初中数学竞赛辅导-韦达定理及其应用

合集下载

专题12 韦达定理及其应用(解析版)

专题12 韦达定理及其应用(解析版)

专题12 韦达定理及其应用1.一元二次方程根与系数的关系(韦达定理)如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,acx x =21。

也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

2.根与系数的关系的应用,主要有如下方面: (1)验根;(2)已知方程的一根,求另一根; (3)求某些代数式的值; (4)求作一个新方程。

【例题1】(2020•泸州)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 . 【答案】2【分析】根据根与系数的关系求解. 【解析】根据题意得则x 1+x 2=4,x 1x 2=﹣7 所以,x 12+4x 1x 2+x 22=(x 1+x 2)2+2x 1x 2=16﹣14=2【对点练习】(2019湖北仙桃)若方程x 2﹣2x ﹣4=0的两个实数根为α,β,则α2+β2的值为( ) A .12 B .10 C .4 D .﹣4【答案】A【解析】∵方程x 2﹣2x ﹣4=0的两个实数根为α,β,∴α+β=2,αβ=﹣4,∴α2+β2=(α+β)2﹣2αβ=4+8=12【例题2】(2020•江西)若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.【答案】-2【分析】利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解析】∵a=1,b=﹣k,c=﹣2,=−2.∴x1•x2=ca∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.【对点练习】已知方程的一个根是-1/2,求它的另一个根及b的值。

【答案】x1=3 b=-5【解析】设方程的另一根为x1,则由方程的根与系数关系得:解得:【点拨】含字母系数的一元二次方程中,若已知它的一个根,往往由韦达定理可求另一根,并确定字母系数的值。

九年级数学尖子生培优竞赛专题辅导第三讲韦达定理及其应用(含答案)

九年级数学尖子生培优竞赛专题辅导第三讲韦达定理及其应用(含答案)

第三讲韦达定理及其应用趣题引路】韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣:常利用业余时间钻研数学.韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。

人们为了纪念他在代数学上的功绩,称他为“代生之父”历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提岀了一个45次的方程向各国数学家挑战.国王于是把这个问题交给韦达,韦达当即得岀一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解)•消息传开,数学界为之震惊.同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。

韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间关系的韦达左理,你能利用韦达泄理解决下而的问题吗?已知:①0+2“一1=0,②夕一2沪一1=0日1 一c/HO.求(严a 的值。

解析由①知1 + 2丄一丄=0・a cr即(丄尸+2丄一1 = 0,③a a由②知(护)2一2沪一1=0,④由韦达泄理,得丄+ Z/=2丄,=一1 ,a a...严=[(* +町+ 乡「(2-1 严62为一元二次方程2 -21-1 =0的两根。

点评本题的关键是构造一元二次方程X2-2A-1=0,利用韦达立理求解,难点是将①变形成③,易错点是忽视条件1 一ab2 #0,而把“,一夕看作方程/+加一1 =0的两根来求解.知识延伸】例1已知关于x的二次方程2x2+av-2z/+l= 0的两个实根的平方和为7丄,求“的值. 4解析设方程的两实根为小,也,根据韦达泄理,有一2“ +1于是,Xj24-A22=(X14-X2)2-2.¥I%2=—G?+8a_4) 4依题设,得丄(0+&』一4) = 7丄,解得t/=-ll 或3 •注意到小畑 为方程的两个实数根,则△$(),4 4但 “=一11 时,△= (-11) 2+16X (-11) -8=-63<0: “=3 时,Z\ = 32—4X2X (-6+1) =49 >0,故“=3・点评 韦达左理应用的前提是方程有解,即判别式△=(),本题容易忽视的就是求岀“的值后,没有 考虑“的值满足△$()这一前提条件。

九年级数学培训资料——韦达定理及其应用1

九年级数学培训资料——韦达定理及其应用1

韦达定理及其应用(一)姓名______【知识点1】方程()002≠=++a c bx ax ,两根为1x ,2x ,则a b x x -=+21,a c x x =∙21; 例1、不解方程说出下列方程的两根和与两根积:(1)01032=--x x(2)01532=++x x (3)0223422=--x x【知识点2】.求与已知方程的两个根有关的代数式的值例2、已知09232=-+x x 的两根是1x ,2x 。

求:(1)2111x x + (2)2221x x +【课堂练习】1、设1x ,2x 是方程03422=-+x x 的两个根,求(1x +1)(2x +1)的值。

2、已知a,b 是一元二次方程x 2+2000x+1=0的两根,求(1+2006a+a 2)(1+2005b+b 2)的值。

3、已知a +a 2-1=0,b +b 2-1=0,a≠b ,求ab +a +b 的值.4、已知0832=-+x x ,0832=-+y y 。

求yx x y +的值。

【知识点3】已知方程两根满足某种关系,确定方程中字母系数的值例3、已知1x ,2x 是方程032=++q px x 的两个根,分别根据下列条件求出p 和q 的值:(1)1x =1,2x =2 (2)1x =3,2x =-6 (3)1x =7,2x =-7【课堂练习】1、若关于x 的一元二次方程2x 2+5x+k=0的一根是另一根的4倍,求k 的值。

