宽输入DC-DC Boost Converters Over a Wide Load Range

合集下载

DC-DC Converter解析

DC-DC Converter解析

DC-DC转换器之电气规格(1)
1. Input Specifications(输入规格)
a. Input voltage (输入电压) : 指单一机种能接受的最大电压及最小电压之比率,大致分成 二大类:窄范围输入电压(±10%)、宽范围输入电压(2:1、4:1<W>、…)。
EX: 宽范围输入电压2:1 12V nominal input 9~18Vdc 24V nominal input 18~36Vdc 48V nominal input 36~75Vdc
h. Short circuit protection(短路保护) : 当发生短路时,转换器停止正常动作。 EX: Hiccup(打嗝 ), continuous (Auto Recovery) ◎ Hiccup Mode 断续模式: 输出故障(短路)时,这时转换器把每一周的占空比由开通到截止 以及由截止到开通维持在使内部的功耗在一个安全的范围内,直到故障排除 。 ◎ Auto Recovery: 当故障排除后,转换器自动恢复正常动作。
DC/DC Converter浅析
DC-DC Converter 简介 DC-DC Converter 之典型应用领域 DC-DC Converter 如何选型 DC-DC Converter 之电气规格
电子系统的常用电源
电压 (Voltage)
±12, ± 15
典型负载(Typical Loads) Linear Circuits (OP.AMP…etc)(线性电路,如运算放大器等)
a. Switching frequency (操作频率):产品内部开关组件的切换频率。 EX: 300kHz
b. Reliability, calculated MTBF (平均无故障时间) : Mean Time Between Failure 。

电压宽范围输入Boost-Buck电路

电压宽范围输入Boost-Buck电路

电压宽范围输入Boost-Buck电路熊胜源;黄冬林;田存建【摘要】针对Buck-Boost电路在某种工作模态下输入电流断续、开关器件电压应力高的问题,给出一种可实现单位功率因数输入、升降压功能、开关器件电压应力固定的Boost-Buck电路.该电路拓扑结合了Boost电路和Buck的特点,具有电路拓扑结构简单、器件应力低、电流检测简单、效率高等优点.达到与Buck-Boost 电路相同的功能.对电路的工作状态进行了分析,给出相应的控制策略,并对电路效率做出初步计算.仿真与实验结果验证了所提拓扑和控制策略的可行性.【期刊名称】《青海电力》【年(卷),期】2018(037)001【总页数】7页(P15-20,31)【关键词】宽范围输入;Boost-buck;分段控制【作者】熊胜源;黄冬林;田存建【作者单位】国网福建电力有限公司检修分公司,福建厦门361000;国网福建电力有限公司检修分公司,福建厦门361000;国网福建电力有限公司检修分公司,福建厦门361000【正文语种】中文【中图分类】TM460 引言继电器开关电源作为变电站监测和控制系统不可缺少的组成部分,其技术的先进程度和可靠性对整个系统的影响非常巨大,直流稳压电源的质量和技术得到业内人士越来越多的重视〔1〕。

继电器变换开关DC-DC变换器大部分为输入电压、供电负载变化较大的直流电压。

因此,研究宽输入电压范围的开关DC-DC变换器具有重要意义。

Boost变换器因其拓扑结构简单、变换效率高、控制策略容易等优点,被广泛用在光伏发电系统的DC-DC变换器中〔2-4〕。

但是此类变换器仅仅工作在输入电压峰值低于输出直流电压的场合。

当输入交流电压高于输出直流电压时,即宽输入电压场合时,传统Boost变换器及其控制方案难以满足其整流要求〔5-6〕。

在宽输入电压功率因数校正电源场合,可采用升降压式变换器达到宽输入交流电压、固定输出直流电压的目的。

但是传统的单级升降压变换器的开关器件承受较大的电压和电流应力,仅仅适用于小功率的应用场合,同时直流侧输出电压为负压,不适合后级功率变换器的设计〔7-8〕。

宽输入DC-DC Boost变换器电感参数设计

宽输入DC-DC Boost变换器电感参数设计
1 Boost变换器的工作模式
Boost变换器的拓扑结构电路。
根据电感电流的最小值是否为零,可将Boost 变换器工作模式分成电流连续模式(CCM)、电流临界连续模式(CRM)和电流断续模式(DCM)。CCM模式下Boost变换器电感电压和电流波形。
Boost变换器的CCM模式和DCM模式的临界电感LB为[4]:
(1)输入电压的变化范围12 V~36 V,得出占空比D的变化范围为0.25~0.75。
(2)由式(2)得出占空比在0.25和0.75时所对应的临界电感分别为67.5 H和22.5 H。
(3)由于1/3∈(0.25,0.75),临界电感在占空比1/3时取得最大值,则电感的最小值由式(8)得Lmin=71.1 H,此时所对应的输入电压为32 V。上述输入电压,占空比和临界电感对应关系如表1所示。
由表3可知,Boost变换器工作在CCM模式时,其最小电感等于临界电感的最大值。当最大占空比Dmax&lt;1/3时,最小电感在Dmax处取得;当最小占空比Dmin&gt;1/3时,最小电感在Dmin处取得;当1/3∈(Dmin,Dmax)时,最小电感在D=1/3处取得。
由此可见,仿真结果与理论分析一致,从而验证了理论分析的准确性。
3 仿真验证
为了验证上述理论分析,对Boost变换器进行仿真研究。其参数如下:输入电压UI为12 V~36 V,输出电压UO为48 V,负载电阻为48 ,输出滤波电容值为100 F,开关频率50 kHz。
将输入电压范围分12 V~24 V、12 V~36 V、33 V~36 V 3种情况进行讨论。首先分析输入电压12 V~36 V,其CCM模式电感的最小值确定方法如下:
对图4和表2进行分析,可得输入电压在12 V~36 V变化,电感值71.1 H能保证Boost变换器均工作在CCM模式,而它正好是D=1/3所对应的临界电感值。这说明当1/3∈(Dmin,Dmax)时,要使Boost变换器均工作在CCM模式,电感的最小值应为D=1/3所对应的临界电感值。

DC-DC电源拓扑及其工作模式讲解

DC-DC电源拓扑及其工作模式讲解

DC-DC电源拓扑及其工作模式讲解一、DC-DC电源基本拓扑分类:开关电源的三种基本拓扑结构有Buck、Boost、Buck-boost(反极性Boost)。

如果电感连接到地,就构成了升降压变换器,如果电感连接到输入端,就构成了升压变换器。

如果电感连接到输出端,就构成了降压变换器。

基本拓扑图如下:1.Buck2.Boost3.Buck-Boost二、DC-DC复杂拓扑结构1.反激隔离电源(FlyBack)另外有些隔离电源拓扑就是通过基本拓扑增加变压器或者变化得到的,例如反激隔离电源(FlyBack)。

2.Buck+Boost拓扑本质是用一个降压“加上”一个升压,来实现升降压。

SEPIC拓扑:集成了Boost和Flyback拓扑结构3.Cuk、Sepic、Zeta拓扑通过基本拓扑直接组合,形成了三个有实用价值的拓扑结构:Cuk、Sepic、Zeta。

Cuk的本质是Boost变换器和Buck变换器串联,Sepic的本质是Boost和Buck-Boost串联,Zeta可以看成Buck和Buck-Boost串联。

但是里面有些细节按照电流的方向在演进的过程中调整了二极管的方向,两极串联拓扑节省了复用的器件。

通过这样串联和演进,产生了新的三个电源拓扑。

同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑。

4.四开关Buck-Boost拓扑同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑5.反激、正激、推挽拓扑的演进利用变压器代替电感,可以把Boost演进为一个新拓扑FlyBack即反激变换器(反激的公式来看又是很像Buck-Boost,这里变压器不同于电感,也有说法会说反激是Buck-Boost变过来的)。

可以把Buck电路的开关通过一个变压器进行能量传递,就形成正激变换器。

将两个正激变换器进行并联,可以形成推挽拓扑。

正激的变压器,是直接输送能量过去,而不是像反激变压器那样传递能量。

开关电源DC-DC buck和boost介绍

开关电源DC-DC buck和boost介绍

输出电流
Iout(retad):额定输出电流。 Iout(min):在正常运行情况下,最小的输出电流。 Iout(max):负载的瞬态承受的输出电流。 Isc:负载短路时的最大极限电流。
电源系统设计指标
动态负载响应时间
当加上阶跃负载时,电源系统响应需要的时间
电压调整率
输入电压变化时,输出电压的变化率,即: 电压调整率=(最高输出电压-最低输出电压)/额定输出电压 X100%
A
V+
B
V-
面积A=面积B
A
V+
B
V-
开关电源的基本分析
分析开关电源中电容和电感的几条原则:
1. 2. 3. 4. 电容两端的电压不能突变 (当电容足够大时,可认为其电压不 变)。 电感中的电流不能突变 (当电感足够大时,可认为其电流恒定 不变)。 流经电容的电流平均值在一个开关周期内为零。 电感两端的伏秒积在一个开关周期内必须平衡。
I C
+ U -
U
It C
2. 在稳态工作的开关电源中流经电容的电流对时间的积分为零。
A
I+
B
I-
面积A=面积B
开关电源的基本分析
电感的基本方程
i(t)
+ u(t) -
di(t ) u(t ) L dt
1. 当一电感突然加上一个电压时, 其中的电流逐渐增加, 并且电感量越大电流增加 越慢.
有源开关(Switch)
二极管(Diode)
电感(Inductor)
电容器(Capacitor)
变压器(Transformer)
开关电源的基本分析
电容的基本方程
i(t) + u(t) -

光伏发电系统宽电压开关变换器参数设计

光伏发电系统宽电压开关变换器参数设计

光伏发电系统宽电压开关变换器参数设计李良井;皇金锋;袁帆;李林鸿【摘要】光伏电池输出电压特性较软,使得系统中DC-DC开关变换器需要有宽范围的工作电压,而开关变换器参数合理设计是其安全可靠工作的前提条件.以独立光伏发电系统中广泛应用的Buck-Boost变换器为例,分析了其工作原理,讨论了电感和电容对变换器工作模式和输出纹波电压的影响.在此基础上给出了宽输入和宽输出电压范围的电感、电容参数设计方法.通过仿真分析,验证了宽电压范围Buck-Boost变换器参数设计的合理性.【期刊名称】《电测与仪表》【年(卷),期】2018(055)021【总页数】5页(P138-142)【关键词】光伏发电系统;Buck-Boost变换器;宽电压;参数设计【作者】李良井;皇金锋;袁帆;李林鸿【作者单位】陕西理工大学电气工程学院,陕西汉中723001;陕西理工大学电气工程学院,陕西汉中723001;陕西省工业自动化重点实验室,陕西汉中723001;陕西理工大学电气工程学院,陕西汉中723001;陕西理工大学电气工程学院,陕西汉中723001【正文语种】中文【中图分类】TM460 引言随着各类化石燃料的迅速消耗,由此带来的全球能源危机和环境污染问题日益严峻,能源结构的调整已经迫在眉睫。

近年来世界各国都在积极寻找和开发清洁、安全可靠的可再生能源[1-5]。

太阳能是理想的可再生能源,作为光伏发电系统具有广阔的应用前景。

独立光伏电系统是目前光伏发电系统中的一种重要供电方式,其应用广泛,能有效地解决无电网及偏远地区供电问题[6]。

独立光伏发电系统结构通常由光伏电池、单向DC-DC变换器、负载端变换器、蓄电池以及双向DC-DC变换器组成,系统结构如图1所示。

独立光伏发电系统中太阳能因容易受环境的影响导致电池板输出电压不稳定,为了满足不同电压等级的负载设备就需要宽输入和宽输出电压范围的DC-DC开关变换器[7]。

Buck-Boost变换器因能实现升压和降压功能而被广泛使用,特别是在新能源光伏发电系统中得以体现。

DC-DC升压(BOOST)电路原理

DC-DC升压(BOOST)电路原理

BOOST升压电路中:电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS 开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁砀能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成;肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极电压低,此时二极管反偏截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端!!电感升压原理:什么是电感型升压DC/DC转换器?如图1所示为简化的电感型DC-DC转换器电路,闭合开关会引起通过电感的电流增加。

打开开关会促使电流通过二极管流向输出电容。

因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。

电感型升压转换器应用在哪些场合?电感型升压转换器的一个主要应用领域是为白光LED供电,该白光LED能为电池供电系统的液晶显示(LCD)面板提供背光。

在需要提升电压的通用直流-直流电压稳压器中也可使用。

决定电感型升压的DC-DC转换器输出电压的因素是什么?在图2所示的实际电路中,带集成功率MOSFET的IC代替了机械开关,MOSFET的开、关由脉宽调制(PWM)电路控制。

