人教版A版高中数人教版A版高中数学选修4-4全套PPT课件
合集下载
人教A版高中数学选修4-4课件2.1参数方程1

二、由物理知识可知,物体的位置由时间t唯 一决定,从数学角度看,这就是点M的坐标 x,y由t唯一确定,这样当t在允许值范围内连 续变化时,x,y的值也随之连续地变化,于是 就可以连续地描绘出点的轨迹。
三、平抛物体运动轨迹上的点与满足方程组 的有序实数对(x,y)之间有一一对应关系。
一般地,在平面直角坐标系中,如果曲线上 任意一点的坐标x,y都是某个变数t的函数
y 2t 2 1
(1)、判断点M (0,1), M (5,4)与曲线C的位置关系
1
2
(2)、已知点M 3 (6, a)在曲线C上,求a的值。
解:(1)把点M1的坐标(0,1)代入方程组,解得t 0 所以M1在曲线C上。
把点M
2
(5,4)代入方程组,得到{ 4
5
3t 2t 2
1
一、曲线的参数方程【来.源.学.科.网】
1、参数方程的概念
探究:
如图,一架救援飞机在离灾区地面500m 的高处以100m/s的速度作水平直线飞行, 为使投放的救援物资准确落于灾区指定 的地面(不计空气阻力),飞行员应如 何确定投放时机呢?【来.源.学.科.网】
y A
o
M(x,y)
x
一、方程组有3个变量,其中的x,y表示点的 坐标,变量t叫做参变量,而且x,y分别是t的 函数。
高中数学课件
(金戈铁骑 整理制作)
参数方程
在过去的学习中我们已经掌握了一些求曲 线方程的方法,在求某些曲线方程时,直 接确定曲线上的点的坐标x,y的关系并不容 易,但如果利用某个参数作为联系它们的 桥梁,那么就可以方便地得出坐标x,y所要 适合的条件,即参数可以帮助我们得出曲 线的方程f(x,y)=0。【来.源.学.科.网】
三、平抛物体运动轨迹上的点与满足方程组 的有序实数对(x,y)之间有一一对应关系。
一般地,在平面直角坐标系中,如果曲线上 任意一点的坐标x,y都是某个变数t的函数
y 2t 2 1
(1)、判断点M (0,1), M (5,4)与曲线C的位置关系
1
2
(2)、已知点M 3 (6, a)在曲线C上,求a的值。
解:(1)把点M1的坐标(0,1)代入方程组,解得t 0 所以M1在曲线C上。
把点M
2
(5,4)代入方程组,得到{ 4
5
3t 2t 2
1
一、曲线的参数方程【来.源.学.科.网】
1、参数方程的概念
探究:
如图,一架救援飞机在离灾区地面500m 的高处以100m/s的速度作水平直线飞行, 为使投放的救援物资准确落于灾区指定 的地面(不计空气阻力),飞行员应如 何确定投放时机呢?【来.源.学.科.网】
y A
o
M(x,y)
x
一、方程组有3个变量,其中的x,y表示点的 坐标,变量t叫做参变量,而且x,y分别是t的 函数。
高中数学课件
(金戈铁骑 整理制作)
参数方程
在过去的学习中我们已经掌握了一些求曲 线方程的方法,在求某些曲线方程时,直 接确定曲线上的点的坐标x,y的关系并不容 易,但如果利用某个参数作为联系它们的 桥梁,那么就可以方便地得出坐标x,y所要 适合的条件,即参数可以帮助我们得出曲 线的方程f(x,y)=0。【来.源.学.科.网】
最新人教版高三数学选修4-4电子课本课件【全册】

最新人教版高三数学选修4-4电子 课本课件【全册】
四 柱坐标系与球坐标系简介
最新人教版高三数学选修4-4电子 课本课件【全册】
第二讲 参数方程
最新人教版高三数学选修4-4电子 课本课件【全册】目录
0002页 0066页 0118页 0187页 0243页 0338页
引言 一 平面直角坐标系 三 简单曲线的极坐标方程 第二讲 参数方程 二 圆锥曲线的参数方程 四 渐开线与摆线
引言
最新人教版高三数学选修4-4电子 课本课件【全册】
第一讲 坐标系
一 曲线的参数方程
最新人教版高三数学选修4-4电子 课本课件【全册】
最新人教版高三数学选修4-4电子 课本课件【全册】
一 平面直角坐标系
最新人教版高三数学选修4-4电子 课本课件【全册】
二 极坐标系
最新人教版高三数学选修4-4电子 课本课件【全册】
三 简单曲线的极坐标方程
四 柱坐标系与球坐标系简介
最新人教版高三数学选修4-4电子 课本课件【全册】
第二讲 参数方程
最新人教版高三数学选修4-4电子 课本课件【全册】目录
0002页 0066页 0118页 0187页 0243页 0338页
引言 一 平面直角坐标系 三 简单曲线的极坐标方程 第二讲 参数方程 二 圆锥曲线的参数方程 四 渐开线与摆线
引言
最新人教版高三数学选修4-4电子 课本课件【全册】
第一讲 坐标系
一 曲线的参数方程
最新人教版高三数学选修4-4电子 课本课件【全册】
最新人教版高三数学选修4-4电子 课本课件【全册】
一 平面直角坐标系
最新人教版高三数学选修4-4电子 课本课件【全册】
二 极坐标系
最新人教版高三数学选修4-4电子 课本课件【全册】
三 简单曲线的极坐标方程
人教A版高中数学选修4-4课件:第二讲 参数方程 (共5份打包)

