李雅普洛夫稳定性
第5章李雅普诺夫稳定性分析
第5章 李雅普诺夫稳定性分析
第五章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性 5.2 李雅普诺夫第一法(间接法) 5.3 李雅普诺夫第二法(直接法) 5.4 线性定常系统的李雅普诺夫稳定性分析
4
第5章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性
1.自治系统
没有外输入作用时的系统称为自治系统,可 用如下系统状态方程来描述:
如果时变函数V(x,t)有一个正定函数作为下限, 也就是说,存在一个正定函数W(x) ,使得
V ( x ,t) W ( x), V (0,t) 0, t t0
则称时变函数V(x,t)在域S(域S包含状态空间的 原点)内是正定的。
24
第5章 李雅普诺夫稳定性分析
3. 负定函数:如果-V(x)是正定函数,则标量函数 V(x)为负定函数。
则称平衡状态xe在李雅普诺夫意义下是稳定的。
在上述稳定的定义中,实数δ通常与ε和初始时
刻t0都有关,如果δ只依赖于ε ,而和t0的选取无关,
则称平衡状态是一致稳定的。
9
第5章 李雅普诺夫稳定性分析
5. 渐近稳定性
若系统的平衡状态xe不仅具有李雅普诺夫意 义下的稳定性,且有
lim
t
||
x(t;
x0 ,
(s)
则 m(s) 为矩阵A的最小多项式。
注:换言之,矩阵A的最小多项式就是(sI-A)-1
中所有元素的最小公分母。
17
第5章 李雅普诺夫稳定性分析
例5-1(补充):判断下述线性定常系统的稳定性
0 0 0
x 0 0
0
x
0 0 1
解:1)系统矩阵A为奇异矩阵,故系统存在无穷
李雅普诺夫稳定性理论
x(t0 , x0 , t0 ) x0 初态
3.平衡状态:
xe f (xe , t) 0 xe 系统的平衡状态 a.线性系统 x Ax x Rn
A非奇异: Axe 0 xe 0
A奇异:
Axe 0 有无穷多个 xe
b.非线性系统
x f (xe ,t) 0 可能有多个 xe
Pij Pji
x x1 x2 xn T
李氏第二法稳定性定理
设 x f (x,t) 1)在 xe 满足 f (0,t) 0
2) xe 0 V (x, t)存在
定理1
若1)
V
(
x,
t
)
正定 xe
2)
V ( x, t )
负定
则 xe渐近稳定
3)若 x V (x)
eg. x1 x1
x2 x1 x2 x23
令 x1 0 x2 0
xe 1
0
0
0 xe3 1
0 xe2 1
5.2李雅普诺夫意义下的稳定
1.李氏意义下的稳定
如果对每个实数 0 都对应存在另一个
实数 ( ,t0 ) 0 满足 x0 xe (,t0)
则平衡状态 xe 是不稳定的
推论1 若 1)V (x,t)正定 2)V(x,t)正半定
3)x 0 V(x,t) 0 则 xe不稳定
推论2 若 1)V (x,t)正定 2)V(x,t)正半定
3)x 0 V(x,t) 0 则 xe 是李雅普
诺夫意义下的稳定
选取李氏函数的方法
1)构造一个二次型函数 V (x,t)
李雅普诺夫稳定性
x bx5
这时线性化方法不能用来判断它的稳定性。
李雅普诺夫理论基础
例:证明下面单摆的平衡状态 ( , 0) 是不稳定的。
MR2 b MgR sin 0
式中 R 为单摆长度,M 为单摆质量, b 为铰链的摩擦系数,
g 是重力常数。(系统的平衡点是什么?)
在 的邻域内
sin sin cos ( ) h.o.t. ( ) h.o.t. 设 ~ ,那么系统在平衡点附近的线性化结果是
以速度 1 指数收敛于 x 0 。
例2:系统 x x2 , x(0) 1它的解为 x 1/(1 t),是个慢于任 何指数函数 et ( 0) 的函数。
3、局部与全部稳定性
定义:如果渐近(或指数)稳定对于任何初始状态都能 保持,那么就说平衡点是大范围渐近(或指数)稳定的, 也称为全局渐近(或指数)稳定的。
李雅普诺夫理论基础
§2.2 线性化和局部稳定性
李雅普诺夫线性化方法与非线性系统的局部稳定性有关。
Lyapunou线性化方法说明:在实际中使用线性控制方法基
本上是合理的。
对于自治非线性系统 x f (x) ,如果 f (x) 是连续可微的,那
么系统的动态特性可以写成( f (0) 0 ):
x
f x
李雅普诺夫理论基础
第二章 Lyapunov理论基础
稳定性是控制系统关心的首要问题。
稳定性的定性描述:如果一个系统在靠近其期望工作点的某 处开始运动,且该系统以后将永远保持在此点附近运动, 那么就把该系统描述为稳定的。
例如:单摆,飞行器 李雅普诺夫的著作《动态稳定性的一般问题》,并于1892
年首次发表。 1. 线性化方法:从非线性系统的线性逼近的稳定性质得出非
第4章李雅普诺夫稳定性分析
