2013中考数学专题六:反比例函数
2013年中考数学专题复习之反比例函数
1、(2007四川资阳)如图6,已知A(-4,2)、B(n,-4)是一次函数y=kx+b 的图象与反比例函数的图象的两个交点. (1) 求此反比例函数和一次函数的解析式; (2) 根据图象写出使一次函数的值小于反比例函数的值的x的取值范
2、(2007四川乐山)如图,反比例函数的图象与一次函数的图象交于, 两点. (1)求反比例函数与一次函数的解析式; (2)根据图象回答:当取何值时,反比例函数的值大于一次 函数的值.
10、如图14,已知,是一次函数的图象和 反比例函数的图象的两个交点. (1)求反比例函数和一次函数的解析式; (2)求直线与轴的交点的坐标及△的面积; (3)求方程的解(请直接写出答案); (4)求不等式的解集(请直接写出答案).
11、已知:如图,正比例函数的图象与反比例函数的图象交于点 (1)试确定上述正比例函数和反比例函数的表达式; (2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于 正比例函数的值? (3)是反比例函数图象上的一动点,其中过点作直线轴,交轴于点;过 作直线轴交轴于点,交直线于点.当四边形的面积为6时,请判断线段 的大小关系,并说明理由.
11.如图,等腰梯形ABCD中,AB = CD,AD//BC,AD = 2,BC = 4,. 如果P是BC上一点,Q是AP上一点,且. ⑴求证:⊿ABP ∽⊿DQA; ⑵当点P在BC上移动时,线段DQ的长度也随之变化,设PA = x,DQ = ,求y与x之间的函数关系式,并指出x的取值范围.
12.已知:如图,矩形ABCD中,AB=5,AD=3,E是CD上一点(不与C、D重 合)连接AE,过点B作BF⊥AE,垂足为F。 (1)若DE=2,求的值; (2)设,① 求关于之间的函数关系式,写出自变量的取值范围;② 问 当点E从D运动到C,BF的值在增大还是减小?并说明理由。
2013中考数学试题汇编 反比例函数(基础篇)
1、(2013•衢州)若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而增大,则m的取值范围是()A.m<﹣2 B.m<0 C.m>﹣2 D.m>02、(2013•温州)已知点P(1,﹣3)在反比例函数y=(k≠0)的图象上,则k的值是()A.3B.﹣3 C.D.﹣3、(2013•遂宁)已知反比例函数y=的图象经过点(2,﹣2),则k的值为()A.4B.﹣12C.﹣4 D.﹣24、(2013•滨州)若点A(1,y1)、B(2,y2)都在反比例函数的图象上,则y1、y2的大小关系为()A.y1<y2B.y1≤y2C.y1>y2D.y1≥y25、(2013•株洲)已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y2<y1<y3D.y3<y2<y16、(2013•娄底)如图,已知A点是反比例函数的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为.7、(2013•宜昌)如图,点B在反比例函数y=(x>0)的图象上,横坐标为1,过点B分别向x轴,y轴作垂线,垂足分别为A,C,则矩形OABC的面积为()A.1B.2C.3D.48、(2013•牡丹江)如图,反比例函数的图象上有一点A,AB平行于x轴交y轴于点B,△ABO的面积是1,则反比例函数的解析式是()A.B.C.D.9、(2013•淮安)若反比例函数的图象经过点(5,﹣1).则实数k的值是()A . ﹣5B .﹣C .D .510、(2013•常州)下列函数中,图象经过点(1,﹣1)的反比例函数关系式是( ) A . B . C . D .11、(2013•荆门)若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx ﹣k 的图象过( )A . 第一、二、四象限B . 第一、三、四象限C . 第二、三、四象限D . 第一、二、三象限12、(2013•绥化)对于反比例函数y=,下列说法正确的是( ) A . 图象经过点(1,﹣3) B . 图象在第二、四象限C .x >0时,y 随x 的增大而增大 D . x <0时,y 随x 增大而减小13、(2013哈尔滨)反比例函数12ky x-=的图象经过点(-2,3),则k 的值为( ). (A)6 (B)-6 (C) 72 (D) 72-14、(2013•毕节地区)一次函数y=kx+b (k ≠0)与反比例函数的图象在同一直角坐标系下的大致图象如图所示,则k 、b 的取值范围是( )A . k >0,b >0B . k <0,b >0C . k <0,b <0D . k >0,b <015、(2013安顺)若是反比例函数,则a 的取值为( )A .1B .﹣lC .±lD .任意实数16、(2013年广东省3分、10)已知210k k <<,则是函数11-=x k y 和xk y 2=的图象大致是17、(2013达州)点()11,x y 、()22,x y 在反比例函数ky x=的图象上,当120x x <<时,12y y <,则k 的取值可以是___ _(只填一个符合条件的k 的值).36、(2013•巴中)在﹣1、3、﹣2这三个数中,任选两个数的积作为k 的值,使反比例函数的图象在第一、三象限的概率是 .18、(2013•莱芜)M (1,a )是一次函数y=3x+2与反比例函数图象的公共点,若将一次函数y=3x+2的图象向下平移4个单位,则它与反比例函数图象的交点坐标为 . 39、(2013•宁波)已知一个函数的图象与y=6x的图象关于y 轴成轴对称,则该函数的解析式为 .19、(2013•包头)设有反比例函数y=,(x 1,y 1),(x 2,y 2)为其图象上两点,若x 1<0<x 2,y 1>y 2,则k 的取值范围 . 20、(2013•宁夏)如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C ,则k 的值为 ﹣6 .21、(2013•铁岭)如图,点P 是正比例函数y=x 与反比例函数y=在第一象限内的交点,PA ⊥OP 交x 轴于点A ,△POA 的面积为2,则k 的值是 .22、(2013•衡阳)反比例函数y=的图象经过点(2,﹣1),则k 的值为 . 23、(2013•鄂州)已知正比例函数y=﹣4x 与反比例函数的图象交于A 、B 两点,若点A 的坐标为(x ,4),则点B 的坐标为 (1,﹣4) .24、(2013•毕节地区)一次函数y=kx+1的图象经过(1,2),则反比例函数的图象经过点(2, ).25、(2013陕西)如果一个正比例函数的图象与一个反比例函数xy 6=的图象交),(),,(2211y x B y x A ,那么))((1212y y x x --值为 .26、(2013•湘西州)如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数y=的图象有一个交点A(m,2).(1)求m的值;(2)求正比例函数y=kx的解析式;(3)试判断点B(2,3)是否在正比例函数图象上,并说明理由.27、(2013•天津)已知反比例函数y=(k为常数,k≠0)的图象经过点A(2,3).(Ⅰ)求这个函数的解析式;(Ⅱ)判断点B(﹣1,6),C(3,2)是否在这个函数的图象上,并说明理由;(Ⅲ)当﹣3<x<﹣1时,求y的取值范围.28、(2013•广安)已知反比例函数y=(k≠0)和一次函数y=x﹣6.(1)若一次函数与反比例函数的图象交于点P(2,m),求m和k的值.(2)当k满足什么条件时,两函数的图象没有交点?29、(2013•白银)如图,一次函数与反比例函数的图象相交于点A,且点A的纵坐标为1.(1)求反比例函数的解析式;(2)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.30、(2013•新疆)如图,已知一次函数y1=kx+b与反比例函数的图象交于A(2,4)、B(﹣4,n)两点.(1)分别求出y1和y2的解析式;(2)写出y1=y2时,x的值;(3)写出y1>y2时,x的取值范围.31、(2013•衢州)如图,函数y1=﹣x+4的图象与函数y2=(x>0)的图象交于A(a,1)、B(1,b)两点.(1)求函数y2的表达式;(2)观察图象,比较当x>0时,y1与y2的大小.32、(2013甘肃兰州25)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.33、(2013•佛山)已知正比例函数y=ax与反比例函数的图象有一个公共点A(1,2).(1)求这两个函数的表达式;(2)画出草图,根据图象写出正比例函数值大于反比例函数值时x的取值范围.34、(2013•钦州)如图,一次函数y=ax+b 的图象与反比例函数y=的图象交于A (﹣2,m ),B (4,﹣2)两点,与x 轴交于C 点,过A 作AD ⊥x 轴于D . (1)求这两个函数的解析式: (2)求△ADC 的面积.35、(2013聊城)如图,一次函数的图象与x 轴,y 轴分别相交于A ,B 两点,且与反比例函数y=的图象在第二象限交与点C ,如果点A 为的坐标为(2,0),B 是AC 的中点.(1)求点C 的坐标;(2)求一次函数的解析式.36、(2013成都市)如图,一次函数1y 1x =+的图像与反比例函数2y kx=(k 为常数,且0k ≠)的图像都经过点A (m,2).(1)求点A 的坐标及反比例函数的表达式;(2)结合图像直接比较:当x 0>时,1y 与2y 的大小。
反比例函数2013全国中考题汇编
反比例函数2013全国中考题汇编(2013兰州)当x>0时,函数的图象在()A.第四象限B.第三象限C.第二象限D.第一象限考点:反比例函数的性质.分析:先根据反比例函数的性质判断出反比例函数的图象所在的象限,再求出x>0时,函数的图象所在的象限即可.解答:解:∵反比例函数中,k=﹣5<0,∴此函数的图象位于二、四象限,∵x>0,∴当x>0时函数的图象位于第四象限.故选A点评:本题考查的是反比例函数的性质,即反比例函数y=(k≠0)的图象是双曲线;当k<0时,双曲线的两支分别位于第二、第四象限.(2013兰州)已知A(﹣1,y1),B(2,y2)两点在双曲线y=上,且y1>y2,则m的取值范围是()A.m<0B.m>0C.m>﹣D.m<﹣考点:反比例函数图象上点的坐标特征.专题:计算题.分析:将A(﹣1,y1),B(2,y2)两点分别代入双曲线y=,求出y1与y2的表达式,再根据y1>y2则列不等式即可解答.解答:解:将A(﹣1,y1),B(2,y2)两点分别代入双曲线y=得,y1=﹣2m﹣3,y2=,∵y1>y2,∴﹣2m﹣3>,解得m<﹣,故选D.点评:本题考查了反比例函数图象上点的坐标特征,要知道,反比例函数图象上的点符合函数解析式.(2013兰州)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)先根据点A的坐标求出反比例函数的解析式为y1=,再求出B的坐标是(﹣2,﹣2),利用待定系数法求一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围x <﹣2或0<x<1.(3)根据坐标与线段的转换可得出:AC、BD的长,然后根据三角形的面积公式即可求出答案.解答:解:(1)∵函数y1=的图象过点A(1,4),即4=,∴k=4,即y1=,又∵点B(m,﹣2)在y1=上,∴m=﹣2,∴B(﹣2,﹣2),又∵一次函数y2=ax+b过A、B两点,即,解之得.∴y2=2x+2.综上可得y1=,y2=2x+2.(2)要使y1>y2,即函数y1的图象总在函数y2的图象上方,∴x<﹣2或0<x<1.(3)由图形及题意可得:AC=8,BD=3,∴△ABC的面积S△ABC=AC×BD=×8×3=12.点评:本题主要考查了待定系数法求反比例函数与一次函数的解析式.以及三角形面积的求法,这里体现了数形结合的思想.(2013•乌鲁木齐)如图,反比例函数y=(x>0)的图象与矩形OABC 的边长AB、BC分别交于点E、F且AE=BE,则△OEF的面积的值为.考点:反比例函数系数k的几何意义.分析:连接OB.首先根据反比例函数的比例系数k的几何意义,得出S△AOE=S△COF=1.5,然后由三角形任意一边的中线将三角形的面积二等分及矩形的对角线将矩形的面积二等分,得出F是BC的中点,则S△BEF=S△OCF=0.75,最后由S△OEF=S矩形AOCB﹣S△AOE﹣S△COF ﹣S△BEF,得出结果.解答:解:连接OB.∵E、F是反比例函数y=(x>0)的图象上的点,EA⊥x轴于A,FC⊥y 轴于C,∴S△AOE=S△COF=×3=.∵AE=BE,∴S△BOE=S△AOE=,S△BOC=S△AOB=3,∴S△BOF=S△BOC﹣S△COF=3﹣=,∴F是BC的中点.∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣﹣﹣×=.故答案是:.点评:本题主要考查反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.得出点F为BC的中点是解决本题的关键.(2013•江西)如图,直线y=x+a-2与双曲线y=交于A,B两点,则当线段AB的长度取最小值时,a的值为().A.0B.1C.2D.5【答案】C.【考点解剖】本题以反比例函数与一次函数为背景考查了反比例函数的性质、待定系数法,以及考生的直觉判断能力.【解题思路】反比例函数图象既是轴对称图形又是中心对称图形,只有当A、B、O三点共线时,才会有线段AB的长度最小,(当直线AB 的表达式中的比例系数不为1时,也有同样的结论).【解答过程】把原点(0,0)代入中,得.选C..【方法规律】要求a的值,必须知道x、y的值(即一点的坐标)由图形的对称性可直观判断出直线AB过原点(0,0)时,线段AB才最小,把原点的坐标代入解析式中即可求出a的值.【关键词】反比例函数一次函数双曲线线段最小(2013•江西)如图,在平面直角坐标系中,反比例函数(x>0)的图象和矩形ABCD的第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.【答案】(1)B(2,4),C(6,4),D(6,6).(2)如图,矩形ABCD向下平移后得到矩形,设平移距离为a,则A′(2,6-a),C′(6,4-a)∵点A′,点C′在y=的图象上,∴2(6-a)=6(4-a),解得a=3,∴点A′(2,3),∴反比例函数的解析式为y=.【考点解剖】本题以矩形为背景考查用待定系数法求反比例函数的解析式.【解题思路】先根据矩形的对边平行且相等的性质得到B、C、D三点的坐标,再从矩形的平移过程发现只有A、C两点能同时在双曲线上(这是种合情推理,不必证明),把A、C两点坐标代入y=中,得到关于a、k的方程组从而求得k的值.【解答过程】略.【方法规律】把线段的长转化为点的坐标,在求k的值的时候,由于k 的值等于点的横坐标与纵坐标之积,所以直接可得方程2(6-a)=6(4-a),求出a后再由坐标求k,实际上也可把A、C两点坐标代入y=中,得到关于a、k的方程组从而直接求得k的值.