全等三角形练习题及答案

合集下载

三角形全等测试题及答案

三角形全等测试题及答案

三角形全等测试题及答案一、选择题1. 两个三角形全等的条件是()A. 有两条边和它们的夹角对应相等B. 三条边对应相等C. 有两条边和其中一条边的对角对应相等D. 有两条边和其中一条边的邻角对应相等答案:B2. 如果两个三角形的对应角相等,那么这两个三角形()A. 一定全等B. 可能相似C. 一定相似D. 无法确定答案:B二、填空题3. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,那么AC=______。

答案:EF4. 如果两个三角形的两边和夹角对应相等,那么这两个三角形是______。

答案:全等三、判断题5. 如果两个三角形的对应边成比例,那么这两个三角形一定全等。

()答案:错误6. 如果两个三角形的两边和夹角对应相等,那么这两个三角形一定相似。

()答案:正确四、解答题7. 如图所示,已知三角形ABC与三角形DEF全等,且AB=5cm,BC=7cm,∠A=∠D=90°,求DE的长度。

答案:DE=7cm8. 已知三角形ABC与三角形DEF相似,且AB=3cm,BC=4cm,DE=6cm,求AC的长度。

答案:AC=8cm五、证明题9. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,证明:AC=EF。

证明:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应边相等,所以AC=EF。

10. 已知∠A=∠D,AB=DE,AC=DF,求证:三角形ABC≌三角形DEF。

证明:根据SAS(边角边)判定方法,已知∠A=∠D,AB=DE,AC=DF,所以三角形ABC≌三角形DEF。

全等三角形经典50题(含答案)

全等三角形经典50题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=ACAD BC BACDF21E5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD8. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB AD BC A9.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF。

∵BC=ED,CF=DF,∠BCF=∠EDF。

∴三角形BCF全等于三角形EDF(边角边)。

∴BF=EF,∠CBF=∠DEF。

连接BE。

在三角形BEF中,BF=EF。

∴ ∠EBF=∠BEF 。

又∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。

∴ 三角形ABF 和三角形AEF 全等。

∴ ∠BAF=∠EAF (∠1=∠2)。

10. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CG∠CGD =∠EFD又EF ∥AB∴∠EFD =∠1∠1=∠2∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG又 EF =CG∴EF =AC11. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CB ACDF21 E证明:延长AB 取点E ,使AE =AC ,连接DE∵AD 平分∠BAC∴∠EAD =∠CAD∵AE =AC ,AD =AD∴△AED ≌△ACD (SAS )∴∠E =∠C∵AC =AB+BD∴AE =AB+BD∵AE =AB+BE∴BD =BE∴∠BDE =∠E∵∠ABC =∠E+∠BDE∴∠ABC =2∠E∴∠ABC =2∠C12. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC又∵AC =AC∴△ADC ≌△AFC (SAS )CD B A∴AD =AF∴AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

全等三角形练习题(含答案)

全等三角形练习题(含答案)

全等三角形练习题(含答案)篇一:全等三角形习题选(含)经典三角形证明题选讲(含答案)三角形辅助线做法线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验1.已知:AB=4,AC=2,D是BC中点,AD是整数,求ADD1. 证明:延长AD到E,使DE=AD, 则△ADC≌△EBD ∴BE=AC=2 在△ABE中,AB-BE AE AB+BE ,∴10-2 2AD 10+2 4 AD 6又AD是整数,则AD=5思路点拨:三角形中有中线,延长中线等中线。

2.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠22.证明:连接BF和EF.∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ △BCF≌△EDF(边角边). ∴BF=EF,∠CBF=∠DEF. 连接BE.在△BEF中,BF=EF,∴∠EBF=∠BEF又∵ ∠ABC=∠AED,∴ ∠ABE=∠AEB. ∴ AB=AE在△ABF和△AEF中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF. ∴△ABF≌△AEF∴∠1=∠2.思路点拨:解答本题的关键是能够想到证明AB=AE,而AB、AE在同一个△ABE 中,可利用∠ABE=∠AEB来证明.同一三角形中线段等,可用等角对等边3.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC 证明:过E点,作EG//AC,交AD延长线于G则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴△ADC≌△GDE(AAS)∴EG=AC ∵EF∥AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=EG∴EF=AC 思路点拨:角平分线平行线,等腰三角形来添。

4.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C 证明:延长AC到E使CE=CD,连接 ED,则∠CDE= ∠E∵ AB=AC+CD ∴AB=AC+CE=AE又∵∠BAD=∠EAD,AD=AD∴△BAD≌△EAD ∴∠B=∠E∵∠ACB=∠E+∠CDE,∴∠ACB=2∠B方法二在AC上截取AE=AB,连接ED A∵A D平分∠BAC∴∠EAD=∠BAD又∵AE=AB,AD=AD∴⊿AED≌⊿ABD(SAS)∴∠AED=∠B,DE=DB CBD∵AC=AB+BD ,AC=AE+CE∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C思路点拨:线段等于线段和,理应截长或补短5.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE 证明:过C作CF⊥AD交AD的延长线于F.在△CFA和△CEA中∴∠CFA=∠CEA=90°又∵∠CAF=∠CAE, AC=AC∴△CFA≌△CEA ,∴AE=AF=AD+DF, CE=CF∵∠B+∠ADC=180°,∠FDC+∠ADC=180°∴∠B=∠FDCE在△CEB和△CFD中,CE=CF,∠CEB=∠CFD=90°, ∠B=∠FDCE∴△CEB≌△CFD∴BE=DF∴ AE=AD+BE思路点拨:图中有角平分线,可向两边作垂线。

全等三角形练习题(含答案)

全等三角形练习题(含答案)

1.下列图形中,和所给图形全等的图形是A.B.C.D.2.下列说法正确的有①两个图形全等,它们的形状相同;②两个图形全等,它们的大小相同;③面积相等的两个图形全等;④周长相等的两个图形全等.A.1个B.2个C.3个D.4个3.如图,ΔABC≌ΔCDA,∠BAC=∠DCA,则BC的对应边是A.CD B.CA C.DA D.AB4.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为A.2 B.3 C.5 D.2.55.如图,△ABC≌△AED,∠C=40°,∠EAC=30°,∠B=30°,则∠EAD=A.30°B.70°C.40°D.110°6.如图,△AOB≌△COD,∠AOB=∠COD,∠A=∠C,则∠D的对应角是__________,图中相等的线段有__________.7.如图,△ABE≌△ACD,AE=5 cm,∠A=60°,∠B=30°,则∠ADC=__________°,AD=__________cm.8.如图,已知,△ABC≌△BAE,∠ABE=60°,∠E=92°,则∠ABC的度数为__________度.9.如图,△ACB与△BDA全等,AC与BD对应,BC与AD对应,写出其余的对应边和对应角.10.如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.11.如图,△ABC≌△CDA,且AD=CB,下列结论错误的是A.∠B=∠D B.∠CAB=∠ACD C.BC=CD D.AC=CA12.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是A.PO B.PQ C.MO D.MQ13.已知△ABC≌△DEF,若AB=5,BC=6,AC=8,则△DEF的周长是__________.14.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,指出其他的对应边和对应角.15.如图,ΔABC≌ΔDEF,∠A=25°,∠B=65°,BF=3 cm,求∠DFE的度数和EC的长.16.(2016•厦门)如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=A.∠B B.∠A C.∠EMF D.∠AFB4.【答案】B【解析】∵△ABE≌△ACF,AB=5,∴AC=AB=5,∵AE=2,∴EC=AC−AE=5−2=3,故选B.5.【答案】D【解析】∵△ABC≌△AED,∴∠C=40°,∠B=30°,∴∠EAD=∠BAC=180°-∠B-∠C=110°,故选D.6.【答案】∠OBA;OA=OC,OB=OD,AB=CD【解析】∵△AOB≌△COD,∴∠D=∠OBA,OA=OC,OB=OD,AB=CD.故答案为:∠OBA;OA=OC,OB=OD,AB=CD.7.【答案】90;5【解析】在三角形ABE中,∠A=60°,∠B=30°,所以,∠AEB=180-∠A-∠B=90°.因为,△ABE≌△ACD,所以AD=AE=5 cm,∠ADC=∠AEB=90°.故答案为:90;5.11.【答案】C【解析】∵△ABC≌△CDA,∴∠CAB=∠ACD,CA=AC,∠D=∠B,故A、B、D正确,不符合题意,BC不一定等于CD,C错误,符合题意,故选C.12.【答案】B,则只需测出PQ的长即可求出M、N之间的距离.故选B.【解析】∵△PQO≌△NMO,∴PQ MN13.【答案】19【解析】∵AB=5,BC=6,AC=8,∴△ABC的周长=AB+BC+AC=5+6+8=19.∵△ABC≌△DEF,∴△DEF的周长等于△ABC的周长,∴△DEF的周长是19.故答案为:19.14.【解析】∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴点A的对应点是A,点B的对应点是C,点E的对应点是D,∴∠BAE与∠CAD是对应角,AB与AC,BE与CD,AD与AE是对应边.15.【解析】△ABC中,∠A=25°,∠B=65°,∴∠BCA=180°-∠A-∠B=180°-25°-65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3 cm,∴∠DFE=90°,EC=3 cm.16.【答案】A【解析】∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,∴∠DCE=∠B,故选A.。