第4章李雅普诺夫稳定性分析李雅普诺夫稳定性分析是数学分析中的一个重要概念,它用于判断非线性系统在其中一点附近的稳定性。
李雅普诺夫稳定性分析方法最初由俄国数学家李雅普诺夫提出,广泛应用于控制论、微分方程和动力系统等领域。
在进行李雅普诺夫稳定性分析时,首先需要确定非线性系统的平衡点。
平衡点是指系统在其中一时刻的状态不再发生变化,即各个状态变量的导数为零。
在平衡点附近,可以通过线性化的方法来近似非线性系统,即将非线性系统转化为线性系统进行分析。
接下来,利用李雅普诺夫稳定性定理可以判断线性化系统的稳定性。
根据定理的不同形式,可以分为不动点稳定性定理和周期解稳定性定理。
不动点稳定性定理是指当线性化系统的特征根都具有负的实部时,非线性系统在平衡点附近是稳定的;而当至少存在一个特征根具有正的实部时,非线性系统在平衡点附近是不稳定的。
这个定理对于线性化系统为一阶系统或者线性化系统的特征根为复数的情况适用。
周期解稳定性定理是指当线性化系统的所有特征根满足一定条件时,非线性系统在周期解附近是稳定的。
这个定理对于封闭曲线解以及周期解的情况适用。
当线性化系统无法满足上述定理时,可以使用李雅普诺夫直接法来判断非线性系统的稳定性。
李雅普诺夫直接法是基于李雅普诺夫函数的概念,通过构造合适的李雅普诺夫函数来判断非线性系统的稳定性。
李雅普诺夫函数是满足以下条件的函数:1)李雅普诺夫函数的导数在其中一区域内是负定的,即导数的每个分量都小于或等于零;2)在平衡点附近,李雅普诺夫函数取得最小值。
通过构造合适的李雅普诺夫函数,并验证满足上述条件,就可以判断非线性系统的稳定性。
如果李雅普诺夫函数的导数在整个状态空间都是负定的,则非线性系统是全局稳定的;如果李雅普诺夫函数的导数在一些有限的状态空间内是负定的,则非线性系统是局部稳定的。
总之,李雅普诺夫稳定性分析是一种有力的工具,可以用于判断非线性系统的稳定性。
不过需要注意的是,李雅普诺夫稳定性分析方法仅适用于平衡点附近的稳定性分析,对于非线性系统的全局稳定性分析还需要其他的方法。
第四章稳定性与李雅普诺夫方法
第四章稳定性与李雅普诺夫方法稳定性与李雅普诺夫方法是控制理论中的两个重要概念。
稳定性是控制系统分析中的基本问题之一,它描述了系统在受到干扰后能否回到平衡状态的能力。
李雅普诺夫方法是一种常用的稳定性分析方法,通过构造李雅普诺夫函数来判断系统的稳定性。
稳定性是控制系统设计中最基本的要求之一、一个稳定的系统能够在受到干扰后迅速恢复到平衡状态,而不会发生不可控制的震荡或不稳定的行为。
稳定性可以分为两种类型:渐近稳定性和有界稳定性。
渐近稳定性要求系统的状态能够收敛到一个稳定的平衡点,而有界稳定性要求系统的状态能够保持在一个有限范围内。
李雅普诺夫方法是一种通过构造李雅普诺夫函数来判断系统稳定性的方法。
李雅普诺夫函数是一个标量函数,它满足以下条件:1)对于任意非零的向量,李雅普诺夫函数的导数都是负的或零;2)当且仅当系统达到稳定时,李雅普诺夫函数的导数为零。
通过构造李雅普诺夫函数并分析其导数的符号,可以判断系统的稳定性。
在实际应用中,人们通常使用李雅普诺夫直接法、李雅普诺夫间接法和李雅普诺夫-克拉洛夫稳定性定理等方法来进行稳定性分析。
其中,李雅普诺夫直接法是最常用的方法之一,它通过选择一个合适的李雅普诺夫函数来判断系统的稳定性。
如果可以找到一个李雅普诺夫函数,使得该函数的导数对于所有非零的初始条件都是负的,则系统是渐近稳定的。
李雅普诺夫间接法是通过构造一个李雅普诺夫方程来判断系统的稳定性。
李雅普诺夫方程是一个微分方程,其中包含系统的状态向量和一个非负标量函数,满足一定的条件。
如果可以找到一个满足李雅普诺夫方程的解,并且该解是有界的,则系统是有界稳定的。
李雅普诺夫-克拉洛夫稳定性定理是李雅普诺夫方法的重要理论基础。
该定理表明,如果系统的李雅普诺夫函数存在并且连续可导,并且李雅普诺夫函数的导数满足一定的条件,则系统是渐近稳定的。
这个定理为李雅普诺夫方法的应用提供了重要的理论依据。
总之,稳定性与李雅普诺夫方法是控制理论中基础且重要的概念。
现代控制理论第四章-李雅普诺夫稳定性
0s
0
1
s
0 1 1 1 1
(s
s 1 1)(s 1)
s
1 1
可见传递函数的极点 s 1位于s的左半平面,故系统
输出稳定。这是因为具有正实部的特征值2 1 被系统的零
点 s 1 对消了,所以在系统的输入输出特性中没被表现出
来。由此可见,只有当系统的传递函数W(s)不出现零、极
点对消现象,并且矩阵A的特征值与系统传递函数W(s)的
2020/3/22
6
现代控制理论
第4章 李亚普诺夫稳定性分析
4.2 李亚普诺夫第二法的概述
