2016年秋华师大版九年级数学上典中点第二十二章阶段强化专训三.doc

合集下载

华师大版数学九年级上册第22章一元二次方程单元测试卷(含答案)

华师大版数学九年级上册第22章一元二次方程单元测试卷(含答案)

第22章学情评估一、选择题(每题3分,共24分)题序12345678答案1.下列方程是一元二次方程的是( )A .-6x +2=0B .2x 2-y +1=0 C.1x 2+x =2 D .x 2+2x =02.一元二次方程x 2+x -2=0根的判别式的值为( )A .-7B .3C .9D .±33.方程(x -3)2=4的根为( )A .x 1=x 2=5B .x 1=5,x 2=1C .x 1=x 2=1D .x 1=7,x 2=-14.关于x 的方程mx 2+2x =1有两个不相等的实数根,则m 的值可以是( )A .1B .0C .-1D .-25.等腰三角形的两条边长分别是方程x 2-8x +12=0的两根,则该等腰三角形的周长是( )A .10B .12C .14D .10或146.以x =4±16+4c 2为根的一元二次方程可能是( )A .x 2-4x -c =0B .x 2+4x -c =0C .x 2-4x +c =0D .x 2+4x +c =07.对于一元二次方程ax 2+bx +c =0(a ≠0),给出下列说法:①若a +b +c =0,则b 2-4ac ≥0;②若方程ax 2+c =0有两个不相等的实数根,则方程ax 2+bx +c =0必有两个不相等的实数根;③若x 0是一元二次方程ax 2+bx +c =0的根,则b 2-4ac =(2ax 0+b )2;④若c 是方程ax 2+bx +c =0的一个根,则一定有ac +b +1=0成立.其中正确的是( )A .①②B .①②④C .①②③④D .①②③8.在△ABC 中,∠ABC =90°,AB =6 cm ,BC =8 cm ,动点P 从点A 沿线段AB向点B运动,动点Q从点B沿线段BC向点C运动,两点同时开始运动,点P的速度为1 cm/s,点Q的速度为2 cm/s,当Q到达点C时两点同时停止运动.若△PBQ的面积为5 cm2,则点P运动的时间为( )A.1 s B.4 s C.5 s或1 s D.4 s或1 s二、填空题(每题3分,共18分)9.一元二次方程3x2+2x-5=0的一次项系数是________.10.已知关于x的一元二次方程x2+kx-3=0的一个根是x=1,则另一个根是________.11.已知x=-1是关于x的方程x2+mx-n=0的一个根,则m+n的值是________.12.定义运算:m&n=m2-mn+2.例如:1&2=12-1×2+2=1,则方程x&3=0的根的情况为____________________.13.如图,从正方形的铁片上沿平行于一条边的直线截去一个3 cm宽的长方形铁片,余下(阴影部分)面积为40 cm2,则原来的正方形铁片的面积是________cm2.(第13题)14.若实数a,b分别满足a2-4a+3=0,b2-4b+3=0,且a≠b,则(a+1)(b+1)的值为________.三、解答题(15题8分,16,17题每题9分,18,19题每题10分,20题12分,共58分)15.解方程:100(1-x)2=81.①你选用的解法是____________;②直接写出该方程的解是____________;③请你结合生活经验,设计一个问题,使它能利用方程“100(1-x)2=81”来解决.你设计的问题是______________________________________.16.已知x1,x2是方程x2-(3+1)x+3=1 的两个根.求:3(1)x 12+x 22; (2)1x 1+1x 2.17.已知关于x 的一元二次方程kx 2-(2k +4)x +k -6=0有两个不相等的实数根.(1)求k 的取值范围;(2)当k =1时,用配方法解方程.18.下面是某月的日历表,在该月日历表上可以用一个方框圈出4个数(如图所示),若圈出的4个数中,最小数与最大数的乘积为48,求这个最小数.(请用方程的知识解答,否则不给分)(第18题)19.在蚌埠花博园附近某盆栽销售处发现:进货价为每盆50元,销售价为每盆80元的某盆栽平均每天可售出20盆.现此销售处决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每盆降价2元,那么平均每天就可多售出3盆.设每盆降价x元.(1)现在每天卖出________盆,每盆盈利________元(用含x的代数式表示);(2)当x为何值时,销售这种盆栽平均每天能盈利700元,同时又可以使顾客得到较多的实惠?(3)该销售处通过销售这种盆栽平均每天能盈利1 000元吗?请说明理由.20. 阅读材料:各类方程及方程组的解法.求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似地,求解三元一次方程组,把它转化为二元一次方程组来解.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程及方程组的解法不尽相同,但是它们有一个共同的基本数学思想——转化,即把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过提公因式把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的根.(1)问题:方程x3+x2-2x=0的根是x1=0,x2=________,x3=________;5(2)拓展:用“转化”思想求方程 2x +3=x 的根;(3)应用:如图,已知矩形草坪ABCD 的长AD =8 m ,宽AB =3 m ,小华先把一根长为10 m 的绳子的一端固定在点B ,沿草坪边缘BA ,AD 走到点P 处,把绳子PB 段拉直并固定在点P ,然后沿草坪边缘PD ,DC 走到点C 处,把绳子剩下的一段拉直,绳子的另一端恰好落在点C 处,求AP 的长.(第20题)答案一、1.D 2.C 3.B 4.A 5.C 6.A 7.D 8.A 点拨:设点P 运动的时间为t s ,则BP =(6-t )cm ,BQ =2t cm ,依题意得12(6-t )×2t =5,整理,得t 2-6t +5=0,解得t 1=1,t 2=5.因为当Q 到达点C 时两点同时停止运动,所以0≤2t ≤8,所以0≤t ≤4,所以t =1.故选A.二、9.2 10.x =-3 11.1 12.有两个不相等的实数根13.64 14.8 三、15.①直接开平方法②x 1=0.1,x 2=1.9③某种药品的原价是100元/盒,经过两次降价后的价格是81元/盒,求平均每次降价的百分率(答案不唯一)16.解:原方程可变形为x 2-(3+1)x +3-1=0,由题意得x 1+x 2=3+1,x 1x 2=3-1.(1)x 12+x 22=(x 1+x 2)2-2x 1x 2=(3+1)2-2×(3-1)=6.(2)1x 1+1x 2=x 1+x 2x 1x 2=3+13-1=(3+1)2(3-1)(3+1)=4+2 32=2+ 3.17.解:(1)因为关于x 的一元二次方程kx 2-(2k +4)x +k -6=0有两个不相等的实数根,所以Δ=[-(2k +4)]2-4k (k -6)>0,且k ≠0,解得k >-25且k ≠0.(2)当k =1时,原方程为x 2-(2×1+4)x +1-6=0,即x 2-6x -5=0.移项,得x 2-6x =5.配方,得x2-6x+9=5+9,即(x-3)2=14.直接开平方,得x-3=±14,所以x1=3+14,x2=3-14.18.解:设这个最小数为x,则最大数为x+8,依题意得x(x+8)=48,整理,得x2+8x-48=0,解得x1=4,x2=-12(不合题意,舍去).答:这个最小数为4.19.解:(1)(20+3x2);(30-x)(2)由题意得(30-x)(20+3x2)=700,解得x1=10,x2=203.因为要使顾客得到较多的实惠,所以x=10.(3)不能.理由:若销售这种盆栽平均每天能盈利1 000元,则(30-x)(20+3x)=1 000,整理,得3x2-50x+800=0,因为Δ=(-50)2-4×3×800=-7 100 2<0,所以原方程无实数根,所以该销售处通过销售这种盆栽平均每天不能盈利1 000元.20.解:(1)-2;1(2)方程的两边平方,得2x+3=x2,即x2-2x-3=0,所以(x-3)(x+1)=0,解得x1=3,x2=-1.当x=-1时,2x+3=1=1≠-1,舍去;当x=3时,2x+3=3=x,所以方程2x+3=x的根是x=3.(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3 m.设AP=xm,则PD=(8-x)m,因为BP+CP=10 m,BP=AB2+AP2,CP=PD2+CD2,所以9+x2+(8-x)2+9=10,所以(8-x)2+9=10-9+x2,两边平方,得(8-x)2+9=100-209+x2+9+x2,整理,得5x2+9=4x+9,两边平方并整理,得x2-8x+16=0,即(x-4)2=0,解得x1=x2=4.经检验,x=4是方程的根.答:AP的长为4 m.7。

初中数学 华东师大版九年级上册第22章《一元二次方程》综合题解析及提升测试题

初中数学 华东师大版九年级上册第22章《一元二次方程》综合题解析及提升测试题

华师版九年级上册第22章《一元二次方程》一、综合问题解析1、已知关于x 的方程03422=-++k kx x 的两实数根是21x x 、,且满足关系式=+21x x 21x x ⋅,求k 的值。

解:∵方程03422=-++k kx x 的两实数根是21x x 、∴k x x -=+21,=⋅21x x 342-k∵=+21x x 21x x ⋅ ∴=-k 342-k 即0342=-+k k 解得43,121=-=k k 当1-=k 时,方程为012=+-x x ,因Δ=1-4<0,此时方程无实数根; 当43=k 时,方程为043432=-+x x ,因Δ=3169+>0,此时方程有实数根. 故k 的值为43.【提示:也可由原方程中)(34422--k k ≥0,得2k ≤54,从而舍去1-=k 这种情况】 2、若1≠ab ,且09202052=++a a 和05202092=++b b ,求ba的值。

解:∵1≠ab ∴ba 1≠由05202092=++b b 得0912020152=+⋅+⎪⎭⎫ ⎝⎛b b 又09202052=++a a∴b a 1、是方程09202052=++x x 的两个不相等的实数根∴b a 1⋅=59 即59=b a【提示:也可利用求根公式分别求b a 、,再比较】3、已知关于x 的方程032=++a x x 的两个实数根的倒数和等于3,又知关于x 的方程02312=-+-a x x k )(有实数根且k 为正整数,求代数式21--k k 的值.解:设βα、是关于x 的方程032=++a x x 的两个实数根,则3-=+βα,βα⋅=a由311=+βα得3=+αββα即33=-a ,解得1-=a 将1-=a 代入方程02312=-+-a x x k )(得02312=++-x x k )( 当k =1时,方程02312=++-x x k )(为一元一次方程,则21--k k =2111--=0; 当k ≠1时,该方程为一元二次方程,则有)(189--k ≥0解得k ≤817则正整数k 为2. 而k =2时,代数式21--k k 无意义.故21--k k 的值为0. 4、已知实数c b a 、、满足962-=-=ab c b a ,,求c b a 、、. 解:由已知得962+==+c ab b a ,设b a 、为方程+-x x 6292+c =0的两实根方程化为2)3(-x 2c +=0,可得c =0 则9=ab 又6=+b a ∴3==b a .5、已知方程0892=+-x x ,求作一个一元二次方程,使它的一个根为原方程两根和的倒数,另一根为原方程两根差的平方.解:设βα、是方程0892=+-x x 的两个实数根,由韦达定理得9=+βα,βα⋅=8进而得911=+βα,()2βα-=()αββα42-+=498492=⨯- 即新方程02=+-c by y 的两根为49,91.则944291494991==+=b ,9494991=⨯=c故所作新方程为094994422=+-y y (也可写为04944292=+-y y ) 6、m 为何整数时,关于x 的方程0632=++m x x 有两个负的实数根?解:设方程0632=++m x x 的两个负实根分别为21x x 、,则有⎪⎩⎪⎨⎧=⋅≥-=∆030123621 mx x m 即⎩⎨⎧≤03 m m ∴0<m ≤3 故整数m 为1,2,3.【思考:当一元二次方程有两正根、两负根、两同号实根、两异号实根、两互倒实根、两互反实根时你能分别得到什么结论?】7、已知方程122-=+k x x 无实数根,求证方程k kx x 212-=+一定有两个不等实根.证明:∵方程122-=+k x x 无实数根,即0122=--+)(k x x 无实数根 ∴()144-+k <0 解得k <0在方程k kx x 212-=+中即0122=-++k kx x 中,Δ==--)(1242k k 1242--)(k ∵k <0 ∴24)(-k >16 ∴1242--)(k >0 故方程k kx x 212-=+一定有两个不等实根8、设c b a 、、为ΔABC 的三边,求证:0)(222222=+-+-c x a c b x b 无实数根.证明:∵c b a 、、为ΔABC 的三边∴a >0,b >0,c >0,b a +>c ,c a +>b ,c b +>a.在方程0)(222222=+-+-c x a c b x b 中,Δ=2222224)(c b a c b --+=)2(222bc a c b +-+)2(222bc a c b --+=[]22a c b -+)([]22a c b --)(=)(c b a ++)(a c b -+)(c b a -+)(a c b -- ∵ c b a ++>0,a c b -+>0,c b a -+>0,a c b --<0∴Δ<0 故方程0)(222222=+-+-c x a c b x b 无实数根.9、直角三角形的周长为62+,斜边上的中线为1,求这个直角三角形的面积. 解:∵直角三角形斜边上的中线为1 ∴斜边为2又∵该三角形的周长为62+ ∴两直角边之和为6设两直角边为b a 、,则有6=+b a 及2222=+b a =4 由()=+2b a ++22b a ab 2可得=⋅b a 1,即2121=ab故这个直角三角形的面积为0.5。

