配套K12高考数学考点解读+命题热点突破专题20不等式选讲理

合集下载

【配套K12】高考数学四海八荒易错集专题20不等式选讲理

【配套K12】高考数学四海八荒易错集专题20不等式选讲理

专题20 不等式选讲1.已知函数f(x)=⎪⎪⎪⎪⎪⎪x-12+⎪⎪⎪⎪⎪⎪x+12,M为不等式f(x)<2的解集.(1)求M;(2)证明:当a,b∈M时,|a+b|<|1+ab|.(1)解f(x)=⎩⎪⎨⎪⎧-2x,x≤-12,1,-12<x<12,2x,x≥12.从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)(1-b2)<0,即(a+b)2<(1+ab)2,因此|a+b|<|1+ab|.2.已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.解(1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.当x≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得23<x<1;当x≥1时,不等式化为-x+2>0,解得1≤x<2.所以f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <2. (2)由题设可得,f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞). 3.解不等式|x +3|-|2x -1|<x2+1.4.设a ,b ,c 均为正实数,试证明不等式12a +12b +12c ≥1b +c +1c +a +1a +b ,并说明等号成立的条件.解 因为a ,b ,c 均为正实数, 所以12⎝ ⎛⎭⎪⎫12a +12b ≥12ab ≥1a +b ,当且仅当a =b 时等号成立;12⎝ ⎛⎭⎪⎫12b +12c ≥12bc ≥1b +c,当且仅当b =c 时等号成立; 12⎝ ⎛⎭⎪⎫12c +12a ≥12ca ≥1c +a,当且仅当a =c 时等号成立. 三个不等式相加,得12a +12b +12c ≥1b +c +1c +a +1a +b ,当且仅当a =b =c 时等号成立.5.若a 、b 、c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6.求证:a 、b 、c 中至少有一个大于0.证明 假设a 、b 、c 都不大于0,即a ≤0,b ≤0,c ≤0, 所以a +b +c ≤0.而a +b +c =(x 2-2y +π2)+(y 2-2z +π3)+(z 2-2x +π6)=(x 2-2x )+(y 2-2y )+(z 2-2z )+π =(x -1)2+(y -1)2+(z -1)2+π-3. 所以a +b +c >0,这与a +b +c ≤0矛盾, 故a 、b 、c 中至少有一个大于0.易错起源1、含绝对值不等式的解法 例1、已知函数f (x )=|x -a |,其中a >1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值.(2)记h (x )=f (2x +a )-2f (x ), 则h (x )=⎩⎪⎨⎪⎧-2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a -12=1,a +12=2,于是a =3【变式探究】已知函数f (x )=|x -2|-|x -5|. (1)证明:-3≤f (x )≤3;(2)求不等式f (x )≥x 2-8x +15的解集.(1)证明 f (x )=|x -2|-|x -5|=⎩⎪⎨⎪⎧-3,x ≤2,2x -7,2<x <5,3,x ≥5.当2<x <5时,-3<2x -7<3. 所以-3≤f (x )≤3.【名师点睛】(1)用零点分段法解绝对值不等式的步骤:①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法. 【锦囊妙计,战胜自我】 含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ; (2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解.易错起源2、不等式的证明例2 (1)已知x ,y 均为正数,且x >y .求证:2x +1x 2-2xy +y 2≥2y +3.(2)已知实数x ,y 满足:|x +y |<13,|2x -y |<16,求证:|y |<518.证明 (1)因为x >0,y >0,x -y >0, 2x +1x 2-2xy +y 2-2y=2(x -y )+1x -y2=(x -y )+(x -y )+1x -y2≥33x -y21x -y2=3,所以2x +1x 2-2xy +y 2≥2y +3,【变式探究】(1)若a ,b ∈R,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.(2)已知a ,b ,c 均为正数,a +b =1,求证:a 2b +b 2c +c 2a≥1.证明 (1)当|a +b |=0时,不等式显然成立. 当|a +b |≠0时,由0<|a +b |≤|a |+|b |⇒1|a +b |≥1|a |+|b |,所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a+(a +b +c )≥2(a +b +c ),即a 2b +b 2c +c 2a ≥a +b +c , 所以a 2b +b 2c +c 2a≥1.【名师点睛】(1)作差法应该是证明不等式的常用方法.作差法证明不等式的一般步骤:①作差;②分解因式;③与0比较;④结论.关键是代数式的变形能力.(2)在不等式的证明中,适当“放”“缩”是常用的推证技巧. 【锦囊妙计,战胜自我】 1.含有绝对值的不等式的性质 |a |-|b |≤|a ±b |≤|a |+|b |. 2.算术—几何平均不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立. 定理2:如果a 、b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a 、b 、c 为正数,则a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立. 易错起源3、柯西不等式的应用例3 (2015·福建)已知a >0,b >0,c >0,函数f (x )=|x +a |+|x -b |+c 的最小值为4. (1)求a +b +c 的值; (2)求14a 2+19b 2+c 2的最小值.⎝ ⎛⎭⎪⎫14a 2+19b 2+c 2(4+9+1)≥⎝ ⎛⎭⎪⎫a 2×2+b 3×3+c ×12=(a +b +c )2=16, 即14a 2+19b 2+c 2≥87.当且仅当12a 2=13b 3=c 1, 即a =87,b =187,c =27时等号成立.故14a 2+19b 2+c 2的最小值为87. 【变式探究】已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a . (1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3.(1)解 因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当-1≤x ≤2时,等号成立, 所以f (x )的最小值等于3,即a =3.【名师点睛】(1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明. (2)利用柯西不等式求最值的一般结构为(a 21+a 22+…+a 2n )(1a 21+1a 22+…+1a 2n)≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件. 【锦囊妙计,战胜自我】 柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立. (2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.1.如果关于x 的不等式|x -3|-|x -4|<a 的解集不是空集,求实数a 的取值范围.解 设y =|x -3|-|x -4|, 则y =⎩⎪⎨⎪⎧-1,x ≤3,2x -7,3<x <4,1,x ≥4的图象如图所示:若|x -3|-|x -4|<a 的解集不是空集,则(|x -3|-|x -4|)min <a . 由图象可知当a >-1时,不等式的解集不是空集. 即实数a 的取值范围是(-1,+∞).2.设x >0,y >0,若不等式1x +1y +λx +y ≥0恒成立,求实数λ的最小值.解 ∵x >0,y >0,∴原不等式可化为-λ≤(1x +1y )·(x +y )=2+y x +xy.∵2+y x +x y ≥2+2y x ·xy=4, 当且仅当x =y 时等号成立.∴[(1x +1y)(x +y )]min =4,∴-λ≤4,λ≥-4.即实数λ的最小值是-4.3.若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,求实数a 的取值范围.任意实数x 恒成立,所以52≥a 2+12a +2.解不等式52≥a 2+12a +2,得-1≤a ≤12,故a 的取值范围为[-1,12].4.设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A ,(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值. 解 (1)因为32∈A ,且12∉A ,所以⎪⎪⎪⎪⎪⎪32-2<a ,且⎪⎪⎪⎪⎪⎪12-2≥a ,解得12<a ≤32.又因为a ∈N *,所以a =1.(2)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当(x +1)(x -2)≤0,即-1≤x ≤2时取到等号,所以f (x )的最小值为3. 5.已知f (x )=|x +1|+|x -1|,不等式f (x )<4的解集为M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a +b |<|4+ab |.∴4(a +b )2-(4+ab )2=4(a 2+2ab +b 2)-(16+8ab +a 2b 2)=(a 2-4)(4-b 2)<0,∴4(a +b )2<(4+ab )2, ∴2|a +b |<|4+ab |.6.已知a 2+2b 2+3c 2=6,若存在实数a ,b ,c ,使得不等式a +2b +3c >|x +1|成立,求实数x 的取值范围.解 由柯西不等式知[12+(2)2+(3)2][a 2+(2b )2+(3c )2] ≥(1·a +2·2b +3·3c )2即6×(a 2+2b 2+3c 2)≥ (a +2b +3c )2. 又∵a 2+2b 2+3c 2=6, ∴6×6≥(a +2b +3c )2,∴-6≤a +2b +3c ≤6,∵存在实数a ,b ,c ,使得不等式a +2b +3c >|x +1|成立. ∴|x +1|<6,∴-7<x <5. ∴x 的取值范围是{x |-7<x <5}. 7.设函数f (x )=|x -a |+3x ,其中a >0. (1)当a =1时,求不等式f (x )≥3x +2的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解 (1)当a =1时,f (x )≥3x +2可化为|x -1|≥2. 由此可得x ≥3或x ≤-1.故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}. (2)由f (x )≤0得|x -a |+3x ≤0. 此不等式化为不等式组⎩⎪⎨⎪⎧x ≥a ,x -a +3x ≤0或⎩⎪⎨⎪⎧x <a ,a -x +3x ≤0,即⎩⎪⎨⎪⎧x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2.因为a >0,所以不等式组的解集为{x |x ≤-a2}.由题设可得-a2=-1,故a =2.8.已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围.最新K12教育解得a≥2.所以a的取值范围是[2,+∞).教案试题。

【配套K12】高考数学深化复习+命题热点提分专题20不等式选讲文

【配套K12】高考数学深化复习+命题热点提分专题20不等式选讲文

专题20 不等式选讲1.设f(x)=|2x-1|-|x+1|.(1)求f(x)<0的解集;(2)当x<-1时,f(x)>f(a),求实数a的取值范围.2.已知函数f(x)=|x-3|-2,g(x)=-|x+1|+4.(1)若函数f(x)的值不大于1,求x的取值范围;(2)若不等式f(x)-g(x)≥m+1的解集为R,求m的取值范围.【解析】:(1)由题意得f(x)≤1,即|x-3|≤3,解得0≤x≤6,所以x的取值范围是[0,6].(2)f(x)-g(x)=|x-3|+|x+1|-6,因为对任意的实数x,有f(x)-g(x)=|x-3|+|x+1|-6=|3-x|+|x+1|-6≥|(3-x)+(x+1)|-6=4-6=-2,所以有m+1≤-2,得m≤-3,即m的取值范围是(-∞,-3].3.已知函数f(x)=|x|+|x-3|.(1)求不等式f(x)≤5的解集;(2)若函数f(x)的最小值为m ,且正实数a ,b ,c 满足a +b +c =m ,求证:2a +1+2b +1+2c +1≤3 3.【解析】:(1)f(x)=|x|+|x -3|=⎩⎪⎨⎪⎧-2x +3,x≤0,3,0<x<3,2x -3,x≥3.当x≤0时,-2x +3≤5,得-1≤x≤0; 当0<x<3时,3<5,得0<x<3; 当x≥3时,2x -3≤5,得3≤x≤4. 综上,不等式f(x)≤5的解集为[-1,4].(2)证明:由绝对值三角不等式,得f(x)=|x|+|x -3|≥|x-(x -3)|=3,故m =3,即a +b +c =3. 根据柯西不等式,有(1·2a +1+1·2b +1+1·2c +1)2≤(12+12+12)[(2a +1)2+(2b +1)2+(2c +1)2]=3[2(a +b +c)+3]=27.所以2a +1+2b +1+2c +1≤3 3,当且仅当12a +1=12b +1=12c +1,即a =b =c =1时取等号.4.(1)已知函数f(x)=|x -1|+|x +3|,若f(x)为常函数,求函数f(x)的定义域; (2)若x ,y ,z∈R,x 2+y 2+z 2=1,求m =2x +2y +5z 的最大值.5.已知函数f(x)=|2x +1|+|2x -3|. (1)求不等式f(x)≤6的解集;(2)若关于x 的不等式f(x)<|a -1|的解集非空,求实数a 的取值范围. 【解析】:(1)原不等式等价于⎩⎪⎨⎪⎧x>32,(2x +1)+(2x -3)≤6或⎩⎪⎨⎪⎧-12≤x≤32,(2x +1)-(2x -3)≤6或⎩⎪⎨⎪⎧x<-12,-(2x +1)-(2x -3)≤6, 解得32<x≤2或-12≤x≤32或-1≤x<-12.故不等式的解集为{x|-1≤x≤2}.(2)∵f(x)=|2x +1|+|2x -3|≥|(2x+1)-(2x -3)|=4, ∴|a-1|>4,解此不等式得a<-3或a>5. 6.已知a ,b 为正实数.(1)若a +b =2,求11+a +41+b 的最小值;(2)求证:a 2b 2+a 2+b 2≥ab(a+b +1).(2)证明:由基本不等式得a 2b 2+a 2≥2a 2b ,a 2b 2+b 2≥2b 2a ,a 2+b 2≥2ab,当且仅当a =b =1时,三式等号成立,三式相加得2a 2b 2+2a 2+2b 2≥2a 2b +2ab 2+2ab =2ab(a +b +1), 所以a 2b 2+a 2+b 2≥ab(a+b +1).7、若不等式|a -1|≥3x +1+3y +1+3z +1对满足x +y +z =1的一切正实数x ,y ,z 恒成立,求实数a 的取值范围.【解析】:根据柯西不等式有(3x +1+3y +1+3z +1)2=(1·3x +1+1·3y +1+1·3z +1)2≤(12+12+12)[(3x +1)2+(3y +1)2+(3z +1)2]=3·[3(x+y +z)+3]=3×6=18,∴3x +1+3y +1+3z +1≤3 2,当且仅当3x +1=3y +1=3z +1,即x =y =z =13时,等号成立.又∵|a-1|≥3x +1+3y +1+3z +1恒成立,∴|a-1|≥3 2,∴a-1≥3 2或a -1≤-3 2,即a≥3 2+1或a≤1-3 2, ∴a 的取值范围是(-∞,1-3 2]∪[1+3 2,+∞).8、设a ,b ,c 均为正实数,求证:1a +1b +1c ≥1ab +1bc +1ac ≥2b +c +2c +a +2a +b.9、已知a>0,b>0,c>0,1a 3+1b 3+1c3+3abc 的最小值为m.(1)求m 的值;(2)解关于x 的不等式|x +1|-2x<m.【解析】:(1)∵a,b ,c∈R +,∴1a 3+1b 3+1c 3≥331a3·1b 3·1c 3=3abc,∴1a 3+1b 3+1c 3+3abc ≥3abc+3abc ,①而3abc +3abc ≥23abc·3abc =6,②∴1a3+1b 3+1c3+3abc ≥6,③当且仅当a =b =c 时,①式等号成立;当且仅当3abc=3abc 时,②式等号成立;则当且仅当a =b =c =1时,③式等号成立,即1a 3+1b 3+1c3+3abc 取得最小值m =6.(2)由(1)知m =6,则|x +1|-2x <6,即|x +1|<6+2x , ∴-6-2x <x +1<6+2x ,∴⎩⎪⎨⎪⎧-6-2x <x +1,x +1<6+2x ,解得⎩⎪⎨⎪⎧x >-73,x >-5,∴原不等式的解集为(-73,+∞).10.已知函数f (x )=|x -4|+|x +5|.(1)试求使等式f (x )=|2x +1|成立的x 的取值范围;(2)若关于x 的不等式f (x )<a 的解集不是空集,求实数a 的取值范围.11.已知函数f (x )=|x +2|-|x -1|. (1)试求f (x )的值域;(2)设g (x )=ax 2-3x +3x(a >0),若任意s ∈(0,+∞),任意t ∈(-∞,+∞),恒有g (s )≥f (t )成立,试求实数a 的取值范围.12.设函数f (x )=|2x -1|-|x +2|. (1)求不等式f (x )≥3的解集;(2)若关于x 的不等式f (x )≥t 2-3t 在[0,1]上无解,求实数t 的取值范围.【解析】 (1)f (x )=⎩⎪⎨⎪⎧x -3,x ≥12,-3x -1,-2≤x <12,3-x ,x <-2,所以原不等式转化为⎩⎪⎨⎪⎧x ≥12,x -3≥3,或⎩⎪⎨⎪⎧-2≤x <12,-3x -1≥3,或⎩⎪⎨⎪⎧x <-2,3-x ≥3,所以原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-43∪[6,+∞).(2)只要f (x )max <t 2-3t ,由(1)知f (x )max =-1<t 2-3t 解得t >3+52或t <3-52.13.设函数f(x)=|x-3|-|x+a|,其中a∈R. (1)当a=2时,解不等式f(x)<1.(2)若对于任意实数x,恒有f(x)≤2a 成立,求a 的取值范围.14.已知函数f(x)=|x-a|-|x+3|,a∈R. (1)当a=-1时,解不等式f(x)≤1.(2)不等式f(x)≤4在x∈[-2,3]时恒成立,求a 的取值范围.15.已知a,b∈R,f(x)=|x-2|-|x-1|.(1)若f(x)>0,求实数x的取值范围.(2)对∀b∈R,若|a+b|+|a-b|≥f(x)恒成立,求a的取值范围. 【解析】(1)由f(x)>0得|x-2|>|x-1|,两边平方得x2-4x+4>x2-2x+1,解得x<,即实数x的取值范围是∞.(2)|a+b|+|a-b|≥|a+b+a-b|=2|a|,因为f(x)=|x-2|-|x-1|,f(x)max=1,所以2|a|≥1⇒|a|≥⇒a≥或a≤-,所以a的取值范围为∞∪.16.设函数f(x)=|x+2|-|x-2|.(1)解不等式f(x)≥2.(2)当x∈R,0<y<1时,证明:|x+2|-|x-2|≤+.17.已知函数f(x)=|x-1|.(1)解不等式:f(x)+f(x-1)≤2.(2)若a>0,求证:f(ax)-af(x)≤f(a).【解析】(1)由题f(x)+f(x-1)=|x-1|+|x-2|,因此只需解不等式|x-1|+|x-2|≤2.当x≤1时,原不等式等价于-2x+3≤2,即≤x≤1.当1<x≤2时,原不等式等价于1≤2,即1<x≤2.当x>2时,原不等式等价于2x-3≤2,即2<x≤.综上,原不等式的解集为.(2)由题f(ax)-af(x)=|ax-1|-a|x-1|.当a>0时,f(ax)-af(x) =|ax-1|-|ax-a|=|ax-1|-|a-ax|≤|ax -1+a-ax| =|a-1| =f(a).18.已知函数f(x)=|x+2|-2|x-1|. (1)求不等式f(x)≥-2的解集.(2)对任意x∈[a,+∞),都有f(x)≤x -a 成立,求实数a 的取值范围.(2)f(x)=函数f(x)的图象如图所示:令y=x-a,-a 表示直线的纵截距, 当直线过(1,3)点时,-a=2;。