1892年俄国学者李亚普诺夫发表了《运动稳定性一般 问题》,最早建立了运动稳定性的一般理论,并把分析常 微分方程组稳定性的全部方法归纳为两类。第一类方法先 求出常微分方程组的解,而后分析其解运动的稳定性,称 为间接方法;第二类方法不必求解常微分方程组,而是提 供出解运动稳定性的信息,称为直接方法,它是从能量观 点提供了判别所有系统稳定性的方法。
即Xe f ( X e ,t) ,0 则把 叫X e做系统的平衡状态。
对于线性定常系统 X AX而言,其平衡状态满足
Xe AX e ,0 若A是非奇异矩阵,则只有 X e ,0 即对线性系 统而言平衡状态只有一个,在坐标原点;反之,则有无限
多个平衡状态。
对于非线性系统而言,平衡状态不只一个。
2020/3/22
9
现代控制理论
第4章 李亚普诺夫稳定性分析
3、李亚普诺夫第二法
李亚普诺夫第二法建立在这样一个直观的物理事实上:
如果一个系统的某个平衡状态是渐近稳定的,即
im
t
X
X,e 那么随着系统的运动,其储存的能量将随时间
李雅普诺夫关于稳定性的定义
✓
线性定常系统的有界输入有
界输出(BIBO)稳定性
未研究系统的内部状态变化的稳定性,也不能推广 到时变
系统和非线性系统等复杂系统。
➢ 再则,对于非线性系统或时变系统,虽然通过一些 系统转化方法,上述稳定判据尚能在某些特定系统和范 围内应用,但是难以适用于一般系统。
现代控制系统的结构比较复杂,大都存在非线性或时变因 素,即使是系统结构本身,往往也需要根据性能指标的要 求而加以改变,才能适应新的情况,保证系统的正常或最 佳运行状态。
Lyapunov的博士论文被译成法文并于1907年发表,1949年 普林斯顿大学出版社重印了法文版。1992年在Lyapunov的 博士论文发表100周年之际,International Journal of Control (国际控制杂志)以专辑形式发表了Lyapunov论文的英译 版,以纪念他在控制理论领域所作的卓越贡献。
➢ 该方法不仅可用于线性系 统而且可用于非线性时变 系统的分析与设计,已成 为当今控制理论课程的主 要内容之一。
➢ 百余年来Lyapunov理论 得到极大发展, 在数学、 力学、自动控制、机械工 程等领域得到广泛应用。
A.M. Lyapunov是一位天才的数学家。曾从师于大数学家 P.L. Chebyshev(切比雪夫),和A.A. Markov(马尔可夫 )是同校同学(李比马低两级),并同他们始终保持着良好 的关系。他们共同在概率论方面做出了杰出的贡献。在概率 论中可以看到关于矩的马尔可夫不等式、切比雪夫不等式和 李亚普诺夫不等式等。Lyapunov还在相当一般的条件下证 明了中心极限定理。
✓
经典控制理论讨论的有界输入
有界输出(BIBO)稳定即为外部稳定性 。
Outer stability
李雅普诺夫稳定性的定义
x(0) x(0)
x1
? 定义 (李雅普诺夫稳定性) 若状态方程
x2
x'=f(x,t) 所描述的系统,
? 对于任意的?>0和任意初始时刻t0,
??
x(0) x(0)
x1
? 都对应存在一个实数?(?,t0)>0,
? 使得对于任意位于平衡态xe的球域 S(xe,?)的初始状态x0,
? 当从此初始状态x0出发的状态方程的解x都位于球域 S(xe,?)内,
? 它是一种具有普遍性的稳定性理论, 不仅适用于线性 定常系统,而且也适用于非线性系统、时变系统、分 布参数系统。
? 本节先讨论李雅普诺夫稳定性理论的基础--李雅普 诺夫稳定性定义。
平衡态
? 设我们所研究的系统的状态方程为 x'=f(x,t)
其中x为n维状态变量; f(x,t)为n维的关于状态变量向量x和时间t的非线性向量函数。 ? 对该非线性系统,其平衡态的定义如下。
? 则系统在初始时刻t0的平衡态xe 为在李雅普诺夫意义下稳定的。
x2
??
x(0) x(0)
x1
? 以二维状态空间为例,上述定义的几何解释和状态轨线变 化如图所示。
? 对于李雅普诺夫稳定性,还有如下说明:
? 李雅普诺夫稳定性针对平衡状态而言,反映的是平衡状 态邻域的局部稳定性,即小范围稳定性。
? 系统做等幅振荡时,在平面上描出一条封闭曲线,只要 不超过S(xe,?),就是李雅普诺夫稳定的,而经典控制理 论则认为不稳定。
? 因此,不失一般性,为了便于分析,我们常把平衡态取为状 态空间的原点。
? 值得指出的是,由于非线性系统的李雅普诺夫稳定性具有局 部性特点,因此在讨论稳定性时,通常还要确定平衡态的稳定邻 域(区域)。
李雅普诺夫Lyapunov稳定性理论李雅普诺夫
现代控制理论的稳定性判据
李雅普诺夫(Lyapunov)稳定性理论
李雅普诺夫(Lyapunov)稳定性理论