华师大版九年级上册数学第22章测试题带答案

华师大版九年级上册数学第22章测试题带答案

第22章测试题得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.下列方程是一元二次方程的是(A )A .x 2=-1B .x 2+1x=1=0 C .x 2+y +1=0 D .x 3-2x 2=1 2.关于x 的一元二次方程(m +1)xm 2+1+4x +2=0的解为(C )A .x 1=2,x 2=1B .x 1=x 2=1C .x 1=x 2=-1D .无解3.若关于x 的一元二次方程x 2+mx +1=0有两个不相等的实数根,则m 的值可以是(D )A .0B .-1C .2D .-34.将方程x 2-6x -5=0化为(x +m )2=n 的形式,则(D )A .m =3,n =5B .m =-3,n =5C .m =3,n =14D .m =-3,n =145.若x =-2是关于x 的一元二次方程x 2-52ax +a 2=0的一个根,则a 的值为(B ) A .1或4 B .-1或-4 C .-1或4 D .1或-46.下列关于x 的一元二次方程,有实数根的是(D )A .x 2+1=0B .x 2+x +1=0C .x 2-x +1=0D .x 2-x -1=07.已知关于x 的方程14x 2-(m -3)x +m 2=0有两个不相等的实数根,那么m 的最大整数值是(D )A .2B .-1C .0D .18.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x ,那么x 满足的方程是(B )A .100(1+x )2=81B .100(1-x )2=81C .100(1-x %)2=81D .100x 2=819.若方程x 2+x -1=0的两实数根为α,β,那么下列说法不正确的是(D )A .α+β=-1B .αβ=-1C .α2+β2=3D .1α +1β=-1 10.三角形两边的长分别是8和6,第三边的长是一元二次方程x 2-16x +60=0的一个实数根,则该三角形的面积是(B )A .24B .24或85C .48或165D .85二、填空题(每小题3分,共15分)11.一元二次方程2x 2+ax +2=0的一个根是x =2,则它的另一个根是__12 __. 12.已知关于x 的一元二次方程(m -1)x 2+x +1=0有实数根,则m 的取值范围是_m ≤54 且m ≠1_.13.(2019·南京)已知2+3 是关于x 的方程x 2-4x +m =0的一个根,则m =__1__.14.现有一块长80 cm 、宽60 cm 的矩形钢片,将它的四个角各剪去一个边长为x cm 的小正方形,做成一个底面积为1 500 cm 2的无盖的长方体盒子,根据题意列方程,化简可得__x 2-70x +825=0__.15.将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪ab c d ,定义⎪⎪⎪⎪⎪⎪ab c d=ad -bc ,上述记号就叫做2阶行列式.若⎪⎪⎪⎪⎪⎪x +1 x -11-x x +1 =6,则x =. 三、解答题(共75分)16.(12分)用适当的方法解方程:(1)5x (2x +7)=3(2x +7); (2)x 2+2x =4;解:(1)x 1=-72 ,x 2=35解:(2)x 1=-1+5 ,x 2=-1-5(3)3x 2+4x -7=0; (4)4(x +2)2-9(x -3)2=0.解:(3)x 1=1,x 2=-73解:(4)x 1=1,x 2=1317.(7分)在解方程x 2+px +q =0时,小张看错了p ,解得方程的根为1与-3,小王看错了q ,解得方程的根为4与-2,你知道这个方程正确的根是多少吗?解:∵x 2+px +q =0.小张是看错了p ,方程的两根为1和-3,∴q 是正确的,即1×(-3)=q ,q =-3.而x 2+px +q =0.小王看错了q ,方程的两根为4与-2,∴p 是正确的,即4+(-2)=-p ,∴p =-2,∴原方程应为x 2-2x -3=0,解得x 1=3,x 2=-1,∴这个方程正确的两根为3与-118.(8分)已知关于x的方程(m-1)x2+5x+m2-3m+2=0的常数项为0.(1)求m的值;(2)求方程的解.解:(1)∵关于x的方程(m-1)x2+5x+m2-3m+2=0的常数项为0,∴m2-3m+2=0.解得m1=1,m2=2.∴m的值为1或2(2)当m=2时,代入(m-1)x2+5x+m2-3m+2=0,得x2+5x=0.解得x1=0,x2=-5;当m=1时,原方程化简,得5x=0,解得x=019.(8分)(邓州期中)已知关于x 的方程x 2-(2k +1)x +4(k -12)=0. (1)求证:无论k 取何值,这个方程总有实数根;(2)若等腰三角形ABC 的一边长a =4,另两边b 、c 恰好是这个方程的两个根,求△ABC 的周长.解:(1)证明:Δ=(2k +1)2-4×4(k -12)=4k 2+4k +1-16k +8=4k 2-12k +9=(2k -3)2,∵(2k -3)2≥0,即Δ≥0,∴无论k 取何值,这个方程总有实数根(2)当b =c 时,Δ=(2k -3)2=0,解得k =32,方程化为x 2-4x +4=0,解得b =c =2,而2+2=4,故舍去;当a =b =4或a =c =4时,把x =4代入方程得16-4(2k +1)+4(k -12 )=0,解得k =52,方程化为x 2-6x +8=0,解得x 1=4,x 2=2,即a =b =4,c =2或a =c =4,b =2,所以△ABC 的周长=4+4+2=1020.(8分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.解:(1)设每个月生产成本的下降率为x ,根据题意,得400(1-x )2=361,解得x 1=0.05=5%,x 2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%(2)361×(1-5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元21.(10分)如图,要建一个面积为150 m 2的长方形养鸡场,为了节省材料,鸡场的一边靠着原有的一堵墙,墙长a m ,另三边用竹篱笆围成,如果篱笆的长为35 m.(1)求鸡场的长与宽各为多少?(2)题中墙的长度a(m)为题目的解起怎样的作用?解:(1)设鸡场的宽为x m,依题意得x(35-2x)=150,解得x1=10,x2=7.5.当宽为10 m,长为35-2x=15(m);当宽为7.5 m时,长为35-2x=20(m)(2)由(1)题结果可知:题目中墙长a(m)对于问题的解有严格的限制作用.∵当a<15时,问题无解;当15≤a<20时,问题有一解;当a≥20时,可建宽为10 m,长为15 m或宽为7.5 m,长为20 m两种规格的鸡场22.(10分)某水果经销商上月份销售一种新上市的水果,平均售价为10元/千克,月销售量为1 000千克.经市场调查,若将该种水果价格调低至x元/千克,则本月份销售量y(千克)与x(元/千克)之间符合一次函数关系式y=kx+b,当x=7时,y=2 000;当x=5时,y =4 000.(1)求y与x之间的函数关系式;(2)已知该种水果上月份的成本价为5元/千克,本月份的成本价为4元/千克,要使本月份销售该种水果所获利润比上月份增加20%,同时又要让顾客得到实惠,那么该种水果价格每千克应调低至多少元?(利润=售价-成本价)解:(1)y=-1 000x+9 000(2)由题意可得1 000(10-5)(1+20%)=(-1 000x+9 000)(x-4),整理得x2-13x+42=0,解得x1=6,x2=7(舍去),所以该种水果价格每千克应调低至6元23.(12分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2=__-2__,x3=__1__;(2)拓展:用“转化”思想求方程2x+3=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8 m,宽AB=3 m,小华把一根长为10 m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.解:(2)2x+3=x,方程的两边平方,得2x+3=x2,即x2-2x-3=0,(x-3)(x+1)=0,∴x-3=0或x+1=0,∴x1=3,x2=-1,当x=-1时,2x+3=1=1≠-1,所以-1不是原方程的解.所以方程2x+3=x的解是x=3(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3 m,设AP=x m,则PD=(8-x) m,因为BP+CP=10,BP=AP2+AB2,CP=CD2+PD2,∴9+x2+(8-x)2+9=10,∴(8-x)2+9=10-9+x2,两边平方,得(8-x)2+9=100-209+x2+9+x2,整理,得5x2+9=4x+9,两边平方并整理,得x2-8x+16=0,即(x -4)2=0,所以x=4.经检验,x=4是方程的解.答:AP的长为4 m。

2016年秋华师大版九年级数学上典中点第二十一章整合提升专训三.doc

2016年秋华师大版九年级数学上典中点第二十一章整合提升专训三.doc

解码专训三:思想方法荟萃分类讨论思想名师点金:在解某些数学问题时,它的结果可能不唯一,因此需要对可能出现的情况一一加以讨论,像这样对事物的各种情况分别加以讨论的思想,称为分类讨论思想.在运用分类讨论思想研究问题时,必须做到“不重、不漏”.在化简二次根式时,有些时候题目中没有给出字母的取值范围,这时候就要对字母进行分类,在不同的范围中化简二次根式.1.已知a是实数,求(a+2)2-(a-1)2的值.数形结合思想名师点金:数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,使问题得到解决.在进行二次根式的化简时,可以借助数轴确定字母的取值范围,然后对式子进行化简.2.已知实数m,n在数轴上的位置如图,化简:m2+n2+(m-n)2+n2+2n+1-(m-1)2.(第2题)类比思想名师点金:类比是一种在不同对象之间,或者在事物之间,根据某些相似之处进行比较,通过联想和预测,推出在其他方面也可能有相似之处,从而建立猜想和发现真理的方法.通过类比可以发现新旧知识的相同点,利用已有知识来认识新知识.本章中二次根式的运算方法和顺序类比于整式的运算方法和顺算,运算公式和运算律同样适用.3.计算:(72+26-3)(26-72+3).转化思想名师点金:解数学问题时,碰到陌生的问题常设法把它转化成熟悉的问题,碰到复杂的问题常设法把它转化成简单的问题,从而使问题获得解决,这就是转化思想.4.计算:(3+2)2 015·(3-2)2 016.解码专训三1.解:(a+2)2-(a-1)2=|a+2|-|a-1|,分三种情况讨论:当a≤-2时,原式=(-a-2)-[-(a-1)]=-a-2+a-1=-3;当-2<a≤1时,原式=(a+2)+(a-1)=2a+1;当a>1时,原式=(a+2)-(a-1)=3.点拨:求含字母的两个绝对值的和或差时,要分类讨论.本题也可以通过解不等式来确定各分界点.2.解:由m,n在数轴上的位置可知:m>n,0<m<1,n<-1.∴m-n>0,m-1<0,n+1<0.∴原式=|m|+|n|+|m-n|+|n+1|-|m-1|=m-n+m-n-1-n-(1-m)=m-n+m-n-1-n-1+m=3m-3n-2.方法点拨:在利用a2=|a|化简时,一定要结合具体问题,先确定出绝对值号里面式子的符号,再进行化简.3.解:(72+26-3)(26-72+3)=[26+(72-3)][26-(72-3)]=(26)2-(72-3)2=24-(98+3-146)=146-77.4.解:(3+2)2 015·(3-2)2 016=[(3+2)(3-2)]2 015·(3-2) =1×(3-2)=3- 2.。