(2013,河北)反比例函数y=mx的图象如图3所示,以下结论:①常数m<-1;②在每个象限内,y随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(-x,-y)也在图象上.其中正确的是A.①②B.②③C.③④D.①④(2013•安徽)函数y=(1-k)/x与y=2x的图象没有交点,则的取值范围为(D)A.k0D.k>1(2013•上海)已知平面直角坐标系(如图6),直线经过第一、二、三象限,与y轴交于点,点(2,)在这条直线上,联结,△的面积等于1.(1)求的值;(2)如果反比例函数(是常量,)的图像经过点,求这个反比例函数的解析式.(2013•毕节地区)一次函数y=kx+b(k≠0)与反比例函数的图象在同一直角坐标系下的大致图象如图所示,则k、b的取值范围是()A.k>0,b>0B.k<0,b>0C.k<0,b<0D.k>0,b<0考点:反比例函数与一次函数的交点问题.分析:本题需先判断出一次函数y=kx+b与反比例函数的图象在哪个象限内,再判断出k、b的大小即可.解答:解:∵一次函数y=kx+b的图象经过二、三、四象限,∴k<0,b<0又∵反比例函数的图象经过二、四象限,∴k<0.综上所述,k<0,b<0.故选C.点评:本题主要考查了反比例函数和一次函数的交点问题,在解题时要注意图象在哪个象限内,是解题的关键.(2013•邵阳)下列四个点中,在反比例函数的图象上的是()A.(3,﹣2)B.(3,2)C.(2,3)D.(﹣2,﹣3)考点:反比例函数图象上点的坐标特征.分析:根据反比例函数中k=xy的特点进行解答即可.解答:解:A、∵3×(﹣2)=﹣6,∴此点在反比例函数的图象上,故本选项正确;B、∵3×2=6≠﹣6,∴此点不在反比例函数的图象上,故本选项错误;C、∵2×3=6≠﹣6,∴此点不在反比例函数的图象上,故本选项错误;D、∵(﹣2)×(﹣3)=6≠﹣6,∴此点不在反比例函数的图象上,故本选项错误.故选A.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数y=中,k=xy为定值是解答此题的关键.(2013•柳州)如图,点P(a,a)是反比例函数y=在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是()A.3B.4C.D.考点:反比例函数系数k的几何意义;等边三角形的性质分析:如图,根据反比例函数系数k的几何意义求得点P的坐标,则易求PD=4.然后通过等边三角形的性质易求线段AD=,所以S△POA=OA•PD=××4=.解答:解:如图,∵点P(a,a)是反比例函数y=在第一象限内的图象上的一个点,∴16=a2,且a>0,解得,a=4,∴PD=4.∵△PAB是等边三角形,∴AD=.∴OA=4﹣AD=,∴S△POA=OA•PD=××4=.故选D.点评:本题考查了反比例函数系数k的几何意义,等边三角形的性质.等边三角形具有等腰三角形“三合一”的性质.(2013•铜仁)已知矩形的面积为8,则它的长y与宽x之间的函数关系用图象大致可以表示为()(2013•临沂)如图,等边三角形OAB的一边OA在x轴上,双曲线在第一象限内的图象经过OB边的中点C,则点B的坐标是()A.(1,)B.(,1)C.(2,)D.(,2)考点:反比例函数综合题.分析:过点B作BD⊥x轴,垂足为D,设点B的坐标为(a,b)(a>0),再求出b和a的关系和C点的坐标,由点C在双曲线上,求出a的值,进而求出B点坐标.解答:解:过点B作BD⊥x轴,垂足为D,设点B的坐标为(a,b)(a >0),∵三角形OAB是等边三角形,∴∠BOA=60°,在Rt△BOA中,tan60°==,∴b=a,∵点C是OB的中点,∴点C坐标为(,),∵点C在双曲线上,∴a2=,∴a=2,∴点B的坐标是(2,2),故选C.点评:本题主要考查反比例函数的综合题,解答本题的关键是求出点B 的坐标,此题难度不大.(2013•茂名)如图,反比例函数的图象与一次函数的图象相交于两点A(,3)和B(,).(1)求一次函数的表达式;(2)观察图象,直接写出使反比例函数值大于一次函数值的自变量的取值范围.(2013•红河)如图,正比例函数的图象与反比例函数()的图象相交于A、B两点,点A的纵坐标为2.(1)求反比例函数的解析式;(2)求出点B的坐标,并根据函数图象,写出当时,自变量的取值范围.解:(1)设A点的坐标为(m,2),代入得:,所以点A的坐标为(2,2).∴.∴反比例函数的解析式为:.…………………………3分(2)当时,.解得.∴点B的坐标为(2,2).或者由反比例函数、正比例函数图象的对称性得点B的坐标为(2,2).由图象可知,当时,自变量的取值范围是:或.。
2013年全国数学中考压轴题分类-反比例函数
2013年全国各地中考数学压轴题专集答案三、反比例函数(浙江湖州)如图①,O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,sin ∠AOB =45,反比例函数y =kx (k >0)在第一象限内的图象经过点A ,与BC 交于点F .(1)若OA =10,求反比例函数的解析式;(2)若点F 为BC的中点,且△AOF 的面积S =12,求OA 的长和点C 的坐标; (3)在(2)的条件下,过点F 作EF ∥OB ,交OA 于点E (如图②),点P 为直线EF 上的一个动点,连结P A ,PO .是否存在这样的点P ,使以P ,O ,A 为顶点的三角形是直角三角形?若存在,请直接写出....所有点P 的坐标;若不存在,请说明理由.解:(1)过点A 作∵sin ∠AOB =45,∴AH =8,OH =6∴A 点坐标为(6根据题意:8=k6,∴∴反比例函数的解析式为y =48x (x >0)(2)设OA =a (a >0),过点F 作FM ⊥x 轴于M ∵sin ∠AOB =45,∴AH =45a ,OH =35a∴S △AOH =12·45a ·35a =625a 2∵S △AOF =12,∴S □AOBC =24∵F 为BC 的中点,∴S △OBF =6∵BF =12a ,FBM =∠AOB ,∴FM =25a ,BM =310a∴S △BMF =12BM ·FM =12·310a ·25a =350a 2∴S △FOM =S △OBF +S △BMF =6+350a 2∵点A ,F 都在y =k x 的图象上,∴S △AOH =S △FOM =12k∴625a 2=6+350a 2,∴a =1033,∴OA =1033∴AH =833,∴OH =2 3∵S □AOBC =OB ·AH =24,∴OB =AC =3 3 ∴C (53,833) (3)存在三种情况: 当∠APO =90°时,在OA 的两侧各有一点P ,分别为:图①P 1(833,433),P 2(-233,433)当∠P AO =90°时,P 3(3439,433)当∠POA =90°时,P 4(-1639,433) (浙江义乌)如图1,已知y =6x (x >0)图象上一点P ,P A ⊥x 轴于点A (a ,0),点B 坐标为(0,b )(b >0),动点M 是y 轴正半轴上B 点上方的点,动点N 在射线AP 上,过点B 作AB 的垂线,交射线AP 于点D ,交直线MN 于点Q ,连结AQ ,点C 为AQ 的中点. (1)如图2,连结BP ,求△P AB 的面积;(2)当点Q 在线段BD 上时,若四边形BQNC 是菱形,面积为23,求此时P 点的坐标;(3)当点Q 在射线BD 上时,且a =3,b =1,若以点B ,C ,N ,Q 为顶点的四边形是平行四边形,求这个平行四边形的周长. 解:(1)S △P AB =S △P AO(2)如图1∴BQ =BC =NQ ,∠∵AB ⊥BQ ,C 为AQ ∴∠BQC =60°,∴∠在△ABQ 和△ANQ 中⎩⎪⎨⎪⎧BQ =NQ∠BQA =∠NQA QA =QA∴△ABQ ≌△ANQ ∴∠BAQ =∠NAQ =30°,∴∠BAO =30°∵S 菱形BCNQ =23,∴BQ =2 ∴AB =3BQ =23,∴OA =32AB =3 又∵P 点在反比例函数y =6x的图像上∴P 点坐标为(3,2)(3)∵a =3,b =1,∴A (3,0),B (0,1) ∴OA =3,OB =1,∴AB =10 ∵△AOB ∽△DBA ,∴OB AB =OA BD∴BD =310①如图2,当点Q 在线段BD 上时 ∵AB ⊥BD ,C 为AQ 的中点 ∴BC =12AQ∵四边形BQNC 是平行四边形 ∴QN =BC ,CN =BQ ,CN ∥BD图1图2图1∴CN QD =AC AQ =12∴BQ =CN =13BD =10∴AQ =2BQ =2 5 ∴C □BQNC =210+2 5②如图3,当点Q 在线段BD 的延长线上时 ∵AB ⊥BD ,C 为AQ 的中点 ∴BC =CQ =12AQ∴平行四边形BNQC 是菱形,BN =CQ ,BN ∥CQ ∴BN QD =BN AQ =12,∴BQ =3BD =910 ∴AQ =AB 2+BQ 2=(10)2+(910)2=2205 ∴C □BQNC =2AQ =4205(浙江模拟)如图,直线y =12x +2与x 轴交于点A ,与反比例函数y =kx (x >0)的图象交于点B ,BC ⊥x 轴于C 点,且S △ABC =9.(1)求反比例函数的解析式;(2)若点P 是反比例函数图象上的一动点,且位于直线BC 的右侧,过P 点作y 轴的平行线,交直线AB 于点M ,交x 轴于点N .①当∠BPM =∠CPN 时,求P 点坐标;②是否存在点P ,使△BPM 与△BPC 全等?若存在,求点P 的坐标;若不存在,说明理由; ②当△BPM 是等腰三角形时,直接写出点P 的坐标.解:(1)∵y ∴x =-4,∴设B (m ,12m +4 ∵S △ABC =9解得m 1=-10(舍去),m 2=2∴B (2,3),∴k =2×3=6 ∴反比例函数的解析式为y =6x(2)①过点P 作PD ⊥BC 于点D ∵BC ⊥x 轴,MN ∥y 轴,∴BC ∥MN ∴PD ⊥MN∴∠BPM +∠BPD =90°,∠CPN +∠CPD =90° ∵∠BPM =∠CPN ,∴∠BPD =∠CPD ∴△BPD ≌△CPD ,∴BD =CD ∴D (2,32)当y =32时,32=6x,解得x =4图3∴P (4,32)②当CP ∥BM 时,四边形BCPM 是平行四边形 此时△BPM ≌△BPC设直线CP 的解析式为y =12x +b ,把C (2,0)代入,得:0=12×2+b ,解得b =-1,∴y =12x -1 令12x -1=6x ,解得x 1=1+13,x 2=1-13(舍去) ∴P (13+1,13-12) 当BM =BC 时,可求PM ≠PC 此时△BPM 与△BPC 不全等 同理,当PM =PC 时,BM ≠BC 此时△BPM 与△BPC 也不全等③P 1(4,32),P 2(35+32,5-1),P 3(6,1)提示:如图所示,有三种情况减小,求t 的最大值;(3)记二次函数y =a (x +m )2+4图象的顶点为B ,以AB 为边作矩形ABCD ,边CD 与反比例函数y 解:(1)∵y =12x 2+2x +n =12(x +2)2+n -2,∴顶点坐标为(-2,n -2)∴a =12,m =2+1=3,n -2=4,∴n =6∴y =12(x +3)2+4把x =1,y =n 代入y =12(x +3)2+4,得n =12(1+3)2+4=12 把x =1,y =12代入y =kx得k =12(2)∵反比例函数y =12x在图象所在的每一象限内,y 随着x 的增大而减小而二次函数y =12(x +3)2+4的对称轴为直线x =-3要使二次函数y =12(x +3)2+4在直线x =t 的一侧都是y 随着x 的增大而减小必须x ≤-3∴t 的最大值为-3(3)过A 作直线l ∥x 轴,作DF ⊥l 于F ,BE ⊥l 于E ∵B (-3,4),A (1,12),∴AE =4,BE =8 ∵BE ⊥l ,∴AB =AE 2+BE 2=42+82=4 5 ∵四边形ABCD 是矩形,∴∠BAD =90° ∴∠EAB +∠F AD =90°∵BE ⊥l 于E ,∴∠EAB +∠EBA =90° ∴∠F AD =∠EBA ,∴Rt △EBA ∽Rt △F AD ∴AF BE =DF AE =AD ABAD = 5 =1 ∴点D 的坐标为(3,11) 同理可求点C (-1,3)(江苏泰州)如图,在平面直角坐标系xO y 中,直线y =x -2与y 轴相交于点A ,与反比例函数在第一象限内的图象相交于点B (m ,2). (1)求该反比例函数的关系式;(2)将直线y =x -2向上平移后与反比例函数在第一象限内的图象相交于点C ,且△ABC 的面积为18,求平移后的直线的函数关系式;(3)在(2)的条件下,在线段AC 上存在一点P ,使△APB ∽△ABC ,求点P 的坐标.解:(1)∵点B (m ,2)在直线y =x -2上 ∴2=m -2,m =4,∴点B (4,2) 设反比例函数的关系式为y =kx∵点B (4,2)在反比例函数的图象上 ∴k =4×2=8 ∴y =8x(2)作BD ⊥y 轴于D ,CE ⊥y 轴于E 设C 点坐标为(x ,8x)∴S △ABC =S 梯形BDEC +S △ABD -S △ACE=12(x +4)(8x -2)+12×4×4-12x (8x +2) =16x-2x +4 ∵S △ABC =18,∴16x-2x +4=18即x 2+7x -8=0,解得x 1=-8(舍去),x 2=1∴C 点坐标为(1,8)设平移后的直线的函数关系式为y =x +b ,把C (1,8)代入 得8=1+b ,∴b =7∴平移后的直线的函数关系式为y =x +7 (3)设直线AC 的函数关系式为y =tx +n 把A (0,-2),C (1,8)代入得⎩⎪⎨⎪⎧n =-2t +n =8 解得⎩⎪⎨⎪⎧t =10n =-2∴y =10x -2 设P (x ,10x -2),∴AP 2=x 2+(10x -2+2)2=101x 2 ∵△APB ∽△ABC ,∴AP 2AB 2=AB 2AC2而AB 2=2×42=32,AC 2=12+(8+2)2=101 ∴101x 232=32101,解得x =32101(舍去负值) ∴点P 的坐标为(32101,118101)(江苏连云港)如图,已知一次函数y =2x +2的图象与y 轴交于点B ,与反比例函数y =k 1x 的图象的一个交点为A (1,m ).过点B 作AB 的垂线BD ,与反比例函数y =k 2x (x >0)的图象交于点D(n ,-2).(1)求k 1和k 2的值; (2)若直线AB 、BD 分别交x 轴于点C 、E ,试问在y 轴上是否存在一点F ,使得△BDF ∽△ACE .若存在,求出点F 的坐标;若不存在,请说明理由.