输出电压始终由PWM占空比决定,占空比为50%时,输出电压为输入电压的两倍。

将电压提高一倍会使输入电流大小达到输出电流的两倍,对实际的有损耗电路,输入电流还要稍高。

电感值如何影响电感型升压转换器的性能?因为电感值影响输入和输出纹波电压和电流,所以电感的选择是感性电压转换器设计的关键。

等效串联电阻值低的电感,其功率转换效率最佳。

要对电感饱和电流额定值进行选择,使其大于电路的稳态电感电流峰值。

DC-DC直流变换器

DC-DC直流变换器

DC-DC直流变换器第⼀章绪论本章介绍了双向DC/DC变换器(Bi-directional DC/DC Converter,BDC)的基本原理概述、研究背景和应⽤前景,并指出了⽬前双向直流变换器在应⽤中遇到的主要问题。

1.1 双向DC/DC变换器概述所谓双向DC/DC变换器就是在保持输⼊、输出电压极性不变的情况下,根据具体需要改变电流的⽅向,实现双象限运⾏的双向直流/直流变换器。

相⽐于我们所熟悉的单向DC/DC 变换器实现了能量的双向传输。

实际上,要实现能量的双向传输,也可以通过将两台单向DC/DC变换器反并联连接,由于单向变换器主功率传输通路上⼀般都需要⼆极管,因此单个变换器能量的流通⽅向仍是单向的,且这样的连接⽅式会使系统体积和重量庞⼤,效率低下,且成本⾼。

所以,最好的⽅式就是通过⼀台变换器来实现能量的双向流动,BDC就是通过将单向开关和⼆极管改为双向开关,再加上合理的控制来实现能量的双向流动。

1.2 双向直流变换器的研究背景在20世纪80年代初期,由于⼈造卫星太阳能电源系统的体积和重量很⼤,美国学者提出了⽤双向Buck/Boost直流变换器来代替原有的充、放电器,从⽽实现汇流条电压的稳定。

之后,发表了⼤量⽂章对⼈造卫星应⽤蓄电池调节器进⾏了系统的研究,并应⽤到了实体中。

1994年,⾹港⼤学陈清泉教授将双向直流变换器应⽤到了电动车上,同年,F.Caricchi 等教授研制成功了⽤20kW⽔冷式双向直流变换器应⽤到电动车驱动,由于双向直流变换器的输⼊输出电压极性相反,不适合于电动车,所以他提出了⼀种Buck-Boost级联型双向直流变换器,其输⼊输出的负端共⽤。

1998年,美国弗吉尼亚⼤学李泽元教授开始研究双向直流变换器在燃料电池上的配套应⽤。

可见,航天电源和电动车辆的技术更新对双向直流变换器的发展应⽤具有很⼤的推动⼒,⽽开关直流变换器技术为双向DC/DC变换器的发展奠定了基础。

1994年,澳⼤利亚Felix A.Himmelstoss发表论⽂,总结出了不隔离双向直流变换器的拓扑结构。

双Boost逆变器新型单电流环并网控制

双Boost逆变器新型单电流环并网控制

文章编号:1004-289X(2021)03-0010-05双Boost逆变器新型单电流环并网控制李楠,刘斌(广西大学电气工程学院,广西壮族自治区南宁530004)摘要:双Boost逆变器能够实现单级升降压逆变,并且凭借其结构简单、功率器件少、升压能力强等优点成为替代全桥逆变器的可靠选择。

当其并网运行时,需要提高电能质量同时具备高性能动态响应及较高的逆变器效率。

但传统的控制策略难以保证上述要求,且控制结构复杂,控制器参数整定困难。

为了简化控制结构和控制器参数设计本文采用高频控制和工频控制结合的方法实现了半周期调制和单电流环并网控制。

仿真和实验表明所提方法具有提高并网电流质量、快速动态响应、提高系统效率等优点。

关键词:单级升压逆变;动态响应;单电流环控制;半周期调制中图分类号:TM464文献标识码:BNovel Grid-current Loop Control of Double Boost InverterL1Nan, L!U Bin(College of Electrical Engineering,Guangxi University,Nanning530004,China)Abstract:The double boost inverter composed of two identical dc-dc boost converters can realize single-stage pow­er conversion,which is a reliable alternative to full-bridge inverter due to its simple structure,less power devices and buck-boost ability.When the double boost inverter achieves grid-connected operation,it not only needs to improve the power quality,but also needs to satisfy rapid dynamic response and high efficiency.However,the traditional con­trol strategies cannot guarantee the above requirements,and the control structure is complex and the controller pa­rameters tuning is difficult.In order to simplify the design of control structure and controller parameters,the method of combining high frequency control and power frequency control is proposed,which can realize half cycle modula­tion and single current loop grid-connected control.The simulation and experiment results show that the proposed method not only can achieve rapid dynamic response and improve the grid-connected current quality,but also can simplify the control structure.Key Words:single-stage boost inverter;dynamic response;single current loop;half cycle modulation1引言为了应对全球变暖和环境问题,可再生能源如风能、太阳能、燃料电池成为最佳的替代能源,随着电力需求的不断增加,分布式新能源发电越来越受到人们的关注[1]o差分升压逆变器是一种能够把低直流输入电压提升为高交流输出电压的单级逆变器[2]o 要实现双Boost逆变器良好的并网性能需要一基金项目:国家自然科学基金项目(61863003);湖南自然科学基金项目(2018JJ3690)个合适的控制器,虽然其拓扑结构简单对称,但描述其动态行为和相关控制是复杂的。

DC-DC_电路设计(现代电路理论)

DC-DC_电路设计(现代电路理论)

U0 t L0
I L (0)
U
t
d
, i L
U
L
储能 (1) 0 DT (2)
当 t [DT ,T ] 时,
iL (t)
IL
U0 L0
(t
DT
), t
, C和L
放能
(3)

t
T
时, i L
(t)
达到最小值
IL
由于电路达到了稳态, I L I L (0)
IL
IL
U0 L0
(T
DT )
(4)
8
U U
The energy
L
in DC
source
C
Load
Mode2:DT<t<T, T is off, D is on,the current iL decrease, the
equivalent circuit
The energy
Load
in L
C
20
2.电流增益
A I
根据无耗网络的定义:
P P U I U I
D 0
d
输入功率 电流
输出电流
10
5.输出电压纹波分析
当 C0 ,U0 const, 但 Co 为有限值
i i I 负载电流
L
C
0
i i I
C
L
0
电感电流 电容电流
情况1:
i I ,i 0,
L
0C
C充电
情况2: iL I0 ,iC 0, C放电
11
当 t [1 DT , DT (1 D) T ] 时,电容充电,其电荷量为Q
(t DT )

