六年级上册数学分数乘法知识点总结
人教版六年级上册数学第一单元分数乘法知识点(上)
![人教版六年级上册数学第一单元分数乘法知识点(上)](https://img.taocdn.com/s3/m/3fd85f300166f5335a8102d276a20029bd64634e.png)
第一单元分数乘法
(一)分数乘法的意义
1.分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:5
12×6,表示:6个
5
12
相加是多少,还表示
5
12
的6倍是多少。
2.一个数(小数、分数、整数)乘分数:表示这个数的几分之几是多少。
例如:6×5
12,表示:6的
5
12
是多少。
2 7×
5
12
,表示:
2
7
的
5
12
是多少。
(二)分数乘法的计算法则:
1.整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2.分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
注意:先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)数大小的比较:
一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
六年级上册数学第二单元分数乘法知识点总结
![六年级上册数学第二单元分数乘法知识点总结](https://img.taocdn.com/s3/m/7f38ed107e21af45b307a8fd.png)
六年级上册数学第二单元分数乘法知识点总结(一)、分数乘法的意义。
(只看第二个因数)1、分数乘整数(第二个因数为整数时):分数乘整数的意义与整数乘法的意义相同;都是求几个相同加数和得简便运算。
例如:错误!×3;表示:3个错误!相加是多少;还表示错误!的3倍是多少。
2、一个数(小数、分数、整数)乘分数(第二因数为真分数时):一个数乘分数的意义与整数乘法的意义不相同;是表示这个数的几分之几是多少。
例如:6×错误!;表示:6的错误!是多少。
错误!×错误!;表示:错误!的错误!是多少。
3、一个数(小数、分数、整数)乘分数(第二因数为大于1的分数时):一个数乘分数的意义与整数乘法的意义也不相同;是表示这个数的几倍是多少。
例如:错误!×1错误!;表示:错误!的1错误!倍是多少。
(二)、分数乘法的计算法则:1、分数乘整数的运算法则是:分子与整数相乘;分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(分母和整数约分)(2)约分是用整数和下面的分母约掉最大公因数。
(计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子;分母相乘的积做分母。
(分子乘分子;分母乘分母)注:(1)如果分数乘法算式中含有带分数;要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分;是把分子、分母中;两个可以约分的数先划去;再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数;这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外);分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数;积大于这个数。
a×b=c;当b >1时;c>a.一个数(0除外)乘小于1的数;积小于这个数。
a×b=c;当b <1时;c<a (b≠0).一个数(0除外)乘等于1的数;积等于这个数。
六年级数学上册知识点汇总
![六年级数学上册知识点汇总](https://img.taocdn.com/s3/m/91811416f46527d3240ce0d4.png)
六年级数学上册知识点汇总第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
人教版六年级数学上册一单元分数乘法知识点总结概括
![人教版六年级数学上册一单元分数乘法知识点总结概括](https://img.taocdn.com/s3/m/8719ef366bd97f192279e93b.png)
一单元、分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个98的和是多少。
(也可表示:5的98是多少;98的5倍是多少)2、一个数乘分数表示求这个数的几分之几是多少。
例如: 98×43表示求98的43是多少? (二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
2、分数与分数相乘:3、为了计算简便,能约分的可以先约分,再计算。
(分子与分母约)温馨提示:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
4、小数乘分数:(不能直接约分的)先把小数化成分数再计算。
(如:1621851021851.2=⨯=⨯) (能直接约分的)先约分再计算。
(如:5.1751.2751.2=⨯=⨯) (三)、规律:(乘法中比较大小) (四)、分数混合运算的运算顺序和整数的运算顺序相同。
(先算乘除、后算加减、有括号的先算括号里面的,再算括号外面的。
同一级别从1 2 10.3左往右)(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
