating instructionsconsult literature supplied with SPCT2-280/2Neutral NeutralEarthEarthLiveLive EAS2PT2SPD - SPD KitExample EAS10S - EAS10F1615141312LN 11109876543L N 21P DRCD AFDD 3AFDD 2AFDD 1lx AFDD 3AFDD 2AFDD 1S P DS P D2625242322212019181716151413AFDD 7AFDD 6AFDD 5AFDD 4S P D14131211109876543L N 211817161514131211109876543L N 21AFDD 3AFDD 2AFDD 1S P D AFDD 4S P DAFDD 4AFDD 3AFDD 2AFDD 1xAFDD 3AFDD 2AFDD 1S P DS P D14131211109876543LN 211817161514131211109876543LN 211211109876543L N 21AFDD 1S P D xAFDD 3AFDD 2S P DAFDD 4AFDD 3AFDD 2AFDD 1AFDD 3AFDD 2AFDD 1S P D AFDD 4S P D AFDD 4AFDD 3AFDD 2AFDD 1EASAFDDBB3S P D14131211109876543LN 211817161514131211109876543L N 2188171615141312LN 11109876543L N 21EASAFDDBB3AFDD 3AFDD 2AFDD 1S P D AFDD 4S P D AFDD 4AFDD 3AFDD 2AFDD 1x AFDD 3AFDD 2AFDD 1S P D 1817161514131211109876543L N 213L N 211716151413S P DS P DS P DAFDD 4S P DAFDD 4AFDD 3AFDD 2AFDD 1AFDD 3AFDD 2AFDD 1S P DAFDD 4S P DAFDD 4AFDD 3AFDD 2AFDD 1xAFDD 3AFDD 2AFDD 1S P DEASSPCONSPD – SPD/AFDD KitEASRCDCONSPD – SPD/AFDD KitFor use with EAS18 - 20S/EAS18 - 20FFor use with EAS26S/EAS26Fand Split Load BoardsFitting instructions for SPD with AFDD to specific Memera boards see overleaf9EATON Memera full metal consumer units and protective devices - August 2020Fitting of consumer unit with AFDD’sEASSPCON - AFDD Single Pole T erminalEASAFDDBB3 - AFDD BusbarEASDPCON - AFDD Double Pole T erminalEASAFDDTB - AFDD Busbar Stab ShieldNeutralLive X3 AFFD’s - Busbar connected directly to isolatorORX4 AFFD’s - Busbar connected to isolator via cablesFacility to fit mcb’s withAFDD’s X6 AFFD’s - Busbar connected directly to isolatorShield all un-used AFDD busbar stabsNote: Unless otherwise specified, all internal cabling supplied in the consumer unit is left unmodofied.*2 - Remove x2 (blue) pre-installed isolator to neutral terminal block cables and x1 (brown) isolator to lower busbar cable181716151413121110987654321L N555121110987654321L N AFDD 5DD 6321L N321L N 2625242322212019181716151413EASAFDDBB3AFDD 1AFDD 1AFDD 2AFDD 1xAFDD 316151413121110L N 987654321LNAFDD 2AFDD 1x AFDD 3AFDD 4AFDD 3121110987654321L N1211109262524232216151413121110L N 987654321L N AFDD 8AFDD 7xAFDD 3AFDD 4AFDD 3AFDD 2AFDD 11413121110987654321L N26252423222625242322AFDD 3AFDD 2AFDD 1RCDAFDD 8AFDD 7AFDD 2AFDD 1x AFDD 3AFDD 4AFDD 3AFDD 2AFDD 11413121110987654321L N181716151413121110987654321L N121110987654321L NAFDD 4AFDD 3AFDD 2AFDD 1RCD AFDD 6AFDD 3AFDD 2AFDD 1AFDD 4AFDD 2AFDD 1AFDD 2AFDD 1xAFDD 3AFDD 4AFDD 3AFDD 4AFDD 3AFDD 2AFDD 11413121110987654321L N181716151413121110987654321L NAFDD 3AFDD 2AFDD 1AFDD 4AFDD 2AFDD 1AFDD 2AFDD 1x AFDD 3AFDD 4AFDD 3AFDD 4AFDD 3AFDD 2AFDD 1Isolator Controlled -Split Load1413121110987654321L N151413121110987654321L NAFDD 5AFDD 4AFDD 6AFDD 4AFDD 3AFDD 2AFDD 1AFDD 3AFDD 2AFDD 1AFDD 3AFDD 2AFDD 1AFDD 4AFDD 2AFDD 1AFDD 2AFDD 1x AFDD 3AFDD 4AFDD 3AFDD 4AFDD 3AFDD 2AFDD 1Isolator controlledSplit load10EATON Memera full metal consumer units and protective devices - August 2020Miniature circuit breakers (MCBs)Eaton’s range of 6kA high performance MCBs meet the latest UK and European standards IEC/EN 60898, with ratings up to 63A in both B & C curve characteristics. Features include:• Box clamp barrier to prevent incorrect cable insertion• Positive contact indication Residual current circuitbreakers - with overloadprotection (RCBOs)Eaton’s range of 6kA, 30mA highperformance compact RCBOs meetthe latest UK and European standardsIEC/EN 61009, combining ResidualCurrent Circuit Breaker protectionwith integral overload protection inone compact modular device. Ratingsavailable from 6A to 45A in both B &C curve characteristics.Features include:• Compact modular design, only102mm tall, giving enhanced wiringspace• Single module width with solidneutral• Box clamp barrier to preventincorrect cable insertion• Positive contact indication• Devices available as both AC and Acurrent typesArc Fault DetectionDevices (AFDD +)Eaton’s range of AFDD’s combine thefunctionality of an MCB, RCD andAFDD in one package designed inaccordance to IEC/EN 62606 & IEC/EN 61009. Ratings are available up to40A with B & C curve characteristicsand 10mA and 30mA sensitivity.Devices are available in current typesA, AC and short time delayed type A.Features include:• Variable installation of N on eitherleft or right• Tripped indication : MCB, RCCB orAFDD with LED indication of arcfaults• Permanent self monitoring includingover heating and over voltage• Rated breaking capacity up to 10kA(6kA above 25A)Consumer unitsThe 2019 Memera full metal consumer units range fully complies with BS EN 61439-3 and meetsthe requirements of BS7671:2018 clause 421.1.201 i.e. non-combustible enclosure.In accordance with BS7671, installation of these units should use proper materials and follow good workmanship and industry practices. The correct use of grommets, grommet strip or glands should be considered to minimise the risk of damage arising from mechanical stress or damage to wiring whereit enters the metal enclosure. In addition, the horizontal top surface of the consumer unit if readily accessible shall provide a degree of protection of at least IPXXD or IP4X. T erminal capacity and torque settingsNote: A ll terminals should be tightened to the recommended torque values below using an appropriate torque driver.• Device torque cable capacity• Isolator 2.5 – 5.0 Nm 2.5 – 50 mm2• RCCB 2.0 – 2.4 Nm 1.5 – 35 mm2• MCB 2.0 – 2.4 Nm 1 – 25 mm2• RCBO Line 2.0 – 2.5 Nm Load 1.2 -1.5 Nm 1 -16 mm2• AFDD - 2.0 – 2.4 Nm 1.5 – 25 mm2• SPD - 2.0 – 2.4 Nm 1.5 – 35 mm2• Neutral / Earth bars 2.0 Nm 1 -16 mm2• Other devices: see appropriate installation instructions11 EATON Memera full metal consumer units and protective devices - August 2020At Eaton, we’re energized by the challenge of powering a world that demands more. With over 100 years experience in electrical power management, we have the expertise to see beyond today. From ground breaking products to turnkey design and engineering services, critical industries around the globe count on Eaton. We power businesses with reliable, efficient and safe electrical power management solutions. Combined with our personal service, support and bold thinking, we are answering tomorrow’s needs today. Follow the charge with Eaton. Visit /uk.Eaton Electric Limited252 Bath RoadSloughSL1 4DXCustomer Support CentreTel: +44 (0)8700 545 333Fax: +44 (0)8700 540 333email:**********************© 2020 Eaton CorporationAll Rights ReservedPrinted in UKPublication No. BR012018ENEAN Code 9010August 2020。
MAX488E中文资料
______________Ordering Information
PART MAX481ECPA MAX481ECSA
TEMP. RANGE 0°C to +70°C 0°C to +70°C
PIN-PACKAGE 8 Plastic DIP 8 SO
________________________Applications
元器件交易网
MAX481E/MAX483E/MAX485E/MAX487E–MAX491E/MAX1487E
19-0410; Rev 3; 7/96
±15kV ESD-Protected, Slew-Rate-Limited, Low-Power, RS-485/RS-422 Transceivers
Receiver Output Voltage (RO)....................-0.5V to (VCC + 0.5V)
Continuous Power Dissipation (TA = +70°C)
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ....727mW
QUIESCENT CURRENT
(µA) 300 120 300 120 120 120 300 300 230
NUMBER OF TRANSMITTERS
ON BUS 32 32 32 128 32 32 32 32 128
PIN COUNT
8 8 8 8 8 14 8 14 8
________________________________________________________________ Maxim Integrated Products 1
IP1844中文资料