2、已知方程x 2+px +q =0的二根之比为1∶2,方程的判别式的值为1.求p 与q 之值,解此方程.3、已知关于x 的方程02)15(22=-++-k x k x ,是否存在负数k ,使方程的两个实数根的倒数和等于4?若存在,求出满足条件的k 的值;若不存在,说明理由。

4、在关于x 的方程()()07142=-+--m x m x 中,(1)当两根互为相反数时m 的值;(2)当一根为零时m 的值;(3)当两根互为倒数时m 的值。

韦达定理及其应用竞赛题

韦达定理及其应用竞赛题

【内容综述】设一元二次方程 宀肚…。

佃弄°)有二实数根可和也,贝U “f 的关系, 为韦达定理。

其逆命题也成立。

韦达定理及其逆定理作为一元二次方程的重要理论在初中 数学竞赛中有着广泛的应用。

本讲重点介绍它在五个方面的应用。

【要点讲解】1. 求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。

★★例1若a , b 为实数,且以+力十l = n , “ + 十1 = (],求石打的值。

思路注意a , b 为方程Q +覽+1 = 0的二实根;(隐含A 土 0)。

解(1)当a=b 时,(2)当说护■^时,由已知及根的定义可知,a ,b 分别是方程*打"1二D 的两根,由韦 达定理得.b d _ 盘2 +於 _ ©4对'一M)_ [-餌一*1..—4 — ---- ---------- -- -------------------- - ----------------- -- /L? h ■说明此题易漏解a=b 的情况。

根的对称多项式对,工扌 程的系数表达出来。

一般地,设 可「丁为方程宀E = D 的二根,'-卅+对,则有递 推关系。

其中n 为自然数。

由此关系可解一批竞赛题。

附加:本题还有一种最基本方法即分别解出 a ,b 值进而求出所求多项式值,但计算量 较大。

★★★例2若榊3=疏+1 ,池27-1 = 口且聊5|,试求代数式也G思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。

解:因为 宀,由根的定义知m n 为方程*-z = 0的二不等实根,再由韦达定理,这两个式子反映了一元二次方程的两根之积与两根之和同系数a ,b ,c称之 b 电等都可以用方的值。

-I-J1 = 1 規=一.+以=强+小晴+沪)5坏-旳知4i (用1尸一 2饷7 - 2伽尸[如+一加用伽+即)]-伽『(K1 +劝L J='[1^ -3(-l )P 一_彳-1).1]_(-1『.1彳十1 =332. 构造一元二次方程如果我们知道问题中某两个字母的和与积,贝U 可以利用韦达定理构造以这两个字母为 根的一元二次方程。

初三奥数:韦达定理在竞赛中的应用

初三奥数:韦达定理在竞赛中的应用

韦达定理在初中数学竞赛题中的应用设一元二次方程 ax 2bx c 0(a 0) 的两根为 x 1、 x 2 ,则 x 1 x 2b ,x 2 c这个定理叫韦达定理。

ax 1a韦达定理是初中数学竞赛的重点内容, 题型多样, 方法灵活,触及知识面广。

例 1、 已知实数 a b ,且满足 (a1) 2 3 3(a 1) , 3(b 1) 3 (b 1) 2则bba a的值为()(2004 年全国初中数学竞赛试题第 1 题)ab(A )23 ( B ) -23 (C )-2(D )-13解:∵ a 、 b 是关于 x 的方程 ( x 1)23( x1) 3 0 的两个不相等的实数根,整理此方程,得x 25x1 0 ,∵△ =25-4>0∴ a b5, ab 1故 a 、 b 均为负数。

因此bbaab ab a ab = a 2b 2ab = ( a b) 22ab23a ba babab所以选( B )例 2、实数 s.t 分别满足 19s 299s 10, t 2 99t 19 0, st1,求st4s 1 的值。

19 0 可化为 19(1)299(1) 1 t解:由题设知 t0 ,∴ t 2 99t 01t t又 st 1,∴ st∴ s , 1是方程 19x 2 99x 10 的两个不相等的实数根。

t ∴ s199 , s 11t 19t19st 4s 1 = s 1 4s 1 = 99 4 1=95= 5。

tt t 19 19 19例 3、若 ab 1 ,且有 5a 2 2001a 9 0,9b 22001b5 0 ,则 a的值是()b(A )9(B )5(C )2001 (D ) 20015 959解:由题设知 b0 ,∴9b22001b 5 0可化为520019 0 b2b又∵ 5a22001a 90 ,且ab 1 ,∴ a, 1是方程5x22001x 90 的两个不相等的实数根。