李雅普诺夫,俄国数学力学专家, 俄罗斯科学院院士,意大利林琴 科学院 以及法国巴黎科学院的外籍院士。 1892年在他的博士论文《运动稳定性的一般 问题》(The general problem of the stability motion) 中系统地研究了由微分方程描述的一般运动系统的稳定性 问题,建立了著名的Lyapunov方法,为现代控制和非线性 控制奠定了基础。 Lyapunov稳定性理论对于控制理论学科的发展产生了深刻 的影响,已成为现代控制理论的一个非常重要的组成部分。
时,从任意初态出发的解始终位于以 x e 为球心,半径为 的闭 球域S ( ) 内,即
x(t; x0 , t0 ) xe , t t0
则称系统的平衡状态 x 在李雅普诺夫意义下稳定。
e
当系统做不衰减的震荡运动
时,将描绘出一条封闭曲线 ,只要不超出 S ( ) ,则认为是 稳定的。
初始状态有界,随时间
推移,状态向量距平衡 点的距离可以维持在一 个确定的数值内,而到 达不了平衡状态。
x2
S ( )
xe
S ( )
x1
任给一个球域S ( ) ,若存在一个球域S ( ) ,使得从 S ( )出发的 轨迹不离开S ( ),则称系统的平衡状态是李雅普诺夫意义下稳定 的。 若 与初始时刻 t 0无关,则 称系统的平衡状态x e是一致
x2
S ( )
xe
S ( )
x1
近,直至到达平衡状态后
停止运动。
3、大范围渐近稳定 当初始条件扩展到整个状态空间,且平衡状态均具 有渐近稳定性时,称此平衡状态是大范围渐近稳定的。 几何意义:
第四章李雅普诺夫稳定性理论
对概念的几点说明:
(5)线性系统渐近稳定等价于大范围渐近稳定。对非线 性系统,一般只考虑吸引区为有限定范围的渐近稳定。
第二节 李雅普诺夫间接法
思想:李氏间接法利用系统矩阵A的特征值 或者说系统极点来判断系统稳定性。
一、线性定常系统的稳定性
线性定常系统的稳定性判别定理:
(1)李氏稳定 A的约当标准形J中,实部为0的特征 值所对应的约当块的维数是一维的,其余特征值均 有负实部。 (2)渐近稳定 A的特征值均具有负实部。
,其中P为实对
称方阵,它的元素可以是定常的,可以是时变的,但
V(x)并不一定都是简单的二次型。
(4) V(x)函数只表示系统在平衡状态附近某邻域内局部运动的 稳定情况,但丝毫不能提供邻域外运动的任何信息。
(5) 由于V(x)构造需要技巧,因此Lyapunov第二法主要用 于那些使用别的方法无效或难以判断其稳定性的问题,如 高阶非线性系统或时变系统。
A奇异:
b. 非线性系统 例:
令
2. 孤立的平衡状态:在某一平衡状态的充分小的 邻域内不存在别的平衡状态。
说明: (1) 系统不一定都存在平衡点; (2) 但系统也可能有多个平衡点; (3) 平衡点多数在状态空间的原点,可通过适当
的坐标变换移到原点(针对孤立平衡点); (4) 稳定性问题都是相对于某个状态而言的,对
(3)不稳定 A的特征值中至少有一个有正实部。
说明:
(1)劳斯判据依然适用。 (2)状态稳定(内部的稳定)与BIBO稳定(输出稳定性)。
解释: 例1:
李氏稳定 不稳定 李氏稳定
李氏稳定 不稳定
例2:
求A的特征值: 得A特征值:
不稳定
二、非线性系统的稳定性 非线性系统的稳定性一般是局部的。用间接法判
李雅普诺夫主稳定性
• ③判断 V ( (t; x ,0)) 0 。 T • 对此,只需判断使 V ( x)=0的 x x1,0 不为系 T 统状态方程的解。为此,将 x x1,0 代入状 态方程,导出:
0
x1 x2 0 0 x2 x1 (1 x2 ) 2 x2 x1
1 2 1 2
1 2
x Βιβλιοθήκη 2• = 2 x1 2 • = 2x2 (1 x2 ) 2 x2 =0”和 x1 任意, • 可见,使 V ( x) =0的情况有“ x2 =-1”,此外均有 x1 任意, V ( x) “ <0。 • 表明 V ( x) 为负半定。
x2 2 x2 x (1 x )2 x 2 2 1
李雅普诺夫主稳定性定理
李雅普诺夫主稳定性定理
• 对连续时间非线性时不变自制系统: • ① x f ( x) , t 0 • 若可构造对x具有连续一阶偏导数的一个标 V (0) 0 ,且对状态空间 R n 中 量函数 V ( x) , • 所有非零状态点x满足如下条件: • (1) V(x) 为正定; V ( x) dV ( x) / dt 为 负半定; • (2)
李雅普诺夫主稳定性定理
n x R ,V ( (t; x0 ,0)) 0 ; • (3)对任意非零 0 • (4)当 x ,有 V ( x) ;
• 则系统的原点平衡状态x=0为大范围渐近稳 定。
• 例:给定一个连续时间非线性时不变系统:
x1 x2 x2 x1 (1 x2 ) 2 x2
• 判断原点平衡状态即 xe 0 是否为大范围渐近 稳定。 • 解:①选取候选李雅普诺夫函数V(x)。 T x x , x • 对于给定非线性系统,表状态 ,并 1 2 2 2 取V(x)= x1 x2 • 可知V(x)为正定,且V(0)=0。