【K12教育学习资料】高考数学考点解读+命题热点突破专题03不等式与线性规划理

【K12教育学习资料】高考数学考点解读+命题热点突破专题03不等式与线性规划理

不等式与线性规划【考向解读】不等式的性质、求解、证明及应用是每年高考必考的内容,对不等式的考查一般以选择题、填空题为主.(1)主要考查不等式的求解、利用基本不等式求最值及线性规划求最值;(2)不等式相关的知识可以渗透到高考的各个知识领域,往往作为解题工具与数列、函数、向量相结合,在知识的交汇处命题,难度中档;在解答题中,特别是在解析几何中求最值、范围或在解决导数问题时经常利用不等式进行求解,但难度偏高.【命题热点突破一】不等式的解法 1.一元二次不等式的解法先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集.2.简单分式不等式的解法 (1)f xg x>0(<0)⇔f (x )g (x )>0(<0); (2)f xg x≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0. 3.指数不等式、对数不等式及抽象函数不等式,可利用函数的单调性求解.例1、【2016高考新课标1卷】若101a b c >><<,,则( ) (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c < 【答案】C【感悟提升】(1)对于和函数有关的不等式,可先利用函数的单调性进行转化;(2)求解一元二次不等式的步骤:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集;(3)含参数的不等式的求解,要对参数进行分类讨论.【变式探究】(1)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =________.(2)已知f (x )是R 上的减函数,A (3,-1),B (0,1)是其图象上两点,则不等式|f (1+ln x )|<1的解集是________________.【答案】(1)52 (2)(1e,e 2)【命题热点突破二】基本不等式的应用 1.利用基本不等式求最值的注意点(1)在运用基本不等式求最值时,必须保证“一正,二定,三相等”,凑出定值是关键. (2)若两次连用基本不等式,要注意等号的取得条件的一致性,否则就会出错. 2.结构调整与应用基本不等式基本不等式在解题时一般不能直接应用,而是需要根据已知条件和基本不等式的“需求”寻找“结合点”,即把研究对象化成适用基本不等式的形式.常见的转化方法有(1)x +bx -a=x -a +bx -a+a (x >a ).(2)若a x +b y=1,则mx +ny =(mx +ny )×1=(mx +ny )·⎝ ⎛⎭⎪⎫a x +b y ≥ma +nb +2abmn (字母均为正数).例2、【2016高考天津理数】设变量x ,y 满足约束条件20,2360,3290.x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩则目标函数25z x y =+的最小值为( )(A )4- (B )6(C )10(D )17【答案】B【解析】可行域为一个三角形ABC 及其内部,其中(0,2),(3,0),(1,3)A B C ,直线z 25x y =+过点B 时取最小值6,选B.【感悟提升】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.【变式探究】(1)定义运算“⊗”:x ⊗y =x 2-y 2xy(x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.(2)函数y =x -1x +3+x -1的最大值为________.【答案】(1) 2 (2)15【解析】(1)由题意,得x ⊗y +(2y )⊗x =x 2-y 2xy +y2-x22yx=x 2+2y 22xy ≥2x 2·2y 22xy=2,当且仅当x =2y 时取等号.(2)令t =x -1≥0,则x =t 2+1, 所以y =tt 2+1+3+t =tt 2+t +4.当t =0,即x =1时,y =0; 当t >0,即x >1时,y =1t +4t+1, 因为t +4t≥24=4(当且仅当t =2时取等号),所以y =1t +4t+1≤15, 即y 的最大值为15(当t =2,即x =5时y 取得最大值).【点评】求条件最值问题一般有两种思路:一是利用函数单调性求最值;二是利用基本不等式.在利用基本不等式时往往都需要变形,变形的原则是在已知条件下通过变形凑出基本不等式应用的条件,即“和”或“积”为定值.等号能够取得.【命题热点突破三】简单的线性规划问题解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.例3、【2016年高考北京理数】若x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为( )A.0B.3C.4D.5 【答案】C【解析】作出如图可行域,则当y x z +=2经过点P 时,取最大值,而)2,1(P ,∴所求最大值为4,故选C.【感悟提升】(1)线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是确定目标函数中的字母系数的取值范围.(2)一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.【变式探究】若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.【答案】3【解析】画出可行域如图阴影所示,∵y x表示过点(x ,y )与原点(0,0)的直线的斜率, ∴点(x ,y )在点A 处时y x最大.由⎩⎪⎨⎪⎧x =1,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3.∴A (1,3).∴yx的最大值为3.] 【高考真题解读】1. 【2016高考新课标1卷】若101a b c >><<,,则( ) (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <【答案】C2.【2016高考天津理数】设变量x ,y 满足约束条件20,2360,3290.x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩则目标函数25z x y =+的最小值为( )(A )4- (B )6 (C )10 (D )17【答案】B【解析】可行域为一个三角形ABC 及其内部,其中(0,2),(3,0),(1,3)A B C ,直线z 25x y =+过点B 时取最小值6,选B.3.【2016高考山东理数】若变量x ,y 满足2,239,0,x y x y x ì+?ïïïï-?íïï锍ïî则22x y +的最大值是( )(A )4 (B )9 (C )10 (D )12【答案】C【解析】不等式组表示的可行域是以A (0,-3),B (0,2),C (3,-1)为顶点的三角形区域,22x y +表示点(x ,y )到原点距离的平方,最大值必在顶点处取到,经验证最大值为210OC=,故选C.4.【2016高考浙江理数】在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域20340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线x +y -2=0上的投影构成的线段记为AB ,则│AB │=( ) A ..4 C ..6 【答案】C【解析】如图∆PQR 为线性区域,区域内的点在直线20x y +-=上的投影构成了线段''R Q ,即AB ,而''=R Q PQ ,由3400-+=⎧⎨+=⎩x y x y 得(1,1)-Q ,由2=⎧⎨+=⎩x x y 得(2,2)-R,===AB QR C .5.【2016年高考北京理数】若x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为( )A.0B.3C.4D.5 【答案】C【解析】作出如图可行域,则当y x z +=2经过点P 时,取最大值,而)2,1(P ,∴所求最大值为4,故选C.6.【2016年高考四川理数】设p :实数x ,y 满足22(1)(1)2x y -+-≤,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的( )(A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A【解析】画出可行域(如图所示),可知命题q中不等式组表示的平面区域ABC∆在命题p中不等式表示的圆盘内,故选A.7.【2016高考新课标3理数】若,x y满足约束条件1020220x yx yx y-+≥⎧⎪-≤⎨⎪+-≤⎩则z x y=+的最大值为_____________.【答案】3 28.【2016高考新课标1卷】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.【答案】216000【解析】设生产产品A、产品B分别为x、y件,利润之和为z元,那么1.50.5150,0.390,53600,0,0.x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩……………① 目标函数2100900z x y =+. 二元一次不等式组①等价于3300,103900,53600,0,0.x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩?…………② 作出二元一次不等式组②表示的平面区域(如图),即可行域.将2100900z x y =+变形,得73900z y x =-+,平行直线73y x =-,当直线73900zy x =-+经过点M 时,z 取得最大值.解方程组10390053600x y x y +=⎧⎨+=⎩,得M 的坐标(60,100).所以当60x =,100y =时,max 210060900100216000z =⨯+⨯=. 故生产产品A 、产品B 的利润之和的最大值为216000元.9.【2016高考江苏卷】 已知实数,x y 满足240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则22x y +的取值范围是 ▲ .【答案】4[,13]5【解析】由图知原点到直线220x y +-=距离平方为22x y +最小值,为245=,原点到点(2,3)距离平方为22x y +最大值,为13,因此22x y +取值范围为4[,13]51.(2015·重庆卷)“x >1”是“log 12(x +2)<0”的( )A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件解析 由x >1x +2>3 log 12 (x +2)<0,log 12(x +2)<0x +2>1x >-1,故“x >1”是“log 12(x +2)<0”成立的充分不必要条件.因此选B.答案 B2.(2015·北京卷)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为( )A.0B.1C.32D.2解析 可行域如图所示.目标函数化为y =-12x +12 z ,当直线y =-12x +12 z 过点A (0,1)时,z 取得最大值2.答案 D3.(2015·陕西卷)设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A.q =r <pB.q =r >pC.p =r <qD.p =r >q解析 ∵0<a <b ,∴a +b2>ab ,又∵f (x )=ln x 在(0,+∞)上为增函数, 故f ⎝⎛⎭⎪⎫a +b 2>f (ab ),即q >p .又r =12(f (a )+f (b ))=12(ln a +ln b )=12ln a +12ln b =ln(ab )12=f (ab )=p . 故p =r <q .选C. 答案 C4.(2015·全国Ⅰ卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.解析 约束条件的可行域如图,由y x =y -0x -0,则最大值为3.答案 35.(2015·四川卷)如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎢⎡⎦⎥⎤12,2上单调递减,那么mn 的最大值为( )A.16B.18C.25D.812解析 令f ′(x )=(m -2)x +n -8=0,∴x =-n -8m -2, 当m >2时,对称轴x 0=-n -8m -2, 由题意,-n -8m -2≥2,∴2m +n ≤12, ∵2mn ≤2m +n2≤6,∴mn ≤18,由2m +n =12且2m =n 知m =3,n =6, 当m <2时,抛物线开口向下, 由题意-n -8m -2≤12,即2n +m ≤18, ∵2mn ≤2n +m 2≤9,∴mn ≤812,由2n +m =18且2n =m ,得m =9(舍去),∴mn 最大值为18,选B.答案 B6.(2015·山东卷)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若z =ax +y 的最大值为4,则a =( )A.3B.2C.-2D.-3答案 B7.(2015·天津卷)设x ∈R ,则“|x -2|<1”是“x 2+x -2>0”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 解析 由|x -2|<1得1<x <3,由x 2+x -2>0,得x <-2或x >1,而1<x <3x <-2或x >1,而x <-2或x >11<x <3,所以,“|x -2|<1”是“x 2+x -2>0”的充分而不必要条件,选A.答案 A 8.(2015·广东卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧4x +5y ≥8,1≤x ≤3,0≤y ≤2,则z =3x +2y 的最小值为( )A.315B.6C.235D.4解析 不等式组所表示的可行域如下图所示,由z =3x +2y 得y =-32x +z 2,依题意当目标函数直线l :y =-32x +z 2经过A ⎝ ⎛⎭⎪⎫1,45时,z 取得最小值,即z min =3×1+2×45=235,故选C. 答案 C9.(2015·浙江卷)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________.。

高考数学压轴专题2020-2021备战高考《不等式选讲》知识点总复习

高考数学压轴专题2020-2021备战高考《不等式选讲》知识点总复习

数学《不等式选讲》复习知识要点一、141.不等式222log 2log x x x x -<+的解集为( ) A .()1,2 B .()0,1C .()1,+∞D .()2,+∞【答案】C 【解析】 【分析】由题意得出0x >,分2log 0x >和2log 0x ≤两种情况讨论,结合222log 2log x x x x -<+可得出2log 0x >,解出该不等式即可.【详解】由题意得出0x >,当2log 0x ≤时,则222log 2log x x x x -=+. 当2log 0x >时,222log 2log x x x x -<+,解不等式2log 0x >得1x >. 因此,不等式222log 2log x x x x -<+的解集为()1,+∞. 故选:C. 【点睛】本题考查绝对值不等式的求解,同时也考查绝对值三角不等式的应用,考查推理能力与运算求解能力,属于中等题.2.关于x 不等式2x x a a -+-≥在R 上恒成立,则实数a 的最大值是 A .0 B .1C .-1D .2【答案】B 【解析】由于|x -2|+|x -a |≥|a -2|,∴等价于|a -2|≥a ,即a ≤1.故实数a 的最大值为1.3.2018年9月24日,英国数学家.M F 阿帝亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动,黎曼猜想来源于一些特殊数列求和,记222111123S n=+++++L L ,则( )A .413S << B .4332S << C .322S << D .2S >【答案】C 【解析】 【分析】由题意,可知21111111(2,)1(1)(1)1n n N n n n n n n n n n+-=<<=-≥∈++--,利用放缩法和极限,即可得到答案. 【详解】 由题意,可知21111111(2,)1(1)(1)1n n N n n n n n n n n n+-=<<=-≥∈++--, 所以2221111111113111()()()232334121n S n n n n =+++++>+-+-++-=-++L L L 22211111111111(1)()()2232231n S n n n nL L =++++<+-+-++-=--, 当n →+∞且n N +∈时,101n →+,且10n →,所以322S <<,故选C. 【点睛】本题主要考查了数列思想的应用问题,其中解答中,认真审题,利用21n 进行合理放缩,再利用极限求解是解答本题的关键,着重考查了分析问题和解答问题的能力,以及放缩思想的应用,属于中档试题.4.已知a +b +c =1,且a , b , c >0,则 222a b b c a c +++++ 的最小值为( ) A .1 B .3C .6D .9【答案】D 【解析】2221,a b c a b b c c a ++=∴+++++Q ()1112++a b c a b b c c a ⎛⎫=⋅++ ⎪+++⎝⎭()()()()21111119a b b c c a a b b c c a ⎛⎫⎡⎤=+++++⋅++≥++= ⎪⎣⎦+++⎝⎭,当且仅当13a b c ===时等号成立,故选D.【易错点晴】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).5.已知,,x y z ∈R ,若234x y z -+=,则222(5)(1)(3)x y z ++-++的最小值为( ) A .37200B .2007C .36D .40【答案】B 【解析】 【分析】根据柯西不等式得到不等式关系,进而求解. 【详解】根据柯西不等式得到()()()()()()2222221(2)352135313x y z x y z ⎡⎤+-+≥++-+++--++⎡⎤⎣⎦⎣⎦()()()()2222511423164030x y z x y z ⎡⎤++-++≥-++=⎣⎦进而得到最小值是:2007故答案为B. 【点睛】这个题目考查了柯西不等式的应用,比较基础.6.若存在x ,∈R ,使2x a 23x 1-+-≤成立,则实数a 的取值范围是( )A .[]75--,B .()57,C .[]57,D .][()57∞∞-⋃+,, 【答案】C 【解析】 【分析】先利用绝对值三角不等式求223x a x -+-的最小值,即得实数a 的取值范围. 【详解】由题得223=262|6|x a x x a x a -+--+-≥-, 所以|6|1,161,57a a a -≤∴-≤-≤∴≤≤. 故选C 【点睛】本题主要考查绝对值三角不等式和绝对值不等式的能成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.空间中两条不相交的直线与另外两条异面直线都相交,则这两条直线的位置关系是( ) A .平行或垂直 B .平行C .异面D .垂直【答案】C 【解析】 【分析】利用反证法证明得解. 【详解】不妨设空间中不相交的两条直线为a b ,,另外两条异面直线为c d ,, 由于a b ,不相交,故a b ,平行或异面, 设a c ,确定的平面为α.不妨设a b ∥,①当b α⊂时,则a b ,与直线d 的交点都在α内,故d α⊂,而这与c d ,为异面直线矛盾;②当b α⊄时,由a b ∥可知b P α,又c α⊂,故b c ,没有公共点,与b c ,相交矛盾. 由①②知假设a b ∥错误,故a b ,为异面直线. 故选C. 【点睛】本题主要考查异面直线的判定和反证法,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.设集合{}|22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C A B I 等于 A .R B .{}|,0x x R x ∈≠ C .{}0D .∅【答案】B 【解析】解:[0,2]A =,[4,0]B =-,所以(){}0R R C A B C ⋂=,故选B 。