b∴ a 1=a9 b b5所以选( A)例 4、已知3m22m50,5n22n30 ,其中 m.n 为实数,求 m 1的值。

初中数学 一元二次方程的韦达定理有什么应用

初中数学  一元二次方程的韦达定理有什么应用

初中数学一元二次方程的韦达定理有什么应用一元二次方程的韦达定理是数学中一个重要的定理,它提供了一种快速计算一元二次方程根的和与积的方法。

韦达定理在实际生活中有着广泛的应用,下面将详细介绍一些常见的应用场景。

1. 判定方程根的性质:韦达定理可以用来判定方程的根的性质。

通过计算根的和与积,我们可以得到关于根的一些信息。

例如,当根的和与根的积都为正数时,说明方程的两个根都是正数;当根的和为负数而根的积为正数时,说明方程的两个根一个为正数一个为负数。

这种信息对于解决实际问题非常有用,可以帮助我们了解方程的解的情况。

2. 求解方程的根:韦达定理可以用于求解一元二次方程的根。

通过将方程的系数带入韦达定理的公式,我们可以计算出方程的根的和与积。

进一步求解根的具体数值,可以使用一些代数方法,如配方法、因式分解或求根公式。

韦达定理为我们提供了一个快速计算根的和与积的方法,从而更方便地解决一元二次方程。

3. 拟合数据:韦达定理可以用于数据的拟合。

通过找到满足给定数据点的一元二次方程,我们可以使用韦达定理计算方程的根的和与积。

根的和与积可以提供关于数据的整体趋势和特征的信息。

这种方法在统计学和数据分析中非常有用,可以帮助我们找到最佳拟合曲线并预测未知数据的值。

4. 解决实际问题:韦达定理在解决实际问题中起到重要的作用。

例如,在物理学中,我们可以使用韦达定理来计算自由落体运动中物体的最大高度和落地时间;在经济学中,韦达定理可以用来分析成本和收益之间的关系,帮助我们做出合理的决策;在工程学中,韦达定理可以用于计算电路中的电流和电压,从而设计合适的电路。

总结:一元二次方程的韦达定理是数学中一个重要的定理,它提供了一种快速计算方程根的和与积的方法。

韦达定理在判定方程根的性质、求解方程的根、拟合数据以及解决实际问题等方面有着广泛的应用。

了解韦达定理及其应用可以帮助我们更好地理解和解决一元二次方程相关的数学问题,同时也可以在实际生活中应用这些知识来解决各种问题。

初中数学韦达定理专项

初中数学韦达定理专项

2. 二、韦达定理的推导求根公式法推导一元二次方程²的求根公式为ax ²+bx +c =0 (a≠0)的求根公式为aac b b x 242-±-= 那么两个根aac b b x 2421-+-= aac b b x 2422---=+a ac b b 242---=a b 22-=ab -×a ac b b 242---=2224)4()(a ac b b ---=ac 三、韦达定理的应用1.已知方程求两根之和与两根之积例如,对于方程2x ²-5x +3=0,这里a =2,b =-5,c =3根据韦达定理,两根之和x 1+x 2 =a b -=25232.已知两根之和与两根之积构造方程若已知两根之和为m ,两根之积为n ,则可构造方程x ²-mx +n =0。

比如,两根之和为 4,两根之积为 3,那么构造的方程为x ²-4x +3=0。

3. 不解方程求与两根有关的代数式的值例如,求(x 1-x 2)²的值。

(x 1-x 2)²=(x 1+x 2)²-4x 1x 2 ,已知两根之和与两根之积,代入即可求解。

4. 利用韦达定理判断方程根的情况由韦达定理可知,当b ²-4ac >0时,方程有两个不相等的实数根,此时两根之和与两根之积均有确定的值。

当b ²-4ac=0时,方程有两个相等的实数根,两根之和为-当b ²-4ac <0时,方程无实数根,韦达定理在这种情况下无意义。

四、韦达定理的注意事项1. 韦达定理只有在一元二次方程有实数根的情况下才成立。

2. 在应用韦达定理时,要先确定方程中a 、b 、c 的值,且a ≠0。

3. 对于一些特殊的一元二次方程,如缺项方程(如ax ²+c =0),也可以利用韦达定理求解,但要注意分析具体情况。

五、韦达定理的典型例题及讲解 1.已知方程的一根,求另一根及字母系数的值例题:关于x 的一元二次方程02)1(2=---x x m ,若x=-1是方程的一个根,求m 的值及另一个根。

韦达定理应用复习

韦达定理应用复习
如果方程ax2+bx+c=0(a≠0)的两根 为x1、x2,则 ax2+bx+c可因式分解为
a(x- x1 )(x- x2).
1.设x1、x2是方程2x2-6x+3=0的根,

(1)
x2
x1
x1 x2
(2)(x1 2)(x2 2)
(3) x1 x2
(4).x1 x2
2.若方程x2-3x-2=0的两根为x1、
10.*已知实数a、b满足2a2-a = 2b2-b=2,

a b
+
b a
的值.
11.已知一元二次方程ax2-√2 bx+c=0的两个根满足|x1x2|=2-√2,a、b、c分别是 △ABC中∠A、∠B、∠C 的对边,并且c=√2a,试判断 △ABC是什么三角形?并证 明.
韦达定理及 其应用(一)
如果方程ax2+bx+c=0(a≠0)
的两根为x1、x2,则
x1·x2=
c a
.
x1+x2=
-
b a

如果方程x2+px+q=0(a≠0)的
两根为x1、x2,则 x1+x2= -p ,
x1·x2=q .
以x1、x2为根的一元二次方程 (二次项系数为1)是
x2-( x1+x2 )x+ x1·x2 =0.
m-2=0;当m
时,有两
个互为相反数的实根;当m
时,有一种根为零.
6.若有关x的方程x2+(2k+1)x+k2-
2=0的两根的平方和是11,则
k=
.
7.若方程x2+2x+m=0的两根之差 为√6,则m= .