稳定性与李雅普诺夫
V(x)=(x1 +x2)2; 3)V(x) < 0,则称V(x)为负定。例如V(x)=-(x12 +2x22); 4)V(x) ≤ 0,则称V(x)为半负定(或非正定)。例如
p
Δ1
p11 , Δ2
11
p
21
p
12
p
,…
, Δn P
22
矩阵 P(或 V(x))定号性的充要条件是:
1)若 Δi 0, i (1,2,, n) ,则 P(或 V(x))为正定;
2)若
Δi
0, 0,
i为偶数 i为奇数
,则
P(或
V(x))为负定;
3)若
Δi
0, 0,
i i
(1,2,, n
需要根据舍弃旳髙 阶项再分析 采用李雅普诺夫第 二法
举例:用李雅普诺夫第一法判断下列系统旳稳定性
x1 x1 x1x2
x2
x2
x1x2
第一步:令 x1 0, x2 0
求得系统旳平衡状态 x1e (0,0)T , x1e (1,1)T
第二步:将系统在平衡状态x1e附近线性化
f1 f1
(1)V(x)是满足稳定性判据条件的一个正定的标量函数,且 对于 x 应具有连续的一阶偏导数; (2)对于一个给定系统,如果 V(x)可以找到,那么通常是非 唯一的,这并不影响结论的一致性。 (3)V(x)的最简单形式是二次型函数 V(x) = xTP x,其中 P 为 实对称方阵,它的元素可以是定常的或时变的。但 V(x)并不一 定都是简单的二次型。 (4)如果 V(x)为二次型,且可表示为:
李雅普诺夫关于稳定性的定义
Lyapunov稳定性理论不仅可用来分析线性定常系统, 而且也能用来研究 时变系统 非线性系统 离散时间系统 离散事件动态系统 逻辑动力学系统 等复杂系统的稳定性,这正是其优势所在。
11.1.1 平衡态 equilibrium state
设我们所研究的系统的状态方程为 x’=f(x,t)
其中x为n维状态变量; f(x, t)为n维的关于状态变量向量x和时间t的非线性向量函数。
lim x(t)
t
式中,x(t) 为系统被调量偏离其平衡位置的变化量;
为任意小的给定量。
如果系统在受到外扰后偏差量越来越大,显然它 不可能是一个稳定系统。
对系统进行各类性能指标的分析必须在系统稳定的前提下 进行。稳定是控制系统能够正常运行的首要条件,只有稳定 的系统才有用。
但这些经典控制理论中的稳定性判别方法仅限于讨论 SISO线性定常系统输入输出间动态关系,即 线性定常系统的有界输入有界输出(BIBO)稳定性
未研究系统的内部状态变化的稳定性,也不能推广到时变 系统和非线性系统等复杂系统。 再则,对于非线性系统或时变系统,虽然通过一些系统
转化方法,上述稳定判据尚能在某些特定系统和范围内 应用,但是难以适用于一般系统。
在牛顿建立引力理论后,天文学家试图证明太阳系的稳定性。 特别地,拉格朗日和拉普拉斯在这一问题上做了突出的贡献。 1773年,24岁的拉普拉斯“证明了行星到太阳的距离在一些 微小的周期变化之内是不变的”,并因此成为法国科学院副 院士。虽然他们的论证今天看来并不严格,但这些工作对于 后来Lyapunov的稳定性理论有很大的影响。
《现代控制理论》李雅普诺夫稳定性分析
1、向量空间上的欧几里德范数(即向量长度)
其欧几里德范数定义为:
一般
一、向量和矩阵的范数
预备知识
矩阵范数
矩阵 的范数定义为:
【例】
Hale Waihona Puke , 则即:矩阵每个元素平方和开根号
预备知识
2、矩阵范数
1.二次型函数:由n个变量
组成的二次齐次多项式,称(n元)二次型函数
2.二次型函数的矩阵表示
则系统在原点处的平衡状态是不稳定的。
为唯一的平衡状态。
定理4:设系统状态方程为
李雅普诺夫主要的稳定性定理
例题
[例] 设系统状态方程为
试确定系统的稳定性。
解 xe=0
,
是该系统惟一的平衡状态。
由于当
时
,所以系统在原点处的平衡状态是
大范围渐近稳定的。
选取
李雅普诺夫主要的稳定性定理
例题
[例] 已知定常系统状态方程为
定义:若所有有界输入引起的零状态响应输出有界,则称系统为有界输入输出稳定。
李雅普诺夫第一方法—间接法
定理3:连续定常系统 传递函数为: 系统 BIBO 稳定的充要条件为:传递函数的所有极点均位于S左半平面。
【例】试分析系统渐近稳定和BIBO稳定。
李雅普诺夫主要的稳定性定理
讨论续
这是一个矛盾的结果,表明
也不是系统的
受扰运动解。综合以上分析可知,
当
时,显然有
根据定理9-12可判定系统的原点平衡状态是大范围渐近稳定的。
李雅普诺夫主要的稳定性定理
线性系统稳定性分析
一.线性定常系统李雅普诺夫稳定性分析
线性定常连续系统
系统状态方程为
李雅普诺夫稳定性理论
❖推论. 1:当 V(x,t) 正定,V( x, t ) 半正定, 且 V[x(t; x0,t),t]在非零状态不恒为零时,则
原点不稳定。
.