LABIP1845 SERIESCURRENT MODE REGULATING PULSE WIDTH MODULATORSFEATURES•Guaranteed ±1% reference voltage tolerance •Guaranteed ±10% frequency tolerance •Low start–up current (<500 m A)•Under voltage lockout with hysteresis•Output state completely defined for all supply and input conditions•Interchangeable with UC1844 and UC1845series for improved operation •500kHz Oscillator operation 250kHz Output operation+30V Self limiting±1A 5µJ–0.3V to +V CC10mA 1W 10mW/°C 725mW 7.25mW/°C2W 16mW/°C –65 to 150°C +300°CABSOLUTE MAXIMUM RATINGS (T case = 25°C unless otherwise stated)TOP VIEWJ Package – 8 Pin Ceramic DIP N Package – 8 Pin Plastic DIPD-8 Package – 8 Pin Plastic (150) SOIC12348765COMP V REF GROUNDOUTPUT R T /C T V CC I SENSE V FB TOP VIEWD-14 Package – 14 Pin Plastic (150) SOICCOMP V REF GROUND OUTPUT 1234POWER GROUND567141312111098N/CR T /C T I SENSE N/CN/CN/C V CC V FB V C V CC Supply Voltage(low impedance source)(I CC < 30mA)I OOutput Current Output Energy (capacitive load)Analog Inputs(pins 2 and 3)Error Amp Output Sink Current P D Power DissipationT amb = 25°C J, N Packages Derate @ T amb > 50°C P D Power DissipationT case = 25°C D Package Derate @ T amb > 50°C P D Power DissipationT case = 25°CJ, N PackagesDerate @ T case > 25°CT STG Storage Temperature Range T LLead Temperature(soldering, 10 seconds)Part J–Pack N–PackD–8D–14Temp.Number 8 Pin 8 Pin 8 Pin 14 Pin Range IP1844 -55 to +125°C IP2844 -25 to +85°C IP3844 0 to +70°C IP1845 -55 to +125°C IP2845 -25 to +85°C IP38450 to +70°COrder InformationNote:To order, add the package identifier to the part number.eg.IP1844D–14IP3845JLABIP1845 SERIESDESCRIPTIONThe IP1844 and IP1845 series of switching regulator control circuits contain all the functions necessary to implement off-line, current mode switching regulators, using a minimum number of external parts.Functions included are voltage reference, error amplifier, current sense comparator, oscillator, totem-pole output driver and under-voltage lockout circuitry. In addition there is a toggle flip-flop which blanks the output on every second clock pulse, thereby ensuring that the duty cycle never exceeds 50%.Although pin compatible with the UC1844 and UC1845 series, SEMELAB has incorporated several improvements in the IP1844 and IP1845 series allowing tighter and more complete specification of electrical performance .BLOCK DIAGRAMValues in brackets are for IP1845 series.3.6VERROR AMPOSCILLATOR2R R1VRS PWM LATCH CURRENT SENSECOMPARATOR16V (8.4V)6V (0.5V)2.5VUNDER–VOLTAGELOCKOUTENABLEREFERENCE REGULATOR5V INTERNAL BIAS34VREGRS V STATUS LATCHREFTQ TOGGLE FLIP FLOPPIN NUMBERS1st Number 2nd Number – N, J and 8 Pin D Packages – 14 Pin D Package.C OMP G NDV CCI SENSEV FB /C R TT OUTPUTPOW ER GROUNDV REFV C3/55/97/122/31/14/76/107/115/88/14V CC Supply Voltage I OOutput Current Analog Inputs(pins 2 and 3)Error Amp Output Sink Current IP1844 , IP1845Operating Ambient Temperature RangeIP2844 , IP2845IP3844 , IP3845≤ 30V 0 to ±200mA –0.3V to 3V 0 to 2mA –55 to 125°C –25 to 85°C 0 to 70°CRECOMMENDED OPERATING CONDITIONSLABIP1845 SERIES4.905.00 5.106206250.20.44.825.185052530801604752570.2151.78.382.42 2.50 2.58–0.3–265900.71607026–0.5–0.85.06.00.71.14.955.00 5.056206250.20.44.905.105052530801604752570.2151.78.382.45 2.50 2.55–0.3–165900.71607026–0.5–0.85.06.00.71.1IP1844/IP1845IP3844IP2844/IP2845IP3845ParameterTest Conditions Min.Typ.Max.Min.Typ.Max.Units Output Voltage Input Regulation Output Regulation Temperature Stability Total Output Variation Output Noise Voltage Long Term Stability Output Short Circuit Current Frequency Voltage stability Temperature Stability Amplitude Discharge CurrentInput Voltage Input Bias Current Open Loop Voltage GainUnity Gain Bandwidth Supply Voltage RejectionOutput Sink Current Output Source Current V OUT High V OUT LowI O = 1mA T J = 25°CV CC = 12V to 25V I O = 1mA to 20mALine, Load, Temp f = 10Hz to 10kHzT J = 25°CT J = 125°C @ 1000Hrs V REF = 0T J = 25°C V CC = 12V to 25V ∆T A = Min to Max V PIN4Peak to Peak T J = 25°C ∆T A = Min to MaxV PIN1= 2.5VV O = 2V to 4V V CC = 12V to 25V V PIN2= 2.7V V PIN1= 1.1V V PIN2= 2.3V V PIN1= 5.0V V PIN2= 2.3V R L = 15k ΩV PIN2= 2.7VR L = 15k ΩV mV mV °C V µVmV mAkHz %%V mA %V µA dB MHz dB mA VELECTRICAL CHARACTERISTICS (Over Full Operating Temperature Range unless otherwise stated)REFERENCE SECTIONOSCILLATOR SECTIONERROR AMP SECTIONNOTES1.Test Conditions unless otherwise stated:V CC = 15V* , R T = 10k Ω, C T = 3.3nF , f = 52kHz.*Adjust V CC above start threshold before setting at required level.All specifications apply over the full operating temperature rangeunless otherwise stated. (See Ordering Information for further details).IP1844/IP1845IP3844IP2844/IP2845IP3845ParameterTest ConditionsMin.Typ.Max.Min.Typ.Max.Units 2.853 3.150.91 1.16070–2–101503000.10.41.52.21313.51213.550150501500.7 1.114.51617.57.88.498.51011.577.68.20.30.51115141730344046485002.8533.150.91 1.16070–2–101503000.10.41.52.21313.51213.550150501500.71.11516177.88.499101177.68.20.30.5111514173034404748500GainMaximum Input Signal Supply Voltage Rejection Input Bias Current Delay to OutputOutput Low Level Output High Level Rise Time Fall Time UVLO Saturation Upper Threshold (V CC )Lower Threshold (V CC )Start–up Current Operating Supply CurrentV CC Zener Voltage Maximum Duty Cycle Minimum Duty CycleSee Notes 2,3V PIN1= 5.0V (Note 2)V C = 12V to 25VI SINK = 20mA I SINK = 200mA I SOURCE = 20mA I SOURCE = 200mA C L = 1nF C L = 1nF V CC = 6V I L = 1mA1844 Series 1845 Series 1844 Series 1845 SeriesV PIN2= 0V 1844 Series V PIN3= 0V 1845 SeriesI CC = 25mAV/V V dBµA nsV Vns VV VmA mA V%LABIP1845 SERIESELECTRICAL CHARACTERISTICS (Over Full Operating Temperature Range unless otherwise stated)CURRENT SENSE SECTIONOUTPUT SECTIONUNDER–VOLTAGE LOCKOUT SECTIONPWM SECTIONNOTES1.Test Conditions unless otherwise stated:V CC = 15V* , R T = 10k Ω, C T = 3.3nF , f = 52kHz.*Adjust V CC above start threshold before setting at required level.All specifications apply over the full operating temperature range unless otherwise stated.(See Ordering Information for further details).2.Parameter measured at trip point of latch with V PIN2= 0V3.Gain defined as:∆V PIN1A =∆V PIN30 ≤V PIN3≤0.8TOTAL STANDBY CURRENTLABIP1845 SERIESAPPLICATIONS INFORMATIONV - Pin 4(Pin 7 for 14 Pin D Package)845GNDREFV R C T TC TR TInternal ClockInternal ClockOutput – Max. Duty Cycle V - Pin 6(Pin 10 for 14 Pin D Package)Output – Max. Duty Cycle V - Pin 6(Pin 10 for 14 Pin D Package)V - Pin 4(Pin 7 for 14 Pin D Package)LARGE SMALLR T C TLARGESMALL R T C TOscillator Waveforms and Maximum Duty CycleOscillator timing capacitor C T is charged by V REF through R T and discharged by an internal current source. During the discharge time, the internal clock signal blanks the output to the low state. Selection of R T and C T therefore determines both oscillator frequency and maximum duty cycle.Charge and discharge times are determined by the formulae:t c ≈0.55 R T C Tt d ≈R T C T R n1Resultant frequency f =(t c + t d )For R T > 5k Ω,1.8Resultant frequency f ≈(R T C T ).0063 R T – 2.3.0063 – 4( )LABIP1845 SERIESOpen–Loop Laboratory Test Fixture.01.02.04.07.1.2.4.71.0432160402010080101k10010k10M100k1M.05.5.03.3OUTPUT CURRENT, SOURCE / SINK (A)FREQUENCY (Hz)S A T U R A T I O N V O L T A G E (V )V O L T A G E G A I N (d B )OUTPUT SATURATION CHARACTERISTICSERROR AMPLIFIER OPEN-LOOPFREQUENCY RESPONSEV = 15V CCT = 25˚C AA VBSOURCE SAT V - )CC V OHSINK SAT (V )OL(AT = –55˚C –45–90–135–1800P H A S E (˚)TYPICAL PERFORMANCE CHARACTERISTICSAPPLICATIONS INFORMATIONHigh peak current associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to pin 5 in a single point ground. The transistor and 5K potentiometer are used to sample the oscillator wave form and apply an adjustable ramp to pin 3.0.1µF1k Ω1kW1k ΩERROR AMPADJUST4.7k Ω5k ΩADJUST4.7k Ω100k Ω2N2222I SENSE R TC T0.1µFV REF V CCOUTPUTGROUND12457836I SENSE V REF V CC O/P GND COMP V FB R T /C T02015100.50105152002015100.552.57.510UNDER VOLTAGE LOCKOUT1844 SERIESUNDER VOLTAGE LOCKOUT1845 SERIESV (V)CCI (m A )C C V (V)CCI (m A )C C。
