大连理工大学大学物理作业10(稳恒磁场四)与答案详解
大学物理恒定磁场知识点及试题带答案
恒定磁场一、基本要求1、了解电流密度的概念。
2、掌握磁感应强度的概念及毕奥—萨伐尔定律,能利用叠加原理结合对称性分析,计算一些简单问题中的磁感应强度。
3、理解稳恒磁场的两个基本规律:磁高斯定理和安培环路定理。
掌握应用安培环路定理计算磁感应强度的条件和方法,并能熟练应用。
4、掌握洛伦兹力公式,能分析运动电荷在磁场中的受力和运动。
掌握安培力公式,理解磁矩的概念,能计算简单几何形状的载流导线和载流平面线圈在均匀磁场中或在无限长直载流导线产生的非均匀磁场中所受的力和力矩。
二、主要内容 1、稳恒电流电流:电荷的定向运动。
电流强度:单位时间通过导体某一横截面的电量,即dtdq I =。
电流密度)(δ:通过与该点的电荷移动方向相垂直的单位面积的电流强度,方向与该点的正电荷移动方向一致。
电流密度是描述电流分布细节的物理量,单位是2/m A 。
电流强度⎰⋅=SS d Iδ。
2、磁场在运动的电荷(电流)周围,除了形成电场外,还形成磁场。
磁场的基本性质之一是它对置于其中的运动电荷或电流有作用力。
和电场一样,磁场也是一种物质。
3、磁感应强度磁感应强度B是描述磁场性质的物理量。
当电荷在磁场中沿不同方向运动时,磁场对它的作用力不同,沿某方向运动时不受力,与该方向垂直运动时受力最大,定义B 的方向与该方向平行,由v q F⨯max 决定。
B 的大小定义为qvF B max=。
如右图所示。
B 的单位为T (特斯拉)。
4、毕奥—萨伐尔定律电流元:电流元l Id是矢量,其大小等于电流I 与导线元长度dl 的乘机,方向沿电流方向。
毕奥—萨伐尔定律:电流元l Id 在P 点产生的磁感应强度为 30r rl Id B d⨯=μ式中0μ为真空磁导率,A m T /10470⋅⨯=-πμ,r由电流元所在处到P 点的矢量。
运动电荷的磁场:304rrqv B πμ ⨯= 本章判断磁场方向的方法与高中所学方法相同。
几种特殊形状载流导线的磁场()012 cos cos 4I B aμθθπ=- a I B πμ20= a I B πμ40= )1(cos 40+=θπμa IB0=B5、磁场的高斯定理磁感应线:磁感应线为一些有向曲线,其上各店的切线方向为该点的磁感应强度方向,磁感应线是闭合曲线。
大连理工大学大学物理下作业
大学物理 A2(2014 DUT)
2
作业 26 班级
学号
姓名
提交日期
1.如图 26-1 所示,无限长载流导线电流 I 沿 z 轴流,半径为 r 的半球面扣在 xy 平面上,沿 x 轴以匀速远离, 求: (1) 当半球面在图中位置时, 曲面上点 P 的磁感应强度大小 B; (2) 穿过曲面的磁通量 .
5. 图 28-2 三条曲线分别为顺磁质、抗磁质和铁磁质的 BH 曲 线的示意图,请说明 Oa、Ob、Oc 表示哪种磁介质。
B a b c H O
图 28-1 28-2 图
(ob′) 、 6.某铁磁质的磁滞回线如图 28-3 所示, 请指出图中 ob
oc(oc′)所表示的物理意义。
B b c a
B.通以的电流 I 的值越大,L 越大; D.螺线管的半径越大,L 越大。
简单说明理由:
2.对于单匝线圈取自感系数的定义式为 L I
.设线圈的几何形状、大小及周围磁介质不 ]。
变,且无铁磁性物质。若线圈中的电流强度变小,则线圈的自感系数 L[
A.变大,与电流强度成正比 ; C.变大,与电流强度成反比 ; E.不变 B.变小,与电流强度成正比 ; D.变小,与电流强度成反比。
离长直导线 d=12cm,金属棒沿平行于直导线的方向以速度 v=10ms-1 平移,求棒中的感应 电动势,并指出哪端的电势高?(金属棒与长直导线共面且
b
图 29-3
大学物理 A2(2014 DUT)
9
4.如图 29-4 所示,长直导线中通有电流 I=6A,另有一 10 匝的矩形线圈与长直导线共面, (1)线圈中的感应电动势与 x 宽 a=10cm,长 L=20cm,以 v=2ms-1 的速度向右运动,求: 的函数关系; (2)当 x=10cm 时线圈中的感应电动势。
大连理工大学大学物理下答案详解
9 解 :(1) 霍 尔 电 势 差 是 指a、b之 间 的 电 势 差 , 根 据 左 手 定 则 , 电 子 向a端 运 动 , 于 是a端 聚 集 了 大 量 负 电 荷 , 则b点是高电势点 (2)当金属中电子所受磁场的洛伦兹力与电场力平衡时: evd B = eE = e 所以,漂移速度 vd = (3)由ab两端的霍尔电势差:|V | = n= V 4.27 × 10−6 m/s = 1.0675 × 10−4 m/s = Bl 2 × 2 × 10−2 V l
解:(1)曲面上点p的磁感应强度相当于无限长载流直导线产生的磁场,即: B= µ0 I 2πx
由磁场的高斯定理:磁感应线为闭合曲线时,穿过任何一个闭合曲面的磁通量为零,则 Φ=
sБайду номын сангаас
B · dS = 0
2、一电子以速度v 垂直地进入磁感应强度为B 的均匀磁场中,求:穿过此电子运动的轨迹所围的面积的磁通量。 解:电子在磁场中运动的轨迹半径为 r= 运动轨迹所围的面积为 S = πr2 = π ( 所以,穿过此运动轨迹所围面积的磁通量为 Φ=
解:(1)载流圆线圈中心的磁感应强度为 B= µ0 I 2R
图中闭合线圈,只有两半圆弧对中心O的磁场有贡献, 两半圆弧在O点产生的磁场分别为 B1 = µ0 I 4R1
2 方向:垂直于纸面向外 B2 = 方向:垂直于纸面向里 所以 B = B1 − B2 = 方向:垂直纸面向外 (2)线圈的磁矩: m = Isn = 其中n表示垂直纸面向里。 4、 无 限 长 直 导 线 通 电 流I, 分别 弯 成 图25-3(A) 、 (B) 所 示 的 形 状 。 求 :(1) 图 (A) 中O点 磁 感 应 强 度B1 ; (2)图(B)中O点磁感应强度B2 ; 1 2 2 Iπ (R2 − R1 )n 2 µ0 I µ0 I − 4R1 4R2 µ0 I 4R2
稳恒磁场解答