华师大版九年级上第22章一元二次方程单元复习题有答案解析

华师大版九年级上第22章一元二次方程单元复习题有答案解析

华师大版九年级上册第22章一元二次方程单元复习题姓名:;成绩:;一、选择题(4分×10=40分)1、(随州)用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x-6)2=—4+36 B、(x-6)2=4+36C.(x-3)2=—4+9D、(x-3)2=4+92、(安顺)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A. 14 B. 12 C. 12或14 D.以上都不对3、(扬州)已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定4、(随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,约为20万人次,约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.85、(兰州)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x-1)(x-2)=18 D.x2+3x+16=0 6、(烟台)如果x2﹣x﹣1=(x+1)0,那么x的值为()A. 2或﹣1 B. 0或1 C. 2D.﹣17、(达州)方程(m﹣2)x2﹣x+=0有两个实数根,则m的取值范围()A. m>B. m≤且m≠2C. m≥3D. m≤3且m≠28、(安顺)若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四B.三C.二D.一9、(株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=110、(贵港)若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a 和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣511、(广州)定义运算:a★b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b★b﹣a★a的值为()A.0 B.1 C.2 D.与m有关12、(南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y 的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1,其中正确结论的个数是()A.0个B.1个C.2个D.3个二、填空题(4分×6=24分)13、(荆州)将二次三项式x2+4x+5化成(x+p)2+q的形式应为.14、(抚顺)若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为.15. (南通)设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)=.16. (内蒙古)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为m.17. (如皋市校级二模)已知n是关于x的一元二次方程x2+m2x﹣2m=0(m为实数)的一个实数根,则n的最大值是.18. (安徽模拟)对于实数a、b定义:a*b=a+b,a#b=ab,如:2*(﹣1)=2+(﹣1)=1,2#(﹣1)=2×(﹣1)=﹣2.以下结论:①[2+(﹣5)]#(﹣2)=6;②(a*b)#c=c(a*b);③a*(b#a)=(a*b)#a;④若x>0,且满足(1*x)#(1#x)=1,则x=.正确的是(填序号即可)三、解答题(8分+6分=14分)19、(1)(山西)解方程:2(x﹣3)2=x2﹣9.(2)解方程:m2﹣6m﹣9991=0;20、解方程:(x2﹣5)2﹣3(x2﹣5)﹣4=0;四、解答题(10分×4=40分)21、(朝阳)为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.22、(梅州)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2.(1)求实数k的取值范围.(2)若方程两实根x1、x2满足x1+x2=﹣x1x2,求k的值.23、(重庆校级模拟)阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=4, =14, =194;(2)2x2﹣7x+2=0(x≠0),求的值.24、(鄂州)关于x的方程(k﹣1)x2+2kx+2=0.(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k﹣1)x2+2kx+2=0的两个根,记S=+x1+x2,S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.五、解答题(12分×2=24分)24、(荆州)已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.25、(韶关模拟)如图,点A(2,2)在双曲线y1=(x>0)上,点C在双曲线y2=﹣(x<0)上,分别过A、C向x轴作垂线,垂足分别为F、E,以A、C为顶点作正方形ABCD,且使点B在x轴上,点D在y轴的正半轴上.(1)求k的值;(2)求证:△BCE≌△ABF;(3)求直线BD的解析式.华师大版九年级上册第22章一元二次方程单元复习题的解析一、选择题1、(随州)用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x-6)2=—4+36 B、(x-6)2=4+36C.(x-3)2=—4+9D、(x-3)2=4+9考点:解一元二次方程-配方法.分析:根据配方法,可得方程的解.解答:解:x2﹣6x﹣4=0,移项,得x2﹣6x=4,配方,得(x﹣3)2=4+9.故选:D.点评:本题考查了解一元一次方程,利用配方法解一元一次方程:移项、二次项系数化为1,配方,开方.2、(安顺)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A. 14 B. 12 C. 12或14 D.以上都不对考点:解一元二次方程-因式分解法;三角形三边关系.分析:易得方程的两根,那么根据三角形的三边关系,排除不合题意的边,进而求得三角形周长即可.解答:解:解方程x2﹣12x+35=0得:x=5或x=7.当x=7时,3+4=7,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B.点评:本题主要考查三角形三边关系,注意在求周长时一定要先判断是否能构成三角形.3、(扬州)已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定【分析】将M与N代入N﹣M中,利用完全平方公式变形后,根据完全平方式恒大于等于0得到差为正数,即可判断出大小.【解答】解:∵M=a﹣1,N=a2﹣a(a为任意实数),∴,∴N>M,即M<N.故选A【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.4、(随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,约为20万人次,约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.8【分析】设这两年观赏人数年均增长率为x,根据“约为20万人次,约为28.8万人次”,可得出方程.【解答】解:设观赏人数年均增长率为x,那么依题意得20(1+x)2=28.8,故选C.【点评】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.5、(兰州)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x-1)(x-2)=18 D.x2+3x+16=0 【分析】可设原正方形的边长为xm,则剩余的空地长为(x﹣1)m,宽为(x﹣2)m.根据长方形的面积公式方程可列出.【解答】解:设原正方形的边长为xm,依题意有=18,故选C.【点评】本题考查了由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键.6、(烟台)如果x2﹣x﹣1=(x+1)0,那么x的值为()A. 2或﹣1 B. 0或1 C. 2 D.﹣1考点:解一元二次方程-因式分解法;零指数幂.分析:首先利用零指数幂的性质整理一元二次方程,进而利用因式分解法解方程得出即可.解答:解:∵x2﹣x﹣1=(x+1)0,∴x2﹣x﹣1=1,即(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1,当x=﹣1时,x+1=0,故x≠﹣1,故选:C.点评:此题主要考查了因式分解法解一元二次方程以及零指数幂的性质,注意x+1≠0是解题关键.7、(达州)方程(m﹣2)x2﹣x+=0有两个实数根,则m的取值范围()A. m>B. m≤且m≠2C. m≥3D. m≤3且m≠2考点:根的判别式;一元二次方程的定义.分析:根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到,然后解不等式组即可.解答:解:根据题意得,解得m≤且m≠2.故选B.8、(安顺)若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四B.三C.二D.一考点:根的判别式;一次函数图象与系数的关系.分析:根据判别式的意义得到△=(﹣2)2+4m<0,解得m<﹣1,然后根据一次函数的性质可得到一次函数y=(m+1)x+m﹣1图象经过的象限.解答:解:∵一元二次方程x2﹣2x﹣m=0无实数根,∴△<0,∴△=4﹣4(﹣m)=4+4m<0,∴m<﹣1,∴m+1<1﹣1,即m+1<0,m﹣1<﹣1﹣1,即m﹣1<﹣2,∴一次函数y=(m+1)x+m﹣1的图象不经过第一象限,故选D.9、(株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1考点:根的判别式;一元二次方程的解;根与系数的关系.分析:利用根的判别式判断A;利用根与系数的关系判断B;利用一元二次方程的解的定义判断C与D.解答:解:A、如果方程M有两个相等的实数根,那么△=b2﹣4ac=0,所以方程N 也有两个相等的实数根,结论正确,不符合题意;B、如果方程M的两根符号相同,那么方程N的两根符号也相同,那么△=b2﹣4ac≥0,>0,所以a与c符号相同,>0,所以方程N的两根符号也相同,结论正确,不符合题意;C、如果5是方程M的一个根,那么25a+5b+c=0,两边同时除以25,得c+b+a=0,所以是方程N的一个根,结论正确,不符合题意;D、如果方程M和方程N有一个相同的根,那么ax2+bx+c=cx2+bx+a,(a﹣c)x2=a﹣c,由a≠c,得x2=1,x=±1,结论错误,符合题意;故选D.10、(贵港)若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a 和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣5【分析】根据方程的解析式结合根与系数的关系找出a+b=3、ab=p,利用完全平方公式将a2﹣ab+b2=18变形成(a+b)2﹣3ab=18,代入数据即可得出关于p的一元一次方程,解方程即可得出p的值,经验证p=﹣3符合题意,再将+变形成﹣2,代入数据即可得出结论.【解答】解:∵a、b为方程x2﹣3x+p=0(p≠0)的两个不相等的实数根,∴a+b=3,ab=p,∵a2﹣ab+b2=(a+b)2﹣3ab=32﹣3p=18,∴p=﹣3.当p=﹣3时,△=(﹣3)2﹣4p=9+12=21>0,∴p=﹣3符合题意.+===﹣2=﹣2=﹣5.故选D.【点评】本题考查了根与系数的关系、解一元一次方程以及完全平方公式的应用,解题的关键是求出p=﹣3.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.11、(广州)定义运算:a★b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b★b﹣a★a的值为()A.0 B.1 C.2 D.与m有关【分析】由根与系数的关系可找出a+b=1,ab=m,根据新运算,找出b★b﹣a★a=b(1﹣b)﹣a(1﹣a),将其中的1替换成a+b,即可得出结论.【解答】解:∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1,ab=m.∴b★b﹣a★a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.故选A.【点评】本题考查了根与系数的关系,解题的关键是找出a+b=1,ab=m.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之积与两根之和是关键.12、(南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y 的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1,其中正确结论的个数是()A.0个B.1个C.2个D.3个考点:根与系数的关系;根的判别式.专题:计算题.分析:①根据题意,以及根与系数的关系,可知两个整数根都是负数;②根据根的判别式,以及题意可以得出m2﹣2n≥0以及n2﹣2m≥0,进而得解;③可以采用举例反证的方法解决,据此即可得解.解答:解:①两个整数根且乘积为正,两个根同号,由韦达定理有,x1x2=2n>0,y1y2=2m>0,y1+y2=﹣2n<0,x1+x2=﹣2m<0,这两个方程的根都为负根,①正确;②由根判别式有:△=b2﹣4ac=4m2﹣8n≥0,△=b2﹣4ac=4n2﹣8m≥0,4m2﹣8n=m2﹣2n≥0,4n2﹣8m=n2﹣2m≥0,m2﹣2m+1+n2﹣2n+1=m2﹣2n+n2﹣2m+2≥2,(m﹣1)2+(n﹣1)2≥2,②正确;③∵y1+y2=﹣2n,y1y2=2m,∴2m﹣2n=y1+y2+y1y2,∵y1与y2都是负整数,不妨令y1=﹣3,y2=﹣5,则:2m﹣2n=﹣8+15=7,不在﹣1与1之间,③错误,其中正确的结论的个数是2,故选C.点评:本题主要考查了根与系数的关系,以及一元二次方程的根的判别式,还考查了举例反证法,有一定的难度,注意总结.二、填空题13、(荆州)将二次三项式x2+4x+5化成(x+p)2+q的形式应为(x+2)2+1.【分析】直接利用完全平方公式将原式进行配方得出答案.【解答】解:x2+4x+5=x2+4x+4+1=(x+2)2+1.故答案为:(x+2)2+1.【点评】此题主要考查了配方法的应用,正确应用完全平方公式是解题关键.14. (抚顺)若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为a ≤且a≠1.【分析】由一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a﹣1≠0,即a≠1,且△≥0,即△=(﹣1)2﹣4(a﹣1)=5﹣4a≥0,然后解两个不等式得到a的取值范围.【解答】解:∵一元二次方程(a﹣1)x2﹣x+1=0有实数根,∴a﹣1≠0即a≠1,且△≥0,即有△=(﹣1)2﹣4(a﹣1)=5﹣4a≥0,解得a≤,∴a的取值范围是a≤且a≠1.故答案为:a≤且a≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次方程的定义.15. (南通)设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)= 3.【分析】由题意可知x22﹣3x2=1,代入原式得到x1+x2,根据根与系数关系即可解决问题.【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,∴x12﹣3x1﹣1=0,x22﹣3x2﹣1=0,x1+x2=3,∴x22﹣3x2=1,∴x1+x2(x22﹣3x2)=x1+x2=3,故答案为3.【点评】本题考查根与系数关系、一元二次方程根的定义,解题的关键是灵活运用根与系数的关系定理,属于中考常考题型.16. (内蒙古)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为2m.【分析】设人行道的宽度为x米,根据矩形绿地的面积之和为480米2,列出一元二次方程.【解答】解:设人行道的宽度为x米,根据题意得,(30﹣3x)(24﹣2x)=480,解得x1=20(舍去),x2=2.即:人行通道的宽度是2m.故答案是:2.【点评】本题考查了一元二次方程的应用,利用两块相同的矩形绿地面积之和为480米2得出等式是解题关键.17. (如皋市校级二模)已知n是关于x的一元二次方程x2+m2x﹣2m=0(m为实数)的一个实数根,则n的最大值是1.【分析】由n是方程的根可得nm2﹣2m+n2=0且△=(﹣2)2﹣4nn2≥0,继而可得n的取值范围,即可知n的最大值.【解答】解:∵n是方程x2+m2x﹣2m=0(m为实数)的一个实数根,∴nm2﹣2m+n2=0,且△=(﹣2)2﹣4nn2≥0,即4﹣4n3≥0,∴n3≤1,则n≤1,∴n的最大值为1,故答案为:1.【点评】本题主要考查一元二次方程的解与根的判别式,根据题意得出关于n的不等式是解题的关键.18. (安徽模拟)对于实数a、b定义:a*b=a+b,a#b=ab,如:2*(﹣1)=2+(﹣1)=1,2#(﹣1)=2×(﹣1)=﹣2.以下结论:①[2+(﹣5)]#(﹣2)=6;②(a*b)#c=c(a*b);③a*(b#a)=(a*b)#a;④若x>0,且满足(1*x)#(1#x)=1,则x=.正确的是①②④(填序号即可)【分析】先读懂题意,根据题意求出每个式子的左边和右边,再判断是否正确即可.【解答】解:∵[2+(﹣5)]#(﹣2)=(﹣3)#(﹣2)=6,∴①正确;∵(a*b)#c=(a+b)#c=(a+b)c=ac+bc,c(a*b)=c(a+b)=ac+bc,∴②正确;∵a*(b#a)=a*ab=a+ab,(a*b)#a=(a+b)#a=(a+b)a=a2+ab,∴③错误;∵(1*x)#(1#x)=1,∴(1+x)#(x)=1,(1+x)x=1,x2+x﹣1=0,解得:x2=,x2=,∵x>0,∴x=,∴④正确.故答案为:①②④.【点评】本题考查了整式的混合运算,解一元二次方程,有理数的混合运算的应用,能正确根据运算法则和新运算进行化简和计算是解此题的关键.三、解答题19、(1)(山西)解方程:2(x﹣3)2=x2﹣9.【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,解得:x1=3,x2=9.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.(2)解方程:m2﹣6m﹣9991=0;【分析】①先进行配方,然后直接开平方求出方程的解;【解答】解:①∵m2﹣6m﹣9991=0,∴m2﹣6m+9﹣9﹣9991=0,∴(m﹣3)2=10000,∴m﹣3=±100,∴m1=103,m2=﹣97;20、解方程:(x2﹣5)2﹣3(x2﹣5)﹣4=0;【分析】把x2﹣5看成一个整体,利用因式分解法解方程即可;【解答】解:∵(x2﹣5)2﹣3(x2﹣5)﹣4=0,∴(x2﹣5)2﹣3(x2﹣5)+﹣﹣4=0,∴(x2﹣5﹣)2=,∴x2﹣=±,∴x2=,∴x2=或x2=,x=±2或x=±3,∴x1=2,x2=﹣2,x3=3,x4=﹣3;四、解答题21、(朝阳)为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.【分析】设每个粽子的定价为x元,由于每天的利润为800元,根据利润=(定价﹣进价)×销售量,列出方程求解即可.【解答】解:设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x﹣3)(500﹣10×)=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.【点评】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22、(梅州)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2.(1)求实数k的取值范围.(2)若方程两实根x1、x2满足x1+x2=﹣x1x2,求k的值.【分析】(1)根据根与系数的关系得出△>0,代入求出即可;(2)根据根与系数的关系得出x1+x2=﹣(2k+1),x1x2=k2+1,根据x1+x2=﹣x1x2得出﹣(2k+1)=﹣(k2+1),求出方程的解,再根据(1)的范围确定即可.【解答】解:(1)∵原方程有两个不相等的实数根,∴△=(2k+1)2﹣4(k2+1)>0,解得:k>,即实数k的取值范围是k>;(2)∵根据根与系数的关系得:x1+x2=﹣(2k+1),x1x2=k2+1,又∵方程两实根x1、x2满足x1+x2=﹣x1x2,∴﹣(2k+1)=﹣(k2+1),解得:k1=0,k2=2,∵k>,∴k只能是2.【点评】本题考查了根与系数的关系和根的判别式的应用,能正确运用性质进行计算是解此题的关键,题目比较好,难度适中.23、(重庆校级模拟)阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=4, =14, =194;(2)2x2﹣7x+2=0(x≠0),求的值.【分析】(1)模仿例题利用完全平方公式即可解决.(2)模仿例题利用完全平方公式以及立方和公式即可.【解答】解;(1)∵x2﹣4x+1=0,∴x+=4,∴(x+)2=16,∴x2+2+=16,∴x2+=14,∴(x2+)2=196,∴x4++2=196,∴x4+=194.故答案为4,14,194.(2)∵2x2﹣7x+2=0,∴x+=,x2+=,∴=(x+)(x2﹣1+)=×(﹣1)=.【点评】本题考查一元一次方程的解、完全平方公式、立方和公式,解决问题的关键是灵活应用完全平方公式,记住两边平方不能漏项(利用完全平方公式整体平方),属于中考常考题型.24、(鄂州)关于x的方程(k﹣1)x2+2kx+2=0.(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k﹣1)x2+2kx+2=0的两个根,记S=+x1+x2,S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.【分析】(1)分两种情况讨论:①当k=1时,方程是一元一次方程,有实数根;②当k ≠1时,方程是一元二次方程,所以证明判别式是非负数即可;(2)由韦达定理得x1+x2=﹣,x1x2=,代入到+x1+x2=2中,可求得k 的值.【解答】解:(1)当k=1时,原方程可化为2x+2=0,解得:x=﹣1,此时该方程有实根;当k≠1时,方程是一元二次方程,∵△=(2k)2﹣4(k﹣1)×2=4k2﹣8k+8=4(k﹣1)2+4>0,∴无论k为何实数,方程总有实数根,综上所述,无论k为何实数,方程总有实数根.(2)由根与系数关系可知,x1+x2=﹣,x1x2=,若S=2,则+x1+x2=2,即+x1+x2=2,将x1+x2、x1x2代入整理得:k2﹣3k+2=0,解得:k=1(舍)或k=2,∴S的值能为2,此时k=2.【点评】本题主要考查一元二次方程的定义、根的判别式、根与系数的关系,熟练掌握方程的根与判别式间的联系,及根与系数关系是解题的关键.五、解答题25、(荆州)已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.【分析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,再根据方程有两个整数根得△>0,得出m>0或m<﹣,符合题意,分别把m=1和﹣1代入方程后解出即可.(3)根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算得出m的等式,并由根的判别式组成两式可做出判断.【解答】解:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x=≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△>0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4)>0,则m>0或m<﹣;∵x1、x2是整数,k、m都是整数,∵x1+x2=3,x1x2==1﹣,∴1﹣为整数,∴m=1或﹣1,由(1)知k≠1,则m+2≠1,m≠﹣1∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;(3)|m|≤2成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣==﹣m,x1x2==n,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×n=(﹣1)2,m2﹣4n=1,n=①,△=(3m)2﹣4(2﹣k)(3﹣k)n=9m2﹣48n≥0②,把①代入②得:9m2﹣48×≥0,m2≤4,则|m|≤2,∴|m|≤2成立.【点评】本题考查了一元二次方程的根与系数的关系,考查了根的判别式及分式方程的解;注意:①解分式方程时分母不能为0;②一元二次方程有两个整数根时,根的判别式△为完全平方数.25、(韶关模拟)如图,点A(2,2)在双曲线y1=(x>0)上,点C在双曲线y2=﹣(x<0)上,分别过A、C向x轴作垂线,垂足分别为F、E,以A、C为顶点作正方形ABCD,且使点B在x轴上,点D在y轴的正半轴上.(1)求k的值;(2)求证:△BCE≌△ABF;(3)求直线BD的解析式.【解答】(1)解:把点A(2,2)代入y1=,得:2=,∴k=4;(2)证明:∵四边形ABCD是正方形,∴BC=AB,∠ABC=90°,BD=AC,∴∠EBC+∠ABF=90°,∵CE⊥x轴,AF⊥x轴,∴∠CEB=∠BFA=90°,∴∠BCE+∠EBC=90°,∴∠BCE=∠ABF,在△BCE和△ABF中,,∴△BCE≌△ABF(AAS);(3)解:连接AC,作AG⊥CE于G,如图所示:则∠AGC=90°,AG=EF,GE=AF=2,由(2)得:△BCE≌△ABF,∴BE=AF=2,CE=BF,设OB=x,则OE=x+2,CE=BF=x+2,∴OE=CE,∴点C的坐标为:(﹣x﹣2,x+2),代入双曲线y2=﹣(x<0)得:﹣(x+2)2=﹣9,解得:x=1,或x=﹣5(不合题意,舍去),∴OB=1,BF=3,CE=OE=3,∴EF=2+3=5,CG=1=OB,B(﹣1,0),AG=5,在Rt△BOD和Rt△CGA中,,∴Rt△BOD≌Rt△CGA(HL),∴OD=AG=5,∴D(0,5),设直线BD的解析式为:y=kx+b,把B(﹣1,0),D(0,5)代入得:,。

华东师大版数学九年级上册第22章和23章单元复习测试题附答案(各一套)

华东师大版数学九年级上册第22章和23章单元复习测试题附答案(各一套)