播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性格会影响人生!习惯不加以 抑制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你到哪里去。当你在埋头工 作的时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去方向,就永远不会失去 自己!这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移山之术,惟一能移山 的方法就是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!亿万财富不是存在银行里,而是产生在人的思想里。你没找到路,不等于没有路,你想知道 将来要得到什么,你必须知道现在应该先放弃什么!命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机人人都有两个门:一个是家门, 成长的地方;一个是心门,成功的地方。能赶走门中的小人,就会唤醒心中的巨人!要想事情改变,首先自己改变,只有自己改变,才可改变世界。人最大的敌人不是别人,而是自己,只有战胜自己, 才能战胜困难!1、烦恼的时候,想一想到底为什么烦恼,你会发现其实都不是很大的事,计较了,就烦恼。我们要知道,所有发生的一切都是该发生的,都是因缘。顺利的就感恩,不顺利的就忏悔, 然后放下。“雁渡寒潭,雁过而潭不留影;风吹疏竹,风过而竹不留声。”修行者的心境,就是“过而不留”。忍得住孤独;耐得住寂寞;挺得住痛苦;顶得住压力;挡得住诱惑;经得起折腾;受得 起打击;丢得起面子;担得起责任;1提得起精神。闲时多读书,博览凝才气;众前慎言行,低调养清气;交友重情义,慷慨有人气;困中善负重,忍辱蓄志气;处事宜平易,不争添和气;对已讲原则, 坚持守底气;淡泊且致远,修身立正气;居低少卑怯,坦然见骨气;卓而能合群,品高养浩气淡然于心,自在于世间。云淡得悠闲,水淡育万物。世间之事,纷纷扰扰,对错得失,难求完美。若一心 想要事事求顺意,反而深陷于计较的泥潭,不能自拔。若凡事但求无愧于心,得失荣辱不介怀,自然落得清闲自在。人活一世,心态比什么都重要。财富名利毕竟如云烟,心情快乐才是人生的至宝。 我们的梦想在哪里?在路上,在脚踏实地的道路上;我们的期待在哪里?在路上,在勤劳勇敢的心路上;我们的快乐在哪里?在路上,在健康阳光的大道上;我们的朋友在哪里?在心里,在真诚友谊 的宽道上!珍惜每一分钟,对自己负责;善于发现看问题的角度;不满足于现状,别自我设限;勇于承认错误;不断反省自己,向周围的成功者学习;不轻言放弃。做事要有恒心;珍惜你所拥有的, 不要感叹你失去或未得到;学会赞美;不找任何借口。与贤人相近,则可重用;与小人为伍,则要当心;只满足私欲,贪图享乐者,则不可用;处显赫之位,任人唯贤,秉公办事者,是有为之人;身 处困境之人,不做苟且之事,则可重任;贫困潦倒时,不取不义之财者,品行高洁;见钱眼开者,则不可用。人最大的魅力,是有一颗阳光的心态。韶华易逝,容颜易老,浮华终是云烟。拥抱一颗阳 光的心态,得失了无忧,来去都随缘。心无所求,便不受万象牵绊;心无牵绊,坐也从容,行也从容,故生优雅。一个优雅的人,养眼又养心,才是魅力十足的人。容貌乃天成,浮华在身外,心里满 是阳光,才是永恒的美。意逐白云飞,心随流水宁。心无牵挂起,开阔空净明。幸福并不复杂,饿时,饭是幸福,够饱即可;渴时,水是幸福,够饮即可;裸时,衣是幸福,够穿即可;穷时,钱是幸 福,够用即可;累时,闲是幸福,够畅即可;困时,眠是幸福,够时即可。爱时,牵挂是幸福,离时,回忆是幸福。人生,由我不由天,幸福,由心不由境。心是一个人的翅膀,心有多大,世界就有 多大。很多时候限制我们的,不是周遭的环境,也不是他人的言行,而是我们自己。人心如江河,窄处水花四溅,宽时水波不兴。世间太大,一颗心承载不起。生活的最高境界,一是痛而不言,二是 笑而不语。无论有多少委屈,一笑而泯之。人生的幸福在于祥和,生命的祥和在于宁静,宁静的心境在于少欲。无意于得,就无所谓失去,无所谓失去,得失皆安谧。闹市间虽见繁华,却有名利争抢; 田园间无争,却有柴米之忧烦;世外桃源祥和升平,最终不过梦一场。心静,则万象皆静。知足者常在静中邂逅幸福。顺利人生,善于处理关系;普通人生,只会使用关系;不顺人生,只会弄僵关系。 为人要心底坦荡,不为虚名所累;做事要头脑清醒,不为假象所惑。智者,以别人惨痛的教训警示自己;愚者,用自己沉重的代价唤醒别人。对人多一份宽容,多一份爱心;对事多一份认真,多一份 责任;对己多一点要求,多一点警醒。傲不可长,志不可满,乐不可极,警醒自己。静能生慧。让心静下来,你才能看淡一切。静中,你才会反观自己,知道哪些行为还需要修正,哪些地方还需要精 进,在静中让生命得到升华洗礼,在自观中走向觉悟。让心静下来,你才能学会放下。你放下了,你的心也就静了。心不静,是你没有放下。静,通一切境界。人与人的差距,表面上看是财富的差距, 实际上是福报的差距;表面上看是人脉的差距,实际上是人品的差距;表面上看是气质的差距,实际上是涵养的差距;表面上看是容貌的差距,实际上是心地的差距;表面上看是人与人都差不多,内 心境界却大不相同,心态决定命运。知恩感恩,是很重要的一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人, 会觉得自己很幸运,有时候其实没什么道理,但他这样一想、一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多; 最惬意的时候,往往是失败的开始;寒冷到了极致,太阳就要光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事 业不是靠满足,而是靠踏实。知恩感恩,是很重要的一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉 得自己很幸运,有时候其实没什么道理,但他这样一想、一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最 惬意的时候,往往是失败的开始;寒冷到了极致,太阳就要光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业 不是靠满足,而是靠踏实。以平常心观不平常事,则事事平常。在危险面前,平常心就是勇敢;在利诱面前,平常心就是纯洁;在复杂的环境面前,平常心就是保持清醒智慧。平常心不是消极遁世, 而是一种境界,一种积极的人生。不仅要为成功而努力,更要为做一个有价值的人而努力。命运不是机遇,而是选择;命运不靠等待,全靠争取。成熟就是学会在逆境中保持坚强,在顺境时保持清醒。 时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。只有在我们不需要外来的赞许时,心灵才会真的自由。你没那么多观众,别那么累。温和对人对事。不要随意发脾气,谁都不欠你的。现在很痛苦, 等过阵子回头看看,会发现其实那都不算事。和对自己有恶意的人绝交。人有绝交,才有至交学会宽容伤害自己的人,因为他们很可怜,各人都有自己的难处,大家都不容易。学会放弃,拽的越紧, 痛苦的是自己。低调,取舍间,必有得失。不要试图给自己找任何借口,错误面前没人爱听那些借口。慎言,独立,学会妥协的同时,也要坚持自己最基本的原则。付出并不一定有结果。坚持可能会 导致失去更多过去的事情可以不忘记,但一定要放下。活得轻松,任何事都作一个最好的打算和最坏的打算。做一个简单的人鲜的背后或者有着太多不为人知的痛苦尽量充实自己。不要停止学习。不管学习什么,语言,厨艺,各种技能。注意自己的修养,你就是孩子的第一位老师。孝顺父母。不只是嘴上说说, 即使多打几个电话也是很好的。爱父母,因为他们给了你生命,同时也是爱你爱的最无私的人。
高中数学选修4-4全册配套ppt课件.1.2