稳恒磁场<一>一. 选择题:1. 两根平行的、载有相同电流的无限长直导线在空间的磁感应强度21B B B +=112l I B πμ==,1l 表示距导线1的距离. 方向: 在 x < 1 的区域内垂 直纸面向外,在 x > 1 的区域内垂直纸面向内; 222l I B πμ==,2l 表示距导线2的距离. 方向: 在 x <3 的区域内垂 直纸面向外,在 x >3 的区域内垂直纸面向内;故可推断 B =0的地方是在1l =2l =1 或 x =2 的直线上. 故选<A>.2. 正方形以角速度ω绕AC 轴旋转时,在中心O 点产生的磁感应强度大小为正方形以角速度ω绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强 度大小为显见122B B =或221B B =故选<C>. 3. 把无限长通电流的扁平铜片看作由许许多多电流为dI 的无限长载流细长条组成.选扁平铜片右边沿为X 轴零点,方向向左.如图所示dI 在P 点产生的磁感应强度)(20b x dI dB +=πμ,方向垂直纸面向内. 整个通电流的铜片在P 点的磁感应强度的大小为⎰⎰+==a a b x a Idx dB B 000)(2πμba a I =ln 20πμ <B> 4. 若空间两根无限长载流直导线是平行的,如图所示. 则在空间产生的磁场分布具有对称性,可以用安培定理直接求出.也可以用磁感应强度的叠加原理求出.对一般任意情况,安培环路定理是成立的,但环路上的B 值是变化的,不能提到积分号外,故不能给出磁感应强度的具体值.用磁感应强度叠加原理与其与安培环路定理结合的方法,是可以求出磁感应强度值的.故选<D>.5. 由于O 点在长直电流的延长线上,故载流直导线在O 点产生的磁感应强度为0,在圆环上,电流I 1在O 点产生的B 1为:I 1 I 2方向垂直于环面向外.在圆环上,电流I 2在O 点产生的B 2为:方向垂直于环面向里.由于两段弧形导线是并联的,I 1R 1= I 2R 2所以B1=B2 方向相反. O 点的合磁感应强度为0.6. 选择〔B 〕7. 选择〔D 〕二. 填空题:1. A I A 1=,A I 在P 点产生的磁感应强度A B 为 =⨯⨯=1210πμA B πμ20,方向如图. A I B 2=,B I 在P 点产生的磁感应强度B B 为=⨯⨯=2220πμB B πμ20,方向如图. 所以,1:1:=B A B B方向: θθθθαtg B B B tg B B A -=-=cos 1cos sin 333132=-=. 所以α=30°2.解:因为O 点在AC 和EF 的延长线上,故AC 和EF 段对O 点的磁场没有贡献.CD 段 RI R I B CD 82400μππμ=⋅= ED 段 RI R I a I B o o DE πμπμπμ22/242)145cos 45(cos 4000==-= O 点总磁感应强度为3. [解法1]:如图<a>所示.将宽度为d 的载流导体薄片看作由许许多多电流元为dI 的无限长载流导线组成的.dI 在P 点产生的磁感强度大小为式中22a x r +=, 方向如图<b>所示.dB y =dBsin θ, dB x =dBcos θ022==⎰-dd y y dB B ,<对称性> 在导片中线附近处,令a →0[解法2]:因所求磁感应强度点P 在导片中线附近.据对称性分析,可知该点的磁感应强度方向平行于导片.选取图示矩形安培环路,<见图c>5.电流密度的大小: ()22r R I -=πδ本题意可等效为以O 点为中心半径为R 的金属导体上通以电流密度为δ,方向垂直纸面向内.和以O'为中心,半径为r 的金属导体部分通以电流密度为δ,方向为垂直纸面向外.空心部分曲线上O'点的磁感应强度为式中R B 表示半径为R 的圆柱电流对O'的磁感强度, r B 表示半径为r 的圆柱电流对O'的磁感强度. 根据安培环路定理得以O 为圆心,作半径为a 的环流,则有即=R B ()2202r R Ia-πμ所以==R B B '0()2202r R Ia-πμ6.已知C q 19100.8-⨯=, 15100.3-⋅⨯=υs m ,m R 81000.6-⨯=则该电荷沿半径为R 的圆周作匀速运动时,形成的圆形电流该电荷在轨道中心所产生的磁感应强度该带电质点轨道运动的磁矩三. 计算题:1. 根据磁感应强度的叠加原理,O 点的磁感应强度=⨯=1110122R l R I B πμ211022R l I ⨯πμ, 方向垂直纸面向内. =⨯=2220222R l R I B πμ222022R l I ⨯πμ, 方向垂直纸面向外. 所以,O 处的磁感应强度B 的大小为B =B 1-B 2+B 3+B 4方向垂直纸面向内.2. 解:由于带电线段AB 的不同位置绕O 点转动的线速度不同,在AB 上任取一线元dr, 它距O 点的距离为r,如图所示,其上带电量为dq=λdr,当AB 以角速度ω旋转时,dq 形成环形电流,其电流大小为根据圆电流在圆心O 的磁感应强度为则有带电圆电流在圆心O 的磁感应强度为当带电λ为正电荷时,磁感应强度方向垂直于纸面向里.旋转带电线元dr 的磁矩为转动带电线段AB 产生的总磁矩当带电λ为正电荷时,磁矩方向也垂直于纸面向里.3. 根据磁感应强度叠加原理,圆环中心O 的磁感应强度式中1B 表示L 1段导线在O 点所产生的磁感强度. 2B 表示L 2段导线在O 点所产生的磁感强度. 3B 表示圆环在O 点所产生的磁感强度.L 1的沿线穿过O 点,据毕奥─萨伐尔定律,得01=BL 2是无限长直导线,故RI B πμ402=,方向垂直纸面向外. 圆环在a 点被分成两段1I ,2I ,两段在O 点所产生的磁感强度03=B .所以RI B B πμ4020==,方向垂直纸面向外.四. 改错题:S ≠0, B =0 这个推理是错误的.因为磁感应线是无头无尾的闭合曲线,在磁场中任意闭合曲面,进去多少磁感应线必然出来多少磁感应线,所以在磁场中穿过任意闭合曲面的磁通量都为零.但闭合面上的磁感应强度不一定为零.例如,在一磁感强度为B 的均匀磁场中穿过任一圆球面的磁通量都为零,但球面上的磁感强度不为零.五. 问答题:毕奥─萨伐尔定律只适用于电流元Idl,电流元的长度dl 比它到考察点的距离r 小得多,即 r >> dl.因此,无限长直线电流的任一段dl 到考察点的距离都要遵守这一条件.即a 不能趋于零.