利特 RT8509 3A 14V 升压 DC DC 转换器 数据手册说明书

利特 RT8509 3A 14V 升压 DC DC 转换器 数据手册说明书

RT8509®©Copyright 2012 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Ordering InformationNote :Richtek products are :` RoHS compliant and compatible with the current require-ments of IPC/JEDEC J-STD-020.` Suitable for use in SnPb or Pb-free soldering processes.Pin ConfigurationsWDFN-10L 3x3(TOP VIEW)3A, 14V Step-Up DC/DC ConverterGeneral DescriptionThe RT8509 is a high performance switching boost converter that provides a regulated supply voltage for active matrix thin film transistor (TFT) liquid crystal displays (LCDs).The RT8509 incorporates current mode, fixed-frequency,pulse width modulation (PWM) circuitry with a built in N-MOSFET to achieve high efficiency and fast transient response.The RT8509 has a wide input voltage range from 2.8V to 14V. In addition, the output voltage can be adjusted up to 24V via an external resistive voltage divider. The maximum peak current is limited to 4.5A (typ.). Other features include programmable soft-start, over voltage protection, and over temperature protection.The RT8509 is available in a WDFN-10L 3x3 package.Featuresz 90% Efficiencyz Adjustable Output Up to 24Vz 2.8V to 14V Input Supply Voltage z Input Supply Under Voltage Lockout z Fixed 1.2MHz Switching Frequency z Programmable Soft-Start z V OUT Over Voltage Protection z Over Temperature Protection z Thin 10-Lead WDFN PackagezRoHS Compliant and Halogen FreeApplicationszGIP TFT LCD PanelsMarking InformationH4= : Product CodeYMDNN : Date CodeTypical Application CircuitSS VIN VSUP LXLXOUT L1Package TypeQW : WDFN-10L 3x3 (W-Type)RT8509Lead Plating SystemG : Green (Halogen Free and Pb Free)RT8509©Copyright 2012 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Function Block DiagramLXSS GNDRT8509©Copyright 2012 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Electrical CharacteristicsRecommended Operating Conditions (Note 4)z Ambient T emperature Range -------------------------------------------------------------------------------------------- −40°C to 85°C zJunction T emperature Range --------------------------------------------------------------------------------------------−40°C to 125°CAbsolute Maximum Ratings (Note 1)z LX, VSUP to GND ---------------------------------------------------------------------------------------------------------−0.3V to 28V z VIN, EN to GND ------------------------------------------------------------------------------------------------------------−0.3V to 16.5V z Other Pins to GND --------------------------------------------------------------------------------------------------------−0.3V to 6.5V zPower Dissipation, P D @ T A = 25°CWDFN-10L 3x3-------------------------------------------------------------------------------------------------------------1.429W zPackage Thermal Resistance (Note 2)WDFN-10L 3x3, θJA -------------------------------------------------------------------------------------------------------70°C/W WDFN-10L 3x3, θJC -------------------------------------------------------------------------------------------------------8.2°C/W z Junction T emperature -----------------------------------------------------------------------------------------------------150°Cz Storage T emperature Range --------------------------------------------------------------------------------------------−65°C to 150°C z Lead Temperature (Soldering, 10sec.)--------------------------------------------------------------------------------260°C zESD Susceptibility (Note 3)HBM (Human Body Model)----------------------------------------------------------------------------------------------2kV MM (Machine Model)-----------------------------------------------------------------------------------------------------200VRT8509©Copyright 2012 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Note 1. Stresses beyond those listed “Absolute Maximum Ratings ” may cause permanent damage to the device. These arestress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.Note 2. θJA is measured at T A = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC ismeasured at the exposed pad of the package.Note 3. Devices are ESD sensitive. Handling precaution is recommended.Note 4. The device is not guaranteed to function outside its operating conditions.RT8509©Copyright 2012 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Boost Reference Voltage vs. Input Voltage11.11.21.31.41.52468101214Input Voltage (V)B o o s t R e f e r e n c e V o l t a g e (V)Boost Current Limit vs. Input Voltage2345672468101214Input Voltage (V)B o o s tC u r r e n t L i m i t (A )Typical Operating CharacteristicsBoost Efficiency vs. Load Current5060708090100B o o s t E f f i c i e n c y (%)Boost Efficiency vs. Load Current5060708090100B o o s t E f f i c i e n c y (%)11.11.21.31.41.5-50-25255075100125Temperature (°C)B o o s t R e f e r e n c e V o l t a g e (V )90010001100120013001400-50-25255075100125Temperature (°C)B o o s t F r e q u e n c y (k H z )RT8509©Copyright 2012 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Application InformationThe RT8509 is a high performance step-up DC/DC converter that provides a regulated supply voltage for panel source driver ICs. The RT8509 incorporates current mode,fixed frequency, Pulse Width Modulation (PWM) circuitry with a built in N-MOSFET to achieve high efficiency and fast transient response. The following content contains detailed description and information for component selection.Boost RegulatorThe RT8509 is a current mode boost converter integrated with a 24V/3.5A power switch, covering a wide V IN range from 2.8V to 14V. It performs fast transient responses to generate source driver supplies for TFT LCD display. The high operation frequency allows use of smaller components to minimize the thickness of the LCD panel.The output voltage can be adjusted by setting the resistive voltage-divider sensing at the FB pin. The error amplifier varies the COMP voltage by sensing the FB pin to regulate the output voltage. For better stability, the slope compensation signal summed with the current sense signal will be compared with the COMP voltage to determine the current trip point and duty cycle.Soft-StartThe RT8509 provides soft-start function to minimize the inrush current. When powered on, an internal constant current charges an external capacitor. The rising voltage rate on the COMP pin is limited from V SS = 0V to 1.24V and the inductor peak current will also be limited at the same time. When powered off, the external capacitor will be discharged until the next soft-start time.The soft-start function is implemented by the external capacitor with a 5μA constant current charging to the soft-start capacitor. Therefore, the capacitor should be large enough for output voltage regulation. A typical value for soft-start capacitor is 33nF . The available soft-start capacitor range is from 10nF to 100nF.If C SS < 220pF , the internal soft-start function will be turned on and period time is approximately 1ms.OUT REF REF R1V = V x 1, where V = 1.25V (typ.)R2⎛⎞+⎜⎟⎝⎠The recommended value for R2 shoul d be at least 10k Ωwithout some sacrificing. Place the resistive voltage divider as close as possible to the chip to reduce noise sensitivity.Loop CompensationThe voltage feedback loop can be compensated with an external compensation network consisting of R3. Choose R3 to set high frequency integrator gain for fast transient response and C1 to set the integrator zero to maintain loop stability. For typical application, V IN = 5V,V OUT = 13.6V, C OUT = 4.7μF x 3, L1 = 4.7μH, while the recommended value for compensation is as follows :R3 = 56k Ω, C1 = 1nF.Over Current ProtectionThe RT8509 boost converter has over current protection to limit the peak inductor current. It prevents large current from damaging the inductor and diode. During the On-time,once the inductor current exceeds the current limit, the internal LX switch turns off immediately and shortens the duty cycle. Therefore, the output voltage drops if the over current condition occurs. The current limit is also affected by the input voltage, duty cycle, and inductor value.Over Temperature ProtectionThe RT8509 boost converter has thermal protection function to prevent the chip from overheating. When the junction temperature exceeds 155°C, the function shuts down the device. Once the device cools down by approximately 10°C, it will automatically restart to normal operation. To guarantee continuous operation, do not operate over the maximum junction temperature rating of 125°C.Inductor SelectionThe inductance depends on the maximum input current.As a general rule, the inductor ripple current range is 20%to 40% of the maximum input current. If 40% is selectedOutput Voltage SettingThe regulated output voltage is shown as the following equation :RT8509©Copyright 2012 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.where η is the efficiency of the converter, I IN(MAX) is themaximum input current, and I RIPPLE is the inductor ripple current. The input peak current can then be obtained by adding the maximum input current with half of the inductor ripple current as shown in the following equation :PEAK IN(MAX)I 1.2 x I =Note that the saturated current of the inductor must be greater than I PEAK . The inductance can eventually be determined according to the following equation :2IN OUT IN 2OUT OUT(MAX)OSC x (V )x(V V )L 0.4 x (V )xI x f η−=where f osc is the switching frequency. For better system performance, a shielded inductor is preferred to avoid EMI problems.Diode SelectionSchottky diodes are chosen for their low forward voltage drop and fast switching speed. When selecting a Schottky diode, important parameters such as power dissipation,reverse voltage rating, and pulsating peak current should all be taken into consideration. A suitable Schottky diode's reverse voltage rating must be greater than the maximum output voltage and its average current rating must exceed the average output current. Last of all, the chosen diode should have a sufficiently low leakage current level, since it will increase with temperature.Output Capacitor SelectionThe output ripple voltage is an important index for estimating chip performance. This portion consists of two parts. One is the product of the inductor current with the ESR of the output capacitor, while the other part is formed by the charging and discharging process of the output capacitor. As shown in Figure 1, ΔV OUT1 can be evaluated based on the ideal energy equalization. According to the definition of Q, the Q value can be calculated as the following equation :IN L OUT IN L OUT IN OUT OUT1OUT OSC111Q x I I I I I I 222V 1x xC x V V f ⎡⎤⎛⎞⎛⎞=+Δ−+−Δ−⎜⎟⎜⎟⎢⎥⎝⎠⎝⎠⎣⎦=Δwhere f OSC is the switching frequency, and ΔI L is the inductor ripple current. Bring C OUT to the left side to estimate the value of ΔV OUT1 according to the following equation :OUTOUT1OUT OSC D x I V x C x f ηΔ=where D is the duty cycle and η is the boost converter efficiency. Finally, taking ESR into account, the overall output ripple voltage can be determined by the following equation :OUTOUT IN OUT OSC D x I V I x ESR x C x f ηΔ=+The output capacitor, C OUT , should be selected accordingly.TimeFigure 1. The Output Ripple Voltage without theContribution of ESRInput Capacitor SelectionLow ESR ceramic capacitors are recommended for input capacitor applications. Low ESR will effectively reduce the input voltage ripple caused by switching operation. A 10μF capacitor is sufficient for most applications.Nevertheless, this value can be decreased for lower output current requirement. Another consideration is the voltage rating of the input capacitor which must be greater than the maximum input voltage.OUT OUT(MAX)IN(MAX)IN RIPPLE IN(MAX)V x I I =x V I = 0.4 x I ηas an example, the inductor ripple current can be calculated according to the following equations :RT8509©Copyright 2012 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Thermal ConsiderationsFor continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :P D(MAX) = (T J(MAX) − T A ) / θJAwhere T J(MAX) is the maximum junction temperature, T A is the ambient temperature, and θJA is the junction to ambient thermal resistance.For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, θJA , is layout dependent. For WDFN-10L 3x3 packages, the thermal resistance, θJA , is 70°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at T A = 25°C can be calculated by the following formula :P D(MAX) = (125°C − 25°C) / (70°C/W) = 1.429W for WDFN-10L 3x3 packageThe maximum power dissipation depends on the operating ambient temperature for fixed T J(MAX) and thermal resistance, θJA . The derating curve in Figure 2 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.Figure 2. Derating Curve of Maximum Power DissipationLayout ConsiderationsFor high frequency switching power supplies, the PCBlayout is important to get good regulation, high efficiency and stability. The following descriptions are the guidelines for better PCB layout.` For good regulation, place the power components asclose as possible. The traces should be wide and short enough especially for the high current output loop.` The feedback voltage divider resistors must be near thefeedback pin. The divider center trace must be shorter and the trace must be kept away from any switching nodes.` The compensation circuit should be kept away from thepower loops and be shielded with a ground trace to prevent any noise coupling.` Minimize the size of the LX node and keep it wide andshorter. Keep the LX node away from the FB.` The exposed pad of the chip should be connected to astrong ground plane for maximum thermal consideration.Figure 3. PCB Layout GuidePlace C 2 as close to VIN as possible.close to the IC as possible. The traces should be wide and short, especially for the high-current loop.The compensation circuit 0.00.20.40.60.81.01.21.41.60255075100125Ambient Temperature (°C)M a x i m u m P o w e r D i s s i p a t i o n (W )W-Type 10L DFN 3x3 PackageRichtek Technology Corporation5F, No. 20, Taiyuen Street, Chupei CityHsinchu, Taiwan, R.O.C.Tel: (8863)5526789Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.。

宽输入电压 DC_DC 电源解决方案

宽输入电压 DC_DC 电源解决方案

宽输入电压 DC/DC 电源解决方案面向工业、汽车和通信应用Applications Requiring Wide V INDC/DC Conversion Delivering High Performance Power Solutions for the Most Demanding SystemsRugged Industrial Equipment• 40V+ Wide V IN operation for 24V backplanes • Isolated bias power for PLCs and motor drives• Integrated FET buck converters for reducingPCB power footprint• Power modules with integrated inductor toincrease power density and reduce EMI • Low noise LDOs for powering precision circuits Advanced Automotive Electronics • 42V/60V Wide V IN rating to survive load dump •>2MHz operation to reduce radio interference • Low standby / shutdown Iq to reduce battery drain • Buckcontrollers for infotainment and USB power •Boost solutions with 3V min V INfor continuous operation during start-stop events • Ultra-small IC packaging to reduce PCB footprint需要进行宽输入电压 DC/DC 转换的应用提供适用于最严苛系统的高性能电源解决方案坚固型工业设备• 超过 40V 的宽输入电压 (V IN ) 操作(适合于 24 V 背板)• 用于 PLC 和电机驱动器的隔离式偏置电源• 用于缩减 PCB 电源占板面积的集成型 FET 降压转换器• 具有集成型电感器(以提高功率密度和降低 EMI )的电源模块• 用于给高精度电路供电的低噪声 LDO 高级汽车电子部件• 42 V / 60 V宽输入电压 (V IN ) 额定值以安全承受负载突降• 高于 2 MHz 的工作频率以降低射频干扰• 低的待机 / 关断静态电流 (Iq) 以减少电池电量消耗• 用于信息娱乐和 USB 电源的降压型控制器• 具有 3 V 最小输入电压(以在汽车启-停过程中实现连续运作)的升压解决方案• 超小型 IC 封装以缩减 PCB 占板面积灵敏的通信系统• 75 V / 100 V 宽输入电压 (V IN) 操作(适合于 48 V 背板)• 用于给高电流系统供电的高性能降压型控制器和 MOSFET • 用于抑制噪声和缩减 PCB 占板面积的低 EMI 集成型电源模块• 用于控制电源噪声的恒定频率运作• 用于给射频 (RF) 电路供电的高电源抑制比 (PSRR) 和低噪声稳压器Wide V IN ConvertersIntegrated and Easy-to-Use for Space-Constrained ApplicationsON BSTIN OUT FB UV VCC 宽输入电压转换器适合于空间受限型应用的高集成度与易用性Wide V INControllersHigh-Performance for High-Current Power Conversion Needs V V LM5121: Pins for Disconnect Switch Control 宽输入电压控制器面向高电流电源转换需求的高性能LM5121:用于断接开关控制的引脚* (2) ,。