初中数学竞赛代数专题之二次方程韦达定理

初中数学竞赛代数专题之二次方程韦达定理

一元二次方程根与系数的关系(韦达定理)设1x 和2x 是一元次方程20(0)ax bx c a ++=≠的两个根,则有根与系数的关系(或称为韦达定理)⎪⎩⎪⎨⎧=-=+a c x x a b x x 2121(其中a b c 、、均为实数)一、专题知识利用根与系数的关系(韦达定理),可以不直接求方程20(0)ax bx c a ++=≠而知其根的正负性质:一元二次方程20(0)ax bx c a ++=≠在240b ac ∆=-≥的条件下:(1)0c a <时,方程的两根必然一正一负;(2)0b a -≥时,方程的正根不小于负根的绝对值;(3)0b a -<时,方程的正根小于负根的绝对值;(4)0c a >时,方程的两根同正或同负.二、例题分析例题1如是,a b 关于x 的方程的()()1x c x d ++= 两个根,求()()a c b c ++ 的值。

[解]由已知2()10x c d x cd +++-=,有()1a b c d ab cd +=-+⎧⎨=-⎩,则()()a c b c ++ 22()1()1ab a b x c cd c d c c =+++=--++=-例题2方程22320x x --=的实数根为αβ、,求αβαβ+的值。

[解]原方程22320x x ⇔--=(21)(2)0x x ⇔+-=,由于210x +>只有=2x ,x=2±,所以-4==-1+4αβαβ例题3如果正整数,a b 是关于x的方程229x 1056013a x b --+++的两个根,求,a b 的值。

[解]由已知,有2913a ab -+=,·1056a b b =++从而有213(13b +90a a --=),由于,a b是正整数,故13205522a +=213a =-又由·1056a b b =++10(+b-9ab a =),a-10b-=∙()(10)91而911917131(91)7(13)=⨯=⨯=-⨯-=-⨯-1011091a b -=⎧⎨-=⎩或1091101a b -=⎧⎨-=⎩或1071013a b -=⎧⎨-=⎩或1013107a b -=⎧⎨-=⎩,即11101a b =⎧⎨=⎩或10111a b =⎧⎨=⎩或1723a b =⎧⎨=⎩或2317a b =⎧⎨=⎩,经检验2317a b =⎧⎨=⎩满足方程,此时原方程为2403910x x -+=例题4已知实数,a b 满足条件:423240a a +-=,4230b b +-=,求代数式444a b -+的值。

九年级数学竞赛资料专题(三)——韦达定理的应用上

九年级数学竞赛资料专题(三)——韦达定理的应用上

韦达定理的应用一、典型例题例1:已知关于x 的方程2x -(m +1)x +1-m=0的一个根为4,求另一个根。

解:设另一个根为x 1,则相加,得531-=x例2:已知方程x -5x +8=0的两根为x 1,x 2,求作一个新的一元二次方程,使它的两根分别为和.解:∵ 又 ∴代入得, ∴新方程为例3:判断是不是方程9x -10x -2=0的一个实数根? 解:∵二次实数方程实根共轭,∴若是,则另一根为 ∴,。

∴以为根的一元二次方程即为.例4:解方程组解:设∴.∴A=5. ∴x-y=5 又xy=-6.∴解方程组∴可解得例5:已知Rt ABC中,两直角边长为方程x-(2m+7)x+4m(m-2)=0的两根,且斜边长为13,求S的值解:不妨设斜边为C=13,两条直角边为a,b,则2。

又a,b为方程两根。

∴ab=4m(m-2)∴S但a,b为实数且∴∴∴m=5或6 当m=6时,∴m=5 ∴S.例6:M 为何值时,方程8x -(m -1)x +m -7=0的两根① 均为正数 ②均为负数 ③一个正数,一个负数 ④一根为零 ⑤互为倒数解:①∵ ⎪⎩⎪⎨⎧+≥∆02121>>x x xx ∴m>7 ②∵∴不存在这样的情况。

③∴m<7 ④∴m=7 ⑤∴m=15.但使∴不存在这种情况【模拟试题】(答题时间:30分钟)1. 设n为方程x+mx+n=0(n≠0)的一个根,则m+n等于2. 已知方程x+px-q=0的一个根为-2+,可求得p= ,q=3. 若方程x+mx+4=0的两根之差的平方为48,则m的值为()A.±8 B.8 C.-8 D.±44. 已知两个数的和比a少5,这两个数的积比a多3,则a为何值时,这两个数相等?5. 已知方程(a+3)x+1=ax有负数根,求a的取值范围。

6. 已知方程组的两组解分别为,,求代数式a1b2+a2b1的值。

7. ABC中,AB=AC, A,B,C的对边分别为a,b,c,已知a=3,b和c是关于x 的方程x+mx+2-m=0的两个实数根,求ABC的周长。

韦达定理初三常考题型

韦达定理初三常考题型

韦达定理初三常考题型1. 韦达定理的基本概念:韦达定理,也称为乘法定理,是指对于一个多项式函数,如果其两个根分别为a和b,那么可以通过这两个根来表示该多项式的一个因式。