当a →0时,毕奥─萨伐尔定律已不成立.稳恒磁场<二>一.选择题:1. 在所给线圈状态下,线圈平面法线与外磁场方向的夹角为零.由 知:0=M2. 由图可知,大线圈所产生的磁场方向垂直于纸面向内,根据小线圈中的电流流向可以判断小线圈的磁矩方向也是垂直于纸面向内.磁矩方向与磁场方向的夹角为零.根据磁力矩的定义 知:0=M3. 质点在x =0、y =0处进入磁场时,受到向上的洛仑兹力.质点在x >0、y >0 区域内运动,且作以y 轴为直径的圆周运动.如图所示. 因为Rm Bqv 2υ=,所以轨道半径为Bq m R υ=. 当它以υ-从磁场中出来时,这点坐标是0=x ,4. 质点受洛仑兹力的作用,因为R m Bq 2υ=υ,即mRqB =υ 则,质点动能为5. 由力学动能定理可知,离子经加速后得到初动能离子在磁场中运动,洛伦兹力充当其向心力,可得 m qU 2=υqB m R υ= 而 2x R = 联立 mqU qB m qB m x 22==υ 二.填空题:1. 因为B p M m ⨯=θsin B p m =θsin ISB =所以,最大磁力矩时2πθ=,磁通量0cos ==⋅=ΦθBS S B最小磁力矩时0=θ磁通量BS BS S B ==⋅=Φθcos2. 由角动量公式得电子作圆周运动的速率电子转动的圆电流此圆电流在圆心质子处产生的磁感应强度为3电子产生的电流: e rI ⋅πυ=2,υ是电子速度.因为圆电流平面法线与与磁场垂直,由B p M m ⨯=知,这个圆电流所受磁力矩为:B BIS M ==B er r e r υ=π⋅πυ⋅2122,由库仑定律知,r m re 22024υ=πε,电子的速度为mr e 0224πε=υ 所以m rBe M 0216πε=.4. 电子受到的洛仑兹力: Rm Bq 2υ=υ, 得: 21059.7-⨯=υ=qBm R m.5. 频率为mqB f π2= 三.计算题解: 无限长半圆柱面导体可看作许多平行的无限长直线电流所组成的.对于宽度为 θRd dl =的窄条无限长直导线的电流为由安培环路定理可知dI 在O 点产生的磁场为dB 方向如图所示对所有窄条电流积分得所以轴线上O 点磁感应强度为RI B B x 20πμ-== 轴线上导线单位长度所受的力 l RI Il B F x 220πμ-== 〔取l 为单位1〕 受力的大小为四.证明题:证明: 选b a →为X 轴正方向,则坐标如图所示. 因为B l Id F d ⨯= Yj dy i dx l d +=⊗B 所以⎰⎰==(I F d F B j dy i dx ⨯+) 0 a b X即: 一条任意形状的载流导线所受的安培力等于载流直导线ab 所受的安培力. 五.问答题:1. 答:带电粒子在洛仑兹力的作用下作圆周运动,因为: R m Bq 2υ=υ 所以,圆周运动的轨道半径为由于铝板上方半径大,对应的粒子速度大,考虑到粒子通过铝板有能量损失,所以,带电粒子是由铝板上方穿透铝板向下方运动.由于向心力是洛仑兹力所以q 必为正号,即粒子带正电.2. 答:两个电子绕行一周所需要的时间无有差别.。
大连理工大学大学物理作业10(稳恒磁场四)及答案详解
作业 10 稳恒磁场四1.载流长直螺线管内充满相对磁导率为r μ的均匀抗磁质,则螺线管内中部的磁感应强度B 和磁场强度H 的关系是[ ]。
A. 0B H μ>B. r B H μ=C. 0B H μ=D. 0B H μ< 答案:【D 】解:对于非铁磁质,电磁感应强度与磁场强度成正比关系H B r μμ0=抗磁质:1≤r μ,所以,0B H μ<2.在稳恒磁场中,关于磁场强度H →的下列几种说法中正确的是[ ]。
A. H →仅与传导电流有关。
B.若闭合曲线内没有包围传导电流,则曲线上各点的H →必为零。
C.若闭合曲线上各点H →均为零,则该曲线所包围传导电流的代数和为零。
D.以闭合曲线L 为边界的任意曲面的H →通量相等。
答案:【C 】解:安培环路定理∑⎰=⋅0I l d H L ρρ,是说:磁场强度H ρ的闭合回路的线积分只与传导电流有关,并不是说:磁场强度H ρ本身只与传导电流有关。
A 错。
闭合曲线内没有包围传导电流,只能得到:磁场强度H ρ的闭合回路的线积分为零。
并不能说:磁场强度H ρ本身在曲线上各点必为零。
B 错。
高斯定理0=⋅⎰⎰SS d B ρρ,是说:穿过闭合曲面,场感应强度B ρ的通量为零,或者说,.以闭合曲线L 为边界的任意曲面的B ρ通量相等。
对于磁场强度H ρ,没有这样的高斯定理。
不能说,穿过闭合曲面,场感应强度H ρ的通量为零。
D 错。
安培环路定理∑⎰=⋅0I l d H L ρρ,是说:磁场强度H ρ的闭合回路的线积分等于闭合回路包围的电流的代数和。
C 正确。
3.图11-1种三条曲线分别为顺磁质、抗磁质和铁磁质的B H -曲线,则Oa 表示 ;Ob 表示 ;Oc 表示 。
答案:铁磁质;顺磁质; 抗磁质。
图中Ob (或4.某铁磁质的磁滞回线如图11-2 所示,则'Ob )表示 ;Oc (或'Oc )表示 。
答案:剩磁;矫顽力。
5.螺线环中心周长10l cm =,环上线圈匝数300N =,线圈中通有电流100I mA =。
大物电磁学课后答案4
/
4 8r 2;5
6 B5 0 ;
Idl 7
321 8来自 B7 B8
0Id
l
r7
0Id l r8
/ /
4r7 3 4r83
0
Id
l
k
/ 4R
2;
20Id lk / 8R2
.
4-3 在电子仪器中,常把载有大小相等方向相反电流的导线扭 在一起,这是为什么?
找出 idt 与 Fdt 的关系)
解:(1) F BI L, Fdt BLIdt mV m 2gh 即 BL Idt BLq m 2gh ,
B
×××××× ××××××
L
m 2gh
q
BL
K
(2)m 10克,L 20厘米,h 0.30米,b 0.10特,求得q 1(库仑)
解:
B
0I 2a
(sin
1
sin
2
)
0
I
A
L
0I 2L sin
600
(cos2
cos1
)
1.73
104
(特斯拉)。
4-14 如图所示,一根宽为a的“无限长”平面载流铜板,其厚 度可以忽略,铜板中的电流为I,求铜板中心上方h处的磁感应 强度B,并讨论h>>a,h<<a两种情况,其结果说明了什么?
