1999 Direct blind equalizers of multiple FIR channels a deterministic approach
plainis于1999年给出的视觉反应时间的定义
plainis于1999年给出的视觉反应时间的定义1. 引言1.1 概述视觉反应时间是指从刺激出现到个体作出相应动作的时间间隔。
它被广泛应用于心理学、神经科学以及人机交互等领域的研究中,被认为是衡量个体感知和响应能力的重要指标之一。
通过测量视觉反应时间,我们可以了解人类认知过程中信息加工的速度和效率。
1.2 文章结构本文将围绕Plainis于1999年给出的视觉反应时间的定义展开论述,并探讨该定义在学术界引起的讨论与争议。
接着,本文将介绍视觉反应时间的测量方法,包括传统方法如Simple Reaction Time (SRT) 和现代方法如Choice Reaction Time (CRT),以及非实验性方法如自我报告法和日志记录法。
此外,文章还将分析影响视觉反应时间的因素,包括生物学因素、心理学因素和环境因素。
最后,本文将总结对Plainis所提出的视觉反应时间定义进行评价,并展望未来研究方向。
1.3 目的本文旨在深入探讨Plainis于1999年给出的视觉反应时间的定义,并综合其他学者的观点,评估该定义在当前研究中的适用性和局限性。
同时,本文将介绍视觉反应时间的测量方法以及影响因素,旨在为研究者提供参考,并激发对该领域未来研究方向的思考和讨论。
通过本文的撰写,我们希望能够促进对视觉反应时间这一重要心理指标的深入理解,并为相关领域的研究做出贡献。
2. 视觉反应时间的定义:2.1 Plainis对视觉反应时间的研究背景:在介绍Plainis对视觉反应时间的定义之前,我们首先需要了解他对这一领域进行研究的背景。
Plainis在1999年的研究中探讨了人类感知和认知过程中涉及的时间因素。
他着重关注视觉反应时间,即从刺激出现到个体做出第一个动作所经历的时间。
2.2 Plainis对视觉反应时间的定义及其重要性:Plainis将视觉反应时间定义为一个个体从感知到刺激并作出相关行为所需花费的时间间隔。
他认为这一概念是理解人类认知功能和信息处理能力的关键指标之一。
1999年考研英语真题阅读详解
1999年阅读真题精解(2011-05-30 10:22:15)转载标签:黄涛考研真题答案教育分类:阅读篇1999 Text 1It's a rough world out there. Step outside and you could break a leg slipping on your doormat. Light up the stove and you could burn down the house. Luckily, if the doormat or stove failed to warn of coming disaster, a successful lawsuit might compensate you for your troubles. Or so the thinking has gone since the early 1980s, when juries began holding more companies liable for their customers' misfortunes.Feeling threatened, companies responded by writing ever-longer warning labels, trying to anticipate every possible accident. Today, stepladders carry labels several inches long that warn, among other things, that you might — surprise! — fall off. The label on a child's Batman cape cautions that the toy "does not enable user to fly."While warnings are often appropriate and necessary —the dangers of drug interactions, for example — and many are required by state or federal regulations, it isn't clear that they actually protect the manufacturers and sellers from liability if a customer is injured. About 50 percent of the companies lose when injured customers take them to court.Now the tide appears to be turning. As personal injury claims continue as before, some courts are beginning to side with defendants, especially in cases where a warning label probably wouldn't have changed anything. In May, Julie Nimmons, president of Schutt Sports in Illinois, successfully fought a lawsuit involving a football player who was paralyzed in a game while wearing a Schutt helmet. "We're really sorry he has become paralyzed, but helmets aren't designed to prevent those kinds of injuries," says Nimmons. The jury agreed that the nature of the game, not the helmet, was the reason for the athlete's injury. At the same time, the American Law Institute —a group of judges, lawyers, and academics whose recommendations carry substantial weight — issued new guidelines for tort law stating that companies need not warn customers of obvious dangers or bombard them with a lengthy list of possible ones. "Important information can get buried in a sea of trivialities," says a law professor at Cornell Law School who helped draft the new guidelines. If the moderate end of the legal community has its way, the information on products might actually be provided for the benefit of customers and not as protection against legal liability.51. What were things like in 1980s when accidents happened?[A] Customers might be relieved of their disasters through lawsuits.[B] Injured customers could expect protection from the legal system.[C] Companies would avoid being sued by providing new warnings.[D] Juries tended to find fault with the compensations companies promised.52. Manufacturers as mentioned in the passage tend to ________.[A] satisfy customers by writing long warnings on products[B] become honest in describing the inadequacies of their products[C] make the best use of labels to avoid legal liability[D] feel obliged to view customers' safety as their first concern53. The case of Schutt helmet demonstrated that ________.[A] some injury claims were no longer supported by law[B] helmets were not designed to prevent injuries[C] product labels would eventually be discarded[D] some sports games might lose popularity with athletes54. The author's attitude towards the issue seems to be ________.