❖推论2:V(x,t) 正定,V ( x , t ) 半正定,若
x0 ,V(x,t) 0 ,则原点是李雅普
诺夫意义下稳定(同定理3)。
几点说明:
1) V(x,t)选取不唯一,. 但没有通用办法,V(x,t)
其中是任选的微量,则称系统的平衡状态xe是 渐近稳定的。
定义三 对所有的状态(状态空间的所有点),如 果由这些状态出发的轨迹都具有渐近稳定性,则 称平衡状态xe为大范围渐近稳定。
定义四 :如果从球域 S( )出发的轨迹,无论球
域选得多么小,只要其中有一条轨迹脱离球域, 则称平衡状态xe为不稳定。
❖线性系统:如果它是渐近稳定的,必是有大 范围渐近稳定性(线性系统稳定性与初始条件的 大小无关)。
例
xx21 kxx21 k 0
V (x ,t)x 1 2 k2 2x(k 0 )
V ( x , t ) 2 x 1 x 1 2 k 2 x 2 x 2 k 1 x 2 x 2 k 1 x 2 x 0
故系统是李雅普诺夫意义下的稳定
定理四 设系统的状态方程为 xf(x,t) f(0 ,t)0 (tt0) 如果存在一个标量函数V(x,t),V(x,t)对向量x中 各分量具有连续的一阶偏导数,且满足条件:
矩阵P(或V(x))定号性的充要条件是:
(1) 若Δi >0 (i=1,2,…n),则P为正定;
(2) 若
0 i0
ii为 为奇 偶数 数 ,则 P为负定
(3) 若
0 i 0
i1,2,,n1 in
,P 则 为半正定
李雅普诺夫稳定性分析
李雅普诺夫稳定性分析
李雅普诺夫稳定性理论
李雅普诺夫理论在建立一系列关于稳定性概念的基础上,提出了判断 系统稳定性的两种方法: 间接法:利用线性系统微分方程的解来判断系统稳定性,又称之为李 雅普诺夫第一法; 直接法:首先利用经验和技巧来构造李雅普诺夫函数,进而利用李雅 普诺夫函数来判断系统稳定性,又称为李雅普诺夫第二法。
这表明, 当且仅当‖eAt‖≤ k <∞ 时,对任给的一个实数ε > 0,都对应存在和初始时 刻无关的一个实数 δ(ε)= ε /k,使得由满足不等式 ||x0 — xe|| ≤ δ(ε) (4-391) 的任一初态x0出发的受扰运动都满足不等式 xt; x0 ,0 xe e At x0 xe k , t 0 (4 392)
2)
证明 1) 设 xe 为线性定常系统(4-388+)的平衡状态,则由性质 e 0 和 Axe 0 x 可知,对于所有 t≥0 均有(可通过等式两边求微分证明下式)
xe e At xe (4 389) (4 390)
于是,考虑到 x(t; x0, 0) = eAtx0,有
x(t; x0 ,0) xe e At ( x0 xe ), t 0
2 李雅普诺夫意义下的稳定性
设系统初始状态位于以平衡状态xe为球心、δ为半径的闭球域S(δ)内,即 ||x0 - xe|| ≤ δ, t =t0 (4-385) 若能使系统方程的解x(t;x0,t0)在t→∞的过程中,都位于以xe为球心、任意规 定的半径为ε的闭球域S(ε)内,即 ||x(t;x0,t0)-xe|| ≤ ε,t≥t0 (4-386) 则称系统的平衡状态xe在李雅普诺夫意义下是稳定的。式中||· ||为欧几里德范 数,其几何意义是空间距离的尺度。 例如: ||x0 - xe||表示状态空间中, x0 点至 xe 点之间距离的尺度,数学表达式 为: ||x0 - xe|| = [(x10 – x1e)2+ (x20 – x2e)2+… +(xn0 – xne)2]1/2 (4-385)
李雅普罗夫 稳定性
§6.2李雅普诺夫稳定性1、稳定性定义李雅普诺夫稳定性概念如果对于任意给定的0>ε和0t ≥0都存在0),(0>=t εδδ,使得只要0x 满足δ<-10x x就有εϕ<-),,(),,(1000x x x t t t t对一切0t t ≥成立,则称微分方程),(d d x x t f t= (6.6)的解),,(10x x t t ϕ=是稳定的.否则是不稳定的.假设),,(10x x t t ϕ=是稳定的,而且存在)0(11δδδ≤<,使得只要0x 满足1δ<-10x x就有0)),,(),,((lim 1000=-∞→x x x t t t t t ϕ则称(6.6)的解),,(10x x t t ϕ=是渐近稳定的.注意:微分方程(6.6)式中的函数),(x t f 对nR D ⊆∈x 和(,)t ∈-∞+∞连续,对x 满足局部李普希兹条件.一般情况下,我们把解),,(10x x t t ϕ=的稳定性化成零解的稳定性问题进行讨论. 这样就有下面的关于零解0=x 稳定性的定义:定义1 若对任意0ε>和00t ≥,存在0),(0>=t εδδ,使当δ<0x 时有ε<),,(00x x t t对所有的0t t ≥成立,则称(6.6)的零解是稳定的.反之是不稳定的.定义2 若(6.6)的零解是稳定的,且存在10δ>, 使当1δ<0x 时有0),,(lim 00=∞→x x t t t则称(5.1)的零解是渐近稳定的. 2、李雅普诺夫第二方法定义3(李雅普诺夫函数) 若函数R G →:)(x V满足V (0)=0, )(x V 和),,2,1(n i x i=∂∂V 都连续,且若存在0<H ≤K ,使在{}H x x ≤=|D 上)0(0)(≤≥x V ,则称)(x V 是常正(负)的;若在D 上除0x =外总有)0(0)(<>x V ,则称)(x V 是正(负)定的;既不是常正又不是常负的函数称为变号的.定理1(零解稳定判别定理) 对系统nR x x F tx ∈=),(d d (6.7)若在区域D 上存在李雅普诺夫函数V (x )满足(1) 正定; (2)∑=∂∂=ni i iF xVt1)2.5()(d d x V 常负.则(6.7)的零解是稳定的.