4-13一半径为R=0.10米的半圆形闭合线圈,载有电流I=10安 培,放在均匀外磁场中,磁场方向与线圈平面平行,磁感应强 度 B=5.0x103高斯。(1)求线圈的磁矩P;(2)求线圈所受磁 力矩的大小和方向;(3)在此力矩作用下线圈转90o(即转到线 圈平面与B垂直),求力矩作功。
稳恒磁场及答案
第七章稳恒电流1、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B的夹角为 ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) r 2B . . (B) 2r 2B . (C) -r 2B sin . (D) -r 2B cos .2、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系[ ]3、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分 LlB d 等于(A) I 0 . (B) I 031. (C) 4/0I . (D) 3/20I .4、如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: (A) 靠近大平板. (B) 顺时针转动. (C) 逆时针转动. (D) 离开大平板向外运动.5、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量 =______________.n B SOB x O R (A) BxO R (B)Bx O R (D) Bx O R (C)BxO R (E)x电流 圆筒II ab c d120°I 1I 2b baI6、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为____,方向________.7、有一根质量为m ,长为l 的直导线,放在磁感强度为 B的均匀磁场中B 的方向在水平面内,导线中电流方向如图所示,当导线所受磁力与重力平衡时,导线中电流I =___________________.8、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为,求与平板共面且距平板一边为b的任意点P 的磁感强度.9、一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.答案:一 选择题1、D2、A3、D4、B5、2ln 20Ia6、a l I 4/d 20 垂直电流元背向半圆弧(即向左)7、)/(lB mgIlI dIBI8、解:利用无限长载流直导线的公式求解. (1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流x i d d(2) 这载流长条在P 点产生的磁感应强度x i B 2d d 0 xx2d 0 方向垂直纸面向里.(3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P 点产生的磁感强度B B dba bxdx x20b b a x ln 20 方向垂直纸面向里.9、解:由安培环路定理: i I l Hd 0< r <R 1区域: 212/2R Ir rH 212R Ir H, 2102R Ir BR 1< r <R 2区域: I rH 2r I H 2, rIB 2R 2< r <R 3区域: )()(22223222R R R r I I rH )1(22223222R R R r r IH )1(2222322200R R R r r IH B r >R 3区域: H = 0,B = 0x d x PO x。
大学物理稳恒磁场习题及答案
衡水学院理工科专业《大学物理B 》稳恒磁场习题解答 【1 】一.填空题(每空1分)1.电流密度矢量的界说式为:dIj n dS ⊥=,单位是:安培每平方米(A/m2). 2.真空中有一载有稳恒电流I 的细线圈,则经由过程包抄该线圈的关闭曲面S 的磁通量=0 .若经由过程S 面上某面元d S 的元磁通为d,而线圈中的电流增长为2I 时,经由过程统一面元的元磁通为d ',则d ∶d '=1:2 .3.一曲折的载流导线在统一平面内,外形如图1(O 点是半径为R1和R2的两个半圆弧的配合圆心,电流自无限远来到无限远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=.4.一磁场的磁感强度为k c j b i a B++= (SI),则经由过程一半径为R,启齿向z 轴正偏向的半球壳概况的磁通量的大小为πR2cWb. 5.如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情形下,等于: 对环路a :d B ⋅⎰=____μ0I__;对环路b :d B ⋅⎰=___0____; 对环路c :d B ⋅⎰=__2μ0I__.6.两个带电粒子,以雷同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,活动轨迹半径之比是_____1∶2_____. 二.单项选择题(每小题2分)( B )1.平均磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S,则经由过程S 面的磁通量的大小为( C )2.有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中间产生的磁感强度的大小之比B1 / B2为(D )3.如图3所示,电流从a 点分两路经由过程对称的圆环形分路,会合于b 点.若ca.bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 偏向垂直环形分路地点平面且指向纸内B. 偏向垂直环形分路地点平面且指向纸外C .偏向在环形分路地点平面内,且指向aD .为零( D )4.在真空中有一根半径为R 的半圆形细导线流过的电流为I,则圆心处的磁感强度为 A.R 140πμ B. R120πμ C .0D .R 140μ ( C )5.如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴扭转时,在中间O 点产生的磁感强度大小为B1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴扭转时,在O 点产生的磁感强度的大小为B2,则B1与B2间的关系为A. B1= B2B. B1= 2B2C .B1=21B2D .B1= B2 /4O IR 1 R 2图1b⊗ ⊙ cI I c a图2c I db a图3A CqqqqO图4(B )6.有一半径为R 的单匝圆线圈,通以电流I,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中间的磁感强度和线圈的磁矩分离是本来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4.(D) 2倍和1/2. 三.断定题(每小题1分,请在括号里打上√或×)( × )1.电源的电动势是将负电荷从电源的负极经由过程电源内部移到电源正极时,非静电力作的功. ( √ )2.磁通量m SB dS φ=⋅⎰的单位为韦伯.( × )3.电流产生的磁场和磁铁产生的磁场性质是有区此外. ( × )4.电动势用正.负来暗示偏向,它是矢量.( √ )5.磁场是一种特别形态的物资,具有能量.动量和电磁质量等物资的根本属性. ( × )6.知足0m SB dS φ=⋅=⎰的面积上的磁感应强度都为零.四.简答题(每小题5分)1.在统一磁感应线上,各点B 的数值是否都相等?为何不把感化于活动电荷的磁力偏向界说为磁感应强度B的偏向?答:在统一磁感应线上,各点B 数值一般不相等.(2分)因为磁场感化于活动电荷的磁力偏向不但与磁感应强度B 的偏向有关,并且与电荷速度偏向有关,即磁力偏向其实不是独一由磁场决议的,所以不把磁力偏向界说为B 的偏向.(3分)2.写出法拉第电磁感应定律的数学表达式,解释该表达式的物理意义. 答:法拉第电磁感应定律的数学表达式r lS BE dl dS t∂⋅=-⋅∂⎰⎰(2分) 物理意义:(1)感生电场是由变更的磁场激发的;(1分)(2)感生电场r E 与Bt∂∂组成左手螺旋关系;(1分)(3)右侧的积分面积S 为左侧积分路径L 包抄的面积.