一种适合宽范围输出的双向DC-DC变换器

一种适合宽范围输出的双向DC-DC变换器

第28卷㊀第2期2024年2月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.28No.2Feb.2024㊀㊀㊀㊀㊀㊀一种适合宽范围输出的双向DC-DC 变换器袁义生,㊀卢梓意,㊀刘伟(华东交通大学电气与自动化工程学院,江西南昌330013)摘㊀要:提出一种适合宽范围输出的双向DC-DC 变换器㊂该变换器结构与传统LLC 双向DC-DC 变换器类似,但通过开关管复用以及将谐振电感增加绕组复用为一个反激变压器,构造了多种工作模式㊂变换器采用PWM 调制,正向功率传输时有中㊁低两种电压增益模式,反向功率传输时有高㊁中㊁低三种电压增益模式,所有模式中均可实现全负载范围内的软开关状态㊂对各模式的工作原理㊁增益公式推导进行了详细的描述㊂最后以满足4-5节12V 蓄电池的充放电为前提,给出变换器设计和控制方法,并搭建了相应参数的实验样机㊂实验结果验证了该变换器分析的有效性㊂关键词:双向DC-DC 变换器;宽范围;多模式;谐振;软开关DOI :10.15938/j.emc.2024.02.015中图分类号:TM46文献标志码:A文章编号:1007-449X(2024)02-0152-10㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-05-23基金项目:国家自然科学基金(52067007);江西省自然科学基金重点项目(20232ACB204024)作者简介:袁义生(1974 ),男,博士,教授,博士生导师,研究方向为电力电子系统及其控制;卢梓意(1996 ),男,硕士,研究方向为电力电子与电力传动;刘㊀伟(1985 ),男,博士研究生,研究方向为电力电子与电力传动㊂通信作者:袁义生Bidirectional DC-DC converter suitable for wide output rangeYUAN Yisheng,㊀LU Ziyi,㊀LIU Wei(School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China)Abstract :A bidirectional DC-DC converter suitable for wide range output was proposed.The structure of the converter is similar to that of the traditional LLC bi-directional DC-DC converter,but a variety of op-erating modes were constructed by multiplexing the switching and multiplexing the resonant inductor in-creasing winding as a flyback transformer.In the converter,by adopting PWM modulation,forward power transmission has medium and low voltage gain mode,reverse power transmission has high,medium and low voltage gain mode,all modes can achieve the soft switching state within the full load range.The working principle of each mode and derivation of gain formula are described in detail.Finally,on the premise of charging and discharging 4-512V batteries,the design and control method of the converter is given,and the experimental prototype of the corresponding parameters is built.Experimental resultsverify the effectiveness of the proposed converter analysis.Keywords :bidirectional DC-DC converter;wide range;multi-mode;resonance;soft switching0㊀引㊀言近年来,随着直流配电[1-3]和电动汽车直流充电桩[4-5]技术的迅速发展,功率能够双向流动的DC-DC 变换器也得到了越来越多的研究,尤其是能够适应宽输入或宽输出电压范围工作的高效率㊁高电压增益的双向DC-DC 变换器㊂传统的双半桥或者双全桥双向DC-DC 变换器[6-7]具有软开关的优点,但缺点是正㊁反向电压增益都小于1,且关断时刻电流大㊁循环损耗大㊂LLC 谐振型双向DC-DC变换器[8]能够更好地实现软开关且关断电流和循环损耗更小,在正向工作时电压增益能大于1,但一般小于1.4;缺点是反向电压增益小于1,正向工作时开关频率调节范围过宽㊂双向CLLC谐振变换器[9]进一步提升反向电压增益大于1,但缺点是使用器件太多,功率密度较低,且开关频率调节范围过宽㊂带辅助电感的对称式双向LLC谐振变换器[10]比CLLC谐振变换器减小了一个谐振电容,但开关频率范围仍然较宽㊂文献[11]通过在二次侧增加一个双向交流开关,在保持高效的同时可以通过PWM调制增加变换器的电压调节能力,但是这增加了成本和复杂性㊂提高DC-DC变换器的电压增益范围有以下几种方案㊂1)调节谐振腔参数㊂文献[12]通过降低励磁电感使电路在低k值下运行,实现功率高密度㊂文献[13]采用一种充磁电感,在不同的模式中通过改变频率进而改变电感量,可以将导通损耗降到最低并且提高电压增益㊂2)引入辅助桥臂㊂文献[14]在原边增加了辅助双向开关桥臂让电路可以在常态运行和掉电保持运行之间切换,保证了输出电压稳定也提高了工作效率㊂文献[15]通过引入辅助桥臂,增加充能环节,有多种工作模式,拓宽了增益范围进㊂3)新型调制策略㊂文献[16-17]为了限制开关频率的变化并获得较宽的电压增益范围,提出了适用于低谐振变换器的恒频移相控制方法,但变换器在低电压增益或者轻载的情况下会失去零电压开关(ZVS)㊂文献[18-20]采用新型控制策略通过在全桥模式和半桥模式之间切换实现了较宽增益的输出㊂4)改变谐振腔电压㊂文献[21]提出的复合型谐振变换器通过复用谐振电感来提高功率密度,利用多种模态实现全负载下的宽增益输出㊂文献[22]采用两个变压器串联,有四种运行方式,可以覆盖最小输入电压的四倍范围,并且通过优化电路参数来达到较高的效率㊂本文通过器件复用,提出一种结构更简单,具有多种电压增益模式的双向宽范围输出的DC-DC变换器㊂该变换器采用PWM调制,开关频率固定,具有全软开关高效率的优点㊂1㊀拓扑结构及工作原理1.1㊀拓扑结构及工作状态图1为本文提出的适合宽范围输出的双向DC-DC变换器㊂该变换器左右侧均采用全桥结构,由8个开关管S1~S8及其反并二极管和寄生电容构成,通过一个原副边匝比为K1的主变压器T1隔离,是一个传统的桥式双向DC-DC变换器结构㊂此外,还有一个原副边匝比为K2的辅助变压器T2和开关管S9及其反并二极管D9,构成了一个反激双向DC-DC 变换器㊂辅助变压器T2的原边绕组电感L r复用作谐振电感,与谐振电容C r构成谐振腔㊂L m为T1的励磁电感,假设L m极大㊂图1㊀提出的适合宽范围输出的双向DC-DC变换器Fig.1㊀A wide gain multi-mode bidirectional DC-DC converter proposed提出的双向DC-DC变换器有正向功率传输和反向功率传输两种工作方式㊂正向工作时有中㊁低电压增益两种模式,反向工作时有高㊁中㊁低三种电压增益模式,适用于宽范围输出的场合㊂定义特征阻抗Z r=L r/C r,品质因数Q=π2Z r/(8K2R o),谐振频率f r=1/(2πL r C r),开关频率f s,归一化频率f n=f s/f r,谐振角频率ωr= 2πf r㊂1.2㊀正向功率传输方式及工作原理正向功率传输方式时,功率从左侧向右侧传输,有中㊁低两种电压增益模式㊂1.2.1㊀正向中电压增益模式正向中电压增益(forward medium gain,FMG)模式采用脉冲宽度调制(pulse width modulation,PWM)调制,关键波形如图2所示㊂S1㊁S6㊁S7为第一组, S2㊁S5㊁S8为第二组,每组共同导通关断,两组开关管互补导通,占空比为D=[2(t1-t0)/T s]㊂S3㊁S4也是互补导通并且分别和第一组和第二组开关管同时开通,占空比接近0.5㊂一个开关周期分为三个阶段如图3所示,下面对三个阶段进行详细描述㊂351第2期袁义生等:一种适合宽范围输出的双向DC-DC变换器阶段1[t 0-t 1]:LC 谐振阶段㊂t 0时刻S 1和S 4导通,副边S 6和S 7和二极管D 6㊁D 7导通,形成LC 谐振回路㊂电容电压最大为ΔU Cr ,则此阶段副边的电感电流i Lr_F 可以表示为i Lr_F (t )=U i /K 1-U o +ΔU CrZ rsin(ωr t )㊂(1)本阶段通过LC 谐振从左到右传递能量㊂图2㊀FMG 模式的主要波形Fig.2㊀Main waveforms of FMGmode图3㊀FMG 模式各阶段的等效电路Fig.3㊀Equivalent circuits of each stage of FMG mode阶段2[t 1-t 2]:环流阶段㊂t 1时刻S 1㊁S 6㊁S 7关断,D 3迅速导通㊂由于谐振电感电流i Lr_F 不能突变,电容电流i Cr 会瞬间换向通过二极管D 5㊁D 8流向L r ㊂此阶段电容电压U Cr 近似不变,T 1原边短路谐振电感L r 承受(U o -U cr )的反向电压,谐振电流i Lr_F 直线下降㊂变压器电流i Lm 快速下降接近至0再反向㊂此阶段的电感电流i Lr_F 可以表示为i Lr_F (t )=i Lr_F (t 1)-U o +ΔU CrL r(t -t 1)㊂(2)本阶段原边环流,副边换流,L r 继续释放能量㊂阶段3[t 2-t 3]:死区阶段㊂t 2时刻S 4关断,原边电流通过D 2㊁D 3流向电源U i ,此时L r 承受[(U i /n 1)+U Cr -U o ]的正向电压,电流迅速上升㊂至t 3时刻,S 2㊁S 3㊁S 5㊁S 8均实现ZVS 开通㊂本阶段作用时间很短㊂1.2.2㊀正向低电压增益模式正向低电压增益(forward low gain,FLG)模式采用PWM 调制,仅开关管S 9工作,通过控制其占空比D f 来实现电压转换㊂开关管S 9和T 2以及右侧四个二极管构成了一个反激变换器,具体工作原理不再赘述㊂1.3㊀反向功率传输方式及工作原理反向功率传输时,输入电压为U o ,输出电压为U i ,有高㊁中㊁低三种电压增益模式㊂1.3.1㊀反向高电压增益模式反向高电压增益(reverse high gain,RHG)模式关键波形如图4所示㊂各开关管采用PWM 调制㊂副边两个上管S 5和S 6互补导通,(t 3-t 2)为两者间死区时间;两个下管S 7和S 8的导通占空比相等且大于0.5,它们分别与S 6和S 5同时触发导通㊂原边的开关管S 1㊁S 4和S 6同时开通关断,S 2㊁S 3和S 5同时导通关断㊂图4㊀RHG 模式的主要波形Fig.4㊀Main waveforms of RHG mode451电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀RHG 模式通过调整同一桥臂上下管共同导通的占空比D b =[2(t 1-t 0)/T s ]来调节增益㊂以下分析上半个周期[t 0-t 4]的4个工作阶段原理,其等效电路图如图5所示㊂图5㊀RHG 模式各阶段的等效电路Fig.5㊀Equivalent circuits of each stage of RHG mode1)阶段1[t 0-t 1]:Boost 阶段㊂t 0之前i Lr 初始值为0㊂此阶段S 6和S 8导通,电源U o 给谐振电感L r 储能,i Lr 线性上升㊂由于i Lr 初始值为0,所以实现了S 1㊁S 4㊁S 6㊁S 7㊁S 8的ZCS 开通㊂至t 1时刻,电感电流i Lr 上升为i Lr (t 1)=U o D b T sL r㊂(3)本阶段实现了L r 的储能㊂2)阶段2[t 1-t 2]:LC 谐振阶段㊂t 1时刻关断S 8,此时S 6㊁S 7导通,原边S 1㊁S 4㊁D 1㊁D 4导通,进入L r 和C r 谐振阶段㊂C r 初始电压为-U CrM ㊂此阶段谐振电流i Lr 和谐振电压U cr 分别表示为i Lr (t )=U o -U i /K 1+U CrMZ rsin[ωr (t -t 1)]+i Lr (t 1)cos[ωr (t -t 1)];(4)U Cr (t )=i Lr (t 1)Z r sin[ωr (t -t 1)]+U o -K 1U i -(U o -K 1U i +U CrM )cos[ωr (t -t 1)]㊂(5)本阶段通过LC 谐振从右到左传递能量㊂3)阶段3[t 2-t 3]:Flyback 阶段㊂t 2时刻关断S 6㊁S 1㊁S 4,S 7继续导通㊂此时L r 上的能量通过变压器T 2反激传输到U i 侧㊂反激电流为i f =K 2i Lr (t 2)-K 2U iL r(t -t 2)㊂(6)本阶段通过反激方式将L r 的剩余能量全部传递到原边㊂4)阶段4[t 3-t 4]:电流断续阶段㊂t 3时刻i f 下降至0,直至t 4时刻开始下半个周期㊂1.3.2㊀反向中电压增益模式反向中电压增益(reverse medium gain,RMG)模式关键波形如图6所示㊂各开关管采用传统的PWM 调制㊂副边的S 6㊁S 7,和原边的S 1㊁S 4为一组;副边的S 5㊁S 8,和原边的S 2㊁S 3为另一组㊂两组开关管导通占空比都是D m =[2(t 1-t 0)/T s ],导通时刻相差180ʎ㊂图6㊀RMG 模式的主要波形Fig.6㊀Main waveforms of RMG modeRMG 模式相比RHG 模式仅少了一个Boost 阶段㊂[t 0-t 3]是上半个周期的3种工作阶段,各阶段工作原理简述如下:1)阶段1[t 0-t 1]:LC 谐振阶段㊂此阶段工作原理等同于RHG 模式的LC 谐振阶段,区别仅在于谐振电感初始电流i Lr 为0,使得S 6㊁S 7实现ZCS 导通㊂2)阶段2[t 1-t 2]:Flyback 阶段㊂此阶段工作551第2期袁义生等:一种适合宽范围输出的双向DC -DC 变换器原理等同于RHG模式的Flyback阶段㊂3)阶段3[t2-t3]:电流断续阶段㊂此阶段工作原理等同于RHG模式电流断续阶段㊂1.3.3㊀反向低电压增益模式反向低电压增益(reverse low gain,RLG)模式采用PWM调制,右侧四个开关管S5-S8同时通断,通过控制其占空比D f来实现电压转换㊂这四个开关管和T2㊁D9构成了一个反激变换器,具体工作原理不再赘述㊂2㊀电压增益2.1㊀FMG模式电压增益G FMG本模式本质上等同于一个副边LC谐振变换器,因此其电压增益最大为1㊂推导如下㊂定义本模式电感电流i Lr_F在LC谐振阶段的平均值为I d_F,在Flyback阶段的平均值为I f_F,负载电阻为R o,则G FMG=U o Ui =R o(I d_F+I f_F)U i㊂(7)I d_F和I f_F可以表示为I d_F=2f sʏt1t0i Lr_F(t)d t=πU i(1/K1-G FMG)[1-cos(πD)][3+cos(πD)]8QR o[1+cos(πD)];(8)I f_F=2f sʏt3t1i Lr_F(t)d t=πU i sin2(πD)(1/K1-G FMG)2[3+cos(πD)]216QR o[2/K1-G FMG+cos(πD)][1+cos(πD)]㊂(9)联合式(7)㊁式(8)㊁式(9)可以得到有关G FMG㊁D㊁Q的隐函数f FMG(G FMG,D,Q)=8QG FMG[1+cos(πD)]-π(1-G FMG)ˑ[3+cos(πD)]{1-cos(πD)+sin2(πD)(1/K1-G FM G)[3+cos(πD)]2[2/K1-G FM G+cos(πD)]}㊂(10)根据式(10)绘出G FMG曲线如图7所示㊂可以看出,随着占空比D增大,最大增益接近1,并且能够在较大Q值下保持较好的线性调节能力㊂2.2㊀FLG模式电压增益G FLG本模式本质是一个工作在电流断续状态的反激变换器,其电压增益为G FLG=K2D f R oT s2L r㊂(11)图7㊀FMG模式的电压增益曲线Fig.7㊀Gain curve of FMG mode2.3㊀RHG模式电压增益G RHG本模式实质等同于Boost+副边LC谐振+Fly-back变换器,因此其最大增益大于1且易受Boost 阶段控制㊂定义本模式输出电流在LC谐振阶段的平均值为I d_R,在Flyback阶段的平均值为I f_R㊂总的输出电流平均值I i为I d_R和I f_R之和,U i侧负载电阻为R i㊂则㊀G RHG=U i Uo=R i(I d_R+I f_R)U o;(12)㊀I d_R=2K1f sʏt2t1i Lr(t)d t=2K1U o{(1-K1G)[1-cos(D m-D b)]+πD b sin(D m-D b)+2πD b[1-sin(1-D d)]}/{πZ r[1+cos(D m-D b)]};(13)㊀I f_R=2K1f sʏt2t1i f_R(t)d t=L r f s i2Lr(t2)K2U i㊂(14)将式(13)㊁式(14)代入到式(12)得到有关G RHG㊁D m㊁D b㊁Q的隐函数f RHG(G RHG,D m,D b,Q)=π8K21Q{1+cos[π(D m-D b)]}ˑ{2K1πD b sin[π(D m-D b)]+4K1πD b{1-sin(πD m)}+2K1(1-K1G RHG){1-cos[π(D m-D b)]}+12K2G RHG{1+cos[π(D m-D b)]}ˑ{πD b{1+cos[π(D m-D b)]}+2(1-K1G RHG)sin[π(D m-D b)]+2πD b{1-sin[π(D m-D b)]}ˑsin[π(D m-D b)]}2}-G RHG㊂(15)651电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀2.4㊀RMG模式电压增益G RMGRMG无RHG模式的Boost阶段,将D b=0代入式(15)得到G RMG的隐函数f RMG(G RMG,D m,Q)=G RMG-π(1-K1G RMG)4K2K21QG RMGˑ1-cos(πD m)1+cos(πD m)㊂(16)根据式(15)㊁式(16)绘出G RHG和G RMG的特性曲线如图8所示㊂图中实线表示G RMG与Q值和D m 的关系,D m在0~0.8之间调节㊂图8中虚线表示G RHG㊁Q值和D b的关系,D b在0~0.4范围之间调节㊂在D b到达0.2时G