MAX1978中文数据手册
用于Peltier模块的集成温度控制器概论MAX1978 / MAX1979是用于Peltier热电冷却器(TEC)模块的最小, 最安全, 最精确完整的单芯片温度控制器。
片上功率FET和热控制环路电路可最大限度地减少外部元件, 同时保持高效率。
可选择的500kHz / 1MHz开关频率和独特的纹波消除方案可优化元件尺寸和效率, 同时降低噪声。
内部MOSFET的开关速度经过优化, 可降低噪声和EMI。
超低漂移斩波放大器可保持±0.001°C的温度稳定性。
直接控制输出电流而不是电压, 以消除电流浪涌。
独立的加热和冷却电流和电压限制提供最高水平的TEC保护。
MAX1978采用单电源供电, 通过在两个同步降压调节器的输出之间偏置TEC, 提供双极性±3A输出。
真正的双极性操作控制温度, 在低负载电流下没有“死区”或其他非线性。
当设定点非常接近自然操作点时, 控制系统不会捕获, 其中仅需要少量的加热或冷却。
模拟控制信号精确设置TEC 电流。
MAX1979提供高达6A的单极性输出。
提供斩波稳定的仪表放大器和高精度积分放大器, 以创建比例积分(PI)或比例积分微分(PID)控制器。
仪表放大器可以连接外部NTC或PTC热敏电阻, 热电偶或半导体温度传感器。
提供模拟输出以监控TEC温度和电流。
此外, 单独的过热和欠温输出表明当TEC温度超出范围时。
片上电压基准为热敏电阻桥提供偏置。
MAX1978 / MAX1979采用薄型48引脚薄型QFN-EP 封装, 工作在-40°C至+ 85°C温度范围。
采用外露金属焊盘的耐热增强型QFN-EP封装可最大限度地降低工作结温。
评估套件可用于加速设计。
应用光纤激光模块典型工作电路出现在数据手册的最后。
WDM, DWDM激光二极管温度控制光纤网络设备EDFA光放大器电信光纤接口ATE特征♦尺寸最小, 最安全, 最精确完整的单芯片控制器♦片上功率MOSFET-无外部FET♦电路占用面积<0.93in2♦回路高度<3mm♦温度稳定性为0.001°C♦集成精密积分器和斩波稳定运算放大器♦精确, 独立的加热和冷却电流限制♦通过直接控制TEC电流消除浪涌♦可调节差分TEC电压限制♦低纹波和低噪声设计♦TEC电流监视器♦温度监控器♦过温和欠温警报♦双极性±3A输出电流(MAX1978)♦单极性+ 6A输出电流(MAX1979)订购信息* EP =裸焊盘。
Maxi-Power 150 T4F 电源生成器零件手册说明书
Parts ManualMAXI-POWER™ 150 T4FCopyright © 2019 AllmandHoldrege, NE, USA 68949 All rights reserved.Part No.: 116705Revision: AenTABLE OF CONTENTS1.0 TRAILER PARTS GROUPTrailer Axle, Jack, and Coupler ....................................................................(1.1) Front Enclosure Panels ..................................................................................(1.2) Left Enclosure Panels and Doors ..................................................................(1.3) Right Enclosure Panels and Doors ...............................................................(1.4) Rear Enclosure Panels ...................................................................................(1.5) Top Enclosure Panels ....................................................................................(1.6) Door Panel Urethane Foam Linings ..............................................................(1.7) Cover Panel Urethane Foam Linings ...........................................................(1.8)2.0 ENGINE AND GENERATOR GROUPJohn Deere 6068HFG05 Engine and Filter Group .......................................(2.1) Engine Finger and Fan Guards .....................................................................(2.2) Engine Air Intake Group ..............................................................................(2.3) Engine Exhaust Group ...................................................................................(2.4) Engine Cooling Group ....................................................................................(2.5) Engine DEF System Group ...........................................................................(2.6) Fuel Tank and Fuel Lines ..............................................................................(2.7) Engine Mounting and Generator Assembly Group .....................................(2.8)3.0 ELECTRICAL GROUPControl Box Group .........................................................................................(3.1) Electrical Outlet Box Group ...........................................................................(3.2) Battery Cables Group ....................................................................................(3.3) Tail Lights and Tail Light Harness ..................................................................(3.4) Cam Lock Group .............................................................................................(3.5) Battery Charger, Battery Heater, and Block Heater .......................................(3.6) Maxi-Power™ 150 T4F Parts CatalogTABLE OF CONTENTS4.0 DECALSFront, Left, and Rear Side Enclosure Decals ...............................................(4.1) Right and Top Side Enclosure Decals .........................................................(4.2) Control and Outlet Box Decals ....................................................................(4.3) Trailer Interior Decals .....................................................................................(4.4)©2019 Allmand®SN 27-000100 and UP 1.1 - Trailer Axle, Jack, and CouplerTo Be Determined000000_AMaxi-Power™ 150 T4F Parts Catalog1.1SN 27-000100 and UP 1.1 - Trailer Axle, Jack, and Coupler©2019 Allmand®1.1SN 27-000100 and UP 1.2 - Front Enclosure PanelsSN 27-000100 and UP 1.2 - Front Enclosure Panels©2019 Allmand®1.2SN 27-000100 and UP 1.3 - Left Enclosure Panels and DoorsSN 27-000100 and UP 1.3 - Left Enclosure Panels and Doors©2019 Allmand®1.3SN 27-000100 and UP 1.4 - Right Enclosure Panels and DoorsSN 27-000100 and UP 1.4 - Right Enclosure Panels and Doors©2019 Allmand®SN 27-000100 and UP 1.5 - Rear Enclosure PanelsSN 27-000100 and UP 1.5 - Rear Enclosure Panels©2019 Allmand®SN 27-000100 and UP 1.6 - Top Enclosure PanelsMaxi-Power™ 150 T4F Parts CatalogSN 27-000100 and UP 1.6 - Top Enclosure Panels©2019 Allmand®SN 27-000100 and UP 1.7 - Door Panel Urethane Foam LiningsMaxi-Power™ 150 T4F Parts CatalogSN 27-000100 and UP 1.7 - Section One©2019 Allmand®SN 27-000100 and UPSN 27-000100 and UP 1.8 - Cover Panel Urethane Foam Linings©2019 Allmand®SN 27-000100 and UP 2.1 - John Deere 6068HFG05 Engine and Filter GroupMaxi-Power™ 150 T4F Parts CatalogSN 27-000100 and UP 2.1 - John Deere 6068HFG05 Engine and Filter Group©2019 Allmand®SN 27-000100 and UP 2.2 - Engine Finger and Fan GuardsMaxi-Power™ 150 T4F Parts CatalogSN 27-000100 and UP 2.2 - Engine Finger and Fan Guards©2019 Allmand®SN 27-000100 and UP 2.3 - Engine Intake GroupMaxi-Power™ 150 T4F Parts CatalogSN 27-000100 and UP 2.3 - Engine Intake Group©2019 Allmand®SN 27-000100 and UP 2.4 - Engine Exhaust GroupSN 27-000100 and UP 2.4 - Engine Exhaust Group©2019 Allmand®SN 27-000100 and UP 2.5 - Engine Cooling GroupMaxi-Power™ 150 T4F Parts CatalogSN 27-000100 and UP 2.5 - Engine Cooling Group©2019 Allmand®SN 27-000100 and UPMaxi-Power™ 150 T4F Parts CatalogSN 27-000100 and UP 2.6 - Engine DEF System Group©2019 Allmand®SN 27-000100 and UPMaxi-Power™ 150 T4F Parts CatalogSN 27-000100 and UP 2.7 - Fuel Tank and Fuel Lines©2019 Allmand®SN 27-000100 and UPMaxi-Power™ 150 T4F Parts CatalogSN 27-000100 and UP 2.8 - Engine Mounting and Generator Assembly Group©2019 Allmand®SN 27-000100 and UPMaxi-Power™ 150 T4F Parts Catalog3.1 - Control Box Group11820231719191425202426202810271110333342302934351634329215312213421578126CONTROL PANEL DETAILCHANGE DEVICESIDE DETAILCONTROL BOX INTERIOR DETAILSN 27-000100 and UP 3.1 - Control Box Group©2019 Allmand®SN 27-000100 and UPMaxi-Power™ 150 T4F Parts Catalog3.2 - Electrical Outlet Box Group192325303127262224292813824131439423943151720392116397898793TERMINAL PLATE DETAIL21065432323340363534373741111218OUTLET PANEL DETAILSN 27-000100 and UP 3.2 - Electrical Outlet Box Group©2019 Allmand®SN 27-000100 and UP 3.3 - Battery Cables GroupSN 27-000100 and UP 3.3 - Battery Cables GroupSN 27-000100 and UP 3.4 - Tail Lights and Tail Light HarnessTo Be Determined000000_ASN 27-000100 and UP 3.4 - Tail Lights and Tail Light HarnessSN 27-000100 and UP3.5 - Cam Locks Option115304_A678510348976211111312SN 27-000100 and UP 3.5 - Cam Locks OptionSN 27-000100 and UP 3.6 - Battery Charger, Battery Heater, and Block Heater (1 of 2)117427_A532126241BATTERY CHARGER INSTALL RECESSED PLUGS INSTALLSN 27-000100 and UP 3.6 - Battery Charger, Battery Heater, and Block Heater (1 of 2)SN 27-000100 and UP 3.6 - Battery Charger, Battery Heater, and Block Heater (2 of 2)SN 27-000100 and UP 4.1 - Front, Left, and Rear Side Enclosure Decals。