(1分)五.盘算题(每题10分,写出公式.代入数值.盘算成果.)1.如图5所示,AB.CD 为长直导线,BC 为圆心在O 点的一段圆弧形导线,其半径为R.若通以电流I,求O 点的磁感应强度. 解:如图所示,O 点磁场由AB .C B.CD 三部分电流产生.个中AB 产生01=B(1分)CD 产生RIB 1202μ=,(2分)偏向垂直向里(1分)CD 段产生)231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,(2分)偏向⊥向里(1分)∴)6231(203210ππμ+-=++=R I B B B B ,(2分)偏向⊥向里.(1分) 2.如图6所示.半径为R 的平均带电圆盘,面电荷密度为σ.当盘以角速度ω绕个中间轴OO '扭转时,求盘心O 点的B 值.解法一:当带电盘绕O 轴迁移转变时,电荷在活动,因而产生磁场.可将圆盘算作很多齐心圆环的组合,而每一个带电圆环迁移转变时相当图5于一圆电流.以O 为圆心,r 为半径,宽为dr 的圆环,此环上电量rdr ds dq πσσ2⋅==(2分)此环迁移转变时,其等效电流rdr dq dI ωσπω=⋅=2(3分) 此电流在环心O 处产生的磁感应强度大小2200drrdIdB ωσμμ==(2分)其偏向沿轴线,是以全部圆盘在盘心O 处产生的磁感应强度大小是R dr dBB Rωσμωσμ0002121==⎰⎰(3分) 解法二:依据活动电荷的磁场公式304r rv q B ⨯=πμ,(2分)求解,在圆盘上取一半径为r,宽为dr 的圆环,电量rdr dq πσ2=,ωr v =(2分)dr rdr r r dq r dB 22440020σωμπσπωμπωμ=⋅==(3分)偏向垂直于盘面向上,同样RqRdr dB B Rπωμωσμσωμ2220000====⎰⎰(3分) 3.图7所示,在一长直载流导线旁有一长为L 导线ab,其上载电流分离为I1和I2,a 端到直导线距离为d 求当导线ab 与长直导线垂直,求ab 受力.解:取如图8所示坐标系直导线在距其为x 处,产生的磁场xI B πμ210=(2分) 其偏向垂直低面向里,电流之I2dx 受安培力大小为dx xI I Bdx I df πμ22102==(3分) df 偏向垂直向上,且各电流之受力偏向雷同,(2分)故,ab 受力为012012ln22d L LdI I I I d Lf df dx x dμμππ++===⎰⎰(3分) 4.一长直导线通有电流120A I =,旁边放一导线ab,个中通有电流210A I =,且两者共面,如图8所示.求导线ab 所受感化力对O 点的力矩.解:如图9所示,在ab 上取r d ,它受力ab F ⊥d 向上,(2分)大小为rI rI F πμ2d d 102=(2分) F d 对O 点力矩F r M⨯=d (2分)图6I 1I2dL图7Md 偏向垂直纸面向外,大小为r I I F r M d 2d d 210πμ==(2分) ⎰⎰-⨯===ba bar II M M 6210106.3d 2d πμm N ⋅(2分)5.两平行长直导线相距d=40cm,每根导线载有I1=I2=20A 如图10所示.求: ⑴两导线地点平面内与该两导线等距的一点A 处的磁感应强度; ⑵经由过程图中斜线所示面积的磁通量.(r1=r3=10cm,l=25cm)解: (1)图中的A 点的磁场122222O O A I I B d d μμππ=+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()512124010O O OI I I I T d d dμμμπππ-=+=+=⨯(4分) (2)在正方形中距中间x 处,取一窄条ds ldx =,则经由过程ds 的磁通量m d B ldx φ=()1222O O I I ldxx d z μμππ⎛⎫=+ ⎪ ⎪-⎝⎭ 122O l I I dx x d x μπ⎛⎫=+ ⎪-⎝⎭(3分)31122d r O m m r l I I d dx x d x μφφπ-⎛⎫==+ ⎪-⎝⎭⎰⎰311213ln ln 2O l d r d r I I r r μπ⎛⎫--=+ ⎪⎝⎭ ()121ln 2O l d n I I r μπ⎛⎫-=+ ⎪⎝⎭6111ln 2.210O l d r I wb r μπ--==⨯(3分) 6.已知磁感应强度B=2.0Wb ·m -2的平均磁场, 偏向沿X 轴正偏向,如图11所示,试求:(1) 经由过程abcd 面的磁通量; (2) 经由过程图中befc 面的磁通量; (3)经由过程图中aefd 面的磁通量. 解:(1)经由过程abcd 面的磁通量mabcd abcd B S φ= 2.00.40.3=⨯⨯ 0.24wb =(4分)(2)经由过程ebfc 面的磁通量,因为B 线擦过此面 故0mbdfc φ=(3分)(3)经由过程aefd 面的磁通量图110.24 maefd mabcd wbφφ==(3分)。
大学物理(第四版)课后知识题及答案解析磁场
习题题10.1:如图所示,两根长直导线互相平行地放置,导线内电流大小相等,均为I = 10 A,方向相同,如图所示,求图中M、N两点的磁感强度B的大小和方向(图中r0 = 0.020 m)。
题10.2:已知地球北极地磁场磁感强度B的大小为6.0 105 T。
如设想此地磁场是由地球赤道上一圆电流所激发的(如图所示),此电流有多大?流向如何?题10.3:如图所示,载流导线在平面内分布,电流为I,它在点O的磁感强度为多少?题10.4:如图所示,半径为R的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面,设线圈的总匝数为N,通过线圈的电流为I,求球心O处的磁感强度。
题10.5:实验中常用所谓的亥姆霍兹线圈在局部区域内获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R ,通过的电流均为I ,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d 等于线圈的半径R 时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。
(提示:如以两线圈中心为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可看成是均匀磁场的条件为x B d d = 0;0d d 22=xB ) 题10.6:如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量。
题10.7:如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线的夹角为α,求通过该半球面的磁通量。
题10.8:已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热。
电流在导线横截面上均匀分布。
求:(1)导线内、外磁感强度的分布;(2)导线表面的磁感强度。
题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。
试计算以下各处的磁感强度:(1)r <R 1;(2)R 1<r <R 2;(3)R 2<r <R 3;(4)r >R 3。
大学物理(第四版)课后习题集与答案解析磁场
习题题10.1:如图所示,两根长直导线互相平行地放置,导线电流大小相等,均为I = 10 A,方向相同,如图所示,求图中M、N两点的磁感强度B的大小和方向(图中r0 = 0.020 m)。
题10.2:已知地球北极地磁场磁感强度B的大小为6.0⨯10-5 T。
如设想此地磁场是由地球赤道上一圆电流所激发的(如图所示),此电流有多大?流向如何?题10.3:如图所示,载流导线在平面分布,电流为I,它在点O的磁感强度为多少?题10.4:如图所示,半径为R的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面,设线圈的总匝数为N,通过线圈的电流为I,求球心O处的磁感强度。