RHG就达到1.4,超过传统LLC谐振型DC-DC变换器的增益㊂图8㊀RHG和RMG模式的特性曲线Fig.8㊀Characteristic curves of RHG and RMG modes 2.5㊀RLG模式电压增益G RLG本模式本质是一个工作在电流断续状态的反激变换器,电压增益G RLG=D f K2R i T s2L r㊂(17)3㊀所提变换器的设计设计一个可以对4-5节额定电压为12V的蓄电池组进行充放电的双向DC-DC变换器,其充电电压为55.4~73.5V,放电电压为42~73.5V,设计参数见表1㊂3.1㊀正反向电压增益假设实际需求双向DC-DC变换器最大正向增益为G F,最大反向增益为G R,当主变压器变比K1= 1时双向DC-DC变换器能达到的最大正向增益为G1,最大反向增益为G2,则设计的双向DC-DC变换器的变比K须满足以下条件:G Fɤ1K G1;G RɤKG2㊂}(18)即G RG2ɤKɤG1G F㊂表1㊀设计的参数范围Table1㊀Experimental scope of the design 工作方式实验参数㊀㊀㊀取值正向工作方式输入电压U i/V220额定输出电压/V60额定功率P o/W450输出电压范围U o/V30~73.5开关频率f s/kHz100反向工作方式输入电压U o范围/V42~73.5输出电压U i/V220额定输入电压/V60额定功率P o/W450开关频率f s/kHz100要使电路能达到实际需求,则K1值要有解,所以电路增益要满足G1G2ȡG F G R㊂(19)根据表1得到G F=0.3,G R=5.2㊂代入公式(18),有G1G2ȡ1.56㊂而根据图7和图8所示,本文所提电路只要选择合适的参数,能较容易满足该双向增益条件㊂此处选择G FMG=G1=0.98,G RHG=G2=1.75㊂3.2㊀变压器匝比设计选择好G FMG和G RHG后,设计K1=3㊂设计K2= 1,使变换器在双向工作时均能在Flyback阶段将电感剩余能量馈到负载端㊂3.3㊀品质因数和最大占空比将0.9G RMG设为额定增益G o,则在实际工作增益小于G o时是中增益模式,大于G o时切换成高增益模式㊂定义额定增益下的品质因数Q o=0.2,根据式(15)和式(16),计算得到最大占空比D m_max= 0.8㊂3.4㊀谐振参数设计根据f r和Q o来设计L r和C r,有:751第2期袁义生等:一种适合宽范围输出的双向DC-DC变换器L r =8U 2i G 2o Q oπ2ωs P i;C r =π2P i8U 2i G 2o ωs Q o㊂üþýïïïï(20)其中:P i 为额定功率;角频率ωs =2πf s ㊂将各参数代入上述公式可得:L r =22.5μH;C r =112.6nF㊂4㊀实验分析为了验证提出的双向DC-DC 变换器,制作了一台实验样机,实物照片如图9所示㊂样机工作参数见表1,其他参数如表2所示㊂图9㊀样机实物照片Fig.9㊀Photo of prototype表2㊀实验参数Table 2㊀Experimental parameters器件参数㊀数值主变压器T 1匝比K 13原边电感/漏感810μH /0.2μH 副边电感/漏感90μH /0.2μH 辅助变压器T 2匝比K 21原边电感L r /漏感22μH /0.6μH 副边电感/漏感22μH /0.6μH谐振电容C r 谐振电容C r 110nF 开关管IRF4609个所提变换器采用了最简单的单电压环控制,各个工作模式的切换通过对电压环的输出数值设置不同的阀值进行切换㊂4.1㊀正向工作关键波形设计的双向DC-DC 变换器正向工作范围为输入电压220V,输出电压30~73.5V㊂图10~图12分别为输入电压U i =220V 时,FMG 和FLG 模式下输出电压U o =73.5㊁55.4㊁30V的关键波形㊂图10㊀FMG 模式下73.5V 输出关键波形Fig.10Key waveforms with 73.5V output in FMGmode图11㊀FMG 模式下55.4V 输出关键波形Fig.11㊀Key waveforms with 55.4V output in FMG mode图10为U i =220V㊁U o =73.5V 时,FMG 模式下的关键波形㊂此时的电感电流连续,电容电流i Cr在开关管关断时进行换向,在下一次开关管导通之前与电感电流i Lr 保持一致并进行谐振直到下一次开关管关断进行换流㊂851电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀图12㊀FLG 模式下30V 输出关键波形Fig.12㊀Key waveforms with 30V output in FLG mode图11为U i =220V㊁U o =55.4V 时,FMG 模式下的关键波形㊂图12为U i =220V㊁U o =30V 时,FLG 模式下的关键波形,此时反激占空比D f =0.2㊂电路工作在DCM 模式㊂4.2㊀反向工作关键波形设计的双向DC-DC 变换器反向工作范围为输入电压42~73.5V,输出电压220V㊂图14~图15分别为输入电压U o =42V㊁73.5V 时,RHG 和RMG 模式下输出电压U i =220V 的关键波形㊂图13㊀RHG 模式下220V 输出关键波形Fig.13㊀Key waveforms with 220V output in RHG mode图13为U o =42V㊁U i =220V 时RHG 模式下的关键波形,此时D b =0.35㊂由图可知,电感电流i Lr 在Boost 阶段线性上升,随后和谐振电容C r 进行谐振㊂在S 5和S 6关断时谐振电感电流i Lr 会以Fly-back 的模式通过T 2变压器流到负载端㊂i Lr 会在周期内复位,可以实现ZCS 开通㊂工作在RHG 模式下,电路只有谐振阶段和Flyback 阶段两个阶段向负载馈能㊂图14㊀RMG 模式下220V 输出关键波形Fig.14㊀Key waveforms with 220V output in RMG mode图14为U o =73.5V㊁U i =220V 时RMG 模式下的关键波形,此时占空比D m =0.8㊁㊂相比RHG 模式,RMG 模式没有Boost 阶段,其谐振及软开关过程均与反向HG 模式相同㊂当输出电压降低使得D m 小于0.55时,电路会工作在RLG 模式下,提高电路的效率㊂4.3㊀切载波形及效率曲线图15为电路随负载变化而切换工作模式的动态响应波形㊂图16为提出的双向DC-DC 变换器和传统LLC 谐振双向DC-DC 变换器[8]在U o =60V 的条件下,正向㊁反向工作的效率曲线㊂为了提高传统LLC 谐振双向DC-DC 变换器的电压增益,实验时将其变压器励磁电感减小到50μH㊁漏感增大到10μH,其余参数与提出的变换器一致㊂由图17可见,传统双向DC-DC 变换器最高效率为88.32%,提出的变换器整体效率高于传统双向变换器,且工作在额定功率450W 时达到最高效率94.56%㊂951第2期袁义生等:一种适合宽范围输出的双向DC -DC 变换器图15㊀负载切换动态响应波形Fig.15㊀Dynamic response waveform with loadswitching图16㊀不同工作方式的效率曲线Fig.16㊀Efficiency curves with different modes5㊀结㊀论本文提出了一种适合宽范围输出的双向DC-DC 变换器,该变换器具体有以下几个优点:1)正向功率传输有两种电压增益模式,反向功率传输有三种电压增益模式,适合宽范围电池充放电场合,有较高的最高电压增益;2)采用定频PWM 调制,磁性器件设计简单;3)低增益模式的反激变压器的电感复用做中高增益模式的LC 谐振的谐振电感,提高了电路的功率密度;4)全负载范围内均实现了软开关,降低了开关损耗㊂参考文献:[1]㊀李建国,赵彪,宋强,等.直流配电网中高频链直流变压器的电压平衡控制策略研究[J ].中国电机工程学报,2016,36(2):327.LI Jianguo,ZHAO Biao,SONG Qiang,et al.DC voltage balance control strategy of high frequency link DC transformer in DC distri-bution system[J].Proceedings of the CSEE,2016,36(2):327.[2]㊀SHE X,HUANG A Q,BURGOS R.Review of solidstate trans-former technologies and their application in power distribution sys-tems[J].IEEE Journal of Emerging &Selected Topics in Power E-lectronics,2013,1(3):186.[3]㊀熊雄,季宇,李蕊,等.直流配用电系统关键技术及应用示范综述[J].中国电机工程学报,2018,38(23):6802.XIONG Xiong,JI Yu,LI Rui,et al.An overview of key technology and demonstration application of DC distribution and consumption system[J].Proceedings of the CSEE,2018,38(23):6802.[4]㊀ZHENG Zhong,ZHANG Daifang.Study on electromagnetic com-patibility of DC charging pile[C]//2018China International Con-ference on Electricity Distribution (CICED),September 17-19,2018,Tianjin,China.2018:2805-2810.[5]㊀CHEN Zhiru,LI Xinguang,DONG Xianguang,et al.Researchon remote calibration system of DC metering device for electric ve-hicle charging piles based on embedded[C]//2019IEEE 3rd In-formation Technology,Networking,Electronic and Automation Control Conference,March 15-17,2019,Chengdu,China.2019:300-304.[6]㊀CHOI B Y,NOH Y S,JI Y H,et al.Battery-integrated power op-timizer for PV-battery hybrid power generation system[C]//IEEE Vehicle Power and Propulsion Conference,October 9-12,2012,Seoul,Korea.2012:1343-1348.[7]㊀KRISMER F,KOLAR W J.Efficiency-optimized high-current du-al active bridge converter for automotive applications.[J].IEEE Transactions on Industrial Electronics,2012,59(7):2745.[8]㊀PLEDL G,TAUER M,BUECHERL D.Theory of operation,de-sign procedure and simulation of a bidirectional LLC resonant con-verter for vehicular applications[C]//2010IEEE Vehicle Power and Propulsion Conference,September 1-3,2010,Lille,France.2011:1-5.[9]㊀JUNG J H,KIM H S,RYU M H,et al.Design methodology ofbidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems[J].IEEE Transactions on Power Elec-tronics,2013,28(4):1741.[10]㊀WU H,DING S,SUN K,et al.Bidirectional soft-switching se-ries-resonant converter with simple PWM control and load-inde-pendent voltage-gain characteristics for energy storage system in DC microgrids[J].IEEE Journal of Emerging &Selected Topicsin Power Electronics,2017,5(3):995.[11]㊀LABELLA T,YU W,LAI J S,et al.A bidirectional-switch-based wide-input range high-efficiency isolated resonant converter for photovoltaic applications[J].IEEE Transactions on Power E-061电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀lectronics,2014,29(7):3473.[12]㊀JEONG Y,MOON G W,KIM J K.Analysis on half-bridge LLCresonant converter by using variable inductance for high efficiencyand power density server power supply[C]//IEEE Applied Pow-er Electronics Conference&Exposition,March26-30,2017,Tampa,FL,USA.2017:170-177.[13]㊀KIM D K,MOON S C,YEON C O,et al.High-efficiency LLCresonant converter with high voltage gain using an auxiliary LCresonant circuit[J].IEEE Transactions on Power Electronics,2016,31(10):6901.[14]㊀杨东江,段彬,丁文龙,等.一种带辅助双向开关单元的宽输入电压范围LLC谐振变换器[J].电工技术学报,2020,35(4):775.YANG Dongjiang,DUAN Bin,DING Wenlong,et al.An improvedLLC resonant converter with auxiliary bi-directional switch forwide-input-voltage range applications[J].Transaction of Electro-technical Society,2020,35(4):775.[15]㊀袁义生,梅相龙,张伟先等.一种混合调制的五电平LLC谐振变换器[J].电机与控制学报,2020,24(6):107.YUAN Yisheng,MEI Xianglong,ZHANG Weixian.Five-levelLLC resonant converter with mix-modulation method[J].ElectricMachines and Control,2020,24(6):107.[16]㊀MCDONALD B,WANG F.LLC performance enhancements withfrequency and phase shift modulation control[C]//Applied Pow-er Electronics Conference&Exposition,March16-20,2014,TX,USA.2014:2036-2040.[17]㊀HARISCHANDRAPPA N,BHAT A K S.A fixed-frequencyLCL-type series resonant converter with capacitive output filter u-sing a modified gating scheme[J].IEEE Transactions on Indus-try Applications,2014,50(6):4056-4064. [18]㊀LIANG Z,GUO R,WANG G,et al.A new wide input rangehigh efficiency photovoltaic inverter[C]//IEEE Energy Conver-sion Congress and Exposition,September12-16,2010,Atlan-ta,GA,USA.2010:2937-2943.[19]㊀廖政伟,张雪,尤伟,等.应用于超宽输入范围的变拓扑LLC电路[J].浙江大学学报(工学版),2013,47(12):2073.LIAO Zhengwei,ZHANG Xue,YOU Wei,et al.Variable LLC cir-cuit used in ultra-wide input voltage range[J].Journal of Zhe-jiang University(Engineering Science),2013,47(12):2073.[20]㊀谢晶晶,吕征宇.应用于宽输入范围的变模态LLC电路设计[J].电源学报,2016,14(3):20.XIE Jingjing,LÜZhengyu.Variable modal LLC circuit used indesign of wide input voltage range[J].Journal of Power Supply,2016,14(3):20.[21]㊀袁义生,赖立.一种适用于宽范围输出的复合谐振型全桥变换器[J].中国电机工程学报,2020,40(20):6694.YUAN Yisheng,LAI li.A compound resonant full-bridge convert-er suitable for wide range output[J].Proceedings of the CSEE,2020,40(20):6694.[22]㊀HU H,FANG X,CHEN F,et al.A modified high-efficiency LLCconverter with two transformers for wide input-voltage range appli-cations[J].IEEE Transactions on Power Electronics,2013,28(4):1946.(编辑:刘素菊)161第2期袁义生等:一种适合宽范围输出的双向DC-DC变换器。