华东师大版数学九年级上册第22章单元测试题一、选择题(共10小题,每小题3分,共30分)1.下列方程中,是一元二次方程共有()①x2−x3+3=0②2x2−3xy+4=0③x2−1x=4④x2=1⑤3x2+x=20.A.2个B.3个C.4个D.5个2.一元二次方程x2−1=0的根为()A.x=1B.x=−1C.x1=1,x2=−1D.x=23.把方程(2x−1)(3x+2)=x2+2化成一般形式后,二次项的系数和常数项分别是()A.5,−4B.5,1C.5,4D.1,−44.方程x2=x的两根分别为()A.x1=−1,x2=0B.x1=1,x2=0C.x1=−l,x2=1D.x1=1,x2=15.已知2是关于x的方程:x2−x+a=0的一个解,则2a−1的值是()A.5B.−5C.3D.−36.用配方法解方程x2−2x−6=0时,原方程应变形为()A.(x+1)2=7B.(x−1)2=7C.(x+2)2=10D.(x−2)2=107.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程cx2+bx+a=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一个根,则一定有b2−4ac=(2am+b)2成立,其中正确的只有()A.①②④B.②③C.③④D.①④8.已知关于x的一元二次方程x2+mx+4=0有两个正整数根,则m可能取的值为()A.m>0B.m>4C.−4,−5D.4,59.设a、b是两个整数,若定义一种运算“△”,a△b=a2+ab,则方程x△(x−2)=12的实数根是()A.x1=−2,x2=3B.x1=2,x2=−3C.x1=−1,x2=6D.x1=1,x2=−610.关于x的一元二次方程x2−mx+5(m−5)=0的两个正实数根分别为x1,x2,且2x1+ x2=7,则m的值是()A.2B.6C.2或6D.7二、填空题(共10小题,每小题3分,共30分)11.用配方法解方程时,把方程x2−8x+3=0化成(x+m)2=n的形式,则m−n=________.12.某公司一月份的产值为70万元,二、三月份的平均增长率都为x,三月份的产值比二月份产值多10万元,则可列方程为________.13.方程√2x2−√3x−1=0的解为________.14.红星化工厂要在两年内使工厂的年利润翻一番,那么在这两年中利润的年平均增长率是________.15.若两个连续偶数的积为288,则这两个连续偶数的和为________.16.方程x2+3x+1=0的两个根为α、β,则√αβ+√βα的值为________.17.已知关于x的一元二次方程x2−(k+1)x−6=0的一个根是2,求方程的另一根x1=________和k=________.18.设a、b是方程x2+x−2014=0的两个实数根,则(a+1)2+b的值为________.19.方程√3x−2=x的解是________.20.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程________.三、解答题(共6小题,每小题10分,共60分)21.解方程:①(2x−1)2=9(直接开平方法)②x2+3x−4=0(用配方法)③x2−2x−8=0(用因式分解法)④(x+4)2=5(x+4)⑤(x+1)(x+2)=2x+4⑥x2+2x−9999=0.22.已知关于x的方程x2−(2m+1)x−(2m−1)=0的一个根为1,求m的值.23.已知m是方程x2−2014x+1=0的一个根,求代数式2m2−4027m−2+2014m2+1的值.24.把方程先化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数和常数项.(1)5x2=3x;(2)(√2−1)x+x2−3=0;(3)(7x−1)2−3=0;(4)(x2−1)(x2+1)=0;(5)(6m−5)(2m+1)=m2.25.设x1、x2是关于x的方程x2−4x+k+1=0的两个实数根.试问:是否存在实数k,使得x1⋅x2>x1+x2成立,请说明理由.26.已知:关于x 的方程x 2+(2m +4)x +m 2+5m 没有实数根. (1)求m 的取值范围;(2)若关于x 的一元二次方程mx 2+(n −2)x +m −3=0有实数根,求证:该方程两根的符号相同;(3)设(2)中方程的两根分别为α、β,若α:β=1:2,且n 为整数,求m 的最小整数值.参考答案:1.B2.C3.A4.B5.B6.B7.D8.C9.A 10.B 11.−1712.70(1+x)2=70(1+x)+10 13.x 1=√6+√3√2+84,x 2=√6−√3√2+8414.√2−1 15.34或−34 16.317.−3−2 18.201419.x 1=1,x 2=220.(30−2x)(20−x)=6×78 21.解:①(2x −1)2=9,开方得:2x −1=3或2x −1=−3, 解得:x 1=2,x 2=−1; ②x 2+3x −4=0,方程变形得:x 2+3x =4, 配方得:x 2+3x +94=254,即(x +32)2=254,开方得:x +32=±52,解得:x 1=1,x 2=−4;③x 2−2x −8=0,分解因式得:(x −4)(x +2)=0, 解得:x 1=4,x 2=−2;④方程整理得:(x +4)2−5(x +4)=0, 分解因式得:(x +4)(x +4−5)=0, 解得:x 1=−4,x 2=1;⑤方程整理得:(x +1)(x +2)−2(x +2)=0, 分解因式得:(x +2)(x +1−2)=0,解得:x1=−2,x2=1;⑥方程移项得:x2+2x=9999,配方得:x2+2x+1=10000,即(x+1)2=10000,开方得:x+1=100或x+1=−100,解得:x1=99,x2=−101.22.解:把x=1代入x2−(2m+1)x−(2m−1)=0得1−2m−1−2m+1=0,解得m=14.23.解:∵m是方程x2−2014x+1=0的一个根,∴m2−2014m+1=0,∴m2=2014m−1,m2+1=2014m,∴原式=2(2014m−1)−4027m−2+20142014m=m+1m−4=m2+1m−4=2014mm−4=2014−4=2010.24.解:(1)方程整理得:5x2−3x=0,二次项系数为5,一次项系数为−3,常数项为0;(2)x2+(√2−1)x−3=0,二次项系数为1,一次项系数为√2−1,常数项为−3;(3)方程整理得:49x2−14x−2=0,二次项系数为49,一次项为−14,常数项为−2;(4)方程整理得:14x2−1=0,二次项系数为14,一次项系数为0,常数项为−1;(5)方程整理得:11m2−4m−5=0,二次项系数为11,一次项系数为−4,常数项为−5.25.解:∵方程有实数根,∴b2−4ac≥0,∴(−4)2−4(k+1)≥0,即k≤3.∵x=4±√(−4)2−4(k+1)2=2±√3−k,∴x1+x2=(2+√3−k)+(2−√3−k)=4,x1⋅x2=(2+√3−k)⋅(2−√3−k)=k+1若x1⋅x2>x1+x2,即k+1>4,∴k>3.而k≤3,因此,不存在实数k,使得x1⋅x2>x1+x2成立.26.解:(1)∵关于x的方程x2+(2m+4)x+m2+5m没有实数根,∴△=(2m+4)2−4×1×(m2+5m)<0,∴m>4,∴m 的取值范围是m >4;(2)由于方程mx 2+(n −2)x +m −3=0有两个实数根可知m ≠0, 当m >4时,m−3m>0,即方程的两根之积为正,故方程的两根符号相同. (3)由已知得:m ≠0,α+β=−n−2m,α·β=m -3m.∵α:β=1:2, ∴3α=−n−2m,2a 2=m−3m.(n−2)29m 2=m−32m,即(n −2)2=92m(m −3). ∵m >4,且n 为整数,∴m 为整数;当m =6时,(n −2)2=92×6×3=81.∴m 的最小值为6.华东师大版数学九年级上册第23章单元测试题一、选择题(每小题3分,共24分)1.下列各组中的四条线段成比例的是( ) A .4cm ,2cm ,1cm ,3cm B .1cm ,2cm ,3cm ,5cm C .3cm ,4cm ,5cm ,6cm D .1cm ,2cm ,2cm ,4cm2.如果x 2=y 3,那么x +yx -y的值是( )A .5B .1C .-5D .-13.如果两个相似多边形面积的比为1∶5,则它们的相似比为( )A .1∶25B .1∶5C .1∶2.5D .1∶ 54.如图,在平行四边形ABCD 中,EF ∥AB 交AD 于E ,交BD 于F ,DE ∶EA =3∶4,EF =3,则CD 的长为( ) A .4 B .7 C .3 D .12第4题图5.如图,线段AB 两个端点的坐标分别为A (4,4),B (6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 和D 的坐标分别为( )A .(2,2),(3,2)B .(2,4),(3,1)C .(2,2),(3,1)D .(3,1),(2,2)第5题图6.如图,在平面直角坐标系中,A(0,4),B(2,0),点C在第一象限,若以A、B、C为顶点的三角形与△AOB相似(不包括全等),则点C的个数是()A.1 B.2 C.3 D.4第6题图7.阳光通过窗口AB照射到室内,在地面上留下2.7米的亮区DE(如图所示),已知亮区到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC为()A.4米 B.3.8米 C.3.6米 D.3.4米第7题图8.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB、BD于M、N两点.若AM=2,则线段ON的长为()A.22B.32C.1 D.62第8题图二、填空题(每小题3分,共30分)9.如图,为估计池塘两岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB 的中点M,N,测得MN=32m,则A,B两点间的距离是m.第9题图10.如图,是象棋棋盘的一部分,若位于点(1,-2)上,位于点上,则位于点(-2,1)上.第10题图11.如图,在△ABC 中,DE ∥BC ,AD AB =13,DE =6,则BC 的长是.第11题图12.如图,在△ABC 中,D 是AB 边上的一点,连接CD ,请添加一个适当的条件,使△ABC ∽△ACD (只填一个即可).13.在同一坐标系中,图形a 是图形b 向上平移3个单位长度得到的,如果图形a 中的点A 的坐标为(4,-2),则图形b 中与点A 对应的点A ′的坐标为.第12题图14.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1∶3,点A 的坐标为(0,1),则点E 的坐标是.第14题图第15题图15.如图,在Rt △ABC 中,CD 为斜边AB 上的高,DE 为Rt △CDB 的斜边BC 上的高.若BE =6,CE =4,则CD =.16.如图,在Rt △ABC 中,AB =BC ,∠B =90°,AC =10 2.四边形BDEF 是△ABC 的内接正方形(点D 、E 、F 在三角形的边上),则此正方形的面积是.第16题图第17题图第18题图17.如图,公园内有一个长5米的跷跷板AB ,AB 与地面平行,当支点O 在距离A 端2米时,A 端的人可以将B 端的人跷高1.5米,那么当支点O 在AB 的中点时,A 端的人下降同样的高度可以将B 端的人跷高米.18.如图,在四边形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD .E 为四边形ABCD 内一点且∠BEC =90°,将△BEC 绕C 点旋转90°,使BC 与DC 重合,得到△DCF .连接EF 交CD 于M ,已知BC =10,CF =6,则ME ∶MF 的值为.三、解答题(共66分)19.(8分)图中的两个多边形ABCDEF 和A 1B 1C 1D 1E 1F 1相似(各字母已按对应关系排列),∠A =∠D 1=135°,∠B =∠E 1=120°,∠C 1=95°. (1)求∠F 的度数;(2)如果多边形ABCDEF 和A 1B 1C 1D 1E 1F 1的相似比是1:1.5,且CD =15cm ,求C 1D 1的长度.20.(6分)如图所示,AD 、BE 是钝角△ABC 的边BC 、AC 上的高,求证:AD BE =ACBC.21.(6分)如图,M 、N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米、AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.22.(7分)已知:△ABC在平面直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);(2分)(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2∶1,点C2的坐标是(1,0);(3)△A2B2C2的面积是10平方单位.23.(7分)如图,在△ABC中,AB=AC=8,BC=6,点D为BC上一点,BD=2.过点D作射线DE交AC于点E,使∠ADE=∠B.求线段EC的长度.24.(10分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC·CD=CP·BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.25.(10分)如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM 交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.26.(12分)如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(-4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP 的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).(1)∠PBD的度数为45°,点D的坐标为(t,t)(用t表示);(2)当t为何值时,△PBE为等腰三角形?参考答案:1.D 2.C 3.D 4.B 5.C 6.D 7.A8.C 解析:作MH ⊥AC 于H ,如图.∵四边形ABCD 为正方形,∴∠MAH =45°,∴△AMH 为等腰直角三角形,∴AH =MH =22AM =22×2=2. ∵CM 平分∠ACB ,∴BM =MH =2,∴AB =2+2,∴AC =2AB =(2+2)×2=22+2,∴OC =12AC =2+1,CH =AC -AH =22+2-2=2+2. ∵BD ⊥AC ,∴ON ∥MH ,∴△CON ∽△CHM ,∴ON MH =OCCH ,即ON 2=2+12+2, ∴ON =1.故选C.9.64 10.(-2,1) 11.1812.∠B =∠ACD (答案不唯一) 13.(4,-5) 14.(3,3) 15.210 16.25 17.118.3∶4 解析:由题意知△BCE 绕点C 顺时转动了90°,∴△BCE ≌△DCF ,∠ECF =∠DFC =90°,∴CD =BC =10,DF ∥CE ,∴∠ECD =∠CDF .∵∠EMC =∠DMF ,∴△ECM ∽△FDM ,∴ME :MF =CE :DF .∵DF =CD 2-CF 2=8,∴ME :MF =CE :DF =6:8=3:4.19.解:(1)∵多边形ABCDEF 和A 1B 1C 1D 1E 1F 1相似,又∠C 和∠C 1、∠D 和∠D 1、∠E 和∠E 1是对应角,∴∠C =95°,∠D =135°,∠E =120°.由多边形内角和定理,知∠F =720°-(135°+120°+95°+135°+120°)=115°;(4分)(2) ∵多边形ABCDEF 和A 1B 1C 1D 1E 1F 1的相似比是1:1.5,且CD =15cm ,∴C 1D 1=15×1.5=22.5(cm).(8分)20.解:∵AD 、BE 是钝角△BAC 的高,∴∠BEC =∠ADC =90°.(2分)又∵∠DCA =∠ECB ,∴△DAC ∽△EBC .(5分)∴AD BE =AC BC.(6分) 21.解:在△ABC 与△AMN 中,∠A =∠A ,AC AB =3054=59,AM AN =10001800=59, ∴AC AB =AM AN ,即AC AM =AB AN,∴△ABC ∽△ANM ,(3分) ∴AC AM =BC MN ,即301000=45MN,∴MN =1.5千米.(5分) 答:M 、N 两点之间的直线距离是1.5千米.(6分)22.解:(1)(2,-2)(2分)(2)(1,0)(4分)(3)10(7分)22.解:∵AB =AC ,∴∠B =∠C .(2分)∵∠ADC =∠B +∠BAD ,∠ADC =∠ADE +∠EDC ,而∠B =∠ADE ,∴∠BAD =∠EDC .(5分)∴△ABD ∽△DCE .∴AB DC =BD EC .∴84=2EC.∴EC =1.(7分) 23.(1)证明:∵AB =AC ,∴∠B =∠C .(1分)∵∠APD =∠B ,∴∠APD =∠B =∠C .∵∠APC =∠BAP +∠B ,∠APC =∠APD +∠DPC ,∴∠BAP =∠DPC ,∴△ABP ∽△PCD ,(3分)∴BP CD =AB CP ,∴AB ·CD =CP ·BP .∵AB =AC ,∴AC ·CD =CP ·BP ;(5分)(3) 解:∵PD ∥AB ,∴∠APD =∠BAP .∵∠APD =∠C ,∴∠BAP =∠C .∵∠B =∠B ,∴△BAP ∽△BCA ,∴BA BC =BP BA .(8分)∵AB =10,BC =12,∴1012=BP 10,∴BP =253.(10分) 24.解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,OB =OD ,∴∠DMN =∠BCN ,∠MDN =∠NBC ,∴△MND ∽△CNB ,∴MD CB =DN BN.(2分)∵M 为AD 中点,∴MD =12AD =12BC ,即MD CB =12, ∴DN BN =12,即BN =2DN . 设OB =OD =x ,则有BD =2x ,BN =OB +ON =x +1,DN =x -1, ∴x +1=2(x -1),解得x =3,∴BD =2x =6;(5分)(2) ∵△MND ∽△CNB ,且相似比为1∶2,(3) ∴MN ∶CN =DN ∶BN =1∶2,(4) ∴S △MND =12S △CND =1,S △BNC =2S △CND =4. (5) ∴S △ABD =S △BCD =S △BCN +S △CND =4+2=6,(8分)(6) ∴S 四边形ABNM =S △ABD -S △MND =6-1=5.(10分)26.解:(1)45° (t ,t )(4分)(2)由题意,可得AP =OQ =1×t =t ,∴AO =PQ .(5分)∵四边形OABC 是正方形,∴AO =AB ,∴AB =PQ .∵DP ⊥BP ,∴∠BPD =90°.∴∠BPA =90°-∠DPQ =∠PDQ .又∵∠BAP =∠PQD =90°,∴△PAB ≌△DQP .(7分)∴AP =DQ =t ,PB =PD .显然PB ≠PE ,分两种情况:若EB =EP ,则∠EPB =∠EBP =45°,此时点P 与O 点重合,t =4; 若BE =BP ,则△PAB ≌△ECB .∴CE =PA =t .(9分)过D 点作DF ⊥OC 于点F ,易知四边形OQDF 为正方形,则DF =OF =t ,EF =4-2t .∵DF ∥BC ,∴△BCE ∽△DFE ,∴BC DF =CE EF ,∴4t =t 4-2t.解得t =-4±42(负根舍去). ∴t =42-4.(11分)综上,当t =42-4或4时,△PBE 为等腰三角形.(12分)。