使用运算定律可以使计算简便。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c (如:20182017201720182017201720182017120182017201820182017)12018(201820172019=+=⨯+⨯=⨯+=⨯)六、解决问题1、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数×几几。
2、找单位“1”:在分率句中分率的前面; 或 在关键字 “占”、“是”、“比”、“相当于”的后面。
新人教版六年级数学上册知识点总结
![新人教版六年级数学上册知识点总结](https://img.taocdn.com/s3/m/5052db0f3968011ca30091a4.png)
第一单元分数乘法一、分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c a c + b c = ( a + b )×c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。
3、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)百分率前是“的”:单位“1”的量×百分率=百分率对应量(3)百分率前是“多或少”的意思:单位“1”的量×(百分率)=百分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
人教版六年级数学上册第一单元《分数乘法》知识点总结+练习题
![人教版六年级数学上册第一单元《分数乘法》知识点总结+练习题](https://img.taocdn.com/s3/m/e990b93e25c52cc58ad6be41.png)
第一单元分数乘法知识点总结(一)、分数乘法的意义。
(只看第二个因数)1、分数乘整数(第二个因数为整数时):分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和得简便运算。
求一个分数的几倍是多少 求几个相同分数的和是多少,就用这个分数乘”几“例如:23 ×3,表示:3个23 相加是多少,还表示23 的3倍是多少。
2、一个数(小数、分数、整数)乘分数(第二因数为真分数时):一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512 ,表示:6的512 是多少。
27 ×78 ,表示:27 的78 是多少。
3、一个数(小数、分数、整数)乘分数(第二因数为大于1的分数时):一个数乘分数的意义与整数乘法的意义也不相同,是表示这个数的几倍是多少。
例如:512 ×123 ,表示:512 的123 倍是多少。
(二)、分数乘法的计算法则:1、分数乘整数的运算法则是:用分数的分子和整数相乘的积作分子,分母不变。
带分数乘整数的计算方法,先把带分数化成假分数,再按照分数乘整数的方法进行计算 注:(1)为了计算简便能约分的可先约分再计算。
(分母和整数约分) (2)约分是用整数和下面的分母约掉最大公因数。
(计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
用字母表示为x=(a 不等于0,c 不等于0) (分子乘分子,分母乘分母)分数乘分数的计算方法也适用于小数乘分数,先把小数化成分数,再计算,列如0.5x =x =分数乘分数,这里的分数也可以是带分数,先把带分数化成假分数,再计算。
列如2 x = x =分数乘分数的计算方法同样适用于分乘整数,先把整数化成分母是1的分数,再计算。
列如 x4 = x = 注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
六年级数学上册第一单元《分数乘法》5大考点归纳
![六年级数学上册第一单元《分数乘法》5大考点归纳](https://img.taocdn.com/s3/m/c1b55dfb5ebfc77da26925c52cc58bd6318693c9.png)
考点一分数乘整数1.分数乘整数的意义就是求几个相同分数相加的简便运算。
2.分数乘整数的计算方法:用分数的分子和整数相乘的积作分子,分母不变,计算结果要化成最简分数。
如果整数和分数有公因数,可以先约分,再计算。
3.整数乘分数就是求整数的几分之几是多少。
4.计算时,要注意约分的过程,结果要化为最简分数。
考点二分数乘分数1.分数乘分数的意义就是求这个分数的几分之几是多少。
2.分数成份属的计算方法:分子相乘的积作分子,分母相乘的积作分母,最后结果要化成最简分数。
3.分数乘分数可以先约分,再计算,这样可以使计算简便。
4.分数乘分数不用写成分子与分子相乘、分母与分母相乘的形式后再约分,可以直接将分母(分子)与另一个分数的分子(分母)进行约分。
5.分数乘整数不用写成分子和整数相乘的形式后再约分,可以直接用整数和分母进行约分。
考点三分数乘小数1.小数乘分数的计算方法。
(1)把小数转化成分数,按分数乘分数的方法进行计算;(2)把分数转化成小数,按小数乘小数的方法进行计算。
2.在计算小数乘分数时,如果小数能和分数的分母约分,可以先约分再计算,这样可以使计算简便。
考点四乘法运算定律推广到分数1.分数混合运算的运算顺序:有括号的,先算括号里面的,再算括号外面的;没有括号的,先算乘除法,再算加减法;同级运算,按从左往右的顺序计算。
2.整数乘法的交换律、结合律和分配了对于分数乘法同样适用。
运用乘法运算定律,可以使计算简便些。
3.运用乘法运算定律可以使分数乘法的计算简便。
(1)几个分数连乘时,可以运用乘法运算律或结合律碱性简算。
(2)几个分数的和与整数相乘时,如果所乘整数时这几个人分数分母的公倍数,可以运用乘法分配律进行简算。