(完整版)全等三角形练习题及答案

(完整版)全等三角形练习题及答案

全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。

B、斜边和一锐角对应相等。

C、斜边和一条直角边对应相等。

D、两锐角相等。

2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。

全等三角形测试题及答案

全等三角形测试题及答案

全等三角形测试题一.选择题:1. 在△ABC 和△A ’B ’C ’中, AB=A ’B ’, ∠B=∠B ’, 补充条件后仍不一定能保证△ABC ≌△A ’B ’C ’, 则补充的这个条件是( )A .BC=B ’C ’ B .∠A=∠A ’ C .AC=A ’C ’D .∠C=∠C ’2. 直角三角形两锐角的角平分线所交成的角的度数是( )A .45°B .135°C .45°或135°D .都不对3. 现有两根木棒,它们的长分别是40cm 和50cm ,若要钉成一个三角形木架,则在下列四根木棒中应选取( )A .10cm 的木棒B .40cm 的木棒C .90cm 的木棒D .100cm 的木棒4.根据下列已知条件,能惟一画出三角形ABC 的是( )A . AB =3,BC =4,AC =8;B . AB =4,BC =3,∠A =30;C . ∠A =60,∠B =45,AB =4;D . ∠C =90,AB =65.如图3,D ,E 分别是△ABC 的边BC ,AC 上的点,若∠B =∠C ,∠ADE =∠AED ,则( )A . 当∠B 为定值时,∠CDE 为定值 B . 当∠α为定值时,∠CDE 为定值C . 当∠β为定值时,∠CDE 为定值D . 当∠γ为定值时,∠CDE 为定值 二、填空题:6.三角形ABC 中,∠A 是∠B 的2倍,∠C 比∠A +∠B 还大12度,则这个三角形是__三角形.7.以三条线段3、4、x -5为这组成三角形,则x 的取值为____.8.杜师傅在做完门框后,为防止门框变形常常需钉两根斜拉的木条,这样做的数学原理是____.9.△ABC 中,∠A +∠B =∠C ,∠A 的平分线交BC 于点D ,若CD =8cm ,则点D 到AB 的距离为____cm .10.AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则边BC 的取值范围是____;中线AD 的取值范围是____. 三、解答题: 11. 已知:如图13-4,AE=AC , AD=AB ,∠EAC=∠DAB ,求证:△EAD ≌△CAB .12. 如图13-5,△ACD 中,已知AB ⊥CD ,且BD>CB, △BCE 和△ABD 都是等腰直角三角形,王刚同学说有下列全等三角形:①△ABC ≌△DBE ;②△ACB ≌△ABD ; ③△CBE ≌△BED ;④△ACE ≌△ADE .这些三角形真的全等吗?简要说明理由. 13. 已知,如图13-6,D 是△ABC 的边AB 上一点, DF 交AC 于点E, DE=FE, FC ∥AB,求证:AD=CF .A B D C E 图13-5 A B FCD E 图13-6 A B D F C A C B E D 图13-4 B 图13-314. 如图5-7,△ABC 的边BC 的中垂线DF 交△BAC 的外角平分线AD 于D, F 为垂足, DE ⊥AB 于E ,且AB>AC ,求证:BE -AC=AE .15. 阅读下题及证明过程:已知:如图8, D 是△ABC 中BC 边上一点,E 是AD 上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE .证明:在△AEB 和△AEC 中,∵EB=EC ,∠ABE=∠ACE ,AE=AE , ∴△AEB ≌△AEC ……第一步∴∠BAE=∠CAE ……第二步 问上面证明过程是否正确?若正确,请写出每一步推理的依 据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.16.如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .参考答案提示1. C .(提示:边边角不能判定两个三角形全等.)2. C .(提示:由三角形内角和为180°可求,要注意有两个不同的角.)3. B .(提示:利用三角形三边的关系,第三根木棒x 的取值范围是:10cm <x <90cm .=4.C . (提示:A 不能构成三角形,B 满足边边角,不能判定三角形全等,D 项可画出无数个三角形.)5.B .(提示:∠CDE =∠B +∠α-∠γ=∠γ-∠B ,故得到2(∠B -∠γ)+∠α=0.又∵∠γ-C A BDE 图8 图9 A G B D H EF A B CD E F 图9∠B =∠γ-∠C =∠CDE ,所以可得到∠CDE =2α,故当∠α为定值时,∠CDE 为定值.) 6.钝角.(提示:由三角形的内角和可求出∠A 、∠B 和∠C 的度数)7.6<x<12.(提示:由三边关系可知:4-3<x -5<4+3.8.三角形的稳定性.9.8.(提示:点D 到AB 的距离与CD 的长相等.)10.4<BC <20;2<AD <10.(提示:要注意三角形一边上的中线的取值范围是大于另两边之差的一半,小于两边之和的一半.)11. 提示:先证∠EAD=∠CAB ,再由SAS 即可证明.12. ①△ABC ≌△DBE ,BC=BE ,∠ABC=∠DBE=90°,AB=BD ,符合SAS ;②△ACB 与△ABD 不全等,因为它们的形状不相同,△ACB 只是直角三角形,△ABD 是等腰直角三角形;③△CBE 与△BED 不全等,理由同②;④△ACE 与△ADE 不全等,它们只有一边一角对应相等.13. 提示:由ASA 或AAS ,证明△ADE ≌△CFE .14. 过D 作DN ⊥AC, 垂足为N, 连结DB 、DC 则DN=DE ,DB=DC ,又∵DE ⊥AB, DN ⊥AC, ∴Rt △DBE ≌Rt △DCN , ∴BE=CN .又∵AD=AD ,DE=DN ,∴Rt △DEA ≌Rt △DNA ,∴AN=AE ,∴BE=AC+AN=AC+AE ,∴BE -AC=AE .15.上面证明过程不正确; 错在第一步. 正确过程如下:在△BEC 中,∵BE=CE , ∴∠EBC=∠ECB , 又∵∠ABE=∠ACE ,∴∠ABC=∠ACB , ∴AB=AC. 在△AEB 和△AEC 中, AE=AE. BE=CE, AB=AC, ∴△AEB ≌△AEC, ∠BAE=∠CAE.16.如图11所示,过B 点作BH ⊥BC 交CE 的延长线于H 点.∵∠CAD +∠ACF =90°,∠BCH +∠ACF =90°, ∴∠CAD =∠BCH .在△ACD 与△CBH 中,∵∠CAD =∠BCH ,AC =CB ,∠ACD =∠CBH =90°, ∴△ACD ≌△CBH .∴∠ADC =∠H ① CD =BH ,∵CD =BD ,∴BD =BH .∵△ABC 是等腰直角三角形,∠CBA =∠HBE =45°∴在△BED 和BEH 中,⎪⎩⎪⎨⎧∠∠=BE,BE EBH,EBD ,==BH BD ,∴△BED ≌△BEH .∴∠BDE =∠H , ② 由①②得,∠ADC =∠BDE .A B C D E F H 图11。

初中数学:《全等三角形》测试题(含答案)

初中数学:《全等三角形》测试题(含答案)

初中数学:《全等三角形》测试题(含答案)一、选择题(共7小题,每小题3分,满分21分)1.如图,△ABC≌△DEC,∠A=70°,∠ACB=60°,则∠E的度数为()A.70°B.50°C.60°D.30°2.如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A.2 B.2.5 C.3 D.3.53.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②4.如图,Rt△ABC,∠C=90°,AD平分∠CAB,DE⊥AB于E,则下列结论中不正确的是()A.BD+ED=BC B.DE平分∠ADB C.AD平分∠EDC D.ED+AC>AD5.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠ED A=20°,∠F=60°,则∠DAC的度数是()A.50°B.60°C.100°D.120°6.如图,射线OC是∠AOB的角平分线,P是射线OA上一点,DP⊥OA,DP=5,若点Q是射线OB上一个动点,则线段DQ长度的范围是()A.DQ>5 B.DQ<5 C.DQ≥5 D.DQ≤57.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,满分18分)8.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=ED或∠A=∠F 或AB∥EF 时,就可得到△ABC≌△FED.(只需填写一个即可)9.如图,把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),若测得AB=5米,则槽宽为 5 米.10.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,则D到边AB的距离是 6 .11.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2= 20 度.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 3 对全等三角形.13.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP= 6或12 .三、解答题(共5小题,满分0分)14.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.15.如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN ⊥CD于N,求证:PM=PN.16.如图,O为码头,A、B两个灯塔与码头O的距离相等,OA,OB为海岸线,一轮船P离开码头,计划沿∠AOB的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P始终保持与灯塔A、B的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.17.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.18.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.《全等三角形》参考答案与试题解析一、选择题(共7小题,每小题3分,满分21分)1.如图,△ABC≌△DEC,∠A=70°,∠ACB=60°,则∠E的度数为()A.70°B.50°C.60°D.30°【考点】全等三角形的性质.【分析】根据三角形内角和定理求出∠B的度数,根据全等三角形的性质得到答案.【解答】解:∵∠A=70°,∠ACB=60°,∴∠B=50°,∵△ABC≌△DEC,∴∠E=∠B=50°,故选:B.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.2.如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A.2 B.2.5 C.3 D.3.5【考点】全等三角形的性质.【分析】根据全等三角形的性质求出AC=5,AE=2,进而得出CE的长.【解答】解:∵△ABC≌△DAE,∴AC=DE=5,BC=AE=2,∴CE=5﹣2=3.故选C.【点评】本题考查了全等三角形的性质的应用,关键是求出AC=5,AE=2,主要培养学生的分析问题和解决问题的能力.3.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②【考点】全等三角形的应用.【分析】根据全等三角形的判定方法解答即可.【解答】解:带③去可以利用“角边角”得到全等的三角形.故选C.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.4.如图,Rt△ABC,∠C=90°,AD平分∠CAB,DE⊥AB于E,则下列结论中不正确的是()A.BD+ED=BC B.DE平分∠ADB C.AD平分∠EDC D.ED+AC>AD【考点】角平分线的性质.【分析】根据已知条件由角平分线的性质可得结论CD=DE,由此又可得出很多结论,对各选项逐个验证,证明.【解答】解:CD=DE,∴BD+DE=BD+CD=BC;又有AD=AD,可证△AED≌△ACD∴∠ADE=∠ADC即AD平分∠EDC;在△ACD中,CD+AC>AD所以ED+AC>AD.综上只有B选项无法证明,B要成立除非∠B=30°,题干没有此条件,B错误,故选B.【点评】本题主要考查平分线的性质,由已知证明△AED≌△ACD是解决的关键.5.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=20°,∠F=60°,则∠DAC的度数是()A.50°B.60°C.100°D.120°【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠B和∠C,根据三角形内角和定理求出∠BAC,根据角平分线定义求出即可.【解答】解:∵△ABC≌△EDF,∠EDA=20°,∠F=60°,∴∠B=∠EDF=20°,∠F=∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=100°,∵AD是∠BAC的平分线,∴∠DAC=∠BAC=50°,故选A.【点评】本题考查了全等三角形的性质,三角形内角和定理,角平分线定义的应用,能根据全等三角形的性质求出∠B和∠C是解此题的关键.6.如图,射线OC是∠AOB的角平分线,P是射线OA上一点,DP⊥OA,DP=5,若点Q是射线OB上一个动点,则线段DQ长度的范围是()A.DQ>5 B.DQ<5 C.DQ≥5 D.DQ≤5【考点】角平分线的性质;垂线段最短.【分析】过点D作DE⊥OB于E,根据角平分线上的点到角的两边距离相等可得DP=DE,再根据垂线段最短解答.【解答】解:如图,过点D作DE⊥OB于E,∵OC是∠AOB的角平分线,DP⊥OA,∴DP=DE,由垂线段最短可得DQ≥DE,∵DP=5,∴DQ≥5.故选C.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.7.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.二、填空题(共6小题,每小题3分,满分18分)8.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=ED或∠A=∠F 或AB∥EF 时,就可得到△ABC≌△FED.(只需填写一个即可)【考点】全等三角形的判定.【专题】证明题.【分析】要得到△ABC≌△FED,现有条件为两边分别对应相等,找到全等已经具备的条件,根据全等的判定方法选择另一条件即可得等答案.【解答】解:AD=FC⇒AC=FD,又AB=EF,加BC=DE就可以用SSS判定△ABC≌△FED;加∠A=∠F或AB∥EF就可以用SAS判定△ABC≌△FED.故答案为:BC=ED或∠A=∠F或AB∥EF.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.9.如图,把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),若测得AB=5米,则槽宽为 5 米.【考点】全等三角形的应用.【分析】连接AB,A′B′,根据O为AB′和BA′的中点,且∠A′OB′=∠AOB 即可判定△OA′B′≌△OAB,即可求得A′B′的长度.【解答】解:连接AB,A′B′,O为AB′和BA′的中点,∴OA′=OB,OA=OB′,在△OA′B′和△OAB中,∴△OA′B′≌△OAB,即A′B′=AB,故A′B′=5m,故答案为:5.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中求证△OA′B′≌△OAB是解题的关键.10.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,则D到边AB的距离是 6 .【考点】角平分线的性质.【分析】首先由线段的比求得CD=6,然后利用角平分线的性质可得D到边AB的距离是.【解答】解:∵BC=15,BD:DC=3:2∴CD=6∵∠C=90°AD平分∠BAC∴D到边AB的距离=CD=6.故答案为:6.【点评】此题主要考查角平分线的性质:角平分线上的任意一点到角的两边距离相等.做题时要由已知中线段的比求得线段的长,这是解答本题的关键.11.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2= 20 度.【考点】全等三角形的性质.【分析】△ABE≌△ACF得到∠EAB=∠FAC从而∠1=∠2,这样求∠2就可以转化为求∠1,在△AEM中可以利用三角形的内角和定理就可以求出.【解答】解:∵∠AME=∠CMD=70°∴在△AEM中∠1=180﹣90﹣70=20°∵△ABE≌△ACF,∴∠EAB=∠FAC,即∠1+∠CAB=∠2+∠CAB,∴∠2=∠1=20°.故填20.【点评】本题主要考查了全等三角形的性质,全等三角形的对应角相等,是需要识记的内容;做题时要认真观察图形,找出各角之间的位置关系,这也是比较重要的.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 3 对全等三角形.【考点】全等三角形的判定;角平分线的性质.【分析】由OP平分∠MON,PE⊥OM于E,PF⊥ON于F,得到PE=PF,∠1=∠2,证得△AOP≌△BOP,再根据△AOP≌△BOP,得出AP=BP,于是证得△AOP≌△BOP,和Rt △AOP≌Rt△BOP.【解答】解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在Rt △AEP与Rt△BFP中,,∴Rt △AEP≌Rt△BFP,∴图中有3对全等三角形,故答案为:3.【点评】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.13.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP= 6或12 .【考点】全等三角形的性质.【专题】动点型.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=6,可据此求出P点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC=12,P、C重合.【解答】解:①当AP=CB时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=6;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QPA中,,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=12,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,AP=6或12.故答案为:6或12.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.三、解答题(共5小题,满分0分)14.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【专题】证明题.【分析】(1)由SAS容易证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出对应角相等∠B=∠DEF,即可得出结论.【解答】证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.【点评】本题考查了全等三角形的判定与性质、平行线的判定;熟练掌握全等三角形的判定与性质,证明三角形全等是解决问题的关键.15.如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN ⊥CD于N,求证:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD 和△CBD全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.【解答】证明:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.16.如图,O为码头,A、B两个灯塔与码头O的距离相等,OA,OB为海岸线,一轮船P离开码头,计划沿∠AOB的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P始终保持与灯塔A、B的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.【考点】作图—应用与设计作图.【分析】(1)直接利用角平分线的作法得出符合题意的图形;(2)利用全等三角形的判定与性质得出答案.【解答】解:(1)如图所示:OC即为所求.(2)没有偏离预定航行,理由如下:在△AOP与△BOP中,,∴△AOP≌△BOP(SSS).∴∠AOC=∠BOC,即点C在∠AOB的平分线上.【点评】此题主要考查了应用设计与作图以及全等三角形的判定与性质,正确应用角平分线的性质是解题关键.17.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【考点】全等三角形的判定与性质.【专题】证明题;探究型.【分析】要证(1)△BAD≌△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易证得.(2)BD、CE有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD⊥CE,需证∠BDE=90°,需证∠ADB+∠ADE=90°可由直角三角形提供.【解答】(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.【点评】本题考查了全等三角形的判定和性质;全等问题要注意找条件,有些条件需在图形是仔细观察,认真推敲方可.做题时,有时需要先猜后证.18.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】先过点P作PE⊥OA于点E,PF⊥OB于点F,构造全等三角形:Rt△PCE 和Rt△PDF,这两个三角形已具备两个条件:90°的角以及PE=PF,只需再证∠EPC=∠FPD,根据已知,两个角都等于90°减去∠CPF,那么三角形全等就可证.【解答】解:PC与PD相等.理由如下:过点P作PE⊥OA于点E,PF⊥OB于点F.∵OM平分∠AOB,点P在OM上,PE⊥OA,PF⊥OB,∴PE=PF(角平分线上的点到角两边的距离相等)又∵∠AOB=90°,∠PEO=∠PFO=90°,∴四边形OEPF为矩形,∴∠EPF=90°,∴∠EPC+∠CPF=90°,又∵∠CPD=90°,∴∠CPF+∠FPD=90°,∴∠EPC=∠FPD=90°﹣∠CPF.在△PCE与△PDF中,∵,∴△PCE≌△PDF(ASA),∴PC=PD.【点评】本题考查了角平分线的性质,以及四边形的内角和是360°、还有三角形全等的判定和性质等知识.正确作出辅助线是解答本题的关键.。