2019年高考数学考纲解读与热点难点突破专题20不等式选讲热点难点突破文含解析

2019年高考数学考纲解读与热点难点突破专题20不等式选讲热点难点突破文含解析

不等式选讲1.若f ()=log 13,R =f ⎝ ⎛⎭⎪⎫1a +b ,S =f ⎝ ⎛⎭⎪⎫1ab ,T =f ⎝ ⎛⎭⎪⎫2a 2+b 2,a ,b 为正实数,则R ,S ,T 的大小关系为( ) A .T ≥R ≥SB .R ≥T ≥SC .S ≥T ≥RD .T ≥S ≥R解析 ∵a ,b 为正实数,∴2a +b ≤22ab =1ab ,2a +b=4a 2+b 2+2ab ≤2a 2+b 2≤22a 2b 2=1ab , ∵f ()=log 13在(0,+∞)上为增函数, R =f ⎝ ⎛⎭⎪⎫2a +b ,S =f ⎝ ⎛⎭⎪⎫1ab , T =f ⎝⎛⎭⎪⎫2a 2+b 2,∴T ≥R ≥S . 答案 A2.已知函数f ()=|-4|+|+5|.(1)试求使等式f ()=|2+1|成立的的取值范围;(2)若关于的不等式f ()<a 的解集不是空集,求实数a 的取值范围. 解 (1)f ()=|-4|+|-5|=⎩⎨⎧-2x -1,x ≤-5,9,-5<x <4,2x +1,x ≥4.又|2+1|=⎩⎪⎨⎪⎧-2x -1,x ≤-12,2x +1,x >12,所以若f ()=|2+1|,则的取值范围是(-∞,-5]∪[4,+∞).(2)因为f ()=|-4|+|+5|≥|(-4)-(+5)|=9,所以若关于的不等式f ()<a 的解集非空,则a >f ()min =9,即a 的取值范围是(9,+∞).3.已知函数f ()=|+2|-|-1|.(1)试求f ()的值域;(2)设g ()=ax 2-3x +3x(a >0),若任意s ∈(0,+∞),任意t ∈(-∞,+∞),恒有g (s )≥f (t )成立,试求实数a的取值范围.解 (1)函数可化为f ()=⎩⎨⎧-3,x <-2,2x +1,-2≤x ≤1,3,x >1.∴f ()∈[-3,3].(2)若>0,则g ()=ax 2-3x +3x =a +3x-3≥23a -3,即当a 2=3时,g ()min =23a -3, 又由(1)知f ()ma =3.若∀s ∈(0,+∞),∀t ∈(-∞,+∞),恒有g (s )≥f (t )成立,则有g ()min ≥f ()ma ,∴23a -3≥3, ∴a ≥3,即a 的取值范围是[3,+∞).4.设不等式|-2|>1的解集与关于的不等式2-a +b >0的解集相同.(1)求a ,b 的值;(2)求函数f ()=a x -3+b 5-x 的最大值,以及取得最大值时的值.5.设函数f ()=|2+1|-|-2|.(1)求不等式f ()>2的解集;综上所述,不等式f ()>2的解集为{|>1或<-5}.(2)易得f ()min =-52,若∀∈R 都有f ()≥t 2-112t 恒成立, 则只需f ()min =-52≥t 2-11t 2,解得12≤t ≤5. 7.若关于的不等式|-1|+|-3|≤a 2-2a -1在R 上的解集为∅,则实数a 的取值范围是( )A .a <-1或a >3B .a <0或a >3C .-1<a <3D .-1≤a ≤3解析 |-1|+|-3|的几何意义是数轴上与对应的点到1、3对应的两点距离之和,故它的最小值为2, ∵原不等式解集为∅,∴a 2-2a -1<2. 即a 2-2a -3<0,解得-1<a <3. 故选C.答案 C8.设f ()=1a2-b +c ,不等式f ()<0的解集是(-1,3),若f (7+|t |)>f (1+t 2),则实数t 的取值范围是________. 解析 ∵1a2-b +c <0的解集是(-1,3), ∴1a >0且-1,3 是1a 2-b +c =0的两根,则函数f ()=1a 2-b +c 图象的对称轴方程为=ab 2=1, 且f ()在[1,+∞)上是增函数,又∵7+|t |≥7>1,1+t 2≥1,则由f (7+|t |)>f (1+t 2),得7+|t |>1+t 2,即|t |2-|t |-6<0,亦即(|t |+2)(|t |-3)<0,∴|t |<3,即-3<t <3.答案 (-3,3)9.已知函数f ()=|-4|+|+5|.(1)试求使等式f ()=|2+1|成立的的取值范围;(2)若关于的不等式f ()<a 的解集不是空集,求实数a 的取值范围.解 (1)f ()=|-4|+|+5|=⎩⎨⎧-2x -1,x ≤-5,9,-5<x <4,2x +1,x ≥4.又|2+1|=⎩⎪⎨⎪⎧-2x -1,x ≤-12,2x +1,x >12, 所以若f ()=|2+1|,则的取值范围是(-∞,-5]∪[4,+∞).(2)因为f ()=|-4|+|+5|≥|(-4)-(+5)|=9,∴f ()min =9.所以若关于的不等式f ()<a 的解集非空,则a >f ()min =9,即a 的取值范围是(9,+∞).10.已知函数f ()=|+2|-|-1|.(1)试求f ()的值域;(2)设g ()=ax 2-3x +3x(a >0),若任意s ∈(0,+∞),任意t ∈(-∞,+∞),恒有g (s )≥f (t )成立,试求实数a 的取值范围.解 (1)函数可化为f ()=⎩⎨⎧-3,x <-2,2x +1,-2≤x ≤1,3,x >1.∴f ()∈[-3,3].(2)若>0,则g ()=ax 2-3x +3x =a +3x-3≥23a -3,即当a 2=3时,g ()min =23a -3, 又由(1)知f ()ma =3.若∀s ∈(0,+∞),∀t ∈(-∞,+∞),恒有g (s )≥f (t )成立,则有g ()min ≥f ()ma ,∴23a -3≥3,∴a ≥3,即a 的取值范围是[3,+∞).11.设函数f ()=|2-1|-|+2|.(1)求不等式f ()≥3的解集;(2)若关于的不等式f ()≥t 2-3t 在[0,1]上无解,求实数t 的取值范围.12.设函数f ()=|+1a|+|-a |(a >0).(1)证明:f ()≥2;(2)若f (3)<5,求a 的取值范围.(1)证明 由a >0,有f ()=|+1a |+|-a |≥|+1a -(-a )|=1a+a ≥2.所以f ()≥2. (2)解 f (3)=|3+1a|+|3-a |. 当a >3时,f (3)=a +1a, 由f (3)<5得3<a <5+212. 当0<a ≤3时,f (3)=6-a +1a, 由f (3)<5得1+52<a ≤3. 综上,a 的取值范围是⎝ ⎛⎭⎪⎫1+52,5+212. 13.已知函数f ()=|-a |,其中a >1.(1)当a =2时,求不等式f ()≥4-|-4|的解集;(2)已知关于的不等式|f (2+a )-2f ()|≤2的解集为{|1≤≤2},求a 的值. 解 (1)当a =2时,f ()+|-4|=⎩⎨⎧-2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当≤2时,由f ()≥4-|-4|得-2+6≥4,解得≤1;当2<<4时,f ()≥4-|-4|无解;当≥4时,由f ()≥4-|-4|得2-6≥4,解得≥5;所以f ()≥4-|-4|的解集为{|≤1或≥5}.(2)记h ()=f (2+a )-2f (),则h ()=⎩⎨⎧-2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h ()|≤2,解得a -12≤≤a +12.又已知|h ()|≤2的解集为{|1≤≤2},所以⎩⎪⎨⎪⎧a -12=1,a +12=2,于是a =3. 14.已知函数f ()=-|-3|,∈R ,且f (+3)≥0的解集为[-1,1].(1)求的值;(2)若a ,b ,c 是正实数,且1ka +12kb +13kc=1. 求证:a +2b +3c ≥9.(1)解:∵f ()=-|-3|,∴f (+3)≥0等价于||≤,由||≤有解,得≥0,且解集为[-,].∵f (+3)≥0的解集为[-1,1].因此=1. (2)证明:由(1)知1a +12b +13c =1,∵a ,b ,c 为正实数. ∴a +2b +3c =(a +2b +3c )⎝ ⎛⎭⎪⎫1a +12b +13c =3+⎝ ⎛⎭⎪⎫a 2b +2b a +⎝ ⎛⎭⎪⎫a 3c +3c a +⎝ ⎛⎭⎪⎫2b 3c +3c 2b ≥3+2a 2b ·2b a + 2a 3c ·3c a +22b 3c ·3c 2b=9. 当且仅当a =2b =3c 时,等号成立.因此a +2b +3c ≥9.15.已知函数f ()=|+a |+|-2|.(1)当a =-3时,求不等式f ()≥3的解集;(2)若f ()≤|-4|的解集包含[1,2],求a 的取值范围.(2)原不等式等价于|-4|-|-2|≥|+a |,②当1≤≤2时,②式化为4--(2-)≥|+a |, 解之得-2-a ≤≤2-a .由条件,[1,2]是f ()≤|-4|的解集的子集, ∴-2-a ≤1且2≤2-a ,则-3≤a ≤0.故满足条件的实数a 的取值范围是[-3,0].16.已知正实数a ,b 满足:a 2+b 2=2ab .(1)求1a +1b的最小值m ; (2)设函数f ()=|-t |+⎪⎪⎪⎪⎪⎪x +1t (t ≠0),对于(1)中求得的实数m 是否存在实数,使得f ()=m 2成立,说明理由. 解:(1)∵2ab =a 2+b 2≥2ab , ∴ab ≥ab (a >0,b >0),则ab ≤1, 又1a +1b ≥2ab≥2, 当且仅当a =b 时取等号,∴1a +1b的最小值m =2. (2)函数f ()=|-t |+⎪⎪⎪⎪⎪⎪x +1t ≥ ⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫x +1t -(x -t )=⎪⎪⎪⎪⎪⎪1t +t =|t |+⎪⎪⎪⎪⎪⎪1t ≥2, 对于(1)中的m =2,m 2=1<2. ∴满足条件的实数不存在.。

配套K12高考数学考点解读+命题热点突破专题20不等式选讲文

配套K12高考数学考点解读+命题热点突破专题20不等式选讲文

配套K12高考数学考点解读+命题热点突破专题20不等式选讲文最新k12教育主题20不平等精选讲座【命题热点突破一】含绝对值的不等式的解法例1。

〔2022高考新课标第1卷〕(此分题的满分为10分)、选修课4-5:不等式、选修课上的已知函数F?十、十、1.2倍?三(i)在答题卡第(24)题图中画出y?f?x?的图像;(ii)求不等式f?x??1的解集.1.[答:]见分析(二),?3.1,3?? 5.教案试题最新k12教育f?x??1,当x≤?1,x?4?1,解得x?5或x?3,∴x≤?131,3倍?2.1.X?1还是x?2313∴? 1.十、还是1?十、3233当x≥,4?x?1,解得x?5或x?3,∴≤x?3或x?52211?? 总而言之,x?还是1?十、3还是x?5.∴F十、1.解决方案集是,?3.3.什么时候1.十、已知函数f(x)=|2x-a |+|x+1 |(1)当a=1时,解不等式f(x)<3;(2)如果F(x)的最小值为1,则求A的值1,3??5,【特别提醒】解绝对值不等式的基本方法是分段去掉绝对值,将其转化为几个不等式组的解,最后找到并集,得到原不等式的解集【变式探究】函数f(x)=2 |x+2 |-|x-a |(a)∈ R)。

(1)当a=4时,求不等式f(x)的解集≤ 0;(2)当a>-2时,若函数f(x)的图像与x轴所围成的封闭图形的面积不超过54,求a 的最大值.【解析】:(1)当a=4时,f(x)≤0,即2|x+2|-|x-4|≤0,即2|x+2|≤|x-4|,两边平方得4x+16x+16≤x-8x+16,即x+8x≤0,解得-8≤x≤0,即不等式f(x)≤0的解集为[-8,0].(或者分段去绝对值求解)教案试题二2二最新k12教育-x-4-a,x≤-2.(2)当a>-2时,f(x)=?3x+4-a,-2??x+4+a,x≥a.a-4a-4令f(x)=0,解得x1=-4-a,x2=,f(x)的图像与x轴的交点为a(-4-a,0),b(,0),33F(x)在(-2,+∞), 在(-2,+∞), f(x)min=f(-2)=-(a+2)。

高考数学压轴专题新备战高考《不等式选讲》图文解析

高考数学压轴专题新备战高考《不等式选讲》图文解析

【高中数学】单元《不等式选讲》知识点归纳一、141.已知函数()f x 是R 上的增函数,它的图像经过点()0,2A -,()3,2B,则不等式()2f x ≥的解集为( )A .[]0,3B .(),3-∞C .[)3,+∞D .(][),03,-∞⋃+∞【答案】D 【解析】 【分析】首先不等式等价于()2f x ≥或()2f x ≤-,然后再根据函数的单调性解不等式. 【详解】不等式()()22f x f x ≥⇒≥或()2f x ≤-Q 函数()f x 是R 上的增函数,它的图像经过点()0,2A -,()3,2B ,()23f x x ∴≥⇒≥,()20f x x ≤-⇒≤∴不等式的解集是(][),03,-∞⋃+∞.故选:D 【点睛】本题考查根据函数的单调性解不等式,意在考查含绝对值不等的解法,考查基本计算能力,属于基础题型.2.已知()23f x x x =+,若1x a -≤,则下列不等式一定成立的是( )A .()()33f x f a a -≤+B .()()5f x f a a -≤+C .()()24f x f a a -≤+D .()()()231f x f a a -≤+【答案】C 【解析】 【分析】先表示出()()f x f a -,利用绝对值三角不等式a b a b ±≤+即可求解. 【详解】由()23f x x x =+,得()()()(3)f x f a x a x a -=-++,因为1x a -≤,所以()(3)323x a x a x a x a a -++≤++=-++,由绝对值三角不等式得232324x a a x a a a -++≤-++≤+,故()()24f x f a a -≤+一定成立.故选:C. 【点睛】本题主要考查绝对值三角不等式的灵活应用,在求最值时要注意等号成立的条件,考查逻辑推理能力,属基础题.3.若集合{}2540A x x x =-+<,{}1B x x a =-<,则“()2,3a ∈”是“B A ⊆”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又不必要条件【答案】A 【解析】 【分析】解出集合A 、B ,由B A ⊆得出关于a 的不等式组,求出实数a 的取值范围,由此可判断出“()2,3a ∈”是“B A ⊆”的充分非必要条件. 【详解】解不等式2540x x -+<,解得14x <<,{}14A x x ∴=<<. 解不等式1x a -<,即11x a -<-<,解得11a x a -<<+,{}11B x a x a ∴=-<<+.B A ⊆Q ,则有1114a a -≥⎧⎨+≤⎩,解得23a ≤≤.因此,“()2,3a ∈”是“B A ⊆”的充分非必要条件. 故选:A 【点睛】本题考查充分非必要条件的判断,一般将问题转化为集合的包含关系来判断,考查逻辑推理能力,属于中等题.4.已知f (x )=|x +2|+|x -4|的最小值为n ,则二项式1nx x ⎛⎫- ⎪⎝⎭展开式中x 2项的系数为( ) A .11 B .20 C .15 D .16 【答案】C 【解析】 【分析】由题意利用绝对值三角不等式求得n=6,在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得展开式中x 2项的系数. 【详解】∵f (x )=|x+2|+|x ﹣4|≥|(x+2)﹣(x ﹣4)|=6,故函数的最小值为6, 再根据函数的最小值为n ,∴n=6.则二项式(x ﹣1x )n =(x ﹣1x)6 展开式中的通项公式为 T r+1=6r C •(﹣1)r •x 6﹣2r , 令6﹣2r=2,求得r=2,∴展开式中x 2项的系为26C =15, 故选:C . 【点睛】本题主要考查绝对值三角不等式的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数,属于中档题.5.设n *∈N) A>BC=D .不能确定【答案】B 【解析】 【分析】把两个代数式进行分子有理化,比较分母的大小可以比较出大小关系. 【详解】22-===.22-===.*n N∈ 42,31n n n n +>++>+>>><<成立,因此本题选B . 【点睛】对于二次根式的加減运算,分母有理化是常见的运算要求,但是有时分子有理化会起到意想不到的作用,尤其是在比较二个二次根式减法算式之间的大小关系时,经常会用到分子有理化这个方法.当然不等式的性质也是很重要的.6.设0x 为函数()sin f x x π=的零点,且满足001()112x f x ++<,则这样的零点有( ) A .18个B .19个C .20个D .21个【解析】从题设可得00()x k x k k Z ππ=⇒=∈,又001()sin()sin()(1)222k f x x k ππππ+=+=+=-,故(1)11k k +-<,当k 取奇数时,12k <,则1,3,5,7,9,11k =±±±±±±,共12个数;当k 取偶数时,10k <,则0,2,4,6,8k =±±±±,共9个数,所以这样的零点的个数共有21个,应选答案D 。

高考数学压轴专题新备战高考《不等式选讲》知识点

高考数学压轴专题新备战高考《不等式选讲》知识点

【最新】数学复习题《不等式选讲》专题解析一、141.设集合{}|22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C A B I 等于 A .R B .{}|,0x x R x ∈≠ C .{}0D .∅【答案】B 【解析】解:[0,2]A =,[4,0]B =-,所以(){}0R R C A B C ⋂=,故选B 。

2.已知()f x 是定义域为R 的偶函数,当0x …时,2()4f x x x =+,则(2)5f x +>的解集为( )A .(,5)(5,)-∞-+∞UB .(,5)(3,)-∞-+∞UC .(,7)(3,)-∞-+∞UD .(,7)(2,)-∞-+∞U【答案】C 【解析】 【分析】根据偶函数以及当0x …时,2()4f x x x =+,可得0x ≥时的表达式,由此求得(2)(|2|)f x f x +=+,再代入可解得.【详解】∵()f x 是定义域为R 的偶函数,∴当0x ≥时,0x -≤,所以22()()()4()4f x f x x x x x =-=-+-=-. 由()25f x +>以及()f x 为偶函数,得(|2|)5f x +>,∴2|2|4|2|5x x +-+>,所以(|2|5)(|2|1)0x x +-++>, 因为|2|10x ++>, 所以|2|5x +>,所以25x +>或25x +<-, 解得7<-x 或 3.x > 故选C 【点睛】本题考查了利用函数的奇偶性求函数解析式,绝对值不等式的解法,属于中档题.3.若关于x 的不等式222213x t x t t t +-+++-<无解,则实数t 的取值范围是( ) A .1,15⎡⎤-⎢⎥⎣⎦B .(],0-∞C .(],1-∞D .(],5-∞ 【答案】C【解析】 【分析】先得到当0t ≤时,满足题意,再当0t >时,根据绝对值三角不等式,得到22221x t x t t +-+++-的最小值,要使不等式无解,则最小值需大于等于3t ,从而得到关于t 的不等式,解得t 的范围 【详解】关于x 的不等式222213x t x t t t +-+++-<无解, 当0t ≤时,可得此时不等式无解, 当0t >时,()2222221221x t x t t x t x t t +-+++-+--++-≥21t =--,所以要使不等式无解,则213t t --≥, 平方整理后得20541t t ≤--, 解得115t ≤≤-, 所以01t <≤,综上可得t 的范围为(],1-∞, 故选:C. 【点睛】本题考查绝对值的三角不等式的应用,根据不等式的解集情况求参数的范围,属于中档题.4.不等式2124x x a a +--≥-的解集为R ,则实数a 的取值范围是( ) A .(][),13,-∞+∞U B .()(),13,-∞⋃+∞ C .[]1,3 D .()1,3【答案】C 【解析】 【分析】令()12f x x x =+--,通过对x 的取值范围的讨论,去掉绝对值符号,可求得()min 3f x =,依题意,即可求得实数a 的取值范围.【详解】令()12f x x x =+--,当1x <-时,()()123f x x x =----+=-;当12x -≤≤时,()()[]12213,3f x x x x =+--+=-∈-; 当2x >时,()()123f x x x =+--=; ∴()min 3f x =-.∵不等式2124x x a a +--≥-的解集为R , ∴()2min 43a a f x -≤=-,即实数a 的取值范围是[]1,3.故选C. 【点睛】本题考查绝对值不等式的解法,考查函数恒成立问题,解题方法是转化为求函数最值,然后解不等式.5.已知点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,点(,)M a b 为平面上一点,O 为坐标原点,则当OM 取最小值时,椭圆的离心率为( )A B .13C .2D 【答案】D 【解析】 【分析】点(3,1)P 在椭圆22221(0)x y a b a b +=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =a ,b 关系,代入即可.【详解】解:点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =所以||4OM ==,当且仅当223a b =时,取等号, 222213b e a =-=,e =. 故选D . 【点睛】考查椭圆的性质,柯西不等式的应用,求椭圆的离心率,中档题.6.2018年9月24日, 英国数学家M.F 阿蒂亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动. 黎曼猜想来源于一些特殊数列求和, 记2221111.........,23S n则()=+++++A .413S << B .4332S << C .322S << D .2S > 【答案】C 【解析】 【分析】由题意利用不等式放缩后裂项确定S 的范围即可. 【详解】由题意可知:222111123S n =+++++L L()111123341n n >+++++⨯⨯+L L 111111123341n n ⎛⎫⎛⎫⎛⎫=+-+-++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭L L 13122>+=, 且222111123S n =+++++L L()111112231n n <+++++⨯⨯-⨯L L 11111112231n n L L ⎛⎫⎛⎫⎛⎫=+-+-++-+ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭122n L =-+<,综上可得:322S <<. 本题选择C 选项. 【点睛】本题的核心是考查裂项求和的方法,使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.7.已知a ,b 均为正数,且20ab a b --=,则22214a b a b-+-的最小值为( )A .6B .7C .8D .9 【答案】B 【解析】 【分析】a ,b 均为正数,且ab ﹣a ﹣2b =0,可得21a b+=1,根据柯西不等式求出代数式的最小值即可. 【详解】∵a ,b 均为正数,且ab ﹣a ﹣2b =0, ∴21a b+=1. 则22214a b a b-+- 24a =+b 2﹣1, 又因为2a +b =(21a b +)(2a +b )22b a a b=++2≥2+2=4,当且仅当a =4,b =2时取等号.∴(24a +b 2)(1+1)≥(2a +b )2≥16,当且仅当a =4,b =2时取等号. ∴24a +b 2≥8, ∴224a a-+b 2214a b -=+b 2﹣1≥7.故选:B . 【点睛】本题考查“乘1法”、基本不等式的性质、柯西不等式,考查了推理能力与计算能力,属于中档题.8.若关于x 的不等式2|1|30ax x a -++≥的解集为R ,则实数a 的取值范围为 A .1[,+)6∞ B .1[,+)3∞ C .1[,+)2∞ D .1[,+)12∞ 【答案】C 【解析】 【分析】先将不等式2130ax x a -++≥变形为213x a x +≥+,由不等式2130ax x a -++≥的解集是(),-∞+∞,可得213x a x +≥+恒成立,因此只需求出213x x ++的最大值即可.【详解】解:不等式2130ax x a -++≥的解集是(),-∞+∞,即x R ∀∈,2130ax x a -++≥恒成立,∴221133x x a x x ++≥=++, 令()213x g x x +=+, 当1x =-时,()0g x =;当1x ≠-时,()21143121x g x x x x +==+++-+, 若10x +>,则()41221x x ++-≥=+, 当且仅当411x x +=+,即x 1=时上式“=”成立; 若x 10+<, 则()()()441212611x x x x ⎡⎤++-=--++-≤-=-⎢⎥+-+⎢⎥⎣⎦, 当且仅当()()411x x -+=-+,即3x =-时上式“=”成立.()()][()412,62,1x x ∴++-∈-∞-⋃+∞+. ()10,2g x ⎛⎤∴∈ ⎥⎝⎦.12a ∴≥. 则实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 故选C . 【点睛】本题主要考查不等式恒成立的问题,由不等式恒成立求参数的范围,通常用分离参数的方法,将不等式转化为参数与一个函数比较大小的形式,只需求出函数的最大值或最小值即可,属于常考题型.9.设集合{}1,R A x x a x =-<∈,{}15,R B x x x =<<∈.若A B =∅I ,则实数a 的取值范围是()A .{}06a a ≤≤B .{}64a a a ≤≥或C .{}06a a a ≤≥或D .{}24a a ≤≤【答案】C【解析】 【分析】根据公式()0x a a a x a <>⇔-<<解出集合A ,再根据交集的运算即可列出关系式,求解即可。