MAX488EEPA+中文资料
General Description
The MAX481E, MAX483E, MAX485E, MAX487E– MAX491E, and MAX1487E are low-power transceivers for RS-485 and RS-422 communications in harsh environments. Each driver output and receiver input is protected against ±15kV electro-static discharge (ESD) shocks, without latchup. These parts contain one driver and one receiver. The MAX483E, MAX487E, MAX488E, and MAX489E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, thus allowing error-free data transmission up to 250kbps. The driver slew rates of the MAX481E, MAX485E, MAX490E, MAX491E, and MAX1487E are not limited, allowing them to transmit up to 2.5Mbps.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
小凡模拟器教程
现在新手学cisco的,基本都在用Dynamips和PT ,但是很多新手不会使用Dynamips,或许你看了这篇文章之后,至少会对Dynamips有点认识,应该基本都会用了。
Now,Follow Me 。
看图说话:按照图中用数字标出的序号来解释该区域:区域1:这里是选择路由器和交换机的个数的,这个地球人应该都知道吧。
区域2:这里可以选择一些不需要Cisco IOS的模拟设备。
如:FrameRelay交换机ATM交换机。
区域3:这里是选择设备类型的,以上都是Dynamips目前所支持的设备类型。
区域4:这里是选择设备类型、IOS存放路径、idle-pc值、NPE类型、虚拟内存(表示虚拟设备的RAM所占的内存大小,因为dynamips在模拟时候需要将主机的物理内存模拟成模拟设备的RAM)、寄存器。
区域5:这里是配置分布式的dynamips的设置区域区域6:这里是设置可以和主机(就是你的物理机)通信的。
区域7:可以直接读取真实设备里的NVRAM里的配置文件(.ini格式)区域8:输入目录是指生成的bat文件保存路径,自己建立哦。
下面根据拓扑来介绍:根据这个拓扑,需要模拟出3个路由器和1个交换机。
下面我们用DynamipsGUI 来配置脚本文件。
(Ps:DynamipsGUI和Dynamipsee都是可视化的写Dynamips的脚本程序。
不是模拟器!!真正的模拟器是Dynamips 。
)下面模拟上面的拓扑全过程:1.打开DynamipsGUI。
然后在[区域1]那里选择3个路由器和1个交换机。
并且选择[桥接到PC](桥接到PC的作用就是用物理机telnet到模拟出来的设备,然后就可以对设备进行配置),在这里路由器我用的IOS是7200的,交换机用的是3640的(IOS网上很多,可以自己去找。
),所以总的来说我只需要2个IOS文件既可,所以在设备类型这里我只需要勾选7200和3640这2个复选框既可。
如图:2.接着就是在[区域2]那里选择设备的类型和IOS文件路径,选择好之后,需要计算idle值,点击[计算idle]按钮(idle-pc只是为了解决在开启模拟设备的时候不至于你的物理机CPU占有率达到100%,所以这个值很重要)3.点击[计算idle]按钮之后,会弹出一个提示,选择确定即可:4.接着就会弹出一个窗口。
MAX1978ETM+中文资料
________________________________________________________________ Maxim Integrated Products
AIN+ AINAOUT
UT
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
元器件交易网
Integrated Temperature Controllers for Peltier Modules MAX1978/MAX1979
ABSOLUTE MAXIMUM RATINGS
VDD to GND ..............................................................-0.3V to +6V SHDN, MAXV, MAXIP, MAXIN, CTLI, OT, UT to GND............................................-0.3V to +6V FREQ, COMP, OS1, OS2, CS, REF, ITEC, AIN+, AIN-, AOUT, INT-, INTOUT, BFB+, BFB-, FB+, FB-, DIFOUT to GND......................................-0.3V to (VDD + 0.3V) PVDD1, PVDD2 to VDD ...........................................-0.3V to +0.3V PVDD1, PVDD2 to GND...............................-0.3V to (VDD + 0.3V) PGND1, PGND2 to GND .......................................-0.3V to +0.3V COMP, REF, ITEC, OT, UT, INTOUT, DIFOUT, BFB-, BFB+, AOUT Short to GND .............................Indefinite Peak LX Current (MAX1978) (Note 1).................................±4.5A Peak LX Current (MAX1979) (Note 1)....................................+9A Continuous Power Dissipation (TA = +70°C) 48-Lead Thin QFN-EP (derate 26.3mW/°C above +70°C) (Note 2) .................2.105W Operating Temperature Ranges MAX1978ETM ..................................................-40°C to +85°C MAX1979ETM ..................................................-40°C to +85°C Maximum Junction Temperature .....................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C
MAX4851ETE-T中文资料
General DescriptionThe MAX4851/MAX4851H /MAX4853/MAX4853H family of quad single-pole/single-throw (SPST) switches oper-ates from a single +2V to +5.5V supply and can handle signals greater than the supply rail. These switches fea-ture low 3.5Ωon-resistance with 40pF on-capacitance or 7Ωon-resistance with 30pF on-capacitance, making them ideal for switching audio and data signals.The MAX4851/MAX4851H are configured with four SPST switches and feature a comparator for head-phone detection or mute/send key functions. The MAX4853/MAX4853H have four SPST switches but do not include a comparator.For over-rail applications, these devices offer either the pass-through or high-impedance option. For the MAX4851/ MAX4853, signals greater than the positive supply (up to 5.5V) pass through the switch without dis-tortion. For the MAX4851H/MAX4853H, the switch input becomes high impedance when the input signal exceeds the supply rail.The MAX4851/MAX4851H /MAX4853/MAX4853H are available in the space-saving, 16-pin, 3mm x 3mm thin QFN package and operate over the -40°C to +85°C extended temperature range.ApplicationsUSB Switching Audio Signal Routing Cellular Phones Notebook ComputersPDAs and Other Handheld DevicesFeatures♦USB 2.0 Full Speed (12Mbps) and USB 1.1 Signal Switching ♦Switch Signals Greater than V CC ♦+2V to +5.5V Supply Range ♦3.5Ω/7ΩOn-Resistance♦30pF On-Capacitance (7ΩSwitch)♦150MHz -3dB Bandwidth ♦1.8V Logic Compatibility ♦Low Supply Current0.01µA (MAX4853)5µA (MAX4851)10µA (MAX4851H/MAX4853H)♦Low 0.01nA Leakage Current♦Available in a Space-Saving 3mm x 3mm, 16-Pin TQFN PackageMAX4851/MAX4851H/MAX4853/MAX4853H3.5Ω/7ΩQuad SPST Switches with Over-RailSignal Handling________________________________________________________________Maxim Integrated Products 1Ordering InformationBlock Diagram/Truth Table19-3471; Rev 0; 10/04For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .*EP = Exposed paddle.Pin Configurations and Typical Operating Circuit appear at end of data sheetM A X 4851/M A X 4851H /M A X 4853/M A X 4853H3.5Ω/7ΩQuad SPST Switches with Over-Rail Signal Handling 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC , IN_, CIN, COM_, NO_ to GND (Note 1)........-0.3V to +6.0V COUT..........................................................-0.3V to (V CC + 0.3V)COUT Continuous Current................................................±20mA Closed-Switch Continuous Current COM_, NO_, NC_3.5ΩSwitch ................................................................±100mA 7ΩSwitch .....................................................................±50mA Peak Current COM_, NO_ (pulsed at 1ms, 50% duty cycle)3.5ΩSwitch ................................................................±200mA 7ΩSwitch ...................................................................±100mAPeak Current COM_, NO_ (pulsed at 1ms, 10% duty cycle)3.5ΩSwitch ................................................................±240mA 7ΩSwitch ...................................................................