DC-DC升压(BOOST)电路原理

DC-DC升压(BOOST)电路原理

DC-DC升压(BOOST)电路原理BOOST升压电路中:电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁砀能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成;肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极电压低,此时二极管反偏截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端!!电感升压原理:什么是电感型升压DC/DC转换器?如图1所示为简化的电感型DC-DC转换器电路,闭合开关会引起通过电感的电流增加。

打开开关会促使电流通过二极管流向输出电容。

因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。

电感型升压转换器应用在哪些场合?电感型升压转换器的一个主要应用领域是为白光LED供电,该白光LED能为电池供电系统的液晶显示(LCD)面板提供背光。

在需要提升电压的通用直流-直流电压稳压器中也可使用。

决定电感型升压的DC-DC转换器输出电压的因素是什么?在图2所示的实际电路中,带集成功率MOSFET的IC代替了机械开关,MOSFET的开、关由脉宽调制(PWM)电路控制。

输出电压始终由PWM占空比决定,占空比为50%时,输出电压为输入电压的两倍。

将电压提高一倍会使输入电流大小达到输出电流的两倍,对实际的有损耗电路,输入电流还要稍高。

电感值如何影响电感型升压转换器的性能?因为电感值影响输入和输出纹波电压和电流,所以电感的选择是感性电压转换器设计的关键。

等效串联电阻值低的电感,其功率转换效率最佳。

XL6007 400KHz 60V 2A开关电流升压 升降压型DC-DC转换器说明书

XL6007 400KHz 60V 2A开关电流升压 升降压型DC-DC转换器说明书

400KHz 60V 2A 开关电流升压/升降压型DC-DC转换器XL6007特点⏹ 3.6V到24V宽输入电压范围⏹集成单反馈引脚的正或负输出电压编程⏹电流模式控制提供出色的瞬态响应⏹ 1.25V基准电压输出可调⏹固定400KHz开关频率⏹最大2A开关电流⏹SW脚内置过压保护功能⏹出色的线性与负载调整率⏹EN脚TTL关机功能⏹内置功率MOS⏹效率高达90%⏹内置频率补偿功能⏹内置软启动功能⏹内置热关断功能⏹内置限流功能⏹SOP8封装应用⏹汽车和工业转换器⏹便携式电子设备描述XL6007稳压器是一种宽输入范围、电流模式DC/DC转换器,能够产生正输出电压或负输出电压。

它可以配置为升压、反激、SEPIC 或反相转换器。

XL6007内置N沟道功率MOSFET和固定频率振荡器,电流模式架构可在宽输入电压范围和输出电压范围内稳定运行。

XL6007稳压器是专为便携式电子设备设计的。

图1.XL6007封装400KHz 60V 2A 开关电流升压/升降压型DC-DC 转换器 XL6007引脚配置XL600713524SWEN FB VIN NC678SW GNDGND图2. XL6007引脚配置表1.引脚说明引脚号 引脚名称 描述1 EN 使能引脚,低电平关机,高电平工作,悬空时为高电平。

2 VIN 电源输入引脚,支持DC3.6V~24V 宽范围电压操作,需要在VIN 与GND 之间并联电解电容以消除噪声。

3 FB 反馈引脚,参考电压为1.25V 。

4 NC 无连接。

5,6 SW 功率开关输出引脚,SW 是输出功率的开关节点。

7,8 GND接地引脚。

400KHz 60V 2A 开关电流升压/升降压型DC-DC 转换器 XL6007方框图EA2.5V Regulator 1.25V ReferenceSWGND2.5V 1.25VEA COMPOscillator400KHzDriverFBOVPNDMOSENOCPRS LatchThermal ShutdownSlop CompensationPhase CompensationUVLOSoft StartVIN图3. XL6007方框图典型应用XL6007C IN 47uf /50VD1 1N5822L 33uh/4AVIN27,8135,6GNDVINSWC1105EN ON OFF Boost Converter Input 12V ~ 16VOutput 18.5V / 0.5A VOUT=1.25*(1+R2/R1)R1 1KC OUTR2 13.8KVOUT 18.5VC2105FB图4. XL6007系统参数测量电路(Boost 转换器)400KHz 60V 2A开关电流升压/升降压型DC-DC转换器XL6007订购信息产品型号打印名称封装方式包装类型XL6007E1 XL6007E1 SOP8 2500/4000只每卷XLSEMI无铅产品,产品型号带有“E1”后缀的符合RoHS标准。

dcdc转换器符号

dcdc转换器符号

DC-DC转换器符号1. 简介DC-DC转换器(Direct Current-Direct Current Converter)是一种用于将直流电能转换为不同电压或电流等级的电力转换设备。

它通过控制电流或电压的转换来实现电能的有效转换。

DC-DC转换器在现代电子设备中得到广泛应用,如电子通信、工业自动化、电力系统等领域。

DC-DC转换器符号是用于在电路图中表示DC-DC转换器的图形符号。

它是一种标准化的图形符号,用于表示不同类型的DC-DC转换器,以便工程师和技术人员能够清晰地理解和设计电路。

2. 常见的DC-DC转换器符号下面是几种常见的DC-DC转换器符号:2.1 降压型(Buck)转换器符号降压型转换器是一种将输入电压降低到较低电压的DC-DC转换器。

它的符号如下所示:2.2 升压型(Boost)转换器符号升压型转换器是一种将输入电压提高到较高电压的DC-DC转换器。

它的符号如下所示:2.3 反激型(Flyback)转换器符号反激型转换器是一种将输入电压转换为输出电压的DC-DC转换器,它通常用于电源适配器和充电器等应用。

它的符号如下所示:2.4 反激型(Forward)转换器符号反激型转换器是一种将输入电压转换为输出电压的DC-DC转换器,它通常用于电源适配器和电力转换等应用。

它的符号如下所示:2.5 升降压型(Buck-Boost)转换器符号升降压型转换器是一种能够实现输入电压的升压和降压的DC-DC转换器。

它的符号如下所示:3. DC-DC转换器符号的使用DC-DC转换器符号通常用于电路图中,以表示DC-DC转换器的类型和连接方式。

它们可以帮助工程师和技术人员更好地理解和设计电路。

在电路图中使用DC-DC转换器符号时,应注意以下几点:3.1 标注在使用DC-DC转换器符号时,应在符号旁边标注转换器的具体型号或参数,以便更清晰地表达电路意图。

3.2 连接方式在电路图中使用DC-DC转换器符号时,应清楚表示输入和输出电压的连接方式。

宽输入电压dc-dc变换器设计与实现

宽输入电压dc-dc变换器设计与实现
图 4 LM5122 同步升压
2019 年 12 月
电力讯息 185
图 5 LM5088 异步降压
1.5 模拟方案二
采用 BUCK-BOOST 芯片 LT8705 如图 6 所示袁LT8705 是 一款高性能降压-升压型开关稳压控制器袁其可在输入电压高 于尧低于或等于输出电压的情況下工作袁其输出电压更加稳定遥
1.3 数字方案二
采用改进型的 BUCK-BOOST 拓扑结构如图 3 所示袁也可
图 3 改进型 BUCK-BOOST 拓扑结构
1.4 模拟方案一
第一级采用 LM5122 同步升压芯片如图 4 所示袁 无论输 入电压是多少都将电压升至某一个值渊比如 35 V冤袁第二级采 用 LM5088 异步降压芯片如图 5 所示袁 将第一级输出电压将 至 22 V袁优点是输出电压比较稳定袁但是电路焊接较困难袁难 于调试袁成本较高袁效率也很难保证遥
3 电流调节
LT8705 内部提供了两个恒定电流调节环路袁一个用于输 入电流袁另一个则是用于输出电流遥CSPIN 和 CSNIN 检测输入 电容附近的检测电阻电压来监视输入电流遥 使一个与检测电 压渊VCSPIN-VCSNIN冤成线性比例的电流流出 IMON_IN 引脚并进入 一个外部电阻袁产生的电压 VIMON_IN 与输入电流成线性比例遥 同
184 电力讯息
2019 年 12 月
宽输入电压 DC-DC 变换器设计与实现
熊跃军,刘蒙瑞,祝博文(长沙学院电子信息与电气工程学院,湖南 长沙 410022)
【摘 要】针对宽输入小功率电源的应用,本文介绍了一款具有宽输入和稳定输出的直流变换电源电路,该电路以 LT8705 为主来设计,该芯片
是一款能降压-升压型开关稳压控制芯片,可在输入电压高于、低于或等于输出电压的情况下稳定工作。本文在对 LT8705 芯片分析的基础上,