全等三角形测试题及答案

全等三角形测试题及答案

全等三角形测试题及答案一、选择题1. 下列选项中,哪两个三角形是全等的?A. ∠A=∠B,AB=BCB. ∠A=∠B,AC=BDC. ∠A=∠C,AB=ACD. ∠A=∠B,AB=BC,AC=BD2. 如果两个三角形的对应边成比例,且夹角相等,这两个三角形是:A. 相似但不全等B. 必然全等C. 不一定全等D. 无法判断二、填空题3. 根据全等三角形的性质,如果两个三角形的对应角相等,且对应边成比例,那么这两个三角形是_________。

4. SAS全等条件指的是_________。

三、判断题5. 如果两个三角形的三边对应相等,那么这两个三角形一定全等。

()6. 根据HL全等条件,直角三角形中,如果斜边和一条直角边对应相等,那么这两个直角三角形全等。

()四、解答题7. 已知三角形ABC和三角形DEF,其中∠A=∠D=90°,AB=DE,AC=DF,求证:三角形ABC全等于三角形DEF。

8. 如图所示,三角形ABC和三角形DEF在平面直角坐标系中,点A(2,3),B(4,5),C(1,1),点D(-1,-2),E(1,-1),F(-2,-4)。

若AB=DE,AC=DF,∠BAC=∠EDF,请证明三角形ABC全等于三角形DEF。

五、综合题9. 在三角形ABC中,点D在BC上,若AD平分∠BAC,且BD=DC,求证:AB=AC。

10. 已知三角形ABC和三角形DEF,其中AB=DE,∠B=∠D,∠C=∠E,求证:三角形ABC全等于三角形DEF。

答案:一、选择题1. 答案:D2. 答案:A二、填空题3. 答案:相似4. 答案:边角边三、判断题5. 答案:正确6. 答案:正确四、解答题7. 解:由于∠A=∠D=90°,AB=DE,AC=DF,根据直角三角形的HL全等条件,我们可以得出三角形ABC全等于三角形DEF。

8. 解:由于AB=DE,AC=DF,∠BAC=∠EDF,根据SAS全等条件,我们可以得出三角形ABC全等于三角形DEF。

全等三角形习题精选(含答案)

全等三角形习题精选(含答案)