【归纳总结】 1.曲线的参数方程与普通方程互化的作用 (1)将曲线的参数方程化为普通方程,可借助于熟悉的 普通方程的曲线来研究参数方程的曲线的类型、形状、 性质等.
(2)将曲线的普通方程化为参数方程,可用参变量作为 中介来表示曲线上点的坐标,从而给研究与曲线有关的 最大值、最小值以及取值范围等问题带来方便.
x
t 2,中的参数t,
y 2t
得到普通方程为y2=4x.
答案:y2=4x
【知识探究】 探究点 参数方程和普通方程的互化 1.同一曲线的参数方程是否唯一? 提示:求曲线的参数方程,关键是灵活确定参数,由于参 数不同,同一曲线的参数方程也会有差异,但是一定要 注意等价性.
2.将曲线的参数方程和普通方程互相转化需要注意什 么? 提示:尽管同一曲线的参数方程不唯一,但是一定要注 意方程与曲线的等价性.
1 t2
)①,
由 y b (t 1) 两边平方可得
2t
y2
b2 4
(t2
2
1 t2
)②,
①
1 a2
②
1 b2
并化简,得
x2 a2
y2 b2
(1 a,b为大于0
y2 b2
(1 a
0,b
0).
所以方程表示焦点在x轴上的双曲线.
a (t 1),
2 t (a,b为大于零的常数,t为参
b (t 1) 2t
数)化为普通方程,并判断曲线的形状.
【解析】因为 x a (t 1),所以t>0时,x∈[a,+∞),
2t
t<0时,x∈(-∞,-a].
由 x a (t 1) 两边平方可得
高中数学人教A版选修4-4第二讲 一 1. 参数方程的概念 课件

[思路点拨] 此类问题关键是参数的选取.本例中由于 A、 B 的滑动而引起点 P 的运动,故可以 OB 的长为参数,或以角 为参数,不妨取 BP 与 x 轴正向夹角为参数来求解.
[解] 法一:设 P 点的坐标为(x,y),过
P 点作 x 轴的垂线交 x 轴于 Q.如图所示,则 Rt△OAB≌Rt△QBP.
∴xy==bascions
θ, θ.
这就是所求的轨迹方程.
9.如图所示,OA是圆C的直径,且OA=2a, 射线OB与圆交于Q点,和经过A点的切线 交于B点,作PQ⊥OA,PB∥OA,试求点P 的轨迹方程.
解:设 P(x,y)是轨迹上任意一点,取∠DOQ=θ, 由 PQ⊥OA,PB∥OA,得 x=OD=OQcosθ=OAcos2θ= 2acos2θ,y=AB=OAtan θ=2atan θ. 所以 P 点轨迹的参数方程为xy==22aatcaons2θθ,, θ∈-π2,π2.
解析:x轴上的点横坐标可取任意实数,纵坐标为0.
答案:D
2.若点P(4,a)在曲线x=2t , (t为参数)上,则a等于(
)
y=2 t
A.4
B.4 2
C.8
D.1
解析:根据题意,将点P坐标代入曲线方程中得
4=2t , a=2 t
⇒ta==84,2.
答案:B
3.在方程
参数方程是曲线方程的另一种表达形式,点与曲线 位置关系的判断,与平面直角坐标方程下的判断方法是 一致的.
1.已知点 M(2,-2)在曲线 C:x=t+1t , (t 为参数)上, y=-2
则其对应的参数 t 的值为________. 解:由 t+1t =2 知 t=1. 答案:1
2.已知某条曲线 C 的参数方程为xy==a1t+2 2t, (其中 t 为参数, a∈R).点 M(5,4)在该曲线上,求常数 a.
[解] 法一:设 P 点的坐标为(x,y),过
P 点作 x 轴的垂线交 x 轴于 Q.如图所示,则 Rt△OAB≌Rt△QBP.
∴xy==bascions
θ, θ.
这就是所求的轨迹方程.
9.如图所示,OA是圆C的直径,且OA=2a, 射线OB与圆交于Q点,和经过A点的切线 交于B点,作PQ⊥OA,PB∥OA,试求点P 的轨迹方程.
解:设 P(x,y)是轨迹上任意一点,取∠DOQ=θ, 由 PQ⊥OA,PB∥OA,得 x=OD=OQcosθ=OAcos2θ= 2acos2θ,y=AB=OAtan θ=2atan θ. 所以 P 点轨迹的参数方程为xy==22aatcaons2θθ,, θ∈-π2,π2.
解析:x轴上的点横坐标可取任意实数,纵坐标为0.
答案:D
2.若点P(4,a)在曲线x=2t , (t为参数)上,则a等于(
)
y=2 t
A.4
B.4 2
C.8
D.1
解析:根据题意,将点P坐标代入曲线方程中得
4=2t , a=2 t
⇒ta==84,2.
答案:B
3.在方程
参数方程是曲线方程的另一种表达形式,点与曲线 位置关系的判断,与平面直角坐标方程下的判断方法是 一致的.
1.已知点 M(2,-2)在曲线 C:x=t+1t , (t 为参数)上, y=-2
则其对应的参数 t 的值为________. 解:由 t+1t =2 知 t=1. 答案:1
2.已知某条曲线 C 的参数方程为xy==a1t+2 2t, (其中 t 为参数, a∈R).点 M(5,4)在该曲线上,求常数 a.
人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件

• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
空间点 P 的直角坐标(x,y,z)与球坐标(r,φ 之间的变换关系为:____x_2_+__y2_+__z_2=__r_2,___.
x=rsin φcos θ , y=rsin φsin θ , z=rcos φ
预习 思考
(1,1,1)
1.设
P
点
柱
坐
标
为
2,π4,1 . 则 它 的 直 角 坐 标 为
____________.
2.设点 M 的球坐标为2,34π,34π,它的直角坐标为 ____ቤተ መጻሕፍቲ ባይዱ_______.
(-1,1,- 2)
题型1 柱坐标、球坐标的确定
例1 如图所示,已知长方体 ABCD-A1B1C1D1 的边长 AB 6 3,AD=6,AA1=12,以这个长方体的顶点 A 为坐标原点 以射线 AB、AD、AA1 分别为 x 轴、y 轴、z 轴的正半轴, 立空间直角坐标系,求长方体顶点 C1 的空间直角坐标、柱 标、球坐标.
变式 训练
1.建立如下图所示的柱坐标系,写出棱长为 1 的正方
各顶点的柱坐标.
变式 训练
变式 训练
题型2 柱、球坐标与直角坐标的互化
例2
已知点
M
的
柱
坐
标
为
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
空间点 P 的直角坐标(x,y,z)与球坐标(r,φ 之间的变换关系为:____x_2_+__y2_+__z_2=__r_2,___.
x=rsin φcos θ , y=rsin φsin θ , z=rcos φ
预习 思考
(1,1,1)
1.设
P
点
柱
坐
标
为
2,π4,1 . 则 它 的 直 角 坐 标 为
____________.
2.设点 M 的球坐标为2,34π,34π,它的直角坐标为 ____ቤተ መጻሕፍቲ ባይዱ_______.
(-1,1,- 2)
题型1 柱坐标、球坐标的确定
例1 如图所示,已知长方体 ABCD-A1B1C1D1 的边长 AB 6 3,AD=6,AA1=12,以这个长方体的顶点 A 为坐标原点 以射线 AB、AD、AA1 分别为 x 轴、y 轴、z 轴的正半轴, 立空间直角坐标系,求长方体顶点 C1 的空间直角坐标、柱 标、球坐标.
变式 训练
1.建立如下图所示的柱坐标系,写出棱长为 1 的正方
各顶点的柱坐标.
变式 训练
变式 训练
题型2 柱、球坐标与直角坐标的互化
例2
已知点
M
的
柱
坐
标
为
人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

A. y 1
sin t
1
x t2
C.
1
yt 2
x cos t
B. y 1
cos t
x tan t
D. y 1
tan t
7.极坐标方程
2
arcsin化(为 直0)角坐标方程的形
式是 ( )
A. x2 y2 x 0
B.y x(1 x)
C. 2x 1 4y2 1 D..y (x 1)
2.极坐标(,)与(ρ,2kπ+θ)( k )表z 示 同一个点.即一点的极坐标的统一的表达式 为(ρ,2kπ+θ)
3.如果规定ρ>0,0≤θ<2π,那么除 极 点外,平面内的点和极坐标就可以一一对 应了。
我们学了直角坐标,也学了极坐 标,那么这两种坐标有什么关系呢? 已知点的直角坐标为,如何用极坐标 表示这个点呢?
M (, )
0
x
2
4
5
6
C
1.如图,在极坐标系中,写出点 AF(,6B, ,4C3 ,)D的, G极(坐5, 标53,所) 并在标的出位E置( 72 , ) ,
E D BA
O
X
4 F
3
G 5
3
解:如图可得A,B,C,D的坐标分别为
(4,0)
(2, )
(3, )
(1, 5 )
4
2
6
点E,F,G的位置如图所示
1
4.极坐标方程ρ=cosθ与ρcosθ= 的2 图形是( ) B
A
B
C
D
解x=:12把,ρc故os排θ=除A,、12 化D;为又直圆角ρ坐=c程os,θ显得然: 过点 (0,1),又排除C,故选B。
5、若A、B的两点极坐标为A(4,
2019版数学人教A版选修4-4课件:第二讲 参数方程 本讲整合 .pdf

(������为参数).
-5-
本讲整合
专题一
专题二
知识建构
综合应用
真题放送
(2)设 M(x,y)是曲线 4x2+y2=16 上异于点 A 的任一点,
则
������-4 ������
=
������(������≠0),
将 y=kx+4 代入方程,得 x[(4+k2)x+8k]=0.
当 x≠0 时,则
线的两种不同表达形式.
-4-
本讲整合
知识建构
综合应用
真题放送
专题一
专题二
应用1 求方程4x2+y2=16的参数方程.
(1)设y=4sin θ,以θ为参数;
(2)以过点A(0,4)的直线的斜率k为参数.
提示:对于(1),可直接把y=4sin θ代入已知方程,解方程求出x即可;
对于(2),可寻找斜率k与此方程任一点的坐标之间的关系来求解.
所以根据三角函数的值域便于解决一些求值问题.
-10-
本讲整合
知识建构
综合应用
真题放送
专题一
专题二
解:(1)设 P(4cos θ1,2sin θ1)
������1
≠
������ 1 π 2
,������1∈Z
,
������(4cos θ2,2sin θ2)
������2
≠
������ 2 π 2
,������2
数,变数的个数比方程的个数多 1;曲线的参数方程中有三个变数和
两个方程,变数的个数比方程的个数多 1,从这个意义上讲,曲线的普
通方程和参数方程是“一致”的.
-3-
本讲整合
人教版高中数学选修4-4课件:模块复习课 第一课 (共39张PPT)