高考数学20题知识点

高考数学20题知识点

高考数学20题知识点【高考数学20题知识点】高考数学是每个考生必须面对的一门重要考试科目。

为了帮助考生更好地备考数学,本文将针对高考数学中的20个常见题型,总结并介绍相应的知识点。

以下为具体内容:一、选择题选择题是高考数学中常见的题型,考查对基本概念、定理和方法的理解和应用能力。

常见的选择题包括等式与不等式、函数与方程、平面几何与立体几何等。

这些题目的知识点涵盖了数学的基础内容,掌握好这些知识点对于解答选择题至关重要。

二、填空题填空题是要求考生根据问题的条件,填入一个合适的数值或表达式,使方程或不等式等成立。

在填空题中,掌握运算法则、化简与推导的方法是解题的关键。

三、解答题解答题是数学考试中的主要题型之一,要求考生进行详细的推理和证明,展示解题思路和严密的逻辑。

常见的解答题包括证明题、计算题和应用题等。

解答题的关键在于准确把握问题的要求,运用合适的数学方法进行推理和证明。

四、几何证明题几何证明题在高考数学中占有一定比重,考查着重对几何定理和性质的理解和应用。

在几何证明题中,要注意辨析题目所给的条件和结论,灵活运用几何知识,清晰地展示证明过程。

五、应用题应用题是数学中最能考察问题解决能力的题型,要求考生把数学知识应用于实际问题,进行分析和解决。

在应用题中,理解问题的背景和条件,构建数学模型,进行合理的推理和计算是解题的关键。

六、计算题计算题是数学考试中的常见题型,主要考察考生的计算能力和运算技巧。

在计算题中,注意运算符和顺序,灵活选择计算方法,准确计算是解答计算题的关键。

七、概率与统计题概率与统计是高考数学中的一部分内容,对于考生来说较为实用。

概率与统计题常考察对概率与统计基本概念的理解和应用。

以上就是高考数学中的20个常见题型及相应的知识点。

只有充分掌握了这些知识点,才能在高考数学中取得好成绩。

因此,考生在备考数学时,应将这些知识点作为重点进行学习和训练,熟练掌握数学的基本概念、定理和方法。

只有全面、准确地理解和应用这些知识点,才能在高考中取得好成绩。

高考数学考纲解读与热点难点突破专题20不等式选讲热点难点突破文含解析0330269

高考数学考纲解读与热点难点突破专题20不等式选讲热点难点突破文含解析0330269

不等式选讲1.若f (x )=log 13x ,R =f ⎝ ⎛⎭⎪⎫1a +b ,S =f ⎝ ⎛⎭⎪⎫1ab ,T =f ⎝ ⎛⎭⎪⎫2a 2+b 2,a ,b 为正实数,则R ,S ,T 的大小关系为( ) A .T ≥R ≥S B .R ≥T ≥S C .S ≥T ≥RD .T ≥S ≥R解析 ∵a ,b 为正实数,∴2a +b ≤22ab =1ab ,2a +b=4a 2+b 2+2ab≤2a 2+b 2≤22a 2b2=1ab,∵f (x )=log 13x 在(0,+∞)上为增函数,R =f ⎝ ⎛⎭⎪⎫2a +b ,S =f ⎝ ⎛⎭⎪⎫1ab , T =f ⎝⎛⎭⎪⎫2a 2+b 2,∴T ≥R ≥S . 答案 A2.已知函数f (x )=|x -4|+|x +5|.(1)试求使等式f (x )=|2x +1|成立的x 的取值范围;(2)若关于x 的不等式f (x )<a 的解集不是空集,求实数a 的取值范围. 解 (1)f (x )=|x -4|+|x -5|=⎩⎪⎨⎪⎧-2x -1,x ≤-5,9,-5<x <4,2x +1,x ≥4.又|2x +1|=⎩⎪⎨⎪⎧-2x -1,x ≤-12,2x +1,x >12,所以若f (x )=|2x +1|,则x 的取值范围是(-∞,-5]∪[4,+∞).(2)因为f (x )=|x -4|+|x +5|≥|(x -4)-(x +5)|=9,所以若关于x 的不等式f (x )<a 的解集非空,则a >f (x )min =9,即a 的取值范围是(9,+∞). 3.已知函数f (x )=|x +2|-|x -1|. (1)试求f (x )的值域;(2)设g (x )=ax 2-3x +3x(a >0),若任意s ∈(0,+∞),任意t ∈(-∞,+∞),恒有g (s )≥f (t )成立,试求实数a 的取值范围. 解 (1)函数可化为f (x )=⎩⎪⎨⎪⎧-3,x <-2,2x +1,-2≤x ≤1,3,x >1.∴f (x )∈[-3,3].(2)若x >0,则g (x )=ax 2-3x +3x =ax +3x-3≥23a -3,即当ax 2=3时,g (x )min =23a -3,又由(1)知f (x )max =3.若∀s ∈(0,+∞),∀t ∈(-∞,+∞),恒有g (s )≥f (t )成立,则有g (x )min ≥f (x )max ,∴23a -3≥3, ∴a ≥3,即a 的取值范围是[3,+∞).4.设不等式|x -2|>1的解集与关于x 的不等式x 2-ax +b >0的解集相同. (1)求a ,b 的值;(2)求函数f (x )=a x -3+b 5-x 的最大值,以及取得最大值时x 的值.5.设函数f (x )=|2x +1|-|x -2|. (1)求不等式f (x )>2的解集;综上所述,不等式f (x )>2的解集为{x |x >1或x <-5}. (2)易得f (x )min =-52,若∀x ∈R 都有f (x )≥t 2-112t 恒成立,则只需f (x )min =-52≥t 2-11t 2,解得12≤t ≤5.7.若关于x 的不等式|x -1|+|x -3|≤a 2-2a -1在R 上的解集为∅,则实数a 的取值范围是( ) A .a <-1或a >3 B .a <0或a >3 C .-1<a <3D .-1≤a ≤3解析 |x -1|+|x -3|的几何意义是数轴上与x 对应的点到1、3对应的两点距离之和,故它的最小值为2,∵原不等式解集为∅,∴a 2-2a -1<2. 即a 2-2a -3<0,解得-1<a <3. 故选C. 答案 C8.设f (x )=1ax 2-bx +c ,不等式f (x )<0的解集是(-1,3),若f (7+|t |)>f (1+t 2),则实数t 的取值范围是________.解析 ∵1ax 2-bx +c <0的解集是(-1,3),∴1a >0且-1,3 是1a x 2-bx +c =0的两根,则函数f (x )=1a x 2-bx +c 图象的对称轴方程为x =ab2=1, 且f (x )在[1,+∞)上是增函数, 又∵7+|t |≥7>1,1+t 2≥1, 则由f (7+|t |)>f (1+t 2), 得7+|t |>1+t 2, 即|t |2-|t |-6<0, 亦即(|t |+2)(|t |-3)<0, ∴|t |<3,即-3<t <3. 答案 (-3,3)9.已知函数f (x )=|x -4|+|x +5|.(1)试求使等式f (x )=|2x +1|成立的x 的取值范围;(2)若关于x 的不等式f (x )<a 的解集不是空集,求实数a 的取值范围. 解 (1)f (x )=|x -4|+|x +5|=⎩⎪⎨⎪⎧-2x -1,x ≤-5,9,-5<x <4,2x +1,x ≥4.又|2x +1|=⎩⎪⎨⎪⎧-2x -1,x ≤-12,2x +1,x >12,所以若f (x )=|2x +1|,则x 的取值范围是(-∞,-5]∪[4,+∞). (2)因为f (x )=|x -4|+|x +5|≥|(x -4)-(x +5)|=9, ∴f (x )min =9.所以若关于x 的不等式f (x )<a 的解集非空,则a >f (x )min =9,即a 的取值范围是(9,+∞). 10.已知函数f (x )=|x +2|-|x -1|. (1)试求f (x )的值域;(2)设g (x )=ax 2-3x +3x(a >0),若任意s ∈(0,+∞),任意t ∈(-∞,+∞),恒有g (s )≥f (t )成立,试求实数a 的取值范围. 解 (1)函数可化为f (x )=⎩⎪⎨⎪⎧-3,x <-2,2x +1,-2≤x ≤1,3,x >1.∴f (x )∈[-3,3].(2)若x >0,则g (x )=ax 2-3x +3x =ax +3x-3≥23a -3,即当ax 2=3时,g (x )min =23a -3,又由(1)知f (x )max =3.若∀s ∈(0,+∞),∀t ∈(-∞,+∞),恒有g (s )≥f (t )成立,则有g (x )min ≥f (x )max , ∴23a -3≥3,∴a ≥3,即a 的取值范围是[3,+∞). 11.设函数f (x )=|2x -1|-|x +2|. (1)求不等式f (x )≥3的解集;(2)若关于x 的不等式f (x )≥t 2-3t 在[0,1]上无解,求实数t 的取值范围.12.设函数f (x )=|x +1a|+|x -a |(a >0).(1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围.(1)证明 由a >0,有f (x )=|x +1a |+|x -a |≥|x +1a -(x -a )|=1a+a ≥2.所以f (x )≥2.(2)解 f (3)=|3+1a|+|3-a |.当a >3时,f (3)=a +1a,由f (3)<5得3<a <5+212.当0<a ≤3时,f (3)=6-a +1a,由f (3)<5得1+52<a ≤3.综上,a 的取值范围是⎝⎛⎭⎪⎫1+52,5+212.13.已知函数f (x )=|x -a |,其中a >1.(1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解 (1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4|得-2x +6≥4,解得x ≤1; 当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|得2x -6≥4,解得x ≥5; 所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}. (2)记h (x )=f (2x +a )-2f (x ), 则h (x )=⎩⎪⎨⎪⎧-2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2, 解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a -12=1,a +12=2,于是a =3.14.已知函数f (x )=k -|x -3|,k ∈R,且f (x +3)≥0的解集为[-1,1]. (1)求k 的值;(2)若a ,b ,c 是正实数,且1ka +12kb +13kc =1. 求证:a +2b +3c ≥9.(1)解:∵f (x )=k -|x -3|,∴f (x +3)≥0等价于|x |≤k ,由|x |≤k 有解,得k ≥0,且解集为[-k ,k ]. ∵f (x +3)≥0的解集为[-1,1]. 因此k =1.(2)证明:由(1)知1a +12b +13c=1,∵a ,b ,c 为正实数.∴a +2b +3c =(a +2b +3c )⎝ ⎛⎭⎪⎫1a +12b +13c =3+⎝ ⎛⎭⎪⎫a 2b +2b a +⎝ ⎛⎭⎪⎫a 3c +3c a +⎝ ⎛⎭⎪⎫2b 3c +3c 2b ≥3+2a 2b ·2ba+ 2a 3c ·3c a +22b 3c ·3c2b=9. 当且仅当a =2b =3c 时,等号成立. 因此a +2b +3c ≥9.15.已知函数f (x )=|x +a |+|x -2|. (1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.(2)原不等式等价于|x -4|-|x -2|≥|x +a |,② 当1≤x ≤2时,②式化为4-x -(2-x )≥|x +a |, 解之得-2-a ≤x ≤2-a .由条件,[1,2]是f (x )≤|x -4|的解集的子集, ∴-2-a ≤1且2≤2-a ,则-3≤a ≤0. 故满足条件的实数a 的取值范围是[-3,0]. 16.已知正实数a ,b 满足:a 2+b 2=2ab . (1)求1a +1b的最小值m ;(2)设函数f (x )=|x -t |+⎪⎪⎪⎪⎪⎪x +1t (t ≠0),对于(1)中求得的实数m 是否存在实数x ,使得f (x )=m 2成立,说明理由.解:(1)∵2ab =a 2+b 2≥2ab ,∴ab ≥ab (a >0,b >0),则ab ≤1, 又1a +1b≥2ab≥2,当且仅当a =b 时取等号, ∴1a +1b的最小值m =2.(2)函数f (x )=|x -t |+⎪⎪⎪⎪⎪⎪x +1t ≥⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫x +1t -(x -t )=⎪⎪⎪⎪⎪⎪1t +t =|t |+⎪⎪⎪⎪⎪⎪1t ≥2,对于(1)中的m =2,m2=1<2.∴满足条件的实数x 不存在.精美句子1、善思则能“从无字句处读书”。

高考数学命题热点名师解密专题:不等式选讲(理)

高考数学命题热点名师解密专题:不等式选讲(理)

专题37 不等式选讲一.【学习目标】1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: ①|a +b |≤|a |+|b |; ②|a -b |≤|a -c |+|c -b |.2.会利用绝对值的几何意义求解以下类型的不等式: |ax +b |≤c ;|ax +b |≥c ;|x -a |+|x -b |≥c .3.会用绝对值不等式、基本不等式证明一些简单问题;能够利用基本不等式求一些特定函数的最(极)值. 4.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法等. 二.【知识要点】1.绝对值的概念和几何意义代数:|a |=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0).几何意义:|a |表示数轴上坐标为±a 的点A 到原点的距离.2.绝对值不等式性质 |a |-|b |≤|a ±b |≤|a |+|b |.(1)|a +b |≤|a |+|b |,当且仅当ab ≥0时取等号; (2)|a -b |≤|a |+|b |,当且仅当ab ≤0时取等号. 3.绝对值不等式的解法原则是转化为不含绝对值的不等式求解.基本型:a >0,|x |<a ⇔-a<x<a ;|x |>a ⇔x<-a 或x>a .(1)c >0,|ax +b |≤c ⇔,|ax +b |≥c ⇔.(2)c >0,|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c .三种解法:图解法(数形结合)、零点分区法(定义)、绝对值的几何意义(数轴). 4.比较法证明不等式 (1)作差比较法:知道a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b ,只要证明a-b>0即可,这种方法称为作差比较法. (2)作商比较法:由a >b >0⇔ab >1且a >0,b >0,因此当a >0,b >0时要证明a >b ,只要证明1a b即可,这种方法称为作商比较法.5.综合法证明不等式从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,即“由因导果”的方法.这种证明不等式的方法称为综合法或顺推法.6.分析法证明不等式证明命题时,我们还常常从要证的结论出发,逐步寻求使它 成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理、性质、或已证明的定理 等),从而得出要证的命题成立,这种证明方法叫做分析法,这是一种执果索因的思考和证明方法.7.反证法证明不等式先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等) 矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. 8.放缩法证明不等式证明不等式时,通过把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. 三.方法总结1.含绝对值不等式的求解策略(1)解含有绝对值的不等式的指导思想是设法去掉绝对值符号.常用的方法是:①由定义分段讨论(简称零点分区间法);②利用绝对值不等式的性质(题型法);③平方法;④数形结合法等.(2)解含参数的不等式,如果转化不等式的形式或求不等式的解集时与参数的取值范围有关,就必须分类讨论.注意:①要考虑参数的总取值范围.②用同一标准对参数进行划分,做到不重不漏.(3)含绝对值不等式的证明,要善于应用分析转化法.(4)灵活运用绝对值不等式的两个重要性质定理|a|-|b|≤|a±b|≤|a|+|b|,特别注意等号成立的条件.2.作差比较法是证明不等式最基本、最重要的方法,其关键是变形,通常通过因式分解,利用各因式的符号进行判断,或进行配方,利用非负数的性质进行判断.3.综合法证明不等式时,主要利用基本不等式、函数的单调性以及不等式的性质,在严密的推理下推导出结论,综合法往往是分析法的逆过程,所以在实际证明时,用分析法分析,用综合法表述证明推理过程.4.某些不等式的条件与结论,或不等式的左右两边联系不明显,用作差法又难以对差进行变形,难以运用综合法直接证明,这时常用分析法,以便发现联系.分析的过程中,综合条件、定理等因素进行探索,把分析与综合结合起来,形成分析综合法.5.有些不等式,从正面证如果不易说清楚,可以考虑反证法,凡是含有“至少”“唯一”或者含有其他否定词的命题,适宜用反证法.6.放缩法是一种常用的证题技巧,放缩必须有目标,而目标可以从求证的结论中和中间结果中寻找.常用的放缩技巧有添舍放缩,拆项对比放缩,利用函数的单调性和重要不等式放缩等.四.典例分析(一)解绝对值不等式例1.设函数.(1)若,解不等式;(2)求证:.【答案】(1);(2)详见解析.【解析】(1)因为,所以,即或故不等式的解集为(2)由已知得:所以在上递减,在递增即所以练习1已知函数,.(Ⅰ)若恒成立,求的最小值;(Ⅱ)若,求不等式的解集.【答案】(1)2(2)练习2.已知函数.(I)当时,求不等式的解集;(II)求证:.【答案】(I);(II)详见解析.【解析】(Ⅰ)当时,,由,得解得的解集为;(Ⅱ),当且仅当时等号成立.练习3.已知,其中。