全等三角形进步演习1.如图所示,△ABC ≌△ADE,BC 的延伸线过点∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF 2.如图,△AOB 中,∠B=30°,将△AOB绕点O 到△A ′OB ′,边A ′B ′与边OB 交于点C (A ∠A ′CO的度数为若干?3.如图所示,在△ABC 中,∠A=90°,D.E 分离是△ADB ≌△EDB ≌△EDC,则∠C 的度数是若干?4.如图所示,把△ABC 绕点C 顺时针扭转35°C,A ′B ′交AC 于点D,若∠A ′DC=90°,则∠A=5.已知,如图所示,AB=AC,AD ⊥BC 于D,且AB+BD+AD=40cm,则AD 是若干?6.如图,Rt △ABC 中,∠BAC=90°,AB=AC,分离过点的垂线BC.CE,垂足分离为D.E,若BD=3,CE=2,7.如图,AD 是△ABC 的角等分线,DE ⊥AB,DF ⊥衔接EF,交AD 于G,AD 与EF 8.如图所示,在△ABC 中,AD 为∠⊥AC 于F,△ABC 的面积是28cm 2,AB=20cm,AC=8cm,求DE 的长.9.已知,如图:AB=AE,∠B=∠E,∠BAC=∠EAD,∠CAF=∠DAF,求证:AF ⊥CD10.如图,AD=BD,AD ⊥BC 于D,BE ⊥AC 于E,AD 与BE BH 与AC 相等吗?为什么?A B'CBB11.如图所示,已知,AD 为△ABC 的高,E 为ACF,且有BF=AC,FD=CD,求证:BE ⊥AC12.△DAC.△EBC 均是等边三角形,AF.BD求证:(1)AE=BD (2)CM=CN(4)MN ∥BC13.已知:如图1,点C 为线段AB 上一点,△ACM.△CBN 都是等边三角形,AN 交MC 于点E,BM 交CN于点F(1) 求证:AN=BM(2)求证:△CEF 为等边三角形14.如图所示,已知△ABC 和△BDE 都是等边三角形,下列结论:①AE=CD;②BF=BG;③BH 等分∠AHD;④∠AHC=60°;⑤△BFG 是等边三角形;⑥FG ∥AD,个中准确的有( )A .3个个15.已知:F 在BD 上的延伸线上 16.如图:在△ABC 中,BE.CF 分离是AC.AB 双方上的高,在BE 上截取BD=AC,在CF 的延伸线上截取 求证:(1)AD=AG(2)AD 与AG 的地位关系若何17.如图,已知E 是正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE=∠FAE求证:AF=AD-CFAA BB18.如图所示,已知△ABC 中,AB=AC,D 是CB 延伸线上一点, ∠ADB=60°,E 是AD 上一点,且DE=DB,19.如图所示,已知在△AEC 中,∠E=90°⊥AC,垂足为F,DB=DC,求证:BE=CF20.已知如图:AB=DE,直线AE.BD 订交于°,AF ∥DE,交BD 于F,求证:CF=CD21.如图,OC 是∠AOB 的等分线⊥OA 于D,PE ⊥OB 于E,F 是OC上一点,衔接DF 和EF,求证:DF=EF22.已知:如图,BF ⊥AC 于点F,CE ⊥AB 于点E,且BD=CD,求证:(1)△BDE ≌△CDF (2) 点D 在∠A 的等分线上23.如图,已知AB ∥CD,O 是∠ACD 与∠BAC 的等分线的交点,OE ⊥AC 于E,且OE=2,则AB 与CD 24.如图,过线段AB BN,按下列请求绘图并答复:画∠MAB.∠NBA 的等分线交于E (1)∠AEB 是什么角?(2)过点E 作一向线交AM 于D,交BN 于C,不雅察线段DE.CE,你有何发明?(3)无论DC 的两头点在AM.BN 若何移动,只要DC 经由点E,①AD+BC=AB;②.25.如图,△ABC 长分离是20.30.40,其三条角等分线将△ABC 分为三个三角形,则S △BCC26.正方形ABCD 中,AC.BD 交于O,∠EOF=90°,已知AE=3,CF=4,则S △BEF 为若干?27.如图,在Rt △ABC 中,∠ACB=45°,∠BAC=90°,AB=AC,点D 是AB 的中点,AF ⊥CD 于H,交BC 于F,BE ∥AC 交AF 的延伸线于E,求证:BC 垂直且等分DE28.在△ABC 中,∠ACB=90°,AC=BC,直线MN 经由点C,且AD ⊥MN 于D,BE ⊥MN 于E(1)当直线MN 绕点C 扭转到图①的地位时,求证:DE=AD+BE (2)当直线MN 绕点C 扭转到图②的地位时,求证:DE=AD-BE (3)当直线MN 绕点,试问DE.AD.BE 具有1 解:∵△ABC ≌△∴∠D=∠B=50° ∵∠ACB=105°∴∠ACE=75°∵∠CAD=10° ∠ACE=75°∴∠EFA=∠CAD+∠ACE=85°(三角形的一个外角等于和它不相邻的两个内角的和)同理可得∠DEF=∠EFA-∠D=85°-50°=35°2 依据扭改变换的性质可得∠B′=∠B,因为△AOB 绕点O 顺时针扭转52°,所以∠BOB′=52°,而∠A'CO 是△B′OC 的外角,所以∠A′CO=∠B′+∠BOB′,然子女入数据进行盘算即可得解. 解答:解:∵△A′OB′是由△AOB 绕点O 顺时针扭转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB 绕点O 顺时针扭转52°,∴∠BOB′=52°,∵∠A′CO 是△B′OC 的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D .3 全等三角形的性质;对顶角.邻补角;三角形内角和定理.AA剖析:依据全等三角形的性质得出∠A=∠DEB=∠DEC,∠ADB=∠BDE=∠EDC,依据邻补角界说求出∠DEC.∠EDC的度数,依据三角形的内角和定理求出即可.解答:解:∵△ADB≌△EDB≌△EDC,∴∠A=∠DEB=∠DEC,∠ADB=∠BDE=∠EDC,∵∠DEB+∠DEC=180°,∠ADB+∠BDE+EDC=180°,∴∠DEC=90°,∠EDC=60°,∴∠C=180°-∠DEC-∠EDC,=180°-90°-60°=30°.4剖析:依据扭转的性质,可得知∠ACA′=35°,从而求得∠A′的度数,又因为∠A的对应角是∠A′,即可求出∠A的度数.解答:解:∵三角形△ABC绕着点C时针扭转35°,得到△AB′C′∴∠ACA′=35°,∠A'DC=90°∴∠A′=55°,∵∠A的对应角是∠A′,即∠A=∠A′,∴∠A=55°;故答案为:55°.点评:此题考核了扭转地性质;图形的扭转是图形上的每一点在平面上绕某个固定点扭转固定角度的地位移动.个中对应点到扭转中间的距离相等,扭转前后图形的大小和外形没有改变.解题的症结是准确肯定对应角.5因为AB=AC 三角形ABC是等腰三角形所以 AB+AC+BC=2AB+BC=50BC=50-2AB=2(25-AB)又因为AD垂直于BC于D,所以 BC=2BDBD=25-ABAB+BD+AD=AB+25-AB+AD=AD+25=40AD=40-25=15cm6 解:∵BD⊥DE,CE⊥DE∴∠D=∠E∵∠BAD+∠BAC+∠CAE=180°又∵∠BAC=90°,∴∠BAD+∠CAE=90°∵在Rt△ABD中,∠ABD+∠BAD=90°∴∠ABD=∠CAE∵在△ABD与△CAE中{∠ABD=∠CAE∠D=∠EAB=AC∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE∵DE=AD+AE∵BD=3,CE=2∴DE=57证实:∵AD是∠BAC的等分线∴∠EAD=∠FAD又∵DE⊥AB,DF⊥AC∴∠AED=∠AFD=90°边AD公共∴Rt△AED≌Rt△AFD(AAS)∴AE=AF即△AEF为等腰三角形而AD是等腰三角形AEF顶角的等分线∴AD⊥底边EF(等腰三角形的顶角的等分线,底边上的中线,底边上的高的重合(简写成“三线合一”)8 AD等分∠BAC,则∠EAD=∠FAD,∠EDA=∠DFA=90度,AD=AD所以△AED≌△AFDDE=DFS△ABC=S△AED+S△AFD28=1/2(AB*DE+AC*DF)=1/2(20*DE+8*DE)DE=29AB=AE,∠B=∠E,∠BAC=∠EAD则△ABC≌△AEDAC=AD△ACD是等腰三角形∠CAF=∠DAFAF等分∠CAD则AF⊥CD10 解:∵AD⊥BC∴∠ADB=∠ADC=90∴∠CAD+∠C=90∵BE⊥AC∴∠BEC=∠ADB=90∴∠CBE+∠C=90∴∠CAD=∠CBE∵AD=BD∴△BDH≌△ADC (ASA)11 解:(1)证实:∵AD⊥BC(已知),∴∠BDA=∠ADC=90°(垂直界说),∴∠1+∠2=90°(直角三角形两锐角互余).在Rt△BDF和Rt△ADC中,∴Rt△BDF≌Rt△ADC().∴∠2=∠C(全等三角形的对应角相等).∵∠1+∠2=90°(已证),所以∠1+∠C=90°.∵∠1+∠C+∠BEC=180°(三角形内角和等于180°),∴∠BEC=90°.∴BE⊥AC(垂直界说);12 证实:(1)∵△DAC.△EBC均是等边三角形,∴AC=DC,EC=BC,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中,AC=DC ∠ACE=∠DCB EC=BC∴△ACE≌△DCB(SAS).∴AE=BD(2)由(1)可知:△ACE≌△DCB,∴∠CAE=∠CDB,即∠CAM=∠CDN.∵△DAC.△EBC均是等边三角形,∴AC=DC,∠ACM=∠BCE=60°.又点A.C.B在统一条直线上,∴∠DCE=180°-∠ACD-∠BCE=180°-60°-60°=60°,即∠DCN=60°.∴∠ACM=∠DCN.在△ACM和△DCN中,∠CAM=∠CDN AC=DC ∠ACM=∠DCN∴△ACM≌△DCN(ASA).∴CM=CN.(3)由(2)可知CM=CN,∠DCN=60°∴△CMN为等边三角形(4)由(3)知∠CMN=∠CNM=∠DCN=60°∴∠CMN+∠MCB=180°∴MN//BC13剖析:(1)由等边三角形可得其对应线段相等,对应角相等,进而可由SAS得到△CAN≌△MCB,结论得证;(2)由(1)中的全等可得∠CAN=∠CMB,进而得出∠MCF=∠ACE,由ASA得出△CAE≌△CMF,即CE=CF,又ECF=60°,所以△CEF为等边三角形.解答:证实:(1)∵△ACM,△CBN是等边三角形,∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,在△CAN和△MCB中,AC=MC,∠ACN=∠MCB,NC=BC,∴△CAN≌△MCB(SAS),∴AN=BM.(2)∵△CAN≌△CMB,∴∠CAN=∠CMB,又∵∠MCF=180°-∠ACM-∠NCB=180°-60°-60°=60°,∴∠MCF=∠ACE,在△CAE和△CMF中,∠CAE=∠CMF,CA=CM,∠ACE=∠MCF,∴△CAE≌△CMF(ASA),∴CE=CF,∴△CEF为等腰三角形,又∵∠ECF=60°,∴△CEF为等边三角形.点评:本题重要考核了全等三角形的剖断及性质以及等边三角形的剖断问题,可以或许控制并闇练应用.14考点:等边三角形的性质;全等三角形的剖断与性质;扭转的性质.剖析:由题中前提可得△ABE≌△CBD,得出对应边.对应角相等,进而得出△BGD≌△BFE,△ABF≌△CGB,再由边角关系即可求解题中结论是否准确,进而可得出结论.解答:解:∵△ABC与△BDE为等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∴∠ABE=∠CBD,即AB=BC,BD=BE,∠ABE=∠CBD∴△ABE≌△CBD,∴AE=CD,∠BDC=∠AEB,又∵∠DBG=∠FBE=60°,∴△BGD≌△BFE,∴BG=BF,∠BFG=∠BGF=60°,∴△BFG是等边三角形,∴FG∥AD,∵BF=BG,AB=BC,∠ABF=∠CBG=60°,∴△ABF≌△CGB,∴∠BAF=∠BCG,∴∠CAF+∠ACB+∠BCD=∠CAF+∠ACB+∠BAF=60°+60°=120°,∴∠AHC=60°,∵∠FHG+∠FBG=120°+60°=180°,∴B.G.H.F四点共圆,∵FB=GB,∴∠FHB=∠GHB,∴BH等分∠GHF,∴题中①②③④⑤⑥都准确.故选D.点评:本题重要考核了等边三角形的性质及全等三角形的剖断及性质问题,可以或许闇练控制.15考点:全等三角形的剖断与性质.剖析:细心剖析题意,若能证实△ABF≌△GCA,则可得AG=AF.在△ABF和△GCA中,有BF=AC.CG=AB这两组边相等,这两组边的夹角是∠ABD和∠ACG,从已知前提中可推出∠ABD=∠ACG.在Rt△AGE中,∠G+∠GAE=90°,而∠G=∠BAF,则可得出∠GAF=90°,即AG⊥AF.解答:解:AG=AF,AG⊥AF.∵BD.CE分离是△ABC的边AC,AB上的高.∴∠ADB=∠AEC=90°∴∠ABD=90°-∠BAD,∠ACG=90°-∠DAB,∴∠ABD=∠ACG在△ABF和△GCA中 BF=AC ∠ABD=∠ACG AB=CG .∴△ABF≌△GCA(SAS)∴AG=AF∠G=∠BAF又∠G+∠GAE=90度.∴∠BAF+∠GAE=90度.∴∠GAF=90°∴AG⊥AF.点评:本题考核了全等三角形的剖断和性质;要肄业生应用全等三角形的剖断前提及等量关系灵巧解题,考核学生对几何常识的懂得和控制,应用所学常识,造就学生逻辑推理才能,规模较广.16 1.证实:∵BE⊥AC∴∠AEB=90∴∠ABE+∠BAC=90∵CF⊥AB∴∠AFC=∠AFG=90∴∠ACF+∠BAC=90,∠G+∠BAG=90∴∠ABE=∠ACF∵BD=AC,CG=AB∴△ABD≌△GCA (SAS)∴AG=AD2.AG⊥AD证实∵△ABD≌△GCA∴∠BAD=∠G∴∠GAD=∠BAD+∠BAG=∠G+∠BAG=90∴AG⊥AD17过E做EG⊥AF于G,衔接EF∵ABCD是正方形∴∠D=∠C=90°AD=DC∵∠DAE=∠FAE,ED⊥AD,EG⊥AF∴DE=EGAD=AG∵E是DC的中点∴DE=EC=EG∵EF=EF∴Rt△EFG≌Rt△ECF∴GF=CF∴AF=AG+GF=AD+CF18因为:角EDB=60°DE=DB所以:△EDB是等边三角形,DE=DB=EB过A作BC的垂线交BC于F因为:△ABC是等腰三角形所以:BF=CF,2BF=BC又:角DAF=30°所以:AD=2DF又:DF=DB+BF所以:AD=2(DB+BF)=2DB+2BF=【2DB+BC】(AE+ED)=2DB+BC,个中ED=DB所以:AE=DB+BC,AE=BE+BC19填补:B是FD延伸线上一点;ED=DF(角等分线到双方上的距离相等);BD=CD;角EDB=FDC(对顶角);则三角形EDB全等CDF;则BE=CF;或者填补:B在AE边上;ED=DF(角等分线到双方上的距离相等);DB=DC则两直角三角形EDB全等CDF(HL)即BE=CF20解:∵AF//DE∴∠D=∠AFC∵∠B+∠D=180°,,∠AFC+∠AFB=180°∴∠B=∠AFB∴AB=AF=DE△AFC和△EDC中:∠B=∠AFB,∠ACF=∠ECD(对顶角),AF=DE∴△AFC≌△EDC∴CF=CD21 证实:∵点P在∠AOB的角等分线OC上,PE⊥OB,PD⊥AO,∴PD=PE,∠DOP=∠EOP,∠PDO=∠PEO=90°,∴∠DPF=∠EPF,在△DPF和△EPF中PD=PE∠DPF=∠EPFPF=PF (SAS),∴△DPF≌△EPF∴DF=EF.22 考点:全等三角形的剖断与性质.专题:证实题.剖析:(1)依据全等三角形的剖断定理ASA证得△BED≌△CFD;(2)衔接AD.应用(1)中的△BED≌△CFD,推知全等三角形的对应边ED=FD.因为角等分线上的点到角的双方的距离相等,所以点D在∠A的等分线上.解答:证实:(1)∵BF⊥AC,CE⊥AB,∠BDE=∠CDF(对顶角相等),∴∠B=∠C(等角的余角相等);在Rt△BED和Rt△CFD中,∠B=∠CBD=CD(已知)∠BDE=∠CDF,∴△BED≌△CFD(ASA);(2)衔接AD.由(1)知,△BED≌△CFD,∴ED=FD(全等三角形的对应边相等),∴AD是∠EAF的角等分线,即点D在∠A的等分线上.点评:本题考核了全等三角形的剖断与性质.经常应用的剖断办法有:ASA,AAS,SAS,SSS,HL等,做题时需灵巧应用.23考点:角等分线的性质.剖析:请求二者的距离,起首要作出二者的距离,过点O作FG⊥AB,可以得到FG⊥CD,依据角等分线的性质可得,OE=OF=OG,即可求得AB与CD之间的距离.解答:解:过点O作FG⊥AB,∵AB∥CD,∴∠BFG+∠FGD=180°,∵∠BFG=90°,∴∠FGD=90°,∴FG⊥CD,∴FG就是AB与CD之间的距离.∵O为∠BAC,∠ACD等分线的交点,OE⊥AC 交AC于E,∴OE=OF=OG(角等分线上的点,到角双方距离相等),∴AB与CD之间的距离等于2•OE=4.故答案为:4.点评:本题重要考核角等分线上的点到角双方的距离相等的性质,作出AB与CD之间的距离是准确解决本题的症结.24考点:梯形中位线定理;平行线的性质;三角形内角和定理;等腰三角形的性质.专题:作图题;探讨型.剖析:(1)由两直线平行同旁内角互补,及角等分线的性质不可贵出∠1+∠3=90°,再由三角形内角和等于180°,即可得出∠AEB 是直角的结论;(2)过E点作帮助线EF使其平行于AM,由平行线的性质可得出各角之间的关系,进一步求出边之间的关系;(3)由(2)中得出的结论可知EF为梯形ABCD的中位线,可知无论DC的两头点在AM.BN若何移动,只要DC经由点E,AD+BC的值总为必定值.解答:解:(1)∵AM∥BN,∴∠MAB+∠ABN=180°,又AE,BE分离为∠MAB.∠NBA的等分线,∴∠1+∠3=12(∠MAB+∠ABN)=90°,∴∠AEB=180°-∠1-∠3=90°,即∠AEB为直角;(2)过E点作帮助线EF使其平行于AM,如图则EF∥AD∥BC,∴∠AEF=∠4,∠BEF=∠2,∵∠3=∠4,∠1=∠2,∴∠AEF=∠3,∠BEF=∠1,∴AF=FE=FB,∴F为AB的中点,又EF∥AD∥BC,依据平行线等分线段定理得到E为DC中点,∴ED=EC;(3)由(2)中结论可知,无论DC的两头点在AM.BN若何移动,只要DC经由点E,总知足EF为梯形ABCD中位线的前提,所以总有AD+BC=2EF=AB.点评:本题是盘算与作图相联合的摸索.对学生应用作图对象的才能,以及应用直角三角形.等腰三角形性质,三角形内角和定理,及梯形中位线等基本常识解决问题的才能都有较高的请求.25如图,△ABC的三边AB,BC,CA长分离是20,30,40,其三条角等分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5考点:角等分线的性质.专题:数形联合.剖析:应用角等分线上的一点到角双方的距离相等的性质,可知三个三角形高相等,底分离是20,30,40,所以面积之比就是2:3:4.解答:解:应用同高不合底的三角形的面积之比就是底之比可知选C.故选C.点评:本题重要考核了角等分线上的一点到双方的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高时相等的,这点式异常重要的.26解:正方形ABCD∵AB=BC,AO=BO=CO,∠ABC=∠AOB=∠COB=90,∠ABO=∠BCO =45∴∠BOF+∠COF=90∵∠EOF=90∴∠BOF+∠BOE=90∴∠COF=∠BOE∴△BOE≌△COF (ASA)∴BE=CF∵CF=4∴BE=4∵AE=3∴AB=AE+BE=3+4=7∴BF=BC-CF=7-4=3∴S△BEF=BE×BF/2=4×3/2=627考点:线段垂直等分线的性质;全等三角形的剖断与性质.专题:证实题.剖析:证实出△DBP≌△EBP,即可证实BC垂直且等分DE.解答:证实:在△ADC中,∠DAH+∠ADH=90°,∠ACH+∠ADH=90°,∴∠DAH=∠DCA,∵∠BAC=90°,BE∥AC,∴∠CAD=∠ABE=90°.又∵AB=CA,∴在△ABE与△CAD中,∠DAH=∠DCA∠CAD=∠ABEAB=AC∴△ABE≌△CAD(ASA),∴AD=BE,又∵AD=BD,∴BD=BE,在Rt△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,故∠ABC=45°.∵BE∥AC,∴∠EBD=90°,∠EBF=90°-45°=45°,∴△DBP≌△EBP(SAS),∴DP=EP,即可得出BC垂直且等分DE.点评:此题症结在于转化为证实出△DBP≌△EBP.经由过程应用图中所给信息,证实出两三角形类似,而证实类似可以经由过程证实角相等和线段相等来实现.28 1)证实:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在Rt△ADC和Rt△CEB中,{∠ADC=∠CEB∠ACD=∠CBE AC=CB,∴Rt△ADC≌Rt△CEB(AAS),∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证实:在△ADC和△CEB中,{∠ADC=∠CEB=90°∠ACD=∠CBE AC=CB,∴△ADC≌△CEB(AAS),∴AD=CE,DC=BE,∴DE=CE-CD=AD-BE;(3)DE=BE-AD.证实的办法与(2)雷同已赞成9| 评论(2)。