±120mA Continuous Power Dissipation (T A = +70°C)16-Pin Thin QFN (derate 20.8mW/°C above +70°C)...1667mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CELECTRICAL CHARACTERISTICS(V= +2.7V to +5.5V, T = -40°C to +85°C, unless otherwise noted. Typical values are at V = +3.0V, T = +25°C, unless other-Note 1:Signals on IN_, NO_, or COM_ below GND are clamped by internal diodes. Limit forward-diode current to maximum currentrating.MAX4851/MAX4851H/MAX4853/MAX4853H3.5Ω/7Ω Quad SPST Switches with Over-RailSignal Handling_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)M A X 4851/M A X 4851H /M A X 4853/M A X 4853H3.5Ω/7ΩQuad SPST Switches with Over-Rail Signal Handling 4_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS (continued)perature range.Note 3:Guaranteed by design and characterization; not production tested.Note 4:∆R ON = R ON(MAX)- R ON(MIN).Note 5:Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over thespecified analog signal ranges.Note 6:Off-isolation = 20log 10(V COM_/ V NO_), V COM_= output, V NO_= input to off switch.MAX4851/MAX4851H/MAX4853/MAX4853H3.5Ω/7Ω Quad SPST Switches with Over-RailSignal Handling_______________________________________________________________________________________5MAX4851/MAX4853ON-RESISTANCE vs. COM VOLTAGECOM VOLTAGE (V)O N -R E S I S T A N C E (Ω)4212345678910006MAX4851/MAX4853ON-RESISTANCE vs. COM VOLTAGECOM VOLTAGE (V)O N -R E S I S T A N C E (Ω)421.01.52.02.53.03.54.04.50.506MAX4851/MAX4853ON-RESISTANCE vs. COM VOLTAGECOM VOLTAGE (V)O N -R E S I S T A N C E (Ω)421.01.52.02.53.03.50.506MAX4851H/MAX4853HON-RESISTANCE vs. COM VOLTAGECOM VOLTAGE (V)O N -R E S I S T A N C E (Ω)4212345678910006MAX4851H/MAX4853HON-RESISTANCE vs. COM VOLTAGECOM VOLTAGE (V)O N -R E S I S T A N C E (Ω)2.52.00.51.01.51.52.02.53.03.54.04.55.01.03.0MAX4851H/MAX4853HON-RESISTANCE vs. COM VOLTAGECOM VOLTAGE (V)O N -R E S I S T A N C E (Ω)43211.01.52.02.53.03.50.505MAX4853ON-RESISTANCE vs. COM VOLTAGECOM VOLTAGE (V)O N -R E S I S T A N C E (Ω)4251015202530354045006MAX4853ON-RESISTANCE vs. COM VOLTAGECOM VOLTAGE (V)O N -R E S I S T A N C E (Ω)42345678206MAX4853ON-RESISTANCE vs. COM VOLTAGECOM VOLTAGE (V)O N -R E S I S T A N C E (Ω)541232.02.53.03.54.04.55.05.51.56Typical Operating Characteristics(V CC = 3.0V, T A = +25°C, unless otherwise noted.)M A X 4851/M A X 4851H /M A X 4853/M A X 4853H3.5Ω/7ΩQuad SPST Switches with Over-Rail Signal Handling 6_______________________________________________________________________________________MAX4853HON-RESISTANCE vs. COM VOLTAGECOM VOLTAGE (V)O N -R E S I S T A N C E (Ω)4251015202530354045006MAX4853HON-RESISTANCE vs. COM VOLTAGECOM VOLTAGE (V)O N -R E S I S T A N C E (Ω)2.52.01.51.00.5345678203.0MAX4853HON-RESISTANCE vs. COM VOLTAGECOM VOLTAGE (V)O N -R E S I S T A N C E (Ω)43122.02.53.03.54.04.55.05.51.55MAX4851SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (µA )5.04.54.03.53.02.52.02.53.03.54.04.55.05.52.01.55.5MAX4851HSUPPLY CURRENT vs. SUPPLY VOLTAGE3456782SUPPLY VOLTAGE (V)S U P P L Y C U R R E N T(µA )5.04.54.03.53.02.52.01.55.50.20.40.60.81.0MAX4853SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (n A)5.04.54.03.53.02.52.01.55.55.05.56.06.57.07.58.04.5MAX4853HSUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L YC U R R E N T (µA )5.04.54.03.53.02.52.01.55.5TURN-ON/TURN-OFF TIME vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)T U R N -O N /T U R N -O F F T I M E (n s)4.53.52.510203040506001.5 5.5TURN-ON/TURN-OFF TIME vs. TEMPERATURETEMPERATURE (°C)T U R N -O N /T U R N -O F F T I M E (n s )603510-152224262830323420-4085Typical Operating Characteristics (continued)(V CC = 3.0V, T A = +25°C, unless otherwise noted.)MAX4851/MAX4851H/MAX4853/MAX4853H3.5Ω/7Ω Quad SPST Switches with Over-RailSignal Handling_______________________________________________________________________________________7TURN-ON/TURN-OFF TIME vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)T U R N -O N /T U R N -O F F T I M E (n s )4.53.52.510203040506001.55.5TURN-ON/TURN-OFF TIME vs. TEMPERATURETEMPERATURE (°C)T U R N -O N /T U R N -O F F T I M E (n s )603510-152224262830323420-4085LOGIC THRESHOLD vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)L O G I C T H R E S H O L D (V )4.53.52.50.81.01.21.41.60.61.55.5CHARGE INJECTION vs. COM VOLTAGECOM VOLTAGE (V)C H A R G E I N J E C T I O N (p C )4321102030005CHARGE INJECTION vs. COM VOLTAGECOM VOLTAGE (V)C H A R G E I N J E C T I O N (p C )43211020305LEAKAGE CURRENT vs. TEMPERATURETEMPERATURE (°C)L E A K A G E C U R R E N T (n A )603510-150.20.40.60.81.01.21.40-4085LEAKAGE CURRENT vs. TEMPERATURETEMPERATURE (°C)L E A K A G E C U R R E N T (n A )6035-15100.20.40.60.81.01.21.41.60-4085FREQUENCY RESPONSEFREQUENCY (MHz)F R E Q U E N C Y R E S P O N S E (d B )100101-80-60-40-20020-1000.11000FREQUENCY RESPONSEFREQUENCY (MHz)F R E Q U E N C Y R E S P O N S E (d B )100101-80-60-40-20020-1000.11000Typical Operating Characteristics (continued)(V CC = 3.0V, T A = +25°C, unless otherwise noted.)M A X 4851/M A X 4851H /M A X 4853/M A X 4853H3.5Ω/7ΩQuad SPST Switches with Over-Rail Signal Handling 8_______________________________________________________________________________________TOTAL HARMONIC DISTORTIONvs. FREQUENCYFREQUENCY (Hz)T H D (%)10k1k 1000.110100k10.01TOTAL HARMONIC DISTORTIONvs. FREQUENCYFREQUENCY (Hz)T H D (%)10k1k 1000.110100k10.01(MAX4851/MAX4851H) COMPARATOR THRESHOLD vs. TEMPERATURETEMPERATURE (°C)C O M P A R A T O R T H R E S H O LD (V )603510-151.021.041.061.081.101.00-4085COMPARATOR THRESHOLDvs. TEMPERATURETEMPERATURE (°C)C O M P A R A T O R T H R E S H O L D (V )603510-151.6251.6501.6751.7001.7251.7501.600-4085MAX4851/MAX4853SWITCH PASSING SIGNALS ABOVE SUPPLY VOLTAGEV NC 2V/div 0VV COM 0V200µs/divV CC = 3.0VMAX4851H/MAX4853H SWITCH ENTERING HIGH-IMPEDANCE STATE200µs/divV NC 2V/div 0VV COM 0VV CC = 3.0VHI-Z STATE HI-Z STATETypical Operating Characteristics (continued)(V CC = 3.0V, T A = +25°C, unless otherwise noted.)Detailed Description The MAX4851/MAX4851H/MAX4853/MAX4853H are low on-resistance, low-voltage, analog switches that operate from a +2V to +5.5V single supply and are fully specified for nominal 3.0V applications. The MAX4851/MAX4853 devices feature over-rail signal capability that allows sig-nals up to 5.5V with supply voltages down to 2.0V to pass through without distortion. The MAX4851H/ MAX4853H enter high-impedance mode when the signal voltage exceeds V CC and return to normal operation when the signal voltage drops below V CC.tance, which allows switching of the data signals for USB 2.0/1.1 applications (12Mbps). They are designed to switch D+ and D- USB signals with a guaranteed skew of less than 1ns (see Figure 2), as measured from 50% of the input signal to 50% of the output signal.The MAX4851_ features a comparator that can be used for headphone or mute detection. The comparator threshold is internally generated to be approximately 1/3 of V CC.3.5Ω/7ΩQuad SPST Switches with Over-RailSignal Handling_______________________________________________________________________________________9MAX4851/MAX4851H/MAX4853/MAX4853H Pin DescriptionM A X 4851/M A X 4851H /M A X 4853/M A X 4853H3.5Ω/7ΩQuad SPST Switches with Over-Rail Signal Handling 10______________________________________________________________________________________Test Circuits/Timing DiagramsFigure 1. Switching TimeFigure 2. Input/Output Skew Timing DiagramMAX4851/MAX4851H/MAX4853/MAX4853H3.5Ω/7Ω Quad SPST Switches with Over-RailSignal Handling______________________________________________________________________________________11Figure 3. Charge InjectionTest Circuits/Timing Diagrams (continued)M A X 4851/M A X 4851H /M A X 4853/M A X 4853HApplications InformationDigital Control InputsThe logic inputs (IN_) accept up to +5.5V even if the supply voltages are below this level. For example, with a +3.3V V CC supply, IN_ can be driven low to GND and high to +5.5V, allowing for mixing of logic levels in a sys-tem. Driving IN_ rail-to-rail minimizes power consump-tion. For a +2V supply voltage, the logic thresholds are 0.5V (low) and 1.4V (high). For a +5V supply voltage, the logic thresholds are 0.8V (low) and 1.8V (high).Analog Signal LevelsThe on-resistance of these switches changes very little for analog input signals across the entire supply volt-age range (see Typical Operating