【配套K12】高考数学考点解读+命题热点突破专题03不等式与线性规划理

【配套K12】高考数学考点解读+命题热点突破专题03不等式与线性规划理

不等式与线性规划【考向解读】不等式的性质、求解、证明及应用是每年高考必考的内容,对不等式的考查一般以选择题、填空题为主.(1)主要考查不等式的求解、利用基本不等式求最值及线性规划求最值;(2)不等式相关的知识可以渗透到高考的各个知识领域,往往作为解题工具与数列、函数、向量相结合,在知识的交汇处命题,难度中档;在解答题中,特别是在解析几何中求最值、范围或在解决导数问题时经常利用不等式进行求解,但难度偏高.【命题热点突破一】不等式的解法 1.一元二次不等式的解法先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集.2.简单分式不等式的解法 (1)f xg x>0(<0)⇔f (x )g (x )>0(<0); (2)f xg x≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0. 3.指数不等式、对数不等式及抽象函数不等式,可利用函数的单调性求解.例1、【2016高考新课标1卷】若101a b c >><<,,则( ) (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c < 【答案】C【感悟提升】(1)对于和函数有关的不等式,可先利用函数的单调性进行转化;(2)求解一元二次不等式的步骤:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集;(3)含参数的不等式的求解,要对参数进行分类讨论.【变式探究】(1)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =________.(2)已知f (x )是R 上的减函数,A (3,-1),B (0,1)是其图象上两点,则不等式|f (1+ln x )|<1的解集是________________.【答案】(1)52 (2)(1e,e 2)【命题热点突破二】基本不等式的应用 1.利用基本不等式求最值的注意点(1)在运用基本不等式求最值时,必须保证“一正,二定,三相等”,凑出定值是关键. (2)若两次连用基本不等式,要注意等号的取得条件的一致性,否则就会出错. 2.结构调整与应用基本不等式基本不等式在解题时一般不能直接应用,而是需要根据已知条件和基本不等式的“需求”寻找“结合点”,即把研究对象化成适用基本不等式的形式.常见的转化方法有(1)x +bx -a=x -a +bx -a+a (x >a ).(2)若a x +b y=1,则mx +ny =(mx +ny )×1=(mx +ny )·⎝ ⎛⎭⎪⎫a x +b y ≥ma +nb +2abmn (字母均为正数).例2、【2016高考天津理数】设变量x ,y 满足约束条件20,2360,3290.x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩则目标函数25z x y =+的最小值为( )(A )4- (B )6(C )10(D )17【答案】B【解析】可行域为一个三角形ABC 及其内部,其中(0,2),(3,0),(1,3)A B C ,直线z 25x y =+过点B 时取最小值6,选B.【感悟提升】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.【变式探究】(1)定义运算“⊗”:x ⊗y =x 2-y 2xy(x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.(2)函数y =x -1x +3+x -1的最大值为________.【答案】(1) 2 (2)15【解析】(1)由题意,得x ⊗y +(2y )⊗x =x 2-y 2xy +y2-x22yx=x 2+2y 22xy ≥2x 2·2y 22xy=2,当且仅当x =2y 时取等号.(2)令t =x -1≥0,则x =t 2+1, 所以y =tt 2+1+3+t =tt 2+t +4.当t =0,即x =1时,y =0; 当t >0,即x >1时,y =1t +4t+1, 因为t +4t≥24=4(当且仅当t =2时取等号),所以y =1t +4t+1≤15, 即y 的最大值为15(当t =2,即x =5时y 取得最大值).【点评】求条件最值问题一般有两种思路:一是利用函数单调性求最值;二是利用基本不等式.在利用基本不等式时往往都需要变形,变形的原则是在已知条件下通过变形凑出基本不等式应用的条件,即“和”或“积”为定值.等号能够取得.【命题热点突破三】简单的线性规划问题解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.例3、【2016年高考北京理数】若x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为( )A.0B.3C.4D.5 【答案】C【解析】作出如图可行域,则当y x z +=2经过点P 时,取最大值,而)2,1(P ,∴所求最大值为4,故选C.【感悟提升】(1)线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是确定目标函数中的字母系数的取值范围.(2)一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.【变式探究】若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.【答案】3【解析】画出可行域如图阴影所示,∵y x表示过点(x ,y )与原点(0,0)的直线的斜率, ∴点(x ,y )在点A 处时y x最大.由⎩⎪⎨⎪⎧x =1,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3.∴A (1,3).∴yx的最大值为3.] 【高考真题解读】1. 【2016高考新课标1卷】若101a b c >><<,,则( ) (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <【答案】C2.【2016高考天津理数】设变量x ,y 满足约束条件20,2360,3290.x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩则目标函数25z x y =+的最小值为( )(A )4- (B )6 (C )10 (D )17【答案】B【解析】可行域为一个三角形ABC 及其内部,其中(0,2),(3,0),(1,3)A B C ,直线z 25x y =+过点B 时取最小值6,选B.3.【2016高考山东理数】若变量x ,y 满足2,239,0,x y x y x ì+?ïïïï-?íïï锍ïî则22x y +的最大值是( )(A )4 (B )9 (C )10 (D )12【答案】C【解析】不等式组表示的可行域是以A (0,-3),B (0,2),C (3,-1)为顶点的三角形区域,22x y +表示点(x ,y )到原点距离的平方,最大值必在顶点处取到,经验证最大值为210OC=,故选C.4.【2016高考浙江理数】在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域20340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线x +y -2=0上的投影构成的线段记为AB ,则│AB │=( ) A ..4 C ..6 【答案】C【解析】如图∆PQR 为线性区域,区域内的点在直线20x y +-=上的投影构成了线段''R Q ,即AB ,而''=R Q PQ ,由3400-+=⎧⎨+=⎩x y x y 得(1,1)-Q ,由2=⎧⎨+=⎩x x y 得(2,2)-R,===AB QR C .5.【2016年高考北京理数】若x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为( )A.0B.3C.4D.5 【答案】C【解析】作出如图可行域,则当y x z +=2经过点P 时,取最大值,而)2,1(P ,∴所求最大值为4,故选C.6.【2016年高考四川理数】设p :实数x ,y 满足22(1)(1)2x y -+-≤,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的( )(A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A【解析】画出可行域(如图所示),可知命题q中不等式组表示的平面区域ABC∆在命题p中不等式表示的圆盘内,故选A.7.【2016高考新课标3理数】若,x y满足约束条件1020220x yx yx y-+≥⎧⎪-≤⎨⎪+-≤⎩则z x y=+的最大值为_____________.【答案】3 28.【2016高考新课标1卷】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.【答案】216000【解析】设生产产品A、产品B分别为x、y件,利润之和为z元,那么1.50.5150,0.390,53600,0,0.x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩……………① 目标函数2100900z x y =+. 二元一次不等式组①等价于3300,103900,53600,0,0.x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩?…………② 作出二元一次不等式组②表示的平面区域(如图),即可行域.将2100900z x y =+变形,得73900z y x =-+,平行直线73y x =-,当直线73900zy x =-+经过点M 时,z 取得最大值.解方程组10390053600x y x y +=⎧⎨+=⎩,得M 的坐标(60,100).所以当60x =,100y =时,max 210060900100216000z =⨯+⨯=. 故生产产品A 、产品B 的利润之和的最大值为216000元.9.【2016高考江苏卷】 已知实数,x y 满足240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则22x y +的取值范围是 ▲ .【答案】4[,13]5【解析】由图知原点到直线220x y +-=距离平方为22x y +最小值,为245=,原点到点(2,3)距离平方为22x y +最大值,为13,因此22x y +取值范围为4[,13]51.(2015·重庆卷)“x >1”是“log 12(x +2)<0”的( )A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件解析 由x >1x +2>3 log 12 (x +2)<0,log 12(x +2)<0x +2>1x >-1,故“x >1”是“log 12(x +2)<0”成立的充分不必要条件.因此选B.答案 B2.(2015·北京卷)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为( )A.0B.1C.32D.2解析 可行域如图所示.目标函数化为y =-12x +12 z ,当直线y =-12x +12 z 过点A (0,1)时,z 取得最大值2.答案 D3.(2015·陕西卷)设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A.q =r <pB.q =r >pC.p =r <qD.p =r >q解析 ∵0<a <b ,∴a +b2>ab ,又∵f (x )=ln x 在(0,+∞)上为增函数, 故f ⎝⎛⎭⎪⎫a +b 2>f (ab ),即q >p .又r =12(f (a )+f (b ))=12(ln a +ln b )=12ln a +12ln b =ln(ab )12=f (ab )=p . 故p =r <q .选C. 答案 C4.(2015·全国Ⅰ卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.解析 约束条件的可行域如图,由y x =y -0x -0,则最大值为3.答案 35.(2015·四川卷)如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎢⎡⎦⎥⎤12,2上单调递减,那么mn 的最大值为( )A.16B.18C.25D.812解析 令f ′(x )=(m -2)x +n -8=0,∴x =-n -8m -2, 当m >2时,对称轴x 0=-n -8m -2, 由题意,-n -8m -2≥2,∴2m +n ≤12, ∵2mn ≤2m +n2≤6,∴mn ≤18,由2m +n =12且2m =n 知m =3,n =6, 当m <2时,抛物线开口向下, 由题意-n -8m -2≤12,即2n +m ≤18, ∵2mn ≤2n +m 2≤9,∴mn ≤812,由2n +m =18且2n =m ,得m =9(舍去),∴mn 最大值为18,选B.答案 B6.(2015·山东卷)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若z =ax +y 的最大值为4,则a =( )A.3B.2C.-2D.-3答案 B7.(2015·天津卷)设x ∈R ,则“|x -2|<1”是“x 2+x -2>0”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 解析 由|x -2|<1得1<x <3,由x 2+x -2>0,得x <-2或x >1,而1<x <3x <-2或x >1,而x <-2或x >11<x <3,所以,“|x -2|<1”是“x 2+x -2>0”的充分而不必要条件,选A.答案 A 8.(2015·广东卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧4x +5y ≥8,1≤x ≤3,0≤y ≤2,则z =3x +2y 的最小值为( )A.315B.6C.235D.4解析 不等式组所表示的可行域如下图所示,由z =3x +2y 得y =-32x +z 2,依题意当目标函数直线l :y =-32x +z 2经过A ⎝ ⎛⎭⎪⎫1,45时,z 取得最小值,即z min =3×1+2×45=235,故选C. 答案 C9.(2015·浙江卷)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________.。

高考数学 考纲解读与热点难点突破 专题20 不等式选讲教学案 文(含解析)-人教版高三全册数学教学案

高考数学 考纲解读与热点难点突破 专题20 不等式选讲教学案 文(含解析)-人教版高三全册数学教学案

不等式选讲【2019年高考考纲解读】本部分主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值X 围、不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式、绝对值不等式的应用成为命题的热点,主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想. 【重点、难点剖析】1.含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ; (2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解. 2.含有绝对值的不等式的性质|a |-|b |≤|a ±b |≤|a |+|b |.此性质可用来解不等式或证明不等式. 3.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立. 定理2:如果a ,b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a ,b ,c 为正数,则a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1、a 2、…、a n 为n 个正数,则a 1+a 2+…+a n n≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立. 所以()1f x ≥的解集为{}1x x ≥. (2)由得,而,且当32x =时,.故m 的取值X 围为5-4⎛⎤∞ ⎥⎝⎦,.【变式探究】已知函数.(I )在答题卡第(24)题图中画出()y f x =的图像; (II )求不等式()1f x >的解集.【答案】(I )见解析(II )【解析】⑴如图所示:⑵()1f x >,当1x -≤,41x ->,解得5x >或3x <,1x -∴≤当312x -<<,321x ->,解得1x >或13x <113x -<<∴或312x <<当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >综上,13x <或13x <<或5x >,()1f x >∴,解集为【变式探究】解不等式 x +|2x +3|≥2.【变式探究】若函数f (x )=|x +1|+2|x -a |的最小值为5,则实数a =________.解析 由绝对值的性质知f (x )的最小值在x =-1或x =a 时取得,若f (-1)=2|-1-a |=5,a =32或a =-72,经检验均不合适;若f (a )=5,则|x +1|=5,a =4或a =-6,经检验合题意,因此a =4或a =-6. 答案 4或-6【变式探究】设函数f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |(a >0).(1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值X 围.【命题意图】本题主要考查绝对值三角不等式与基本不等式的应用,含绝对值的不等式的解法,意在考查考生的运算求解能力与分类讨论思想的应用.【解题思路】(1)利用“绝对值三角不等式”进行放缩,结合基本不等式即得证. (2)明确不等式后解关于a 的绝对值不等式,再分类讨论求解即可.【解析】(1)证明:由a >0,有f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |≥⎪⎪⎪⎪⎪⎪x +1a-x -a =1a+a ≥2.所以f (x )≥2.(2)f (3)=⎪⎪⎪⎪⎪⎪3+1a +|3-a |.当a >3时,f (3)=a +1a,由f (3)<5,得3<a <5+212.当0<a ≤3时,f (3)=6-a +1a,由f (3)<5,得1+52<a ≤3.综上,a 的取值X 围是⎝ ⎛⎭⎪⎫1+52,5+212.【感悟提升】1.用零点分段法解绝对值不等式的步骤(1)求零点;(2)划区间、去绝对值号;(3)分别解去掉绝对值的不等式;(4)取每个结果的并集,注意在分段时不要遗漏区间的端点值.2.用图象法、数形结合可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.3.求解绝对值不等式恒成立问题的解析(1)可利用绝对值不等式的性质求最值或去掉绝对值号转化为分段函数求最值.(2)结合“a ≥f (x )恒成立,则a ≥f (x )max ,a ≤f (x )恒成立,则a ≤f (x )min ”求字母参数的取值X 围. 【举一反三】已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)某某数a ,b 的值;(2)求at +12+bt 的最大值.解 (1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得a =-3,b =1. (2)-3t +12+t=34-t +t ≤[(3)2+12][(4-t )2+(t )2] =24-t +t =4, 当且仅当4-t 3=t1, 即t =1时等号成立, 故(-3t +12+t )max =4.【举一反三】已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值X 围. 解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2. 所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪23<x <2. (2)由题设可得,f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值X 围为(2,+∞). 题型二 不等式的证明【例2】已知函数f (x )=|x -1|+||x -3. (1)解不等式f (x )≤x +1;(2)设函数f (x )的最小值为c ,实数a ,b 满足a >0,b >0,a +b =c ,求证:a 2a +1+b 2b +1≥1.【解析】(1)解 f (x )≤x +1,即|x -1|+||x -3≤x +1. ①当x <1时,不等式可化为4-2x ≤x +1,解得x ≥1. 又∵x <1,∴x ∈∅;②当1≤x ≤3时,不等式可化为2≤x +1,解得x ≥1. 又∵1≤x ≤3,∴1≤x ≤3;③当x >3时,不等式可化为2x -4≤x +1,解得x ≤5. 又∵x >3,∴3<x ≤5.综上所得,1≤x ≤3或3<x ≤5,即1≤x ≤5. ∴原不等式的解集为[]1,5.【感悟提升】(1)作差法是证明不等式的常用方法.作差法证明不等式的一般步骤:①作差;②分解因式;③与0比较;④结论.关键是代数式的变形能力.(2)在不等式的证明中,适当“放”“缩”是常用的推证技巧.【变式探究】已知函数f (x )=|3x +1|+|3x -1|,M 为不等式f (x )<6的解集. (1)求集合M ;(2)若a ,b ∈M ,求证:|ab +1|>|a +b |. (1)解 f (x )=|3x +1|+|3x -1|<6. 当x <-13时,f (x )=-3x -1-3x +1=-6x ,由-6x <6,解得x >-1,∴-1<x <-13;当-13≤x ≤13时,f (x )=3x +1-3x +1=2,又2<6恒成立, ∴-13≤x ≤13;当x >13时,f (x )=3x +1+3x -1=6x ,由6x <6,解得x <1,∴13<x <1.综上,f (x )<6的解集M ={x |-1<x <1}. (2)证明()ab +12-(a +b )2=a 2b 2+2ab +1-(a 2+b 2+2ab )=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1). 由a ,b ∈M ,得|a |<1,|b |<1, ∴a 2-1<0,b 2-1<0,∴(a 2-1)(b 2-1)>0, ∴||ab +1>|a +b |.【变式探究】【2017课标II 】已知。

[配套K12]2018版高考数学一轮复习 选修系列 14.2 不等式选讲 理

[配套K12]2018版高考数学一轮复习 选修系列 14.2 不等式选讲 理

选修4-5 不等式选讲一、填空题1.不等式⎪⎪⎪⎪⎪⎪x -2x >x -2x 的解集是________. 解析 由绝对值的意义知,原不等式同解于x -2x <0, 即x (x -2)<0,∴0<x <2.答案 (0,2)2.设集合A ={x ||x -a |<1,x ∈R},B ={x ||x -b |>2,x ∈R}.若A ⊆B ,则实数a ,b 必满足________.解析 由|x -a |<1得a -1<x <a +1.由|x -b |>2得x <b -2或x >b +2.∵A ⊆B ,∴a -1≥b +2或a +1≤b -2,即a -b ≥3或a -b ≤-3,∴|a -b |≥3.答案 |a -b |≥33.对于x ∈R ,不等式|x +10|-|x -2|≥8的解集为________.解析 法一 (零点分段法)由题意可知,⎩⎪⎨⎪⎧ x ≤-10,-x -10+x -2≥8或⎩⎪⎨⎪⎧ -10<x <2,x +10+x -2≥8或⎩⎪⎨⎪⎧ x ≥2,x +10-x +2≥8,解得x ≥0,故原不等式的解集为{x |x ≥0}.法二 (几何意义法)如图,在数轴上令点A 、B 的坐标分别为-10,2,在x 轴上任取一点P ,其坐标设为x ,则|PA |=|x +10|,|PB |=|x -2|,观察数轴可知,要使|PA |-|PB |≥8,则只需x ≥0.故原不等式的解集为{x |x ≥0}.答案 {x |x ≥0}4.若不等式|x +1|+|x -2|≥a 对任意x ∈R 恒成立,则a 的取值范围是________. 解析 由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3.所以只需a ≤3即可.答案 (-∞,3]5.若log x y =-2,则x +y 的最小值是________.解析 ∵log x y =-2,∴y =1x 2, ∴x +y =x +1x 2=x 2+x 2+1x 2≥3314=3232. 答案 3232 6.设不等式x +y ≤a x +y 对一切x >0,y >0恒成立,求实数a 的最小值为________.解析 原题即a ≥x +y x +y对一切x >0,y >0恒成立. 设A =x +y x +y, A 2=x +y +2xy x +y =1+2xy x +y≤2, 当x =y 时等号成立,∵A >0, ∴0<A ≤ 2.即A 有最大值 2. ∴当a ≥2时,x +y ≤a x +y 对一切x >0,y >0成立.∴a 的最小值为 2.答案 27.若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是________. 解析 ∵a ≥x x 2+3x +1=1x +1x+3对任意x >0恒成立,设u =x +1x +3, ∴只需a ≥1u恒成立即可. ∵x >0,∴u ≥5(当且仅当x =1时取等号).由u ≥5,知0<1u ≤15,∴a ≥15. 答案 ⎣⎢⎡⎭⎪⎫15,+∞ 8.已知h >0,a ,b ∈R ,命题甲:|a -b |<2h :命题乙:|a -1|<h 且|b -1|<h ,则甲是乙的________条件.解析 |a -b |=|a -1+1-b |≤|a -1|+|b -1|<2h ,故由乙能推出甲成立,但甲成立不能推出乙成立,所以甲是乙的必要不充分条件.答案 必要不充分二、解答题9.已知函数f (x )=m -|x -2|,m ∈R ,且f (x +2)≥0的解集为[-1,1].(1)求m 的值;(2)若a ,b ,c ∈R +,且1a +12b +13c=m ,求证:a +2b +3c ≥9. 解 (1)因为f (x +2)=m -|x |,所以f (x +2)≥0等价于|x |≤m ,由|x |≤m 有解,得m ≥0,且其解集为{x |-m ≤x ≤m }.又f (x +2)≥0的解集为[-1,1],故m =1.(2)由(1)知1a +12b +13c=1,又a ,b ,c ∈R +,由柯西不等式得 a +2b +3c =(a +2b +3c )⎝ ⎛⎭⎪⎫1a +12b +13c ≥⎝⎛⎭⎪⎫a ·1a +2b ·12b +3c ·13c 2=9. 10.已知a ,b ,c 均为正数,证明:a 2+b 2+c 2+⎝ ⎛⎭⎪⎫1a +1b +1c 2≥63,并确定a ,b ,c 为何值时,等号成立.证明 法一:因为a ,b ,c 均为正数,由均值不等式得 a 2+b 2+c 2≥3(abc )23,① 1a +1b +1c ≥3(abc )-13, 所以⎝ ⎛⎭⎪⎫1a +1b +1c 2≥9(abc )-23.② 故a 2+b 2+c 2+⎝ ⎛⎭⎪⎫1a +1b +1c 2≥3(abc )23+9(abc )-23. 又3(abc )23+9(abc )-23≥227=63,③ 所以原不等式成立.当且仅当a =b =c 时,①和②式等号成立.当且仅当3(abc )23=9(abc )-23时,③式等号成立.即当且仅当a =b =c =314时,原式等号成立.法二:因为a ,b ,c 均为正数,由基本不等式得a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac .所以a 2+b 2+c 2≥ab +bc +ac ①同理1a 2+1b 2+1c 2≥1ab +1bc +1ac② 故a 2+b 2+c 2+⎝ ⎛⎭⎪⎫1a +1b +1c 2 ≥ab +bc +ac +31bc +31ab +31ac≥6 3.③ 所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立,当且仅当a =b =c ,(ab )2=(bc )2=(ac )2=3时,③式等号成立.即当且仅当a =b =c =314时,原式等号成立.。