强烈推荐:全等三角形优秀习题及答案(6套)

强烈推荐:全等三角形优秀习题及答案(6套)

C .△APE ≌△APFD .AP PE PF =+ 2.下列说法中:①如果两个三角形可以依据“AAS ”来判定全等,那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( )A .①和②B .②和③C .①和③D .①②③3.如图8, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( ) A .1个 B .2个 C .3个 D .4个4.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等5.如图9,AD AE =,= = =100 =70BD CE ADB AEC BAE ︒︒,,∠∠∠,下列结论错误的是( )A .△ABE ≌△ACDB .△ABD ≌△ACEC .∠DAE =40°D .∠C =30°6.已知:如图10,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中共有全等三角形( )A .5对B .4对C .3对D .2对7.将一张长方形纸片按如图11所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( ) A .60° B .75° C .90° D .95°8.根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =6三、用心想一想(本大题共69分) 1.(本题8分)请你用三角板、圆规或量角器等工具,画∠POQ =60°,在它的边OP 上截取OA =50mm ,OQ 上截取OB =70mm ,连结AB ,画∠AOB 的平分线与AB 交于点C ,并量出AC 和OC 的长 .(结果精确到1mm ,不要求写画法).2.(本题10分)已知:如图12,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =. 求证:(1)AF CE =;(2)AB CD ∥.A DC B 图8 E FA D OC B 图9 A DE C B 图10F G A E C 图11 B A ′ E ′DAD EC B图12F则∠BAC= °.3.把两根钢条AA?、BB?的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为米.4.如图,∠A=∠D,AB=CD,则△≌△,根据是.5.如图,在△ABC和△ABD中,∠C=∠D=90,若利用“AAS”证明△ABC≌△ABD,则需要加条件或;若利用“HL”证明△ABC≌△ABD,则需要加条件,或.6.△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC= .7.工人师傅砌门时,如图所示,常用木条EF固定矩形木框ABCD,使其不变形,这是利用,用菱形做活动铁门是利用四边形的。

全等三角形练习题含答案

全等三角形练习题含答案

全等三角形练习题含答案全等三角形练题一、选择题:1、以两条边长为10和3及另一条边组成边长都是整数的三角形一共有()。

A.3个 B.4个 C.5个 D.无数多个2、若一个三角形的一个角等于其它两个角的差,则这个三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.以上都有可能3、具备下列条件的两个三角形,全等的是()A.两个角分别相等,且有一边相等B.一边相等,且这边上的高也相等C.两边分别相等,且第三边上的中线也相等D.两边且其中一条对应边的对角对应相等4、等腰三角形中有一个角是50°,它的一条腰上的高与底边的夹角是()A.25° B.40° C.25°或40° D.大小无法确定5、一个三角形的一边为2,这边的中线为1,另两边之和为3+1,那么这个三角形的面积为()A.1 B.3/2 C.3 D.不能确定二、解答题:1、已知:如图,△ABC中,AB=AC,AD=BD,AC=DC求:∠B的度数2、已知:Rt△ABC中,∠BAC=90°,AD是BC边上的高,BF平分∠ABC,交AD于E。

求证:△AEF是等腰三角形3、已知:如图AB=CD,AC和BD的垂直平分线相交于O点。

求证:∠ABO=∠CDO4、已知:如图△ABC中,BC边中垂线DE交∠BAC的平分线于D,DM⊥AB于M,DN⊥AC于N。

求证:BM=CN5、已知:如图,△ABC中,∠ACB=90°,M为AB的中点,DM⊥AB于M,CD平分∠ACB,交AB于E求证:DE=DF6、在△ABC中,∠C=90°,AC=BC,AD=BD,PE⊥AC 于点E,PF⊥BC于点F。

求证:DE=DF。

全等三角形练习题(含答案)

全等三角形练习题(含答案)

全等三角形练习题12.1全等三角形1.下列各组的两个图形属于全等图形的是()2.如图,△ABD≌△ACE,则∠B与________,∠AEC与________,∠A与________是对应角;则AB与________,AE与________,EC与________是对应边.第2题图第3题图3.如图,△ABC≌△CDA,∠ACB=30°,则∠CAD的度数为________.4.如图,若△ABO≌△ACD,且AB=7cm,BO=5cm,则AC=________cm.第4题图第5题图5.如图,△ACB≌△DEB,∠CBE=35°,则∠ABD的度数是________.6.如图,△ABC≌△DCB,∠ABC与∠DCB是对应角.(1)写出其他的对应边和对应角;(2)若AC=7,DE=2,求BE的长.12.2三角形全等的判定第1课时“边边边”1.如图,下列三角形中,与△ABC全等的是()A.①B.②C.③D.④2.如图,已知AB=AD,CB=CD,∠B=30°,则∠D的度数是()A.30° B.60° C.20° D.50°第2题图第3题图3.如图,AB=DC,请补充一个条件:________,使其能由“SSS”判定△ABC≌△DCB. 4.如图,A,C,F,D在同一直线上,AF=DC,AB=DE,BC=EF.求证:△ABC≌△DEF.5.如图,AB=AC,AD=AE,BD=CE.求证:∠ADE=∠AED.第2课时“边角边”1.如图,已知点F、E分别在AB、AC上,且AE=AF,请你补充一个条件:________,使其能直接由“SAS”判定△ABE≌△ACF.第1题图第2题图2.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是________.3.如图,AB=AD,∠1=∠2,AC=AE. 求证:△ABC≌△ADE.4.如图,AE∥DF,AE=DF,AB=CD.求证:(1)△AEC≌△DFB;(2)CE∥BF.第3课时“角边角”“角角边”1.如图,已知∠1=∠2,∠B=∠C,若直接推得△ABD≌△ACD,则其根据是() A.SAS B.SSS C.ASA D.AAS第1题图第2题图2.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,直接由“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠CDA=∠BDAC.AB=AC D.BD=CD3.如图,已知MA∥NC,MB∥ND,且MB=ND.求证:△MAB≌△NCD.4.如图,在△ABC中,AD是BC边上的中线,E,F为直线AD上的两点,连接BE,CF,且BE∥CF.求证:(1)△CDF≌△BDE;(2)DE=DF.第4课时“斜边、直角边”1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是() A.HL B.ASA C.SAS D.AAS第1题图第2题图2.如图,在Rt△ABC与Rt△DCB中,∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是________.3.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:∠AEB=∠F.4.如图,点C,E,B,F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.12.3 角的平分线的性质第1课时 角平分线的性质1.如图,在Rt △ACB 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于点E .若CD =6,则DE 的长为( )A .9B .8C .7D .6第1题图 第2题图2.如图,在△ABC 中,∠C =90°,按以下步骤作图:①以点B 为圆心,以小于BC 的长为半径画弧,分别交AB ,BC 于点E ,F ;②分别以点E ,F 为圆心,以大于12EF 的长为半径画弧,两弧相交于点G ;③作射线BG ,交AC 边于点D .若CD =4,则点D 到斜边AB 的距离为________.3.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,求CD 的长.4.如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE ,CD 相交于点O ,且AO 平分∠BAC .求证:OB =OC .第2课时角平分线的判定1.如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF.若∠DBC=50°,则∠ABC的度数为()A.50° B.100° C.150° D.200°第1题图第3题图2.在三角形内部,到三角形的三边距离都相等的点是()A.三角形三条高的交点B.三角形三条角平分线的交点C.三角形三条中线的交点D.以上均不对3.如图,∠ABC+∠BCD=180°,点P到AB,BC,CD的距离都相等,则∠PBC+∠PCB 的度数为________.4.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为E,F,AE=AF.求证:(1)PE=PF;(2)AP平分∠BAC.5.如图,B是∠CAF内的一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF的面积相等.求证:AB平分∠CAF.第十二章 全等三角形 12.1 全等三角形1.D 2.∠C ∠ADB ∠A AC AD DB 3.30° 4.7 5.35°6.解:(1)对应边:AB 与DC ,AC 与DB ,BC 与CB .对应角:∠A 与∠D ,∠ACB 与∠DBC .(2)由(1)可知DB =AC =7,∴BE =BD -DE =7-2=5.12.2 三角形全等的判定第1课时 “边边边”1.C 2.A 3.AC =BD4.证明:∵AF =DC ,∴AF -CF =DC -CF ,即AC =DF .在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF (SSS).5.证明:在△ABD 与△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE (SSS),∴∠ADB =∠AEC .∵∠ADB +∠ADE =180°,∠AEC +∠AED =180°,∴∠ADE =∠AED .第2课时 “边角边”1.AB =AC 2.SAS3.证明:∵∠1=∠2,∴∠BAC =∠DAE .在△ABC 与△ADE 中,∵⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).4.证明:(1)∵AE ∥DF ,∴∠A =∠D .∵AB =CD ,∴AC =DB .在△AEC 与△DFB 中,⎩⎪⎨⎪⎧AE =DF ,∠A =∠D ,AC =DB ,∴△AEC ≌△DFB (SAS). (2)由(1)知△AEC ≌△DFB ,∴∠ECA =∠FBD ,∴CE ∥BF .第3课时 “角边角”“角角边”1.D 2.B3.证明:∵MB ∥ND ,∴∠MBA =∠D .∵MA ∥NC ,∴∠A =∠NCD .在△MAB 与△NCD 中,⎩⎪⎨⎪⎧∠MBA =∠D ,∠A =∠NCD ,MB =ND ,∴△MAB ≌△NCD (AAS). 4.证明:(1)∵AD 是△ABC 的中线,∴BD =CD .∵BE ∥CF ,∴∠FCD =∠EBD .在△CDF 和△BDE 中,⎩⎪⎨⎪⎧ ∠FCD =∠EBD ,CD =BD ,∠CDF =∠BDE ,∴△CDF ≌△BDE (ASA).(2)由(1)知△CDF ≌△BDE ,∴DF =DE .第4课时 “斜边、直角边”1.A 2.AB =DB (答案不唯一)3.证明:∵∠ABC =90°,∴∠CBF =90°.在Rt △ABE 和Rt △CBF 中, ∵⎩⎪⎨⎪⎧AE =CF ,AB =CB ,∴Rt △ABE ≌Rt △CBF (HL).∴∠AEB =∠F .4.证明:∵AB ⊥CF ,DE ⊥CF ,∴∠ABC =∠DEF =90°.在Rt △ABC 和Rt △DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,∴Rt △ABC ≌Rt △DEF (HL),∴BC =EF ,∴BC -BE =EF -BE ,即CE =BF . 12.3 角的平分线的性质第1课时 角平分线的性质1.D 2.43.解:∵S △ABD =15,AB =10,∴点D 到AB 的距离h =2×1510=3.∵AD 平分∠BAC ,∠C =90°,∴DC =h =3. 4.证明:∵CD ⊥AB ,BE ⊥AC ,AO 平分∠BAC ,∴OD =OE ,∠ODB =∠OEC =90°.在△DOB与△EOC 中,⎩⎪⎨⎪⎧∠DOB =∠EOC ,OD =OE ,∠ODB =∠OEC ,∴△DOB ≌△EOC (ASA),∴OB =OC .第2课时 角平分线的判定1.B 2.B 3.90°4.证明:(1)∵PE ⊥AB ,PF ⊥AC ,∴∠AEP =∠AFP =90°.在Rt △AEP 和Rt △AFP 中,⎩⎪⎨⎪⎧AP =AP ,AE =AF ,∴Rt △AEP ≌Rt △AFP (HL),∴PE =PF .(2)∵PE⊥AB,PF⊥AC,PE=PF,∴点P在∠BAC的平分线上,故AP平分∠BAC. 5.证明:∵DC=EF,△DCB和△EFB的面积相等,∴点B到AC,AF的距离相等,∴AB 平分∠CAF.。