具体而言,如果多项式的根为a和b,那么可以将多项式表示为(x-a)(x-b)的形式。

2. 韦达定理的应用:韦达定理在初三数学中常常用于解多项式方程和因式分解。

通过韦达定理,我们可以根据已知的根来确定多项式的因式,进而解出方程或进行因式分解。

在考试中,常常会给出一个多项式的根,然后要求解出该多项式的其他根或进行因式分解。

3. 韦达定理的相关题型:a) 解多项式方程,考题可能给出一个多项式的一个根,然后要求解出该多项式的其他根。

解题思路是使用韦达定理,将已知的根代入(x-a)(x-b)的形式,然后通过求解方程得到其他根。

b) 因式分解,考题可能给出一个多项式的一个根,然后要求进行因式分解。

解题思路是使用韦达定理,将已知的根代入(x-a)(x-b)的形式,然后将多项式进行因式分解。

c) 综合运用,考题可能给出一个多项式的两个根,然后要求解出该多项式的其他根或进行因式分解。

解题思路是使用韦达定理,将已知的根代入(x-a)(x-b)的形式,然后通过求解方程或进行因式分解。

4. 解题步骤:a) 根据题目给出的已知条件,确定多项式的一个或多个根。

b) 使用韦达定理,将已知的根代入(x-a)(x-b)的形式。

c) 根据题目要求,进行方程求解或因式分解,得到其他根或多项式的因式。

总结:韦达定理是初中数学中的一个重要定理,常常在初三的数学考试中出现。

通过韦达定理,我们可以根据已知的根来确定多项式的因式,进而解出方程或进行因式分解。

解题时需要注意题目给出的已知条件,正确运用韦达定理,并根据题目要求进行方程求解或因式分解。

希望以上解答能够帮助到你,如果还有其他问题,请继续提问。

韦达定理及其应用

韦达定理及其应用

韦达定理及其应用
韦达定理是一种基本的数学定理,它描述了一个三角形中两条边的长度与第三边的夹
角之间的关系。

它可以用来求解一个三角形的性质,甚至解决更复杂的几何问题。

韦达定理由法国数学家查尔斯·韦达提出,于1806年于科学期刊《乌拉法叶斯特》
上发表。

它首先被用来证明三角形的直角性质,然后被扩展用来证明更多其它的相关性质。

韦达定理可以用下面的公式表示:
a^2+b^2=c^2-2*c*a*cos(B)
其中a,b,c分别表示三角形ABC的3条边的长度,B表示边AC与BC之间的夹角。

由于韦达定理可以用来求解三角形的特性,因此它可以用来解决几何问题。

例如,如
果我们有一个三角形ABC,我们想求解它的外角A、边BC的长度和边AB的长度,则可以
用韦达定理:
假设a=3,c=4,B°=30°,根据韦达定理,
即 b^2= 16-24*cos(30°)=16-24*3^(1/2)/2
所以b=√5
另外,由余弦定理可以求出A°=60°
因此,三角形ABC的三角形性质为a=3,b=√5,c=4,A=60°,B=30°。

此外,韦达定理还有许多额外的应用。

例如,它可以用来求解由全等三角形的边来确
定的三角形的外角的性质,用来解决椭圆的几何上的直角形之间的关系等等。

它的应用非常广泛,几乎每一门数学和几何课程中都会涉及到它。

韦达定理不但可以
帮助我们在解决几何问题中取得关键性的进展,而且还多次提供了无穷多有用的解法。

初中数学竞赛韦达定理及其应用(含答案)

初中数学竞赛韦达定理及其应用(含答案)

韦达定理及其应用设一元二次方程有二实数根,则,。

这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。

其逆命题也成立。

韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。

本讲重点介绍它在五个方面的应用。

1.求代数式的值应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。

例1若a,b为实数,且,,求的值。

思路注意a,b为方程的二实根;(隐含)。

解(1)当a=b时,;(2)当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得, ab=1.说明此题易漏解a=b的情况。

根的对称多项式,,等都可以用方程的系数表达出来。

一般地,设,为方程的二根,,则有递推关系。

其中n为自然数。

由此关系可解一批竞赛题。

附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。

例2若,且,试求代数式的值。

思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。

解:因为,由根的定义知m,n为方程的二不等实根,再由韦达定理,得,∴2.构造一元二次方程如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。

例3设一元二次方程的二实根为和。

(1)试求以和为根的一元二次方程;(2)若以和为根的一元二次方程仍为。

求所有这样的一元二次方程。

解(1)由韦达定理知,。

,。

所以,所求方程为。

(2)由已知条件可得解之可得由②得,分别讨论(p,q)=(0,0),(1,0),(1-)。

-,1)或(0, 1-,0),(0,1),(2,1),(2于是,得以下七个方程,,,,,-,其中0x2=11x2=+无实数根,舍去。

其余六个方程均为所求。

x2=+,01x2+3.证明等式或不等式根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。

例4已知a,b,c为实数,且满足条件:,,求证a=b。

证明由已知得,。

九年级数学韦达定理应用复习

九年级数学韦达定理应用复习


.
9.当m为何值时,方程 3x2+(m+1)x+m-4=0有两个负 数根.
10.*已知实数a、b满足2a2-a = 2b2-b=2,

a b
+
b a
的值.
11.已知一元二次方程ax2-√2 bx+c=0的两个根满足|x1x2|=2-√2,a、b、c分别是 △ABC中∠A、∠B、∠C 的对边,并且c=√2a,试判断 △ABC是什么三角形?并证 明.
韦达定理及 其应用(一)
如果方程ax2+bx+c=0(a≠0)
的两根为x1、x2,则
x1·x2=
c a
.
x1+x2=
-
b a