(精练)华师大版九年级上册数学第24章 解直角三角形含答案

(精练)华师大版九年级上册数学第24章 解直角三角形含答案

华师大版九年级上册数学第24章解直角三角形含答案一、单选题(共15题,共计45分)1、已知三角形三边的长为a、b、c,则代数式(a-b)2-c2的值为()A.正数B.负数C.0D.非负数2、长度分别为3,8,x的三条线段能组成一个三角形,x的值可能是( )A.11B.5C.7D.43、在□ABCD中,对角线AC,BD相交于O点,AC=10,BD=8,则AD长的取值范围是()A.AD>1B.AD<9C.1<AD<9D.AD>104、如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.200 米C.220 米D.100(+1)米5、平行四边形的一边长是12,那么这个平行四边形的两条对角线的长可以是()A.10和34B.18和20C.14和10D.10和126、如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.()米B.()米C.()米 D.()米7、活动课上,老师给出长度分别是3cm,4cm,7cm,10cm的四根木棒,要求从中任选三根围成一个三角形,下面是四位同学分别选择的结果,你认为能围成三角形的是()A.3cm,4cm,7cmB.3cm,4cm,10cmC.3cm,7cm,10cm D.4cm,7cm,10cm8、如图,某超市自动扶梯的倾斜角为,扶梯长为米,则扶梯高的长为()A. 米B. 米C. 米D. 米9、一艘轮船从港口O出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A处,此时观测到其正西方向50海里处有一座小岛B.若以港口O 为坐标原点,正东方向为x轴的正方向,正北方向为y轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B所在位置的坐标是()A.(30 -50,30)B.(30,30 -50)C.(30 ,30) D.(30,30 )10、若菱形的周长为8,高为1,则菱形两邻角的度数比为()A.3:1B.4:1C.5:1D.6:111、在Rt△ABC中,∠C=90°,若BC=1,AB=,则tanA的值为A. B. C. D.212、如图,在Rt△ABC中,∠C = 90°,∠B = 30°,BC =" 4" cm,以点C为圆心,以2 cm的长为半径作圆,则⊙C与AB的位置关系是().A.相离B.相切C.相交D.相切或相交13、若平行四边形的两条对角线长为6 cm和16 cm,则下列长度的线段可作为平行四边形边长的是()A.5cmB.8cmC.12cmD.16cm14、AE,CF是锐角三角形ABC的两条高,如果AE:CF=3:2,则sin∠BAC:sin∠ACB等于()A.3:2B.2:3C.9:4D.4:915、在Rt△ABC中,∠C=90°,sinA= ,则tanB的值为()A. B. C. D.二、填空题(共10题,共计30分)16、定义;在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫做图形的γ(a,θ)变换。

华师版九年级数学上册第22章达标检测卷附答案

华师版九年级数学上册第22章达标检测卷附答案

华师版九年级数学上册第22章达标检测卷一、选择题(每题3分,共30分)1.下列方程是一元二次方程的是()A.9x+2=0 B.z2+x=1 C.3x2-8=0 D.1x+x2=02.若关于x的一元二次方程8x2-16x-25+a2=0没有常数项,则a的值是() A.5 B.-5 C.±5 D.0或23.方程x2-2=0的根为()A.x1=x2=2 B.x1=x2= 2 C.x1=-2,x2=2 D.x1=-2,x2= 2 4.已知关于x的方程x2+mx-6=0的一个根为2,则m的值及另一个根是() A.1,3 B.-1,3 C.1,-3 D.-1,-35.一个等腰三角形的两条边长分别为方程x2-7x+10=0的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或96.某城市2018年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2020年底增加到363公顷,设绿化面积平均每年的增长率为x.由题意,所列方程正确的是()A.300(1+x)=363 B.300(1+x)2=363C.300(1+2x)=363 D.363(1-x)2=3007.在等腰三角形ABC中,BC=8,AB,AC的长是关于x的方程x2-10x+m=0的两根,则m的值是()A.16 B.24 C.25 D.16或258.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.若关于x的一元二次方程x2-3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2-ab+b2=18,则ab+ba的值是()A.3 B.-3 C.5 D.-510.一个矩形纸片内放入两个边长分别为3 cm和4 cm的小正方形纸片,按照图①放置,矩形纸片没有被两个正方形纸片覆盖的部分(阴影部分)的面积为8cm2;按照图②放置,矩形纸片没有被两个正方形纸片覆盖的部分的面积为11 cm2,若把两张正方形纸片按图③放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为()A.6 cm2B.7 cm2C.12 cm2D.19 cm2二、填空题(每题3分,共30分)11.把方程(2x+1)(x-2)=5-3x整理成一般形式后,得______________.12.方程x2-2x-3=0的根为________________.13.已知x=1是一元二次方程x2+ax+b=0的一个根,则(a+b)2022的值为________.14.若关于x的一元二次方程(a-1)x2-x+1=0有实数根,则a的取值范围是____________.15.已知关于x的一元二次方程x2+(m+3)x+m+1=0的两个实数根为x1,x2,若x21+x22=4,则m的值为____________.16.对于任意实数a,b,定义:a*b=a(a+b)+b,已知a*2.5=28.5,则实数a 的值是__________.17.若x,y满足(x2+y2+2)(x2+y2-2)=0,则x2+y2的值为________.18.已知a,b,c是△ABC的三边长,若方程(a-c)x2+2bx+a+c=0有两个相等的实数根,则△ABC是________三角形.19.若x2-3x+1=0,则x2x4+x2+1的值为________.20.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是________.三、解答题(21,26题每题12分,22,23题每题8分,其余每题10分,共60分)21.用适当的方法解下列方程:(1)x2-2x=5;(2)(7x+3)2=2(7x+3);(3)x2-3x-94=0; (4)(y+1)(y-1)=2y-1.22.已知关于x的方程(a-1)x2-4x-1+2a=0的一个根为x=3.(1)求a的值及方程的另一个根;(2)如果一个三角形的三边长都是这个方程的根,求这个三角形的周长.23.已知关于x的方程(k-2)x k2-2+3x-5=0是一元二次方程,求直线y=kx-k 与两坐标轴围成的三角形的面积.24.关于x的一元二次方程x2+2(m-1)x+m2-1=0有两个不相等的实数根x1,x2.(1)求实数m的取值范围;(2)是否存在实数m,使得x21+x22=16+x1x2成立?如果存在,求出m的值;如果不存在,请说明理由.25.俗语有言“冬腊风腌,蓄以御冬”,没有腊味,如何能算得上是过冬?腊肉一直享有“一家煮肉百家香”的赞语,腌制好的腊肉,吃起来味道醇香,肥而不腻口,瘦而不塞牙,不论是煎、蒸、炒、炸,皆成美味.三口村店为迎接新年的到来,12月份购进了一批腊肉和香肠,已知用4 000元购进腊肉的数量与用5 000元购进香肠的数量一样多,其中每袋香肠的进价比每袋腊肉的进价多10元.(1)每袋腊肉和香肠的进价分别是多少元?(2)12月份上半月,该店每袋腊肉和香肠的售价分别为60元和80元,销售量之比为4:3,销售利润为3 400元.12月份下半月,该店调整了销售价格,在上半月的基础上,每袋腊肉的售价增加了12a%(a>0),每袋香肠的售价减少了15a元,结果腊肉的销售量比上半月腊肉的销售量增加了a%,香肠的销售量比上半月香肠的销售量增加了13,下半月的销售利润比上半月的销售利润多864元.求a的值.26.如图,已知A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到点B为止,点Q以2 cm/s的速度向点D移动.问:(1)P,Q两点出发多长时间后,四边形PBCQ的面积是33 cm2?(2)P,Q两点出发多长时间后,点P与点Q之间的距离是10 cm?答案一、1.C 2.C 3.D 4.C 5.A 6.B7.D 8.B 9.D10.B 【点拨】设矩形纸片的长为x cm ,宽为y cm ,依题意,得⎩⎨⎧xy =16+3(x -4)+8①,xy =16+3(y -4)+11②,(②-①)÷3,得y -x +1=0,∴x =y +1③.将③代入②,得y (y +1)=16+3(y -4)+11,整理,得y 2-2y -15=0,解得y 1=5,y 2=-3(舍去),∴x =6.∴按题图③放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为 (x -4)(y -3)+(x -3)(y -4)=2×2+3×1=7(cm 2).故选B .二、11.2x 2-7=0 12.x 1=3,x 2=-113.1 【点拨】将x =1代入方程x 2+ax +b =0,得1+a +b =0,∴a +b =-1,∴(a +b )2 022=1.14.a ≤54且a ≠1【点拨】∵一元二次方程(a -1)x 2-x +1=0有实数根,∴a -1≠0,即a ≠1,且Δ≥0,即(-1)2-4(a -1)=5-4a ≥0,解得a ≤54. ∴a 的取值范围是a ≤54且a ≠1.15.-1或-316.-132或4 17.2 18.直角19.18 【点拨】由x 2-3x +1=0得x 2=3x -1,则x 2x 4+x 2+1=x 2(3x -1)2+x 2+1=x 210x 2-6x +2=3x -110(3x -1)-6x +2=3x -124x -8=3x -18(3x -1)=18.20.6三、21.解:(1)配方,得x 2-2x +1=6,即(x -1)2=6.∴x -1=±6.∴x 1=1+6,x 2=1- 6.(2)原方程变形为(7x +3)2-2(7x +3)=0.分解因式,得(7x +3)(7x +3-2)=0.∴x 1=-37,x 2=-17.(3)∵a =1,b =-3,c =-94,∴Δ=b 2-4ac =(-3)2-4×1×⎝ ⎛⎭⎪⎫-94=12. ∴x =3±122=3±2 32. ∴x 1=32 3,x 2=-12 3.(4)原方程化为y 2-2y =0.分解因式,得y (y -2)=0.∴y 1=2,y 2=0.22.解:(1)将x =3代入方程(a -1)x 2-4x -1+2a =0中,得9(a -1)-12-1+2a =0,解得a =2.将a =2代入原方程中得x 2-4x +3=0,分解因式,得(x -1)(x -3)=0,∴x 1=1,x 2=3.∴方程的另一个根是x =1.(2)∵三角形的三边长都是这个方程的根,∴①当三边长都为1时,周长为3;②当三边长都为3时,周长为9;③当两边长为3,一边长为1时,周长为7;④当两边长为1,一边长为3时,不满足三角形三边关系,不能构成三角形. 故三角形的周长为3或9或7.23.解:∵(k -2)x k 2-2+3x -5=0是关于x 的一元二次方程,∴⎩⎨⎧k 2-2=2,k -2≠0,解得k =-2. ∴直线对应的函数表达式为y =-2x +2.把x =0代入直线对应的函数表达式,得y =2;把y =0代入直线对应的函数表达式,得x =1.∴直线y =-2x +2与两坐标轴的交点坐标分别为(1,0),(0,2).∴直线与两坐标轴围成的三角形的两直角边的长分别为1和2.∴所求面积为12×1×2=1.24.解:(1)∵方程x 2+2(m -1)x +m 2-1=0有两个不相等的实数根x 1,x 2, ∴[2(m -1)]2-4(m 2-1)>0,即-8m +8>0,∴m <1.(2)存在.易知x 1+x 2=-2(m -1),x 1·x 2=m 2-1.∵x 21+x 22=16+x 1x 2,∴(x 1+x 2)2=16+3x 1x 2,∴4(m -1)2=16+3(m 2-1),解得m 1=-1,m 2=9.∵m <1,∴m =9舍去,∴m =-1.25.解:(1)设每袋腊肉的进价为x 元,则每袋香肠的进价为(x +10)元.根据题意可列方程4 000x =5 000x +10, 解得x =40,经检验x =40是原方程的解且符合实际.40+10=50(元).故每袋腊肉的进价为40元,每袋香肠的进价为50元.(2)设上半月腊肉销售量为m 袋,则上半月香肠销售量为34m 袋.根据题意可列方程60m +80×34m -40m -50×34m =3 400,解得m =80,80×34=60(袋).故上半月腊肉销售量为80袋,香肠销售量为60袋.下半月调整售价后,腊肉的售价为60×⎝ ⎛⎭⎪⎫1+12a %元,销售量为80×(1+a %)袋;香肠的售价为⎝ ⎛⎭⎪⎫80-15a 元,销售量为60×⎝ ⎛⎭⎪⎫1+13=80(袋),下半月的利润为3 400+864=4 264(元).可列方程[60×⎝ ⎛⎭⎪⎫1+12a %-40]×[80×(1+a %)]+⎣⎢⎡⎦⎥⎤80-15a -50×80=4 264, 即(a -10)(a +110)=0,解得a 1=10,a 2=-110(舍去).故a 的值为10.26.解:(1)设P ,Q 两点出发x s 后,四边形PBCQ 的面积是33 cm 2,则由题意得(16-3x +2x )×6×12=33, 解得x =5.即P ,Q 两点出发5 s 后,四边形PBCQ 的面积是33 cm 2.(2)设P ,Q 两点出发t s 后,点P 与点Q 之间的距离是10 cm ,过点Q 作QH ⊥AB 于点H .在Rt △PQH 中,有(16-5t )2+62=102,解得t 1=1.6,t 2=4.8(均符合题意). 所以P ,Q 两点出发1.6 s 或4.8 s 后,点P 与点Q 之间的距离是10 cm.九年级数学上册期末达标检测卷一、选择题(每题4分,共40分)1.已知a ,d ,c ,b 是成比例线段,其中a =3 cm ,b =2 cm ,c =6 cm ,则d 的长度为( )A .4 cmB .1 cmC .9 cmD .5 cm2.在反比例函数y=k-1x图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是()A.k<0 B.k>0 C.k<1 D.k>13.对于抛物线y=-12(x+2)2+3,有下列结论:①抛物线的开口向下;②对称轴为直线x=2;③顶点坐标为(-2,3);④当x>2时,y随x的增大而减小.其中正确结论的个数为()A.1 B.2 C.3 D.44.如图,在▱ABCD中,E是AD边的中点,连接BE并延长交CD的延长线于点F,则△EDF与△BCF的周长之比是()A.1:2 B.1:3 C.1:4 D.1:55.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AC=5,BC =2,则sin∠ACD的值为()A.52 B.2 55 C.53 D.236.如图,P为线段AB上一点,AD与BC相交于点E,∠CPD=∠A=∠B,BC 交PD于点F,AD交PC于点G,则图中相似三角形有()A.1对B.2对C.3对D.4对7.如图,在直角平面坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的相似比为13的位似图形△OCD ,则点C 的坐标为( )A .(-1,-1) B.⎝ ⎛⎭⎪⎫-43,-1 C.⎝ ⎛⎭⎪⎫-1,-43 D .(-2,-1) 8.如图,在笔直的海岸线l 上有A ,B 两个观测站,且AB =2 km.从A 站测得船C 在北偏东45°方向,从B 站测得船C 在北偏东22.5°方向,且tan 22.5°=2-1,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 kmB .(2+2)kmC .2 2 kmD .(4-2)km9.如图,已知边长为4的正方形EFCD 截去一角成为五边形ABCDE ,其中AF=2,BF =1.在AB 上找一点P ,使得矩形PNDM 有最大面积,则矩形PNDM 面积的最大值为( )A .8B .12 C.252 D .1410.如图,在平面直角坐标系中,抛物线y =-x 2+2 3x 的顶点为A ,且与x轴的正半轴交于点B ,点P 为该抛物线对称轴上一点,则OP +12AP 的最小值为( )A.3+2214B.3+232 C .3 D .2 3二、填空题(每题5分,共20分)11.如图,在由边长相同的小正方形组成的网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点P ,则tan ∠APD 的值是________.12.如图,点P 是反比例函数y =43x (x >0)图象上一动点,在y 轴上取点Q ,使得以P ,Q ,O 为顶点的三角形是含有30°角的直角三角形,则符合条件的点Q 的坐标是________________.13.如图是二次函数y =ax 2+bx +c (a ≠0)的图象,其与x 轴的交点的横坐标分别为x 1,x 2,其中-2<x 1<-1,0<x 2<1,下列结论:①abc >0;②4a -2b +c <0;③2a -b <0.其中正确的有____________(填序号).14.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,使点C 恰好落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,使点A 恰好落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG +DF =FG .其中正确的有____________(填序号).三、解答题(15~18题每题8分;19,20题每题10分;21,22题每题12分;23题14分,共90分)15.计算:(-1)2 022-6tan30°+⎝ ⎛⎭⎪⎫12-2+|1-3|. 16.已知抛物线y =12x 2-4x +7与直线y =12x 交于A ,B 两点(点A 在点B 左侧).(1)求A ,B 两点的坐标;(2)求抛物线顶点C 的坐标,并求△ABC 的面积.17.如图,在△ABC中,AB=43,AC=10,∠B=60°,求△ABC的面积.18.如图,△ABC三个顶点的坐标分别为A(1,2),B(3,1),C(2,3),以原点O 为位似中心,将△ABC放大为原来的2倍得到△A′B′C′.(1)在图中第一象限内画出符合要求的△A′B′C′(不要求写画法);(2)计算△A′B′C′的面积.19.如图,已知在正方形ABCD中,BE平分∠DBC,交CD边于点E,将△BCE 绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG·BG=4,求BE的长.20.设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数表达式,并画出这个函数的图象;(2)若反比例函数y2=kx的图象与函数y1的图象相交于点A,且点A的纵坐标为2.①求k的值;②结合图象,当y1>y2时,写出x的取值范围.21.如图,某大楼DE的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:3,AB=8米,AE=12米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:2≈1.414,3≈1.732)22.某公司经销一种绿茶,每千克成本为50元.经市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体表达式为w=-2x+240.设这种绿茶在这段时间内的销售利润为y元,解答下列问题:(1)求y与x的函数表达式;(2)当x取何值时,y的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2 250元的销售利润,销售单价应定为多少?23.矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图①,已知折痕与边BC交于点O.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.答案一、1.B 2.D3.C【点拨】∵a<0,∴抛物线的开口向下,①正确;抛物线y=-12(x+2)2+3的对称轴为直线x=-2,②错误;顶点坐标为(-2,3),③正确;④抛物线开口向下,当x>2时,图象是下降趋势,y随x的增大而减小,④正确.故选C.4.A【点拨】在▱ABCD中,AD=BC,AD∥BC,∵E是AD的中点,∴DE=12AD=12BC.由AD∥BC可得,△EDF∽△BCF.它们的周长比等于相似比,∴周长比等于ED BC=12BC:BC=1:2.故选A.5.C【点拨】∵在Rt△ABC中,∠ACB=90°,AC=5,BC=2,∴AB =AC 2+BC 2=(5)2+22=3.∵∠ACB =90°,CD ⊥AB ,∴∠ACD +∠BCD =90°,∠B +∠BCD =90°,∴∠ACD =∠B ,∴sin ∠ACD =sin B =AC AB =53.故选C.6.C 【点拨】∵∠CPD =∠A ,∠D =∠D ,∴△ADP ∽△PDG ,∴∠APD =∠PGD ,∴∠FPB =∠AGP .∵∠CPF =∠B ,∠C =∠C ,∴△CPF ∽△CBP ,∴∠CFP =∠CPB ,∴∠PFB =∠APG ;在△AGP 和△BPF 中,∠AGP =∠BPF ,∠APG =∠BFP ,∴△AGP ∽△BPF .故选C.7.B 8.B9.B 【点拨】延长NP 交EF 于点G ,设PG =x ,则PN =4-x .∵PG ∥BF ,∴△APG ∽△ABF , ∴AG AF =PG BF ,即AG 2=x 1,解得AG =2x ,∴PM =EG =EA +AG =2+2x ,∴S 矩形PNDM =PM ·PN =(2+2x )(4-x )=-2x 2+6x +8=-2⎝ ⎛⎭⎪⎫x -322+252(0≤x ≤1),当x =1时,矩形PNDM 的面积最大,最大值为12.故选B .10.C 【点拨】连接AB ,过点P 作PC ⊥AB 于点C .设抛物线的对称轴与x 轴的交点为点D .易求出抛物线的对称轴为直线x =3,顶点A (3,3),故BD =OD =3,AD =3,在Rt △ABD 中,tan ∠BAD =BD AD =33,∴∠BAD =30°,∴PC =12AP .当O ,P ,C 三点共线时,OP +PC 的长最短,最短距离为sin ∠OBC ·OB =sin 60°×2 3=3.∴OP +12AP 的最小值为3.故选C.二、11.212.(0,23)或(0,2)或⎝⎛⎭⎪⎫0,833或(0,8) 13.①②③ 【点拨】①∵图象开口向下,∴a <0,∵图象的对称轴在y 轴左侧,∴-b 2a <0,而a <0,∴b <0,∵图象与y 轴的交点在正半轴上,∴c >0,∴abc >0,故结论正确.②∵-2<x 1<-1,∴当x =-2时,y =4a -2b +c <0,故结论正确.③∵-2<x 1<-1,0<x 2<1,∴-b 2a >-1,∵a <0,∴2a -b <0,故结论正确.故正确的结论有①②③.14.①③④ 【点拨】∵△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处, ∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10,∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,∴∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确.HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AG DF ,∴△ABG 与△DEF 不相似,∴②错误.∵S △ABG =12AB ·AG =12×6×3=9,S △FGH =12GH ·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确.∵AG +DF =3+2=5,而FG =5,∴AG +DF =FG ,∴④正确.三、15.解:原式=1-6×33+4+3-1=4- 3.16.解:(1)联立⎩⎪⎨⎪⎧y =12x 2-4x +7,y =12x , 解得⎩⎨⎧x =2,y =1或⎩⎪⎨⎪⎧x =7,y =72. ∴A (2,1),B ⎝ ⎛⎭⎪⎫7,72. (2)∵y =12x 2-4x +7=12(x -4)2-1,∴顶点C 的坐标为(4,-1).过顶点C 作CD ∥x 轴交直线y =12x 于点D ,如图.在y =12x 中,令y =-1,得12x =-1,解得x =-2,∴CD =6,∴S △ABC =S △BCD -S △ACD =12×6×⎝ ⎛⎭⎪⎫72+1-12×6×(1+1)=7.5.17.解:过点A 作AD ⊥BC 于点D .在Rt △ABD 中,AD =AB ·sin B =4 3×32=6,BD =AB ·cos B =4 3×12=2 3. 在Rt △ACD 中,CD =AC 2-AD 2=102-62=8, ∴BC =BD +CD =2 3+8.∴S △ABC =12BC ·AD =12×(23+8)×6=63+24.18.解:(1)如图.(2)S △A ′B ′C ′=4×4-12×2×2-12×2×4-12×2×4=6. 19.(1)证明:∵BE 平分∠DBC ,∴∠DBG =∠CBE ,根据旋转的性质,得∠EDG =∠CBE ,∴∠DBG =∠EDG ,又∵∠DGB =∠EGD ,∴△BDG ∽△DEG .(2)解:由(1)知△BDG ∽△DEG ,∴BG DG =DG EG ,∴DG 2=EG ·BG .∵EG ·BG =4,∴DG 2=4,∴DG =2(负值舍去).∵∠EDG =∠CBE ,∠DEG =∠BEC ,∴∠BGD =∠BCE =90°.∴∠BGF =∠BGD =90°.又∵BG =BG ,∠DBG =∠FBG ,∴△DBG ≌△FBG .∴DG =FG ,∴DF =2DG =4,由题意可知,BE =DF ,∴BE =4.20.解:(1)由题意得,y 1=||x ,即y 1=||x =⎩⎨⎧x ,x ≥0,-x ,x <0.函数图象如图所示.(2)①∵点A的纵坐标为2,点A在函数y1的图象上,∴||x=2,即x=±2.∴点A 的坐标为(2,2)或(-2,2).∴k=±4.②当k=4时,图象如图①,当y1>y2时,x的取值范围为x<0或x>2;当k=-4时,图象如图②,当y1>y2时,x的取值范围为x<-2或x>0. 21.解:(1)过点B作BG⊥DE于点G,如图.在Rt△ABH中,tan ∠BAH=13=33,∴∠BAH=30°,∴BH=12AB=4(米).∴点B距水平面AE的高度BH为4米.(2)由(1)知BH=4(米),∴GE=BH=4(米),AH=4 3(米).∴BG=HE=AH+AE=(4 3+12)米.在Rt△BGC中,∠CBG=45°,∴CG=BG=(4 3+12)米.在Rt△ADE中,∠DAE=60°,AE=12米,∴DE=AE·tan ∠DAE=12·tan 60°=12 3(米).∴CD=CG+GE-DE=4 3+12+4-12 3=16-8 3≈16-8×1.732≈2.1(米).∴广告牌CD的高度约为2.1米.22.解:(1)由题意得y=(x-50)·w=(x-50)·(-2x+240)=-2x2+340x-12 000,∴y与x的函数表达式为y=-2x2+340x-12 000.(2)y=-2x2+340x-12 000=-2(x-85)2+2 450,∴当x=85时,y的值最大.(3)当y=2 250时,可得-2(x-85)2+2 450=2 250,解这个方程,得x1=75,x2=95,根据题意知,x=95不合题意,故舍去,∴销售单价应定为75元/千克.23.(1)①证明:如图,∵四边形ABCD 是矩形,∴∠C =∠D =∠B =90°,∴∠1+∠3=90°.由折叠可得∠APO =∠B =90°,∴∠1+∠2=90°.∴∠3=∠2.又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1:4,且△OCP ∽△PDA , ∴OP P A =CP DA =12.∴CP =12AD =4,AP =2OP .设OP =x ,则易得CO =8-x .在Rt △PCO 中,∠C =90°,由勾股定理得 x 2=(8-x )2+42.解得x =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不变.作MQ ∥AN ,交PB 于点Q ,如图.∵AP =AB ,MQ ∥AN ,∴∠APB=∠ABP=∠MQP.∴MP=MQ.又∵BN=PM,∴BN=QM.∵MQ∥AN,∴∠QMF=∠BNF,∠MQF=∠FBN,∴△MFQ≌△NFB.∴QF=FB.∴QF=12QB.∵MP=MQ,ME⊥PQ,∴EQ=12PQ.∴EF=EQ+QF=12PQ+12QB=12PB.∵PC=4,BC=8,∠C=90°. ∴PB=82+42=4 5,∴EF=12PB=2 5.∴动点M,N在移动的过程中,线段EF的长度不变,恒为2 5.。