注意:(6.7)式中Tn x F x F x F ))(,),(()(1 =在{}K G ≤∈=x R x n|上连续,满足局部李普希兹条件,且(0)0F =.引理 若V (x )是正定(或负定)的李雅诺夫函数,且对连续有界函数()x t 有0))((lim =∞→t t x V则.0)(lim =∞→t x t定理2(零解渐近稳定判别定理) 对系统(5.2),若在区域D 上存在李雅普诺夫函数V (x )满足(1) 正定, (2)(6.7)1d ()d ni i iV tx =∂=∂∑V F x 负定,则(6.7)的零解渐近稳定.定理3(零解不稳定判别定理) 对系统(5.11)若存在李雅普诺夫函数V (x )满足(1)∑=∂∂=ni i ix F xVdtd 1)2.5()(V 正定,(2)V (x )不是常负函数, 则系统(6.7)的零解是不稳定的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.3控制系统的李雅普诺夫稳定性分析稳定性描述系统受到外界干扰,平衡工作状态被破坏后,系统偏差调节过程的收敛性。
它是系统的重要特性,是系统正常工作的必要条件。
经典控制理论用代数判据、奈氏判据、对数频率判据、特征根判据来判断线性定常系统的稳定性,用相平面法来判断二阶非线性系统的稳定性,这些稳定判据无法满足以多变量、非线性、时变为特征的现代控制系统对稳定性分析的要求。
1892年,俄国学者李雅普诺夫建立了基于状态空间描述的稳定性概念,提出了依赖于线性系统微分方程的解来判断稳定性的第一方法(称为间接法)和利用经验和技巧来构造李雅普诺夫函数借以判断稳定性的第二方法(称为直接法)。
李雅普诺夫提出的稳定性理论是确定系统稳定性的更一般的理论,不仅适用于单变量、线性、定常系统,还适用于多变量、非线性、时变系统,它有效地解决过一些用其它方法未能解决的非线性微分方程的稳定性问题,在现代控制系统的分析与设计中,得到了广泛的应用与发展。
8.3.1 李雅普诺夫稳定性概念忽略输入后,非线性时变系统的状态方程如下),(t x f x= (8-70) 式中,x 为n 维状态向量;t 为时间变量;),(t x f 为n 维函数,其展开式为12(,,,,)i i n xf x x x t = n i ,,1 = 假定方程的解为 ),;(00t x t x ,x 0和t 0 分别为初始状态向量和初始时刻,0000),;(x t x t x =。
平衡状态 如果对于所有t ,满足0),(==t x f xe e (8-71) 的状态x e 称为平衡状态(又称为平衡点)。
平衡状态的各分量不再随时间变化。
若已知状态方程,令0=x所求得的解x ,便是平衡状态。
对于线性定常系统Ax x= ,其平衡状态满足0=e Ax ,如果A 非奇异,系统只有惟一的零解,即存在一个位于状态空间原点的平衡状态。
至于非线性系统,0),(=t x f e 的解可能有多个,由系统状态方程决定。
控制系统李雅普诺夫意义下的稳定性是关于平衡状态的稳定性,反映了系统在平衡状态2附近的动态行为。
鉴于实际线性系统只有一个平衡状态,平衡状态的稳定性能够表征整个系统的稳定性。
对于具有多个平衡状态的非线性系统来说,由于各平衡状态的稳定性一般并不相同,故需逐个加以考虑,还需结合具体初始条件下的系统运动轨迹来考虑。
本节主要研究平衡状态位于状态空间原点(即零状态)的稳定性问题,因为任何非零状态均可以通过坐标变换平移到坐标原点,而坐标变换又不会改变系统的稳定性。
(a )李雅普诺夫意义下的稳定性 (b )渐近稳定性 (c ) 不稳定性图8-18 稳定性的平面几何表示2.李雅普诺夫稳定性定义(1)李雅普诺夫稳定性:如果对于任意小的ε > 0,均存在一个0),(0>t εδ,当初始状态满足δ≤-e x x 0时,系统运动轨迹满足lim t →∞ε≤-e x t x t x ),;(00,则称该平衡状态x e 是李雅普诺夫意义下稳定的,简称是稳定的。
该定义的平面几何表示见图8-18(a ),e x x -0表示状态空间中x 0点至x e 点之间的距离,其数学表达式为2021100)()(ne n e e x x x x x x -++-=- (8-72)设系统初始状态x 0位于平衡状态x e 为球心、半径为δ的闭球域()S δ内,如果系统稳定,则状态方程的解),;(00t x t x 在∞→t 的过程中,都位于以x e 为球心,半径为ε的闭球域()S ε内。
(2)一致稳定性: 通常δ与ε、t 0 都有关。
如果δ与t 0 无关,则称平衡状态是一致稳定的。
定常系统的δ与t 0 无关,因此定常系统如果稳定,则一定是一致稳定的。
(3)渐近稳定性: 系统的平衡状态不仅具有李雅普若夫意义下的稳定性,且有 00lim (;,)0e t x t x t x →∞-→ (8-73)称此平衡状态是渐近稳定的。
这时,从()S δ 出发的轨迹不仅不会超出()S ε,且当∞→t 时收敛于x e 或其附近,其平面几何表示见图8-18(b )。
(4)大范围稳定性 当初始条件扩展至整个状态空间,且具有稳定性时,称此平衡状态是大范围稳定的,或全局稳定的。
此时,∞→δ,∞→δ)(S ,∞→x 。
对于线性系统,3如果它是渐近稳定的,必具有大范围稳定性,因为线性系统稳定性与初始条件无关。
非线性系统的稳定性一般与初始条件的大小密切相关,通常只能在小范围内稳定。
(5)不稳定性 不论δ取得得多么小,只要在()S δ内有一条从x 0 出发的轨迹跨出()S ε,则称此平衡状态是不稳定的。
其平面几何表示见图8-18(c )。
注意,按李雅普诺夫意义下的稳定性定义,当系统作不衰减的振荡运动时,将在平面描绘出一条封闭曲线,只要不超过()S ε ,则认为是稳定的,如线性系统的无阻尼自由振荡和非线性系统的稳定极限环,这同经典控制理论中的稳定性定义是有差异的。