考点五分数乘法解决问题1.连续求一个数的几分之几是多少的解题方法:用这个数(单位“1”的量)连续乘对应的分率。
解答的关键是找准每个分率对应的单位“1”。
2.已知一个数量比另一个数量多(或少)几分之几,求这个数量的解题方法。
人教版六年级数学第一单元分数乘法知识点
![人教版六年级数学第一单元分数乘法知识点](https://img.taocdn.com/s3/m/daef533c7cd184254a35352f.png)
第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
"分数乘整数"指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
"一个数乘分数"指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
人教版六年级上册第一单元分数乘法知识点
![人教版六年级上册第一单元分数乘法知识点](https://img.taocdn.com/s3/m/cc0dd6c49a89680203d8ce2f0066f5335a8167e6.png)
人教版六年级上册第一单元分数乘法知识点(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
人教版小学六年级数学上册知识点:分数乘法
![人教版小学六年级数学上册知识点:分数乘法](https://img.taocdn.com/s3/m/3f58302a7cd184254b353576.png)
人教版小学六年级数学上册知识点:分数乘法一、分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a times; b = b times; a乘法结合律: ( a times; b )times;c = a times; ( b times; c )乘法分配律: ( a + b )times;c = a c + b c a c +b c = ( a + b )times;c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面2、求一个数的几倍:一个数times;几倍; 求一个数的几分之几是多少:一个数times; 。
3、写数量关系式技巧:(1)“的” 相当于“times;” “占”、“是”、“比”相当于“ = ”(2)分率前是“的”:单位“1”的量times;分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量times;(1 分率)=分率对应量针对练习:一、填空:1、3/8x4表示()2、2/7+2/7+2/7+2/7+2/7=()x()3、3/5x3=()x()/()=()/()。
4、2个2/9是();7个2/3千克是();6个4/5千米是()5、一个正方形的边长是7/10米,它的周长是()6、一支水笔15/10元,一鸣一个月需用10枝,共需()元,若买一只水笔和9枝8/10元一枝的替芯,共用()元,比买10支笔少用()元?分数与整数相乘,分子(),分母()二、判断:1、 4/5米的5倍和5个4/5米一样长()2、6/7x30=6/7x30=5/7中的6和30可以约分()3、5/6x2=5x2/6x2=5/6。
人教版六年级数学上册 分数乘法 知识点归纳
![人教版六年级数学上册 分数乘法 知识点归纳](https://img.taocdn.com/s3/m/88a310b850e2524de4187e25.png)
《分数乘法》知识点归纳
知识点一、分数乘以整数
1、分数乘以整数和整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、分数乘以整数的运算:
①能约分的先约分。
让分母与整数约分了,再计算。
②用分子乘以整数的积作为分子,分母保持不变。
知识点二、分数乘以分数
1、分数乘以分数和整数乘法的意义不同,分数乘以分数是求这个数的几分之几是多少。
2、分数乘以分数的运算:
①能约分的先约分。
让分子与分母约分了,再计算。
②用分子相乘的积作为结果的分子,用分母相乘的积作为结果的分母。
温馨提示:如果分数乘法中含有带分数,则要把带分数化成假分数再计算。
3、分数乘以小数,关键是要把小数转为分数,再利用分数乘法的运算法则来计算。
知识点三、乘法定律
1、乘法交换律:a×b=b×a
2、乘法结合律:a×b×c=a×(b×c)
3、乘法分配律(a+b)×c=a×c+b×c
知识点四、乘法规律
1、一个正数乘以一个大于1的数,积比原来大。
2、一个正数乘以一个小于1的数,积比原来小。
3、一个正数乘以一个1,积等于它本身。
4、0乘以任何数都等于0 。
知识点五、分数乘法应用题
1、要求一个数的几分之几是多少,就可以用乘法。
2、找单位“1”的方法:“是”、“占”、“比”字之后的量是单位“1”;“的”字前面的量是单位“1”。
人教六年级数学分数乘法知识点
![人教六年级数学分数乘法知识点](https://img.taocdn.com/s3/m/61b64c6759fb770bf78a6529647d27284a73376d.png)
人教六年级数学分数乘法知识点分数乘法是人教版六年级数学教材中的重要知识点之一。
掌握分数乘法的概念和运算规则,对于学生进一步理解数学中的分数概念、提高数学运算能力具有重要意义。
本文将从多个方面详细介绍分数乘法的知识点,帮助学生更好地理解和掌握这一重要概念。
一、分数乘法的概念1.分数乘法定义:两个分数相乘,用分子的积作为积的分子,分母的积作为积的分母。
2.乘法公式:对于任意两个分数a/b和c/d,(a/b)×(c/d)=(a×c)/(b×d)。