华师大版九年级数学上册第22章 一元二次方程解码专训

华师大版九年级数学上册第22章 一元二次方程解码专训

解码专训一:根与系数的关系的四种应用类型名师点金:利用一元二次方程的根与系数的关系可以不解方程,仅通过系数就反映出方程两根的特征.在实数范围内运用一元二次方程的根与系数的关系时,必须注意Δ≥0这个前提,而应用判别式Δ的前提是二次项系数不为0.因此,解题时要注意分析题目中有没有隐含条件Δ≥0和a ≠0.利用根与系数的关系求代数式的值1.设方程4x 2-7x -3=0的两根为x 1,x 2,不解方程求下列各式的值.(1)(x 1-3)(x 2-3);(2)x 2x 1+1+x 1x 2+1;(3)x 1-x 2.利用根与系数的关系构造一元二次方程2.构造一个一元二次方程,使它的两根分别是方程5x 2+2x -3=0各根的负倒数.利用根与系数的关系求字母的值或取值范围3.已知关于x 的一元二次方程2x 2-mx -2m +1=0的两根的平方和是294,求m 的值.巧用根与系数的关系确定字母系数的存在性4.已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根,是否存在实数k ,使(2x 1-x 2)(x 1-2x 2)=-32成立?若存在,求出k 的值;若不存在,请说明理由.解码专训二:一元二次方程中的常见热门考点名师点金:一元二次方程题的类型非常丰富,常见的有一元二次方程的根、一元二次方程的解法、一元二次方程根的情况、一元二次方程根与系数的关系、一元二次方程的应用等,只要我们掌握了不同类型题的解法特点,就可以使问题变得简单,明了.一元二次方程的根1.(2015·兰州)若一元二次方程ax 2-bx -2 015=0有一根为x =-1,则a +b =________.2.若关于x 的一元二次方程ax 2+bx +c =0有一根为-1,且a =4-c +c -4-2,求(a +b )2 0162 015c 的值.一元二次方程的解法3.用配方法解方程x 2-2x -1=0时,配方后所得的方程为( )A .(x +1)2=0B .(x -1)2=0C .(x +1)2=2D .(x -1)2=24.一元二次方程x2-2x-3=0的解是()A.x1=-1,x2=3 B.x1=1,x2=-3C.x1=-1,x2=-3 D.x1=1,x2=35.选择适当的方法解下列方程:(1)(x-1)2+2x(x-1)=0;(2)x2-6x-6=0;(3)6 000(1-x)2=4 860;(4)(10+x)(50-x)=800;(5)(中考·山西)(2x-1)2=x(3x+2)-7.一元二次方程根的判别式6.(2015·河北)若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥17.在等腰三角形ABC中,三边长分别为a,b,c.其中a=5,若关于x的方程x2+(b+2)x+(6-b)=0有两个相等的实数根,求△ABC的周长.8.(2015·南充)已知关于x的一元二次方程(x-1)(x-4)=p2,p为实数.(1)求证:方程有两个不相等的实数根.(2)p为何值时,方程有整数解.(直接写出三个,不需说明理由).一元二次方程根与系数的关系9.已知α,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足1α+1β=-1,则m 的值是( )A .3B .1C .3或-1D .-3或110.关于x 的方程ax 2-(3a +1)x +2(a +1)=0有两个不相等的实数根x 1,x 2,且有x 1+x 2-x 1x 2=1-a ,求a 的值.11.设x 1,x 2是关于x 的一元二次方程x 2+2ax +a 2+4a -2=0的两个实数根,当a 为何值时,x 12+x 22有最小值?最小值是多少?一元二次方程的应用12.(2015·乌鲁木齐)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?13.小林准备进行如下操作实验:把一根长为40 cm 的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm 2,小林该怎么剪?(求出剪成的两段铁丝的长度)(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm 2.”他的说法对吗?请说明理由.新定义问题14.(中考·厦门)若x 1,x 2是关于x 的方程x 2+bx +c =0的两个实数根,且|x 1|+|x 2|=2|k|(k 是整数),则称方程x 2+bx +c =0为“偶系二次方程”.如方程x 2-6x -27=0,x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0,x 2+4x +4=0都是“偶系二次方程”.判断方程x 2+x -12=0是否是“偶系二次方程”,并说明理由.答案解码专训一1.解:根据一元二次方程根与系数的关系,有x 1+x 2=74,x 1x 2=-34.(1)(x 1-3)(x 2-3)=x 1x 2-3(x 1+x 2)+9=-34-3×74+9=3.(2)x 2x 1+1+x 1x 2+1=x 2(x 2+1)+x 1(x 1+1)(x 2+1)(x 1+1)= x 12+x 22+x 1+x 2x 1x 2+x 1+x 2+1=(x 1+x 2)2-2x 1x 2+(x 1+x 2)x 1x 2+(x 1+x 2)+1= ⎝ ⎛⎭⎪⎫742-2×⎝ ⎛⎭⎪⎫-34+74-34+74+1=10132. (3)∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫742-4×⎝ ⎛⎭⎪⎫-34=9716, ∴x 1-x 2=±9716=±1497.2.解:设方程5x 2+2x -3=0的两根为x 1,x 2,则x 1+x 2=-25,x 1x 2=-35.设所求方程为y 2+py +q =0,其两根为y 1,y 2,令y 1=-1x 1,y 2=-1x 2. ∴p =-(y 1+y 2)=-⎝ ⎛⎭⎪⎫-1x 1-1x 2=1x 1+1x 2=x 1+x 2x 1x 2=23,q =y 1y 2=⎝ ⎛⎭⎪⎫-1x 1⎝ ⎛⎭⎪⎫-1x 2=1x 1x 2=-53. ∴所求的方程为y 2+23y -53=0,即3y 2+2y -5=0.3.解:设方程两根为x 1,x 2,由已知得⎩⎪⎨⎪⎧x 1+x 2=m 2,x 1x 2=-2m +12.∵x 12+x 22=(x 1+x 2)2-2x 1x 2=294, 即⎝ ⎛⎭⎪⎫m 22-2×-2m +12=294, ∴m 2+8m -33=0.解得m 1=-11,m 2=3.当m =-11时,方程为2x 2+11x +23=0,Δ=112-4×2×23<0,方程无实数根,∴m =-11不合题意,舍去;当m =3时,方程为2x 2-3x -5=0,Δ=(-3)2-4×2×(-5)>0,方程有两个不相等的实数根,符合题意.∴m 的值为3.4.解:不存在.理由如下:∵一元二次方程4kx 2-4kx +k +1=0有两个实数根,∴k ≠0,且Δ=(-4k)2-4×4k(k +1)=-16k ≥0,∴k <0.∵x 1,x 2是方程4kx 2-4kx +k +1=0的两个实数根,∴x 1+x 2=1,x 1x 2=k +14k .∴(2x 1-x 2)(x 1-2x 2)=2(x 1+x 2)2-9x 1x 2=-k +94k . 又∵(2x 1-x 2)(x 1-2x 2)=-32,∴-k +94k =-32,∴k =95.又∵k<0,∴不存在实数k ,使(2x 1-x 2)(x 1-2x 2)=-32成立.方法总结:对于存在性问题,先根据方程根的情况,利用根的判别式确定出未知字母的取值范围,再利用根与系数的关系求出已知式子中字母的值,验证字母的值是否在其取值范围内.解码专训二1.2 015 点拨:把x =-1代入方程中得到a +b -2 015=0,即a +b =2 015.2.解:∵a =4-c +c -4-2,∴c -4≥0且4-c ≥0,即c =4,则a =-2.又∵-1是一元二次方程ax 2+bx +c =0的根,∴a -b +c =0,∴b =a +c =-2+4=2.∴原式=(-2+2)2 0162 015×4=0. 3.D 4.A5.解:(1)(x -1)2+2x(x -1)=0,(x -1)(x -1+2x) =0,(x -1)(3x -1) =0,∴x 1=1,x 2=13.(2)x 2-6x -6=0,∵a =1,b =-6,c =-6,∴b 2-4ac =(-6)2-4×1×(-6)=60.∴x =6±602=3±15,∴x 1=3+15,x 2=3-15.(3)6 000(1-x)2=4 860,(1-x)2= 0.81,1-x = ±0.9,∴x 1=1.9,x 2=0.1.(4)(10+x)(50-x)=800,x 2-40x +300= 0,∴x 1=10,x 2=30.(5)(2x -1)2=x(3x +2)-7,4x 2-4x +1 =3x 2+2x -7,x 2-6x +8 =0,∴x 1=2,x 2=4.6.B7.解:∵关于x 的方程x 2+(b +2)x +(6-b)=0有两个相等的实数根, ∴Δ=(b +2)2-4(6-b)=0,∴b 1=2,b 2=-10(舍去).当a 为腰时,△ABC 的周长为5+5+2=12.当b 为腰时,2+2<5,不能构成三角形.∴△ABC 的周长为12.8.(1)证明:原方程可化为x 2-5x +4-p 2=0.Δ=(-5)2-4(4-p 2)=9+4p 2.∵p 为实数,则p 2≥0,∴9+4p 2>0.即Δ>0,∴方程有两个不相等的实数根.(2)解:当p 为0,2,-2时,方程有整数解.(答案不唯一)点拨:(1)先将一元二次方程化为一般形式,由题意得,一元二次方程根的判别式b 2-4ac =(-5)2-4×1×(4-p 2)=9+4p 2,易得,9+4p 2>0,从而得证.(2)一元二次方程的解为x =5±9+4p 22,若方程有整数解,则9+4p 2必须是完全平方数,故当p =0、2、-2时,9+4p 2分别对应9、25、25,此时方程的解分别为整数.9.A10.解:由题意,得x 1+x 2=3a +1a ,x 1x 2=2(a +1)a ,∴3a +1a -2(a +1)a=1-a ,∴a 2-1=0,即a =±1.又∵方程有两个不相等的实数根,∴a ≠0,且Δ=[-(3a +1)]2-4a·2(a +1)>0,即a ≠0,且(a -1)2>0,∴a ≠0,且a ≠1,∴a =-1.11.解:∵方程有两个实数根,∴Δ=(2a)2-4(a 2+4a -2)≥0,∴a ≤12.又∵x 1+x 2=-2a ,x 1x 2=a 2+4a -2,∴x 12+x 22=(x 1+x 2)2-2x 1x 2=2(a -2)2-4.∵a ≤12,∴当a =12时,x 12+x 22的值最小.此时x 12+x 22=2⎝ ⎛⎭⎪⎫12-22-4=12,即最小值为12.点拨:本题中考虑Δ≥0从而确定a 的取值范围这一过程易被忽略.12.解:设每件商品降价x 元,则售价为每件(60-x)元,每星期的销量为(300+20x)件.根据题意,得(60-x -40)(300+20x)=6 080.解得x 1=1,x 2=4.又要顾客得实惠,故取x =4,即销售单价为56元.答:应将销售单价定为56元.13.解:(1)设剪成的较短的一段长为x cm ,则较长的一段长为(40-x) cm ,由题意,得⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫40-x 42=58,解得x 1=12,x 2=28.当x =12时,较长的一段长为40-12=28(cm ),当x =28时,较长的一段长为40-28=12(cm )<28cm (舍去).∴较短的一段长为12 cm ,较长的一段长为28 cm .(2)小峰的说法正确.理由如下:设剪成的较短的一段长为m cm ,则较长的一段长就为(40-m) cm ,由题意得⎝ ⎛⎭⎪⎫m 42+⎝ ⎛⎭⎪⎫40-m 42=48,变形为m 2-40m +416=0.∵Δ=(-40)2-4×416=-64<0,∴原方程无实数解,∴小峰的说法正确,这两个正方形的面积之和不可能等于48 cm2.14.解:不是.理由如下:解方程x2+x-12=0,得x1=-4,x2=3.|x1|+|x2|=4+3=2×|3.5|.∵3.5不是整数,∴方程x2+x-12=0不是“偶系二次方程”.。