经典控制理论的稳定是李雅普诺夫意义下的一致渐近稳定。
8.3.2 李雅普诺夫稳定性间接判别法李雅普诺夫第一法(间接法)是利用状态方程的解的特性来判断系统稳定性的方法,它适用于线性定常、线性时变及可线性化的非线性系统。
线性定常系统的特征值判据 系统Ax x= 渐近稳定的充要条件是:系统矩阵A 的全部特征值位于复平面左半部,即0)Re(<λi n i ,,1 = (8-74)证明 假定A 有相异特征值n λλ,,1 ,根据线性代数理论,存在非奇异线性变换x P x =(P 由特征值i λ对应的特征向量构成,为一常数矩阵),可使A 对角化,有),(11n diag AP PA λλ==-变换后状态方程的解为 )0()()0()(1x e e diag x e t x tn tAt λλ ==由于 x P x 1-=,)0()0(1x P x -=故原状态方程的解为 )0()0()(1x e x P Pe t x At t A ==- 有 11)(diag 1--==Pee P PPee ttAtAtn λλ将上式展开,Ate的每一元素都是ttn eeλλ,,1 的线性组合,因而可写成矩阵多项式tn ttni i Atn i eR e R eR eλλλ++==∑= 111故)(t x 可以显式表出与λi 的关系4)0(][)0()(11x eR eR x et x tn tAtn λλ++==当式(8-74)成立时,对于任意x (0),均有0)(→∞→t t x ,系统渐近稳定。
只要有一个特征值的实部大于零,对于0)0(≠x ,)(t x 便无限增长,系统不稳定。
如果只有一个(或一对,且均不能是重根)特征值的实部等于零,其余特征值实部均小于零,)(t x 便含有常数项或三角函数项,则系统是李雅普诺夫意义下稳定的。
8.3.3 李雅普诺夫稳定性直接判别法李雅普诺夫第二法(直接法)是利用李雅普诺夫函数直接对平衡状态稳定性进行判断,无需求出系统状态方程的解,它对各种控制系统均适用。
根据物理学原理,若系统贮存的能量(含动能与位能)随时间推移而衰减,系统迟早会到达平衡状态。
实际系统的能量函数表达式相当难找,因此李雅普诺夫引入了广义能量函数,称之为李雅普诺夫函数。
它与n x x ,,1 及t 有关,是一个标量函数,记以(,)V x t ;若不显含t ,则记以()V x 。
考虑到能量总大于零,故为正定函数,能量衰减特性用(,)Vx t 表示。
遗憾的是至今仍未形成构造李雅普诺夫函数的通用方法,需要凭经验与技巧。
实践表明,对于大多数系统,可先尝试用二次型函数Px x T 作为李雅普诺夫函数。
1.标量函数定号性(1)正定性 标量函数()V x 在域S 中对所有非零状态)0(≠x 有0)(>x V 且0)0(=V ,称()V x 在域S 内正定。
如2221)(x x x V +=是正定的。
(2)负定性 标量函数()V x 在域S 中对所有非零x 有0)(<x V 且0)0(=V ,称()V x 在域S 内负定。
如)()(2221x x x V +-=是负定的。
如果()V x 是负定的,-()V x 则一定是正定的。
(3)负(正)半定性 0)0(=V ,且()V x 在域S 内某些状态处有0)(=x V ,而其它状态处均有0)(<x V (0)(>x V ),则称()V x 在域S 内负(正)半定。
设()V x 为负半定,则()V x -为正半定。
如221)2()(x x x V +-=为正半定。
(4)不定性 ()V x 在域S 内可正可负,则称()V x 不定。
如21)(x x x V =是不定的。
5关于(,)V x t 正定性的提法是:标量函数(,)V x t 在域S 中,对于0t t >及所有非零状态有0),(>t x V ,且0),0(=t V ,则称),(t x V 在域S 内正定。
),(t x V 的其它定号性提法类同。
二次型函数是一类重要的标量函数,记[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==n nn n n n Tx x p p p p x x Px x x V111111)( (8-75)其中,P 为对称矩阵,有ji ij p p =。
显然满足0)(=x V ,其定号性由赛尔维斯特准则判定。
当P 的各顺序主子行列式均大于零时,即111111211212210,0,,0n n nnp p p p p p p p p >>>(8-76) P 为正定矩阵,则()V x 正定。
当P 的各顺序主子行列式负、正相间时,即111111211212210,0,,(1)0n nn nnp p p p p p p p p <>->(8-77) P 为负定矩阵,则()V x 负定。
若主子行列式含有等于零的情况,则()V x 为正半定或负半定。
不属以上所有情况的()V x 不定。
下面不打算对李雅普诺夫第二法中诸稳定性定理在数学上作严格证明,而只着重于物理概念的阐述和应用。
2.李雅普诺夫第二法诸稳定性定理设系统状态方程为),(t x f x= ,其平衡状态满足0),0(=t f ,不失一般性,把状态空间原点作为平衡状态,并设系统在原点邻域存在(,)V x t 对x 的连续的一阶偏导数。
定理1 若①(,)V x t 正定,②(,)Vx t 负定;则原点是渐近稳定的。
(,)Vx t 负定表示能量随时间连续单调地衰减,故与渐近稳定性定义叙述一致。
定理 2 若①(,)V x t 正定;②(,)Vx t 负半定,且在非零状态不恒为零;则原点是渐近6稳定的。
(,)V x t 负半定表示在非零状态存在(,)0V x t ≡ ,但在从初态出发的轨迹),;(00t x t x 上,不存在0),(≡t x V 的情况,于是系统将继续运行至原点。