题10.5:实验中常用所谓的亥姆霍兹线圈在局部区域获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R,通过的电流均为I,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d等于线圈的半径R时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。
(提示:如以两线圈中心为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可看成是均匀磁场的条件为x B d d = 0;0d d 22=xB ) 题10.6:如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量。
题10.7:如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线的夹角为α,求通过该半球面的磁通量。
题10.8:已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热。
电流在导线横截面上均匀分布。
求:(1)导线、外磁感强度的分布;(2)导线表面的磁感强度。
题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。
试计算以下各处的磁感强度:(1)r <R 1;(2)R 1<r <R 2;(3)R 2<r <R 3;(4)r >R 3。
大学物理学-稳恒磁场习题课
⑶电子进入均匀磁场B中,如图所示,当电子位于 A点的时刻,具有与磁场方向成 角的速度v,它绕螺旋 线一周后到达B点,求AB的长度,并画出电子的螺旋轨 道,顺着磁场方向看去,它是顺时针旋进还是逆时针旋 进?如果是正离子(如质子),结果有何不同?
1、均匀磁场的磁感应强度B垂直于半径为r的圆面,今以该圆面
其中 直电流 ab和cd的延长线
o dc
fI
R1 R2
eI
过o
b
电流bc是以o为圆心、以 R2为半径的1/4圆弧
I
电流de也是以o为圆心、
但,是以R1为半径的1/4 圆弧
a
直电流ef与圆弧电流de在
e点相切
求:场点o处的磁感强度 B
解:
场点o处的磁感强度是由五段
特殊形状电流产生的场的叠加,f I
o dc
磁场力的大小相等方向相反; (3)质量为m,电量为q的带电粒子,受洛仑兹力作用,
其动能和动量都不变; (4)洛仑兹力总与速度方向垂直,所以带电粒子运动的
轨迹必定是圆。
习题课 1 一电子束以速度v沿X轴方向射出,在Y轴上 有电场强度为E的电场,为了使电子束不发生偏 转,假设只能提供磁感应强度大小为B=2E/v的
df
2ds
n
2 0
2 0
i dl 单位面积受力
da
df Idl B其余
da dl 0i
B总 0i
2 其余 0i
2
df
0i 2
n
dadl 2
表三 作用力
4.应用
静电场
稳恒磁场
类比总结
电偶极子 pe
fi 0
i M pE
三
磁偶极子 pm
fi 0
稳恒磁场习题答案
稳恒磁场习题答案稳恒磁场习题答案磁场是物理学中一个重要的概念,它在我们日常生活中扮演着重要的角色。
稳恒磁场习题是物理学中常见的练习题,通过解答这些习题,我们可以更好地理解磁场的性质和应用。
下面是一些常见的稳恒磁场习题及其答案,希望对大家的学习有所帮助。
1. 一根长直导线产生的磁场强度与距离的关系是怎样的?答:根据安培定律,长直导线产生的磁场强度与距离成反比关系。
即磁场强度随着距离的增加而减小。
2. 一根长直导线中心点的磁场强度为B,如果将导线弯成一个半径为r的圆环,中心点的磁场强度会发生怎样的变化?答:当将导线弯成一个半径为r的圆环后,中心点的磁场强度会变为零。
这是因为在圆环的中心点,由于对称性的原因,导线上的每一段磁场强度都会相互抵消,最终导致中心点的磁场强度为零。
3. 一个平面线圈中心的磁场强度与电流的关系是怎样的?答:根据比奥-萨伐尔定律,平面线圈中心的磁场强度与电流成正比关系。
即磁场强度随着电流的增加而增加。
4. 一个平面线圈中心的磁场强度与线圈的面积的关系是怎样的?答:一个平面线圈中心的磁场强度与线圈的面积成正比关系。
即磁场强度随着线圈的面积的增加而增加。
5. 一个平面线圈中心的磁场强度与距离的关系是怎样的?答:一个平面线圈中心的磁场强度与距离成反比关系。
即磁场强度随着距离的增加而减小。
6. 一个匀强磁场中,一个带电粒子的运动轨迹是怎样的?答:在一个匀强磁场中,一个带电粒子的运动轨迹是一个半径为r的圆。
这是因为带电粒子在匀强磁场中受到洛伦兹力的作用,该力垂直于带电粒子的速度和磁场方向,导致粒子做圆周运动。
7. 在一个匀强磁场中,一个带电粒子的运动速度对轨道半径的影响是怎样的?答:在一个匀强磁场中,一个带电粒子的运动速度对轨道半径没有影响。
这是因为带电粒子的运动速度只会影响圆周运动的周期,而不会影响圆周运动的半径。
8. 一个匀强磁场中,一个带电粒子的运动轨迹会受到哪些因素的影响?答:一个匀强磁场中,一个带电粒子的运动轨迹受到带电粒子的电荷量、质量、速度以及磁场的强度和方向的影响。
大连理工大学大学物理作业及答案详解1-22
,当 r L 时, ,当 r L 时, E 。
解:当 r L 时,在柱体中垂面附近,带电柱体可 以被看作无限长。 以带电柱体的轴为对称轴,过 P 点作一个高为 l ( l L )的柱面为高斯面,如图 所示。则由对称性,柱面高斯面的上下底面处电场 强度处处与高斯面的法线垂直,电通量为零;柱面 高斯面的侧面上,电场强度近似处处相等,并与高 斯面的法线方向平行。 则穿过高斯面的总电通量为 E d S E d S E d S E dS
大连理工大学大学物理作业及答案详解 作业 1 (静电场一)
1.关于电场强度定义式,下列说法中哪个是正确的?[ A.场强 E 的大小与试探电荷 q0 的大小成反比。 B.对场中某点,试探电荷受力 F 与 q0 的比值不因 q0 而变。 C.试探电荷受力 F 的方向就是场强 E 的方向。 D.若场中某点不放试探电荷 q0 ,则 F 0 ,从而 E 0 。 答案: 【B】 [解]定义。场强的大小只与产生电场的电荷以及场点有关,与试验电荷无关,A 错;如果试验电荷是负电荷,则试验电荷受的库仑力的方向与电场强度方向相 反,C 错;电荷产生的电场强度是一种客观存在的物质,不因试验电荷的有无 而改变,D 错;试验电荷所受的库仑力与试验电荷的比值就是电场强度,与试 验电荷无关,B 正确。 2. 一个质子, 在电场力作用下从 A 点经 C 点运动到 B 点, 其运动轨迹如图所示, 已知质点运动的速率是递增的,下面关于 C 点场强方向的四个图示哪个正确? [ ] ]
答案: 【D】 [解] qE ma ,质子带正电且沿曲线作加速运动,有向心加速度和切线加速度。 存在向心加速度,即有向心力,指向运动曲线弯屈的方向,因此质子受到的库 仑力有指向曲线弯屈方向的分量, 而库仑力与电场强度方向平行 (相同或相反) , 因此 A 和 B 错;质子沿曲线 ACB 运动,而且是加速运动,所以质子受到的库 仑力还有一个沿 ACB 方向的分量(在 C 点是沿右上方) ,而质子带正电荷,库 仑力与电场强度方向相同,所以,C 错,D 正确。
大学物理稳恒磁场
要点二
详细描述
当电流通过导体时,导体中的自由电子在磁场中受到洛伦 兹力的作用,产生电子漂移现象,使导体受到与电流和磁 场方向垂直的作用力。电荷产生洛伦兹力,影响电荷的运动轨迹。
详细描述
当带电粒子在磁场中运动时,受到洛伦兹力的作用,使 粒子的运动轨迹发生偏转,偏转方向与粒子的带电性质 和运动方向有关。
磁场的散度和旋度
总结词
磁场的散度和旋度是描述磁场分布的重要物理量,散 度表示磁场线穿入的净通量,而旋度表示磁场线的环 绕程度。
详细描述
磁场的散度描述了磁场线穿入的净通量,如果一个点 的磁场散度为正,表示该点附近的磁场线有穿入的趋 势,即磁场线从外部指向该点;如果散度为负,则表 示磁场线有穿出的趋势,即磁场线从该点指向外部。 而磁场的旋度则描述了磁场线的环绕程度,它与磁感 应强度的方向和变化率有关。了解磁场的散度和旋度 对于理解磁场的基本性质和解决相关问题非常重要。
磁感应强度和磁通量
磁感应强度
描述磁场强弱的物理量,单位是特斯 拉(T)。
磁通量
表示磁场中穿过某一面积的磁力线数 量,单位是韦伯(Wb)。
磁场中的介质
磁介质
能够影响磁场分布的物质,根据磁化性质可分为顺磁质、抗磁质和铁磁质。
磁化强度
描述介质被磁化程度的物理量,与介质内部微观粒子磁矩有关。
02