(1)∵点A (1,m )在直线上y =2x +2∴m =4,即A (1,4)将A 点坐标代入y =k 1x中得k 1=4过点A 、D 分别作y 轴的垂线,垂足分别为点M 、N ∵AB ⊥BD ,∴△ABM ∽△BDN ∴AM BN =BM DN ,即14=2DN ∴DN =8,∴D (8,-2)将D 点坐标代入y =k 2x 中得k 2=-16(2)存在符合条件的点F ,F (0,-8) 由y =2x +2,解得C (-1,0)∵OB =ON =2,DN =8,∴以OE =4易知AE =5,CE =5,AC =25,BD =45,∠EBO =∠ACE =∠CAE 若△BDF ∽△ACE ,则BD AC =BF AE ,即4525=BF5∴BF =10,∴F (0,-8)(江苏镇江)我们知道:一次函数y =x -1的图象可以由正比例函数y =x 的图象向右平移1个单位长度得到,类似地,函数y =k x +2(k ≠0)的图象是由反比例函数y=kx (k ≠0)的图象向左平移2个单位长度得到.运用这一知识解决下列问题.如图,已知反比例函数y =4x 的图象C 与正比例函数y =ax (a ≠0)的图象l 相交于点A (2,2)和点B .(1)写出点B 的坐标,并求a 的值;(2)将函数y =4x 的图象和直线AB 同时向右平移n (n >0)个单位长度,得到的图象分别记为C ′和l ′,已知图象C ′经过点M (2,4). ①求n 的值;②分别写出平移后的两个图象C ′和l ′对应的函数关系式; ③直接写出不等式4x -1≤ax -1的解集.解:(1)B (-2,-2)正比例函数y =ax 经过(2,2),则a =1(2)①∵函数y =4x 的图象向右平移n (n >0则设图象C ′对应的函数关系式:y =4x -n ,经过点M (2∴4=42-n,∴n =1②图象像C ′对应的函数关系式:y =4x -1图象l ′对应的函数关系式:y =x -1 ③x ≥3或-1≤x <1(山东济宁)如图1,在平面直角坐标系中,O 为坐标原点,P 是反比例函数y =12x (x >0)图象上的任意一点,以P 为圆心,PO 为半径的圆与坐标轴分别交于点A 、B . (1)求证:线段AB 为⊙P 的直径; (2)求△AOB 的面积;(3)如图2,Q 是反比例函数y =12x (x >0)图象上异于点P 的另一点,以Q 为圆心,QO 为半径画圆与坐标轴分别交于点C 、D ,连接AD 、CB .求证:AD ∥CB .(1)证明:∵点O 在⊙P ∴线段AB 为⊙P 的直径 (2)过点P 作PE ⊥x 轴,由题意可知PE 、PF 是△∴S △AOB =12OB ·OA =12×2PE ∵P 是反比例函数y =12x(x ∴PE ·PF =12∴S △AOB =2PE ·PF =24图1(3)连接CD由(1)知,线段CD 为⊙P 的直径∴点Q 在线段CD 上,且S △COD =S △AOB =24 ∴DO ·OC =BO ·OA ,即OA OC =ODOB又∵∠AOD =∠COB ,∴△AOD ∽△COB ∴∠OAD =∠OCB ,∴AD ∥CB(甘肃兰州)已知反比例函数y =23x 的图象与一次函数y =x +b (b >0)的图象交于A 、B 两点,连接OA 、OB . (1)当∠AOB =150°时,求b 的值;(2)当线段AB 被坐标轴截成相等的三段时,求△AOB 的面积. 解:(1)过A 作AC ⊥y 轴于C ,过B 作BD ⊥x 轴于D解方程组⎩⎪⎨⎪⎧y =23x y =x +b 得⎩⎪⎨⎪⎧x 1=-b +b 2+832y 1=b +b 2+832⎩⎪⎨⎪⎧x 1=-b -b 2+832y 1=b -b 2+832∴AC =BD ,OC =OD∴△AOC ≌△BOD ,∴∠AOC =∠BOD ∵∠AOB =150°,∠COD =90°,∴∠AOC =30° 设AC =a ,则OC =3a ,∴A (a ,3a ) ∵A (a ,3a )在反比例函数y =23x 的图象上∴3a =23a ,∴a =2或a =-2(舍去)∴OC =3a = 6设直线AB 交坐标轴于E 、F 两点 则E (0,b ),F (b ,0),∴OE =OF =b ∴△OEF 是等腰直角三角形 ∴△ACE 是等腰直角三角形 ∴CE =AC = 2 ∴b =6- 2(2)由题意,AE =EF =BF ∴OE =CE =AC ,∴OC =2AC ∴2a =23a,∴a 2= 3∴S △AOB =3S △AOE =3×12OE ·AC =32a 2=332(河北模拟)如图,反比例函数y =kx (k >0)的图象与一次函数y =x +b 的图象交于A 、B 两点(点A 在第一象限,点B 在第三象限),已知点C (1,-1),且AC ∥y 轴. (1)求证:△ABC 是等腰直角三角形;(2)若AB =32,求k 、b 的值;(3)在(2)的条件下,P 是坐标轴上一点,满足∠APB =45°,直接写出点P 的坐标.(1)令x +b =kx ,得x 2+bx -k =0解得x 1=-b +b 2+4k2,x 2=-b -b 2+4k2∴A (-b +b 2+4k2,b +b 2+4k 2),B (-b -b 2+4k 2,b -b 2+4k2∵C (1,-1),AC ∥y 轴,∴点A 的横坐标为1∴-b +b 2+4k2=1,∴b =k -1∴A (1,k ),B (-k ,-1),∴AC=k +1 ∵点B 的纵坐标为-1,点C 的纵坐标为-1 ∴BC ∥x 轴,∴∠ACB =90° ∴BC =k +1,∴AC =BC ∴△ABC 是等腰直角三角形(2)∵A (1,k ),B (-k ,-1),AB =3 2 ∴(1+k)2+(k +1)2=(32)2 解得k 1=2,k 2=-4(舍去) ∴k =2,b =k -1=1(3)P 1(1+22,0),P 2(0,-1-22), P 3(-2-5,0),P 4(0,2+5) 提示:构造辅助圆,构造全等(江西、江西南昌)如图,在平面直角坐标系中,反比例函数y 限内,AD ∥x 轴,AB =2,AD =4,点A 的坐标为(2,6)形记为A ′B ′C ′D ′,在平移过程中,矩形A ′B ′C ′D ′有两个顶点恰好同时落在反比例函数的图象上. (1)求反比例函数的解析式;(2)若矩形以每秒1个单位的速度向下平移,矩形的两条边分别与反比例函数的图象交于E 、F 两点,矩形被直线EF 分为上、下两部分,记下部分的面积为S ,矩形平移的时间为t ,当1<t <5时,求S 关于t 的函数关系式;(3)在(2)的条件下,当E 、F 两点分别在边A ′B ′、B ′C ′上时,将△B ′EF 沿直线EF 翻折,使点B ′落在边A ′D ′上,求此时直线EF 的解析式.解:(1)显然,平移后A ′、设平移距离为a ∵点A ′,C ′∴2(6-a )=6(4-a (2)当1<t ≤3时设边A ′B ′、B ′C ′分别与反比例函数的图象交于E 、F 两点 由题意得:E (2,3),F (64-t,4-t )yB ′E =t -1,B ′F =64-t-2=2t -24-t∴S =S △B ′EF =12(t -1)(2t -24-t )=(t -1)24-t当3<t <5时设边A ′D ′、C ′D ′分别与反比例函数的图象交于E 、F 两点 由题意得:E (66-t ,6-t ),F (6,1)D ′E =6-66-t =30-6t 6-t ,D ′F =6-t -1=5-t ∴S =S 矩形A ′B ′C ′D ′-S △D ′EF =2×4-12(5-t )(30-6t 6-t )=-3t 2+22t -276-t综上,当1<t <5时,S 关于t 的函数关系式为:S =⎩⎪⎨⎪⎧(t -1)24-t(1<t ≤3)-3t 2+22t -276-t (3<t <5)(3)设点B ′落在边A ′D ′上点B ′′处 由题意得:E (2,3),F (64-t ,4-t )B ′E =B ′′E =t -1,B ′F =B ′′F =64-t -2=2t -24-tA ′E =2-(t -1)=3-t ,A ′B ′′=(t -1)2-(3-t )2=4t -8过F 作FH ⊥A ′D ′于H ,则FH =AB =2易证△A ′EB ′′∽△HB ′′F ,∴A ′B ′′B ′′E =HFB ′′F∴4t -8t -1=22t -24-t,整理得:t 2-12t +24=0 解得t 1=6+23(舍去),t 1=6-2 3 ∴F (33+32,23-2)设此时直线EF 的解析式为y =mx +n∴⎩⎪⎨⎪⎧2m +n =333+32m +n =23-2 解得⎩⎨⎧m =1-3n =1+23∴此时直线EF 的解析式为y =(1-3)x +1+2 3(青海西宁)如图,正方形OABC 在平面直角坐标系xO y 中,O 为坐标原点,反比例函数y =kx (x>0)的图象经过正方形OABC 的对称中心D ,分别与AB 、BC 边交于点E 、F ,四边形OEBF 的面积为12.(1)求反比例函数y =kx的关系式;(2)若动点M 从A 开始沿AO 向O 以每秒1个单位的速度运动,同时动点N 从C 开始沿CB 向B 以每秒3个单位的速度运动,当其中一个动点到达终点时,另一个动点随之停止运动.设运动时间为t (秒),点B 关于直线MN 的对称点为B ′.①从运动开始到t =1这一过程中,求点B ′所经过的路径的长; ②当点B ′落在正方形OABC 内部时,直接写出t 的取值范围.解:(1∴D (k ,k )∵S 四边形OEBF =S ∴(2k )2-12k -12k (2)①设MN 与∵AM ∥CN ,∴AG CG =AM CN =t 3t =13∴MN 过定点G∴点B ′所经过的路径是以G 为圆心,BG ∵k =4,∴B (4,4),∴正方形OABC 的边长为4 ∴BG =12+32=10当t =0时,点B ′与点O 重合当t =1时,AM =1,BN =4-3=1 ∴AM =BN ,∴四边形AMNB 是矩形 ∴MN ⊥BC ,∴点B ′落在BC 上 易证∠1=∠2=∠3=∠4 ∵∠1+∠MGO =90°,∴∠4+∠MGO =90° ∴∠OGB ′=90° ∴点B ′所经过的路径长为:2π×10×90360=102π②12<t <1 提示:当点B ′落在OC 上时,连接BM 、B ′M 则B ′M =BM ,B ′N =BN∴B ′M 2=BM 2=t 2+16,B ′N 2=BN 2=(4-3t )2 ∴OB ′2=B ′M 2-OM 2=t 2+16-(4-t )2=8t B ′C 2=B ′N 2-CN 2=(4-3t )2-(3t )2=16-24t ∴OB ′=22t ,B ′C =24-6t∴22t +24-6t =4,即2t +4-6t =2 解得t =0(舍去)或t =12由①知,当t =1时,点B ′落在BC 上 ∵点B ′落在正方形OABC 内部,∴12<t <1(湖北模拟)已知双曲线y =4x 与直线y =14x 交于A 、B 两点(点A 在点B 的左侧).(1)求A 、B 两点的坐标;(2)如图1,点P 是第一象限内双曲线上一动点,BC ⊥AP 于C ,交x 轴于F ,P A 交y 轴于E ,求AE 2+BF 2EF 2的值;(3)如图2,点M 为双曲线上一点,G (-1,0),将线段GM 绕点M 顺时针旋转90°,点G 恰好落在y 轴上的点N 处,将△MGN 绕平面内某点O ′旋转180°后得△QRS (点M 、G 、N 分别与点Q 、R 、S 对应),Q 、S 两点恰好落在双曲线上,求点O ′的坐标.解:(1)由⎩⎨⎧y =4x y =14x∵点A 在点B(2)过A 作AG ⊥设FH =a ,则OF设直线AC 与x ∵AC ⊥C F ,∴∠CFK +∠CKF =∠CFK +∠HBF =90°∴∠CKF =∠HBF∵∠GAE =∠CKF ,∴∠GAE =∠HBF ∴Rt △AEG ∽Rt △BFH ,∴AE BF =EG FH =AG BH=4 ∴AE 2=16BF 2=16(a 2+1),EG =4FH =4a ,OE =|4a -1| ∴EF 2=(4a -1)2+(4+a )2=17(a 2+1)∴AE 2+BF 2EF 2=17(a 2+1)17(a 2+1)=1(3)①当点M 在第三象限时过M 作MD ⊥x 轴于D ,作ML ⊥y 轴于L易证△MDG ≌△MLN ,∴MD =ML ,DG =LN ∴M (-2,-2),N (0,-3) 设O ′(m ,n ),则S (2m ,2n +3),Q (2m +2,2n +2) ∵Q 、S 两点在双曲线y =4x上∴⎩⎪⎨⎪⎧2m (2n +3)=4(2m +2)(2n +2)=4解得⎩⎪⎨⎪⎧m 1=-2n 1=-2(舍去) ⎩⎪⎨⎪⎧m 2=1n 2=-12∴O 1′(1,-12)②当点M 在第一象限时,同理可得M (2,2),N (0,5) 设O ′(m ,n ),则S (2m ,2n -5),Q (2m -2,2n -2) ∵Q 、S 两点在双曲线y =4x上∴⎩⎪⎨⎪⎧2m (2n -5)=4(2m -2)(2n -2)=4解得⎩⎪⎨⎪⎧m 3=3-336n 3=7-334⎩⎪⎨⎪⎧m 4=3+336n 4=7+334∴O 2′(3-336,7-334),O 3′(3+336,7+334)(湖北模拟)如图,直线y =2x +4与x 轴交于点E ,与y 轴交于点A 图1限上的一点,以AD 为边,在第一象限内做正方形ABCD . (1)若AD =AE ,求点B 的坐标;(2)若B、D 两点在反比例函数y =kx的图象上,求该反比例函数的解析式;(3)经过D 、C 、E 三点作⊙P ,过点C 作CQ ⊥AC 交⊙P 于Q ,当D 点在EA 延长线上运动时,CQ 的长度是否发生变化?若不变,请你证明并求出其值;若变化,请说明理由,并指出其变化范围解:在y ∴A ∴OA ∵AD ∵∠∴Rt ∴AH =EO =2,BH =AO =4 ∴B (4,2)(2)设D (m ,2m +4),则B (2m ,4-∴m (2m +4)=2m (4-m ),解得:m 1=0(舍去),m 2=1∴D (1,6)∴反比例函数解析式为y =6x(3)CQ 的长度不变延长CA 交⊙P 于F ,连接EF 、EC 、EQ ∵∠EDC =90°,∴EC 是⊙P 的直径 ∴∠EFC =∠EQC =90°又∵CQ ⊥AC ,∴四边形EFCQ 是矩形,∴CQ =EF在Rt △AEF 中,∠F AE =∠DAC =45°,AE =OA 2+OE 2=25 ∴CQ =EF =22AE =10 (湖北模拟)如图1,直线y =-x +4与x 轴交于点B ,与y 轴交于点C ,交双曲线y =kx (x <0)于点N ,S △OBN =10.(1)求双曲线的解析式;(2)如图2,平移直线BC 交双曲线于点P ,交直线y =-2于点Q ,若∠CPQ =∠BQP ,求平移后的直线PQ 的解析式; (3)如图3,已知A (2,0),点M 为双曲线上一点,CE ⊥OM 于E ,AF ⊥OM 于F ,设梯形ACEF 的面积为S ,若AF ·EF =23S ,求点M 的坐标.