如果方程x2+px+q=0(a≠0)的
两根为x1、x2,则 x1+x2= -p ,
x1·x2=q .
以x1、x2为根的一元二次方程 (二次项系数为1)是
x2-( x1+x2 )x+ x1·x2 =0.
如果方程ax2+bx+c=0(a≠0)的两根 为x1、x2,则 ax2+bx+c可因式分解为
a(x- x1 )(x- x2).
1.设x1、x2是方程2x2-6x+3=0的根,

(1)
x2

x1

x1 x2
(2)( x1 2)( x2 2)
(3) x1 x2
(4).x1 x2
2.若方程x2-3x-2=0的两根为x1、
x2;则
①以 1 , 1 为两根的方程

x。1 x2
②以- x1、-x2 为两根的方程

韦达定理及其应用

韦达定理及其应用

韦达定理及其应用一、知识要点1、若一元二次方程()002≠=++a c bx ax 中,两根为1x ,2x 。

则ab x x -=+21, a c x x =•21,;补充公式ax x ∆=-21 2、以1x ,2x 为两根的方程为()021212=•+++x x x x x x 3、用韦达定理分解因式()()2122x x x x a a c x a b x a c bx ax --=⎪⎭⎫⎝⎛++=++ 二、例题1、 不解方程说出下列方程的两根和与两根差:(1)01032=--x x (2)01532=++x x (3)0223422=--x x2、 已知关于x 的方程02)15(22=-++-k x k x ,是否存有负数k ,使方程的两个实数根的倒数和等于4?若存有,求出满足条件的k 的值;若不存有,说明理由。

3、 已知方程0252=-+x x ,作一个新的一元二次方程,使它的根分别是已知方程各根的平方的倒数。

4、 解方程组⎪⎩⎪⎨⎧=-=-212111xy y x5、 分解因式:(1)=--2532x x (2)=-+1842x x三、练习1、 在关于x 的方程()()07142=-+--m x m x 中,(1)当两根互为相反数时m 的值;(2)当一根为零时m 的值;(3)当两根互为倒数时m 的值2、 求出以一元二次方程0232=-+x x 的两根的和与两根的积为根的一元二次方程。

3、 解方程组⎪⎩⎪⎨⎧==+23xy y x4、 分解因式(1)6542--x x= (2)=--2222y xy x四、聪明题1、 已知一元二次方程022=+-c bx ax 的两个实数根满足221=-x x ,a ,b ,c 分别是ABC ∆的A ∠,B ∠,C ∠的对边。

(1)证明方程的两个根都是正根;(2)若c a =,求B ∠的度数。

2、在ABC ∆中,︒=∠90C ,斜边AB=10,直角边AC ,BC 的长是关于x 的方程0632=++-m mx x 的两个实数根,求m 的值。

韦达定理的应用及推广

韦达定理的应用及推广

韦达定理的应用及推广 一、 韦达定理概述根据记载,在韦达那个年代,有一个角落们的比例是数学家提出了一个45次方程各国数学家挑战各国数学家挑战。

法国国王便将这个充满挑战的问题交给了韦达,韦达当即就得出了一个正根,再由他研究了一晚上时间就得出了23个正根(另外的22个负根被他舍了),消息传开,让当时整个数学界都为之震惊。