[A] biased [B] indifferent[C] puzzling [D] objective核心词汇1. rough 粗糙的,不平坦的;粗野的;tough 艰巨的;艰难的2. step 走3. slip 滑到4. light up 点燃5. burn down 烧毁6. fail to 没有7. lawsuit=suit 起诉;诉讼8. compensate for 为…作出补偿9. jury 陪审团10. hold sb. liable for 让…对…负责11. misfortune 不幸12. respond 做出反应13. warning labels 警告标识14. caution 警告15. while 尽管,而,当…时候16. appropriate 合适的17. interaction相互作用18. regulation 规则19. claim 索赔20. side with 支持21. defendant 被告;22. involving 涉及到23. paralyze 瘫痪24. nature 本质;by nature 天性25. carry substantial weight 具有相当的分量26. issue 发布了;发行了27. bombard with 大量提供28. a sea of 大量的29. trivialities 琐事30. end 目的31. have one’s way 得以实现32. legal liability 法律责任33. misfortune难句精解①While warnings are often appropriate and necessary —the dangers of drug interactions, for example —and many are required by state or federal regulations, it isn't clear that they actually protect the manufacturers and sellers from liability if a customer is injured.▲在这个主从复合句中,前一个分句是由while引导的让步从句,这个从句由两个并列句组成,中间用and连接。
数据挖掘试题(单选)
单项选择题1.某商场研究销售纪录数据后发现,买啤酒的人很大体率也会购置尿布,这类属于数据发掘的哪种问题 (A)A. 关系规则发现C. 分类B. 聚类D. 自然语言办理2. 以下两种描绘分别对应哪两种对分类算法的评论标准(A)(a)警察抓小偷,描绘警察抓的人中有多少个是小偷的标准。
(b)描绘有多少比率的小偷给警察抓了的标准。
A. Precision,RecallB. Recall,PrecisionA. Precision,ROC D. Recall,ROC3. 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务A. 屡次模式发掘B. 分类和展望C. 数据预办理D. 数据流发掘(C)4.当不知道数据所带标签时,能够使用哪一种技术促进带同类标签的数据与带其余标签的数据相分别 (B)A. 分类B. 聚类C. 关系剖析D. 隐马尔可夫链5.什么是 KDD (A)A. 数据发掘与知识发现B. 领域知识发现C. 文档知识发现D. 动向知识发现6.使用交互式的和可视化的技术,对数据进行探究属于数据发掘的哪一类任务(A)A. 探究性数据剖析B. 建模描绘C. 展望建模D. 找寻模式和规则7.为数据的整体散布建模;把多维空间区分红组等问题属于数据发掘的哪一类任务(B)A. 探究性数据剖析B. 建模描绘C. 展望建模D. 找寻模式和规则8.成立一个模型,经过这个模型依据已知的变量值来展望其余某个变量值属于数据发掘的哪一类任务 (C)A. 依据内容检索B. 建模描绘C. 展望建模D. 找寻模式和规则9.用户有一种感兴趣的模式而且希望在数据集中找到相像的模式,属于数据发掘哪一类任务(A)A. 依据内容检索B. 建模描绘C. 展望建模D. 找寻模式和规则11.下边哪一种不属于数据预办理的方法(D)A 变量代换B失散化 C齐集 D 预计遗漏值12. 假定 12 个销售价钱记录组已经排序以下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215使用以下每种方法将它们区分红四个箱。
研究NLP100篇必读的论文---已整理可直接下载
研究NLP100篇必读的论⽂---已整理可直接下载100篇必读的NLP论⽂⾃⼰汇总的论⽂集,已更新链接:提取码:x7tnThis is a list of 100 important natural language processing (NLP) papers that serious students and researchers working in the field should probably know about and read.这是100篇重要的⾃然语⾔处理(NLP)论⽂的列表,认真的学⽣和研究⼈员在这个领域应该知道和阅读。
This list is compiled by .本榜单由编制。
I welcome any feedback on this list. 我欢迎对这个列表的任何反馈。
This list is originally based on the answers for a Quora question I posted years ago: .这个列表最初是基于我多年前在Quora上发布的⼀个问题的答案:[所有NLP学⽣都应该阅读的最重要的研究论⽂是什么?]( -are-the-most-important-research-paper -which-all-NLP-students-should- definitread)。
I thank all the people who contributed to the original post. 我感谢所有为原创⽂章做出贡献的⼈。
This list is far from complete or objective, and is evolving, as important papers are being published year after year.由于重要的论⽂年复⼀年地发表,这份清单还远远不够完整和客观,⽽且还在不断发展。
TPO35 Reading passage 2答案解析
TPO35 Reading KeysPassage 2Population Growth in Nineteenth-Century EuropeParagraph 1Because of industrialization, but also because of a vast increase in agricultural output without which industrialization would have been impossible, Western Europeans by the latter half of the nineteenth century enjoyed higher standards of living and longer, healthier lives than most of the world’s peoples. In Europe as a whole, the population rose from 188 million in 1800 to 400 million in 1900. By 1900, virtually every area of Europe had contributed to the tremendous surge of population, but each major region was at a different stage of demographic change. Paragraph 2Improvements in the food supply continued trends that had started in the late seventeenth century. New lands were put under cultivation, while the use of crops of American origin, particularly the potato, continued to expand. Setbacks did occur. Regional agricultural failures were the most common cause of economic recessions until 1850, and they could lead to localized famine as well. A major potato blight (disease) in 1846-1847 led to the deaths of at least one million persons in Ireland and the emigration of another million, and Ireland never recovered the population levels the potato had sustained to that point. Bad grain harvests at the same time led to increased hardship throughout much of Europe.Paragraph 3After 1850, however, the expansion of foods more regularly kept pace with population growth, though