解:(1∴B (0,设N (x ∴12×4×4图1∴N (-1,5),∴k =(-1)×5=-5 ∴双曲线的解析式为y =-5x(2)∵直线PQ 由直线BC 平移得到,∴PQ ∥BC∵∠CPQ =∠BQP ,∴四边形BCPQ 是等腰梯形或矩形 ∴CP =BQ作PE ⊥y 轴于E ,作QF ⊥x 轴于F 则∠PEC =∠QFB =90°∵OB =OC ,∴∠OCB =∠OBC∵∠CPQ =∠BQP ,∴∠PCB =∠QBC ∴∠PCE =∠QBF ,∴△PCE ≌△QBF ∴PE =QF =2,∴点P 的横坐标为-2 ∴P (-2,52)∵PQ ∥BC ,∴设直线PQ 的解析式为y =-x +b 把P (-2,52)代入得:52=2+b ,∴b =12∴平移后的直线PQ 的解析式为y =-x +12(3)作AG ⊥CE 于G ,交OC 于H ,作FI ⊥OA 于I ,连接EH ∵CE ⊥EF ,AF ⊥EF ,∴四边形AFEG 是矩形 ∴∠GAF =90°,AF =EG ∵S =12(AF +CE )·EF ,AF ·EF =23S∴AF ·EF =13(AF +CE )·EF =13AF ·EF +13CE ·EF∴23AF =13CE ,∴CE =2AF =2EG ∴CG =EG∵GH ⊥CE ,∴CH =EH ,∴∠CEH =∠ECH ∵∠HEO +∠CEH =∠EOH +∠ECH =90° ∴∠HEO =∠EOH ,∴OH =EH =CH =12OC =2∵A (2,0),∴OA =2=OH ∴∠HAO =45°,∴∠OAF =45° ∴OI =IF =1,∴F (1,-1) 设直线EF 的解析式为y =kx ∴k =-1,∴y =x联立⎩⎪⎨⎪⎧y =x y =-5x 解得⎩⎨⎧x 1=5y 1=-5(舍去)⎩⎨⎧x 2=-5y 2=5 ∴点M 的坐标为(-5,5)(湖北模拟)如图1,一次函数y =-3x +b 与反比例函数y =3x(x >0)的图象交于点A 、B ,与x 轴、y 轴交于点C 、D .(1)当0≤AB <2时,求b 的取值范围;图22图3(2)当AB =BC 时,求b 的值;(3)如图2,当b =23时,连接OA ,将线段OA 绕点O 逆时针旋转60°得到线段OP ,以点P 为顶点作∠MPN =60°,分别交直线CD 和x 轴负半轴于M 、N .求证:PM 平分∠AMN .解:(1)令-3x 设A (x 1,y 1),B过A 作AE ∥yE 则tan ∠ABE =AE BE =∴∠ABE =60°,∴当AB =0时,点A 与点B 重合,∴x 1=x 2=1∴2=b3,∴b =2 3当AB =2时,BE =1,∴BE 2=1 ∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=1∴(b 3)2-4=1,解得b =15(舍去负值)∴0≤AB <2时,23≤b <15(2)作AG ⊥y 轴于G ,BH ⊥x 轴于H∵一次函数y =-3x +b 的图象与x 轴、y 轴交于点C 、D∴OD =b ,OC =b3∴AD =3AG =3x 1,BC =3HC =3(b3-x 2)=b -3x 2 ∵x 1+x 2=b3,∴AD -BC =3x 1+3x 2-b =0 ∴AD =BC∵AB =BC ,∴AD =AB =BC∴AB =13CD ,∴BE =13OC ,∴BE 2=19OC 2=127b 2∴(b 3)2-4=127b 2,解得b =362(舍去负值) (3)延长AO 、PN 交于点F ∵OA =OP ,∠AOP =60°∴△AOP 为等边三角形,∴AP =OP ,∠OP A =60° ∵∠MPN =60°,∴∠MP A =∠FPO 由(1)知,当b =23时,点A 与点B 重合,x 1=x 2=1 ∴A (1,3),P (-1,3),∴∠P AM =120°=∠FPO ∴△APM ≌△OPF ,∴PM =PF ,∠AMP =∠F∵∠GP A =∠NPO ,AP =OP ,∠P AG =∠PON =60° △APG ≌△OPN ,∴PG =PN∵PM =PF ,∠MPN =∠FPG ,PN =PG ∴△PMN ≌△PFG ,∴∠PMN =∠F图1∴∠AMP =∠PMN ,即PM 平分∠AMN(湖北模拟)如图1,已知点A (a ,0),B (0,b ),且a 、b 满足a +1+(a +b +3)2=0,□ABCD 的边AD 与y 轴交于点E ,且E 为AD 中点,双曲线y =kx 经过C 、D 两点.(1)求k 的值;(2)如图2,点P 在双曲线y =kx 上,点Q 在y 轴上,若以A 、B 、P 、Q 为顶点的四边形是平行四边形,请求出所有满足条件的点P 、Q 的坐标;(3)如图3,以线段AB 为对角线作正方形AFBH ,点T 是边AF 上一动点,M 是HT 的中点,MN ⊥HT ,交AB 于N ,当T 在AF 上运动时,MNHT 的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.(∴∴∵设∵∴∴k =1×4=4(2)由(1∵点P 在双曲线y =4x 上,点Q 在y ∴设P (x ,4x),Q (0,y )①当AB 为边时若四边形ABPQ 为平行四边形 则PQ ∥AB ,∴点P 的横坐标为1 ∴P 1(1,4),Q 1(0,6) 若四边形ABQP 为平行四边形则AP ∥BQ ,∴点P 的横坐标为-∴P 2(-1,-4),Q 2(0,-6) ②当AB 为对角线时则AP ∥BQ 且AP =BQ , ∴点P 的横坐标为1 ∴P 3(-1,-4),Q 3(0,2) (3)连接NH 、NT 、NF∵MN 是线段HT ∵四边形AFBH 是正方形图1∴BF =BH ,∠NBF =∠NBH , 又BN =BN ,∴△BFN ≌△BHN ∴NF =NH ,∴NH =NT =NF ∴∠NTF =∠NFT =∠AHN ∴∠TNH =∠TAH =90° ∴MN HT =12(湖北模拟)如图,点A 在反比例函数y =k 1x (k <0,x <0)图象上,点B 在反比例函数y =k 2x (k>0,x >0)图象上,△AOB 是等腰直角三角形,OA =OB =2,AB 交y 轴于C ,∠AOC =60°. (1)将△AOC 沿y 轴折叠得△DOC ,试判断点D 是否存在y =k 2x 的图象上,并说明理由;(2)连接BD ,求四边形BCOD 的面积;(3)将直线OB 向上平移,分别交y =k 1x 于E ,交y =k 2x 于F .问:是否存在某一位置使EF =2?若存在,求E 、F 两点的坐标,若不存在,说明理由.解:(1)点D 在y =k 2x 的图象上,理由如下:作AE ⊥x 轴于E ,BF ⊥y 轴于F ∵∠COE =90°,∠AOC =60°,∴∠AOE =30° ∵OA =2,∴AE =1,OE = 3 ∴A (-3,1),∴k 1=- 3∵△AOB 是等腰直角三角形,OA =OB ∴∠AOB =90°,∴∠BOF =30° ∴BF =1,OF = 3 ∴B (1,3),∴k 2= 3 ∴y =3x由题意,A 、D 两点关于y 轴对称,∴D (3,1) 当x =3时,y =1 ∴点D 在y =3x的图象上 (2)过B 作BG ⊥OD 于G 由题意,∠DOC =∠AOC =60° ∵∠BO F =30°,∴∠BOD =30° ∴OB 平分∠DOF ,∴BF =BG ∴S △BOF =S △BOG ∵∠BOF =30°,∠ABO =45°,∴∠BCF =75° ∵OA =O B ,OA =OD ,∴OB =OD ∴∠BDG =75°,∴∠BCF =∠BDG ∴△BCF ≌△BDG ,∴S △BCF =S △BDG ∴S 四边形BCOD =2S △BOF =2×12×3×1= 3(3)∵点E 在反比例函数y =-3x的图象上∴设E (a ,-3a)(a <0) 由题意,EF ∥OB ,又EF =2=OB ∴四边形OBFE 是平行四边形∵O (0,0),B (1,3),∴F (a +1,-3a+3) ∵点F 在反比例函数y =3x的图象上 ∴(a +1)(-3a+3)=3,即a 2-a -1=0 解得a 1=1+52(舍去),a 2=1-52∴E (1-52,15+32),F (3-52,15+332)(湖北模拟)如图1,直线y =3x +3与x 轴交于点A ,与y 轴交于点B ,以AB 为直角边作等腰Rt △ABC ,∠BAC =90°,AB =AC ,双曲线y =kx经过点C .(1)求双曲线的解析式;(2)如图2,点P 为第四象限双曲线上一点,连接BP 交x 轴点E ,点Q (m ,n )为线段AB 上一动点,过Q 作QD ⊥BP 于D ,若QD =t ,问是否存在点P ,使n +t =3?若存在,求点P 的坐标;(1)过C 作CH ⊥由y =3x +3得:A∴OA =1,OB =3 ∵∠BAC=90°∵∠ABO +∠BAO 又∵AC =AB ,∠∴△ACH ≌△BAO ∴OH =OA +AH =4∴k =-4×1=-4∴双曲线的解析式为y =-4x(2)过Q 作QM ⊥x 轴于M ,QN ⊥y 轴于N 则四边形OMQN 为矩形,∴n =QM =ON ∵QD =t ,n +t =3,OB =3,∴ON +QD =OB ∵ON +BN =OB ,∴QD =BN ∵∠BNQ =∠QDB =90°,BQ =BQ ∴△BQN ≌△QBD ,∴∠BQN =∠QBD ∵QN ∥OA ,∴∠BQN =∠BAO ∴∠QBD =∠BAO ,∴AE =BE 设OE =x ,则BE =AE =x +1 在Rt △BOE 中,x 2+32=(x +1)2 解得x =4,∴E (4,0)设直线BP 的解析式为y =kx +3 ∴0=4k +3,∴k =-34,∴y =-34x +3图1令-34x +3=-4x ,解得x 1=6-2213(舍去),x 1=6+2213∴存在满足条件的点P ,点P 的坐标为(6+2213,3-212)(湖北模拟)如图,正方形ABCD 的边长为17,顶点A 、B 分别在y 轴正半轴和x 轴正半轴上,顶点C 在反比例函数y =kx (k >0,x >0)图象上,连接OD 交双曲线于点E ,且E 是OD 的中点.(1)求反比例函数的解析式;(2)若点M 、N 分别在边AB 、CD 上,将正方形ABCD 沿直线MN 翻折,使点D 落在x 轴上的点D ′(3,0)处,求直线MN 的解析式;(3)若点P 、Q 在正方形ABCD 的边上,将正方形ABCD 沿直线PQ 翻折,使点D 始终落在x 轴上,设直线PQ 的解析式为y =mx +n ,直接写出m 的取值范围.(2)S =⎩⎨4-1t -1t -2(t >52)(3)当2≤t ≤52时,DE <2,DF ≤2S =12DE ·DF <2 当t >52时,由4-1t -1t -2=2,解得t =3+52或t =3-52(舍去)∴t =3+52(四川模拟)已知:在平面直角坐标系xO y 中,直线y =x -4k 与双曲线y =16kx 在第一象限的交点为A ,且OA =43.(1)求直线和双曲线的解析式;(2)点D 在双曲线y =16kx 第一象限的图象上,且点D 到直线y =x -4k 的距离为52,求点D 的坐标;(3)过A 分别作x 轴、y 轴的垂线,垂足为B 、C ,过原点作直线l 与直线y =x -4k 平行,直线l 交BC 于E ,过E 作直线m 分别交x 轴正半轴、y 轴正半轴于M 、N .试探究1OM +1ON 是否为定值,并写出探究过程. 解:(1)设A (a ,b )∵点A 是直线y =x -4k 与双曲线y =16kx 在第一象限的交点∴⎩⎪⎨⎪⎧b =a -4k b =16k a ∴⎩⎪⎨⎪⎧a -b =4k ab =16k∴a 2+b 2=(a -b )2+2ab =16k 2+32k∵OA =43,∴OA 2=48∴16k 2+32k =48,即k 2+2k -3=0 解得k 1=-3(舍去),k 2=1 ∴k =1∴直线的解析式为y =x -4,双曲线的解析式为y =16x(2)∵点D 到直线y =x -4的距离为5 2∴点D 在与直线y =x -4平行且相距52的两条平行直线l 1和l 2上由平行线的性质可知,l 1和l 2与y 轴的交点到直线y =x -4的距离也为5 2 设直线y =x -4与x 轴交于点F ,与y 轴交于点G l 1与y 轴交于点P ,过P 作PQ ⊥直线FG 于Q 则OF =OG =4,∴∠OFG =∠OGF =45°在Rt △PQG 中,PQ =52,∠PGQ =45° ∴PG =2PQ =10,∴P (0,6)同理可求得:直线l 2与y 轴的交点坐标为R (0,-14) ∴l 1:y =x +6;l 2:y =x -14解方程组⎩⎪⎨⎪⎧y =x +6y =16x得⎩⎪⎨⎪⎧x 1=2y 1=8⎩⎪⎨⎪⎧x 2=-8y 2=-2(舍去) 解方程组⎩⎪⎨⎪⎧y =x -14y =16x 得⎩⎨⎧x 1=7+65y 1=65-7⎩⎨⎧x 2=7-65y 2=-7-65(舍去) ∴D 1(2,8),D 2(65+7,65-7)(3)过E 作EG ⊥OB 于G ,EH ⊥OB 于H ∵直线l 过原点且与直线y =x -4平行 ∴直线l 的解析式为y =x ,∴EG =EH 设EG =EH =h则S △OMN =12OM ·ON =12OM ·h +12ON ·h∴1OM +1ON =OM +ON OM ·ON =1h∵S △OBC =12OB ·OC =12OB ·h +12OC ·h∴1h =OB +OC OB ·OC ,∴1OM +1ON =OB +OCOB ·OC 设A (a ,b ),由(1)知,a -b =4,ab =16 ∴a +b =(a -b )2+4ab =80=4 5 ∵AB ⊥x 轴,AC ⊥y 轴,∴OB =a ,OC =b ∴1OM +1ON =a +b ab =4516=54 ∴1OM +1ON 是定值,其值为54。
XY2013中考数学反比例函数复习教案
例 1:下列函数中,是反比例函数的为(
) A. y 2x ;B.
2
y
1 x 1 y y 2 x ;C. 2 ;D. x3
y
例 2:关于
k x (k 为常数)下列说法正确的是()
B.k≠0 时,是反比例函数
A.一定是反比例函数;
C.k≠0 时,自变量 x 可为一切实数; D.k≠0 时, y 的取值范围是一切实数 例 3:已知函数 y=(m2-1) x 2.反比例函数的图象和性质. k 反比例函数的图象是双曲线,反比例函数 y= 具有如下的性质(见下表)①当 k>0 时,函数的图象在第一、 x 三象限,在每个象限内,曲线从左到右下降,也就是在每个象限内,y 随 x 的增加而减小;②当 k<0 时,函数的 图象在第二、四象限,在每个象限内,曲线从左到右上升,也就是在每个象限内,y 随 x 的增加而增大.
5. 某厂从 2001 年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,具数据如下表:
⑴请你认真分析表中数据, 从你所学习过的一次函数、 二次函数和反比例函数中确定哪个函数能表示其变化规 律,说明确定是这种函数而不是其他函数的理由,并求出它的解析式; ⑵按照这种变化规律,若 2005 年已投人技改资金 5 万元. ①预计生产成本每件比 2004 年降低多少万元? ②如果打算在 2005 年把每件产品成本降低到 3.2 万元, 则还需投人技改资金多少万元 (结果精确到 0.01 万元)
m2 m 1
,当 m=_____时,它的图象是双曲线.