3.乘法运算规则:分数乘法满足交换律、结合律和分配律。
二、分数乘法的应用1.解决问题:分数乘法可以应用于解决实际问题,如计算部分数量、比例关系等。
2.计算复合分数:复合分数是整数和分数的组合,计算复合分数的乘法需要将其转化为假分数或带分数进行运算。
3.简便计算:通过约分、通分等方法,可以简化分数乘法的计算过程。
三、知识点解析1.分数的分子与分母相乘:在分数乘法中,分子与分子相乘,分母与分母相乘。
例如,(2/3)×(4/5)=8/15。
2.分数的乘法运算顺序:在进行分数乘法运算时,应按照从左到右的顺序依次进行。
例如,(1/2)×(3/4)×(5/6)=15/48=(5/16)。
3.乘法分配律的应用:乘法分配律在分数乘法中同样适用。
例如,(1/2+1/3)×2=1+2/3=5/3。
4.分数乘法的约分与通分:在进行分数乘法运算时,可以通过约分和通分来简化计算过程。
约分是指将分子和分母同时除以它们的最大公约数,从而得到最简分数;通分是指将两个分数的分母统一为相同的数,从而便于进行加减运算。
5.带分数与假分数的乘法:带分数是由整数和真分数组成的分数,假分数是分子大于或等于分母的分数。
在计算带分数与假分数的乘法时,需要将其转化为假分数或带分数进行运算。
例如,3(1/2)×(5/6)=7/2×5/6=35/12=2(11/12)。
六年级上册数学分数乘法知识点总结
![六年级上册数学分数乘法知识点总结](https://img.taocdn.com/s3/m/01911dfb5ebfc77da26925c52cc58bd6318693ed.png)
六年级上册数学分数乘法知识点总结六年级上册数学分数乘法知识点总结「篇一」关于小学六年级数学知识点的总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的'分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
六年级数学上册分数乘法归纳总结
![六年级数学上册分数乘法归纳总结](https://img.taocdn.com/s3/m/ccf6f58bf242336c1fb95ed2.png)
随堂练习:六年级数学上册各单元归纳总结 一、第一单元归纳总结:分数乘法1、分数乘整数 ①计算方法:分数乘整数把分数的分子与整数相乘,分母不变。
②如:21×6=26×1=3或6×21=21×6=32、分数乘分数 ①计算方法:分子和分子相乘的积作分子,分母和分母相乘的积作分母。
计算时能约分的要约分,结果要化成最简分数。
②如:51×85=8×55×1=813、解决“求一个数的几分之几是多少”的实际问题。
①举例:六年级有男生20人,女生的人数是男生的54,女生有多少人?②图解: 20人男生:|_____|_____|_____|_____|_____| ?人女生: |_____|_____|_____|_____|54③数量关系式:男生的人数×54=女生的人数④列式解答:20×54=16(人)答:女生有16人。
4、分数连乘 ①举例:鸡30只,鸭的只数是鸡的53,鹅的只数是鸭的65,鹅有多少只?②图解: 30只鸡:|____ |____ |____|____|____|鸭:|__|__|__|__|__|__| ?只鹅:|___________ |③数量关系式:鸡的只数×53×65=鹅的只数④列式解答:30×53×65=130×53×65=15(只)答:鹅有15只。
⑤计算方法:所有因数一次约分后再将分子、分母分别相乘,求出积的分子、分母。
5、倒数①举例:5的倒数是51②方法:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置.③结论:乘积是1的两个数互为倒数。
小学六年级数学上册分数乘法计算题知识点总结与练习
![小学六年级数学上册分数乘法计算题知识点总结与练习](https://img.taocdn.com/s3/m/a3f85a42d1f34693daef3efa.png)
分数乘法计算题知识点总结一、分数乘法的意义:1.分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
76×6表示求6个76的和是多少? 2.分数乘分数是求一个数的几分之几是多少。
76×53表示求76的53是多少? 二、分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3.为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
专题练习一、分数与整数相乘。
512 ×24= 52×613 = 1115×35= 96×1348 = 221 ×21= 310×50= 425 ×75= 718 ×54= 25×920= 17×1351 = 1415 ×50= 1011×110= 1627 ×54= 11×922 = 1415×20= 1819 ×57= 45×527 = 1000×2425 = 专题练习二、数和分数相乘。
25 ×34 = 67 ×78 = 59 ×815=9 11×715=1225×1516=45×910=2 3×1516=78×521=49×2716=14 15×2521=2027×38=79×1835=6 11×2215=1727×4568=1933×1138=8 17×1720=1321×726=89×2740=13 19×3839=910×5063=1234×1736=三、规律:1、一个数(0除外)乘大于1的数,积大于这个数。
小学六年级数学上册分数乘法知识点
![小学六年级数学上册分数乘法知识点](https://img.taocdn.com/s3/m/e7dc88d6ccbff121dc368368.png)