the poorer classes remained malnourished. Two developments were crucial. First, the application of science and new technology to agriculture increased. Led by German universities, increasing research was devoted to improving seeds, developing chemical fertilizers, and advancing livestock. After 1861, with the development of land-grant universities in the United States that had huge agricultural programs, American crop-production research added to this mix. Mechanization included the use of horse-drawn harvesters and seed drills, many developed initially in the United States. It also included mechanical cream separators and other food-processing devices that improved supply.Q15 The phrase kept pace with in the passage is closest in meaning toA.exceededB.matched the increase inC.increased the rate ofD.caused正确答案: B解析:回到原文“After 1850, however, the expansion of foods more regularly kept pace with population growth, though the poorer classes remained malnourished”,这句话主句和从句是转折的关系,从句中的意思是“穷苦阶级在营养方面仍然跟不上”,所以转折之前主句中的意思应该是食品的数量是跟得上人口数量增长的。
绿皮书概率题
绿皮书概率题绿皮书概率题是指由概率统计学家Thomas Bayes提出的"绿皮书问题"。
该问题描述如下:一个国家A生产红皮书和绿皮书两种书籍,其中红皮书的数量是绿皮书的两倍。
由于生产线上的错误,每个月有1%的红皮书被误装成绿皮书,同样也有1%的绿皮书被误装成红皮书。
现在假设你手中有一本绿皮书,请问这本绿皮书实际上是被误装的红皮书的概率是多少?这个问题可以通过贝叶斯定理来计算。
根据贝叶斯定理,我们需要计算在拿到一本绿皮书的前提下,它实际上是一个误装的红皮书的概率。
假设事件A表示这本绿皮书实际上是误装的红皮书,事件B表示你手中拿到一本绿皮书。
那么贝叶斯定理可以表示为:P(A|B) = P(B|A) * P(A) / P(B)其中P(A)表示误装的红皮书的先验概率,即P(A) = 0.01。
P(B|A)表示在这本绿皮书是误装的红皮书的前提下,你手中拿到一本绿皮书的概率,即P(B|A) = 1。
P(B)表示你手中拿到一本绿皮书的概率,可以通过全概率公式计算:P(B) = P(B|A) * P(A) + P(B|A') * P(A')其中A'表示这本绿皮书实际上是正常的绿皮书,即P(A') = 1 -P(A) = 0.99。
P(B|A')表示在这本绿皮书是正常的绿皮书的前提下,你手中拿到一本绿皮书的概率,即P(B|A') = 1 - P(B|A) = 0.99。
将以上数值代入计算可得:P(B) = 1 * 0.01 + 0.99 * 0.99 = 0.0101然后再将P(B)代入P(A|B)的计算式中即可得到所求概率:P(A|B) = 1 * 0.01 / 0.0101 = 0.99所以,这本绿皮书实际上是误装的红皮书的概率是0.99。
关联理论视角下的中法广告双关语解读
关联理论视角下的中法广告双关语解读作者:孙华玉来源:《青年时代》2018年第04期摘要:随着社会经济的不断发展,广告作为大众传媒中最普及的传播手段,已成为人们社会生活中不可缺少的一部分。
大部分广告都遵循了美国学者E.S.Lewis提出的“AIDA”原则:引起注意(Attention)、发生兴趣(Interest)、产生欲望(Desire)、付诸行动(Action)这是衡量一则广告成功与否的标准。
基于此,双关语以其诙谐幽默,令人印象深刻等特点越来越多地出现在广告中,引起了人们的关注。
目前为止,双关语的研究角度广泛,成果颇丰,但对中法广告中双关语的研究较少。
因此,笔者以中法广告中的双关语为研究对象,从关联理论视角下对其进行解读。
关键词:中法广告;关联理论;双关语一、关联理论介绍1986年,法国的丹·斯波伯(Dan Sperber)和英国的迪埃钰·威尔逊(Deirdre Wilson)出版了《关联性:交际与认知》(《Relevance:Communication and Cognition》)一书,提出了有关交际与认知的理论——关联理论。
关联理论从人类的认知特点与过程出发,将交际与认知结合起来,把交际当作一种认知活动。
(一)明示——推理交际模式“明示——推理交际模式”是针对代码模式和Grice推理模式的不足而提出来的新的交际模式。
“明示”是针对发话人来说的,它要求发话人明白无误地表示自己有某种交际的意图。
“推理”是针对受话人来说的,是其根据发话人明示提供的信息去推理出发话人的交际意图。
示例一A:明天要一起去聚餐吗?B:我明天还有课。
在这段对话中,A邀请B去聚餐,B没有直接拒绝A,而是讲出了拒绝邀请的理由。
B把“明天还有课”这一信息直接传递给A,使A知道“B自己有事要忙”这一新的信息。
与此同时,B想通过自己的回答让A推导出其隐含意义,从而放弃邀请,这就是B的交际意图。
B明说了“明天还有课”,这是一种明示行为,A通过B的回答推导出“我不一起去聚餐了,因为明天还有课”这一过程就是推理行为。
公共经济学的新贡献_2009年度克拉克奖获得者伊曼纽尔_塞斯的学术贡献
公共经济学的新贡献———2009年度克拉克奖获得者伊曼纽尔・塞斯的学术贡献罗良文 阚大学(中南财经政法大学经济学院 430233) 内容摘要:本文从伊曼纽尔・塞斯(Emmanuel Saez)的学术生平出发,简要地概括了其出道以来在学术上的主要贡献:(1)最优化税收理论,主要包括最优税收、最优转移支付计划和已婚夫妇的税收问题。
(2)收入分布的测度,主要是对美国和其他21个国家的收入分布进行测度,分析收入分布的演化,这被学术界认为是一项了不起的成就。
(3)税收的行为反应,塞斯测度了边际税率的变化对应税收入的影响,在测度其关键参数应税收入弹性上做了大量的研究,评估了所得税体系造成的行为反应。
(4)退休计划,塞斯分析了雇员导向型退休计划参与者的行为,开创性地研究了雇员在退休储蓄存款计划的参与和投资决策中,同群效应是否起着重要作用。
关键词:最优税收 收入分布 行为反应 退休计划中图分类号:F091.3 文献标识码:A 文章编号:1005-1309(2009)07-0105-007 2009年4月,加州大学伯克利分校经济学系的伊曼纽尔・塞斯教授荣获素有“小诺贝尔经济学奖”之称的“约翰・贝茨・克拉克奖(the John Bates Clark Medal)”,从而成为第31位获得该奖项的经济学家,这对于非本土的年轻经济学家来说,实属不易。
在颁奖颂词中,美国经济学会对他评价是“伊曼纽尔・塞斯对公共经济学做出了杰出贡献。
他着重于从理论和经验的角度处理公共政策问题,一方面他将最优政策的特征和经济与行为的可测量方面联系起来,对现有的理论进行了精炼;另一方面,他进行了谨慎和创造性的经验研究设计,填补了对税收理论的识别测量这一空白。
他的一系列研究使得税收理论与实际的公共政策制定更为接近,激发了学术界对税收研究的兴趣。
”下面我们将从伊曼纽尔・塞斯的学术生平出发,力图言简意赅地概括出其出道以来在学术上的主要贡献。
一、伊曼纽尔・塞斯的学术生平 1972年,伊曼纽尔・塞斯出生于法国,23岁数学本科毕业,两年后在法国获得经济学硕士, 1999年,他以优异的成绩毕业于麻省理工学院(M I T)获得经济学博士,并与同年6月加盟哈佛大学经济系,2002年7月离开那里前往加州大学伯克利分校经济系任教,2005年取得正教授职位,曾先后兼任《公共经济学》(Journal of Public Econom ics)的副主编和共同主编以及《经济学杂志》收稿日期:2009-05-30(Econom ic Journal)的副主编,目前兼任《数量经济学》(Quantitative Econom ics)和《国际税收与公共财政》(I nternati onal Tax and Public Finance)的副主编以及《公共经济学》的主编,并且也是国民经济研究局(NBER)、经济政策研究中心(CEPR)、欧洲经济顾问组织(CESif o)等著名研究机构的资深研究员。
44 Defect-Oriented Testing in the Deep-Submicron Era High Defect Coverage with Low-Power Te
林德布洛姆渐进决策模型的缺陷——以中国户籍制度改革为例
林德布洛姆渐进决策模型的缺陷——以中国户籍制度改革为例作者:赵颖洁来源:《现代经济信息》 2018年第18期改革开放以来,中国共产党人根据马克思主义基本原理,从我国社会主义初级阶段基本国情出发,对社会主义市场经济理论进行了深入的探索,建立了社会主义市场经济体制,由于初始阶段所建立起来的市场经济体制一定程度上不完善,中国在改革过程中采取了保守渐进的改革策略。
实践证明,从维持社会稳定的角度来看,这种策略是正确的。
20 世纪80 年代以来中国一系列的户籍制度改革也是对渐进决策模型的应用。