空间直角坐标(x,y,z) 柱坐标
(ρ,θ,z)
球坐标 (r,φ,θ)
转 换 公式
【易错警示】 1.关于伸缩变 换 公式的注意事项 (1)伸缩变 换 不改变点所在的象限,坐标轴 上的点经 过 伸缩变 换 仍在坐标轴 上. (2)求曲线经 过 伸缩变 换 后的曲线方程,要分清变换 前后的点的坐标,常常运用代入法求解.
【变 式训练 】1.圆 x2+y2=4经 过 伸缩变 换 图 形的方程为________.
后的
【解析】由
代入x2+y2=4得
故圆经过已知伸缩变换后的方程为 答案:
2.在伸缩变 换
的作用下某曲线C的方程变为 y=
cos2x,试 求曲线C的方程.
【解析】由
得 y=cos x,
即y=cosx,故曲线C的方程为y=cosx.
【解析】y=tanx的纵坐标不变,横坐标缩短为原来的 , 得到y=tan2x.再将其纵坐标伸长为原来的3倍,横坐标 不变,得到曲线y=3tan2x. 设变换为 则μy=3tan2λx, 即y= tan2λx.
与y=tanx比较,则有μ=3,λ伸缩变 换 公式及其应用
【解析】选D.点
的直角坐标为(-1, ),且
(k∈Z)四点的
直角坐标分别为Q(-1, ),R(-1, ),M(-1, ),
N(-1, ),所以与P重合的点有4个.
2.在极坐标系中,求由三条曲线θ=0,θ= ,ρcosθ+ ρsinθ=1围 成的图形的面积.
【解析】曲线ρcosθ+ ρsinθ=1的直角坐标方程 为x+ y-1=0.它与x轴的交点为B(1,0). 曲线θ= 的直角坐标方程为 x-y=0. 它们的交点坐标为 所以由三条曲线θ=0,θ= ,ρcosθ+ ρsinθ= 1围成的图形如图所示.
人教A版高中数学选修4-4课件:第二讲 参数方程 (共5份打包)4

明朝未及,我只有过好每一个今天,唯一的今天。
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
高中数学人教A版选修4-4课件:1本讲整合

综合应用
真题放送
1(2016· 上海高考,理16)下列极坐标方程中,对应的曲线为右图的是 ( )
A.ρ=6+5cos θ B.ρ=6+5sin θ C.ρ=6-5cos θ D.ρ=6-5sin θ
解析:依次取 θ=0, , π,
2 π 3π 2
,
结合题图可知只有ρ=6-5sin θ满足,选D. 答案:D
知识建构 专题一 专题二 专题三
综合应用
真题放送
应用 说出由曲线y=tan x得到曲线y=3tan 2x的变换规律,并求出 满足其图形变换的伸缩变换. ������' = ������������(������ > 0), 提示:主要考查变换公式 ������' = ������������(������ > 0).
知识建构 专题一 专题二 专题三
综合应用
真题放送
应用 求点������ 4,
π 3
到直线������cos ������-
π 3
= 2 上的点的距离的最小值.
提示:可以先化为直角坐标再求解.
解 :点 M 的直角坐标为 (2,2 3), ∵ρcos ������1 2 π 3
= 2,
π π 3 1 2 3 3
知识建构 1 2 3 4 5 6 7
综合应用
真题放送
2(2015· 广东高考,理 14)已知直线 l 的极坐标方程为 2ρsi n ������2, 点������的极坐标为������ 2 2,
7π 4
π 4
= .
, 则点������到直线������的距离为
解析:2ρsin ������π 4
������
与 y=tan x 比较 ,则有 μ=3,λ= . 所以所求的伸缩变换为
高中数学人教A版选修4-4课件:1.2极坐标系

-10-
二 极坐标系
探究一
探究二
探究三
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
D 当堂检测 ANGTANG JIANCE
-11-
二 极坐标系
探究一
探究二
探究三
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
D 当堂检测 ANGTANG JIANCE
-4-
二 极坐标系
12
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
D 当堂检测 ANGTANG JIANCE
-5-
二 极坐标系
12
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
D 当堂检测 ANGTANG JIANCE
-12-
二 极坐标系
探究一
探究二
探究三
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
D 当堂检测 ANGTANG JIANCE
-13-
二 极坐标系
探究一
探究二
探究三
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
D 当堂检测 ANGTANG JIANCE
D 当堂检测 ANGTANG JIANCE
12345
-19-
二 极坐标系
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
人教新课标版数学高二A版选修4-4课件 第二讲 第1节 第3课时 参数方程和普通方程的互化

(1)将参数方程转化为我们所熟悉的普通方程是解决 问题的关键.
(2)将所求的问题用恰当的参数表示,是解决此类问题 的转折点.
3.已知方程 y2-6ysin θ-2x-9cos2θ+8cos θ +9=0,(0≤θ<2π).
(1)试证:不论 θ 如何变化,方程都表示顶点在同一 椭圆上的抛物线;
(2)θ 为何值时,该抛物线在直线 x=14 上截得的弦 最长,并求出此弦长.
(1)(x-31)2+(y-52)2=1,x= 3cos θ+1.(θ 为参数)
(2)x2-y+x-1=0,x=t+1.(t 为参数)
[精讲详析] 本题考查化普通方程为参数方程的方 法,解答本题只需将已知的变量 x 代入方程,求出 y 即可.
(1)将
x=
3cos
θ+1
代
入(x-3 1)2
+
(y-2)2 5
所以 x2+y2 的最小值为 9.
答案:9
8.点(x,y)是曲线 C:xy==s-in2+θcos
θ,
(θ 为参数,0≤
θ<2π)上任意一点,则xy的取值范围是________.
解析:曲线 C:xy==s-in2+θcos
θ,
是以(-2,0)为圆心,
1 为半径的圆,即(x+2)2+y2=1.
设xy=k,∴y=kx. 当直线 y=kx 与圆相切时,k 取得最小值与最大值. ∴ |-k22+k|1=1,k2=13.
(1)求常数 a; (2)求曲线 C 的普通方程.
解:(1)由题意可知有1a+t2=2t1=3,故ta==11,,∴a=1. (2)由已知及(1)可得,曲线 C 的方程为xy==t12+. 2t, 由第一个方程得 t=x-2 1代入第二个方程得 y=(x-2 1)2,即 (x-1)2=4y 为所求.
高中新课程数学(新课标人教A版)选修4-4《1.2.1极坐标系的的概念》课件2