高考数学压轴专题最新备战高考《不等式选讲》知识点总复习有解析

高考数学压轴专题最新备战高考《不等式选讲》知识点总复习有解析

【最新】数学《不等式选讲》专题解析一、141.已知集合{|||2}A x x =≥,2{|30}B x x x =->,则A B =I ( ) A .∅B .{|3x x >或2}x ?C .{|3x x >或0}x <D .{|3x x >或0}x <【答案】B 【解析】 【分析】可以求出集合A ,B ,然后进行交集的运算即可. 【详解】∵A ={x |x ≤﹣2,或x ≥2},B ={x |x <0,或x >3}, ∴A ∩B ={x |x ≤﹣2,或x >3}. 故选:B . 【点睛】考查描述法的定义,绝对值不等式和一元二次不等式的解法,以及交集的运算.2.已知点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,点(,)M a b 为平面上一点,O 为坐标原点,则当OM 取最小值时,椭圆的离心率为( )A .3B .13C .2D .3【答案】D 【解析】 【分析】点(3,1)P 在椭圆22221(0)x y a b a b +=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =a ,b 关系,代入即可.【详解】解:点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =所以||4OM ==,当且仅当223a b =时,取等号, 222213b e a =-=,e =.故选D . 【点睛】考查椭圆的性质,柯西不等式的应用,求椭圆的离心率,中档题.3.关于x 不等式2x x a a -+-≥在R 上恒成立,则实数a 的最大值是 A .0 B .1C .-1D .2【答案】B 【解析】由于|x -2|+|x -a |≥|a -2|,∴等价于|a -2|≥a ,即a ≤1.故实数a 的最大值为1.4.设a >0,b >0,且ab -(a +b)≥1,则( )A .a ++1)B .a ++1C .a -1)2D .a +b >+1)【答案】A 【解析】 【分析】2a b +.所以a b≤14 (a +b)2,所以14(a +b)2-(a +b)≥ab -(a +b)≥1,再解不等式 (a +b) 2-4(a +b)-4≥0得解. 【详解】2a b +.所以ab≤14(a +b)2. 所以14(a +b)2-(a +b)≥ab -(a +b)≥1. 所以(a +b) 2-4(a +b)-4≥0.因为a >0,b >0,所以a +b≥2+ 故答案为:A 【点睛】本题主要考查基本不等式和不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.5.已知a +b +c =1,且a , b , c >0,则 222a b b c a c +++++ 的最小值为( ) A .1 B .3C .6D .9【答案】D 【解析】2221,a b c a b b c c a ++=∴+++++Q ()1112++a b c a b b c c a ⎛⎫=⋅++ ⎪+++⎝⎭()()()()21111119a b b c c a a b b c c a ⎛⎫⎡⎤=+++++⋅++≥++= ⎪⎣⎦+++⎝⎭,当且仅当13a b c ===时等号成立,故选D.【易错点晴】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).6.已知,,x y z ∈R ,若234x y z -+=,则222(5)(1)(3)x y z ++-++的最小值为( ) A .37200B .2007C .36D .40【答案】B 【解析】 【分析】根据柯西不等式得到不等式关系,进而求解. 【详解】根据柯西不等式得到()()()()()()2222221(2)352135313x y z x y z ⎡⎤+-+≥++-+++--++⎡⎤⎣⎦⎣⎦()()()()2222511423164030x y z x y z ⎡⎤++-++≥-++=⎣⎦进而得到最小值是:2007故答案为B. 【点睛】这个题目考查了柯西不等式的应用,比较基础.7.如果关于x 的不等式34x x a -+-<的解集不是空集,则参数a 的取值范围是( ) A .()1,+∞ B .[)1,+∞C .(),1-∞D .(],1-∞ 【答案】A【解析】 【分析】先求|x-3|+|x-4|的最小值是1,即得解. 【详解】由题得|x-3|+|x-4|<a 有解,由绝对值三角不等式得|x-3|+|x-4|≥|x -3-x+4|=1, 所以|x-3|+|x-4|的最小值为1, 所以1<a,即a >1. 故选:A 【点睛】本题主要考查绝对值三角不等式求最值,考查不等式的有解问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.若关于x 的不等式43x x a -++<有实数解,则实数a 的取值范围是( ) A .(7,)+∞ B .[)7,+∞C .(1,)+∞D .(1,7)【答案】A 【解析】 【分析】利用绝对值的意义可求得43x x -++的最小值为7,由此可得实数a 的取值范围,得到答案. 【详解】由题意43x x -++表示数轴上的x 对应点到4和3-对应点的距离之和,其最小值为7,再由关于x 的不等式43x x a -++<有实数解,可得7a >, 即实数x 的取值范围是(7,)+∞,故选A. 【点睛】本题主要考查了绝对值的意义,以及函数绝对值不等式的有解问题,其中根据绝对值的意义,求得43x x -++的最小值为7是解得关键,着重考查了推理与运算能力,属于中档试题.9.若关于x 的不等式23ax -<的解集为5133x x ⎧⎫-<<⎨⎬⎩⎭,则a =( ) A .2- B .2 C .3D .3-【答案】D 【解析】 【分析】由绝对值不等式的性质可知,()22329ax ax -⇔-<<,从而可得到()229ax -=的两个解为2151,33x x -==,即可求出a 的值. 【详解】由题意可知0a ≠,()22329ax ax -⇔-<<,即22450a x ax --<, 故一元二次方程22450a x ax --=的解为2151,33x x -==, 则1212224455,39a x x x x a a +==-=-=-,解得3a =-. 故答案为D. 【点睛】本题主要考查了绝对值不等式的解法,考查了学生的计算能力,属于基础题.10.设x ∈R ,则“31x <”是“1122x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】分别求解三次不等式和绝对值不等式确定x 的取值范围,然后考查充分性和必要性是否成立即可. 【详解】 由31x <可得1x <, 由1122x -<可得01x <<, 据此可知“31x <”是“1122x -<”的必要而不充分条件.故选B . 【点睛】本题主要考查不等式的解法,充分性与必要性的判定等知识,意在考查学生的转化能力和计算求解能力.11.已知函数()222,2log 1,2x x x f x x x ⎧-+≤=⎨->⎩,设12116n x x x ≤<<<≤L ,若()()()()()()12231n n f x f x f x f x f x f x M --+-++-≤L ,则M 的最小值为( )A .3B .4C .5D .6【答案】B 【解析】 【分析】作出函数的图象,由已知分段函数求得f (1)1=,f (2)0=,(16)3f =,等价于12231max [|()()||()()||()()|]n n M f x f x f x f x f x f x -∴≥-+-+⋯+-,再求出不等式右边的最大值即可得M 的最小值. 【详解】由222,2()log 1,2x x x f x x x ⎧-+=⎨->⎩„,得f (1)1=,f (2)0=,(16)3f =.12116n x x x <<⋯<Q 剟,12231|()()||()()||()()|n n M f x f x f x f x f x f x -∴-+-+⋯+-… 12231max[|()()||()()||()()|]n n M f x f x f x f x f x f x -∴≥-+-+⋯+-12231|()()||()()||()()||(1)(2)||(2)(16)=|10||30|4n n f x f x f x f x f x f x f f f f --+-+⋯+-≤-+--+-=∴4M ≥. 则M 的最小值为4. 故选:B . 【点睛】本题考查分段函数及其应用,考查三角绝对值不等式的应用,意在考查学生对这些知识的理解掌握水平.12.不等式21x x a <-+的解集是区间()3,3-的子集,则实数a 的取值范围是( )A .5a ≤B .554a -≤≤C .574a -≤≤D .7a ≤【答案】A 【解析】 【分析】原不等式等价于210x x a ---<,设()21f x x x a =---,则由题意得()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之即可求得实数a 的取值范围. 【详解】不等式等价于210x x a ---<,设()21f x x x a =---,因为不等式21x x a <-+的解集是区间()3,3-的子集,所以()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之得5a ≤.故选:A. 【点睛】本题主要考查绝对值不等式的解法、二次函数的性质,体现化归与等价转化思想,属中等难度题.13.不等式230x x -<的解集为( )A .{}03x x << B .{}3003x x x -<<<<或C .{}30x x -<<D .{}33x x -<<【答案】B 【解析】 【分析】将不等式表示为230x x -<,得出03x <<,再解该不等式可得出解集. 【详解】将原不等式表示为230x x -<,解得03x <<,解该不等式可得30x -<<或03x <<.因此,不等式230x x -<的解集为{}3003x x x -<<<<或,故选:B.【点睛】本题考查二次不等式的解法与绝对值不等式的解法,考查运算求解能力,属于中等题.14.若,,a b c ∈R ,则下列结论中: (1)2211a a a a+≥+;(2)a b a c b c -≤-+-; (3)若a b >,则11a b a b>++;(4)若1a b +=,则2221a b a b +++的最小值为 其中正确结论的个数为( )A .1B .2C .3D .4【答案】B 【解析】 【分析】利用函数知识、换元法、绝对值不等式等知识,对选项进行一一推理证明,即可得答案. 【详解】 对(1),2221111()()20a a a a a a a a +≥+⇔+-+-≥,∴12a a +≥或11a a+≤-, ∵12a a +≥或12a a+≤-,∴原不等式成立,故(1)正确;对(2),∵()()a b a c b c a c b c -=---≤-+-,故(2)正确; 对(3),令1,52a b =-=-,则51,114a b a b =-=++,显然11a b a b>++不成立,故(3)错误;对(4),∵1a b +=,∴222222(1)231111a b b b b a b b b b+-+++=+=+-+-,当1b >时,2301b b+<-,∴2221a b a b +++的最小值为4)错误. 故选:B. 【点睛】本题考查函数与不等式的知识,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意消元法、换元法的使用.15.设x,y,z 是互不相等的正数,则下列不等式中不恒成立的是( ) A .2211x x x x++≥B C .12x y x y-+≥- D .x y x z y z -≤-+-【答案】C 【解析】 【分析】 【详解】试题分析:x y x z z y x z z y x z y z -=-+-≤-+-=-+-,故D 恒成立; 由于函数()1f x x x=+,在(]0,1单调递减;在[)1,+∞单调递增, 当1x >时, ()()221,x x f x f x >>>即2211x x x x+>+,当01x <<,()()2201,x x f x f x <<即2211x x x x++≥正确,即A 正确;=<=,故B 恒成立,若1x y -=-,不等式12x y x y-+≥-不成立, 故C 不恒成立,故选C . 考点:1、基本不等式证明不等式;2、单调性证明不等式及放缩法证明不等式.16.若关于x 的不等式2x m n -<的解集为(,)αβ,则αβ-的值( ) A .与m 有关,且与n 有关 B .与m 有关,但与n 无关 C .与m 无关,且与n 无关 D .与m 无关,但与n 有关【答案】D 【解析】 【分析】根据题意先解出不等式2x m n -<的解集,再根据解集求出αβ-的值,即可判断其与,m n 之间的关系.【详解】2222m n m nx m n n x m n x -+-<⇒-<-<⇒<<Q ,22m n m nαβ∴-+==22m n m nn αβ-+-∴==-- 因此,αβ-的值与m 无关,但与n 有关.故选:D. 【点睛】本题主要考查绝对值不等式的解法,形式如(0)x m a a -<> 的绝对值不等式,可以转化为a x m a -<-< 的简单不等式进行求解.17.已知三个正实数a 、b 、c 满足1a b c ++=,给出以下几个结论:①22213a b c ++≤;②13ab bc ca ++≤;③2221b c a a b c++≥;≥.则正确的结论个数为( ) A .1 B .2C .3D .4【答案】B 【解析】 【分析】利用基本不等式及柯西不等式计算可得; 【详解】解:①:Q 222222222a b ab b c bc a c ac ⎧+⎪+⎨⎪+⎩………,222a b c ab bc ac ∴++++…2222222()2223()a b c a b c ab ac bc a b c ∴++=+++++++„.22213a b c ∴++…,故①不正确.②:由2222()2()3()a b c a b c ab bc ac ab bc ac ++=+++++++…,13ab bc ca ∴++„,故②正确.③:Q 222222b a b a c b c b a c c c⎧+⎪⎪⎪+⎨⎪⎪+⎪⎩………,∴2221b c aa b c a b c ++++=… ∴2221b c a a b c++…,故③正确. ④:由柯西不等式得2()(111)a b c ++++,∴≤.则④错误.故选:B . 【点睛】本题考查利用基本不等式即柯西不等式证明不等式,属于中档题.18.已知,,a b c R +∈ ,则()()()222222a abc b b ac c c ab -+-+- 的正负情况是( )A .大于零B .大于等于零C .小于零D .小于等于零【答案】B 【解析】【分析】设0a b c >厖,所以333a b c 厖,根据排序不等式即可得出答案.【详解】设0a b c >厖,所以333a b c 厖根据排序不等式得333333a a b b c c a b b c c a ⋅+⋅+⋅++…又ab ac bc 厖,222a b c 厖,所以333222a b b c c a a bc b ca c ab ++++….所以444222a b c a bc b ca c ab ++++…即()()()2222220a a bc b b ac c c ab -+-+-…. 故选:B【点睛】本题主要考查了排序不等式的应用,属于中档题.19.已知数列{}n a 的前n 项和2n S n =,数列{}n b 满足()1log 01n n a na b a a +=<<,n T 是数列{}n b 的前n 项和,若11log 2n a n M a +=,则n T 与n M 的大小关系是( ) A .n n T M ≥B .n n T M >C .n n T M <D .n n T M ≤ 【答案】C【解析】【分析】 先求出2462log ()13521n a n T n =⨯⨯⨯-L,log n a M =,再利用数学归纳法证明*1321)242n n N n -⨯⨯⋯⨯<∈即得解. 【详解】因为2n S n =,所以11=1,21(2)n n n a a S S n n -=-=-≥适合n=1,所以=21n a n -. 所以2log 21n an b n =-, 所以24622462log log log log log ()1352113521n a a a a a n n T n n =+++=⨯⨯⨯--L111log =log (21)log 22n a n a a M a n +=+=下面利用数学归纳法证明不等式*1321)242n n N n -⨯⨯⋯⨯∈ (1)当1n =时,左边12=,右边=<右边,不等式成立,(2)22414n n -<Q ,即2(21)(21)(2)n n n +-<.即212221n n n n -<+, ∴21222223k k k k ++<++, ∴2123k k +<+, 假设当n k =时,原式成立,即112123221k k k -⨯⨯⋯⨯<+, 那么当1n k =+时,即11212121212322(1)2(1)2123k k k k k k k k k -+++⨯⨯⋯⨯⨯<=<++++g , 即1n k =+时结论成立.根据(1)和(2)可知不等式对任意正整数n 都成立.所以24622113521n n n ⨯⨯⨯>+-L , 因为0<a <1,所以2462log ()log 2113521a a n n n ⨯⨯⨯<+-L, 所以n n T M <.故选:C【点睛】本题主要考查数列通项的求法,考查对数的运算和对数函数的性质,考查数学归纳法,意在考查学生对这些知识的理解掌握水平.20.若,则不等式的解集为 A . B . C . D .【答案】D【解析】【分析】由绝对值三角不等式的性质得出,由,得出,借助正弦函数图象可得出答案。

高考数学压轴专题南宁备战高考《不等式选讲》知识点总复习含解析

高考数学压轴专题南宁备战高考《不等式选讲》知识点总复习含解析

数学《不等式选讲》高考知识点一、141.不等式222log 2log x x x x -<+的解集为( ) A .()1,2 B .()0,1C .()1,+∞D .()2,+∞【答案】C 【解析】 【分析】由题意得出0x >,分2log 0x >和2log 0x ≤两种情况讨论,结合222log 2log x x x x -<+可得出2log 0x >,解出该不等式即可.【详解】由题意得出0x >,当2log 0x ≤时,则222log 2log x x x x -=+. 当2log 0x >时,222log 2log x x x x -<+,解不等式2log 0x >得1x >. 因此,不等式222log 2log x x x x -<+的解集为()1,+∞. 故选:C. 【点睛】本题考查绝对值不等式的求解,同时也考查绝对值三角不等式的应用,考查推理能力与运算求解能力,属于中等题.2.已知点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,点(,)M a b 为平面上一点,O 为坐标原点,则当OM 取最小值时,椭圆的离心率为( )A .3B .13C .2D .3【答案】D 【解析】 【分析】点(3,1)P 在椭圆22221(0)x y a b a b +=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =a ,b 关系,代入即可.【详解】解:点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =所以||4OM ==,当且仅当223a b =时,取等号,222213b e a =-=,e =. 故选D . 【点睛】考查椭圆的性质,柯西不等式的应用,求椭圆的离心率,中档题.3.已知命题p :不等式11x m ->-的解集为R ,命题q :()(52)x f x m =--是减函数,若p ∨q 为真命题,p ∧q 为假命题,则实数m 的取值范围是( ) A .1≤m≤2 B .1≤m<2C .1<m≤2D .1<m<2【答案】B 【解析】 【分析】若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,化简p,q 为真时,对应m 的取值范围,然后按p 真q 假或p 假q 真求解即可. 【详解】若p 为真时,10m -<,即1m < ,若q 为真时,521m ->,即2m <,若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,当p 真q 假时,12m m <⎧⎨≥⎩ ,无解,若p 假q 真时,12m m ≥⎧⎨<⎩,即 12m ≤<,故选B.【点睛】本题主要考查了含且、或命题的真假,及含绝对值不等式恒成立,指数型函数的增减性,属于中档题.4.已知f (x )=|x +2|+|x -4|的最小值为n ,则二项式1nx x ⎛⎫- ⎪⎝⎭展开式中x 2项的系数为( ) A .11 B .20 C .15 D .16 【答案】C 【解析】 【分析】由题意利用绝对值三角不等式求得n=6,在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得展开式中x 2项的系数. 【详解】∵f (x )=|x+2|+|x ﹣4|≥|(x+2)﹣(x ﹣4)|=6,故函数的最小值为6, 再根据函数的最小值为n ,∴n=6.则二项式(x ﹣1x )n =(x ﹣1x)6 展开式中的通项公式为 T r+1=6r C •(﹣1)r •x 6﹣2r , 令6﹣2r=2,求得r=2,∴展开式中x 2项的系为26C =15, 故选:C . 【点睛】本题主要考查绝对值三角不等式的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数,属于中档题.5.325x -≥不等式的解集是( ) A .{|1}x x ≤- B .{|14}x x -≤≤C .{|14}x x x ≤-≥或D .{|4}x x ≥【答案】C 【解析】 【分析】根据绝对值定义化简不等式,求得解集. 【详解】因为325x -≥,所以325x -≥或325x -≤-,即14x x ≤-≥或,选C. 【点睛】本题考查含绝对值不等式解法,考查基本求解能力.6.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是 ( ) A .|a+b|+|a-b|>2 B .|a+b|+|a-b|<2 C .|a+b|+|a-b|=2 D .不能比较大小【答案】B 【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2, 当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.7.已知a ,b 均为正数,且20ab a b --=,则22214a b a b-+-的最小值为( )A .6B .7C .8D .9 【答案】B 【解析】 【分析】a ,b 均为正数,且ab ﹣a ﹣2b =0,可得21a b+=1,根据柯西不等式求出代数式的最小值即可. 【详解】∵a ,b 均为正数,且ab ﹣a ﹣2b =0, ∴21a b+=1. 则22214a b a b-+- 24a =+b 2﹣1, 又因为2a +b =(21a b +)(2a +b )22b a a b=++2≥2+2=4,当且仅当a =4,b =2时取等号.∴(24a +b 2)(1+1)≥(2a +b )2≥16,当且仅当a =4,b =2时取等号. ∴24a +b 2≥8, ∴224a a-+b 2214a b -=+b 2﹣1≥7.故选:B . 【点睛】本题考查“乘1法”、基本不等式的性质、柯西不等式,考查了推理能力与计算能力,属于中档题.8.空间中两条不相交的直线与另外两条异面直线都相交,则这两条直线的位置关系是( ) A .平行或垂直 B .平行C .异面D .垂直【答案】C 【解析】 【分析】利用反证法证明得解. 【详解】不妨设空间中不相交的两条直线为a b ,,另外两条异面直线为c d ,, 由于a b ,不相交,故a b ,平行或异面, 设a c ,确定的平面为α.不妨设a b ∥,①当b α⊂时,则a b ,与直线d 的交点都在α内,故d α⊂,而这与c d ,为异面直线矛盾;②当b α⊄时,由a b ∥可知b P α,又c α⊂,故b c ,没有公共点,与b c ,相交矛盾. 由①②知假设a b ∥错误,故a b ,为异面直线. 故选C. 【点睛】本题主要考查异面直线的判定和反证法,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.设集合{}1,R A x x a x =-<∈,{}15,R B x x x =<<∈.若A B =∅I ,则实数a 的取值范围是()A .{}06a a ≤≤B .{}64a a a ≤≥或C .{}06a a a ≤≥或D .{}24a a ≤≤【答案】C 【解析】 【分析】根据公式()0x a a a x a <>⇔-<<解出集合A ,再根据交集的运算即可列出关系式,求解即可。