但是随着中国经济的快速发展,社会主义市场经济体制的不断完善,渐进决策模型的弊端逐渐显现,我国现行的户籍制度已经显现出其严重的不适应性。
一、渐进决策模型的基本内涵及其缺陷( 一) 渐进决策模型的基本内涵最早提出渐进决策模型的是美国经济学家、政治学家查尔斯.E. 林德布洛姆(Charls.E. Lindblom),1958 年,林德布洛姆在《美国经济学评论》杂志上发表了题为《政策分析》的论文。
渐进决策,是指决策者在既有合法政策的基础上,采用渐进方式对现行的政策加以修改,通过一连串的小小的改变,在社会稳定的前提下,逐渐实现决策目标[1]。
渐进决策出现的原因:第一,没有足够的时间、信息和金钱去对所有的政策选择进行调查研究,全面收集这些信息的成本太高,同时多元化的政治经济、社会和文化价值标准的冲突与不可比性,使决策者也无法计算政策的成本收益比。
第二,之所以接受旧有政策的合理性,是因为全新政策的后果往往具有很大的不确定性,当新政策的后果无法预计,那么保险的做法就是坚持已经实施过的政策。
第三,已有政策中可能已经投下巨大成本,这就在很大程度上排斥巨变,否则便会带来已有投入的巨大损失。
( 二) 渐进决策模型的缺陷林德布洛姆渐进决策模型是对理性优化模型的批判,认为现实生活中既然不存在完美无缺的公共政策,那么就应对现行的公共政策进行不断的修正。
证券投资分析_模拟试题一_2013年版
1、从最早的直觉化决策方式,到图形化决策方式,再到指标化决策方式,直到最近的模型化决策方式,以及正在研究开发中的智能化决策方式,( )投资分析方法的演进遵循了一条日趋定量化、客观化、系统化的发展道路。
A:基本分析流派B:技术分析流派C:心理分析流派D:学术分析流派答案:B解析:题中所述符合技术分析流派的发展特征。
2、( )通常需要买入某个看好的资产或资产组合,同时卖空另外一个看淡的资产或资产组合,试图抵消市场风险而获取单个证券的阿尔法收益差额。
A:交易型策略B:多一空组合策略C:事件驱动型策略D:投资组合保险策略答案:B解析:多一空组合策略,也称为“成对交易策略”,通常需要买入某个看好的资产或资产组合,同时卖空另一个看淡的资产或资产组合,试图抵消市场风险而获取单个证券的阿尔法收益差额。
3、艾略特发现每一个周期(无论上升还是下降)可以分成( )个小过程。
A:3B:5C:6D:8答案:D解析:艾略特受到价格上涨下跌的现象的不断重复的启发,发明了波浪理论。
该理论是以周期为基础的。
把周期分成时间长短不同的各种周期,指出,在一个大周期之中可能存在小的周期,而小的周期又可以再细分成更小的周期。
每个周期无论时间长与短,都是以一种相同的模式进行,这个模式就是波浪理论的核u-8浪过程。
每个周期都是由上升(或下降)的5个过程和下降(或上升)的3个过程组成。
这8个过程完结以后,才能说这个周期已经结束。
4、( )对市场上的“羊群效应”、股价瞬间暴涨暴跌等非理性现象的解释,为人们理解金融市场提供了一个新的视角。
A:基本分析流派B:行为金融学C:有效市场理论D:个体心理分析答案:B解析:行为金融学弥补了现代金融理论只注重最优决策模型中简单地认为理性投资决策模型就是决定证券市场价格变化的不足。
5、关于融资融券制度,错误的是( )。
A:融资融券业务的推出改变了证券市场只能做多不能做空的单边市现状B:融券的推出有利于投资者利用衍生工具的交易进行避险和套利C:融资融券大大削减了证券市场的效率D:融资融券业务的推出有利于促进资本市场和货币市场之间资源的合理有本市场资金供给答案:C解析:融资融券业务是指向客户出借资金供其买入上市证券或者出借上市证券供其卖出,并收取担保物的经营活动。
实验心理学复习题及答案
实验心理学单项选择题1.事后回溯设计是:前实验设计2.在加因素法反响时中,刺激及数目选择反响时的关系是:线性关系3.及古典心理物理学相比,信号检测论的优点是:能将区分力及判断标准加以别离4.补笔测验用来研究:内隐记忆5.某小学90%以上的学生成绩在30分以下,这种现象是:地板效应6.注意研究中,所使用的双作业操作范式应遵循的原那么:互补研究7.铁钦纳在1901年出版了一部著作,其中对感知觉的研究和心理物理法进展了大量论述,并致力于将实验心理学建立成一个新的学科体系,该著作是:?实验心理学?8.依据误差对阈限进展间接测量的方法是:平均差误法9.A、B、C反响时比拟:B>C>A10.支持知觉直接性观点的是:“视崖〞知觉实验11.动作稳定测量仪〔九洞仪〕可用于考察:情绪特征12.华生做的儿童恐惧实验中,采用的研究方法是:刺激---反响法13.通常用来测量个体距离判断水平的仪器是:深度知觉仪14.学习一系列单字后,把学过的及未学过的单字随机混在一起,并呈现给被试,要求被试识别出学过的单字。
这种检查记忆效果的方法是:再认法15.在试验研究中,衡量自变量及因变量关系明确程度的是:内部效度16.在心理学实验研究中要选取多种指标来评价实验研究的成败,这些指标是:效度和信度17.信号检测论实验的方法有:评价法和有无法多项选择题1.有人想检验课堂教学中屏幕上呈现的四种类型的文字颜色及背风光搭配是否影响学生的学习效果,结果没有发现这四种搭配类型的学习效果之间存在差异。
可能的解释是A.文字颜色及背风光搭配本来就及学习效果无关B.所挑选的文字颜色及背风光的四种搭配类型之间差异过小C.对学习效果的测量不准确 D.授课教师的差异削弱了文字颜色及背风光搭配类型的影响效果2.记忆研究中,材料呈现方法有:全部呈现法、提示法、对偶联合法3.等响曲线反映的响度听觉特点有:频率是影响响度的一个因素、不同频率的声音有不同的响度增长率、声强提高,响度级也相应增加4.ROC曲线能反映出:信号的先定概率对报准率和虚报率的影响、信号检测标准变化时报准率及虚报率的变化、不同观察者的敏感性指标5.常用来对错误记忆进展定量研究的手段有:关联效应研究、词语掩蔽效应研究6.用于内隐记忆研究的加工别离程序,其根本假设包括:意识性提取的操作表现为全或无、意识性提取和自动提取是彼此独立的加工过程、自动提取在包含和排除测验中的性质是一样的、意识性提取在包含和排除测验中的性质是一样的7.测量记忆保持量的方法有:再认法、重构法、节省法、词干补笔法8.实验心理学早期出色的三位心理学家:冯特、费希纳、艾宾浩斯9.以下方法属于长时记忆实验研究中的回忆法的是:对偶回忆法、自由回忆法、再认法概念解析1.实验性别离在实验中将两个对象或概念区分开来,从实验操作上说,就是如果操纵一个自变量能使两个对象发生不同的变化,那么久可以认为这两个对象在本质上是不同的,也就是出现了实验性别离。
读书笔记之没有最优的选择读书笔记读书摘录读书感想读书笔记
读书笔记之没有最优的选择自由的重担面临太多选择的消费者可能会因为做决定的过程艰难而感到沮丧,所以不少消费者宁愿放弃选择权。
也有些人会购买,但是劳心劳力做决定的痛苦已经超过买“心头好”的好心情。
而且,选择太多反而会让那些被选中的“幸运儿”魅力大减(满足感降低),因为事后我们老想着那些没选上的是不是会更好,这样我们购物的快乐大打折扣。
多即是少自由划分为消极自由(negative liberty)—不做,免受他人强制积极自由(positive liberty)—去做,做自己生活的主人—— Isaiah Berlin新的选择逼着我们做更多的功课,让我们对自己的失败承担更大的责任。
做出明智的选择1明确目标2收集信息- 一旦我们搞清楚想要什么,就可以调用各种资源帮助我们评估这些选择3信息的质量4锚定效应5框架和算账6框架和前景体验效用(experienced utility)期望效用(expected utility)记忆效用(remembered utility)当体验效用符合我们的期望效用,而记忆效用有忠实地反应了体验效用时,我们才明白自己想要什么,但这中情况很少见。
峰终定律(peak-end rule)- 人们对体验的记忆与过程中的感受好坏无关,而是事情达到高峰的感受和结束时的感受拇指规则(rules of thumbs)- 经验法则框架效应(framing effect)- 同一个问题的两种逻辑意义相似的说法会导致不同的决策判断,当消费者认为某一价格带来的是“损失”而非“收益”时,他们对价格就非常敏感最大化与满足者最大化1许多最大化者根本没有意识到自己有这种倾向,他们可能会意识到自己在做决定时会遇到麻烦,而且害怕后悔,连作选择的最后那一丁点儿满足都得不到,但他们却没有意识到问题根源2人们对地位的关注;随着物品多样性的增加,物质主义的流行以及现代市场营销策略的发展,混杂着躲到让人眼花缭乱的选择,对地位的关注无可避免的成为奢侈品的竞赛自主权个体的选择自由可以确保社会商品以最有效的方式生产并分配——亚当斯密表达价值,选择是我们向世界表名自己身份和喜好的一种途径。
注意实验
过滤器只允许每个通道的信息单独通过。
支持证据:Cherry(1953)双耳同时分听的追随耳程序
实验结果表明:被试能很好地再现追随耳的信息,而对非追随耳的刺激, 除了一些物理特征变化(如语言由男声变为女声)能觉察之外,其他的任何东西 都不能报告,甚至当非追随耳的刺激由法语改为德语、英语或拉丁语等的变化都 觉察不到。该结果基本支持这种过滤器模型。
Treisman和Geffen(1967)为了验证以上两种模型,设计了 一个双耳同时分听实验,在此实验中既设置了追随耳程序,又设 置了追随靶子词的程序。
可以做出如下预测: • 若追随耳能听到靶子词并做出反应,而非追随耳听不到并不能做出反应,则
支持过D滤e器u模ts型ch;等(1967)则对以上实验设计提出批评。他们指出, • 若追在随T耳re和is非m追an随的耳实都验可听设到计靶中子,词两并耳做实出反际应上,处但于追不随等耳的对靶地子位词。的反应
靶子词。这些靶子词呈现在右耳或左耳的数量相同,但呈现的 顺序是随机的。要求被试不管右耳还是左耳听到靶子词,都要 作出分别的反应。
实验结果:右耳和左耳对靶子词的反应率达到59%--68%。 双耳的反应率很接近。
四、知觉选择模型和反应选择模型的比较
两类注意模型的主要不同点,在于对注意选择机制(即过滤 器)在信息加工系统中所处的位置不同。
物均无关系。
实验结果见下表