Richtek RT4809 DC-DC Boost Converter 说明书

Richtek RT4809 DC-DC Boost Converter 说明书

RT4809Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.DS4809-00 December 20211DC-DC Boost Converter for PWM ControllerGeneral DescriptionThe RT4809 is a DC-DC boost converter which is designed to provide the power of PWM controller. The RT4809 incorporates voltage mode, fixed-frequency, pulse width modulation (PWM) circuitry with a built in N-MOSFET to achieve high efficiency and fast transient response. The RT4809 input operating range is from 2.5V to 36V. The RT4809 is an optimized design for wide output voltage range applications.Ordering InformationG : Green(Halogen Free and Pb Free)Note :Richtek products are :④RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.④Suitable for use in SnPb or Pb-free soldering processes.Features●Boost Converter to Supply PVO Voltage 11V ●Cycle by Cycle Current Limit Protection ● 2.5V to 36V Input Supply Voltage ●Fixed 1.3MHz Switching Frequency ●RoHS Compliant and Halogen Free ●Input Supply Under-Voltage ProtectionApplications●USB PD and Programmable Power AdaptersPin Configuration(TOP VIEW)42356SOT-23-6Marking Information6X= : Product Code DNN : Date Code6X=DNNSimplified Application Circuit++RT4809Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation. DS4809-00 December 20212Pin No. Pin Name Pin Function1 GND Ground of the controller. 2, 5 NC No internal connection. 3 PVO Boost converter output. 4 PHASE Boost converter switching node. 6PVINPower input voltage.Functional Block DiagramOscillator Control and Driver LogicFeedforward ControlError AmplifierV REF_CVSawtooth RampClockOCPPVO+-+-GNDOperationThe RT4809 is a DC-DC converter that provides a regulated and high precision supply voltage. It incorporates voltage mode, fixed-frequency, pulse- width modulation (PWM) circuitry with a built-in N-Channel power MOSFET to achieve high efficiency and fast transient response.RT4809Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.DS4809-00 December 20213Absolute Maximum Ratings (Note 1)• Supply Input Voltage, PVIN, PHASE, PVO to GND ------------------------------------------------------------- -0.3V to 40V • Power Dissipation, P D @ T A = 25︒CSOT-23-6 ------------------------------------------------------------------------------------------------------------------ 0.38W• Package Thermal Resistance (Note 2)SOT-23-6, θJA ------------------------------------------------------------------------------------------------------------ 260.7︒C/W SOT-23-6, θJC ------------------------------------------------------------------------------------------------------------ 135︒C/W• Junction Temperature -------------------------------------------------------------------------------------------------- 150︒C • Lead Temperature (Soldering, 10sec.) ----------------------------------------------------------------------------- 260︒C• Storage Temperature Range ----------------------------------------------------------------------------------------- -65︒C to 150︒C • ESD Susceptibility (Note 3)HBM (Human Body Model) ------------------------------------------------------------------------------------------- 2kVRecommended Operating Conditions (Note 4)• Supply Input Voltage, PVIN ------------------------------------------------------------------------------------------- 3V to 36V • Junction Temperature Range ----------------------------------------------------------------------------------------- -40︒C to 125︒C • Ambient Temperature Range ----------------------------------------------------------------------------------------- -40︒C to 85︒CElectrical Characteristics(P = 3.7V, T = 25°C, unless otherwise specified)ParameterSymbol Test ConditionsMin Typ Max UnitPower SupplyTurn-On Threshold VoltageV TH_ON Initial V PVO = 5V; V PVO > V INI_PVO 2.5 2.7 3 V Initial V PVO = 0V; V PVO < V INI_PVO 2.5 3.4 4.6 Initial PVO for Threshold ON V INI_PVO 2.2 3.25 4.3 V Turn-Off Threshold Voltage V TH_OFF 2.1 2.32.5V Green Mode EnableThreshold Voltage of Boost V ON_BOOST13.2 13.7 14.2 VOperating Supply Current I IN-OP V PVIN = 5V, V PVO = 15V 160 220 280 μAI IN-OP1 V PVIN = 5V, V PVO = 9V 340 480 620 I IN-OP2V PVIN = 2.5V, V PVO = 9V 370 540 680 Boost Converter Section Switching Frequency fs _BOOST Exit cycle skip mode 1 1.3 1.6 MHz PVO Regulation Voltage Vo _BOOST I PVO = 0A10.45 11 11.55 V Maximum Sourcing Current of Boost Converter I MAX_BOOST V PVIN = 2.5V, L1 = 4.7μH 10 -- -- mA Maximum Duty of Boost ConverterD MAX_BOOST 85 90 95 % N-MOSFET On-Resistance R DS_ON (Note 5)-- 5 -- Ω Schottky DiodeV F_DIODE I DIODE_PEAK = 90mA1.651.92.15VRT4809Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation. DS4809-00 December 20214ParameterSymbolTest ConditionsMin TypMax Unit Cycly by Cycle Current Limitof Low-Side MOS V CL_BOOSTR DS_ON x I CL_BOOST = 2.5 x (V CL_BOOST - V PVIN x gm CL ) (Note 5)-- 1000-- mV Low-Side MOSFET Peak Current at Current Limit I CL_BOOST V PVIN = 8V, R DS_ON = 5Ω (Note 5) 130 200 270 mA Gain of Current Limit Compensationgm CL (Note 5) 546072mV/V Reference Voltage for CV RegulatorsV REF_CV (Note 5) 1.045 1.1 1.155 V Entry Threshold Voltage of Pulse Skip Mode V PSM_ET(Note 5)1.365 1.45 1.535VNote1. Stresses beyond those listed under ”Absolute Maximum Ratings” may cause permanent damage to the device. Theseare stress ratings only, and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Note 2. θJA is measured under natural convection (still air) at T A = 25°C with the component mounted on a loweffective-thermal-conductivity single-layer test board on a JEDEC 51-3 thermal measurement standard. θJC is measured at the exposed pad of the package. Note 3. Devices are ESD sensitive. Handling precaution is recommended. Note 4. The device is not guaranteed to function outside its operating conditions. Note 5. Guaranteed by design.RT4809Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.DS4809-00 December 20215Typical Application CircuitLN NC GATECS GNDPLS RT7790GEQ VDD +V2A G N DV_TR CS+CS-D-D+CC1V5AGND VDD VDD R T 1R T 2V C O N NS Y N CS G N DB L DP G N DV GV 9V C PV C NNC RT7208EN-MOSFET+VBUSGNDCC_GNDCC2VBUSUSBPHV DMAG CC1D-D+CC2PVIN PHASEGND PVONCRT4809NC C1L1C21364Table 1. Typical BOM ListReferencePart Number Description Package ManufacturerC1 GRM21BR61H475KE51L 4.7μF to 47μF/50V 0805/E-CAPMurata C2 GRM219R61H225KE15D 2.2μF to 4.7μF/50V0805 Murata L1DFE252012C-4R7N4.7μH1.2mmTOKORT4809Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.DS4809-00 December 20216Typical Operating CharacteristicsV TH_ON vs. Temperature2.602.642.682.722.762.80-50-25255075100125Temperature (°C)V T H _O N (V )V TH_OFF vs. Temperature2.152.202.252.302.352.40-50-25255075100125Temperature (°C)V T H _O F F (V )V INI_PVO vs. Temperature234567-50-25255075100125Temperature (°C)V I N I _P V O (V )V ON_BOOST vs. Temperature13.213.413.613.814.014.2-50-25255075100125Temperature (°C)V O N _B O O S T (V )I INI-OP vs. Temperature180200220240260280-50-25255075100125Temperature (°C)I I N I -O P (μA )f S_BOOST vs. Temperature1.201.251.301.351.401.45-50-25255075100125Temperature (°C)f S _B O O S T (V )RT4809Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.DS4809-00 December 20217V O_BOOST vs. Temperature10.510.710.911.111.311.5-50-25255075100125Temperature (°C)V O _B O O S T (V )D MAX_BOOST vs. Temperature858789919395-50-25255075100125Temperature (°C)D M A X _B O O S T (%)V F_DIODE vs. Temperature1.501.651.801.952.102.252.40-50-25255075100125Temperature (°C)V F _D I O D E (V )RT4809Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation. DS4809-00 December 20218Application InformationThe RT4809 is a DC-DC converter that provides a regulated supply voltage for USB PD driver IC. The RT4809 incorporates voltage mode, fixed frequency, Pulse Width Modulation (PWM) circuitry with a built-in N-MOSFET to achieve high efficiency and fast transient response. The following content contains detailed description and information for component selection.Over-Current Protection (OCP)The RT4809 includes a current sensing circuitry which monitors the inductor current during each ON period. If the current value becomes greater than the current limit, the switch that pertains to inductor charging will turn off, forcing the inductor to leave charging stage and enter discharge stage.Under-Voltage Lockout (UVLO)To prevent abnormal operation of the IC in low voltage condition, an under-voltage lockout is included, which shuts down the device at voltages lower than 2.3V. All functions will be turned off in this state. Capacitor SelectionLow ESR ceramic capacitors are recommended for input and output capacitor applications. Low ESR will effectively reduce the input voltage ripple caused by switching operation. A 4.7μF capacitor is sufficient for most applications. Nevertheless, this value can be decreased for lower output current requirement. Another consideration is the voltage rating of the input capacitor which must be greater than the maximum input voltage.For the RT4809, 4.7μF to 47μF input ceramic capacitor and 2.2μF to 4.7μF output ceramic capacitor are recommended for most applications. For better voltage filtering, ceramic capacitors with low ESR are recommended. X5R and X7R types are suitable because of their wider voltage and temperature ranges. Boost Inductor SelectionThe RT4809 is the AUX power for USBPD which operates in the DCM. The design of boost inductor is as below :The recommended inductor value for boost applications is from 3.3μH to 10μH. Small size and better efficiency are the major concerns for devices. The inductor should have low core loss at 1.3MHz and low DCR for better efficiency. The inductor’s saturation current should be greater than the input peak current. Thermal ConsiderationsThe junction temperature should never exceed the absolute maximum junction temperature T J(MAX), listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula :P D(MAX) = (T J(MAX) - T A ) / θJAwhere T J(MAX) is the maximum junction temperature; T A is the ambient temperature; and θJA is the junction-to-ambient thermal resistance.For a continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to- ambient thermal resistance, θJA , is highly package dependent. For a SOT-23-6 package, the thermal resistance, θJA , is 260.7°C/W on a standard JEDEC 51-3 low effective-thermal-conductivity single-layer test board. The maximum power dissipation at T A = 25°C can be calculated below :P D(MAX) = (125°C - 25°C) / (260.7°C/W) = 0.38W for a SOT-23-6 package.The maximum power dissipation depends on the operating ambient temperature for the fixed T J(MAX) and the thermal resistance, θJA . The derating curves in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.RT4809Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.DS4809-00 December 20219Figure 1. Derating Curve of Maximum PowerDissipationLayout ConsiderationsFor the best performance of the RT4809, the following PCB layout guidelines must be strictly followed.④ Placethe input and output capacitors as close aspossible to the input and output pins respectively for good filtering.④ Keep the main power traces as wide and short aspossible④ The switching node area connected to PHASE andinductor should be minimized for lower EMI.GND NC PVOPVIN PHASE4236NC 5C INC OUTL1V INOutput capacitors must be placed as close as possible to the output pins.PHASE should be connected to Inductor by wide and short trace, keep sensitive compontents away from this trace.Input capacitors must be placed as close as possible to the input pins.Figure 2. PCB Layout Guide0.00.10.20.30.40.5255075100125Ambient Temperature (°C)M a x i m u m P o w e r D i s s i p a t i o n (W )Single-Layer PCBRT4809Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation. DS4809-00 December 202110Outline DimensionSymbol Dimensions In MillimetersDimensions In Inches Min Max Min Max A 0.889 1.295 0.031 0.051 A1 0.000 0.152 0.000 0.006 B 1.397 1.803 0.055 0.071 b 0.250 0.560 0.010 0.022 C 2.591 2.997 0.102 0.118 D 2.692 3.099 0.106 0.122 e 0.838 1.041 0.033 0.041 H 0.080 0.254 0.003 0.010 L0.3000.6100.0120.024SOT-23-6 Surface Mount PackageRT4809Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.DS4809-00 December 202111Footprint InformationPackageNumber ofPin Footprint Dimension (mm) Tolerance P1 A B C D MTSOT-26/TSOT-26(FC)/SOT-2660.953.601.601.000.702.60±0.10Richtek Technology Corporation14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.。