小学六年级数学上册分数乘法知识点4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
(三)、乘法中比较大小的规律一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律:( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。
(2)部分和整体的关系:画一条线段图。
2、找单位“1”:单位“1” 在分率句中分率的前面;或在“占”、“是”、“比”“相当于”的后面。
3、写数量关系式的技巧:(1)“的” 相当于“×” ,“占”、“相当于”“是”、“比”是“ = ”(2)分率前是“的”字:用单位“1”的量×分率=具体量例如:甲数是20,甲数的1/3是多少?列式是:20×1/34、看分率前有没有多或少的问题;分率前是“多或少”的关系式:(比少):单位“1”的量×(1-分率)=具体量;例如:甲数是50,乙数比甲数少1/2,乙数是多少?列式是:50×(1-1/2)(比多):单位“1”的量×(1+分率)=具体量例如:小红有30元钱,小明比小红多3/5,小红有多少钱? 列式是:50×(1+3/5)3、求一个数的几倍是多少:用一个数×几倍;4、求一个数的几分之几是多少:用一个数×几分之几。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元分数乘法知识点总结
(一)、分数乘法的意义。
(只看第二个因数)
1、分数乘整数(第二个因数为整数时):分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和得简便运算。
求一个分数的几倍是多少 求几个相同分数的和是多少,就用这个分数乘”几“
例如:23 ×3,表示:3个23 相加是多少,还表示23
的3倍是多少。
2、一个数(小数、分数、整数)乘分数(第二因数为真分数时):一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512 ,表示:6的512 是多少。
27 ×78 ,表示:27 的78
是多少。
3、一个数(小数、分数、整数)乘分数(第二因数为大于1的分数时):一个数乘分数的意义与整数乘法的意义也不相同,是表示这个数的几倍是多少。
例如:512 ×123 ,表示:512 的123
倍是多少。
(二)、分数乘法的计算法则:
1、分数乘整数的运算法则是:用分数的分子和整数相乘的积作分子,分母不变。
带分数乘整数的计算方法,先把带分数化成假分数,再按照分数乘整数的方法进行计算
注:(1)为了计算简便能约分的可先约分再计算。
(分母和整数约分)
(2)约分是用整数和下面的分母约掉最大公因数。
(计算结果必须是最简分数)
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
用字母表示为x=(a 不等于0,c 不等于0)
(分子乘分子,分母乘分母)
分数乘分数的计算方法也适用于小数乘分数,先把小数化成分数,再计算,列如 =x =
分数乘分数,这里的分数也可以是带分数,先把带分数化成假分数,再计算。
列如2 x = x =
分数乘分数的计算方法同样适用于分乘整数,先把整数化成分母是1的分
数,再计算。
列如 x4 = x =
注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a.
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a (b≠0).
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a .
0乘任何数都得0
注:1.在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(希望同学们好好理解)
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量
(3)根据线段图写出等量关系式:
单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2.乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几”
(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。
(7)乘法应用题中,单位“1”是已知的。
(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。
(9).找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。
单位“1”×分率=比较量;比较量÷分率=单位“1”
(10).单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。
(11).单位“1”的特点:①单位“1”为分母;②单位“1”为不变量。
(12)分率与量要对应。
①多的对应量对多的分率;
②少的对应量对少的分率;
③增加的对应量对增加的分率;
④减少的对应量对减少的分率;
⑤提高的对应量对提高的分率;
⑥降低的对应量对降低的分率;
⑦工作总量的对应量对工作总量的分率;?
⑧工作效率的对应量对工作效率的分率;
⑨部分的对应量对部分的分率;
⑩总量的对应量对总量的分率;
例如:1、求一个数的几分之几是多少(求一个数的几分之几用乘法计算)方法:单位“1”的数量×对应分率=对应数量。
2、分数的连乘。
找到每一个分率的单位“1”。