2 + y2 x ρ =________
2
y tan θ =x(x≠0)
在一般情况下,由tan θ确定角时,可根据点M所在的象限
取最小正角.
课前自主学习
课堂讲练互动
知能提升演练
教材超级链接
名师点睛
1.极坐标系的概念
极坐标系的建立有四个要素:①极点;②极轴;③长
度单位;④角度单位和它的正方向.四者缺一不可. 极坐标系就是用长度和角度来确定平面内点的位置. 2.点的极坐标:每一个有序实数对(ρ,θ)确定一个点的 位置.其中,ρ是点M的极径,θ是点M的极角. 平面上给定一点,可以写出这个点的无数多个极坐 标.根据点的极坐标(ρ,θ)的定义,对于给定的点 (ρ,θ)有无数个极坐标,可分为两类,一类为(ρ,θ+
知能提升演练
教材超级链接
(2)极坐标系内一点的极坐标的规定: 设M是平面内一点,极点O与点M的距离 极径 ,记为ρ;以极轴Ox |OM|叫做点M的_____
为始边,射线OM为终边的角xOM叫做点
(ρ,θ) 叫做点M的极坐标,记 极角 ,记为θ.有序数对_________ M的_____ M(ρ,θ) 为___________ .
极角θ在后,不能把顺序搞错了. (2)点的极坐标是不唯一的,但若限制ρ>0,0≤θ<2π,则除
极点外,点的极坐标是唯一确定的.
课前自主学习
课堂讲练互动
知能提升演练
教材超级链接
【变式1】 写出下列各点的极坐标.
解
π A(4,0),B1, 3
2 13 5 C3, π ,D4, π ,E2, π , , 3 12 4
对应关系?
定一点M;反过来,给定平面内一点M,它的极坐标却不是唯 一的.所以极坐标系所在平面内的点与极坐标不能建立一一 对应关系,这是极坐标系与平面直角坐标系的主要区别.
高中数学第二讲参数方程2.4渐开线与摆线课件新人教A版选修4_4

-6-
四 渐开线与摆线
首页
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
D 当堂检测 ANGTANGJIANCE
思考辨析 判断下列说法是否正确,正确的在后面的括号内画“√”,错误的画
“×”. (1)只有圆才有渐开线. ( × )
(2)渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以
变式训练 1 已知圆的渐开线的参数方程是
������ ������
= =
csions������������-���+���c���o���ss���i���n������,(φ
为参数),则此渐开线对应的基圆的直径
是
,当参数 φ=π4时对应的曲线上的点的坐标
为
.
答案:2
√2 2
+
√2π 8
,
√2 2
四 渐开线与摆线 探究一
探究二
思维辨析
首页
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
D 当堂检测 ANGTANGJIANCE
变式训练 若半径为5的圆的摆线上某点的纵坐标为0,则其横坐
标可能是( )
A.π B.5π C.10πD.12π
������ = 5������-5sin������,
π4,则对应
的点的直角坐标分别为 .
答案:
2π 3
-√3,1
,
π 2
-√2,2-√2
-12-
四 渐开线与摆线 探究一
探究二
思维辨析
首页
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
D 当堂检测 ANGTANGJIANCE
人教A版高中数学选修4-4课件:第二讲 参数方程 (共5份打包)