华师大版九年级数学上册 第22章 一元二次方程 典型例题解析(教师用))

华师大版九年级数学上册 第22章 一元二次方程 典型例题解析(教师用))

度.
【答案】解:设道路的宽为 x 米, 由题意得:40×26﹣2×26x﹣40x+2x2=144×6 化简得:x2﹣46x+88=0 解得:x=2,x=44 当 x=44 时,道路的宽就超过了矩形场地的长和宽,因此不合题意舍去. 答:道路的宽为 2 米 【考点】一元二次方程的应用 【解析】【分析】本题中草坪的总面积=矩形场地的面积﹣三条道路的面积和+三条道路中重叠的两个小正 方形的面积,据此可得出关于道路宽度的方程,求出道路的宽度. 7.如果方程 x2+px+q=0 有两个实数根 x1 , x2 , 那么 x1+x2=﹣p,x1x2=q,请根据以上结论,解决下列问 题:
即△ =(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,则有 b2+c2-a2=0,即 b2+c2=a2 , 根据勾股定理的逆定理
可以证明以 a、b、c 为三边的三角形是直角三角形。
【分析】本题考查了一元二次方程的根的判别式和勾股定理的逆定理等知识。当△ >0,方程有两个不相
等的实数根;当△ =0,方程有两个相等的实数根;当△ <0,方程没有实数根。
∵ △ <0, ∴ 方程无解,
∴当t为
秒时,线段 PQ 将四边形 ABCD 的面积分为 1:2 两部分.
【考点】一元二次方程的应用,勾股定理的应用,相似三角形的应用 【解析】【分析】(1)作 DE⊥BC 于 E,根据勾股定理即可求解;(2)线段 PQ 将四边形 ABCD 的面积分 为 1:2 两部分,分两种情况进行求解.
5 / 14
本文由一线教师精心整理/word 可编辑 到达点 D 时停止运动,点 P 也随之停止,设运动的时间为 ts(t>0)

华师大版九年级数学上册第22章一元二次方程基础演练.docx

华师大版九年级数学上册第22章一元二次方程基础演练.docx

第22章一元二次方程基础演练【基础演练】1.下列方程中是关于x 的一元二次方程的是( )A .x 2+1x2=0 B .ax 2+bx +c =0C .(x -1)(x +2)=1D .3x 2-2xy -5y 2=02.一元二次方程x (x -1)=0的解是 ( ) A .x =0 B .x =1C .x =0或x =1D .x =0或x =-13.方程(x -1)(x +2)=0的两根分别是 ( ) A .x 1=-1,x 2=2 B .x 1=1,x 2=2C .x 1=-1,x 2=-2D .x 1=1,x 2=-24.用配方法解方程x 2-2x -3=0,配方后的方程可以是 ( ) A .(x -1)2=4 B .(x +1)2=4 C .(x -1)2=6 D .(x -1)2=165.已知关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,则a 的值是 ( )A .1B .-1 C.14 D .-146.若一元二次方程x 2+2x +m =0有实数根,则m 的取值范围是 ( )A .m ≤-1B .m ≤1C .m ≤4D .m ≤127.已知a 是方程x 2-3x -1=0的一个根,则2a 2-6a +7=________. 8.一元二次方程(2x -1)2=(3-x )2的解是________.9.已知m 和n 是方程2x 2-5x -3=0的两个根,则1m +1n=________.10.解方程2(x -3)=3x (x -3).11.若关于x 的一元二次方程x 2+4x +2k =0有实数根,求k 的取值范围及k 的非负整数值.12.已知x 1、x 2是方程2x 2+3x -1=0的两个实数根,不解方程,求①(x 1-x 2)2;②1x 1+1x 2的值.【能力提升】13.将代数式x 2+6x +2化成(x +p )2+q 的形式为 ( ) A .(x -3)2+1 B .(x +3)2-7C .(x +3)2-11D .(x +2)2-414.定义:如果一元二次方程ax 2+bx +c =0(a ≠0)满足a +b +c =0,那么我们称这个方程为“凤凰”方程.已知ax 2+bx +c =0(a ≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是 ( )A.a=c B.a=bC.b=c D.a=b=c15.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则两个根与方程系数之间有如下关系:x1+x2=-ba,x1·x2=ca.根据该材料填空:已知x1,x 2是方程x2+6x+3=0的两个实数根,则1x1+1x2的值为________.16.解方程x2+4x+1=0.17.在实数范围内定义运算“⊕”,其法则为a⊕b=a2-b2,求方程(4⊕3)⊕x=24的解.18.已知关于x的方程x2+bx+a=0,有一个根是-a(a≠0),求a-b的值.19.将一元二次方程x2-6x-5=0配方,化成(x+a)2=b的形式.20.三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,求这个三角形的周长.21.已知关于x的一元二次方程ax2+bx+1=0(a≠0)有两个相等的实数根,求ab2(a-2)2+b2-4的值.参考答案1、解析A中分母含有未知数;B中当a=0时,二次项系数为0;D中含有两个未知数,只有C化为一般形式为x2+x-3=0,是一元二次方程.答案 C2、解析将x=0或x=1代入原方程左右两边都相等,所以x=0和x=1都是原方程的解,当x=-1左右两边不相等,所以x=-1不是原方程的解,故选C.答案 C3、解析∵(x-1)(x+2)=0,∴x-1=0或x+2=0,∴x1=1,x2=-2.答案 D4、解析移项,得:x2-2x=3,配方,得:x2-2x+1=3+1,即(x-1)2=4.答案 A5、解析∵方程有两个相等的实数根,∴22-4×1×(-a)=0,解得a=-1.答案 B6、解析∵方程x2+2x+m=0有实数根.∴22-4×1×m≥0,解得m≤1.答案 B7、解析∵a是x2-3x-1=0的一个根,∴a2-3a-1=0,∴a2-3a=1,∴2a2-6a=2,∴2a2-6a+7=9.本题再一次体现了整体思想.答案98、解析移项,得(2x-1)2-(3-x)2=0,因式分解,得[(2x-1)+(3-x)][(2x-1)-(3-)]=0,∴(x+2)(3x-4)=0,∴x+2=0或3x-4=0,∴x 1=-2,x 2=43.答案 x 1=-2,x 2=439、解析 ∵m ,n 是2x 2-5x -3=0的两个根,∴m +n =52,m ·n =-32∴1m +1n =m +n mn =52÷(-32)=-53. 答案 -5310、解 移项,得:2(x -3)-3x (x -3)=0, 分解因式,得:(x -3)(2-3x )=0 ∴x -3=0或2-3x =0∴x 1=3,x 2=23.11、解 ∵方程有两个实数根,∴42-4×1×(2k )≥0,解得k ≤2.所以k 的取值范围为k ≤2,满足条件的k 的非负整数值有三个:0,1,2. 12、解 由一元二次方程根与系数的关系可知:x 1+x 2=-32,x 1·x 2=-12.所以①(x 1-x 2)2=x 21-2x 1x 2+x 22=(x 21+2x 1x 2+x 22)-4x 1x 2=(x 1+x 2)2-4x 1x 2 =⎝ ⎛⎭⎪⎫-322-4×⎝ ⎛⎭⎪⎫-12=174. ②1x 1+1x 2=x 1+x 2x 1·x 2=-32-12=3. 【能力提升】13、解析 x 2+6x +2=x 2+6x +32-32+2=(x +3)2-7. 答案 B14、解析 ∵方程ax 2+bx +c =0(a ≠0)有两个相等的实数根,∴b 2-4ac =0 又∵a +b +c =0,∴b =- (a +c )∴(a +c )2-4ac =0,∴(a -c )2=0,∴a =c . 答案 A15、解析 由材料可知:x 1+x 2=-6,x 1·x 2=3 ∴1x 1+1x 2=x 1+x 2x 1x 2=-63=-2. 答案 -216、解 ∵a =1,b =4,c =1b 2-4ac =16-4=12 ∴x =-4±122=-2± 3∴x 1=-2+3,x 2=-2-317、解 ∵(4⊕3)⊕x =24,∴(42-32)⊕x =24, 即7⊕x =24.∴72-x 2=24,∴x 2=25. ∴x 1=5,x 2=-5.18、解 ∵-a 是方程x 2+bx +a =0的根. ∴a 2-ab +a =0又a ≠0,∴a -b +1=0,∴a -b =-1. 19、解 原方程可化为x 2-6x =5, 配方得x 2-6x +9=5+9, ∴(x -3)2=14.20、解 方程x 2-6x +8=0的根,分别是2和4. 又3<x <9,∴x =4.∴这个三角形的周长为3+6+4=13.21、解 ∵方程ax 2+bx +1=0(a ≠0)有两个相等的实数根, ∴b 2-4a =0,∴b 2=4a , 将b 2=4a 代入ab 2(a -2)2+b 2-4=4a 2(a -2)2+4a -4, =4a 2a 2-4a +4+4a -4 =4a 2a2=4.初中数学试卷桑水出品。

北师大版九年级数学上典中点第二章阶段强化专训三

北师大版九年级数学上典中点第二章阶段强化专训三

专训三:根的判别式的四种常见应用名师点金:对于一元二次方程ax2+bx+c=0(a≠0),式子b2-4ac的值决定了一元二次方程的根的情况,利用根的判别式可以不解方程直接判断方程根的情况,反过来,利用方程根的情况可以确定方程中待定系数的值或取值范围.利用根的判别式判断一元二次方程根的情况1.已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=-1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解2.已知关于x的方程x2-2x-m=0没有实数根,其中m是实数,试判断关于x的方程x2+2mx+m(m+1)=0有无实数根.利用根的判别式求字母的值或取值范围3.(2015·咸宁)已知关于x的一元二次方程mx2-(m+2)x+2=0,(1)证明:不论m为何值,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根?利用根的判别式求代数式的值4.(2015·福州改编)已知关于x 的方程x 2+(2m -1)·x +4=0有两个相等的实数根,求m -1(2m -1)2+2m的值.利用根的判别式确定三角形的形状5.已知a ,b ,c 是一个三角形的三边长,且关于x 的一元二次方程(a +c)x 2+bx +a -c 4=0有两个相等的实数根,试判断此三角形的形状.专训三1.C 点拨:当k =0时,方程为一元一次方程,解为x =1;当k≠0时,因为Δ=(1-k)2-4k·(-1)=k 2+2k +1=(k +1)2≥0,所以当k =1时,Δ=4,方程有两个不相等的实数解;当k =-1时,Δ=0,方程有两个相等的实数解;当k≠0时,Δ≥0,方程总有两个实数解.故选C .2.解:∵x 2-2x -m =0没有实数根,∴Δ1=(-2)2-4·(-m)=4+4m<0,即m<-1.∴对于方程x 2+2mx +m(m +1)=0,Δ2=(2m)2-4·m(m +1)=-4m>4.∴方程x 2+2mx +m(m +1)=0有两个不相等的实数根.3.(1)证明:Δ=[-(m +2)]2-8m =m 2-4m +4=(m -2)2.∵不论m 为何值,(m -2)2≥0,即Δ≥0.∴不论m 为何值,方程总有实数根.(2)解:解关于x 的一元二次方程mx 2-(m +2)x +2=0,得x =m +2±Δ2m =m +2±(m -2)2m. ∴x 1=2m,x 2=1.∵方程的两个根都是正整数,∴2m是正整数.∴m =1或m =2. ∵两根不相等,∴m≠2.∴m =1.4.解:∵关于x 的方程x 2+(2m -1)x +4=0有两个相等的实数根, ∴Δ=(2m -1)2-4×1×4=0.∴2m -1=±4.∴m =52或m =-32. 当m =52时,m -1(2m -1)2+2m =52-116+5=114, 当m =-32时,m -1(2m -1)2+2m =-32-116-3=-526. 5.解:∵关于x 的一元二次方程(a +c)x 2+bx +a -c 4=0有两个相等的实数根, ∴Δ=b 2-4(a +c)·a -c 4=b 2-(a 2-c 2)=0, 即b 2+c 2=a 2.∴此三角形是直角三角形.。