从表中数据可知,在探测显示中被试对目标的反应时随着启动显示中分心物 数目的增加而缩短。这一实验结果说明,作为负启动效应根源的扩散抑制也 遵循资源有限理论。
3、评价:
A、可较好地解释同时进行两个作业所产生的各种复杂情况,在一定程 度上克服了知觉选择和反应选择模型的对立 B、该理论只是着眼于加工过程的整体性而并未深入到加工过程的内部, 因而它还不能从根本上取消知觉选择和反应选择的可能性。 C、到底什么是资源这个问题也无法给出确64)根据以上实验结果对过滤器模型加 以改进,提出了衰减模型(attenuation model)。
广告信息加工中性别差异的实验研究.PDF
广告信息加工中性别差异的实验研究林树(复旦大学管理学院,上海,200433)摘要:研究者运用加工分离程序(PDP),探讨了在不同性别的广告代言人条件下,不同性别的目标受众对其所代言品牌在控制性加工和自动化加工水平上的差异。
结果发现:(1)在男性代言人条件下,男性受众对其所代言品牌的自动化加工水平明显高于女性被试,两者控制性加工水平差异不显著;(2)在女性代言人条件下,女性受众对其所代言的品牌的自动化加工水平明显高于男性被试,两者的控制性加工水平差异不显著。
实验结果对广告的设计与制作有着借鉴意义。
关键词:性别差异广告代言人自动化加工内隐记忆加工分离程序1 引言许多研究表明,广告代言人对于促进广告对受众的作用非常重要。
Phillips(1996)[4]认为,广告中的代言人可以吸引注意,提高对产品的再认和回忆,因为广告制作者用广告代言人将其所欲表达的诉求、意义赋予了产品。
而同一产品广告中选用男性代言人还是选择女性代言人,抑或二者同时出现,对于不同性别的广告受众对该广告品牌的偏好、购买倾向以及记忆加工等会产生什么影响呢?这方面曾有一些研究。
Kate Peirce, Michael McBride 和Tim England(1999)[5]曾就不同性别被试对不同性别代言人形象细节的外显记忆,不同性别被试对不同性别代言人所代言的不同产品(典型男性用品或典型女性用品)的喜好程度和购买倾向作过研究。
他们发现不同性别被试对同性别代言人所代言的产品有更强的喜好和购买倾向,但不同性别被试对代言人形象细节的外显记忆并没有显著差异。
一些研究者也曾就不同性别的儿童广告代言人对不同性别儿童的影响做过研究。
Garramone(1984)[6]和Kolbe & Mueling(1995)[7]研究认为,男性儿童不会对女性演员所代言的产品感兴趣。
然而关于不同性别的代言人就其所代言的品牌对男、女性受众的记忆,尤其是不同性别的代言人对不同性别受众的内隐记忆能够产生多大作用,即自动化加工的作用未见到直接相关研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Direct Blind MMSE Channel Equalization Based onSecond-Order StatisticsJunqiang Shen and Zhi Ding,Senior Member,IEEEAbstract—A family of new MMSE blind channel equalization algorithms based on second-order statistics are proposed.Instead of estimating the channel impulse response,we directly estimate the cross-correlation function needed in Wiener–Hopf filters.We develop several different schemes to estimate the cross-correlation vector,with which different Wiener filters are derived according to minimum mean square error(MMSE).Unlike many known sub-space methods,these equalization algorithms do not rely on signal and noise subspace separation and are consequently more robust to channel order estimation errors.Their implementation requires no adjustment for either single-or multiple-user systems.They can effectively equalize single-input multiple-output(SIMO)sys-tems and can reduce the multiple-input multiple-output(MIMO) systems into a memoryless signal mixing system for source separa-tion.The implementations of these algorithms on SIMO system are given,and simulation examples are provided to demonstrate their superior performance over some existing algorithms.Index Terms—Blind channel estimation,channel equalization, communications,multiuser analysis.I.I NTRODUCTIONB LIND channel equalization has become a very popularresearch topic in recent years.This problem is often encountered in digital communication systems in which un-known signals are transmitted through unknown multipath channels.The intersymbol interference(ISI)caused by multi-path channels can severely degrade the communication system performance.Moreover,for multiuser systems,there are also co-channel interferences(CCI)from other users.Both ISI and CCI can be detrimental to the correct reception of the trans-mitted channel input sequence.In order to overcome the effect of ISI and CCI,a number of algorithms have been presented for blind channel identification and equalization of single-input multiple-output(SIMO)and multiple-input multiple-output (MIMO)systems[1]–[15].In blind channel identification/equalization,the channel is identified/equalized without using a training sequence.Gener-ally,at the receiver,only the output sequence and some a priori statistical information on the input sequence are utilized.Such methods offer potential improvement in system capacity by eliminating the training overhead.Traditionally,blind channel identification and equalization can be achieved by exploitingManuscript received July31,1998;revised September15,1999.This work was supported by the National Science Foundation under Grant CCR-99-96206. The associate editor coordinating the review of this paper and approving it for publication was Prof.Kon Max Wong.J.Shen is with the Engineering Resource Center,Delphi Delco Electronics Systems,Kokomo,IN46904-9005USA(e-mail:jshen@). Z.Ding is with the Department of Electrical and Computer Engineering,Uni-versity of Iowa,Iowa City,IA52242USA(e-mail:zding@). Publisher Item Identifier S1053-587X(00)02351-5.the higher order statistics of baud-rate sampled channel output signals[12]–[15].More recently,a class of second-order statistical(SOS)algorithms have been presented that rely on the SIMO system model for additional information.These SOS algorithms can achieve satisfactory performance using fewer output data samples.The algorithm by Tong et al.