全等三角形判定基础练习(有答案)

全等三角形判定基础练习(有答案)

全等三角形判定基础练习(有答案)一.选择题(共3小题)1.如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD2.判定两个三角形全等,给出如下四组条件:①两边和一角对应相等;②两角和一边对应相等;③两个直角三角形中斜边和一条直角边对应相等;④三个角对应相等;其中能判定这两个三角形全等的条件是()A.①和②B.①和④C.②和③D.③和④3.如图,下列各组条件中,不能得到△ABC≌△BAD的是()A.BC=AD,∠ABC=∠BAD B.BC=AD,AC=BDC.AC=BD,∠CAB=∠DBA D.BC=AD,∠CAB=∠DBA二.解答题(共6小题)4.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.5.如图所示,有两个直角三角形△ABC和△QPA按如图位置摆放C,P,A在同一条直线上,并且BC=PA.当QP与AB垂直时,△ABC能和△QPA全等吗,请说明理由.6.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.7.如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BE⊥AC,与BD的垂线DE交于点E.求证:△ABC≌△BDE.8.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.9.如图,已知点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:△ABE≌△ACD.全等三角形判定(孙雨欣)初中数学组卷参考答案与试题解析一.选择题(共3小题)1.如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看条件是否符合判定定理即可.【解答】解:A、∵在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),正确,故本选项错误;B、∵在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),正确,故本选项错误;C、∵在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),正确,故本选项错误;D、根据AE=AD,BE=CD和∠A=∠A不能推出△ABE和△ACD全等,错误,故本选项正确;故选D.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.2.判定两个三角形全等,给出如下四组条件:①两边和一角对应相等;②两角和一边对应相等;③两个直角三角形中斜边和一条直角边对应相等;④三个角对应相等;其中能判定这两个三角形全等的条件是()A.①和②B.①和④C.②和③D.③和④【分析】认真分析各选项提供的已知条件,结合全等三角形判定方法对选项提供的已知条件逐一判断.【解答】解:①两边和一角对应相等不正确,应该是两边的夹角,故本选项错误,②两角和一边对应相等,符合AAS,故本选项正确,③两个直角三角形中斜边和一条直角边对应相等,符合SAS,故本选项正确,④三个角对应相等,可以相似不全等,故本选项错误,故选C.【点评】本题主要考查了对全等三角形的判定方法的理解及运用.常用的判定方法有AAS,SSS,SAS 等,难度适中.3.如图,下列各组条件中,不能得到△ABC≌△BAD的是()A.BC=AD,∠ABC=∠BAD B.BC=AD,AC=BDC.AC=BD,∠CAB=∠DBA D.BC=AD,∠CAB=∠DBA【分析】根据图形可得公共边AB=AB,再加上选项所给条件,利用判定定理SSS、SAS、ASA、AAS分别进行分析即可.【解答】解:根据图形可得公共边:AB=AB,A、BC=AD,∠ABC=∠BAD可利用SAS证明△ABC≌△BAD,故此选项不合题意;B、BC=AD,AC=BD可利用SSS证明△ABC≌△BAD,故此选项不合题意;C、AC=BD,∠CAB=∠DBA可利用SAS证明△ABC≌△BAD,故此选项不合题意;D、BC=AD,∠CAB=∠DBA不能证明△ABC≌△BAD,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二.解答题(共7小题)4.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.【分析】利用∠1=∠2,即可得出∠ABE=∠CBF,再利用全等三角形的判定SAS得出即可.【解答】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF,在△ABE与△CBF中,,∴△ABE≌△CBF(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图所示,有两个直角三角形△ABC和△QPA按如图位置摆放C,P,A在同一条直线上,并且BC=PA.当QP与AB垂直时,△ABC能和△QPA全等吗,请说明理由.【分析】首先根据∠QAP=90°,AB⊥PQ可证出∠PQA=∠BAC,在加上条件BC=AP,∠C=∠QAP=90°,可利用AAS定理证明△ABC和△QPA全等.【解答】△ABC能和△QPA全等;证明:∵∠QAP=90°,∴∠PQA+∠QPA=90°,∵QP⊥AB,∴∠BAC+∠APQ=90°,∴∠PQA=∠BAC,在△ABC和△QPA中,,∴△ABC≌△QPA(AAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.【分析】要证AD平分∠BAC,只需证DF=DE.可通过证△BDF≌△CDE(AAS)来实现.根据已知条件,利用AAS可直接证明△BDF≌△CDE,从而可得出AD平分∠BAC.【解答】证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°.在△BDF与△CDE中,,∴Rt△BDF≌Rt△CDE(AAS).∴DF=DE,∴AD是∠BAC的平分线.【点评】本题考查了全等三角形的判定和性质,以及到角两边距离相等的点在角平分线上等知识.发现并利用△BDF≌△CDE是正确解答本题的关键.7.如图AB,CD相交于点O,AD=CB,AB⊥DA,CD⊥CB,求证:△ABD≌△CDB.【分析】首先根据AB⊥DA,CD⊥CB,可得∠A=∠C=90°,再利用HL定理证明Rt△ABD≌Rt△CBD即可.【解答】证明:∵AB⊥DA,CD⊥CB,∴∠A=∠C=90°,在Rt△ABD和Rt△CBD中,∴Rt△ABD≌Rt△CBD(HL).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.【分析】由AB=AC可得∠B=∠C,然后根据BD=CE可证BE=CD,根据SAS即可判定三角形的全等.【解答】证明∵AB=AC,∴∠B=∠C,∵BD=EC,∴BE=CD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.如图,已知点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:△ABE≌△ACD.【分析】根据全等三角形的判定定理ASA推出即可.【解答】证明:∵在△ABE和△ACD中,∴△ABE≌△ACD(ASA).【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BE⊥AC,与BD的垂线DE交于点E.求证:△ABC≌△BDE.【分析】利用已知得出∠A=∠DBE,进而利用ASA得出△ABC≌△BDE即可.【解答】证明:在Rt△ABC中,∵∠ABC=90°,∴∠ABE+∠DBE=90°,∵BE⊥AC,∴∠ABE+∠A=90°,∴∠A=∠DBE,∵DE是BD的垂线,∴∠D=90°,在△ABC和△BDE中,∵,∴△ABC≌△BDE(ASA).【点评】此题主要考查了全等三角形的判定,三角形内角和定理的应用,正确发现图形中等量关系∠A=∠DBE是解题关键.。

全等三角形经典题型50题(含答案)

全等三角形经典题型50题(含答案)

已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD已知:D 是AB 中点,∠ACB=90°,求证:12CD AB已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC1. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C2. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BEADBCCDB AB A CDF2 1 E6. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

求证:BC=AB+DC。

.7.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C8已知:AB=CD,∠A=∠D,求证:∠B=∠CDCBAFEAB CD9.已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE10.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC . 12.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.13.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):F A ED C BOED C B A24.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE . 证明:延长BA 、CE ,两线相交于点F ∵BE ⊥CE ∴∠BEF=∠BEC=90° 在△BEF 和△BEC 中 ∠FBE=∠CBE, BE=BE, ∠BEF=∠BEC∴△BEF ≌△BEC(ASA) ∴EF=EC ∴CF=2CE∵∠ABD+∠ADB=90°,∠ACF+∠CDE=90° 又∵∠ADB=∠CDE∴∠ABD=∠ACF 在△ABD 和△ACF 中 ∠ABD=∠ACF, AB=AC, ∠BAD=∠CAF=90° ∴△ABD ≌△ACF(ASA) ∴BD=CF ∴BD=2CE 25、(10分)如图:DF=CE ,AD=BC ,∠D=∠C 。

全等三角形专项练习及答案

全等三角形专项练习及答案

评卷人得分 一、选择题(题型注释)1.小明想用三根木棒为边制作一个三角形,则可以选用的木棒长为( )A .8cm 、15cm 、6cmB .7cm 、9cm 、13cmC .10cm 、20cm 、30cmD .20cm 、40cm 、60cm【答案】B2.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C ,下列不正确的等式是( )A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE【答案】D3.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是( )A 、∠A 与∠D 互为余角B 、∠A=∠2C 、△ABC≌△CEDD 、∠1=∠2【答案】D4.如图,△ABC 中,∠C=90°,AC=BC,AD 平分∠CAB,交BC 于D,DE ⊥AB 于E.AB =6cm,则△DEB 的周长为( )A. 4cmB. 6cmC. 10cmD. 14cm【答案】B5.如图,OA =OC ,OB =OD ,OA ⊥OB ,OC ⊥OD ,下列结论:①△AOD ≌△COB ;②CD =AB ;③∠CDA =∠ABC ;其中正确的结论是( )A .①②B .①②③C .①③D .②③AB C DE12【答案】B【解析】试题分析:因为OA=OC,OB=OD,OA⊥OB,OC⊥OD,可得△COD≌△AOB, ∠CDO=∠ABO;∠DOC+∠AOC=∠AOB+∠AOC, OA=OC,OB=OD,所以△AOD≌△COB,所以CD=AB,∠ADO=∠CBO;所以∠CDA=∠ABC.故①②③都正确.故选B考点:三角形全等的判定和性质6.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=α,则下列结论正确的是()A.2α+∠A=180° B.α+∠A=90° C.2α+∠A=90° D.α+∠A=180°【答案】A【解析】试题分析:根据已知条件可证明△BDE≌△CFD,则∠BED=∠CDF,由∠A+∠B+∠C=180°,得∠B=,因为∠BDE+∠EDF+∠CDF=180°,所以得出a与∠A的关系2a+∠A=180°.考点:全等三角形的判定和性质,三角形的内角和定理7.如图,AD是△ABC的中线,E、F分别在AB、AC上,且DE⊥DF,则()A.BE+CF>EFB.BE+CF=EFC.BE+CF<EFD.BE+CF与EF的大小关系不能确定.【答案】A.8.如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm【答案】C.【解析】试题分析:∵AB的垂直平分AB,∴AE=BE,BD=AD,∵AE=3cm,△ADC的周长为9cm,∴△ABC的周长是9cm+2×3cm=15cm,故选C.考点:线段垂直平分线的性质.9.如图所示,∠A+∠B+∠C+∠D+∠E的结果为()A.90° B.1 80° C.360° D.无法确定【答案】【解析】试题分析:延长BE交AC于F,∵∠A+∠B=∠2,∠D+∠E=∠1,∠1+∠2+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°,考点:1.三角形内角和定理;2.三角形的外角性质.10.若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A、36B、72C、108D、144【答案】C【解析】∵∠A+∠B+∠C=180°,∴2(∠A+∠B+∠C)=360°,∵2(∠A+∠C)=3∠B,∴∠B=72°,11.如图,AB∥CD,∠D =∠E =35°,则∠B的度数为().A.60° B.65° C.70° D.75°【答案】C.12.如图,已知△ABC,O是△ABC内的一点,连接OB、OC,将∠ABO、∠ACO分别记为∠1、∠2,则∠1、∠2、∠A、∠O四个角之间的数量关系是()A.∠1+∠0=∠A+∠2 B.∠1+∠2+∠A+∠O=180°C.∠1+∠2+∠A+∠O=360° D.∠1+∠2+∠A=∠O【答案】D.【解析】试题分析:连接AO 并延长,交BC 于点D ,∵∠BOD 是△AOB 的外角,∠COD 是△AOC 的外角,∴∠BOD=∠BAD+∠1①,∠COD=∠CAD+∠2②,①+②得,∠BOC=(∠BAD+∠CAD )+∠1+∠2,即∠BOC=∠BAC+∠1+∠2.故选D .考点:1.三角形的外角性质;2.三角形内角和定理.13.如图,BD 是∠ABC 的角平分线,DE ⊥AB 于E ,DF ⊥BC 于F ,,,,△cm 12BC cm 18AB cm 362ABC ===S 则DE 的长是( )A.2cmB.cm 512C.3cmD.cm 514 【答案】B【解析】试题分析:∵BD 是∠ABC 的角平分线,DE ⊥AB ,DF ⊥BC,由角平分线的性质可得DE=DF ∴DCB S S ∆∆+=ADB ABC S △=DF DE ⋅⨯+⋅⨯12211821=9DE+6DF=15DE=36∴DE=cm 512 所以选B.考点:角平分线的性质第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人 得分 二、填空题(题型注释)14.如图,△ABC 中,∠A =90°,DE 是BC 的垂直平分线,AD=DE ,则∠C 的度数是 °.【答案】30°.【解析】试题分析:∵DE 是BC 的垂直平分线,∴DE ⊥BC ,∵∠A =90°,AD=DE ,∴BD 平分∠AABC ,∴∠ABD=∠DBC ,∵DE 是BC 的垂直平分线,∴DC=BD ,∴∠C=∠DBC ,∴3∠C=90°,∴∠C=30°.故答案为:30°.考点:1.线段垂直平分线的性质;2.角平分线的性质.15.如图,在△ABC 中,∠ACB =90°,AB 的垂直平分线DE 交AB 于E ,交AC 于D ,∠DBC =30°,BD =4.6,则D 到AB 的距离为 。