人教版九年级数学上典中点第二十二章解码专训三(含答案)

人教版九年级数学上典中点第二十二章解码专训三(含答案)

解码专训三:几种常见的热门考点名师点金:二次函数是中考的必考内容,难度高,综合性强,既可以与代数知识相结合,也可以与几何知识结合.有关二次函数的问题,中考一般以三种形式出现:一是以选择题或填空题出现,重在考查二次函数的基本概念和基本性质;二是以实际应用题的形式出现,重在考查函数建模思想;三是以综合题的形式出现,往往是压轴题,考查学生分析问题和解决问题的能力.二次函数的图象与性质1.对于二次函数y=(x-1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是直线x=-1C.顶点坐标是(1,2)D.与x轴有两个交点2.在同一平面直角坐标系内,将函数y=2x2+4x-3的图象向右平移2个单位,再向下平移1个单位,得到图象的顶点坐标是()A.(-3,-6)B.(1,-4)C.(1,-6) D.(-3,-4)3.(2015·安顺)如图,为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0;②2a +b=0;③a+b+c>0;④当-1<x<3时,y>0.其中正确的个数为() A.1B.2C.3D.4(第3题)(第5题)4.抛物线y=2x2-x+1的顶点坐标是________,当________时,y随x的增大而增大.5.如图,已知抛物线y=x2+bx+c经过点(0,-3),请你确定一个b的值,使抛物线与x轴的一个交点在(1,0)和(3,0)之间,你所确定的b的值是________.用待定系数法求二次函数的解析式6.已知抛物线y=ax2+bx+c经过(1,0),(2,0)和(0,2)三点,则该抛物线的函数解析式为()A.y=2x2+x+2 B.y=x2+3x+2C.y=x2-2x+3 D.y=x2-3x+27.已知一个二次函数的图象的顶点为(8,9),且经过点(0,1),则二次函数解析式为________.8.(2014·咸宁)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如下表:科学家经过猜想、推测出l与t之间是二次函数关系.由此可以推测,最适合这种植物生长的温度为______℃.9.已知二次函数y=ax2+bx+c的图象经过A(2,0),B(0,-1),C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标.10.如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,点A,C分别在x轴、y 轴上,且BC∥x轴,AC=BC,求抛物线的解析式.(第10题)二次函数与一元二次方程或不等式的关系11.抛物线y=-9x2+3x+12与坐标轴的交点个数是()A.3B.2C.1D.012.二次函数y=ax2+bx+c的x与y的部分对应值如下表.利用二次函数图象可知,当函数值y<0时,x的取值范围是()A.x<0或x>2B.0<x<2C.x<-1或x>3 D.-1<x<313.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论错误的是()(第13题)A.a-b+c=0B.3是方程ax2+bx+c=0的一个根C.a+b+c>0D.当x<1时,y随x的增大而减小14.已知关于x的二次函数y=x2-(2m-1)x+m2+3m+4.(1)探究m取不同值时,该二次函数的图象与x轴的交点的个数;(2)设该二次函数的图象与x轴的交点分别为A(x1,0),B(x2,0),且x12+x22=5,与y 轴的交点为C,它的顶点为M,求直线CM的函数解析式.二次函数的实际应用15.(2015·滨州)一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件.为提高利润,欲对该T恤进行涨价销售.经过调查发现:每涨价1元,每周要少卖出10件.请确定该T恤涨价后每周的销售利润y(元)与销售单价x(元)之间的函数关系式,并求销售单价定为多少元时,每周的销售利润最大.16.如图,某公路隧道横截面积为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线所对应的函数表达式;(3)若要搭建一个矩形“支撑架”AD-DC-CB,使C,D两点在抛物线上,A,B两点在地面OM上,则这个“支撑架”总长最大是多少?(第16题)二次函数的综合应用13.在平面直角坐标系中,将一块等腰三角板ABC放在第二象限,一直角边靠在两坐标轴上,且有点A(0,2),点C(-1,0),如图所示,抛物线y=ax2+ax-2经过点B.(1)求点B的坐标.(2)求抛物线的解析式.(3)在抛物线上是否还存在点P(点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.(第17题)解码专训三 1.C2.C 点拨:根据函数图象开口向下可得a <0,所以①错误;因为抛物线与x 轴的交点坐标为(-1,0),(3,0),所以其对称轴为直线x =1,所以-b2a =1,因此2a +b =0,所以②正确;当x =1时,y =a +b +c >0,所以③正确;当-1<x <3时,y >0, 所以④正确.所以②③④正确.3.C 4.⎝⎛⎫14,78;x >14 5.12(答案不唯一) 6.D 7.y =-18x 2+2x +1 8.-19.解:(1)将A(2,0),B(0,-1),C(4,5)三点,代入y =ax 2+bx +c 得:⎩⎪⎨⎪⎧4a +2b +c =0,c =-116a +4b +c =5,解得⎩⎪⎨⎪⎧a =12,b =-12,c =-1.∴二次函数的解析式为y =12x 2-12x -1.(2)令y =0,则12x 2-12x -1=0,解得x 1=-1,x 2=2. ∴D(-1,0).10.解:∵对称轴x =--5a 2a =52,且BC ∥x 轴,∴BC =AC =5.易知OC =4,∴OA =3,即A(-3,0).∴9a +15a +4=0,a =-16.∴抛物线的解析式为y =-16x 2+56x +4.11.A 12.D 13.D14.解:(1)令y =0,得x 2-(2m -1)x +m 2+3m +4=0,Δ=(2m -1)2-4(m 2+3m +4)=-16m -15.当Δ>0时,方程有两个不相等的实数根,即-16m -15>0,∴m <-1516,此时二次函数的图象与x 轴有两个交点;当Δ=0时,方程有两个相等的实数根,即-16m -15=0,∴m =-1516,此时二次函数的图象与x 轴只有一个交点;当Δ<0时,方程没有实数根,即-16m -15<0,∴m >-1516,此时二次函数的图象与x 轴没有交点. (2)由一元二次方程根与系数的关系得x 1+x 2=2m -1,x 1x 2=m 2+3m +4,∴x 12+x 22=(x 1+x 2)2-2x 1x 2=(2m -1)2-2(m 2+3m +4)=2m 2-10m -7.∵x 12+x 22=5,∴2m 2-10m -7=5.∴m 2-5m -6=0.解得m 1=6,m 2=-1. ∵m <-1516,∴m =-1.∴y =x 2+3x +2.令x =0,得y =2,∴二次函数的图象与y 轴的交点C 的坐标为(0,2). 又∵y =x 2+3x +2=⎝⎛⎭⎫x +322-14,∴顶点M 的坐标为⎝⎛⎭⎫-32,-14. 设过点C(0,2)与M ⎝⎛⎭⎫-32,-14的直线的函数解析式为y =kx +b ,则⎩⎪⎨⎪⎧2=b ,-14=-32k +b ,解得⎩⎪⎨⎪⎧k =32,b =2.∴直线CM 的函数解析式为y =32x +2.15.解:由题意,得y =(x -40)[300-10(x -60)],即y =-10x 2+1 300x -36 000(60≤x≤90).配方,得y =-10(x -65)2+6 250. ∴当x =65时,y 有最大值6 250.因此,当该T 恤销售单价定为65元时,每周的销售利润最大. 16.解:(1)M(12,0),P(6,6).(2)设抛物线所对应的函数解析式为y =a(x -6)2+6. ∵抛物线y =a(x -6)2+6经过点(0,0), ∴0=a(0-6)2+6,即a =-16,∴抛物线所对应的函数解析式为y =16(x -6)2+6,即y =-16x 2+2x.(3)设A(m ,0),则有B(12-m ,0),C ⎝⎛⎭⎫12-m ,-16m 2+2m ,D ⎝⎛⎭⎫m ,-16m 2+2m . ∴“支撑架”总长AD +DC +CB =⎝⎛⎭⎫-16m 2+2m +(12-2m)+⎝⎛⎭⎫-16m 2+2m =-13m 2+2m+12=-13(m -3)2+15.∵此二次函数的图象开口向下,∴当m =3时,AD +DC +CB 有最大值,是15米.即这个支“支撑架”总长最大是15米.(第17题)17.解:(1)如图,过点B 作BD ⊥x 轴,垂足为D.∵∠BCD +∠ACO =90°,∠ACO +∠CAO =90°,∴∠BCD =∠CAO.又∵∠BDC =∠COA =90°,CB =AC ,∴△BCD ≌△CAO ,∴BD =OC =1,CD =OA =2,∴点B 的坐标为(-3,1).(2)∵抛物线y =ax 2+ax -2经过点B(-3,1),∴1=9a -3a -2,解得a =12.∴抛物线的解析式为y =12x 2+12x -2.(3)假设存在点P ,使得△ACP 仍然是以AC 为直角边的等腰直角三角形(如图所示).①若以点C 为直角顶点,则延长BC 至点P 1,使得P 1C =BC ,得到等腰直角三角形ACP 1,过点P 1作P 1M ⊥x 轴于点M ,∵CP 1=BC ,∠MCP 1=∠BCD ,∠P 1MC =∠BDC =90°,∴△MP 1C ≌△DBC ,∴CM =CD =2,P 1M =BD =1,可求得点P 1的坐标为(1,-1);②若以点A 为直角顶点,则过点A 作AP 2⊥CA ,且使得AP 2=AC ,得到等腰直角三角形ACP 2,过点P 2作P 2N ⊥y 轴于点N ,同理可证△AP 2N ≌△CAO ,∴NP 2=OA =2,AN =OC =1,可求得点P 2的坐标为(2,1).经检验,点P 1(1,-1)与点P 2(2,1)都在抛物线y =12x 2+12x -2上.。

华师大版九年级数学上册第22章 一元二次方程.docx

华师大版九年级数学上册第22章 一元二次方程.docx

第22章 一元二次方程总分:100分一、选择题(本大题共10小题,每小题3分,共30分)1.从正方形铁片,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁片的面积是( D )A .8cmB .64cmC .8cm 2D .64cm 2 2. 直角三角形两条直角边的和为7,面积为6,则斜边为( B ) A .37 B .5C 38.73.一个两位数等于它的个位数的平方,且个位数字比十位数字大5,•则这个两位数为( C )A.25B.36C.25或36 D .-25或-364.国家实施惠农政策后,某镇农民人均收入经过两年由1万元提高到1.44万元.这两年该镇农民人均收入的平均增长率是( C )A .10%B .11%C .20%D .22%5.某种商品零售价经过两次降价后的价格为降价前的%81,则平均每次降价( A )A .%10B .%19C .%5.9D .%206.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染的人数为( B )A .8人B .9人C .10人D .11人7.三国时期的数学家赵爽,在其所著的《勾股圆方图注》中记载用图形的方法来解一元二次方程,四个相等的矩形(每一个矩形的面积都是35)拼成如图所示的一个大正方形,利用所给的数据,能得到的方程是( A )A.x(x+2)=35B.x(x+2)=35+4C.x(x+2)=4×35D. x(x+2)=4×35+4(第7题) (第8题)8.如图所示,在一边靠墙(墙足够长)空地上,修建一个面积为672m 2的矩形临时仓库,仓库一边靠墙,另三边用总长为76 m 的栅栏围成,若设栅栏AB 的长为xm ,则下列各方程中,符合题意的是( A )A .21x (76-x )=672;B .21x (76-2x )=672; C .x (76-2x )=672; D . x (76-x )=672.9.某经济开发区今年一月份工业产值达50亿元,第一季度总产值为175亿元,问二、三月平均每月的增长率是多少?设平均每月增长的百分率为x ,根据题意得方程( D )A.250(1)175x +=B. 250(1)50(1)175x x +++=C. 25050(1)175x ++=D.25050(1)50(1)175x x ++++=10.一个三角形两边的长分别是6和8,第三边的长正好是一元二次方程216600x x -+=的一个实数根,则该三角形的面积是( B )A.24B.24或C.48D. 二、填空题(本大题共4小题,每小题3分,共12分)11.在一次同学聚会时,大家一见面就相互握手。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阶段强化专训三:根的判别式的四种常见应用名师点金:对于一元二次方程ax2+bx+c=0(a≠0),式子b2-4ac的值决定了一元二次方程的根的情况,利用根的判别式可以不解方程直接判断方程根的情况,反过来,利用方程根的情况可以确定方程中待定系数的值或取值范围.
利用根的判别式判断一元二次方程根的情况
1.(中考·潍坊)已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是()
A.当k=0时,方程无解
B.当k=1时,方程有一个实数解
C.当k=-1时,方程有两个相等的实数解
D.当k≠0时,方程总有两个不相等的实数解
2.已知关于x的方程x2-2x-m=0没有实数根,试判断关于x的方程x2+2mx+m(m +1)=0的根的情况.
利用根的判别式求字母的值或取值范围
3.(2015·咸宁)已知关于x的一元二次方程mx2-(m+2)x+2=0,
(1)证明:不论m为何值,方程总有实数根;
(2)m为何整数时,方程有两个不相等的正整数根.
利用根的判别式求代数式的值
4.(2015·福州改编)已知关于x 的方程x 2+(2m -1)x +4=0有两个相等的实数根,求m -1(2m -1)2+2m
的值.
利用根的判别式确定三角形的形状
5.已知a ,b ,c 是三角形的三边长,且关于x 的一元二次方程(a +c)x 2+bx +a -c 4
=0有两个相等的实数根,试判断此三角形的形状.
阶段强化专训三
1.C 点拨:当k =0时,方程为一元一次方程,解为x =1;当k≠0时,因为Δ=(1-k)2-4k·(-1)=k 2+2k +1=(k +1)2≥0,所以当k =1时,Δ=4,方程有两个不相等的实数解;
当k =-1时,Δ=0,方程有两个相等的实数解;
当k≠0时,Δ≥0,方程总有两个实数解.故选C .
2.解:∵x 2-2x -m =0没有实数根,
∴Δ1=(-2)2-4·(-m)=4+4m<0,即m<-1.
对于方程x 2+2mx +m(m +1)=0,
Δ2=(2m)2-4·m(m +1)=-4m>4,
∴方程x 2+2mx +m(m +1)=0有两个不相等的实数根.
3.(1)证明:Δ=[-(m +2)]2-8m =m 2-4m +4=(m -2)2.
∵不论m 为何值,(m -2)2≥0,即Δ≥0.
∴不论m 为何值,方程总有实数根.
(2)解:解关于x 的一元二次方程mx 2-(m +2)x +2=0,得
x =m +2±Δ2m =m +2±(m -2)2m .∴x 1=2m ,x 2=1. ∵方程的两个根都是正整数,∴2m
是正整数,∴m =1或m =2. 又∵方程的两个根不相等,∴m≠2,∴m =1.
4.解:∵关于x 的方程x 2+(2m -1)x +4=0有两个相等的实数根,
∴Δ=(2m -1)2-4×1×4=0,
即2m -1=±4.
∴m =52或m =-32
.
当m =52时,m -1(2m -1)2+2m =52-116+5=114
; 当m =-32时,m -1(2m -1)2+2m =-32-116-3
=-526. 5.解:∵方程(a +c)x 2+bx +a -c 4
=0有两个相等的实数根, ∴Δ=b 2-4(a +c)·a -c 4
=b 2-(a 2-c 2)=0, 即b 2+c 2=a 2,
∴此三角形是直角三角形.。

相关文档
最新文档