在他阶梯式发现方程的根似乎与某些系数有关联,因此他就对此进行了一系列的研究,在不久以后发现了伟大的韦达定理。

韦达定理:在一元二次方程ax 2+bx+c=0(a ≠0)中,当∆≥b 2−4ac 时,则原方程的两根满足以下规律{x 1+x 2=−bax 1x 2=ca 韦达定理的逆定理:如果x 1,x 2满足{x 1+x 2=−ba x 1x 2=c a,那么x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两个根 二、 韦达定理的证明 1.求根公式法:根据将ax 2+bx+c=0(a ≠0)配方得到的x 1,2=−b±√b 2−4ac2a可得x 1+x 2=−b +√b 2−4ac 2a +−b −√b 2−4ac 2a =−2b 2a =−bax 1×x 2=(−b +√b 2−4ac 2a ×−b −√b 2−4ac 2a )=b 2−(b 2−4ac)4a 2=4ac 4a 2=ca2. 同解方程法 : 若ax 2+bx+c=0(a ≠0)的两根为x 1,x 2,那么知道ax 2+bx+c=a(x −x 1)(x −x 2)左边=ax 2−ax ×x 1−ax ×x 2+ax 1x 2=ax 2−a(x 1+x 2)x +ax 1x 2 比较系数知:−a (x 1+x 2)=b ax 1x 2=c ⟹ x 1+ x 2=−ba ,x 1×x 2=c a与韦达定理有关的推论:|x 1−x 2|=√b 2−4ac |a|三、 韦达定理的应用1. 已知A 、B 为一元二次方程ax 2+bx+c=0的两根A ≠B (1)求A 2+B 2,A 3+B 3,1A2+1B 2,A −B(2)求以1A、1B 为根的方程和以(A 2+A +1)、(B 2+B +1)为根的方程解(1):由韦达定理知{A +B =−b aA ×B =c a∴A 2+B 2=(A +B)2−2AB =b 2a2−2c a=b 2−2ac a 2A 3+B 3=(A +B)3−3AB (A +B )=−b 3a 3+3bc a 2=−b 3+3abca 31A 2+1B 2=A 2+B 2A 2B 2=b 2−2ac a 2÷c 2a 2=b 2−2acc 2A −B =|√(A −B )2|=|√A 2+B 2−2AB|=|√b 2−2ac a 2−2ca|=√b 2−4ac a 2=√b 2−4ac|a |解(2):由韦达定理知{A +B =−ba A ×B =c a⟹ A 2+A +1+B 2+B +1=b 2−2ac a 2−ba+2=b 2−2ac−ab+2a 2a 2(A 2+A +1)(B 2+B +1)=c 2a 2+ac −bc a 2−b a +1+b 2−2ac a 2=a 2+b 2+c 2−ab −bc −caa 2∴此方程为a 2x 2−(b 2+2a 2−2ac −ab )x +(a 2+b 2+c 2−ab −bc −ca)=02. 证明恒等式:x 1n+1+x 2n+1=(x 1+x 2)(x 1n +x 2n )−x 1x 2(x 1n−1+x 2n−2) 证明:设x 1+x 2=A x 1x 2=B ,则x 1、x 2为方程x 2+Ax+B=0的两根∴{x 12=Ax 1−B x 22=Ax 2−B ⟹{x 1n+1=Ax 1n −Bx 1n−1x 2n+1=Ax 2n −Bx 2n−1⟹x 1n+1+x 2n+1=A (x 1n +x 1n)−B(x 1n−1+x 2n−1) ⟹x 1n+1+x 2n+1=(x 1+x 2)(x 1n +x 1n)− x 1x 2(x 1n−1+x 2n−1)3. 已知A 、B 是方程4ax 2−4ax +a +4=0的两个实数根○1适当选取实数a 的值,问能否使(A −2B)(B −2A)的值等于54 ○2求使A 2B2+B 2A 2的值为整数的整数a解○1:此必为一元二次方程,那么a ≠0 △=16a 2-16a(a+4)=-64a ≥0⟹a ≤0由韦达定理知{A +B =−1A ×B =a+44a 若(A −2B )(B −2A )= 54 ⟹ 9AB −2(A +B )2=54⟹9×a+44a−2=54⟹ 52a =36a +36⟹ a =9∵a ≤0又∵a =9>0∴无满足条件的a解○2 原式=(A+B )3−3AB (A+B )AB=1a+44a−3=4a a+4−3a+12a+4=1−16a+4所以a+4被16整除 所以a+4=±1、±2、±4、±8、±16且a ≤0所以满足条件的a=-3,-5,-2,-6,-8,-12,-204. 求证:不存在整数a 、b 、c 使得方程ax 2+bx +c =0与方程(a +1)x 2+(b +1)x +(c +1)=0都有两个整数根。

初中数学韦达定理

初中数学韦达定理

初中数学韦达定理韦达定理是初中数学中的重要内容之一,它被广泛应用于代数求解和几何问题中。

韦达定理又称为韦达三角法则,它的基本思想是通过构造一个带有重心的三角形,利用各边与重心的连线之间的比例关系来求解未知量。

本文将详细介绍韦达定理的定义、原理以及应用实例。

一、定义和原理韦达定理是指在一个三角形中,确定三个顶点所对应边的长度和重心之间的关系。

其中,重心是指三角形三条中线的交点,它将全部三条中线按照长度等分。

韦达定理表示如下:设在一个三角形ABC中,AD为三角形的一条中线,将其分为两条相等的线段,由D可以构造三条平行于三边的线段BE、CF和AG,那么有以下关系成立:AB + AC = 2ADBC + BA = 2BECA + CB = 2CF二、韦达定理的证明我们来证明一下韦达定理。

设三角形ABC的重心为G,连接GD,并且延长至与AB相交于E,与AC相交于F。

由于G是三条中线的交点,所以AG=2GD。

同样的,通过类似的角度对应关系可以得到BE=2AB、CF=2AC。

根据平行线原理,我们知道三角形AGB与三角形GCF是相似的,所以可以写出一个比例等式:AB/AG = GC/CF将AG和CF的值代入后,我们得到:AB/2GD = GC/2AC通过移项可以得到:AC/GD = GC/AB同理,可以得到:AB/GD = GB/AC将这两个等式相加,我们得到:AC/GD + AB/GD = GC/AB + GB/AC化简后得到:(AB + AC)/GD = (GC + GB)/AB再次移项可得:AB + AC = 2GD同样的方法可以得到BC + AB = 2BE和CA + CB = 2CF,证明韦达定理成立。