[1],which is known as the TXK algorithm,is one of the first subspace-based methods exploiting only SOS of SIMO systems resulting from fractionally spaced sampling.Utilizing the SIMO model,a number of SOS algorithms[2]–[11]have been proposed. However,many existing SOS methods suffer from one crit-ical weakness in that they are sensitive to channel order esti-mation errors.When channel order is known,channel estima-tion is satisfactory.However,when channel order is unknown, accurate channel order estimation under noisy conditions be-comes difficult,and performances of SOS algorithms tend to be poor.In this paper,we develop a type of blind channel equaliza-tion algorithm that is less sensitive to the inaccuracy of channel order estimation.We will present SOS methods that do not need to identify the unknown channel impulse response but instead generate equalizer parameters based on the MMSE criterion for SIMO and MIMO systems.These algorithms will estimate the cross-correlation between the measurable channel output signal and desired channel input signal.This cross-correlation vector can then be used to construct the MMSE Wiener equalizer.More specifically,for a systemwith inputs,based on our algo-rithms,we can form a matrix that equals the outer product of only one preselected block column(vector based on SOS are proposed in Section III,and in Section IV ,the blind channel equalization algorithms for SIMO system are considered.Simulation results for the SIMO system are presented in Section V to demonstrate the performance of the proposed algorithms.II.P ROBLEM F ORMULATIONConsider a baseband QAM linear systemwithuser channels are all linear and causal withimpulseresponseis the symbol baud period,andis stationary,white,and independent of channelinputsequencesis a “composite”channel impulse responsethat includes transmitter and receiver filters as well as the physical propagation channel response.In a typical multiuser system,multiple channels of observations will be available from multiple sensors.If,,and areall vectors.However,for simplicity of presentation,weassumethroughout this paper.The objective of blind channel equalization is todemodulate the inputsequencefrom the outputsequence ,given only some a priori statistical knowledgeof without knowing the channel response.We proceed to develop a discrete-time MIMO signal model,which is key to developing the blind equalization algorithms in the subsequent sections.Suppose that the channel is oversam-pled by (aninteger)is the number of output samples derived from oversam-pling (assuming that there is excess bandwidth).Supposethat(2.2)it is evidentthatis called the smoothing lag orthe equalizer memory .We formanblock Toeplitzmatrix...has full column rank andis thus identifiable [1],[2].Assume that both the channel inputsignal(3.1)(3.2)with the specialcase(3.3)noisevariance;identitymatrix.with outputsignalSHEN AND DING:DIRECT BLIND MMSE CHANNEL EQUALIZATION 1017The minimum MSE filter toestimate is the solution to theWiener–Hopfequation(3.6)whereas the cross-correlation vectorequals(3.7)wheredenotesthe,whichis.In subsequent sections,we will show how thisvector can be estimated blindly without training data.It should be noted that in [17],a blind MMSE equalizer was determined from partial knowledge of the desired user channel in the form of its CDMA spreading code.In this work,we present a dif-ferent method that does not require such partial eful Matrix PropertiesFor notational convenience,wedefine(3.8)(3.9)We also definethatis an identity matrix,except for its first zero di-agonal entries,and is all zero except for unit entries onitsto th diagonal elements.It can be directly shownthathas full columnrank,the following equation is true [19],[20]:(3.14)wheremust be estimated and subtracted from the covariance ma-trices.A.Method AObserve that from the expressionof(4.7)It is readily seen thatmatrixhasrankunitary matrix.As a result,the blindequalizer output in the absence of channel noise issimply(4.9)which is a memoryless