善。成功的花,人们只惊慕她现时的明艳!然而当初她的芽儿,浸透了奋斗的泪泉,洒遍了牺牲的血雨。成功的条件在于勇气和自信,而勇气和 自信乃是由健全的思想和健康的体魄而来。成功了自己笑一辈子,不成功被人笑一辈子。成功只有一个理由,失败却有一千种理由。从胜利学得少,从失败学得多。你生而有翼,为何一生 匍匐前进,形如蝼蚁。你一天的爱心可能带来别人一生的感谢。逆风的方向,更适合飞翔。只有承担起旅途风雨,才能最终守得住彩虹满天只有创造,才是真正的享受,只有拚搏,才是充 实的生活。知识玩转财富。志不立,天下无可成之事。竹笋虽然柔嫩,但它不怕重压,敢于奋斗、敢于冒尖。阻止你前行的,不是人生道路上的一百块石头,而是你鞋子里的那一颗石子。 最凄美的爱,不必呼天抢地,只是相顾无言。最值得欣赏的风景,是自己奋斗的足迹。爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。生活不可能像你想的那么 美好,但也不会像你想的那么糟。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。实现梦想往往是一个艰苦的坚持的过程, 而不是一步到位,立竿见影。那些成就卓越的人,几乎都在追求梦想的过程中表现出一种顽强的毅力。世界上唯一不变的字就是“变”字。事实胜于雄辩,百闻不如一见。思路决定出路, 气度决定高度,细节决定成败,性格决定命运虽然你的思维相对于宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥 有一切宇宙智慧。所有过不去的都会过去,要对时间有耐心。人总会遇到挫折,总会有低潮,会有不被人理解的时候。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以 希望为哨兵。如果一个人不知道他要驶向哪个码头,那么任何风都不会是顺风。沙漠里的脚印很快就消逝了。一支支奋进歌却在跋涉者的心中长久激荡。上天完全是为了坚强你的意志,才 在道路上设下重重的障碍。拥有资源不能成功,善用资源才能成功。小成功靠自己,大成功靠团队。炫耀什么,缺少什么;掩饰什么,自卑什么。所谓正常人,只是自我防御比较好的人。 真正的心理健康,是不设防而又不受害。学习必须如蜜蜂一样,采过许多花,这才能酿出蜜来态度决定高度。外在压力增加时,就应增强内在的动力。我不是富二代,不能拼爹,但为了成 功,我可以拼命!我会努力站在万人中央成为别人的光。人一辈子不长不短,走着走着,就进了坟墓,你是要轰轰烈烈地风光下葬,还是一把骨灰撒向河流山川。严于自律:不能成为自己 本身之主人者,将永远成不了他周围任何事物的主人。自律是完全拥有自己的内心并将其导向他所希望的目标的惟一正确的途径。生活对于智者永远是一首昂扬的歌,它的主旋律永远是奋 斗。眼泪的存在,是为了证明悲伤不是一场幻觉。要不断提高自身的能力,才能益己及他。有能力办实事才不会毕竟空谈何益。故事的结束总是满载而归,就是金榜题名。一个人失败的最 大原因,是对自己的能力缺乏充分的信心,甚至以为自己必将失败无疑。一个人炫耀什么,说明内心缺少什么。一个人只有在全力以赴的时候才能发挥最大的潜能。我们的能力是有限的, 有很多东西飘然于我们的视野与心灵之外。过去再优美,我们不能住进去;现在再艰险,我们也要走过去!即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。你的所有 不甘和怨气来源于你的不自信和没实力。你可以平凡,但不能平庸。懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。平凡的脚步也可以走完伟大的行程。 平静的湖面锻炼不出精悍的水手;安逸的生活打造不出生活的强者。人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花人生不怕重来,就怕没有将来。人生的成败往往就在 于一念之差。人生就像一个动物园,当你以为你在看别人耍猴的时候,却不知自己也是猴子中的一员!人生如天气,可预料,但往往出乎意料。人生最大的改变就是去做自己害怕的事情。 如果不想被打倒,只有增加自身的重量。如果你向神求助,说明你相信神的能力;如果神没有帮助你,说明神相信你的能力。善待自己,不被别人左右,也不去左右别人,自信优雅。活是 欺骗不了的,一个人要生活得光明磊落。生活真象这杯浓酒,不经三番五次的提炼呵,就不会这样一来可口!生命不止需要长度,更需要宽度。时间就像一张网,你撒在哪里,你的收获就在哪 里。世上最累人的事,莫过于虚伪的过日子。当你感到痛苦时,就去学习点什么吧,学习可以使我们减缓痛苦。当世界都在说放弃的时候,轻轻的告诉自己:再试一次。过错是暂时的遗憾, 而错过则是永远的遗憾!很多事情努力了未必有结果,但是不努力却什么改变也没有。后悔是一种耗费精神的情绪后悔是比损失更大的损失,比错误更大的错误所以不要后悔。环境不会改 变,解决之道在于改变自己。积极向上的心态,是成功者的最基本要素。激情,这是鼓满船帆的风。风有时会把船帆吹断;但没有风,帆船就不能航行。即使道路坎坷不平,车轮也要前进; 即使江河波涛汹涌,船只也航行。经验是由痛苦中粹取出来的。浪费时间等于浪费生命。老要靠别人的鼓励才去奋斗的人不算强者;有别人的鼓励还不去奋斗的人简直就是懦夫。不要问别 人为你做了什么,而要问你为别人做了什么。要有最遥远的梦想和最朴素的生活,即使明天天寒地冻,金钱没有高贵,低贱之分。金钱在高尚人的手中,就会变得高尚;金钱在庸俗人手中, 就会变得低级庸俗。涓涓细流一旦停止了喧哗,浩浩大海也就终止了呼吸。漫无目的的生活就像出海航行而没有指南针。如果我没有,我就一定要,我一定要,就一定能。上一秒已成过去, 曾经的辉煌,仅仅是是曾经。其实我们往往失败不是在昨天,而是失败在没有很好利用今天。千万人的失败,都有是失败在做事不彻底,往往做到离成功只差一步就终止不做了。强者征服 今天,懦夫哀叹昨天,懒汉坐等明天。墙高万丈,挡的只是不来的人,要来,千军万马也是挡不住的。求人不如求己;贫穷志不移;吃得苦中苦;方为人上人;失意不灰心;得意莫忘形。 人们总是在努力珍惜未得到的,而遗忘了所拥有的。时间告诉我,无理取闹的年龄过了,该懂事了。时间是个常数,但也是个变数。勤奋的人无穷多,懒惰的人无穷少。手莫伸,伸手必被捉。 党与人民在监督,万目睽睽难逃脱。汝言惧捉手不伸,他道不伸能自觉,其实想伸不敢伸,人民咫尺手自缩。思考是一件最辛苦的工作,这可能是为什么很少人愿意思考的原因。我们不能成为贵 族的后代,但我们可以成为贵族的祖先。我已经看见,多年后的自己。自信!开朗!豁达!无论现在的你处于什么状态,是时候对自己说:不为模糊不清的未来担忧,只为清清楚楚的现在 努力。无人理睬时,坚定执着。万人羡慕时,心如止水。无志者常立志,有志者立常志,咬定一个目标的人最容易成功。心随境转是凡夫,境随心转是圣贤。学会以最简单的方式生活,不 要让复杂的思想破坏生活的甜美。要无条件自信,即使在做错的时候。一个人能走多远,要看他有谁同行;一个人有多优秀,要看他有谁指点;一个人有多成功,要看他有谁相伴。成功在 优点的发挥,失败是缺点的累积。从绝望中寻找希望,人生终将辉煌。当你跌到谷底时,那正表示,你只能往上,不能往下!当你决定坚持一件事情,全世界都会为你让路。贫穷本身并不 可怕,可怕的是贫穷的思想,以及认为自己命中注定贫穷。一旦有了贫穷的思想,就会丢失进取心,也就永远走不出失败的阴影请享受无法回避的痛苦。人的一生就是体道,悟道,最后得 道的过程。人生就是一万米长跑,如果有人非议你,那你就要跑得快一点,这样,那些声音就会在你的身后,你就再也听不见了。人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起 来却有久久不会退去的余香。人生可如蚁而美如神。人生是各种不同的变故、循环不已的痛苦和欢乐组成的。那种永远不变的蓝天只存在于心灵中间,向现实的人生去要求未免是奢望。是 我们不认识自己的智慧,不明白自己拥有全宇宙的力量。最巨大的遗憾,是被命运安排!做好自己其他的让别人说去吧!成功不是凭梦想和希望,而是凭努力和实践成功就是简单的事情不