全等三角形测试题及答案

全等三角形测试题及答案

全等三角形测试题及答案一、选择题1. 在以下四组线段中,哪个组合的线段可以构成全等三角形?A) AB = 6 cm, AC = 6 cm, BC = 5 cmB) AB = 4 cm, AC = 3 cm, BC = 5 cmC) AB = 5 cm, AC = 7 cm, BC = 5 cmD) AB = 8 cm, AC = 6 cm, BC = 10 cm答案:B) AB = 4 cm, AC = 3 cm, BC = 5 cm2. 在△ABC中,AB = 5 cm, AC = 6 cm, BC = 7 cm。

下列哪个陈述是正确的?A) △ABC是全等三角形B) △ABC是直角三角形C) △ABC是等腰三角形D) △ABC不存在答案:A) △ABC是全等三角形二、填空题3. 完成下面的等式: △ABC ≌△___。

答案:ACD4. 如果两个三角形的对应顶点对应着相等的角度,那么这两个三角形是______的。

答案:全等三、解答题5. 已知图中的三个三角形,判断是否可以证明它们是全等三角形。

如果可以,请说明理由;如果不可以,请说明其中的不等条件。

(插入三个全等三角形的图示)答案:根据提供的图示,可以确定△ABC和△DEF是全等三角形。

理由是它们的对应边和对应角相等:AB = DE, AC = DF, BC = EF, ∠A= ∠D, ∠B = ∠E, ∠C = ∠F。

而△XYZ无法和△ABC或△DEF证明全等,其中的不等条件为对应的角度不相等。

6. 已知三角形ABC和DEF,如果AB = DE, AC = DF,并且∠A =∠D,请说明能否得出△ABC ≌△DEF的结论,并解释理由。

答案:不能得出△ABC ≌△DEF的结论。

因为仅仅知道两个边和一个角相等,不足以确定两个三角形全等的条件,还需要更多的信息,如另外两个边和对应的角度。

总结:全等三角形测试题及答案包括选择题、填空题和解答题。

通过在题目中提供三角形的边长和角度等信息,考察学生对全等三角形的理解和判断能力。

全等三角形专项练习及答案

全等三角形专项练习及答案

评卷人得分一、选择题(题型注释)、1.小明想用三根木棒为边制作一个三角形,则可以选用的木棒长为()A.8cm、15cm 、6cm B.7cm、9cm、13cmC.10cm、20cm、30cm D.20cm、40cm、60cm【答案】B2.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是()=AC B.∠BAE=∠CAD =DC =DE【答案】D[3.已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A、∠A与∠D互为余角B、∠A=∠2C、△ABC≌△CEDD、∠1=∠2【答案】D4.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于D,DE⊥AB于=6cm,则△DEB 的周长为()A. 4cmB. 6cmC. 10cmD. 14cm【答案】B5.如图,OA=OC,OB=OD,OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC;&AB CDE1]其中正确的结论是( )A.①② B.①②③ C.①③ D.②③》【答案】B【解析】试题分析:因为OA=OC,OB=OD,OA⊥OB,OC⊥OD,可得△COD≌△AOB, ∠CDO=∠ABO;∠DOC+∠AOC=∠AOB+∠AOC, OA=OC,OB=OD,所以△AOD≌△COB,所以CD=AB,∠ADO=∠CBO;所以∠CDA=∠ABC.故①②③都正确.故选B考点:三角形全等的判定和性质6.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=α,则下列结论正确的是()…A.2α+∠A=180° B.α+∠A=90° C.2α+∠A=90° D.α+∠A=180°【答案】A【解析】试题分析:根据已知条件可证明△BDE≌△CFD,则∠BED=∠CDF,由∠A+∠B+∠C=180°,得∠B=,因为∠BDE+∠EDF+∠CDF=180°,所以得出a与∠A的关系2a+∠A=180°.考点:全等三角形的判定和性质,三角形的内角和定理7.如图,AD是△ABC的中线,E、F分别在AB、AC上,且DE⊥DF,则()~A.BE+CF>EFB.BE+CF=EFC.BE+CF<EFD.BE+CF与EF的大小关系不能确定.【答案】A.8.如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm}【答案】C.【解析】试题分析:∵AB的垂直平分AB,∴AE=BE,BD=AD,∵AE=3cm,△ADC的周长为9cm,∴△ABC的周长是9cm+2×3cm=15cm,故选C.考点:线段垂直平分线的性质.9.如图所示,∠A+∠B+∠C+∠D+∠E的结果为()A.90° B.1 80° C.360° D.无法确定【答案】?【解析】试题分析:延长BE交AC于F,∵∠A+∠B=∠2,∠D+∠E=∠1,∠1+∠2+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°,考点:1.三角形内角和定理;2.三角形的外角性质.10.若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()>A、36B、72C、108D、144【答案】C【解析】∵∠A+∠B+∠C=180°,∴2(∠A+∠B+∠C)=360°,∵2(∠A+∠C)=3∠B,∴∠B=72°,11.如图,AB∥CD,∠D =∠E =35°,则∠B的度数为().A.60° B.65° C.70° D.75°【答案】C.~12.如图,已知△ABC,O是△ABC内的一点,连接OB、OC,将∠ABO、∠ACO分别记为∠1、∠2,则∠1、∠2、∠A、∠O四个角之间的数量关系是()A .∠1+∠0=∠A+∠2B .∠1+∠2+∠A+∠O=180°C .∠1+∠2+∠A+∠O=360°D .∠1+∠2+∠A=∠O【答案】D .【解析】 试题分析:连接AO 并延长,交BC 于点D ,》∵∠BOD 是△AOB 的外角,∠COD 是△AOC 的外角,∴∠BOD=∠BAD+∠1①,∠COD=∠CAD+∠2②,①+②得,∠BOC=(∠BAD+∠CAD )+∠1+∠2,即∠BOC=∠BAC+∠1+∠2.故选D .考点:1.三角形的外角性质;2.三角形内角和定理.13.如图,BD 是∠ABC 的角平分线,DE ⊥AB 于E ,DF ⊥BC 于F ,,,,△cm 12BC cm 18AB cm 362ABC ===S 则DE 的长是( )B.cm 512 D.cm 514 ¥【答案】B【解析】试题分析:∵BD 是∠ABC 的角平分线,DE ⊥AB ,DF ⊥BC,由角平分线的性质可得DE=DF ∴DCB S S ∆∆+=ADB ABC S △=DF DE ⋅⨯+⋅⨯12211821=9DE+6DF=15DE=36∴DE=cm 512 所以选B.考点:角平分线的性质?第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分~二、填空题(题型注释)14.如图,△ABC中,∠A=90°,DE是BC的垂直平分线,AD=DE,则∠C的度数是°.【答案】30°.【解析】试题分析:∵DE是BC的垂直平分线,∴DE⊥BC,∵∠A=90°,AD=DE,∴BD平分∠AABC,∴∠ABD=∠DBC,∵DE是BC的垂直平分线,∴DC=BD,∴∠C=∠DBC,∴3∠C=90°,∴∠C=30°.故答案为:30°.考点:1.线段垂直平分线的性质;2.角平分线的性质.!15.如图,在△ABC中,∠ACB=90°,AB的垂直平分线DE交AB于E,交AC于D,∠DBC=30°,BD=,则D到AB的距离为。

全等三角形练习题含答案

全等三角形练习题含答案

全等三角形练习题含答案全等三角形练习题含答案夯实基础一、耐心选一选,你会开心:(每题6分,共30分)1.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为( )A.①②③④B.①③④C.①②④D.②③④2.如果是中边上一点,并且,则是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形3.一个正方形的侧面展开图有()个全等的正方形.A.2个B.3个C.4个D.6个4.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有( )A.1个B.2个C.3个D.4个5.下列说法正确的是()A.若,且的两条直角边分别是水平和竖直状态,那么的两条直角边也一定分别是水平和竖直状态B.如果,,那么C.有一条公共边,而且公共边在每个三角形中都是腰的两个等腰三角形一定全等D.有一条相等的边,而且相等的边在每个三角形中都是底边的两个等腰三角形全等二、精心填一填,你会轻松(每题6分,共30分)6.如图所示,沿直线对折,△ABC与△ADC重合,则△ABC≌,AB 的对应边是,BC的对应边是,∠BCA的对应角是.第6题第7题7.如图所示,△ACB≌△DEF,其中A与D,C与E是对应顶点,则CB的对应边是,∠ABC的'对应角是.8.如图,AB、DC相交于点O,△AOB≌△DOC,A、D为对应顶点,则这两个三角形中,相等的边是____________________,相等的角是____________________.9.已知,,,则,,和的度数分别为,,.10.请在下图中把正方形分成2个、4个、8个全等的图形:三、细心做一做,你会成功(共40分)11.找出下列图中的全等图形.12.找出下列图形中的全等图形.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)13.如图,AB=DC,AC=DB,求证AB∥CD.综合创新14.如图,点在一条直线上,△△你能得出哪些结论?(请写出三个以上的结论)[来源:ZXXK]15.把一张方格纸贴在纸板上.按图1所示画上正方形,然后沿图示的直线切成5小块.当你照图2的样子把这些拼成正方形的时候中间居然出现了一个洞!我们发现,图1的正方形是由49个小正方形组成的.图2中拼成的正方形却只有48个小正方形.哪一个小正方形没有了?它到哪去了?中考链接16.如图,,则的度数为( )A.B.C.D.17.如图,若,且,则.18.右图是用七巧板拼成的一艘帆船,其中全等的三角形共有对.参考答案夯实基础1.A2.D3.C4.A.5.B6.△ADC,AD,AC,∠DCA7.EF,∠DFE8.AB=DC、AO=DO、OB=OC,∠AOB=∠DOC、∠A=∠D、∠B=∠C.9.;,,10.分法可分别如下所示:11.根据全等形的定义得全等形有天鹅、荷花.12.(1)和(10),(2)和(12),(4)和(8),(5)和(9)是全等图形13.分析:要证AB∥CD,只需∠ABC=∠DCB,要证∠ABC=∠DCB,只需△ABC≌△DCB.证明:∵在△ABC和△DCB中,,∴△ABC≌△DCB(SSS).∴∠ABC=∠DCB.∴AB∥CD.综合创新14.由△△可得到△△等.15.5小块图形中最大的两块对换了位置之后,被那条对角线切开的每个小正方形都变得高比宽大一点点.这意味着这个大正方形不再是严格的正方形.它的高增加了,从而使得面积增加,所增加的面积恰好等于那个方洞的面积.16.C17.18.2。