mixtureof1018IEEE TRANSACTIONS ON SIGNAL PROCESSING,VOL.48,NO.4,APRIL 2000B.Method B Another way togetis toutilizeand,as in the previous subsection.Noticethat(4.12)where the second equality follows from (4.11).Theoretically,obtained from this method should be equalto ob-tained in the previous subsection in (4.7).Because more matrix multiplications with matrix inverse are involved in this method,method B is more sensitive to the numerical errors due to the matrix inversion,and more computational work is involved here than in method A.However,noise may affect the actual perfor-mance of method A and method B in practice.In fact,because method A and method B involve different utilizationofand,and only involves two ma-trix multiplications,which is the most computational effectiveamong these three methods.However,and only contains thefirst.Recall the definitionofin (3.11).Forthecase...............istheis givenby.For single-usersystems,,which means that can be estimatedwith a (nonzero)scalar ambiguity via eigendecomposition,QR factorization,or singular value decomposition (SVD)ofmatricesor ,theMMSE equalizers can be designed based on our estimate of the cross-correlation vector with this ambiguity.B.Optimum Delay SelectionIt should be noted that the MMSE equalizer is designed forsignalestimateat a specific delay for the equalizers.Let the estimated input symbol withdelayThe MSE for the MMSE equalizer isMSESHEN AND DING:DIRECT BLIND MMSE CHANNEL EQUALIZATION1019 Hence,the optimum delay can be foundbybaud samples of the channel outputdata,form the auto-correlationsubmatricesand form the estimated auto-covariancematricesaccordingto..................fromMDLand estimate the noise variance as the average ofthesmallesteigenvalues3)According to(3.6)and(4.1),obtain the noise-adjustedauto-covariance matrixasfor asuitableaccording to(5.4)or(5.6).6)Use the cross-correlation vector for the optimum delayand determine the optimum equalizer parametervector.For mod-erate to high SNR systems,this will only result in a smallperformance degradation.•The performance of MMSE equalizers relies criticallyon the accuracy of the cross-correlation vector estimate.Different methods to estimate the cross-correlation vectormay be advantageous in terms of performance or compu-tational complexity.•Our simulations show that the performance of the equal-izers will not differ very much once the delayto beequalto.Generally speaking,selectingmeans more computational ually,we cannotaffordan is notexactly known and is estimated from the collected data.In our simulations,wechooselimitedin with roll-off factor0.10and a two-ray multipathchannelwhich results in the overall channel impulse responseofis shown in Fig.1.The data input signal is i.i.d.QPSK,and the oversampling factoris.The noise is zero mean,white,and Gaussian.Fromthe channel impulse response,it can be seen that the maximumsubchannel orderis1020IEEE TRANSACTIONS ON SIGNAL PROCESSING,VOL.48,NO.4,APRIL2000Fig.1.Overall channel impulse response h (t )used in the simulations.For the purpose of comparison,we also implement the sub-space method (SSM)[6]for channel equalization.We first iden-tify the channel using SSM and then apply the MMSE algorithm for channel equalization.We label this method MMSE-SSM.To make SSM work properly for our examples,we choose thesmoothing lag for SSM tobe ,whereas for our algo-rithms,wechoose=6(true channel order),and thelength of the data samples is K =350.Fig.3.Bit error rate at the outputs of the different equalizers versus the estimated channel order.hboxSNR =18dB,and the length of the data samples is K =350.the BER of MMSE-SSM drops to an unacceptable level if the estimated channel order deviates from the true channel order.All three proposed algorithms are far less sensitive to channel order estimate mismatches.C.Experiment 3:Data Length EffectAlgorithm performance is affected by output data length.In this experiment.The SNR is fixed at 18dB,and the true channelorderThe equalizer output MSE is affected by a different selection of delaySHEN AND DING:DIRECT BLIND MMSE CHANNEL EQUALIZATION1021Fig.4.Bit error rate at the outputs of the different equalizers versus the length of data samples.SNR=18dB.Estimated channel order^m=7;,and K=350.for differentdelaywhere,to save computation,selecting=7.E.Scatter PlotsFinally,we show in Fig.6the signal scatter plot before andafter blind equalization.In this simulation,SNR1022IEEE TRANSACTIONS ON SIGNAL PROCESSING,VOL.48,NO.4,APRIL2000[7]K.Abed-Meriam et al.,“Prediction error methods for time-domainblind identification of multichannel FIR filters,”in Proc.IEEE Int.Conf.Acoust.,Speech,Signal Process.,Detroit,MI,May1995,pp.1968–1971.