Characteristics ). The switches are bidirectional; therefore, NO_ and COM_can be either inputs or outputs.ComparatorThe positive terminal of the comparator is internally set to V CC / 3. When the negative comparator terminal (CIN) is below the threshold (V CC / 3), the comparator output (COUT) goes high. When CIN rises above V CC / 3, COUT goes low.The comparator threshold allows for detection of head-phones since headphone audio signals are typically biased to V CC / 2.Power-Supply SequencingCaution: Do not exceed the absolute maximum rat-ings because stresses beyond the listed ratings may cause permanent damage to the device.Proper power-supply sequencing is recommended for all CMOS devices. Always apply V CC before applying analog signals, especially if the analog signal is not current limited.3.5Ω/7ΩQuad SPST Switches with Over-Rail Signal HandlingFigure 5. Channel Off-/On-CapacitanceFigure 6. Comparator Switching TimeSelector GuideMAX4851/MAX4851H/MAX4853/MAX4853H3.5Ω/7Ω Quad SPST Switches with Over-RailSignal Handling______________________________________________________________________________________13Pin ConfigurationsTypical Operating CircuitChip InformationTRANSISTOR COUNT: 735PROCESS: CMOSM A X 4851/M A X 4851H /M A X 4853/M A X 4853H3.5Ω/7ΩQuad SPST Switches with Over-Rail Signal Handling Maxim cannot assume responsib ility for use of any circuitry other than circuitry entirely emb odied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.14____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2004 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。
MAX485典型电路
(2)发送应答位和非应答位子程序
IIC总线上的第9个时钟对应于应答位,相应数据线上“0”
为“ACK”和“1”为“”。发送应答位和非应答位的子程序 分别如下。 ①发送应答位ACK MACK: CLR SDA SETB SCL NOP NOP CLR SCL SETB SDA RET ②发送非应答位ACK MNACK: SETB SDA SETB SCL NOP NOP CLR SCL CLR SDA RET
控制字节的A2、A1、A0的选择必须与外部A2、A1、A0
引脚的硬件连接或者内部块选择匹配,A2、A1、A0引脚无 内部连接的,则这三位无关紧要;作器件选择的,可接高电 平或低电平。 AT24CXX的存贮矩阵内部分为若干块,每一块有若干页面,
每一页面有若干个字节。内部页缓冲器只能写入一页字节数
据,对24LC32和24LC64一次可以存8页(每页8个字节)。 ③控制字节第8位为读、写操作控制码。如果此位为1,下一字
· 接收到数据的存放首址存放在片内RAM的MTD单元。 WRNBYT: PUSH PSW WRNBYT1: MOV PSW,#18H ;改用第3 CALL STA
MOV A,SLA
CALL WRB CALL CACK JB F0,WRNBYT MOV R0,#MTD ;有应答位,继而发数据,第一个数据为首址
MOV C,SDA ;读SDA
MOV F0,C CLR SCL NOP RET ;转存入F0
第9章 串行接口技术 (4)字节数据发送子程序
由于是SDA接在并行口线,无移位寄存器,因此数据通过指令 完成移位再从SDA串行输出。遵循时序要求,数据在时钟低电平 时变化,高电平时稳定,每一个时钟脉冲传送一位,编写字节数 该子程序的入口条件是待发送的字节位于累加器ACC中。
微尔斯微电子 SG1844 45 现代模式 PWM 控制器产品亮点说明书
Current Mode PWM ControllerProduct HighlightFigure 1 · Product HighlightFeatures ▪Optimized for Off-Line Control ▪Low Start-Up Current (<1mA)▪Automatic Feed Forward Compensation ▪Trimmed Oscillator ▪Discharge Current▪Pulse-By-Pulse Current Limiting▪Enhanced Load Response Characteristics ▪Undervoltage Lockout with 6V Hysteresis (SG1844 only)▪Double Pulse Suppression▪High-Current Totem-Pole Output▪Internally Trimmed Bandgap Reference ▪500kHz Operation ▪Under-voltage Lockout SG1844 - 16 Volts SG1845 - 8.4 Volts▪Low Shoot-through Current <75mA Over TemperatureApplication▪Available to MIL-STD-883 ▪Available to DSCC– Standard Microcircuit Drawing (SMD) ▪SGR1844/45 Rad-Tolerant Version AvailableDescriptionThe SG1844/45 family of control ICs provides all therequired features to implement off-line Fixed Frequency, Current-mode switching power supplies with a minimum number of external components.Current-mode architecture demonstrates improved lineregulation, improved load regulation, pulse-by pulse current limiting and inherent protection of the power supply output switch.The Bandgap reference is trimmed to ±1% overtemperature. Oscillator discharge current is trimmed to less than ±10%. The SG1844/45 has under-voltage lockout, current-limiting circuitry and start-up current of less than 1mA. The totem-pole output is optimized todrive the gate of a power MOSFET. The output is low in the off state to provide direct interface to an N-channel device. Both operate up to a maximum duty cycle range of zero to <50% due to an internal toggle flip-flop which blanks the output off every other clock cycle. The SG1844/45 is specified for operation over the full military ambient temperature range of -55°C to 125°C. The SG3844/45 is designed for the commercial range of 0°C to 70°C.SG1844/SG1845/SG3844/SG3845Current Mode PWM ControllerConnection Diagrams and Ordering InformationConnection Diagrams and Ordering InformationCurrent Mode PWM ControllerAbsolute Maximum Ratings1 - 2Thermal DataRecommended Operating Conditions3 Recommended Operating Conditions3Electrical CharacteristicsUnless otherwise specified, these specifications apply over the operating ambient temperatures for SG1844/SG1845 with -55°C ≤T A≤125°C, SG3844/SG3845 with 0°C ≤ T A≤ 70°C, VCC = 15V (Note 7), R T= 10kΩ, and C T= 3.3nF. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.Current Mode PWM ControllerBlock DiagramBlock DiagramGROUND**V CC *R T /C TV FB COMPCURRENT SENSEPOWER GROUND**OUTPUTV C *V REF 5.0 V 50 mA* - V CC and V C are internally connected for 8-pin packages.** - POWER GROUND and GROUND are internally connected for 8-pin packages.Figure 2 · Block DiagramCurrent Mode PWM ControllerCharacteristic CurvesJunction Temperature - (°C)M i n i m u m O p e r a t i n g V o l t a g e - (V )8.08.48.89.29.610.0-75-5025255075100125Figure 3 · Dropout Voltage vs. TemperatureJunction Temperature - (°C)F r e q u e n c y D r i f t - (%)-10-8-6-4-22-75-50250255075100125Figure 4 · Oscillator Temperature StabilityJunction Temperature - (°C)C u r r e n t S e n s eD e l a y - (n S )120-75-50250140160180200220255075100125Figure 5 · Current Sense to Output Delay vs.TemperatureJunction Temperature - (°C)S t a r t -U p C u r r e n t - (m A )0.20.30.40.50.60.7-75-50-252550Figure 6 · Start-Up Current vs. TemperatureJunction Temperature - (°C)R e f e r e n c e V o l t a g e - (V )4.98-754.995.005.015.02-50-250255075100Figure 7 · Reference Voltage vs. TemperatureJunction Temperature - (°C)R e f e r e n c e V o l t a g e - (V )-75-50-250255075100125Figure 8 · Start-Up Voltage Threshold vs. TemperatureCharacteristic CurvesJunction Temperature - (°C)S t a r t U p V o l t a g e - (V )16.0016.0216.0416.0616.0815.98-75-50-250255075100125Figure 9 · Start-Up Voltage Threshold vs. TemperatureJunction Temperature - (°C)O s c i l l a t o r D i s c h a r g e C u r r e n t - (m A )7.4-757.67.88.08.27.2-50-250125255075100Figure 10 · Oscillator Discharge Current vs. TemperatureOutput Current - (mA)S a t u r a t i o n V o l t a g e - (V )0.51002003004005001.01.52.02.5Figure 11 · Output Saturation Voltage vs. Output Current and Temperature (Sink Transistor)Error Amp Output Voltage - (V)C u r r e n t S e n s e T h r e s h o l d - (V )0.21.02.03.04.05.00.40.60.81.000.10.30.50.70.9Figure 12 · Current Sense Threshold vs. Error Amplifier OutputOutput Current - (mA)S a t u r a t i o n V o l t a g e - (V )1.01002003004005002.03.04.0Figure 13 · Output Saturation Voltage vs. Output Current and Temperature (Source Transistor)Current Mode PWM ControllerApplication InformationThe oscillator of the 1844/45 family of PWM's is programmed by the external timing components (R T , C T ) as shown in Figure 14.R TC T F ≈Where R T ≥ 5kΩ1.86R T C TFigure 14 · Oscillator Timing Circuit100k110010R T - (k Ω)Oscillator Frequency - (Hz)1001k10k1MFigure 15 · Oscillator Frequency vs. R T for various C TTypical Application CircuitsTypical Application CircuitsPin numbers referenced are for 8-pin package and pin numbers in parenthesis are for 14-pin package.Figure 16 · Current Sense Spike SuppressionThe RC low-pass filter will