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.解析法解题步骤 第一步:建立适当的坐标系,用坐标和方程表示问题 中涉及的几何元素,将几何问题转化为代数问题; 第二步:通过代数运算,解决代数问题; 第三步:把代数运算的结果“翻译”成几何结论. 3.体会用坐标伸缩变换研究图形伸缩变换的思想方法 (1)平面几何图形的伸缩变换可以归结为坐标伸缩变 换,学习中可结合坐标间的对应关系进行理解. (2)对于图形的伸缩变换问题,需要搞清新旧坐标,区 别x,y和x′,y′,点(x,y)在原曲线上,点(x′,y′)在变 换后的曲线上,因此点(x,y)的坐标满足原曲线的方 程,点(x′,y′)的坐标适合变换后的曲线方程.
自学导引
1.平面直角坐标系 (1)平面直角坐标系的作用:使平面上的点与坐标(有序实数 对),曲线与方程建立联系,从而实现数与形的结合. (2)坐标法:根据几何对象的特征,选择适当的坐标系,建 立它的方程,通过方程研究它的性质及与其他几何图形的关 系. (3)坐标法解决几何问题的“三步曲”:第一步,建立适当坐 标系,用坐标和方程表示问题中涉及的几何元素,将几何问 题转化成代数问题;第二步,通过代数运算,解决代数问 题;第三步,把代数运算结果“翻译”成几何结论.
【思维导图】
题型一 运用坐标法解决解析几何问题
【例1】 如图所示,圆 O1 与圆 O2 的半径都是
1,|O1O2|=4,过动点 P 分别作圆 O1、圆 O2 的切线 PM、PN(M、N 分别为切点),
使得|PM|= 2|PN|,试建立适当的坐标系, 并求动点 P 的轨迹方程.
[思维启迪] 本题是解析几何中求轨迹方程问题,由题意建立
解 法一 坐标法:以A为坐标原点O,AB所在的直线为
x轴,建立平面直角坐标系xOy,
则 A(0,0),设 B(a,0),C(b,c),
则 AC 的中点 Eb2,2c,由对称性知 D(b-a,c), 所以|AB|2=a2,|AD|2=(b-a)2+c2, |AC|2=b2+c2,|BD|2=(b-2a)2+c2, |AC|2+|BD|2=4a2+2b2+2c2-4ab =2(2a2+b2+c2-2ab), |AB|2+|AD|2=2a2+b2+c2-2ab, ∴|AC|2+|BD|2=2(|AB|2+|AD|2).
用下,点 P(x,y)对应到点 P′(x′,y′),称 φ 为平面直角坐标
系中的坐标伸缩变换,简称伸缩变换.
想一想 如何理解点的坐标的伸缩变换? 提示 在平面直角坐标系中,变换φ将点P(x,y)变换到 P′(x′,y′).当λ>1时,是横向拉伸变换,当0<λ<1时,是横 向压缩变换;当μ>1时,是纵向拉伸变换,当0<μ<1时, 是纵向压缩变换.
标系,则O1(-2,0),O2(2,0).
由已知|PM|= 2|PN|,得|PM|2=2|PN|2. 因为两圆的半径均为 1,所以|PO1|2-1=2(|PO2|2-1). 设 P(x,y),则(x+2)2+y2-1=2[(x-2)2+y2-1], 即(x-6)2+y2=33, 所以所求轨迹方程为(x-6)2+y2=33(或 x2+y2-12x+3=0).
2.平面直角坐标系中的伸缩变换 (1)平面直角坐标系中方程表示图形,那么平面图形的伸 缩变换就可归结为坐标伸缩变换,这就是用代数方法研 究几何变换.
(2)平面直角坐标系中的坐标伸缩变换:设点 P(x,y)是平面
直角坐标系中任意一点,在变换__φ_:___xy_′′=__=_μ_yλ_,x_,_μ_>_λ0_>_0_的作
坐标系,写出相关点的坐标,由几何关系式:|PM|= 2|PN|, 即|PM|2=2|PN|2,结合图形由勾股定理转化为 |PO1|2-12= 2(|PO2|2-12).设 P(x,y),由距离公式写出代数关系式,化简 整理可得.
解 以O1O2的中点O为原点,O1O2所在的 直线为x轴,建立如图所示的平面直角坐
名师点睛
1.坐标系是现代数学中的重要内容,它在数学发展的历史上 起着划时代的作用.坐标系的创建,在代数和几何之间架 起了一座桥梁.利用坐标系,我们可以方便地用代数的方 法确定平面内一个点的位置,也可以方便地确定空间内一 个点的位置.它使几何概念得以用代数的方法来描述,几 何图形可以通过代数形式来表达,这样便可将抽象的代数 方程用形象的几何图形表示出来,又可将先进的代数方法 应用于几何学的研究. 建立直角坐标系,数形结合,我们可以解决许多数学问 题,如函数问题就常常需要借助直角坐标系来解决.
【反思感悟】 建立坐标系的几个基本原则:
①尽量把点和线段放在坐标轴上.
②对称中心一般放在原点.
③对称轴一般作为坐标轴.
【变式1】 已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与
圆C1及圆C2相外切,求动圆圆心M的轨迹方程.
解 如图所示,设动圆 M 与圆 C1 及圆 C2 分别外切于
点 A 和 B,根据两圆外切的条件,得 |MC1|-|AC1|=|MA|, |MC2|-|BC2|=|MB|. ∵|MA|=|MB|, ∴|MC1|-|AC1|=|MC2|-|BC2|,
即|MC2|-|MC1|=2. 这表明动点 M 与两定点 C2、C1 的距离的差是常数 2. 根据双曲线的定义,动点 M 的轨迹为双曲线的左支(点 M 与 C2 的距离大,与 C1 的距离小),这里 a=1,c=3, 则 b2=8,设点 M 的坐标为(x,y),其轨迹方程为 x2 -y82=1 (x<0).
题型二 用坐标法解决平面几何问题Байду номын сангаас
【例2】
在▱ABCD中,求证:|AC|2+|BD|2=2(|AB|2+|AD|2).
[思维启迪] 解答本题可以运用坐标方法,先在▱ABCD所在的平面内建立
平面直角坐标系,设出点A、B、C、D的坐标,再由距离公式完成证
明.也可以运用向量的线性运算以及数量积运算加以证明.
人教版A版高中数学选 修4-4全套PPT课件
平面直角坐标系
【课标要求】 1.了解平面直角坐标系的组成,领会坐标法的应用. 2.理解平面直角坐标系中的伸缩变换. 3.能够建立适当的直角坐标系,运用解析法解决数学问题.
【核心扫描】 1.对平面直角坐标系的应用以及坐标法的考查是本节热点. 2.本节内容常与方程、平面几何图形结合命题. 3.理解图形伸缩变换与坐标变换之间的关系.(难点)