全等三角形练习题及答案

全等三角形练习题及答案

全等三角形练习一、填空题:1.如图,△ABC ≌△DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为 ,BD 的对应边为 .2.如图,AD =AE ,∠1=∠2,BD =CE ,则有△ABD ≌△ ,理由是 ,△ABE ≌△ ,理由是 .(第1题) (第2题) (第4题) 3.已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是cm.4.如图,AD 、A ´D ´分别是锐角△ABC 和△A ´B ´C ´中BC 与B ´C ´边上的高,且AB = A ´B ´,AD = A ´D ´,若使△ABC ≌△A ´B ´C ´,请你补充条件 (只需填写一个你认为适当的条件)5. 若两个图形全等,则其中一个图形可通过平移、 或 与另一个三角形完全重合.6. 如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则∠ABC +∠DFE =___________度(第6题) (第7题) (第8题) 7.已知:如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,则DN +MN 的最小值为__________.8.如图,在△ABC 中,∠B =90o ,D 是斜边AC 的垂直平分线与BC 的交点,连结AD ,若 ∠DAC :∠DAB =2:5,则∠DAC =___________.9.如图,等腰直角三角形ABC 中,∠BAC =90o ,BD 平分∠ABC 交AC 于点D ,若AB +AD =8cm ,(第14则底边BC 上的高为___________.10.如图,锐角三角形ABC 中,高AD 和BE 交于点H ,且BH =AC ,则∠ABC =__________度.(第9题) (第10题)13题)二、选择题:11.已知在△ABC 中,AB =AC ,∠A =56°,则高BD 与BC 的夹角为( )A .28°B .34°C .68°D .62°12.在△ABC 中,AB =3,AC =4,延长BC 至D ,使CD =BC ,连接AD ,则AD 的长的取值范围为( )A .1<AD <7B .2<AD <14C .<AD < D .5<AD <1113.如图,在△ABC 中,∠C =90°,CA =CB ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于点E ,且AB =6,则△DEB 的周长为( )A .4B .6C .8D .10 14.用直尺和圆规作一个角等于已知角的示意图如下,则说明 ∠A ′O ′B ′=∠AOB 的依据是A .(S .S .S .)B .(S .A .S .)C .(A .S .A .)D .(A .A .S .15. 对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A.∠α=60º,∠α的补角∠β=120º,∠β>∠αB.∠α=90º,∠α的补角∠β=900º,∠β=∠αC.∠α=100º,∠α的补角∠β=80º,∠β<∠αD.两个角互为邻补角16. △ABC 与△A ´B ´C ´中,条件①AB = A ´B ´,②BC = B ´C ´,③AC =A ´C ´,④∠A=∠A ´,⑤∠B =∠B ´,⑥∠C =∠C ´,则下列各组条件中不能保证△ABC ≌△A ´B ´C ´的是( )A. ①②③B. ①②⑤C. ①③⑤D. ②⑤⑥17.如图,在△ABC 中,AB =AC ,高BD ,CE 交于点O ,AO 交BC 于点F ,则图中共有全等三角形( )A .7对B .6对C .5对D .4对18.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,若△DEB 的周长为10cm ,则斜边AB 的长为( )A .8 cmB .10 cmC .12 cmD . 20 cm19.如图,△ABC 与△BDE 均为等边三角形,AB <BD ,若△ABC 不动,将△BDE 绕点B 旋转,则在旋转过程中,AE 与CD 的大小关系为( )A .AE =CDB .AE >CDC .AE <CD D .无法确定20.已知∠P =80°,过不在∠P 上一点Q 作QM ,QN 分别垂直于∠P 的两边,垂足为M ,N ,则∠Q 的度数等于( )A .10°B .80°C .100°D .80°或100° 三、解答题(每小题5分,共30分)21.如图,点E 在AB 上,AC =AD ,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为 ,你得到的一对全等三角形是∆ ∆≅ .(第21题)22.如图,EG ∥AF ,请你从下面三个条件中再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况),并给予证明.①AB =AC ,②DE =DF ,③BE =CF , 已知:EG ∥AF , = , = , 求证: 证明:(第22题)ECD BAEA B DFC23. 如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件,请你在其中选择3个作为题设,余下的1个作为结论,写一个真命题,并加以证明. ①AB =DE ,②AC =DF ,③∠ABC =∠DEF ,④BE =CF(第23题)24. 如图,四边形ABCD 中,点E 在边CD 上.连结AE 、BF ,给出下列五个关系式:①AD ∥BC ;②DE =CE ③. ∠1=∠2 ④. ∠3=∠4 . ⑤AD +BC =AB 将其中的三个关系式作为假设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题,书写形式如:如果……,那么……,并给出证明; (2)用序号再写出三个真命题(不要求证明);(3)真命题不止以上四个,想一想就能够多写出几个真命题25.已知,如图,D 是△ABC 的边AB 上一点,DF 交AC 于点E , DE =FE , AB ∥FC . 问线段AD 、CF 的长度关系如何请予以证明.(第25题)26.如图,已知ΔABC 是等腰直角三角形,∠C =90°.(1)操作并观察,如图,将三角板的45°角的顶点与点C 重合,使这个角落在∠ACB 的内部,两边分别与斜边AB 交于E 、F 两点,然后将这个角绕着点C 在∠ACB 的内部旋转,观察在点E 、F 的位置发生变化时,AE 、EF 、FB 中最长线段是否始终是EF 写出观察结果.(2)探索:AE 、EF 、FB 这三条线段能否组成以EF 为斜边的直角三角形如果能,试加以证明.四、探究题 (每题10分,共20分)27.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立若成立,请证明;若不成立,请说明理由.OPAMN EBCD FACEFBD图①图②图③28.如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系请证明你的结论;(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗作出判断并说明理由;(3)若将图a中的△ABC绕点C旋转一定的角度,请你画山一个变换后的图形(草图即可),(1)中的结论还成立吗作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现)图a 图b参考答案一、1.∠DBE, CA 2.△ACE, SAS,△ACD, ASA(或SAS)3. 6=C´D´(或AC=A´C´,或∠C=∠C´或∠CAD=∠C´A´D´)5.平移,翻折 6. 907. 10 8. 20º 9.28- 10. 454二、11. A 12. D 13. B三、21.可选择BD=∠∠=、、等条件中的一个.可得到△ACE≌△ADE DECE=DABBCCAB或△ACB≌△ADB等.22.结合图形,已知条件以及所供选择的3个论断,认真分析它们之间的内在联系可选①AB=AC,②DE=DF,作为已知条件,③BE=CF作为结论;推理过程为:∵EG∥AF,∴∠GED=∠CFD,∠BGE=∠BCA,∵AB=AC,∴∠B=∠BCA,∴∠B=∠BGE∴BE=EG,在△DEG和△DFC中,∠GED=∠CFD,DE=DF,∠EDG=∠FDC,∴△DEG≌△DFC,∴EG=CF,而EG=BE,∴BE=CF;若选①AB=AC,③BE=CF为条件,同样可以推得②DE=DF,23.结合图形,认真分析所供选择的4个论断之间的内在联系由④BE=CF还可推得BC=EF,根据三角形全等的判定方法,可选论断:①AB=DE,②AC=DF,④BE=CF为条件,根据三边对应相等的两个三角形全等可以得到:△ABC≌△DEF,进而推得论断③∠ABC=∠DEF,同样可选①AB=DE,③∠ABC=∠DEF,④BE=CF为条件,根据两边夹角对应相等的两个三角形全等可以得到:△ABC≌△DEF,进而推得论断②AC=DF.24. (1)如果①②③,那么④⑤证明:如图,延长AE交BC的延长线于F因为AD∥BC 所以∠1=∠F又因为∠AED =∠CEF,DE=EC所以△ADE≌△FCE,所以AD=CF,AE=EF因为∠1=∠F ,∠1=∠2 所以∠2=∠F所以AB=BF.所以∠3=∠4所以AD+BC=CF+BC=BF=AB(2)如果①②④,那么③⑤;如果①③④,那么②⑤;如果①③⑤,那么②④.(3) 如果①②⑤,那么③④;如果②④⑤,那么①③;如果③④⑤,那么①②.25.(1)观察结果是:当45°角的顶点与点C重合,并将这个角绕着点C在重合,并将这个角绕着点C在∠ACB内部旋转时,AE、EF、FB中最长的线段始终是EF.(2)AE、EF、FB三条线段能构成以EF为斜边的直角三角形,证明如下:在∠ECF的内部作∠ECG=∠ACE,使CG=AC,连结EG,FG,∴ΔACE≌ΔGCE,∴∠A=∠1,同理∠B=∠2,∵∠A+∠B=90°,∴∠1+∠2=90°,∴∠EGF=90°,EF为斜边.四、27.(1)FE与FD之间的数量关系为FE=FD(2)答:(1)中的结论FE=FD仍然成立图①图②证法一:如图1,在AC上截取AG=AE,连接FG∵∠1=∠2,AF=AF,AE=AG ∴△AEF≌△AGF∴∠AFE=∠AFG,FG=FE∵∠B=60°,且AD、CE分别是∠BAC、∠BCA的平分线∴∠2+∠3=60°,∠AFE=∠CFD=∠AFG=60°∴∠CFG=60°∵∠4=∠3,CF=CF,∴△CFG≌△CFD∴ FG=FD∴FE=FD图⑤证法二:如图2,过点F分别作FG⊥AB于点G,FH⊥BC于点H∵∠B=60°,且AD、CE分别是∠BAC、∠BCA的平分线∴∠2+∠3=60°∴∠GEF=60°+∠1,FG=FH∵∠HDF=∠B+∠1 ∴∠GEF=∠HDF∴△EGF≌△DHF∴FE=FD28. (1)AF=BE.证明:在△AFC和△BEC中,∵△ABC和△CEF是等边三角形,∴AC=BC,CF=CE,∠ACF=∠BCE=60.∴△AFC≌△BEC. ∴AF=BE.(2)成立. 理由:在△AFC和△BEC中,∵△ABC和△CEF是等边三角形,∴AC=BC,CF=CE,∠ACB=∠FCE=60°. ∴∠ACB-∠FCB=∠FCE-∠FCB.即∠ACF=∠BCE. ∴△AFC≌△BEC. ∴AF=BE.(3)此处图形不惟一,仅举几例.如图,(1)中的结论仍成立.(4)根据以上证明、说明、画图,归纳如下:如图a,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等到三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。

B、斜边和一锐角对应相等。

C、斜边和一条直角边对应相等。

D、两锐角相等。

2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A.BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ()A. 150°B.40°C.80°D.90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是()A.①③B.②④C.②③④D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等B.两边和一角对应相等C.两角及其一角的对边对应相等D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50°B.30°C.80°D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。

21、如图,△ABD、△ACE都是正三角形,BE和CD交于O点,则∠BOC=__________.22、已知:如图,∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,(1)若以“SAS”为依据,还须添加的一个条件为________________.(2)若以“ASA”为依据,还须添加的一个条件为________________.(3)若以“AAS”为依据,还须添加的一个条件为________________.23、如图4,如果AB=AC,,即可判定ΔABD≌ΔACE。

24、如图2,∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是__________.25、如图,已知∠ACB=∠BDA,只要再添加一个条件:__________,就能使△ACB≌△BDA.(填一个即可)26、已知,如图2:∠ABC=∠DEF,AB=DE,要说明ΔABC≌ΔDEF(1)若以“SAS”为依据,还要添加的条件为______________;(2)若以“ASA”为依据,还要添加的条件为______________;27、如图9所示,BC=EC,∠1=∠2,要使△ABC≌△DEC,则应添加的一个条件为[答案不唯一,只需填一个]。

29、如右图,在Rt△ABC和Rt△DCB中,AB=DC,∠A=∠D=90°,AC与BD交于点O,则有△__________≌△__________,其判定依据是__________,还有△__________≌△__________,其判定依据是__________.31、已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:⑴△ABC≌△DEF;⑵BE=CF.34、如图:AE=DE,BE=CE,AC和BD相交于点E,求证:AB=DC35、如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:(1)Rt△ABF≌Rt△DCE;(2)OE=OF .36、如图,已知AB=AD,AC=AE,∠1=∠2,求证△ABC≌△ADE.37、1.已知:如图,点E、F在线段BD上,AB=CD,∠B=∠D,BF=DE.求证:(1)AE=CF(2)AF//CE参考答案一、选择题1、D2、A3、C;4、 A5、 D6、C7、C;8、B9、B、10、、D11、D12、B13、C14、B二、填空题15、4516、一定;17、∠A=∠D或∠ACF=∠DBE;18、AC=BD,(答案不唯一)19、等(不惟一)20、2.7cm21、120°22、BC=EF∠A=∠D∠ACB=∠DFE ;23、∠B=∠C(答案不唯一)24、∠B=∠C25、∠CAB=∠DBA或∠CBA=∠DAB26、BC=EF;∠A=∠D27、AC=CD。

28、BE=CF等29、ABC DCB HL ABO DCO AAS30、∠B=∠C_或BD=C D等(答案不唯一)_三、简答题31、证明:(1)∵AC∥DF∴∠ACB=∠F在△ABC与△DEF中∴△ABC≌△DEF(2) ∵△ABC≌△DEF∴BC=EF∴BC–EC=EF–EC即BE=CF32、证明:∵GF=GB,∴∠GFB=∠GBF,……1分∵AF=DB,∴AB=DF,………2分而∠A=∠D,∴△ACB≌△DEF, ………4分∴BC=FE,………5分由GF=GB,可知CG=EG .……7分33、证明:∵AD//CB∴∠A=∠C······························2分在△ADF和△CBE中,又∵AD=CB,∠D=∠B··························3分∴△ADF≌△CBE····························5分∴AF=CE·······························6分∴AF+EF=EF+CE,∴AE=CF·······························7分34、略35、证明:(1)∵BE=CF,∴BE+EF=CF+EF;即BF=CE.1分∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形在Rt△ABF和Rt△DCE中, ;∴Rt△ABF≌Rt△DCE(HL).5(2)∵Rt△ABF≌Rt△DCE(已证) . 6 ∴∠AFB=∠DEC .8∴OE=OF.36、证明:∵∠1=∠2∴∠DAE=∠BAC∵AB=AD,AC=AE∴△ABC≌△ADE37、证明:(1)……1分(SAS)……3分……4分(2)先证明……6分得……7分……8分(方法不唯一,其他证明方法酌情给分)38、。

相关文档
最新文档