eliminate the leading edge current spike caused by parasitic of Power MOSFET.Figure 17 · MOSFET Parasitic OscillationsA resistor (R1) in series with the MOSFET gate reduce overshoot and ringing caused by the MOSFET input capacitance and any inductance in series with the gate drive. (Note: It is very important to have a low inductance ground path to insure correct operation of the I.C. This can be done by making the ground paths as short and as wide as possible.)Current Mode PWM ControllerFigure 18 · Bipolar Transistor DriveThe 1844/45 output stage can provide negative base current to remove base charge of power transistor (Q 1) for faster turn off. This is accomplished by adding a capacitor (C 1) in parallel with a resistor (R 1). The resistor (R 1) is to limit the base current during turn on.V GS Waveforms+_50% DC25% DCI PK =V (PIN 1) – 1.43R SN P N S+_0()Figure 19 · Isolated MOSFET DriveCurrent transformers can be used where isolation is required between PWM and Primary ground. A drive transformer is then necessary to interface the PWM output with the MOSFET.Typical Application CircuitsCI PK =Where, 0 ≤ V 1≤ 1.0V 1R S1.43- 0.23 1+and =V 1R 1R 2VR 1R 2CWhere, V 2 =0.5 1+t SOFTSTART = -In1[V c R 2]R 1R 2+R 2R 2R 1R 2Figure 20 · Adjustable Buffered Reduction of Clamp Level with SoftstartSoftstart and adjustable peak current can be done with the external circuitry shown above.SG1844/45Cf =(R A + 2R B ) C 1.44f =R BR A + 2R BFigure 21 · External Duty Cycle Clamp and Multi-Unit SynchronizationPrecision duty cycle limiting for a duty cycle of <50%, as well as synchronizing several 1844/45's is possible with the above circuitry.Current Mode PWM ControllerTTFigure 22 · Oscillator ConnectionThe oscillator is programmed by the values selected for the timing componentsR T and C T. Refer toapplication information for calculation of the component values.R f 10KFigure 23 · Error Amplifier Connection Error amplifier is capable of sourcing and sinking current up to 0.5mA.PACKAGE OUTLINE DIMENSIONSPACKAGE OUTLINE DIMENSIONSControlling dimensions are in inches, metric equivalents are shown for general information.Note:1. D imensions do not include mold flash or protrusions; these shall not exceed 0.155mm (.006”) on any side. Lead dimension shall not include solder coverageFigure 24 · DM 8-Pin SOIC Package DimensionsNote:1. Dimensions do not include mold flash or protrusions;these shall not exceed 0.155mm (.006”) on any side. Lead dimension shall not include solder coverageFigure 25 · D 14-Pin SOIC Package DimensionsCurrent Mode PWM ControllerPACKAGE OUTLINE DIMENSIONSθNote:1. Dimensions do not include mold flash or protrusions; theseshall not exceed 0.155mm (.006”) on any side. Leaddimension shall not include solder coverage.Figure 26 · M 8-Pin PDIP Package DimensionsPACKAGE OUTLINE DIMENSIONSPACKAGE OUTLINE DIMENSIONSNote:Dimensions do not include protrusions; these shall not exceed 0.155mm (.006”) on any side. Lead dimension shall not include solder coverage.Figure 27 · Y 8-Pin CERDIP Package DimensionsNote:Dimensions do not include protrusions; these shall not exceed 0.155mm (.006”) on any side. Lead dimension shall not include solder coverage.Figure 28 · J 14-Pin CERDIP Package DimensionsαCurrent Mode PWM ControllerPACKAGE OUTLINE DIMENSIONS1. Lead No. 1 is identified by tab on lead or dot on cover.2. Leads are within 0.13mm (.0005”) radius of the true position (TP) at maximum material condition.3. Dimension “e” determines a zone within which all body and lead irregularities lie.Figure 29 · F 10-Pin Ceramic Flatpack Package DimensionsNote:All exposed metalized area shall be gold plated 60 micro-inch minimum thickness over nickel plated unless otherwise specified in purchase order.Figure 30 · L 20-Pin Leadless Chip Carrier Package DimensionsMicrosemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USAWithin the USA : +1 (800) 713-4113 Outside the USA : +1 (949) 380-6100 Sales : +1 (949) 380-6136 Fax : +1 (949) 215-4996E-mail : ***************************Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microse mi hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.。
MAX1994ETM资料
Features
MAX1816/MAX1994
Ordering Information
PART MAX1816ETM MAX1994ETM TEMP RANGE -40°C to +100°C -40°C to +100°C PIN-PACKAGE 48 Thin QFN 48 Thin QFN
Pin Configuration
元器件交易网
19-2569; Rev 0; 10/02
Dual Step-Down Controllers Plus LinearRegulator Controller for Notebook Computers
General Description
The MAX1816/MAX1994 are dual step-down controllers for notebook computer applications. BUCK1 is a CPU core regulator with dynamically adjustable output, ultrafast transient response, high DC accuracy, and high efficiency. BUCK2 is an adjustable step-down regulator for I/O and memory supplies. Both regulators employ Maxim’s proprietary Quick-PWM™ control architecture. This fastresponse, constant-on-time PWM control scheme handles wide input/output voltage ratios with ease and provides 100ns “instant” on-response to load transients, while maintaining a relatively constant switching frequency. The MAX1816/MAX1994 also have a linear-regulator controller for low-voltage auxiliary power supplies. The CPU regulator supports “active voltage positioning” to reduce output bulk capacitance and lower power dissipation. A programmable gain amplifier allows the use of lower value sense resistors. Four fixed-gain settings are available (0, 1.5, 2, and 4). A differential remotesense amplifier is also included to more accurately control the voltage at the load. Accuracy is further enhanced with an internal integrator. The MAX1816/MAX1994 include a specialized digital interface that makes them suitable for mobile CPU and video processor applications. The power-good (PGOOD) output for the core regulator is forced high during VID transitions, and the LINGOOD output for the linear regulator includes a 1ms (min) turn-on delay. BUCK1, BUCK2, and the linear regulator feature overvoltage protection (OVP). The detection threshold for BUCK1 is adjusted with an external resistive voltage-divider, while the OVP thresholds for BUCK2 and the linear regulator are fixed. Connecting the OVPSET pin to VCC disables OVP for BUCK1 and BUCK2, but not the linear regulator. The MAX1816 features an output-voltage adjustment range from 0.6V to 1.75V. Similarly, the MAX1994 is adjustable from 0.925V to 2.0V, using an alternate VID code set. While in suspend mode, the adjustment range is 0.7V to 1.075V for both the MAX1816 and MAX1994. Both parts are available in 48-pin thin QFN packages. o Dual Quick-PWM Architecture o ±1% VOUT Accuracy o 5-Bit On-Board D/A Converter o +0.60V to +1.75V Output Adjust Range (MAX1816) o +0.70V to +2.00V Output Adjust Range (MAX1994) o Voltage-Positioning Gain and Offset Control o +2V to +28V Battery Input Range o Differential Remote Sense (BUCK1) o Linear-Regulator Controller o 200/300/550/1000kHz Switching Frequency o 2.2mA (typ) ICC Supply Current o 20µA (max) Shutdown Supply Current o Independent Power-Good Outputs (PGOOD, LINGOOD)
MAX1844笔记本电脑芯片组、显卡供电控制芯片
201918171615141312345678DH LX BST SKIPOVP SHDN LATCH CS V+TON V CC V DD REF ILIM OUT FB 1211910DL GNDPGOOD UVP MAX1844EEP 20 QSOP321201945678910111213141516171820 THIN QFNMAX1844EGPMAX1844ETP VCC TONV+SKIP BST REF ILIM OUT FB OVP REF -10%FROM OUTREFFBTOFFTON REF +10%CHIPSUPPLYx21.0VR 0.1V POR OVP9RILIMV CC - 1V V CC - 1V V CC - 1V SHDNPGOOD1-SHOT1-SHOTTRIGIN2V TO 28VTRIGQQS RREF5VOUTPUTDLCSGND V CCVDD LXDH BST 5V+5VQSKIP TONLATCHV+ΣMAX1844S RQ0.7V1.14V UVP20ms0.1VOUT单次计算误差放大器限流比较器过零比较器反馈多工程2V基准过压/欠压锁存时间常数MAX1844是1.8V/2.5V固定或1-5.5V可调节输出线性稳压器 ,具有快速瞬态响应和高精度DC输出,适用于记本电脑中可生成低压电源的高压降压电池。