高考数学压轴专题杭州备战高考《不等式选讲》图文解析

高考数学压轴专题杭州备战高考《不等式选讲》图文解析

【高中数学】《不等式选讲》考试知识点一、141.对任意x ∈R ,不等式22|sin ||sin |x x a a +-≥恒成立,则实数a 的取值范围是( ) A .01a ≤≤ B .11a -≤≤ C .12a -≤≤ D .22a -≤≤【答案】B 【解析】 【分析】解法一:(换元法)设sin t x =,则原不等式可化为22||||t t a a +-≥.求函数()||||||f t t t t a =++-的最小值,从而不等式2||a a ≥可得11a -≤≤.解法二:(特殊值法)代入2a =, 1a =-,排除错误选项即可. 【详解】解:解法一:(换元法)设sin t x =,则原不等式可化为22||||t t a a +-≥.令()||||||f t t t t a =++-,则min [()](0)||f t f a ==, 从而解不等式2||a a ≥可得11a -≤≤.故选B . 解法二:(特殊值法)当2a =时,因为2|sin ||sin 2|2sin 2|sin |2|sin |2x x x x x +-=-+≥+≥, 当且仅当sin 0x =时,等号成立. 此时2|sin ||sin 2|4x x +-≥不恒成立, 所以2a =不合题意,可以排除C 、D .当1a =-时,因为2|sin ||sin 1|1sin 2|sin |1|sin |1x x x x x ++=++≥+≥, 当且仅当sin 0x =时,等号成立. 此时2|sin ||sin 1|1x x ++≥恒成立, 所以1a =-符合题意,可以排除A. 故选:B 【点睛】本题考查绝对值不等式的参数问题,属于中档题,利用函数求最值的方法或者特殊值排除法都可以解题.2.若不等式23x a x -≤+对任意[]0,2x ∈恒成立,则实数a 的取值范围是( ) A .()1,3- B .[]1,3-C .()1,3D .[]1,3【答案】B 【解析】 【分析】将不等式去掉绝对值符号,然后变量分离转为求函数的最值问题. 【详解】不等式23x a x -≤+去掉绝对值符号得323x x a x --≤-≤+,即3223x x a x a x --≤-⎧⎨-≤+⎩对任意[]0,2x ∈恒成立,变量分离得333a x a x ≤+⎧⎨≥-⎩,只需min max (33)(3)a x a x ≤+⎧⎨≥-⎩,即31a a ≤⎧⎨≥-⎩所以a 的取值范围是[]1,3- 故选:B 【点睛】本题考查绝对值不等式的解法和恒成立问题的处理方法,属于基础题.3.325x -≥不等式的解集是( ) A .{|1}x x ≤- B .{|14}x x -≤≤C .{|14}x x x ≤-≥或D .{|4}x x ≥【答案】C 【解析】 【分析】根据绝对值定义化简不等式,求得解集. 【详解】因为325x -≥,所以325x -≥或325x -≤-,即14x x ≤-≥或,选C. 【点睛】本题考查含绝对值不等式解法,考查基本求解能力.4.若关于x 的不等式2|1|30ax x a -++≥的解集为R ,则实数a 的取值范围为 A .1[,+)6∞ B .1[,+)3∞ C .1[,+)2∞ D .1[,+)12∞ 【答案】C 【解析】 【分析】先将不等式2130ax x a -++≥变形为213x a x +≥+,由不等式2130ax x a -++≥的解集是(),-∞+∞,可得213x a x +≥+恒成立,因此只需求出213x x ++的最大值即可.【详解】解:不等式2130ax x a -++≥的解集是(),-∞+∞,即x R ∀∈,2130ax x a -++≥恒成立,∴221133x x a x x ++≥=++, 令()213x g x x +=+, 当1x =-时,()0g x =;当1x ≠-时,()21143121x g x x x x +==+++-+, 若10x +>,则()()441221?2211x x x x ++-≥+-=++, 当且仅当411x x +=+,即x 1=时上式“=”成立; 若x 10+<, 则()()()()444121221?26111x x x x x x ⎡⎤⎡⎤++-=--++-≤--+-=-⎢⎥⎣⎦+-++⎢⎥⎣⎦, 当且仅当()()411x x -+=-+,即3x =-时上式“=”成立.()()][()412,62,1x x ∴++-∈-∞-⋃+∞+. ()10,2g x ⎛⎤∴∈ ⎥⎝⎦.12a ∴≥. 则实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 故选C . 【点睛】本题主要考查不等式恒成立的问题,由不等式恒成立求参数的范围,通常用分离参数的方法,将不等式转化为参数与一个函数比较大小的形式,只需求出函数的最大值或最小值即可,属于常考题型.5.如果关于x 的不等式34x x a -+-<的解集不是空集,则参数a 的取值范围是( ) A .()1,+∞ B .[)1,+∞C .(),1-∞D .(],1-∞ 【答案】A 【解析】 【分析】先求|x-3|+|x-4|的最小值是1,即得解. 【详解】由题得|x-3|+|x-4|<a 有解,由绝对值三角不等式得|x-3|+|x-4|≥|x -3-x+4|=1, 所以|x-3|+|x-4|的最小值为1, 所以1<a,即a >1. 故选:A 【点睛】本题主要考查绝对值三角不等式求最值,考查不等式的有解问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.已知命题P:2log (1)1x -<;命题q:21x -<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】先化简命题p 和q,再利用充要条件的定义判断得解. 【详解】由题得命题p:1<x <3,命题q:1<x <3. 所以命题p 是命题q 的充要条件. 故选C 【点睛】本题主要考查对数不等式和绝对值不等式的解法,考查充要条件的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.空间中两条不相交的直线与另外两条异面直线都相交,则这两条直线的位置关系是( ) A .平行或垂直 B .平行C .异面D .垂直【答案】C 【解析】 【分析】利用反证法证明得解. 【详解】不妨设空间中不相交的两条直线为a b ,,另外两条异面直线为c d ,, 由于a b ,不相交,故a b ,平行或异面, 设a c ,确定的平面为α.不妨设a b ∥,①当b α⊂时,则a b ,与直线d 的交点都在α内,故d α⊂,而这与c d ,为异面直线矛盾;②当b α⊄时,由a b ∥可知b P α,又c α⊂,故b c ,没有公共点,与b c ,相交矛盾. 由①②知假设a b ∥错误,故a b ,为异面直线. 故选C. 【点睛】本题主要考查异面直线的判定和反证法,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.设0x 为函数()sin f x x π=的零点,且满足001()112x f x ++<,则这样的零点有( ) A .18个 B .19个C .20个D .21个【答案】D 【解析】从题设可得00()x k x k k Z ππ=⇒=∈,又001()sin()sin()(1)222k f x x k ππππ+=+=+=-,故(1)11k k +-<,当k 取奇数时,12k <,则1,3,5,7,9,11k =±±±±±±,共12个数;当k 取偶数时,10k <,则0,2,4,6,8k =±±±±,共9个数,所以这样的零点的个数共有21个,应选答案D 。