三、韦达定理的应用实例韦达定理在代数求解和几何问题中具有广泛的应用。

下面给出几个具体的应用实例。

1. 已知三边长求重心若已知一个三角形的三条边的长度为a、b、c,可以利用韦达定理求解重心的坐标。

设重心的坐标为(x, y),我们可以得到以下关系:x = (ax1 + bx2 + cx3)/(a + b + c)y = (ay1 + by2 + cy3)/(a + b + c)其中,(x1, y1)、(x2, y2)、(x3, y3)分别是三个顶点的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学科:奥数年级:初三
不分版本期数:346
本周教学内容:韦达定理及其应用
【内容综述】
设一元二次方程有二实数根,则,。

这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。

其逆命题也成立。

韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。

本讲重点介绍它在五个方面的应用。

【要点讲解】
1.求代数式的值
应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。

★★例1若a,b 为实数,且,,求的值。

思路注意a,b 为方程的二实根;(隐含)。

解(1)当a=b时,

(2
)当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得
,ab=1.
说明此题易漏解a=b 的情况。

根的对称多项式,,等都可以用
方程的系数表达出来。

一般地,设,为方程的二根,,则有递推关系。

其中n为自然数。

由此关系可解一批竞赛题。

附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。

★★★例2 若,且,试求代数式的值。

思路 此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。

解:因为,由根的定义知m ,n 为方程
的二不等实根,再由韦达定理,
得 ,

2.构造一元二次方程
如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。

★★★★例3 设一元二次方程的二实根为和。

(1)试求以和为根的一元二次方程; (2)若以

为根的一元二次方程仍为。

求所有这样的一元二次方
程。

解 (1)由韦达定理知 ,。

,。

所以,所求方程为。

(2)由已知条件可得 解之可得由②得,分别讨论
(p,q )=(0,0),(1,0),(1-,0),(0,1),(2,1),(2-,1)或(0, 1-)。

于是,得以下七个方程



,,
01x 2x 2=++,01x 2=-,其中01x 2=+无实数根,舍去。

其余六个方程均为所求。

3.证明等式或不等式
根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。

★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。

证明由已知得,。

根据韦达定理的逆定理知,以a,b为根的关于x的实系数一元二次方程为

由a,b为实数知此方程有实根。

c2 ,故c=0,从而。

这表明①有两个相等实根,即有a=b。

∴0
说明由“不等导出相等”是一种独特的解题技巧。

另外在求得c=0后,由恒等式
可得,即a=b。

此方法较第一种烦琐,且需一定的跳跃性思维。

4.研究方程根的情况
将韦达定理和判别式定理相结合,可以研究二次方程根的符号、区间分布、整数性等。

关于方程的实根符号判定有下述定理:
⑴方程有二正根,ab<0,ac>0;
⑵方程有二负根,ab>0,ac>0;
⑶方程有异号二根,ac<0;
⑷方程两根均为“0”,b=c=0,;
★★★例5设一元二次方程的根分别满足下列条件,试求实数a的范围。

⑴二根均大于1;
⑵一根大于1,另一根小于1。

思路设方程二根分别为,,则二根均大于1等价于和同时为正;一根大于1,另一根小于是等价于和异号。

解设此方程的二根为,,则
,。

⑴方程二根均大于1的条件为
解之得
3a 7-≤<-
⑵方程二根中一个大于1,另一个小于1的条件为
⎪⎩⎪⎨⎧<+---=-->--=∆.01)a 2(a 6)1x )(1x (,0)a 6(4a 421
2
解之得。

7a -<。

说明 此例属于二次方程实根的分布问题,注意命题转换的等价性;解题过程中涉及二次不等式的解法,请参照后继相关内容。

此例若用二次函数知识求解,则解题过程极为简便。

5.求参数的值与解方程
韦达定理及其逆定理在确定参数取值及解方程(组)中也有着许多巧妙的应用。

★★★例6 解方程。

解:原方程可变形为。

令,。


,。

由韦达定理逆定理知,以a ,b -为根的一元二次方程是 。

解得
,。

即a=8-或a=9。


通过
求解x 结果相同,且严谨。


(舍去)。

解之得
,。

此种方法应检验:是或否成立
本周强化练习:
A 级
★★1.若k为正整数,且方程有两个不等的正整数根,则k的值为________________。

★★2.若,,则
_______________。

★★★3 .已知和是方程的二实根,则_____________。

★★★4.已知方程(m为整数)有两个不等的正整数根,求m的值。

B级
★★★★5.已知:和为方程及方程的实根,其中n为正奇数,且。

求证:,是方程的实根。

★★★★6.已知关于x的方程的二实根和满足,试求k的值。

参考答案
1.2
提示:原方程即,所以,由知
k=1,2,3,5,11;由知k=2,3,4,7。

所以k=2,3,但k=3时原方程有二相等正整数根,不合题意。

故k=2。

2.提示:由x,y为方程的二根,知,。

于。

3.21
提示:由,,知,
4.设二个不等的正整数根为,,由韦达定理,有
消去m,得。

即。

则且。

,。

故。

5.由韦达定理有,。

又,。

二式相减得。

,。


代入有。

从而 ,
同理
和是方程的根。

6.当β=α时,可知1=β=α,所以2k 13k 124=⇒⨯=+,当β≠α时,易证得。

从而

为方程的二不同实根。

,。

于是

,。

当时,方程为。

解得 或
取,即能符合题意,故k 的值为。

相关文档
最新文档