CATALOGUE
互感和变压器原理
总结词
互感现象是两个线圈之间磁场耦合的现 象,变压器则是利用互感现象实现电压 变换的电气设备。
VS
详细描述
当两个线圈靠得很近时,一个线圈中的电 流会在另一个线圈中产生感应电动势,这 种现象称为互感现象。变压器是利用互感 现象实现电压变换的电气设备,它由一个 初级线圈和一个次级线圈组成,当初级线 圈中有交流电通过时,次级线圈中会产生 感应电动势,从而实现电压的升高或降低 。
稳恒电流的磁场(习题答案)
稳恒电流的磁场一、判断题3、设想用一电流元作为检测磁场的工具,若沿某一方向,给定的电流元l d I0放在空间任意一点都不受力,则该空间不存在磁场。
×4、对于横截面为正方形的长螺线管,其内部的磁感应强度仍可用nI 0μ表示。
√5、安培环路定理反映了磁场的有旋性。
×6、对于长度为L 的载流导线来说,可以直接用安培定理求得空间各点的B。
×7、当霍耳系数不同的导体中通以相同的电流,并处在相同的磁场中,导体受到的安培力是相同的。
×8、载流导体静止在磁场中于在磁场运动所受到的安培力是相同的。
√9、安培环路定理Il d B C 0μ=∙⎰中的磁感应强度只是由闭合环路内的电流激发的。
×10、在没有电流的空间区域里,如果磁感应线是一些平行直线,则该空间区域里的磁场一定均匀。
√二、选择题1、把一电流元依次放置在无限长的栽流直导线附近的两点A 和B ,如果A 点和B 点到导线的距离相等,电流元所受到的磁力大小(A )一定相等 (B )一定不相等(C )不一定相等 (D )A 、B 、C 都不正确 C2、半径为R 的圆电流在其环绕的圆内产生的磁场分布是: (A )均匀的 (B )中心处比边缘处强 (C )边缘处比中心处强 (D )距中心1/2处最强。
C3、在均匀磁场中放置两个面积相等而且通有相同电流的线圈,一个是三角形,另一个是矩形,则两者所受到的(A )磁力相等,最大磁力矩相等 (B )磁力不相等,最大磁力矩相等 (C )磁力相等,最大磁力矩不相等 (D )磁力不相等,最大磁力矩不相等 A4、一长方形的通电闭合导线回路,电流强度为I ,其四条边分别为ab 、bc 、cd 、da 如图所示,设4321B B B B 及、、分别是以上各边中电流单独产生的磁场的磁感应强度,下列各式中正确的是:LI()()121101111234000C C C A B dl I B B dl C B B dl D B BB B dl Iμμ⋅=⋅=+⋅=+++⋅=⎰⎰⎰⎰()()()()A5、两个载流回路,电流分别为121I I I 设电流和单独产生的磁场为1B,电流2I 单独产生的磁场为2B ,下列各式中正确的是:(A )()21012C B dl I I μ⋅=+⎰(B )1202C B dl I μ⋅=⎰(C )()()112012C B B dlI I μ+⋅=+⎰(D )()()212012C B B dlI I μ+⋅=+⎰ D 6、半径为R 的均匀导体球壳,内部沿球的直线方向有一载流直导线,电线I 从A 流向B 后,再沿球面返回A 点,如图所示下述说法中正确的是:(A )在AB 线上的磁感应强度0=B(B )球外的磁感应强度0=B(C )只是在AB 线上球内的部分感应强度0=B(D )只是在球心上的感应强度0=BA7、如图所示,在载流螺线管的外面环绕闭合路径一周积分ld B L ∙⎰等于(A )0 (B )nI 0μ(C )20nIμ (D )I 0μD8、一电量为q 的点电荷在均匀磁场中运动,下列说法正确的是 (A )只要速度大小相同,所受的洛伦兹力就相同。
稳恒磁场练习题及答案
稳恒磁场练习题及答案一、 选择题1、在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。
问哪个区域中有些点的磁感应强度可能为零 ( D ) (A )仅在象限1 (B )仅在象限2(C )仅在象限1、3 (D )仅在象限2、42、关于洛仑兹力,下列说法错误的是:( D ) (A )带电粒子在磁场中运动,不一定受洛仑兹力 (B )洛仑兹力不做功(C )洛仑兹力只改变粒子运动方向(D )当磁场方向与粒子运动方向一致时,洛仑兹力对粒子作正功 3、一电量为q 的粒子在匀强磁场中运动,下面哪种说法是正确的:( B ) (A )只要速度大小相同,粒子所受的洛仑兹力就相同(B )在速度不变的前提下,若电荷电量q 变为-q ,则粒子受力方向相反,数值不变 (C )粒子进入磁场后,其动量和动能都不改变(D )洛仑兹力与速度方向垂直,所以带电粒子运动的轨迹一定是圆4、由磁场的高斯定理可知 (D )(A )穿入闭合曲面的磁感应线条数必然多于穿出的磁感应线条数; (B )穿入闭合曲面的磁感应线条数必然少于穿出的磁感应线条数; (C )一根磁感应线可以始于闭合曲面外,终止在闭合曲面内; (D )一根磁感应线可以完全处于闭合曲面内。
5、对于某一回路L ,安培环路积分等于零,则可以断定(D )(A) 回路L 内一定有电流。
(B) 回路L 内可能有电流,且代数和不为零。
(C) 回路L 内一定无电流。
(D) 回路L 内可能有电流,但代数和为零。
6、电流I 1穿过一回路L ,而电流I 2则在回路的外面,于是有 ( C )(A) L 上各点的磁感应强度及积分⎰⋅Ll d B都只与I 1有关。
(B) L 上各点的磁感应强度B 只与I 1有关,积分⎰⋅Ll d B与I 1、I 2有关。
(C) L 上各点的磁感应强度B 与I 1、I 2有关,积分⎰⋅L l d B只与I 1有关。
(D) L 上各点的磁感应强度B 及积分⎰⋅Ll d B都与I 1、I 2有关。
大连理工大学大学物理作业4(静电场四)及答案详解
作业4 静电场四导线穿过外球壳上的绝缘小孔与地连接,外球壳上带有正电荷,则内球壳上[ ]。
.A 不带电荷.B 带正电 .C 带负电荷.D 外表面带负电荷,内表面带等量正电荷答案:【C 】解:如图,由高斯定理可知,内球壳内表面不带电。
否则内球壳内的静电场不为零。
如果内球壳外表面不带电(已经知道内球壳内表面不带电),则两壳之间没有电场,外球壳内表面也不带电;由于外球壳带正电,外球壳外表面带正电;外球壳外存在静电场。
电场强度由内球壳向外的线积分到无限远,不会为零。
即内球壳电势不为零。
这与内球壳接地(电势为零)矛盾。
因此,内球壳外表面一定带电。
设内球壳外表面带电量为q (这也就是内球壳带电量),外球壳带电为Q ,则由高斯定理可知,外球壳内表面带电为q -,外球壳外表面带电为Q q +。
这样,空间电场强度分布r r qr E ˆ4)(201πε=,(两球壳之间:32R r R <<)r r Qq r E ˆ4)(202πε+= ,(外球壳外:r R <4)其他区域(20R r <<,43R r R <<),电场强度为零。
内球壳电势为041)11(4ˆ4ˆ4)()(403202020214324322=++-=⋅++⋅=⋅+⋅=⋅=⎰⎰⎰⎰⎰∞∞∞R Q q R R q r d r rQq r d r r q r d r E r d r E l d E U R R R R R R R πεπεπεπε则04432=++-R QR q R q R q ,4324111R R R R Q q +--=由于432R R R <<,0>Q ,所以0<q即内球壳外表面带负电,因此内球壳负电。
2.真空中有一组带电导体,其中某一导体表面某处电荷面密度为σ,该处表面附近的场强大小为E ,则0E σ=。
那么,E 是[ ]。
.A 该处无穷小面元上电荷产生的场 .B 导体上全部电荷在该处产生的场 .C 所有的导体表面的电荷在该处产生的场 .D 以上说法都不对答案:【C 】解:处于静电平衡的导体,导体表面附近的电场强度为0E σ=,指的是:空间全部电荷分布,在该处产生的电场,而且垂直于该处导体表面。
4大学物理习题_稳恒磁场
稳恒磁场一、选择题1.一个半径为r 的半球面如右图放在均匀磁场中,通过半球面的磁通量为 (A )22r B π; (B )2r B π;(C )22cos r B πα; (D )2cos r B πα。
2.下列说法正确的是:(A )闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过; (B )闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必为零; (C )磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必为零;(D )磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度都不可能为零。