高考数学压轴专题佛山备战高考《不等式选讲》知识点总复习有答案

高考数学压轴专题佛山备战高考《不等式选讲》知识点总复习有答案

【最新】数学《不等式选讲》复习知识点一、141.不等式222log 2log x x x x -<+的解集为( ) A .()1,2 B .()0,1C .()1,+∞D .()2,+∞【答案】C 【解析】 【分析】由题意得出0x >,分2log 0x >和2log 0x ≤两种情况讨论,结合222log 2log x x x x -<+可得出2log 0x >,解出该不等式即可.【详解】由题意得出0x >,当2log 0x ≤时,则222log 2log x x x x -=+. 当2log 0x >时,222log 2log x x x x -<+,解不等式2log 0x >得1x >. 因此,不等式222log 2log x x x x -<+的解集为()1,+∞. 故选:C. 【点睛】本题考查绝对值不等式的求解,同时也考查绝对值三角不等式的应用,考查推理能力与运算求解能力,属于中等题.2.已知()f x 是定义域为R 的偶函数,当0x …时,2()4f x x x =+,则(2)5f x +>的解集为( )A .(,5)(5,)-∞-+∞UB .(,5)(3,)-∞-+∞UC .(,7)(3,)-∞-+∞UD .(,7)(2,)-∞-+∞U【答案】C 【解析】 【分析】根据偶函数以及当0x …时,2()4f x x x =+,可得0x ≥时的表达式,由此求得(2)(|2|)f x f x +=+,再代入可解得.【详解】∵()f x 是定义域为R 的偶函数,∴当0x ≥时,0x -≤,所以22()()()4()4f x f x x x x x =-=-+-=-. 由()25f x +>以及()f x 为偶函数,得(|2|)5f x +>,∴2|2|4|2|5x x +-+>,所以(|2|5)(|2|1)0x x +-++>, 因为|2|10x ++>,所以|2|5x +>,所以25x +>或25x +<-, 解得7<-x 或 3.x > 故选C 【点睛】本题考查了利用函数的奇偶性求函数解析式,绝对值不等式的解法,属于中档题.3.已知f (x )=|x +2|+|x -4|的最小值为n ,则二项式1nx x ⎛⎫- ⎪⎝⎭展开式中x 2项的系数为( ) A .11 B .20 C .15 D .16 【答案】C 【解析】 【分析】由题意利用绝对值三角不等式求得n=6,在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得展开式中x 2项的系数. 【详解】∵f (x )=|x+2|+|x ﹣4|≥|(x+2)﹣(x ﹣4)|=6,故函数的最小值为6, 再根据函数的最小值为n ,∴n=6. 则二项式(x ﹣1x )n =(x ﹣1x)6 展开式中的通项公式为 T r+1=6r C •(﹣1)r •x 6﹣2r , 令6﹣2r=2,求得r=2,∴展开式中x 2项的系为26C =15, 故选:C . 【点睛】本题主要考查绝对值三角不等式的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数,属于中档题.4.325x -≥不等式的解集是( ) A .{|1}x x ≤- B .{|14}x x -≤≤C .{|14}x x x ≤-≥或D .{|4}x x ≥【答案】C 【解析】 【分析】根据绝对值定义化简不等式,求得解集. 【详解】因为325x -≥,所以325x -≥或325x -≤-,即14x x ≤-≥或,选C. 【点睛】本题考查含绝对值不等式解法,考查基本求解能力.5.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是 ( ) A .|a+b|+|a-b|>2 B .|a+b|+|a-b|<2 C .|a+b|+|a-b|=2 D .不能比较大小【答案】B 【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2, 当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.6.已知不等式()222cos 54sin 0m m θθ+-+≥恒成立,则实数m 的取值范围是( ) A .04m ≤≤ B .14m ≤≤C .4m ≥或0m ≤D .m 1≥或0m ≤【答案】C 【解析】试题分析:原不等式可转化为, 令,所以所以在上恒成立所以,,解得4m ≥或0m ≤.考点:不等式的恒成立问题.7.已知各项均为正数的数列{}n a 的前n 项和为n S ,且()2*21221n n a a S n n N +==++∈,,若对任意的*n N ∈,1211120nn a n a n a λ++⋯+-≥+++恒成立,则实数λ的取值范围为( ) A .(]2∞-,B .(]1∞-, C .14∞⎛⎤- ⎥⎝⎦,D .12,∞⎛⎤- ⎥⎝⎦【答案】C 【解析】 【分析】2212,21n n a a S n +==++ ()*n N ∈,可得2n ≥时,()221121210n n n n n n a a S S a a +--=-+=+>,.可得11n n a a +=+时,212224a a +==,解得1a .利用等差数列的通项公式可得n a .通过放缩即可得出实数λ的取值范围. 【详解】2212,21n n a a S n +==++Q ()*n N ∈,2n ∴≥时,()22112121n n n n n a a S S a +--=-+=+,化为:222121(1)n n n n a a a a +=++=+,0n a >.11n n a a +∴=+,即11n n a a +-=,1n =时,212224a a +==,解得11a =.∴数列{}n a 为等差数列,首项为1,公差为1.11n a n n ∴=+-=. 1211111112n n a n a n a n n n n∴++⋯+=++⋯+++++++. 记11112n b n n n n =++⋯++++,1111111211n b n n n n +=++⋯++++++++. ()()11111022*******n n b b n n n n n +-=+-=>+++++. 所以{}n b 为增数列,112n b b ≥=,即121111111122n n a n a n a n n n n ++⋯+=++⋯+≥++++++. Q 对任意的*n N ∈,1211120nn a n a n a λ++⋯+-≥+++恒成立, 122λ∴≤,解得14λ≤ ∴实数λ的取值范围为14∞⎛⎤- ⎥⎝⎦,.故选C . 【点睛】本题考查了数列递推关系、等差数列的通项公式、放缩法,考查了推理能力与计算能力,属于中档题.8.如果关于x 的不等式34x x a -+-<的解集不是空集,则参数a 的取值范围是( ) A .()1,+∞ B .[)1,+∞C .(),1-∞D .(],1-∞ 【答案】A 【解析】 【分析】先求|x-3|+|x-4|的最小值是1,即得解. 【详解】由题得|x-3|+|x-4|<a 有解,由绝对值三角不等式得|x-3|+|x-4|≥|x -3-x+4|=1, 所以|x-3|+|x-4|的最小值为1,所以1<a,即a >1. 故选:A 【点睛】本题主要考查绝对值三角不等式求最值,考查不等式的有解问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.已知1a >,且函数()2224f x x x a x x a =-++-+.若对任意的()1,x a ∈不等式()()1f x a x ≥-恒成立,则实数a 的取值范围为( )A .[]4,25B .(]1,25C .(]1,16D .[]4,16【答案】C 【解析】 【分析】由题目得已知函数和要求解的不等式中都含有待求的参数,且已知函数中含有两个绝对值符号,直接求解难度很大,因此考虑用排除法,代值验证可得解. 【详解】当25a =时,()22252425f x x x x x =-++-+且22250,4250x x x x -+≥-+≥ 所以()23975f x x x =-+,此时()()1f x a x ≥-化为()24f x x ≥,即2397524x x x -+≥,所以212250x x -+≥在()1,25x ∈不是恒成立的.故A 、B 不对;当3a =时,()223243f x x x x x =-++-+,当()1,3x ∈时,2230,430x x x x -+>-+<,所以()()222324373f x x x x x x x =-+--+=-+-,此时()()1f x a x ≥-化成()27331x x x -+-≥-,即2530x x -+-≥满足()1,3x ∈恒成立,所以当3a =时成立, 故D 不对,C 正确; 故选C. 【点睛】本题考查了含绝对值不等式恒成立的问题,考查了小题小做的技巧方法,属于中档题.10.不等式842x x --->的解集为( ) A .{}|4x x ≤ B .{|5}x x <C .{|48}x x <≤D .{|45}x x <<【答案】B【解析】 【分析】分三种情况讨论:4x ≤,48x <<以及8x ≥,去绝对值,解出各段不等式,即可得出所求不等式的解集. 【详解】当4x ≤时,()()848442x x x x ---=-+-=>成立,此时4x ≤; 当48x <<时,()()84841222x x x x x ---=---=->,解得5x <,此时45x <<;当8x ≥时,()()848442x x x x ---=---=-<,原不等式不成立. 综上所述,不等式842x x --->的解集为{}5x x <,故选B. 【点睛】本题考查绝对值不等式的解法,常用零点分段法,利用取绝对值进行分段讨论,进而求解不等式,也可以采用绝对值的几何意义来进行求解,考查分类讨论数学思想,属于中等题.11.设x ∈R ,则“|1|1x -<”是“220x x --<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.12.“31a -<<”是“存在x ∈R ,使得|||1|2x a x -++<”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件【答案】C 【解析】 【分析】设:31p a -<<,1:,|||2x R x a x q ∃∈-++<,考虑命题“若p 则q ”及其逆命题的真假后可得两者之间的条件关系. 【详解】设:31p a -<<,||:|1|2q x a x -++<,当31a -<<时,|||1|1x a x a -++≥+总成立,而12a +<, 故|||1|2x a x -++<在R 上有解,故,|||1|2x R x a x ∃∈-++<, 所以“若p 则q ”为真命题.若,|||1|2x R x a x ∃∈-++<,则()min21x a x >-++,由绝对值不等式可知11x a x a -++≥+,当且仅当()()10x a x --≤时等号成立, 所以1x a x -++的最小值为1a +,故21a >-即31a -<<,所以“若q 则p ”为真命题.综上,“31a -<<”是“存在x ∈R ,使得|||1|2x a x -++<”的充要条件. 故选:C. 【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若p 则q ”是真命题,“若q 则p ”是假命题,则p 是q 的充分不必要条件;若“若p 则q ”是真命题,“若q 则p ”是真命题,则p 是q 的充分必要条件;若“若p 则q ”是假命题,“若q 则p ”是真命题,则p 是q 的必要不充分条件;若“若p 则q ”是假命题,“若q 则p ”是假命题,则p 是q 的既不充分也不必要条件.13.不等式||x x x <的解集是( ) A .{|01}x x <<B .{|11}x x -<<C .{|01x x <<或1}x <-D .{|10x x -<<或1}x >【答案】C 【解析】 【分析】原不等式即()||10x x -<,等价转化为①010x x >⎧⎨-<⎩,或 ②010x x <⎧⎨->⎩.分别求得①、②的解集,再取并集,即得所求. 【详解】解:不等||x x x <,即()||10x x -<,∴①010x x >⎧⎨-<⎩或 ②010x x <⎧⎨->⎩.解①可得01x <<,解②可得1x <-.把①②的解集取并集,即得原不等式的解集为{|01x x <<或1}x <-, 故选:C . 【点睛】本题主要考查绝对值不等式的解法,体现了分类讨论和等价转化的数学思想,属于中档题.14.若关于x 的不等式2x m n -<的解集为(,)αβ,则αβ-的值( ) A .与m 有关,且与n 有关B .与m 有关,但与n 无关C .与m 无关,且与n 无关D .与m 无关,但与n 有关【答案】D 【解析】 【分析】根据题意先解出不等式2x m n -<的解集,再根据解集求出αβ-的值,即可判断其与,m n 之间的关系.【详解】2222m n m nx m n n x m n x -+-<⇒-<-<⇒<<Q ,22m n m nαβ∴-+==22m n m nn αβ-+-∴==-- 因此,αβ-的值与m 无关,但与n 有关.故选:D. 【点睛】本题主要考查绝对值不等式的解法,形式如(0)x m a a -<> 的绝对值不等式,可以转化为a x m a -<-< 的简单不等式进行求解.15.函数()f x cosx = ,则()f x 的最大值是( )A BC .1D .2【答案】A 【解析】 【分析】将()f x 化为()f x cosx =,利用柯西不等式即可得出答案.【详解】因为()f x cosx =所以()f x cosx =…=当且仅当3cosx =时取等号. 故选:A 【点睛】本题主要考查了求函数的最值,涉及了柯西不等式的应用,属于中档题.16.不等式33log log x x x x +<+的解集( )A .(),-∞+∞B .()0,1C .()1,+∞D .()0,∞+【答案】B 【解析】 【分析】依题意知,0x >,32log 0x x <,原不等式等价于3log 0x <,解不等式即可. 【详解】根据对数的意义可知,0x >, 因为33log log x x x x +<+,两边同时平方可得,332log 2log x x x x <, 即32log 0x x <,因为0x >, 所以原不等式等价于3log 0x <, 所以原不等式的解集为}{01x x <<, 故选:B 【点睛】本题考查绝对值不等式的解法;熟练掌握对数函数的定义域和单调性是求解本题的关键;属于中档题.17.若不等式53x x a -+->恒成立,则a 的取值范围是( ) A .2a > B .2a ≥C .2a ≤D .2a <【答案】D 【解析】 【分析】先求出不等式53x x -+-的最小值,即可得解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题20 不等式选讲【命题热点突破一】含绝对值的不等式的解法例1、【2016高考新课标1卷】(本小题满分10分),选修4—5:不等式选讲已知函数()123f x x x =+--.(I )在答题卡第(24)题图中画出()y f x =的图像;(II )求不等式()1f x >的解集.【答案】(I )见解析(II )()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,【解析】⑴如图所示:⑵ ()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥()1f x >,当1x -≤,41x ->,解得5x >或3x <,1x -∴≤ 当312x -<<,321x ->,解得1x >或13x < 113x -<<∴或312x << 当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x > 综上,13x <或13x <<或5x >,()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,【变式探究】已知函数f(x)=|2x -a|+|x +1|.(1)当a =1时,解不等式f(x)<3;(2)若f(x)的最小值为1,求a 的值.【特别提醒】解含有绝对值的不等式的基本解法是分段去绝对值后,转化为几个不等式组的解,最后求并集得出原不等式的解集.【变式探究】已知函数f(x)=2|x +2|-|x -a|(a ∈R ).(1)当a =4时,求不等式f (x )≤0的解集;(2)当a >-2时,若函数f (x )的图像与x 轴所围成的封闭图形的面积不超过54,求a 的最大值.解:(1)当a =4时,f(x)≤0,即2|x +2|-|x -4|≤0,即2|x +2|≤|x-4|,两边平方得4x 2+16x +16≤x 2-8x +16,即x 2+8x≤0,解得-8≤x≤0,即不等式f(x)≤0的解集为[-8,0].(或者分段去绝对值求解)(2)当a>-2时,f(x)=⎩⎪⎨⎪⎧-x -4-a ,x≤-2,3x +4-a ,-2<x<a ,x +4+a ,x≥a.令f(x)=0,解得x 1=-4-a ,x 2=a -43,f(x)的图像与x 轴的交点为A(-4-a ,0),B(a -43,0), f(x)在(-∞,-2]上单调递减,在(-2,+∞)上单调递增,f(x)min =f(-2)=-(a +2).记C(-2,-(a +2)).f(x)的图像与x 轴围成以A ,B ,C 为顶点的三角形,其面积为12×[a -43-(-4-a)]×|-(a +2)|=2(a +2)23,根据已知得2(a +2)23≤54,解得-11≤a≤7,又a>-2,所以-2<a≤7,所以a 的最大值为7.【命题热点突破二】不等式的证明例2、【2016高考新课标2理数】选修4—5:不等式选讲 已知函数11()||||22f x x x =-++,M 为不等式()2f x <的解集. (Ⅰ)求M ;(Ⅱ)证明:当,a b M ∈时,|||1|a b ab +<+.【答案】(Ⅰ){|11}M x x =-<<;(Ⅱ)详见解析. 【解析】(I )12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩当12x ≤-时,由()2f x <得22,x -<解得1x >-; 当1122x -<<时, ()2f x <; 当12x ≥时,由()2f x <得22,x <解得1x <. 所以()2f x <的解集{|11}M x x =-<<.(II )由(I )知,当,a b M ∈时,11,11a b -<<-<<,从而22222222()(1)1(1)(1)0a b ab a b a b a b +-+=+--=--<,因此|||1|.a b ab +<+【变式探究】[2015·全国卷Ⅱ] 设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab>cd ,则a +b>c +d ; (2)a +b>c +d 是|a -b|<|c -d|的充要条件.证明:(1)(a +b)2=a +b +2 ab , (c +d)2=c +d +2 cd ,由题设a +b =c +d ,ab>cd ,得(a +b)2>(c +d)2, 因此a +b>c + d.【特别提醒】证明不等式的基本方法有综合法、分析法、反证法、放缩法、数学归纳法等.不等式的性质和重要不等式是证明其他不等式的主要工具,要特别注意柯西不等式的应用.【变式探究】(1)已知a ,b 都是正实数,求证:a a +2b +b a +b ≥2 2-2. (2)已知实数a ,b ,c ,d 满足a +b +c +d =3,a 2+2b 2+3c 2+6d 2=5,求a 的取值范围.解:(1)证明:方法一:(代数换元法)设a +2b =x ,a +b =y ,则a =2y -x ,b =x -y ,且x ,y 为正实数. a a +2b +b a +b =2y -x x +x -y y =2y x +x y -2≥2 2-2,当且仅当x =2y 时取等号.方法二:(配凑法)a a +2b +b a +b =a a +2b +1+b a +b +1-2=2(a +b )a +2b +a +2b a +b -2≥2 2-2,当且仅当a +2b =2(a +b)时取等号.(2)由柯西不等式得(2b 2+3c 2+6d 2)⎝ ⎛⎭⎪⎫12+13+16≥(b+c +d)2,即2b 2+3c 2+6d 2≥(b+c +d)2.由条件可得5-a 2≥(3-a)2,解得1≤a≤2,即a 的取值范围是[1,2].【命题热点突破三】 绝对值不等式与不等式证明的综合例3 、【2016高考新课标2理数】选修4—5:不等式选讲 已知函数11()||||22f x x x =-++,M 为不等式()2f x <的解集. (Ⅰ)求M ;(Ⅱ)证明:当,a b M ∈时,|||1|a b ab +<+.【答案】(Ⅰ){|11}M x x =-<<;(Ⅱ)详见解析. 【解析】(I )12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩当12x ≤-时,由()2f x <得22,x -<解得1x >-; 当1122x -<<时, ()2f x <; 当12x ≥时,由()2f x <得22,x <解得1x <. 所以()2f x <的解集{|11}M x x =-<<.(II )由(I )知,当,a b M ∈时,11,11a b -<<-<<,从而22222222()(1)1(1)(1)0a b ab a b a b a b +-+=+--=--<,因此|||1|.a b ab +<+【变式探究】已知函数f(x)=|x +1|+|x -3|-m 的定义域为R .(1)求实数m 的取值范围;(2)若m 的最大值为n ,当正数a ,b 满足23a +b +1a +2b=n 时,求7a +4b 的最小值.解:(1)因为该函数的定义域为R ,所以|x +1|+|x -3|-m ≥0恒成立.设函数g (x )=|x +1|+|x -3|,则m 不大于函数g (x )的最小值,又|x +1|+|x -3|≥|(x +1)-(x -3)|=4,即g (x )的最小值为4,所以m ≤4.【特别提醒】使用绝对值三角不等式求含有两个绝对值符号的函数的最值时,注意利用恒等变换的方法创造使用重要不等式(均值不等式、柯西不等式等)的条件.【变式探究】已知函数f (x )=|x |-2|x -3|.(1)求不等式f (x )≥-10的解集;(2)记f (x )的最大值为m ,且a ,b ,c 为正实数,求证:当a +b +c =m 时,ab +bc +ca ≤m ≤a 2+b 2+c 2. 解:(1)f (x )=|x |-2|x -3|=⎩⎪⎨⎪⎧x -6,x ≤0,3x -6,0<x <3,-x +6,x ≥3.当x ≤0时,x -6≥-10,∴-4≤x ≤0;当0<x <3时,3x -6≥-10,∴0<x <3;当x ≥3时,-x +6≥-10,得3≤x ≤16.所以不等式f (x )≥-10的解集为[-4,16].【高考真题解读】1.【2016高考新课标1卷】(本小题满分10分),选修4—5:不等式选讲 已知函数()123f x x x =+--.(I )在答题卡第(24)题图中画出()y f x =的图像;(II )求不等式()1f x >的解集.【答案】(I )见解析(II )()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,【解析】⑴如图所示:2.【2016高考新课标2理数】选修4—5:不等式选讲 已知函数11()||||22f x x x =-++,M 为不等式()2f x <的解集. (Ⅰ)求M ;(Ⅱ)证明:当,a b M ∈时,|||1|a b ab +<+.【答案】(Ⅰ){|11}M x x =-<<;(Ⅱ)详见解析. 【解析】(I )12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩当12x ≤-时,由()2f x <得22,x -<解得1x >-; 当1122x -<<时, ()2f x <; 当12x ≥时,由()2f x <得22,x <解得1x <. 所以()2f x <的解集{|11}M x x =-<<.(II )由(I )知,当,a b M ∈时,11,11a b -<<-<<,从而22222222()(1)1(1)(1)0a b ab a b a b a b +-+=+--=--<, 因此|||1|.a b ab +<+3. 【2016高考新课标3理数】选修4-5:不等式选讲已知函数()|2|f x x a a =-+.(I )当2a =时,求不等式()6f x ≤的解集;(II )设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a 的取值范围.【答案】(Ⅰ){|13}x x -≤≤;(Ⅱ)[2,)+∞.【解析】(Ⅰ)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+≤得13x -≤≤.因此()6f x ≤的解集为{|13}x x -≤≤.(Ⅱ)当x ∈R 时, ()()|2||12|f x g x x a a x +=-++-|212|x a x a ≥-+-+|1|a a =-+, 当12x =时等号成立,所以当x ∈R 时,()()3f x g x +≥等价于 |1|3a a -+≥. ① 当1a ≤时,①等价于13a a -+≥,无解.当1a >时,①等价于13a a -+≥,解得2a ≥.所以a 的取值范围是[2,)+∞.1.(2015·陕西,24)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}.(1)求实数a ,b 的值;(2)求at +12+bt 的最大值.2.(2015·新课标全国Ⅰ,24)已知函数f (x )=|x +1|-2|x -a |,a >0.(1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解;当-1<x <1时,不等式化为3x -2>0,解得23<x <1; 当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪23<x <2. (2)由题设可得,f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1), △ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).1.【2014高考安徽卷理第9题】若函数()12f x x x a =+++的最小值为3,则实数a 的值为( ) A.5或8 B.1-或5 C.1-或4- D.4-或8 【答案】D【解析】由题意,①当12a ->-时,即2a >,3(1),2()1,123(1),1a x a x a f x x a x x a x ⎧--+≤-⎪⎪⎪=+--<≤-⎨⎪++>-⎪⎪⎩,则当2a x =- 时,min ()()|1|||322a a f x f a a =-=-++-+=,解得8a =或4a =-(舍);②当12a-<-时,即2a <,3(1),1()1,123(1),2x a x a f x x a x a x a x ⎧⎪--+≤-⎪⎪=-+--<≤-⎨⎪⎪++>-⎪⎩,则当2a x =-时,min ()()|1|||322a a f x f a a =-=-++-+=,解得8a =(舍)或4a =-;③当12a-=-时,即2a =,()3|1|f x x =+,此时min ()0f x =,不满足题意,所以8a =或4a =-,故选D.2. 【2014陕西高考理第15题】设,,,a b m n R ∈,且225,5a b ma nb +=+=的最小值为【解析】由柯西不等式得:22222()()()a b m n ma nb ++≥+,所以2225()5m n +≥,得225m n +≥3. 【2014高考广东卷理第9题】不等式521≥++-x x 的解集为 . 【答案】(][),32,-∞-+∞.4. 【2014高考湖南卷第13题】若关于x 的不等式23ax -<的解集为5133x x ⎧⎫-<<⎨⎬⎩⎭,则a =________. 【答案】-3【解析】因为等式23ax -<的解集为5133x x ⎧⎫-<<⎨⎬⎩⎭,所以51,33-为方程23ax -=的根, 即52331233a a ⎧--=⎪⎪⎨⎪-=⎪⎩3a ⇒=-,故填3-. 5. 【2014江西高考理第11题】对任意,x y R ∈,111x x y y -++-++的最小值为( ) A.1 B.2 C.3 D.4 【答案】C【解析】因为111x x y y -++-++|(1)||(1)(1)|123x x y y ≥--+--+=+=,当且仅当01,11x y ≤≤-≤≤时取等号,所以111x x y y -++-++的最小值为3,选C.6. 【2014重庆高考理第16题】若不等式2212122++≥++-a a x x 对任意实数x 恒成立,则实数a 的取值范围是____________. 【答案】11,2⎡⎤-⎢⎥⎣⎦【解析】令()()312121|2|3221312x x f x x x x x x x ⎧⎪--≤-⎪⎪⎛⎫=-++=--<≤⎨ ⎪⎝⎭⎪⎪⎛⎫+>⎪ ⎪⎝⎭⎩,其图象如下所示(图中的实线部分)由图可知:()min 1522f x f ⎛⎫== ⎪⎝⎭ 由题意得:215222a a ++≤,解这得:11,2a -≤≤ 所以答案应填:11,2⎡⎤-⎢⎥⎣⎦7. 【2014高考福建理第21(3)题】已知定义在R 上的函数()21-++=x x x f 的最小值为a . (I )求a 的值;(II )若r q p ,,为正实数,且a r q p =++,求证:3222≥++r q p . 【答案】(I )3a =;(II )参考解析【解析】(I )因为12(1)(2)3x x x x ++-≥+--=,当且仅当12x -≤≤时,等号成立,所以()f x 的最小值等于3,即3a =.(II )由(I )知3p q r ++=,又因为,,p q r 是正数,所以22222222()(111)(111)()9p q r p q r p q r ++++≥⨯+⨯+⨯=++=,即2223p q r ++≥.9. 【2014高考江苏第21题】已知0,0x y >>,证明22(1)(1)9x y x y xy ++++≥ 【答案】证明见解析. 【解析】∵0,0x y >>,∴21x y ++≥21x y ++≥∴22(1)(1)9x y x y xy ++++≥=.10. 【2014高考江苏第21B 题】已知矩阵1211,121A B x -⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,向量2a y ⎡⎤=⎢⎥⎣⎦,,x y 是实数,若Aa Ba =,求x y +的值.【答案】72【解析】由题意得22224y y xy y -+=+⎧⎨+=-⎩,解得124x y ⎧=-⎪⎨⎪=⎩.∴72x y +=.11. 【2014高考辽宁理第24题】设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N . (Ⅰ)求M ; (Ⅱ)当x MN ∈时,证明:221()[()]4x f x x f x +≤. 【答案】(1)4{|0}3M x x =≤≤;(2)详见解析. 【解析】 (1)33,[1,)()1,(,1)x x f x x x -∈+∞⎧=⎨-∈-∞⎩当1x ≥时,由()331f x x =-≤得43x ≤,故413x ≤≤; 当1x <时,由()11f x x =-≤得0x ≥,故01x ≤<; 所以()1f x ≤的解集为4{|0}3M x x =≤≤.(2)由2()16814g x x x =-+≤得2116()4,4x -≤解得1344x -≤≤,因此13{|}44N x x =-≤≤,故3{|0}4MN x x =≤≤.当x M N ∈时,()1f x x =-,于是22()[()]()[()]x f x x f x xf x x f x +=+2111()(1)()424xf x x x x ==-=--≤.12. 【2014高考全国1第24题】若0,0ab >>,且11a b+=(Ⅰ)求33ab +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.【答案】(Ⅰ)(Ⅱ)不存在.13. 【2014高考全国2第24题】设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.【答案】(1)见解析(2)1522a +<< 【解析】(1)证明:由绝对值不等式的几何意义可知:min ()f x =12a a+≥,当且仅当1a =时,取等号,所以()2f x ≥.(2)因为(3)5f <,所以1|3||3|5a a ++-<⇔13|3|5a a ++-<⇔1|3|2a a-<-⇔11232a a a-<-<-a <<. (2013·新课标I 理)(24)(本小题满分10分)选修4—5:不等式选讲 已知函数f (x )=|2x -1|+|2x +a |,g(x )=x +3. (Ⅰ)当a =-2时,求不等式f (x )<g(x )的解集;(Ⅱ)设a >-1,且当x ∈[-a 2,12)时,f (x )≤g(x ),求a 的取值范围.【答案】当2a =-时,令15,21212232,1236,1x x y x x x x x x x ⎧-≤⎪⎪⎪=-+---=--≤≤⎨⎪->⎪⎪⎩,,做出函数图像可知,当(0,2)x ∈时,0y <,故原不等式的解集为}{02x x <<;(2)依题意,原不等式化为13a x +≤+,故2x a ≥-对1,22a ⎡⎫-⎪⎢⎣⎭都成立,故22a a -≥-,故43a ≤,故a 的取值范围是41,3⎛⎤- ⎥⎝⎦.【解析】(1)构造函数21223y x x x =-+---,作出函数图像,观察可知结论;(2)利用分离参数法进行求解.。

相关文档
最新文档