画反比例函数的图象时要注意的问题: (1)方法是描点法; (2)要注意自变量的取值范围是 x≠0,因此,不 能把两个分支连接起来; (2)由于在反比例函数中,x 和 y 的值都不能为 0,所以,画出的双曲线的两个分支要分 别体现出无限的接近坐标轴,但永远不能达到 x 轴和 y 轴的变化趋势. 例 1:函数 y= k 与 y=kx+k 在同一坐标系的图象大致是图中的( ) x
中考数学综合题专题复习【反比例函数】专题解析附答案
一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.2.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2= ,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)解:令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.3.抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB= ,求点M的坐标.【答案】(1)解:y= x2+x+m= (x+2)2+(m﹣1)∴顶点坐标为(﹣2,m﹣1)∵顶点在直线y=x+3上,∴﹣2+3=m﹣1,得m=2;(2)解:过点F作FC⊥NB于点C,∵点N在抛物线上,∴点N的纵坐标为: a2+a+2,即点N(a, a2+a+2)在Rt△FCN中,FC=a+2,NC=NB﹣CB= a2+a,∴NF2=NC2+FC2=( a2+a)2+(a+2)2,=( a2+a)2+(a2+4a)+4,而NB2=( a2+a+2)2,=( a2+a)2+(a2+4a)+4∴NF2=NB2,NF=NB(3)解:连接AF、BF,由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,∴∠MAF=∠MFA,∵MA⊥x轴,NB⊥x轴,∴MA∥NB,∴∠AMF+∠BNF=180°∵△MAF和△NFB的内角总和为360°,∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,∵∠MAB+∠NBA=180°,∴∠FBA+∠FAB=90°,又∵∠FAB+∠MAF=90°,∴∠FBA=∠MAF=∠MFA,又∵∠FPA=∠BPF,∴△PFA∽△PBF,∴ = ,PF2=PA×PB= ,过点F作FG⊥x轴于点G,在Rt△PFG中,PG= = ,∴PO=PG+GO= ,∴P(﹣,0)设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b,解得k= ,b= ,∴直线PF:y= x+ ,解方程 x2+x+2= x+ ,得x=﹣3或x=2(不合题意,舍去),当x=﹣3时,y= ,∴M(﹣3,).【解析】【分析】(1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3上,建立方程求出m的值。
2013中考数学分类汇编:反比例函数
2013中考全国100份试卷分类汇编反比例函数1、(2013年潍坊市)设点()11,y x A 和()22,y x B 是反比例函数xky =图象上的两个点,当1x <2x <0时,1y <2y ,则一次函数k x y +-=2的图象不经过的象限是( ).A.第一象限B.第二象限C.第三象限D.第四象限 答案:A .考点:反比例函数的性质与一次函数的位置.点评:由反比例函数y 随x 增大而增大,可知k <0,而一次函数在k <0,b <0时,经过二三四象限,从而可得答案.2、(2013年临沂)如图,等边三角形OAB 的一边OA 在x 轴上,双曲线xy 3=在的图像经过OB 边的中点C ,则点B 的坐标是(A )( 1, 3). (B )(3, 1 ). (C )( 2 ,32). (D )(32 ,2 ).答案:C解析:设B 点的横坐标为a ,等边三角形OAB 中,可求出B,所以,C 点坐标为(2a ,代入xy 3=得:a =2,故B 点坐标为( 2 ,32) 3、(2013年江西省)如图,直线y =x +a -2与双曲线y=x4交于A ,B 两点,则当线段AB 的长度取最小值时,a 的值为( ). A .0 B .1 C .2D .5【答案】 C . 【考点解剖】 本题以反比例函数与一次函数为背景考查了反比例函数的性质、待定系数法,以及考生的直觉判断能力.【解题思路】 反比例函数图象既是轴对称图形又是中心对称图形,只有当A 、B 、O 三点共线时,才会有线段AB 的长度最小OA OB AB +=,(当直线AB 的表达式中的比例系数不为1时,也有同样的结论).【解答过程】 把原点(0,0)代入2y x a =+-中,得2a =.选C..【方法规律】 要求a 的值,必须知道x 、y 的值(即一点的坐标)由图形的对称性可直观判断出直线AB 过原点(0,0)时,线段AB 才最小,把原点的坐标代入解析式中即可求出a 的值.【关键词】 反比例函数 一次函数 双曲线 线段最小4、(2013年南京)在同一直线坐标系中,若正比例函数y =k 1x 的图像与反比例函数y = k 2 x 的图像没有公共点,则(A) k 1+k 2<0 (B) k 1+k 2>0 (C) k 1k 2<0 (D) k 1k 2>0 答案:C解析:当k 1>0,k2<0时,正比函数经过一、三象限,反比函数在二、四象限,没有交点;当k 1<0,k2>0时,正比函数经过二、四象限,反比函数在一、三象限,没有交点;所以,选C 。
初中数学中考二轮复习重难突破专题06 反比例函数的综合(含答案)
专题06 反比例函数的综合重点分析在中考中,反比例函数的图象与性质常以选择题和填空形式考查;反比例函数解析式主要在反比例函数综合题中与一次函数、几何图形结合考查。
难点解读难点一:反比例函数的概念一般地,形如,叫做反比例函数,自变量范围是≠0的一切实数难点二:反比例函数的图象与性质一、三二、四难点三:反比例函数系数k的几何意义在反比例函数上任取一点轴的垂线PM、P=难点四:反比例函数解析式的确定设所求反比例函数解析式为:得几何意义,由面积得真题演练1.如图,在平面直角坐标系中,函数的图象与直线交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.【答案】(1) k的值为3,m的值为1;(2)0<n≤1或n≥3.【解析】【详解】分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k 的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.详解:(1)将A(3,m)代入y=x-2,∴m=3-2=1,∴A(3,1),将A(3,1)代入y=,∴k=3×1=3,m的值为1.(2)①当n=1时,P(1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x-2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.2.如图,在平面直角坐标系xOy中,直线l:y=x与反比例函数y=(x>0)的图象交于点A(2,a).(1)求a,k的值;(2)横,纵坐标都是整数的点叫做整点.点P(m,n)为射线OA上一点,过点P作x轴,y轴的垂线,分别交函数y=(x>0)的图象于点B,C.由线段PB,PC和函数y=(x>0)的图象在点B,C之间的部分所围成的区域(不含边界)记为W.①若PA=OA,求区域W内的整点个数;②若区域W内恰有5个整点,结合函数图象,直接写出m的取值范围.【答案】(1)3,6;(2)①5个;②或.【解析】(1)先根据直线的解析式可求a的值,从而可得点A的坐标,再将将点A坐标代入反比例函数的解析式可得k的值;(2)①先求出点P坐标,再根据反比例函数的解析式求出点B,C坐标,然后结合函数图象、整点的定义即可得;②分点P在点A下方和点P在点A上方两种情况讨论,结合函数图象列出不等式组求解即可.【详解】(1)∵直线与反比例函数的图象交于点∴∴将代入反比例函数得解得;(2)①∵点P为射线OA上一点,且∴A为OP中点∵,解得∴点P的坐标为将代入得将代入得,解得∵如图,PB,PC分别垂直于x轴和y轴∴结合函数图象可知,区域W内有5个整点;②在射线OA上由题意,分以下两种情况:如图,当点P在点A下方时结合函数图象得:,即解得如图,当点P在点A上方时结合函数图象得:,即解得综上,当或时,区域W内恰有5个整点.【点拨】本题考查了反比例函数与一次函数的综合,掌握反比例函数的性质是解题关键.3.如图,一次函数y=ax+b与反比例函数y=(x>0)的图象在第一象限交于A,B两点,点B的坐标为(4,2),连接OA,过点B作BD⊥y轴,垂足为D,交OA于点C,且OC=CA.(1)求反比例函数和一次函数的解析式.(2)根据图象直接写出关于x的不等式的解集为 .【答案】(1)反比例函数的表达式为,一次函数的表达式为y=-x+6;(2)0<x<2或x>4.【解析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;(2)观察函数图象即可求解.【详解】解:(1)如图,过点A作AN⊥x轴于点N,交BD于点E,∵点B(4,2)在反比例函数图象上,∴,∴反比例函数的表达式为,∵B(4,2),∴EN=2,∵BD⊥y轴,OC=CA,∴AE=EN=AN,∴AN=4,∴点A的纵坐标为4,∵点A在反比例函数图象上,∴A(2,4),∵一次函数的表达式为,∴4a+b=2,2a+b=4,∴a=-1,b=6,∴一次函数的表达式为y=-x+6;(2)观察函数图象知,不等式的解集为:0<x<2或x>4,故答案为:0<x<2或x>4.【点拨】本题是反比例函数与一次函数的交点问题,主要考查了待定系数法,解本题的关键是用待定系数法求出直线AB的解析式.4.如图,关于x的一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(﹣2,8),B(4,m)两点.(1)求一次函数与反比例函数的解析式.(2)设一次函数y=k1x+b的图象与x轴,y轴的交点分别为M,N,P是x轴上一动点,当以P,M,N三点为顶点的三角形是等腰三角形时,求点P的坐标.【答案】(1)y=﹣,y=﹣2x+4;(2)点P的坐标是(﹣2,0)或(2+2,0)或(2﹣2,0)或(﹣3,0).【解析】(1)先把A点坐标代入y=可求出k2的值,从而确定反比例函数解析式;再把B(4,m)代入反比例函数解析式求出m的值,可确定点B的坐标,然后利用待定系数法求一次函数解析式;(2)先根据一次函数的解析式确定M和N的坐标,根据以P,M,N三点为顶点的三角形是等腰三角形分三种情况讨论:①NP=NM;②MP=MN;③PN=PM;前两种直接根据线段的长得出点P的坐标,第三种根据两点的距离列方程可得结论.【详解】解:(1)把,代入反比例函数得:,,,∴反比例函数解析式为,且,把,代入得:,解得,∴一次函数解析式为;(2),当时,,当时,,,,,,,①当时,如图1,,,;②当时,如图2,由勾股定理得:,,或,;③当时,如图3,是轴上一动点,设,,,,,综上,点的坐标是或,或,或.【点拨】本题考查了反比例函数与一次函数的交点问题和等腰三角形的性质和判定,并注意等腰三角形在没确定腰和底边时要分情况讨论,注意利用数形结合的思想.5.如图,一次函数与反比例函数的图象交于,两点.(1)求反比例函数的解析式和的值;(2)根据图象直接写出不等式的的取值范围;(3)求的面积.【答案】(1),2;(2)或;(3)8【解析】(1)把的坐标代入反比例函数解析式即可求得的值,然后把代入即可求得的值;(2)根据一次函数和反比例函数的图象即可直接求解;(3)利用待定系数法求得一次函数的解析式,设直线与轴相交于点,然后根据即可求解.【详解】解:(1)在的图象上,,反比例函数的解析式是.又∵在的图象上,;(2)由图象可知:当或时,;(3),在函数的图象上,,解得:,则一次函数的解析式是,设直线与轴相交于点,则的坐标是.∴.【点拨】本题考查了反比例函数和一次函数的综合,熟练掌握待定系数法求函数的解析式是解决本题的关键.6.如图,一次函数y=x+2的图象与反比例函数y=的图象相交,其中一个交点的横坐标是1.(1)求k的值;(2)若将一次函数y=x+2的图象向下平移4个单位长度,平移后所得到的图象与反比例函数y=的图象相交于A,B两点,求此时线段AB的长.【答案】(1)k=3;(2)4.【解析】(1)将x=1代入y=x+1=3,故其中交点的坐标为(1,3),将(1,3)代入反比例函数表达式,即可求解;(2)一次函数y=x+2的图象向下平移4个单位得到y=x﹣2,一次函数和反比例函数解析式联立,解方程组求得A.B的坐标,然后根据勾股定理即可求解.【解答】解:(1)将x=1代入y=x+2=3,∴交点的坐标为(1,3),将(1,3)代入y=,解得:k=1×3=3;(2)将一次函数y=x+2的图象向下平移4个单位长度得到y=x﹣2,由,解得:或,∴A(﹣1,﹣3),B(3,1),∴AB==4.7.在平面直角坐标系中,一次函数的图象与x轴、y轴分别交于A.B两点,且与反比例函数图象的一个交点为.(1)求m的值;(2)若,求k的值.【答案】(1)4;(2)或【解析】(1)将P点的坐标代入反比例函数解析式,计算即可求得m;(2)分两种情况讨论,当一次函数过一、二、三象限时,画出图象,将转化为两个三角形相似,过过P作轴交x轴于点H,证明,即可求出k和b的值;当一次函数过一、三、四象限时,画出图象,将转化为两个三角形相似,过点P作PQ⊥y轴于点Q,证明即可求出k和b的值.【详解】解:(1)∵P为反比例函数上一点,∴代入得,∴.(2)令,即,∴,,令,∴,∵.由图象得,可分为以下两种情况,①B在y轴正半轴时,,∵,过P作轴交x轴于点H,又,,∴∴,,即,∴,∴,∴.②B在y轴负半轴时,,过P作轴,∵,∴,∴,∴,,∵,∴,代入∴,综上,或.【点拨】本题考查了反比例函数,一次函数的图象与性质和相似三角形,添加辅助线构造相似三角形,将题目中线段的倍数关系转化为相似三角形的相似比是解题关键.8.如图,在平面直角坐标系中,一次函数的图象与轴相交于点,与反比例函数在第一象限内的图象相交于点,过点作轴于点.(1)求反比例函数的解析式;(2)求的面积.【答案】(1);(2)6【解析】(1)因为一次函数与反比例函数交于点,将代入到一次函数解析式中,可以求得点坐标,从而求得,得到反比例函数解析式;(2)因为轴,所以,利用一次函数解析式可以求得它与轴交点A的坐标,由,,三点坐标,可以求得和的长度,并且轴,所以,即可求解.【详解】解:(1)∵点是直线与反比例函数交点,∴点坐标满足一次函数解析式,∴,∴,∴,∴,∴反比例函数的解析式为;(2)∵轴,∴,轴,∴,令,则,∴,∴,∴,∴的面积为6【点拨】本题考查了反比例函数与一次函数交点问题,三角形的面积,同时要注意在平面直角坐标系中如何利用坐标表示水平线段和竖直线段.9.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.【答案】(1)y;(2)15°.(1)根据题意求得A(2,2),然后代入y(x>0),求得k的值,即可求得反比例函数的解析式;(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质越久三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD =15°.【解析】(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y;(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOE=45°,∴∠EOD=15°.10.如图,在平面直角坐标系中,直线与函数的图象交于点A(1,2).(1)求的值;(2)过点作轴的平行线l,直线与直线l交于点B,与函数的图象交于点,与轴交于点D.①当点C是线段BD的中点时,求的值;②当时,直接写出的取值范围.【答案】(1)m=2;(2)①b=-3, ②b>3.【解析】(1)把A点坐标代入中即可得出m的值;(2)①求出C点坐标为(2,1)代入直线即可得出b的值;②根据图象可得结论.【详解】(1)把A(1,2)代入函数中,∴.∴.(2)①过点C作轴的垂线,交直线l于点E,交轴于点F.当点C是线段BD的中点时,.∴点C的纵坐标为1,把代入函数中,得.∴点C的坐标为(2,1).把C(2,1)代入函数中,得.②由图象可知,当时,。
2013年中考题分类——反比例函数