3.如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A )0=⋅⎰Ll d B,且环路上任意一点0=B 。
(B )0=⋅⎰Ll d B,且环路上任意一点0≠B 。
(C )0≠⋅⎰Ll d B ,且环路上任意一点0≠B 。
(D )0≠⋅⎰Ll d B,且环路上任意一点=B 常量。
4.图中有两根“无限长” 载流均为I 的直导线,有一回路L ,则正确的是(A )0=⋅⎰Ll d B,且环路上任意一点0=B ;(B )0=⋅⎰Ll d B,且环路上任意一点0≠B ;(C )0≠⋅⎰Ll d B,且环路上任意一点0≠B ;(D )0≠⋅⎰Ll d B,且环路上任意一点0=B 。
5.取一闭合积分回路L ,使三根载流导线穿过它所围成的面,现改变三根导线之间的相互间隔,但不越出积分回路,则:·LOI图(A )回路L 内的I ∑不变,L 上各点的B不变;(B )回路L 内的I ∑不变,L 上各点的B改变;(C )回路L 内的I ∑改变,L 上各点的B不变; (D )回路L 内的I ∑改变,L 上各点的B改变。
6.在球面上竖直和水平的两个载流圆线圈中,通有相等的电流I ,方向如图所示,则圆心处磁感应强度B的大小为(A )R I 0μ(B )R I20μ (C )RI 220μ(D )R I40μ7.一长直载流I 的导线,中部折成图示一个半径为R 的圆,则圆心的磁感应强度大小为 (A )R I 20μ;(B )RIπ20μ; (C )RIRIπ2200μμ+;(D )0。
大学物理磁场考试练习题含解析
大学物理磁场考试练习题一、选择题1.空间某点的磁感应强度的方向,一般可以用下列几种办法来判断,其中哪个是错误的?() (A )小磁针北(N )极在该点的指向;(B )运动正电荷在该点所受最大的力与其速度的矢积的方向;(C )电流元在该点不受力的方向;(D )载流线圈稳定平衡时,磁矩在该点的指向。
2.下列关于磁感应线的描述,哪个是正确的?() (A )条形磁铁的磁感应线是从N 极到S 极的; (B )条形磁铁的磁感应线是从S 极到N 极的; (C )磁感应线是从N 极出发终止于S 极的曲线; (D )磁感应线是无头无尾的闭合曲线。
3.磁场的高斯定理说明了下面的哪些叙述是正确的?()a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;B⎰⎰=⋅0S d Bb 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;c 一根磁感应线可以终止在闭合曲面内;d 一根磁感应线可以完全处于闭合曲面内。
(A )ad ;(B )ac ;(C )cd ;(D )ab 。
4.如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量和面上各点的磁感应强度B 将如何变化?() (A )增大,B 也增大; (B )不变,B 也不变; (C )增大,B 不变; (D )不变,B 增大。
5.两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心o 处的磁感应强度大小为多少?() (A )0;(B ); (C );(D )。
ΦΦΦΦΦR I 2/0μR I 2/20μR I /0μISIIo二、填空题1.如图所示,均匀磁场的磁感应强度为B =0.2T ,方向沿x 轴正方向,则通过abod 面的磁通量为_________,通过befo 面的磁通量为__________,通过aefd 面的磁通量为_______。
2.真空中一载有电流I 的长直螺线管,单位长度的线圈匝数为n ,管内中段部分的磁感应强度为________,端点部分的磁感应强度为__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业 10
稳恒磁场四
1. 载流长直螺线管内充满相对磁导率为 r 的均匀抗磁质,则螺线管内中部的磁感应强度B
和磁场强度 H 的关系是 [
]。
A. B 0 H
B. B r H
C.
B 0H D.
B 0 H
答案:【 D 】
解:对于非铁磁质,电磁感应强度与磁场强度成正比关系
B
r
H
抗磁质:
r
1,所以, B
H
2. 在稳恒磁场中,关于磁场强度 H 的下列几种说法中正确的是
[] 。
A. H 仅与传导电流有关。
B. 若闭合曲线内没有包围传导电流,则曲线上各点的 H 必为零。
C.若闭合曲线上各点
H 均为零,则该曲线所包围传导电流的代数和为零。
D.以闭合曲线 L 为边界的任意曲面的 H 通量相等。
答案:【 C 】
解:安培环路定理
H dl
I 0 ,是说:磁场强度
H 的闭合回路的线积分只与传导电流
L
有关,并不是说:磁场强度
H 本身只与传导电流有关。
A 错。
闭合曲线内没有包围传导电流,只能得到:磁场强度
H 的闭合回路的线积分为零。
并
不能说:磁场强度
H 本身在曲线上各点必为零。
B 错。
高斯定理 B dS 0 ,是说:穿过闭合曲面,场感应强度
B 的通量为零,或者说, .
S
以闭合曲线 L 为边界的任意曲面的 B 通量相等。
对于磁场强度
H ,没有这样的高斯定理。
不能说,穿过闭合曲面,场感应强度
H 的通量为零。
D 错。
安培环路定理
H dl
I 0 ,是说:磁场强度 H 的闭合回路的线积分等于闭合回路
L
包围的电流的代数和。
C 正确。
抗磁质和铁磁质的 B
H 曲线,则 Oa 表示
3. 图 11-1 种三条曲线分别为顺磁质、 ;
Ob 表示
; Oc 表示。
答案:铁磁质;顺磁质; 抗磁质。
4. 某铁磁质的磁滞回线如图
11-2
所示,则
图中 Ob (或
Ob ' )表示
; Oc
(或
Oc ' )表示。
答案:剩磁;矫顽力。
5. 螺线环中心周长 l 10cm ,环上线圈匝数 N 300 ,线圈中通有电流
I 100mA 。
(1)
求管内的磁场强度
H 和磁感应强度 B ;( 2)若管内充满相对磁导率
r
4000 的磁介质,
则管内的 H 和 B 是多少?( 3)磁介质内由导线中电流产生的 B 0 和磁化电流产生的 B ' 各是
多少?
解: (1)
做一圆形的环路,由
H 的安培环路定理:
H dl I H 2 r NI ,
H
NI NI nI 300 (A/m)
2 r
l
对管内,此时无磁介质,则:
r
1 B 0
0 H 3.77 10-4
T
(2) 管内充满磁介质时,
r
4200 B 0 r H 1.58T
(3) 磁介质内由导线中电流产生的磁场
B 0 0
H
3.77 10-4 T
由磁化电流产生的磁场 B
B B 0
1.58T
6. 一无限长圆柱形直导线, 外包一层相对磁导
率为
r 的圆筒形磁介质,导线半径为
R 1 ,磁
介质外半径为
R 2 ,导线内有电流 I 通过(见
图 11-3 )。
求:( 1)介质内、外的磁感应强度的分布,画出 B r 图线;( 2)介质内、外的磁场强度的分布,画出 H r 曲线。
解:在以圆柱轴线为对称轴的圆周上,各处磁场强度大小相等且沿圆周切线方向。
应用的安培环路定理,
H
H dl
2 rH
I 0
L
在导体内, r
R 1 :
I 0
I
r
2
I r 2
, 2 rH I r 2
( r R 1 ),
R 2
R 2
R 2
1
1
1
在导体外, r
R 1 :
I 0 I , 2 rH
I (r
R 1 ),
2 rH
I ( r R 1 ),
因此
H
I/(2
r) ( r R 1 ) Ir /(2 R 12 ) ( r
R 1 )
0 Ir /(2 R 12
) (r R 1 )
B
0 r I / (2 r) ( R 1 r
R 2 )
0 I / (2 r)
(r
R 2 )
7. 介质中安培环路定理为
H dl
I i ,
I i 为正向穿过闭合回路 L 的传导电流的代数
L
和,这是否可以说: H 只与传导电流有关,与分子电流无关? 答案:不能。
解:介质中的安培环路定理说明定理的左端,即
H 的环流只也传导电流有关,与分子电流
无关; 并不可以说 H 只与传导电流有关, 与分子电流无关。
这里 H 的环流和 H 是两个不同 的概念。