【最新】人教版八年级数学上册单元测试《第13章 轴对称》(解析版)1

合集下载

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)一、单选题1.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列黑体字中,属于轴对称图形的是( )A .善B .勤C .健D .朴4.如图,在已知的ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD .若4AC =,10AB =,则ACD 的周长为( )A .8B .9C .10D .145.图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点6.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AED '=50°,则∠EFC 等于( )A .65°B .110°C .115°D .130°7.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .188.如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒9.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形10.如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .811.如图,在△ABC 中,AD 是BC 边上的高,∠BAF =∠CAG =90°,AB =AF ,AC =AG ,连接FG ,交DA 的延长线于点E ,连接BG ,CF , 则下列结论:①BG =CF ;②BG ⊥CF ;③∠EAF =∠ABC ;④EF =EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④ 12.如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④二、填空题13.已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.15.如图,△ABC 的边CB 关于CA 的对称线段是CB ',边CA 关于CB 的对称线段是CA ',连结BB ',若点A '落在BB '所在的直线上,∠ABB '=56°,则∠ACB =___度.16.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.17.如图,在等边△ABC 中,点E 是边AC 上一点,AD 为BC 边上的中线,AD 、BE 相交于点F ,若∠AEB =100°,则∠AFB 的度数为_____.18.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.三、解答题19.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.20.如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)当点D 在AC 上时,如图①,线段BD ,CE 有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的ADE 绕点A 顺时针旋转()090αα︒<<︒,如图②,线段BD ,CE 有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边ABC 和等边ADE 如图③所示,求线段BD 的延长线和线段CE 所夹锐角的度数.21.如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 、BE ,BE AE ⊥,延长AE 交BC 的延长线于点F .(1)请判断FC 与AD 的数量关系,并说明理由;(2)若AB =6,AD =2,求BC 的长度.22.已知△ABC 和△DEF 为等腰三角形,AB =AC ,DE =DF ,∠BAC =∠EDF ,点E 在AB 上,点F 在射线AC 上.(1)如图1,若∠BAC =60°,点F 与点C 重合,求证:AF =AE +AD ;(2)如图2,若AD =AB ,求证:AF =AE +BC .23.(1)如图1,在等边三角形ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 相交于点O .求证:OA =2DO ;(2)如图2,若点G 是线段AD 上一点,CG 平分∠BCE ,∠BGF =60°,GF 交CE 所在直线于点F .求证:GB =GF .(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作∠BGF =60°边GF 交CE 所在直线于点F .猜想:OG 、OF 、OA 三条线段之间的数量关系,并证明.24.如图,在ABC 中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并延长交AC 于E .(1)求证:BF AC =;(2)求证:BE AC ⊥;(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.25.如图,在Rt ABC 中,9030C A ∠=︒∠=︒,.点D 是AB 中点,点E 为边AC 上一点,连接CD DE ,,以DE 为边在DE 的左侧作等边三角形DEF ,连接BF .△的形状为______;(1)BCD(2)随着点E位置的变化,DBF∠的度数是否变化?并结合图说明你的理由;AC=,请直接写出DE的长.(3)当点F落在边AC上时,若626.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=30°,求∠ACF度数.27.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.28.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求AD的长。

八年级数学上册《第十三章轴对称》单元试题(人教版含答案)

八年级数学上册《第十三章轴对称》单元试题(人教版含答案)