一、选择题1. ( 2013云南普洱,8,3分)若ab<0,则正比例函数y=ax和反比例函数y=bx在同一坐标系中的大致图象可能是()【答案】B2.(2013云南曲靖,4,3分)某地资源总量Q一定,该地人均资源享有量x与人口数n的函数关系图象是()3.(A B C D【答案】C4.(2013福建省三明市,9,4分)如图,已知直线y=mx与双曲线y=kx的一个交点坐标为(3,4),则它们的另一个交点坐标是( )A.(-3,4) B.(-4,-3) C.(-3,-4) D.(4,3)【答案】C5.(2013湖北随州,9,4分)正比例函数y=kx和反比例函数y=-21kx(k是常数且k≠0)在同一平面直角坐标系中的图象可能是()O n O n O nOA B C D【答案】C6.(2013江苏苏州,8,3分)如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数(0)ky x x=>的图象经过顶点B ,则k 的值为( ) A.12 B.20 C.24 D.32 【答案】:D7. (2013江苏常州,3,2分)下列函数中,图像经过点(1,-1)的反比例函数关系式是 ( )A .x y 1-=B .x y 1= C.x y 2=D.xy 2-=【答案】 A8. (2013广西贵港市,11,3分)如图,点A (,1)a 、B (1,)b -都在双曲线3(0)y x x=-<上,点P 、Q 分别是x 轴、y 轴上的动点,当四边形PABQ 的周长取最小值时,PQ 所在直线的解析式是( )A .y x =B .1y x =+C .2y x =+D .3y x =+【答案】C9.(2013广西柳州,11,3分)如图,P 点(a ,a )是反比例函数xy 16=在第一象限内的图象上的一个点,以点P 为端点作等边△PAB ,使A 、B 落在x 轴上,则△POA 的面积是( )A . 3B . 4C .33412- D .33824-【答案】D10. (2013山东青岛,6,3分) 已知矩形的面积为36cm 2,相邻两条边长分别为xcm 和ycm ,则y 与x 之间的函数图像大致是( ) 【答案】A .11. (2013黑龙江龙东地区,18,3分)如图,Rt △ABC 的顶点A 在双曲线y=xk的图象上,直角边BC 在 x 轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA ,∠AOB=60°,则k 的值是( ) A .43B .-43C .23D .-23【答案】B12. (2013南宁,12,3)如图,直线y=21x 与双曲线y=x k (k>0,x>0)交于点A ,将直线y=21x 向上平移4个单位长度后,与y 轴交于点C ,与双曲线y=x k(k>0,x>0)交于点B ,若OA=3BC ,则k 的值为( )A. 3B.6C.49 D. 29【答案】D13. (2013•株洲,7,3)已知点A (1,y 1)、B (2,y 2)、C (﹣3,y 3)都在反比例函数的图象上,则y 1、y 2、y 3的大小关系是( )14. (2013哈尔滨,6,3分)反比例函数y =1-2kx的图象经过点(-2,3),则k 的值为( ).A .6B .-6C .72D .-72【答案】 C .15. (2013•遵义,7,3)P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y =﹣x 图象上的两点,下列判断中,正确的是( )二、填空题1. (2013内蒙古包头,17,3分)设反比例函数xk y 2+=,(x 1,y 1),(x 2,y 2)为其图像上两点,若x 1<0<x 2,y 1>y 2则k 的取值范围是【答案】k <-22. (2013辽宁铁岭,16,3分)如图点P 是正比例函数y=x 与反比例y=kx在第一象限内的交点,PA ⊥OP 交x 轴于点A ,△POA 的面积为2,则k 的值是 . 【答案】23. (2013贵州贵阳,14,4分)直线y =ax +b (a >0)与双曲线y =x3相交于A (x 1,y 1),B (x 2,y 2)两点,则x 1y 1+x 2y 2的值为___________. 【答案】64. (2013福建厦门,14,4分).已知反比例函数y =m -1x的图象的一支位于第一象限,则常数m 的取值范围是 . 【答案】m >15. (2013福建省三明市,16,4分)如图,已知一次函数y =kx +b 的图象经过点P (3,2),与反比例函数的图象y = 2x(x >0)交于点Q (m ,n ).当一次函数y 的值随x 值的增大而增大时,m 的取值范围是 .【答案】1<x <36.(2013湖北黄石,2,3分)如右图,在平面直角坐标系中,一次函数y=ax +b (a ≠0)的图象与反比例函数y=x k (k ≠0)的图象交于二、四象限的A 、B 两点,与x 轴交于C 点。
【精品】2013年中考数学冲刺-反比例函数问题知识精讲
2013年中考数学冲刺必备2010-2012年中考数学真题分类汇编反比例函数问题一.选择题1.(2012铜仁)如图,正方形ABOC的边长为2,反比例函数kyx=的图象过点A,则k的值是()A.2 B.﹣2 C.4 D.﹣4考点:反比例函数系数k的几何意义。
解答:解:因为图象在第二象限,所以k<0,根据反比例函数系数k的几何意义可知|k|=2×2=4,所以k=﹣4.故选D.2.(2012菏泽)已知二次函数2y ax bx c=++的图像如图所示,那么一次函数y bx c=+和反比例函数ayx=在同一平面直角坐标系中的图像大致是()A .B .C .D .考点:二次函数的图象;一次函数的图象;反比例函数的图象。
解答:解:∵二次函数图象开口向下,∴a<0,∵对称轴x=﹣<0,∴b<0,∵二次函数图象经过坐标原点,∴c=0,∴一次函数y =bx +c 过第二四象限且经过原点,反比例函数ay x=位于第二四象限, 纵观各选项,只有C 选项符合.故选C .3.(2012临沂)如图,若点M 是x 轴正半轴上任意一点,过点M 作PQ ∥y 轴,分别交函数1(0)k y x x =>和2(0)ky x x=>的图象于点P 和Q ,连接OP 和OQ .则下列结论正确的是( )A .∠POQ 不可能等于90°B .12k PM QM k = C .这两个函数的图象一定关于x 轴对称 D .△POQ 的面积是()1212k k + 考点:反比例函数综合题。
解答:解:A .∵P 点坐标不知道,当PM =MO =MQ 时,∠POQ =90°,故此选项错误;B .根据图形可得:k 1>0,k 2<0,而PM ,QM 为线段一定为正值,故=||,故此选项错误;C .根据k 1,k 2的值不确定,得出这两个函数的图象不一定关于x 轴对称,故此选项错误;D .∵|k 1|=PM •MO ,|k 2|=MQ •MO ,△POQ 的面积=MO •PQ =MO (PM +MQ )=MO •PM +MO •MQ ,∴△POQ 的面积是(|k 1|+|k 2|),故此选项正确. 故选:D .4.( 2012•广州)如图,正比例函数y 1=k 1x 和反比例函数y 2=的图象交于A (﹣1,2)、B (1,﹣2)两点,若y 1<y 2,则x 的取值范围是( )A.x<﹣1或x>1B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1D.﹣1<x<0或x>1考点:反比例函数与一次函数的交点问题。
2013-2014中考数学反比例函数
反比例函数A .B .C .D .增大而减小A .①②B .②③C .③④D .①④4 (2012•哈尔滨)如果反比例函数1k y x-=的图象经过点(-1,-2),则k 的值是( ) A .2 B .-2 C .-3 D .34.(2012•广元)已知关于x 的方程(x+1)2+(x-b )2=2有唯一的实数解,且反比例函数1by x+=的图象在每个象限内y 随x 的增大而增大,那么反比例函数的关系式为( )A .3y x =-B .1y x =C .2y x =D .2y x=-A .1B .2C .3D .4A .-2B .2C .4D .-46 (2012•岳阳)如图,一次函数y 1=x+1的图象与反比例函数22y x=的图象交于A 、B 两点,过点作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D , 连接AO 、BO ,下列说法正确的是( )A .点A 和点B 关于原点对称 B .当x <1时,y 1>y 2C .S △AOC =S △BOD D .当x >0时,y 1、y 2都随x 的增大而增大 6.(2012•达州)一次函数y 1=kx+b (k ≠0)与反比例函数y 2=mx(m ≠0),在同一直角坐标系中的图象如图所示,若y 1>y 2,则x 的取值范围是( )A .-2<x <0或x >1B .x <-2或0<x <1C .x >1D .-2<x <1A .y=4xB .y=2xC .y=1x D .y=12xA .y=12xB .y=1xC .y=2xD .y=14x5.(2013•六盘水)下列图形中,阴影部分面积最小的是( ) A . B .C .D .15.(2013•张家界)如图,直线x=2与反比例函数y=2x和y=-1x的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是.。
2013年全国中考数学试题汇编----反比例函数
(2013•郴州)已知:如图,一次函数的图象与y 轴交于C (0,3),且与反比例函数y=的图象在第一象限内交于A ,B 两点,其中A (1,a ),求这个一次函数的解析式.y=(2013•衡阳)反比例函数y=的图象经过点(2,﹣1),则k 的值为 ﹣2 . ((2013,娄底)如图,已知A 点是反比例函数(0)y k x=≠的图象上一点,AB y ⊥轴于B ,且ABO △的面积为3,则k 的值为_____________.(2013•德州)函数y=1x 与y=x -2图象交点的横坐标分别为a ,b ,则11a b+的值为_______________.(2013•湘西州)如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数y=的图象有一个交点A(m,2).(1)求m的值;(2)求正比例函数y=kx的解析式;(3)试判断点B(2,3)是否在正比例函数图象上,并说明理由.,即可求得y=,(2013•益阳)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y (℃)随时间x (小时)变化的函数图象,其中BC 段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时? (2)求k 的值;(3)当x=16时,大棚内的温度约为多少度?,y==13.5题主要考查了反比例函数的应用,求出反比例函数解析式是解题关键. (2013,永州)如图,两个反比例函数4y x =和2y x=在第一象限内的图象分别是1C 和2C ,设点P 在1C 上,PA x ⊥轴于点A ,交2C 于点B ,则△POB 的面积为P1C 2C ()14第题图(2013•株洲)已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,求出)都在反比例函数=6==(2013•巴中)在﹣1、3、﹣2这三个数中,任选两个数的积作为k的值,使反比例函数的图象在第一、三象限的概率是.的值,使反比例函数使反比例函数的值,使反比例函数=故答案为:.函数y=的图象交于一、三象限内的A、B两点,直线AB与x轴交于点C,点B的坐标为(﹣6,n),线段OA=5,E为x轴正半轴上一点,且tan∠AOE=(1)求反比例函数的解析式;(2)求△AOB的面积.AOE==y=中,)得y=×(2013,成都)如图,一次函数11y x =+的图像与反比例函数2y x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.(1)A(1,2) ,xy 2=(2013,成都)若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x +=的图像的公共点的个数为_________.3(2013•达州)点()11,x y 、()22,x y 在反比例函数ky x=的图象上,当120x x <<时,12y y <,则k 的取值可以是___ _(只填一个符合条件的k 的值). 答案:-1解析:由题知,y 随x 的增大而增大,故k 是负数,此题答案不唯一。
2013年中考数学试卷分类汇编-反比例函数
反比例函数1、(2013年潍坊市)设点()11,y x A 和()22,y x B 是反比例函数xky =图象上的两个点,当1x <2x <0时,1y <2y ,则一次函数k x y +-=2的图象不经过的象限是( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案:A .考点:反比例函数的性质与一次函数的位置.点评:由反比例函数y 随x 增大而增大,可知k <0,而一次函数在k <0,b <0时,经过二三四象限,从而可得答案.2、(2013年临沂)如图,等边三角形OAB 的一边OA 在x 轴上,双曲线xy 3=在第一象限内的图像经过OB 边的中点C ,则点B 的坐标是 (A )( 1, 3). (B )(3, 1 ). (C )( 2 ,32). (D )(32 ,2 ).答案:C解析:设B 点的横坐标为a ,等边三角形OAB 中,可求出B 3a ,所以,C 点坐标为(3,22a a ),代入xy 3=得:a =2,故B 点坐标为( 2 ,32) 3、(2013年江西省)如图,直线y =x +a -2与双曲线y=x4交于A ,B 两点,则当线段AB 的长度取最小值时,a 的值为( ). A .0 B .1 C .2D .5【答案】 C . 【考点解剖】 本题以反比例函数与一次函数为背景考查了反比例函数的性质、待定系数法,以及考生的直觉判断能力.【解题思路】 反比例函数图象既是轴对称图形又是中心对称图形,只有当A 、B 、O 三点共线时,才会有线段AB 的长度最小OA OB AB +=,(当直线AB 的表达式中的比例系数不为1时,也有同样的结论).【解答过程】 把原点(0,0)代入2y x a =+-中,得2a =.选C..【方法规律】 要求a 的值,必须知道x 、y 的值(即一点的坐标)由图形的对称性可直观判断出直线AB 过原点(0,0)时,线段AB 才最小,把原点的坐标代入解析式中即可求出a 的值.【关键词】 反比例函数 一次函数 双曲线 线段最小4、(2013年南京)在同一直线坐标系中,若正比例函数y =k 1x 的图像与反比例函数y =k 2x的图像没有公共点,则(A) k 1+k 2<0 (B) k 1+k 2>0 (C) k 1k 2<0 (D) k 1k 2>0 答案:C解析:当k 1>0,k2<0时,正比函数经过一、三象限,反比函数在二、四象限,没有交点;当k 1<0,k2>0时,正比函数经过二、四象限,反比函数在一、三象限,没有交点;所以,选C 。
【中考真题】2013年中考数学试题分类汇编反比例函数-修改后
2013年中考数学试题分类汇编反比例函数一、选择题1.(2013江苏苏州,8,3分)如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数y=k x(x >0)的图象经过顶点B ,则k 的值为( ).A .12B .20C .24D .322.(2013浙江台州,5,4分)在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 2)与体积V (单位:m 3)满足函数关系式Vk =ρ(k 为常数,k ≠0),其图象如图所示,则k 的值为( )A .9B .-9C .4D .-43.(2013贵州安顺,7,3分)若22)1(-+=a x a y 是反比例函数,则a 的取值为( )A .1B .-1C .±1D .任意实数4.(2013山东临沂,13,3分)如图,等边三角形OAB 的一边OA 在x 轴上,双曲线y =3x在第一象限内的图象经过OB 边的中点C ,则点B 的坐标是( )A .(1,3)B .(3,1)C .(2,23)D .(23,2) 5.(2013山东滨州,6,3分)若点A(1,y 1)、B(2,y 2)都在反比例函数y=k x(k >0)的图象上,则O xyBA COV ρ A (6,1.5)第5题y 1、y 2的大小关系为( )6. 2013广东省,10,3分)已知210k k <<,则函数11-=x k y 和x k y 2=的图象大致是7. (2013湖南邵阳,7,3分)下列四个点中,在反比例函数y = -6x的图象上的是( ) A .(3,-2) B .(3,2) C .(2,3) D .(-2,-3)8. (湖南株洲,7,3分)已知点A (1,1y )、B (2,2y )、C (-3,3y )都在反比例函数x y 6=的图象上,则的大小关系是( )A. 213y y y <<B. 321y y y <<C. 312y y y <<D. 123y y y << 9.(2013山东德州,8,3分)下列函数中,当x>0时,y 随x 的增大而增大的是( )A 、y=-x+1B 、y=x 2-1C 、y=x1 D 、y=-x 2+1 10.(2013四川凉山州,12,4分)如图,正比例函数1y 与反比例函数2y 相交于点E (1-,2),若120y y >>,则x 的取值范围在数轴上表示正确的是( )11.(2013江西,4,3分)如图,直线y =x +a -2与双曲线y=x 4交于A ,B 两点,则当线段AB 的长度取最小值时,a 的值为( ).A .0B .1C .2D .512.(2013兰州,5,3分)当x >0时,函数的图象在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限 -1 0 1 D . -1 0 1 C . -1 0 1 B . -1 0 1 A .x y O E y 1 y 22 -1 (第12题图)。
最新中考数学2013版专题复习第十三讲:反比例函数(含答案共38讲)