[8]G.Xu,H.Liu,L.Tong,and T.Kailath,“A least-squares approach toblind channel identification,”IEEE Trans.Signal Processing,vol.43, pp.2982–2993,Dec.1995.[9]K.Abed-Meraim and Y.Hua,“New linear prediction algorithm for blindequalization in spatially colored noise,”presented at the IEEE Workshop Digital Signal Process.,Bryce Canyon,UT,Aug.1998.[10]H.Liu and G.Xu,“Closed-form blind symbol estimation in digital com-munications,”IEEE Trans.Signal Processing,vol.43,pp.2714–2723, Nov.1995.[11]J.Zhu,X.Cao,Z.Ding,and J.Shen,“A blind intersymbol interferencecancellation method for multi-user systems with channel diversity,”pre-sented at the31st Asilomar Conf.Signals,Syst.,Comput.,Pacific Grove, CA,Nov.1997.[12] A.Benveniste,M.Goursat,and G.Ruget,“Robust identification of anonminimum phase system:Blind adjustment of a linear equalizer in data communications,”IEEE Trans.Automat.Contr.,pp.385–399,June 1980.[13]Z.Ding,R.A.Kennedy,B.D.O.Anderson,and C.R.Johnson,“Ill-con-vergence of Godard blind equalizers in data communication systems,”IEEE mun.,vol.39,pp.1313–1327,Sept.1991.[14] D.N.Godard,“Self-recovering equalization and carrier tracking in two-dimensional data communications systems,”IEEE mun.,vol.COMM-28,pp.1867–1875,Nov.1980.[15] D.Hatzinakos and C.Nikias,“Estimation of multipath channel responsein frequency selective channels,”IEEE J.Select.Areas Commun.,vol.7,pp.12–19,Jan.1989.[16]X.Cao and R.Liu,“General approach to blind source separation,”IEEETrans.Signal Processing,vol.44,pp.562–571,Mar.1996.[17] D.J.Gesbert,J.Sorelius,and A.J.Paulraj,“Blind multiuser MMSEdetection of CDMA signals,”in Proc.IEEE Int.Conf.Acoust.,Speech, Signal Process.,Seattle,W A,May1998,pp.3161–3164.[18]M.Wax and T.Kailath,“Detection of signals by information theoreticcriterion,”IEEE Trans.Acoust.,Speech,Signal Processing,vol.ASSP-33,pp.387–392,Apr.1985.[19]G.H.Golub and C. F.Van Loan,Matrix Computations,3rded.Baltimore,MD:Johns Hopkins Univ.Press,1996.[20]T.L.Boullion and P.L.Odell,Generalized Inverse Matrices.NewYork:Wiley-Interscience,1971.[21]S.Barnett,Matrices Methods and Applications.Oxford,U.K.:Clarendon,1990.Junqiang Shen was born in Shaoxing,China.Hereceived the B.S.and M.S.degrees in computerscience and engineering from Shanghai JiaotongUniversity,Shanghai,China,in July1989and March1992,respectively,and the Ph.D.degree in electricalengineering from Auburn University,Auburn,AL,in March1999.From March1992to June1995,he worked asan electrical engineer in Eastcomm Corporation,Hangzhou,China,developing digital switchingsystems and GSM switching systems.Since June 1999,he has been with Delphi Delco Electronics Systems,Kokomo,IN, working on the smart automotive airbag sensing system.His research interests include automotive airbag sensing algorithms,multiuser detection in CDMA systems,digital communications,digital signal processing,statistical signal processing,and blind channelindentification/equalization.Zhi Ding(SM’95)received the Ph.D.degree from theSchool of Electrical Engineering,Cornell University,Ithaca,NY,in August1990.He is an Associate Professor with the Departmentof Electrical and Computer Engineering,Universityof Iowa,Iowa City.From1990to1998,he was aFaculty Member with the Department of ElectricalEngineering,Auburn University,Auburn,AL,first asan Assistant Professor and later as an Associate Pro-fessor.He has had visiting positions with the Aus-tralian National University,Canberra,the Hong Kong University of Science and Technology,the NASA Lewis Research Center,and the USAF Wright Laboratory.His research covers a number of research issues involving statistical signal processing that include communications system de-sign,signal detection and classification,and blind signal separation.Dr.Ding has been an Associate Editor of the IEEE T RANSACTIONS ON S IGNAL P ROCESSING.He currently serves as a Member of the IEEE Signal Processing for Communications Technical Committee.。