MAX1844是单控制器,易于校正没有噪声敏感性,也不受传统固定频率电流模式PWM占空比限制。
它具有2种封装形式,即QSOP封装和QFN封装。
MAX1844的内部电路框图MAX1844MAX1844的针脚封装图引脚号引脚名称引脚功能QSOP 封装QFN 封装118CS 电流检测输入端219LATCH 软启动端320SHDN 使能控制端41OVP 过压保护端52FB 反馈输入端。
该脚通过两个电阻连接在输出电压与接地端之间,改变这两个电阻的阻值,即可调整输出电压63OUT 输出电压检测连接端74ILIM 负载电流设置端85REF 2V 基准电压输出端96UVP 欠压保护设定端107PGOOD POWER GOOG 信号输出端118GND 接地端129DL 下开关管驱动信号输出端1310VDD 下开关管驱动供电端1411VCC 工作电压输入端,电压为4.5-5.5V 1512TON 频率控制端1613V+电池电压输入端1714SKIP 脉冲跳频控制输入端1815BST 上开关管供电电压输入端1916LX 电感连接反馈输入端2017DH上开关管驱动信号输出端V CC UVPV IN7V TO 20V 5VBIAS SUPPLYC2330µFPOWER-GOOD INDICATORL14.7µHV OUT 2.5VSHDN V+D2CMPSH-3C63.3µFC70.1µFC40.22µF270k Ω130k ΩQ1D1R2100k ΩQ2R SENSE 15m ΩC54.7µFR120ΩSKIPILIMON/OFF CONTROL LOW-NOISE CONTROLDL LX BST DHCS OUTFB LATCH OVPPGOODV DD MAX18445VTON REFGNDC110µFMAX1844的各引脚功能MAX1844的典型应用电路图。
MAX17498A-MAX17498C中文手册
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliabi98B/MAX17498C AC-DC和DC-DC峰值电流模式转换器, 支持反激/Boost应用
Absolute Maximum Ratings
IN to SGND.............................................................-0.3V to +40V EN/UVLO to SGND.......................................... -0.3V to IN + 0.3V OVI to SGND............................................... -0.3V to VCC + 0.3V VCC to SGND...........................................................-0.3V to +6V SS, LIM, EA-, EA+, COMP, SLOPE, REF to SGND.........................................-0.3V to (VCC + 0.3V) LX to SGND............................................................-0.3V to +70V PGOOD to SGND.....................................................-0.3V to +6V PGND to SGND.....................................................-0.3V to +0.3V Continuous Power Dissipation (Single-Layer Board) TQFN (derate 20.8mW/°C above +70°C)..................1700mW Operating Temperature Range......................... -40°C to +125°C Storage Temperature Range............................. -65°C to +160°C Junction Temperature (continuous).................................+150°C Lead Temperature (soldering, 10s).................................+300°C Soldering Temperature (reflow).......................................+260°C
西门子磁共振参数卡简介之
西门子磁共振参数卡简介之上一章中讲解了Resolution参数卡中Common子参数卡中各参数的意义。
在Common子参数卡中,参数主要是在扫描矩阵与K空间填充上影响图像的分辨率。
在此章中,我们将重点介绍影响图像分辨率的第二个参数卡--iPAT并行采集子参数卡。
在磁共振成像中,为了提高图像的解析度则需要不断的提高扫描矩阵以缩小图像的体素,但是分辨率越高,相位编码线就越多,导致采样过程的SAR增加的非常明显,同时扫描时间增加。
为了缩短扫描时间和降低SAR,并行采集技术PAT是一种行之有效的方式。
PAT mode:并行采集重建模式通过PATmode决定采集结束后的数据使用何种重建方式进行重建,目前2D序列有:None:不需要使用PAT重建技术进行重建,即不使用并行采集技术;GRAPPA:图像的重建使用GRAPPA算法进行重建,即基于K空间域的图像处理;mSENSE:图像的重建使用基于图像域的SENSE算法进行重建;该选项并不是在所有的情况下都能够被激活,需要在相位编码方向上至少有两个或两个以上的射频通道线圈时才能被选择和激活。
当相位编码方向上有两个或两个以上线圈单元时则需要查看线圈信号输出的组合模式,该组合模式有CP,Dual,Triple。
至于在参数优化时该选择何种并行采集重建技术呢?大家可以翻阅一下西门子原始默认的序列参数就会发现绝大部分使用并行采集技术的序列使用GRAPPA图像重建方式,原因有:1.SENSE重建方式要求提前获得线圈的敏感度信息,该信息包含了线圈及目标的位置信息,如果扫描过程中病人或线圈有位移,或者扫描视野不够大导致线圈敏感度信息存在卷褶伪影时都将导致图像重建出现伪影。
2.经验证实GRAPPA的图像重建算法获得的图像比SENSE算法获得的图像更加稳定,并且对外界干扰更不敏感。
Accel. Factor PE:相位编码方向上的加速因子相位编码方向上的加速因子就是并行采集的加速因子,简单的理解就是在K空间中每个多少行采集一条K空间线,例如并行采集加速因子为3时,则在K空间中每3条K空间线采集一条,最后能够让扫描时间缩短为原来的三分之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19-1993; Rev 3; 9/02
High-Speed Step-Down Controller with Accurate Current Limit for Notebook Computers MAX1844
General Description
The MAX1844 pulse-width modulation (PWM) controller provides high efficiency, excellent transient response, and high DC output accuracy needed for stepping down high-voltage batteries to generate low-voltage CPU core or chipset/RAM supplies in notebook computers. Maxim’s proprietary Quick-PWM™ quick-response, constant-on-time PWM control scheme handles wide input/output voltage ratios with ease and provides 100ns “instant-on” response to load transients while maintaining a relatively constant switching frequency. Efficiency is enhanced by an ability to drive very large synchronous-rectifier MOSFETs. Accurate current sensing to ensure reliable overload protection is available using an external current-sense resistor in series with the synchronous rectifier. Alternatively, the synchronous rectifier itself can be used for less accurate current sensing at the lowest possible power dissipation. Single-stage buck conversion allows the MAX1844 to directly step down high-voltage batteries for the highest possible efficiency. Alternatively, two-stage conversion (stepping down the 5V system supply instead of the battery) at a higher switching frequency allows the minimum possible physical size. The MAX1844 is intended for CPU core, chipset, DRAM, or other low-voltage supplies as low as 1V. It is available in 20-pin QSOP, and QFN packages and includes both adjustable overvoltage and undervoltage protection. For a dual step-down PWM controller with accurate current limit, refer to the MAX1845. The MAX1714/ MAX1715 single/dual PWM controllers are similar to the MAX1844/ MAX1845 but do not use current-sense resistors. o Ultra-High Efficiency o Accurate Current-Limit Option o Quick-PWM with 100ns Load-Step Response o 1% VOUT Accuracy Over Line and Load o 1.8V/2.5V Fixed or 1V to 5.5V Adjustable Output Range o 2V to 28V Battery Input Range o 200/300/450/600kHz Switching Frequency o Adjustable Overvoltage Protection o Adjustable Undervoltage Protection o 1.7ms Digital Soft-Start o Drives Large Synchronous-Rectifier FETs o 2V ±1% Reference Output o Power-Good Window Comparator
ELECTRICAL CHARACTERISTICS
(Circuit of Figure 1, V+ = 15V, VCC = VDD = 5V, SKIP = GND, TA = 0°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
Minimal Operating Circuit
BATTERY 4.5V TO 28V 5V INPUT VCC SHDN UVP ILIM BST DH MAX1844 LX REF DL PGOOD LATCH CS OUT SKIP GND OUTPUT 2.5V VDD V+
Applications
OVP FB
________________________________________________________________ Maxim Integrated Products
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
Notebook Computers CPU Core Supplies Chipset/RAM Supplies as Low as 1V 1.8V and 2.5V Supplies
*Contact factory for availability. Quick-PWM is a trademark of Maxim Integrated Products. Pin Configuration appears at end of data sheet.
KIT ATION EVALU E L B A AVAIL
Features
O MAX1844EEP MAX1844EGP* MAX1844ETP TEMP RANGE -40°C to +85°C -40°C to +85°C -40°C to +85°C PIN-PACKAGE 20 QSOP 20 QFN 20 Thin QFN
元器件交易网
High-Speed Step-Down Controller with Accurate Current Limit for Notebook Computers MAX1844
ABSOLUTE MAXIMUM RATINGS
V+ to GND ..............................................................-0.3V to +28V VCC, VDD to GND .....................................................-0.3V to +6V OUT, PGOOD, SHDN to GND ..................................-0.3V to +6V FB, ILIM, LATCH, OVP, REF, SKIP, TON, UVP to GND ..................................-0.3V to (VCC + 0.3V) BST to GND ............................................................-0.3V to +34V CS to GND.................................................................-6V to +30V DL to GND ..................................................-0.3V to (VDD + 0.3V) DH to LX .....................................................-0.3V to (BST + 0.3V) LX to BST..................................................................-6V to +0.3V REF Short Circuit to GND ...........................................Continuous Continuous Power Dissipation (TA = +70°C) 20-Pin QSOP (derate 9.1mW/°C above +70°C)...........727mW 20-Pin 5mm ✕ 5mm QFN (derate 20.0mW/°C above +70°C).................................................................1.60W Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C