最新中考数学2013版专题复习第十三讲反比例函数【基础知识回顾】一、反比例函数的概念:一般地:互数y (k是常数,k≠0)叫做反比例函数【名师提醒:1、在反比例函数关系式中:k≠0、x≠0、y≠02、反比例函数的另一种表达式为y= (k是常数,k≠0)3、反比例函数解析式可写成xy= k(k≠0)它表明反比例函数中自变量x与其对应函数值y之积,总等于】二、反比例函数的同象和性质:1、反比例函数y=kx(k≠0)的同象是它有两个分支,关于对称2、反比例函数y=kx(k≠0)当k>0时它的同象位于象限,在每一个象限内y随x的增大而当k<0时,它的同象位于象限,在每一个象限内,y随x的增大而【名师提醒:1、在反比例函数y=kx中,因为x≠0,y≠0所以双曲线与坐标轴无限接近,但永不与x轴y轴2、在反比例函数y随x的变化情况中一定注明在每一个象限内】3、反比例函数中比例系数k的几何意义:反曲线y=kx(k≠0)上任意一点向两坐标轴作垂线→两线与坐标轴围成的形面积,即如图:AOBP=S△AOP=【名师提醒:k的几何意义往常与前边提示中所谈到的xy=k联系起来理解和应用】三、反比例函数解析式的确定因为反比例函数y=kx(k≠0)中只有一个被定系数所以求反比例函数关系式只需知道一组对应的x、y值或一个点的坐标即可,步骤同一次函数解析式的求法一、反比例函数的应用二、解反比例函数的实际问题时,先确定函数解析式,再利用同象找出解决问题的方案,这里要特别注意自变量的【重点考点例析】考点一:反比例函数的同象和性质例1 (2012•张家界)当a≠0时,函数y=ax+1与函数ayx=在同一坐标系中的图象可能是()A.B.C.D.思路分析:分a>0和a<0两种情况讨论,分析出两函数图象所在象限,再在四个选项中找到正确图象.解:当a>0时,y=ax+1过一、二、三象限,y=ayx=过一、三象限;当a<0时,y=ax+1过一、二、四象限,y=ayx=过二、四象限;故选C.点评:本题考查了一次函数与二次函数的图象和性质,解题的关键是明确在同一a值的前提下图象能共存.例2 (2012•佳木斯)在平面直角坐标系中,反比例函数22a ayx-+ =图象的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限思路分析:把a2—a+2配方并根据非负数的性质判断出是恒大于0的代数式,再根据反比例函数的性质解答.解:a2—a+2,=a2-a+14-14+2,=(a—12)2+7 4 ,∵(a-12)2≥0,∴(a-12)2+7 4 >0,∴反比例函数图象的两个分支分别位于第一、三象限.故选A.点评:本题考查了反比例函数图象的性质,先判断出a2—a+2的正负情况是解题的关键,对于反比例函数kyx=(k≠0):(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.例3 (2012•台州)点(-1,y1),(2,y2),(3,y3)均在函数6yx=的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y3<y1 C.y1<y2<y3 D.y1<y3<y2思路分析:先根据反比例函数的解析式判断出此函数图象所在的象限,再根据各点的坐标判断出各点所在的象限,根据函数图象在各象限内点的坐标特点解答.解:∵函数6yx=中k=6>0,∴此函数的图象在一、三象限,且在每一象限内y随x的增大而减小,∵-1<0,∴点(—1,y1)在第三象限,∴y1<0,∵0<2<3,∴(2,y2),(3,y3)在第一象限,∴y2>y3>0,∴y2>y3>y1.故选D.点评:本题考查的是反比例函数图象上点的坐标特点,根据题意判断出函数图象所在象限是解答此题的关键.对应训练1.(2012•毕节地区)一次函数y=x+m(m≠0)与反比例函数myx=的图象在同一平面直角坐标系中是()A.B.C.D.1.C2.(2012•内江)函数1y x=的图象在( ) A .第一象限 B .第一、三象限 C .第二象限 D .第二、四象限 2.A2中x ≥0,1x中x ≠0, 故x >0,此时y >0, 则函数在第一象限. 故选A .3.(2012•佛山)若A (x 1,y 1)和B (x 2,y 2)在反比例函数2y x=的图象上,且0<x 1<x 2,则y 1与y 2的大小关系是y 1 y 2. 3.>考点二:反比例函数解析式的确定例4 (2012•哈尔滨)如果反比例函数1k y x-=的图象经过点(-1,-2),则k 的值是( ) A .2 B .-2 C .-3 D .3思路分析:根据反比例函数图象上点的坐标特征,将(-1,—2)代入已知反比例函数的解析式,列出关于系数k 的方程,通过解方程即可求得k 的值.解答:解:根据题意,得 -2=11k --,即2=k-1, 解得k=3. 故选D . 点评:此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点. 对应训练 4.(2012•广元)已知关于x 的方程(x+1)2+(x —b )2=2有唯一的实数解,且反比例函数1by x+=的图象在每个象限内y 随x 的增大而增大,那么反比例函数的关系式为( ) A .3y x =- B .1y x = C .2y x = D .2y x=-4.D4.分析:关于x 的方程(x+1)2+(x —b )2=2有唯一的实数解,则判别式等于0,据此即可求得b 的值,然后根据反比例函数1by x+=的图象在每个象限内y 随x 的增大而增大,则比例系数1+b <0,则b 的值可以确定,从而确定函数的解析式.解:关于x 的方程(x+1)2+(x-b )2=2化成一般形式是:2x 2+(2-2b)x+(b 2—1)=0, △=(2-2b )2-8(b 2-1)=-4(b+3)(b —1)=0, 解得:b=-3或1. ∵反比例函数1by x+=的图象在每个象限内y 随x 的增大而增大,∴1+b<0 ∴b<-1,∴b=-3.则反比例函数的解析式是:y=13yx-=,即2yx=-.故选D.考点三:反比例函数k的几何意义例5 (2012•铁岭)如图,点A在双曲线4yx=上,点B在双曲线kyx=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为()A.12 B.10 C.8 D.6思路分析:先根据反比例函数的图象在第一象限判断出k的符号,再延长线段BA,交y轴于点E,由于AB∥x轴,所以AE⊥y轴,故四边形AEOD是矩形,由于点A在双曲线4 yx =上,所以S矩形AEOD=4,同理可得S矩形OCBE=k,由S矩形ABCD=S矩形OCBE—S矩形AEOD即可得出k 的值.解:∵双曲线kyx=(k≠0)上在第一象限,∴k>0,延长线段BA,交y轴于点E,∵AB∥x轴,∴AE⊥y轴,∴四边形AEOD是矩形,∵点A在双曲线4yx=上,∴S矩形AEOD=4,同理S矩形OCBE=k,∵S矩形ABCD=S矩形OCBE—S矩形AEOD=k-4=8,∴k=12.故选A.点评:本题考查的是反比例函数系数k的几何意义,即反比例函数kyx=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.对应训练5.(2012•株洲)如图,直线x=t(t>0)与反比例函数21,y yx x-==的图象分别交于B、C两点,A为y轴上的任意一点, 则△ABC的面积为()A.3 B.3 2 tC.32D.不能确定5.C5.解:把x=t分别代入21,y yx x-==,得21,y yt t==-,所以B(t,2t)、C(t,1t-),所以BC=2t-(1t-)=3t.∵A为y轴上的任意一点,∴点A到直线BC的距离为t,∴△ABC的面积=133 22tt⨯⨯=.故选C.考点四:反比例函数与一次函数的综合运用例6 (2012•岳阳)如图,一次函数y1=x+1的图象与反比例函数22yx=的图象交于A、B 两点,过点作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是()A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BODD.当x>0时,y1、y2都随x的增大而增大思路分析:求出两函数式组成的方程组的解,即可得出A、B的坐标,即可判断A;根据图象的特点即可判断B;根据A、B的坐标和三角形的面积公式求出另三角形的面积,即可判断C;根据图形的特点即可判断D.解:A、12y xyx=+⎧⎪⎨=⎪⎩①②,∵把①代入②得:x+1=2 x ,解得:x1=-2,x2=1,代入①得:y1=-1,y2=2,∴B(-2,-1),A(1,2),∴A、B不关于原点对称,故本选项错误;B、当-2<x<0或x>1时,y1>y2,故本选项错误;C、∵S△AOC=12×1×2=1,S△BOD=12×|—2|×|—1|=1,∴S△BOD=S△AOC,故本选项正确;D、当x>0时,y1随x的增大而增大,y2随x的增大而减小,故本选项错误;故选C.点评:本题考查了一次函数与反比例函数的交点问题的应用,主要考查学生观察图象的能力,能把图象的特点和语言有机结合起来是解此题的关键,题目比较典型,是一道具有一定代表性的题目.对应训练6.(2012•达州)一次函数y1=kx+b(k≠0)与反比例函数y2=mx(m≠0),在同一直角坐标系中的图象如图所示,若y1>y2,则x的取值范围是()A.—2<x<0或x>1B.x<-2或0<x<1 C.x>1 D.-2<x<16.A6.解:由函数图象可知一次函数y1=kx+b与反比例函数y2=mx(m≠0)的交点坐标为(1,4),(—2,-2),由函数图象可知,当—2<x<0或x>1时,y1在y2的上方,∴当y1>y2时x的取值范围是—2<x<0或x>1.故选A.【聚焦山东中考】1.(2012•青岛)点A(x1,y1),B(x2,y2),C(x3,y3)都是反比例函数3yx-=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y3<y1<y2 B.y1<y2<y3C.y3<y2<y1D.y2<y1<y31.A1.解:∵反比例函数y=-3 x 中,k=-3<0,∴此函数图象在二四象限,且在每一象限内y随x的增大而增大,∵x1<x2<0<x3,∴y3<0,y3<0<y1<y2,∴y3<y1<y2.故选A.2.(2012•菏泽)反比例函数2yx=的两个点(x1,y1)、(x2,y2),且x1>x2,则下式关系成立的是()A.y1>y2B.y1<y2C.y1=y2D.不能确定2.D3.(2012•滨州)下列函数:①y=2x-1;②y=5x-;③y=x2+8x—2;④y=22x;⑤y=12x;⑥y=ax中,y是x的反比例函数的有(填序号)。
2013年典型中考反比例函数大题汇编(附答案_详解)
一.解答题(共20 小题)1.( 2012?资阳)已知:一次函数y=3x ﹣ 2 的图象与某反比率函数的图象的一个公共点的横坐标为1.(1)求该反比率函数的分析式;(2)将一次函数 y=3x ﹣ 2 的图象向上平移 4 个单位,求平移后的图象与反比率函数图象的交点坐标;(3)请直接写出一个同时知足以下条件的函数分析式:①函数的图象能由一次函数y=3x ﹣ 2 的图象绕点( 0,﹣ 2)旋转必定角度获得;②函数的图象与反比率函数的图象没有公共点.2.( 2012?重庆)已知:如图,在平面直角坐标系中,一次函数y=ax+b ( a≠0)的图象与反比率函数的图象交于一、三象限内的 A 、 B 两点,与x 轴交于 C 点,点 A 的坐标为( 2, m),点 B的坐标为(n,﹣ 2), tan∠BOC= .( 1)求该反比率函数和一次函数的分析式;( 2)在 x 轴上有一点E(O 点除外),使得△BCE 与△BCO 的面积相等,求出点 E 的坐标.3.( 2012?肇庆)已知反比率函数图象的两个分支分别位于第一、第三象限.( 1)求 k 的取值范围;( 2)若一次函数 y=2x+k 的图象与该反比率函数的图象有一个交点的纵坐标是4.①求当 x= ﹣6 时反比率函数 y 的值;②当时,求此时一次函数y 的取值范围.4.( 2012?云南)如图,在平面直角坐标系中,O 为原点,一次函数与反比率函数的图象订交于A( 2,1)、B(﹣ 1,﹣ 2)两点,与 x 轴交于点 C.( 1)分别求反比率函数和一次函数的分析式(关系式);( 2)连结 OA ,求△AOC 的面积.5.( 2012?玉林)如图,在平面直角坐标系xOy 中,梯形 AOBC 的边 OB 在 x 轴的正半轴上, AC ∥OB,BC ⊥OB ,过点 A 的双曲线 y= 的一支在第一象限交梯形对角线OC 于点 D,交边 BC 于点 E.( 1)填空:双曲线的另一支在第_________ 象限, k 的取值范围是_________ ;( 2)若点 C 的左标为(2, 2),当点 E 在什么地点时,暗影部分的面积S 最小?( 3)若= , S△OAC=2 ,求双曲线的分析式.6.( 2012?义乌市)如图,矩形 OABC 点 E( 4,n)在边 AB 上,反比率函数的极点 A 、C 分别在 x、y 轴的正半轴上,点 D 为对角线 OB 的中点,( k≠0)在第一象限内的图象经过点D、 E,且 tan∠BOA=.( 1)求边 AB 的长;( 2)求反比率函数的分析式和n 的值;( 3)若反比率函数的图象与矩形的边BC 交于点 F,将矩形折叠,使点O 与点 F 重合,折痕分别与x、y 轴正半轴交于点H、 G,求线段OG 的长.7.( 2012?烟台)如图,在平面直角坐标系中, A , B 两点的纵坐标分别为7 和 1,直线 AB 与 y 轴所夹锐角为 60°.(1)求线段 AB 的长;(2)求经过 A ,B 两点的反比率函数的分析式.8.( 2012?厦门)已知点 A ( 1, c)和点 B( 3, d)是直线 y=k 1x+b 与双曲线( k2> 0)的交点.( 1)过点 A 作 AM ⊥x 轴,垂足为 M ,连结 BM .若 AM=BM ,求点 B 的坐标.( 2)若点 P 在线段 AB 上,过点 P 作 PE⊥x 轴,垂足为 E,并交双曲线( k2> 0)于点 N.当取最大值时,有PN=,求此时双曲线的分析式.9.(2012?咸宁)如图,一次函数y1=kx+b 的图象与反比率函数的图象交于A( 1,6), B(a, 2)两点.(1)求一次函数与反比率函数的分析式;(2)直接写出 y1≥y2时 x 的取值范围.10.( 2012?天津)已知反比率函数y=(k为常数,k≠1).(Ⅰ)其图象与正比率函数 y=x 的图象的一个交点为 P,若点 P 的纵坐标是 2,求 k 的值;(Ⅱ)若在其图象的每一支上, y 随 x 的增大而减小,求 k 的取值范围;(Ⅲ)若其图象的向来位于第二象限,在这一支上任取两点 A ( x1,y1)、 B( x2, y2),当 y1> y2时,试比较 x1与 x2的大小.11.(2012?泰州)如图,已知一次函数y1=kx+b 图象与 x 轴订交于点 A ,与反比率函数的图象订交于 B (﹣ 1, 5)、C(,d)两点.点P( m, n)是一次函数y1=kx+b 的图象上的动点.( 1)求 k、 b 的值;( 2)设﹣ 1< m<,过点P作x轴的平行线与函数的图象订交于点 D .试问△PAD 的面积能否存在最大值?若存在,恳求出头积的最大值及此时点P 的坐标;若不存在,请说明原因;( 3)设 m=1﹣ a,假如在两个实数m 与 n 之间(不包含m 和 n)有且只有一个整数,务实数a的取值范围.12.( 2012?南昌)如图,等腰梯形 ABCD 搁置在平面坐标系中,已知 A(﹣ 2,0)、B( 6,0)、D(0, 3),反比率函数的图象经过点 C.(1)求点 C 的坐标和反比率函数的分析式;(2)将等腰梯形 ABCD 向上平移 2 个单位后,问点 B 能否落在双曲线上?13.( 2012?乐山)如图,直线y=2x+2 与 y 轴交于 A 点,与反比率函数(x>0)的图象交于点M,过M作 MH ⊥x 轴于点 H,且 tan∠AHO=2 .( 1)求 k 的值;( 2)点 N (a, 1)是反比率函数(x>0)图象上的点,在x 轴上能否存在点P,使得 PM+PN 最小?若存在,求出点P 的坐标;若不存在,请说明原因.14.(2012?济南)如图,已知双曲线y=经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过 D 作 DB ⊥y 轴,垂足分别为 A , B 连结 AB ,BC(1)求 k 的值;(2)若△BCD 的面积为 12,求直线 CD 的分析式;(3)判断 AB 与 CD 的地点关系,并说明原因.15.( 2011?攀枝花)如图,已知反比率函数(m是常数,m≠0),一次函数y=ax+b( a、b 为常数,a≠0),此中一次函数与x 轴, y 轴的交点分别是 A (﹣ 4, 0),B ( 0, 2).( 1)求一次函数的关系式;( 2)反比率函数图象上有一点P 知足:①PA⊥x 轴;②PO=(O为坐标原点),求反比率函数的关系式;( 3)求点 P 对于原点的对称点Q 的坐标,判断点Q 能否在该反比率函数的图象上.16.( 2010?义乌市)如图,一次函数 y=kx+2 的图象与反比率函数y=的图象交于点P,点 P 在第一象限. PA⊥x 轴于点 A , PB⊥y 轴于点 B .一次函数的图象分别交x 轴、 y 轴于点 C、D ,且 S△PBD=4,=.(1)求点 D 的坐标;(2)求一次函数与反比率函数的分析式;( 3)依据图象写出当x> 0 时,一次函数的值大于反比率函数的值的x 的取值范围.17.( 2010?广州)已知反比率函数y=(m为常数)的图象经过点 A (﹣ 1, 6).( 1)求 m 的值;( 2)如图,过点 A 作直线 AC 与函数 y=的图象交于点B,与 x 轴交于点C,且 AB=2BC ,求点 C的坐标.18.( 2010?北京)已知反比率函数y=的图象经过点 A (﹣,1).(1)试确立此反比率函数的分析式;(2)点 O 是坐标原点,将线段 OA 绕 O 点顺时针旋转 30°获得线段 OB .判断点 B 能否在此反比率函数的图象上,并说明原因;( 3)已知点P( m,m+6)也在此反比率函数的图象上(此中m< 0),过 P 点作 x 轴的垂线,交x 轴于点M .若线段PM 上存在一点Q,使得△OQM 的面积是,设Q 点的纵坐标为n,求n2﹣2 n+9 的值.19.( 2012?河北)如图,四边形ABCD 是平行四边形,点 A ( 1, 0), B( 3, 1),C( 3, 3).反比率函数y= (x> 0)的函数图象经过点D,点P 是一次函数y=kx+3 ﹣ 3k(k≠0)的图象与该反比率函数图象的一个公共点.( 1)求反比率函数的分析式;( 2)经过计算,说明一次函数y=kx+3 ﹣ 3k( k≠0)的图象必定过点C;( 3)对于一次函数y=kx+3 ﹣3k ( k≠0),当 y 随 x 的增大而增大时,确立点写出过程).P 的横坐标的取值范围(不用20.( 2012?宜宾)如图,在平面直角坐标系中,已知四边形( 1)求经过点 C 的反比率函数的分析式;( 2)设 P 是( 1)中所求函数图象上一点,以P、O、A 的坐标.ABCD 为菱形,且极点的三角形的面积与A ( 0, 3)、 B(﹣ 4, 0).△COD 的面积相等.求点P答案与评分标准一.解答题(共20 小题)1.( 2012?资阳)已知:一次函数y=3x ﹣ 2 的图象与某反比率函数的图象的一个公共点的横坐标为1.(1)求该反比率函数的分析式;(2)将一次函数 y=3x ﹣ 2 的图象向上平移 4 个单位,求平移后的图象与反比率函数图象的交点坐标;(3)请直接写出一个同时知足以下条件的函数分析式:①函数的图象能由一次函数y=3x ﹣ 2 的图象绕点( 0,﹣ 2)旋转必定角度获得;②函数的图象与反比率函数的图象没有公共点.考点:反比率函数与一次函数的交点问题;一次函数图象与几何变换。
2013年全国各地中考数学试卷分类汇编:反比例函数
反比例函数一、选择题 1.(2013江苏苏州,8,3分)如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数y =kx(x >0)的图象经过顶点B ,则k 的值为( ).A .12B .20C .24D .32 【答案】D .【解析】过C 点作CD ⊥x 轴,垂足为D ,根据点C 坐标求出OD 、CD 、BC 的值,进而求出B 点的坐标,即可求出k 的值. 解:过C 点作CD ⊥x 轴,垂足为D . ∵点C 的坐标为(3,4),∴OD=3,CD=4.∴OC= OD2+CD2=32+42=5.∴OC=BC=5.∴点B 坐标为(8,4), ∵反比例函数y=kx(x >0)的图象经过顶点B ,∴k=32. 所以应选D .【方法指导】本题主要考查反比例函数的综合题的知识点,解答本题的关键是求出点B 的坐标,此题难度有一定难度,是一道不错的习题.【易错警示】不能综合运用菱形的性质、勾股定理、反比例函数图象的性质而出错. 2.(2013浙江台州,5,4分)在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 2)与体积V (单位:m 3)满足函数关系式Vk=ρ(k 为常数,k ≠0),其图象如图所示,则k 的值为( )A .9B .-9C .4D .-4 【答案】:A . 【解析】反比例函数Vk=ρ经过A (6,1.5),利用待定系数法将V=6、 1.5ρ=代入解析式即可求出解析式。