宽输入电压范围下隔离型全桥Boost变换器的高效率控制

宽输入电压范围下隔离型全桥Boost变换器的高效率控制

宽输入电压范围下隔离型全桥Boost变换器的高效率控制姚川;阮新波;王学华【摘要】A family of isolated Buck-Boost converters is proposed to be suitable for the application,where the input voltage range is wide and galvanic isolation is required in this paper.Full-Bridge(FB)-Boost converter is analyzed as one of the typical topologies.Considering the duty cycle loss,an improved two-edge modulation strategy based on phase-shift control is proposed to minimize the inductor current ripple over the input voltage range.In order to achieve the reliability and efficiency of this converter,a 3-mode dual-frequency control scheme is proposed.Under the 3-mode dual-frequency control scheme,the input voltage is divided into three regions,i.e.the low,medium and high voltage rang,and corresponding operating modes are Boost,FB-Boost and FB modes respectively.As the inductor current ripple in FB-Boost mode is much smaller,the switching frequency of the boost cell in this mode can be lowered to reduce the switching loss and further improve the efficiency.To verify the effectiveness of the design and control,a 250~500V input,360V output and 6kW rated power prototype is fabricated.High efficiency can be achieved all over the input voltage range,and the highest efficiency is 97.2%.%本文提出了一族隔离型的Buck-Boost变换器以适应宽输入电压范围并要求隔离的应用场合,以全桥(Full-Bridge,FB)Boost变换器作为其典型电路之一在文中展开分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Current-Mode Synthetic Control (CSC) Technique for High Efficiency DC-DC Boost Converters Over a Wide Load Range Yi-Ping Su1, Yi-Chun Chen1, Han-Hsiang Huang1, Yu-Huei Lee1, Yao-Yi Yang1, Ke-Horng Chen1,Ming-Jhe Du2, Shih-Hsien Cheng21Institute of Electrical Control Engineering, National Chiao Tung University, Hsinchu, Taiwan2Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, TaiwanAbstract—The proposed current-mode synthetic control (CSC) technique in the design of boost converters can improve the transient response time and maintain high conversion efficiency over a wide load range. The CSC technique has high accuracy similar to the current-mode control and doesn’t need the slope compensation for simplicity. Besides, the transient response is also improved due to the current-mode hysteresis control.The load-dependent switching frequency at light loads results in high power conversion efficiency. Experimental results show that the output voltage ripple can be kept smaller than 50mV over a wide load current range from 0mA to 400mA with power conversion efficiency higher than 90% at load current of 10mA.I.I NTRODUCTIONPortable electronics products such as cellular phones, laptops and diverse multimedia equipments use battery as the main power source. To extend battery life, portable devices stay in sleep mode with a very low static current but require a fast wake-up to reach the normal mode with a much higher operational current. Therefore, the suitable converter for the portable devices needs fast transient response from the standby mode to the normal mode, meanwhile, high efficiency is guaranteed over a wide range. Basically, the hysteresis control, which can be current mode or voltage mode, can meet the transient requirement since hysteresis control is self-stabilized and doesn’t need any compensator if the equivalent series resistance (ESR) of output capacitor is large enough.Current-mode and voltage-mode hysteresis controls have the advantages of simple structure and fast transient response. However, both controls have the accuracy problem owing to the lack of error amplifier. Generally speaking, the current-mode control with fast line transient response has low noise immunity due to noisy inductor current sensing and worse load regulation due to the lack of voltage loop compared to the voltage-mode control. Recently, the synthetic-ripple modulator (SRM) is proposed to improve the noise immunity through the synthetic current ripple, which is a nearly noise-free ripple signal. The accuracy also can be enhanced by the error amplifier. But it causes the system contains two poles and needs a complex compensation network.Therefore, this paper presents a current-mode synthetic control (CSC) technique to include the current information to simplify the compensation network. It can decide the charging time of the inductor current. Besides, the CSC technique contains the synthetic clock generator (SCG) to decide the switching frequency for improving noise immunity. It can maintain a constant switching frequency for the normal operation of the portable devices. On the other hand, in the standby mode, it can prolong the switching period to reduce the switching power loss. High driving capability and high accuracy can be ensured in the proposed CSC technique. As a result, the performance is similar to the operation in current-mode pulse width modulation (PWM). At light loads, the decreasing switching frequency can effectively improve the efficiency. However, in the current-mode PWM control, the operation enters the discontinuous conduction mode (DCM) with a constant switching frequency. The switching power loss is still large. The prior arts provide multiple operation modes to achieve high efficiency over a wide load range [3]. Specially, some literatures use the pulse frequency modulation (PFM) to reduce the switching frequency. But the optimum transition between PWM and PFM is hard to decide since it varies with the process, input voltage, and temperature.The CSC technique can smoothly change the load-dependent switching frequency at light loads to the nearly constant switching frequency at heavy loads without any complex circuit implementation. Different to the multiple operation modes, the transition point between the nearly constant switching frequency and the adjusted switching frequency is simply decided by the occurrence of zero inductor current. Thus, as depicted in Fig. 1, the switching power loss can be reduced and thus the power conversion efficiency can be greatly improved to maintain high efficiency over a wide load range.____%switchng lossswitchng lossswitchng loss conduction lossPPP P⎧=⎪+⎪(a)(b)Fig. 1. The CSC technique can (a) reduce the switching power loss and thus (b) improve the power conversion efficiency.In this paper, the proposed CSC structure is introduced in Section II. The system stability analysis is illustrated in Section III to show the simplified compensation network. Circuit implementation is described in Section IV. Experimental results are shown in Section V. Finally, a conclusion is made in Section VI.II.T HE CSC O PERATIONFig. 2 shows the proposed current-mode hysteresis DC-DC boost converter with the CSC technique. The synthetic signal V clk is used to decide the time to store energy in the inductor. The adjustment of the synthetic clock signal can improve the power conversion efficiency according to the load current condition. On the other hand, the energy stored in the inductor begins to release to the output load when the current sensing signal V sense is larger than the hysteresis upper bound, V H . As a result, the sensing input current information can control the converter to behave as a constant current source. The dynamics of the inductor is pushed to high frequencies. The system order becomes one to reduce the complexity of compensator. Therefore, the proposed CSC technique can use the proportional-integral (PI) compensation method.Fig. 2. Architecture of the proposed circuit.A. The proposed current-mode synthetic waveformDuring the discharging of the inductor current, the inductor current slope is shown in (1). V in and V out can synthesize (1) to decide the synthetic signal, V clk , in the CCM operation./in out V V L −(1)The current-mode hysteresis window is composed of t heupper and lower bounds V H and V L , respectively. Here, V L is equal to V comp , the output of the error amplifier, in order to improve the load regulation since worse load regulation in conventional current-mode hysteresis control comes from its lack of voltage regulation loop. Thus, the definition of ‘V L = V comp ’ can improve load regulation. The hysteresis window of the proposed current-mode control is designed as V w , which is a constant value to guarantee a suitable output voltage ripple. The relationship between V H and V L can be expressed as (2). H L w comp w V V V V V =+=+(2)B.Modulation method at different loadsAt heavy loads, the system operates in the continuous conduction mode (CCM). Thus, the system switching frequency depends on the hysteresis window V w . The advantage is the switching frequency is a constant value in the CCM for high driving capability. On the other hand, the system operates in the discontinuous conduction mode (DCM) at light loads. In the DCM operation, the synthetic current-mode waveform V ramp , is kept constant once the inductor current becomes zero detected by the zero current detector (ZCD) in Fig. 2. Owing to the constant V ramp , the off-time period is extended if the signal Z C is equal to one. Simultaneously, the output capacitor can’t gain energy and the V comp increases to be higher than V ramp , again. The switching frequency is reduced in the DCM to save much switching power loss at light loads. In other words, the switching frequency dependent on load current causes the switching power loss is proportional to the switching frequency. The variable switching frequency in the DCM operation can reduce the switching loss and thus improve the efficiency at light loads.III. S YSTEM S TABILITY A NALYSISThe small-signal model of the boost converter with the CSC technique is illustrated in Fig. 3. R is the output resistance. R i is the current sensing gain. R C is the ESR of the output capacitor, C . In conventional hysteresis boost converter without the current-loop, the dash line in Fig. 3, the control-to-output transfer function is expressed as (3) with the small-signal parameters expressed in Table I.2.1(1)()1()()()()()out m C vc C C V L F s sR C D D R G L L LC Ls R C s R C R D D R D D R ⎛⎞−+⎜⎟⎝⎠=⎡⎤⎛⎞++−++⎜⎟⎢⎥⎣⎦⎝⎠(3)Equation (3) contains the LC double poles and thus needs thecomplicated proportional–integral–derivative (PID) compensation. After the implementation of the CSC technique, the control-to-output transfer function can be simplified as (4).()()01111z RHP z ESR vc vc p s s G G s ⎛⎞⎛⎞−+⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠=⎛⎞+⎜⎟⎜⎟⎝⎠(4)It is obvious to find that the system contains one dominant pole, ωp1, and two zeros, which include one RHP zero, ωz(RHP), and one LHP zero, ωz(ESR). The frequency response of the boost converter with the CSC technique is similar to that of the current-mode PWM technique that can be compensated by the on-chip PI compensation [4]. Besides, the advantage of the proposed CSC technique is the remove of the slope compensation needed in the conventional current-mode PWM control. The proposed CSC technique simplifies the complex compensation and thus is more suitable for portable devices.TABLE I: SMALL SIGNAL PARAMETER .vF)Fig. 3. The small-signal model of the proposed boost converter.IV.C IRCUIT I MPLEMENTATIONThe CSC technique in Fig. 2 contains two parts. The first partis the insertion of current information, which is implemented bythe comparison of the low-side NMOSFET current sensingsignal V sense and the upper bound signal V H. The second part asdepicted in Fig. 4 is the SCG circuit to ensure the switchingfrequency nearly constant if the converter operates in the CCMoperation. On the other hand, the SCG circuit can adjust theswitching frequency to reduce the switching power loss at lightloads if the converter operates in the DCM operation. In brief,constant switching frequency ensures low electromagneticinterference (EMI) and high driving capability at heavy loadswhile the decreasing switching frequency improves efficiencyat light loads.In the beginning of the switching period, a current I cintroduced by the transistor M7 flows into the capacitor C ramp torapidly ramp up the V ramp to be higher than V H. Here, I c is muchhigher than I d. Then, the output of the SR-latch is triggeredfrom high to low to turn off the switch M5. The dischargingperiod of the inductor current is emulated by the dischargingcurrent I d to generate the synthetic clock. The in-out subtractorgenerates a current signal I d, which is proportional to thevoltage difference of the input and output voltages. Thus, thedischarging current, I d is expressed as (5).222fb inFF out ind ERRORgm gmV V V VI IR Rβ−−===(5)212where =andFinFF inF FRV VR Rββ=+(6)The V ramp begins to ramp off and compares with the lowerbound V L to decide the next switching period. The slope of thedischarging period is proportional the negative inductor currentslope. Once the V ramp is lower than the V L, the switch M5 turnson to rampupthe V ramp, again. The V ramp is limited by thehysteresis window defined by V H and V L. In conclusion, theSCG circuit decides the switching frequency. In the CCM, theinductor current will not be smaller than zero. Thus, theswitching frequency is basically decided by the hysteresiswindow. If the value of the input and output voltages is notchanged, the switching frequency is constant.On the other hand, in the DCM, the Z C is set to high when theZCD circuit senses the zero inductor current. The transistor M1will direct the discharging current I d to ground and the V ramp isclamped at a constant value. As a result, the switchingfrequency is decreased to reduce the switching power loss.Consequently, the switching frequency of the boost converter isdependent on the load current.Fig.4.The proposed SCG circuit in the CSC technique.V.E XPERIEMNTAL R ESULTSThe test chip was fabricated in TSMC 0.25µm CMOSprocess. The chip micrograph is shown in Fig. 5 with thespecification listed in Table II.Fig. 5. Chip micrograph.TABLE II: D ESIGN S PECIFICATIONSPARAMETE V ALUE UNITSupply variation (V in) 2.7-4.5VOutput voltage (Vout) 4.5V Undershoot voltage recovery time@ I OUT changes from 252mA to 452mA 60 μsOvershoot voltage recovery time@ I OUT changes from 452mA to 252mA 68 μsMaximum load current 500mA mAInductor (L ) 1 μHOutput capacitor (C ) 6.8 μFThe relationship between load current, switching frequency and output ripple is listed in Table III. It demonstrates that the switching frequency with different load is almost the same in the CCM. On the other hand, the switching frequency reduces with the decrease of load current in the DCM.TABLE III: L OAD C URRENT V.S S WITCHING F REQUENCY VERSUS O UTPUT R IPPLELoad Current (mA) Switching Frequency (kHz) Output Ripple(mV)20 147 35 40 303 36 60 448 36.8 80 613 37.8 100 826 37200 1760 29.6300 1750 40400 1730 50The waveforms of the output voltage and the inductor currentduring load transient response are shown in Fig. 6. The settling times are about 60µs and 68µs and the change in load current from 252mA to 452mA and vice versa, respectively, if V in = 2.7V. Fig. 7 shows the efficiency of proposed structure. The switching frequency of the boost converter can be effectively reduced at light load. As a result, the efficiency can be kept larger than 90% at load current of 10mA. It demonstrates that the efficiency can be kept high due to the implementation the technique.VI. C ONCLUSIONSThe proposed CSC technique in boost converters can speed up transient response due to the current-mode hysteresis control and improve efficiency over a wide load range. The CSC technique behaves high accuracy similar to the current-mode control without the need of slope compensation for simplicity. The load-dependent switching frequency at light loads results in high power conversion efficiency. Experimental results show that the output voltage ripple can be kept smaller than 50mV over a wide load current range from 0mA to 400mA with power conversion efficiency higher than 90% at load current of 10mA.(a)(b) Fig. 6. (a) Transient response when load current changes from 252mA to 452mA and (b) from 452mA to 252mA. Fig. 7. Efficiency of the proposed converter over a wide load current range.R EFERENCES[1]K.D.T. Ngo, S. K. Mishra, and M. Walters, “Synthetic ripple modulator for synchronous buck converter,” IEEE PE Letter , vol. 3, pp.148-151, Dec. 2005.[2]Ke-Horng Chen, Chia-Jung Chang, and Ter-Hsing Liu, “Bidirectional Current-Mode Capacitor Multipliers for On-Chip Compensation,” in IEEE Transaction on Power Electronics , pp. 180-188, Jan. 2008.[3] Robert W. Erickson and Dragan Maksimovic, Fundamentals of Power Electronics , 2nd ed., Norwell, MA: Kluwer Academic Publishers, 2001. [4] B. Razavi, Design of Analog CMOS Integrated Circuits . Boston, MA :McGraw-Hill, 2001.[5]Hong-Wei Huang, Wei-Lun Hsieh, and Ke-Horng Chen, “Programmable voltage-to-current converter with linear voltage control resistor,” IEEE International Symposium on Circuits and Systems,2008.。

相关文档
最新文档