【方法指导】本题考查待定系数法求反比例函数解析式。
先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法。
3.(2013贵州安顺,7,3分)若22)1(-+=a x a y 是反比例函数,则a 的取值为( )A .1B .-1C .±1D .任意实数 【答案】:A .【解析】∵此函数是反比例函数, ∴,解得a=1.【方法指导】本题考查的是反比例函数的定义,先根据反比例函数的定义列出关于a 的不等式组,求出a 的值即可.【易错警示】解答时易把系数a+1≠0漏掉而错得a=±1. 4.(2013山东临沂,13,3分)如图,等边三角形OAB 的一边OA 在x 轴上,双曲线y在第一象限内的图象经过OB 边的中点C ,则点B 的坐标是( )A .(1B .1)C .(2,)D .(,2)【答案】:C . 【方法指导】 【易错警示】5.(2013山东滨州,6,3分)若点A(1,y 1)、B(2,y 2)都在反比例函数y=kx(k >0)的图象上,则y 1、y 2的大小关系为( )A .y 1<y 2B .y 1≤y 2C .y 1>y 2D .y 1≥y 2 【答案】:C .【解析】根据反比例函数的图象.由 k >0可知图象在第一象限内y 随x 的增大而减小;因为1<2,所以y 1>y 2. 【方法指导】本题考查反比例函数的图象及性质. 当k>0时,反比例函数图象的两个分支分别在第一、三象限内,且在每个象限内,y 随x 的增大而减小;当k<0时,图象的两个分支分别在第二、四象限内,且在每个象限内,y 随x 的增大而增大.注意:不能说成“当k >0时,反比例函数y 随x 的增大而减小,当k <0时,反比例函数y 随x 的增大而增大.”因为,当x 由负数经过0变为正数时,上述说法不成立.6. 2013广东省,10,3分)已知210k k <<,则函数11-=x k y 和xk y 2=的图象大致是【答案】 A .【解析】因为01<k ,所以直线11-=x k y 经过一、三、四象限,由此,可以排除选项B 和D ;又因为02>k ,双曲线xk y 2=的两个分支分别在第一、三象限,只有选项A 符合.由此确定答案只能选A . 【方法指导】在同一坐标系中综合考查几种函数图象的问题比较常见,因为这类题通常涉及到地待定系数比较多,而且范围不定,如果把步骤规划好,不理清思路,就会弄糊涂. 7. (2013湖南邵阳,7,3分)下列四个点中,在反比例函数y = -6x 的图象上的是( )A .(3,-2)B .(3,2)C .(2,3)D .(-2,-3) 【答案】:A . 【解析】:A 、∵3×(﹣2)=﹣6,∴此点在反比例函数的图象上,故本选项正确; B 、∵3×2=6≠﹣6,∴此点不在反比例函数的图象上,故本选项错误; C 、∵2×3=6≠﹣6,∴此点不在反比例函数的图象上,故本选项错误; D 、∵(﹣2)×(﹣3)=6≠﹣6,∴此点不在反比例函数的图象上,故本选项错误. 故选A .【方法指导】:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数xky =中,xy k =为定值是解答此题的关键.8. (湖南株洲,7,3分)已知点A (1,1y )、B (2,2y )、C (-3,3y )都在反比例函数xy 6=的图象上,则的大小关系是( )A. 213y y y <<B. 321y y y <<C. 312y y y <<D. 123y y y << 【答案】:D【解析】:将A (1,1y )、B (2,2y )、C (-3,3y )代入xy 6=得到1y =6,2y =3,3y =-2,则大小关系是123y y y .【方法指导】本题考查了反比例函数的图像,将值代入求出即可.9.(2013山东德州,8,3分)下列函数中,当x>0时,y 随x 的增大而增大的是( )A 、y=-x+1B 、y=x 2-1C 、y=x1D 、y=-x 2+1【答案】B【解析】A 、函数y=-x+1 ,当x>0时,y 随x 的增大而减小;B 、函数y=x 2-1 ,当x>0(对称轴y 轴右侧)时,y 随x 的增大而增大;C 、函数y=x1,当x>0(第-象限)时,双曲线一分支y 随x 的增大而减小; D 、抛物线y=-x 2+1,当x>0(对称轴y 轴右侧)时,y 随x 的增大而减小.【方法指导】本题考查一次函数、反比例函数、二次函数图象与性质.解答本题需要了解各函数图象的增减性特点,解题时不妨画个示意图进行直观判断. 10.(2013四川凉山州,12,4分)如图,正比例函数1y 与反比例函数2y 相交于点E (1-,2),若120y y >>,则x 的取值【答案】A.【解析】先利用函数的图象可知,当120y y >>时, x 的取值范围是x <-1,所以其在数轴上表示为A.【方法指导】本题考查利用函数图象比较大小及在数轴上如何表示不等式的解集的问题.利用图象比较大小时,图象在上方的函图值大,函数图象的交点即为函数值相等,函数图象在下方的函数值小.在数轴上表示不等式的解集是,一般有等号时有实数点表示,没有等号是圆表示.11.(2013江西,4,3分)如图,直线y =x +a -2与双曲线y=x4交于A ,B 两点,则当线段AB 的长度取最小值时,a 的值为( ).A .0B .1C .2D .5D .C .B .A .【答案】C【解析】把原点(0,0)代入2y x a =+-中,得2a =.选C..【方法指导】要求a 的值,必须知道x 、y 的值(即一点的坐标)由图形的对称性可直观判断出直线AB 过原点(0,0)时,线段AB 才最小,把原点的坐标代入解析式中即可求出a 的值.12.(2013兰州,5,3分)当x >0时,函数的图象在( )A .第四象限B .第三象限C .第二象限D .第一象限考点:反比例函数的性质.分析:先根据反比例函数的性质判断出反比例函数的图象所在的象限,再求出x >0时,函数的图象所在的象限即可. 解答:解:∵反比例函数中,k =﹣5<0,∴此函数的图象位于二、四象限, ∵x >0,∴当x >0时函数的图象位于第四象限. 故选A点评:本题考查的是反比例函数的性质,即反比例函数y =(k ≠0)的图象是双曲线;当k <0时,双曲线的两支分别位于第二、第四象限.13.(2013兰州,11,3分)已知A (﹣1,y 1),B (2,y 2)两点在双曲线y =上,且 y 1>y 2,则m 的取值范围是( ) A .m <0B .m >0C .m >﹣D .m <﹣考点:反比例函数图象上点的坐标特征. 专题:计算题.分析:将A (﹣1,y 1),B (2,y 2)两点分别代入双曲线y =,求出 y 1与y 2的表达式,再根据 y 1>y 2则列不等式即可解答.解答:解:将A (﹣1,y 1),B (2,y 2)两点分别代入双曲线y =得,y 1=﹣2m ﹣3, y 2=,∵y 1>y 2,∴﹣2m﹣3>,解得m<﹣,故选D.点评:本题考查了反比例函数图象上点的坐标特征,要知道,反比例函数图象上的点符合函数解析式.14.(2013贵州安顺,7,3分)若是反比例函数,则a的取值为()A.1 B.﹣l C.±l D.任意实数考点:反比例函数的定义.专题:探究型.分析:先根据反比例函数的定义列出关于a的不等式组,求出a的值即可.解答:解:∵此函数是反比例函数,∴,解得a=1.故选A.点评:本题考查的是反比例函数的定义,即形如y=(k为常数,k≠0)的函数称为反比例函数.15.(2013贵州毕节,13,3分)一次函数y=kx+b(k≠0)与反比例函数的图象在同一直角坐标系下的大致图象如图所示,则k、b的取值范围是()与反比例函数的图象经过二、四象限,16.(2013湖北孝感,11,3分)如图,函数y=﹣x与函数的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D.则四边形ACBD的面积为()的图象上17.(2013湖北宜昌,11,3分)如图,点B在反比例函数y=(x>0)的图象上,横坐标为1,过点B分别向x轴,y轴作垂线,垂足分别为A,C,则矩形OABC的面积为()18. .[2013湖南邵阳,7,3分]下列四个点中,在反比例函数y = -6x 的图象上的是( )A .(3,-2)B .(3,2)C .(2,3)D .(-2,-3)知识考点:反比例函数图象上的点的坐标.审题要津:此题可将y = -6x转换为6= -xy 即可解答.满分解答:解:A.∵3×(-2)=-6,∴此点在反比例函数图象上;B .∵3×2=6,∴此点不在反比例函数图象上;C .∵2×3=6,∴此点不在反比例函数图象上;D .∵(-2)×(-3)=6,∴此点不在反比例函数图象上.故选A .名师点评:解决此题还应熟练掌握反比函数解析式的三种形式的转换:y =xk⇔y =kx ⇔k =xy (k ≠0,k 为常数). 19. .(2013湖南张家界,13,3分)如图,直线x=2与反比例函数和的图象分别交于A 、B 两点,若点P 是y 轴上任意一点,则△PAB 的面积是 .分别代入、1例函数y =k 2x的图像没有公共点,则 (A) k 1+k 2<0 (B) k 1+k 2>0 (C) k 1k 2<0 (D) k 1k 2>0 答案:C解析:当k 1>0,k2<0时,正比函数经过一、三象限,反比函数在二、四象限,没有交点;当k 1<0,k2>0时,正比函数经过二、四象限,反比函数在一、三象限,没有交点;所以,选C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013中考数学专题六:反比例函数【基础检测】1.(哈尔滨)已知反比例函数ky x=的图象经过点(36)A --,,则这个反比例函数的解析式是 . 2.(梅州)近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为 . 3.(孝感)在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是 ( )A .k >3B .k >0C .k <3D . k <04. (青岛)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa )是气体体积V ( m 3) 的反比例函数,其图象如图1所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( )A .不小于54m 3B .小于54m 3C .不小于45m 3D .小于45m 35.(巴中)如图2,若点A 在反比例函数(0)ky k x=≠ 的图象上,AM x ⊥轴于点M ,AMO △的面积为3, 则k = .【考点实相】1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质3.k 的几何含义:反比例函数y =kx(k ≠0)中比例系数k 的几何1-1y OxP意义,即过双曲线y =kx(k ≠0)上任意一点P 作x 轴、y 轴 垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 .【典例精析】例1 某汽车的功率P 为一定值,汽车行驶时的速度v (米/秒)与它所受的牵引力F (牛)之间的函数关系如右图所示:(1)这辆汽车的功率是多少?请写出这一函数的表达式;(2)当它所受牵引力为1200牛时,汽车的速度为多少千米/时? (3)如果限定汽车的速度不超过30米/秒,则F 在什么范围内?例2 (四川)如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于 (21)(1)A B n -,,,两点.(1(2)求AOB △的面积.【中考演练】1.(福建)已知点(12)-,在反比例函数ky x=的 图象上,则k = . 2.(安徽)在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是 米. 3. (河南)已知反比例函数的图象经过点(m ,2)和(-2,3),则m 的值为 . 4.(宜宾)若正方形AOBC 的边OA 、OB 在坐标轴上,顶点C 在第一象限且在反比例函数y =x1的图像上,则点C 的坐标是 . 5. (广东)如图,某个反比例函数的图象经过点P,则它的解析式为( )A.y =1x (x>0) B.y =-1x (x>0) C.y =1x (x<0) D.y =-1x(x<0)6.(嘉兴)某反比例函数的图象经过点(23)-,,则此函数图象也经过点( )A .(23)-,B .(33)--,C .(23),D .(46)-, 7.(江西)对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小 8.(乌鲁木齐)反比例函数6y x=-的图象位于( ) A .第一、三象限 B .第二、四象限 C .第二、三象限 D .第一、二象限 9.某空调厂装配车间原计划用2个月时间(每月以30天计算),每天组装150台空调. (1)从组装空调开始,每天组装的台数m (单位: 台/天)与生产的时间t (单位:天)之间有怎样的函数关系?(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?10.(四川)如图,已知A(-4,2)、B(n ,-4)是一次函数y kx b =+的图象与反比例函数my x=的图象的两个交点. (1) 求此反比例函数和一次函数的解析式;(2) 根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.反比例函数测试题一、选择题(每小题4分,共40分)1、下列关系式中,哪个等式表示y 是x 的反比例函数( )A :23y x =B : 2x y =C :12y x =+D :1y x=- 2、反比例函数y=2x的图象位于( )A :第一、二象限B :第一、三象限C :第二、三象限D :第二、四象限 3、函数y=1x与函数y=x 的图象在同一平面直角坐标系内的交点个数是( ). A :1个 B :2个 C :3个 D :0个4、已知点A (-1,5)在反比例函数(0)ky k x=≠的图象上,则该函数的解析式为( ) A :1y x = B :25y x = C :5y x=- D :5y x =5、若反比例函数(0)ky k x=≠经过(-2,3),则这个反比例函数一定经过( )A :(-2,-3)B :(3,2)C :(3,-2)D :(-3,-2) 6、某村的粮食总产量为a (a 为常数)吨,设该村的人均粮食产量为y 吨,人口数为x ,则y 与x 之间的函数关系式的大致图像应为( )7、如图,过反比例函数xy 2009=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )A :S 1>S 2B :S 1=S 2C :S 1<S 2D :大小关系不能确定 8、已知反比例函数(0)ky k x=<的图象上有两点1122(,)(,)A x y B x y ,且12x x <则12y y -的值是( )A :正数B :负数C :非正数D :不能确定1y kx =+9、若y 与-3x 成反比例,x 与z4成反比例,则y 是z 的( ) A :正比例函数 B :反比例函数 C :一次函数 D :不能确定10、函数与ky = )二、填空题(每小题4分,共40分)11、反比例函数35y x=-中,比例系数k= ; 12、如果函数25(2)k y k x-=-是反比例函数,那么k= ; 13、如图:在反比例函数(0)ky k x=≠图象上取一点A 分别作AC ⊥x 轴,AB ⊥y 轴, 且S 矩形ABOC = 12,那么这个函数解析式为 ;14、已知函数(0)k y k x=≠,当12x =-时,6y =,则函数的解析式为 ;15、反比例函数k y x =的图象经过3(,5)2-和(a ,-3),则a= ;16、已知正比例函数y kx =和反比例函数3y x=的图象都过A (m ,1),则m= ;正比例函数的解析式为 ;17、函数2y x=- 的图象,在第四象限内,y 随x 的增大而 (填“增大”或“减小”);18、如果反比例函数ky x=的图象经过点(-3,-4),那么这个函数的图象应分别分布在 象限;19、已知y -2与x 成反比例,当x=3时,y=1,则y 与x 的函数关系式为 ; 20、反比例函数3k y x+=的图象在二、四象限,则k 的取值范围是 。
三、解答题(每小题10分,共70分)21、由物理学知识可知:在力F (牛)的作用下,物体会在力F 的方向发生位移S (米),力F 所做的功W (焦),满足W=FS ,当W 为定值时,F 与 ⑴、力F 所做的功是多少?⑵、试确定F 与S 之间的函数关系式;⑶、当F = 4(N )时,S 是多少?22、已知反比例函数ky x=过点P (2,-3),求这个反比例函数的解析式,并在直角坐标系中作出该函数的图象。
23、已知12y y y =-,1y 与x 成反比例,2y 与(x-2)成正比例,并且当x=3时,y=5,当x=1时,y=-1,求y 与x 的函数关系式。
24、关于x 的一次函数2y mx n =-与反比例函数2my x=的图象的一个交点A (1,-4),求一次函数和反比例函数的解析式;25、某蓄水池的排水管每小时排水8立方米,6小时可将池水全部排空。
(1)蓄水池的容积是多少?(2)如果每小时排水用Q 表示,求排水时间t 与Q 的函数关系式。
(3)如果5小时把池水排完,那么每小时排水量至少是多少?(4)已知排水管最大排水量是每小时12立方米,那么最少要多少小时才能将池水全部排空?26、如图.直线m x y +=1分别与x 轴、y 轴交于A 、B ,与双曲线xky =2)0(〈x 的图象相交于C 、D 其中C (-1,2) (1)求它们的函数解析式.(2)若D 的坐标为(-2,1)利用图象直接写出当12y y >时x 的取值范围.27、如图,Rt △ABO 的顶点A 是双曲线y=kx与直线y=-x-(k+1)在第二象限的交点.AB ⊥x 轴于B,且S △ABO =32. (1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A 、C 的坐标和△AOC 的面积.y OxCB A。