第十三章《轴对称》单元练习题一、选择题1.如果一个三角形的外角平分线与这个三角形一边平行,则这个三角形一定是()A.锐角三角形B.等腰三角形C.等边三角形D.等腰直角三角形2.如图,在△ABC中,AB=AC,∠ABC=70°,顶点B在直线DE上,且DE∥AC,则∠CBE等于()A. 40°B. 50°C. 70°D. 80°3.若A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),则P(a,b)关于x轴对称点P1的坐标是()A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)4.如图,在△ABC中,AB=AC=8,BC=5,AB的垂直平分线交AC于D,则△BCD的周长为()A. 13B. 15C. 18D. 215.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ 时,连接PQ交AC于点D,下列结论中不一定正确的是()A.PD=DQB.DE=ACC.AE=CQD.PQ⊥AB6.已知a,b,c是三角形的三边长,如果满足(a﹣b)2++|c2﹣64|=0,则三角形的形状是()A.底和腰不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形7.以下列各组数据为边长,可以构成等腰三角形的是()A. 2,3,4B. 5,5,10C. 2,2,1D. 1,2,38.要使得△ABC是等腰三角形,则需要满足下列条件中的()A.∠A=50°,∠B=60°B.∠A=50°,∠B=100°C.∠A+∠B=90°D.∠A+∠B=90°二、填空题(9.如图,等边△ABC周长是12,AD是∠BAC的平分线,则BD=.10.如图的4×4的正方形网格中,有A、B、C、D四点,直线a上求一点P,使PA+PB最短,则点P应选点(C或D).11.在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC 的边长为1,AE=2,则CD的长为.12.如图,△ABC与△A′B′C′关于直线l对称,则∠C′的度数为.13.如图,在△ABC中,D为AB上的一点,且DE垂直平分AC,∠B=115°,且∠ACD:∠BCD=5:3,则∠ACB=__________度.14.如图,在△ABC中,AB=AC,BC=8,AD平分∠BAC,则BD=____________.15.如图,△ABC是等边三角形,则∠ABD=度.16.如图将边长为5cm的等边△ABC,沿BC向右平移3cm,得到△DEF,DE交AC于M,则△MEC是三角形,DM=cm.三、解答题17.如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点M.(1)在给出图上画出一个格点△MB1C1,并使它与△ABC全等且A与M是对应点;(2)画出点B关于直线AC的对称点D.19.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(2,3),B(3,1),C(-2,-2).(1)请在图中作出△ABC关于y轴的轴对称图形△A′B′C′(A,B,C的对称点分别是A′,B′,C′),并直接写出A′,B′,C′的坐标.(2)求△A′B′C′的面积.20.如图,已知五边形ABCDE是轴对称图形,点B,E是一对对称点,请用无刻度的直尺画出该图形的对称轴.(保留作图痕迹,不要求写作法)21.在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长.第十三章《轴对称》单元练习题答案解析1.【答案】B【解析】可依据题意线作出简单的图形,结合图形可得∠B=∠A,进而可得其为等腰三角形.解:如图,DC平分∠ACE,且AB∥CD,∴∠ACD=∠DCE,∠A=∠ACD,∠B=∠DCE∴∠B=∠A,∴△ABC为等腰三角形.故选B2.【答案】C【解析】由已知AB=AC,∠ABC=70°,根据等腰三角形的性质,得出∠C的度数,再利用DE∥AC,可得∠CBE=70°,答案可得.解:∵AB=AC(已知),∴∠C=∠ABC=70°(等边对等角),又∵DE∥AC(已知),∴∠CBE=∠C=70°(两直线平行,内错角相等)故选C.3.【答案】C【解析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得方程组,根据解方程组,可得P点坐标,根据关于关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.解:由A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),得2a-b=-3,a+b=-3,所以a=-2,b=-1,∴P(﹣2,﹣1).P(a,b)关于x轴对称点P1的坐标是(﹣2,1),故选:C.4.【答案】A【解析】根据线段垂直平分线的性质得出AD=BD,进而得出△BCD的周长为:CD+BD+BC=AC+BC求出即可.解:∵AB=AC=8,BC=5,AB的垂直平分线交AC于D,∴AD=BD,∴△BCD的周长为:CD+BD+BC=AC+BC=8+5=13.故选A.5.【答案】D【解析】过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ中,∠FPD=∠Q,∠FDE=∠CDQ,PF=CQ∴△PFD≌△QCD,∴PD=DQ,DF=CE,∴A选项正确,∵AE=EF,∴DE=AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=AP=CQ,∴C选项正确,故选D.6.【答案】B【解析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,再根据勾股定理的逆定理判断其形状是直角三角形.解:由(a﹣b)2++|c2﹣64|=0得:a﹣b=0,b﹣8=0,c2﹣64=0,又a,b,c是三角形的三边长,∴a=8,b=8,c=8,所以三角形的形状是等边三角形,故选:B.7.【答案】C【解析】根据三角形的三边关系对以下选项进行一一分析、判断.解:A.∵2≠3≠4,∴本组数据不可以构成等腰三角形;故本选项错误;B.∵5+5=10,∴本组数据不可以构成三角形;故本选项错误;C.∵1+2>2,∴本组数据可以构成等腰三角形;故本选项正确;D.∵1+2=3,∴本组数据不可以构成三角形;故本选项错误.故选C.8.【答案】D【解析】等腰三角形有两个底角相等,根据三角形的内角和是180°,进行判断即可.解:A、若∠A是顶角时,则50°+120°<180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在50°+50°+160°<180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;B、若∠A是顶角时,则50°+200°>180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在100°+100°>180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;C、当∠A+∠B=90°时,∠C=90°;但∠A=10°,∠B=80°时,三角形ABC的三个内角没有那两个相等,所以构不成等腰三角形;故本选项错误;D、当∠B是顶角时,则2∠A+∠B=180°,∴∠A+∠B=90°;故本选项正确;故选D.9.【答案】2【解析】根据等边三角形的性质求得BD=CD,并且求得边BC的长度,进而即可求得BD的长.解:∵△ABC是等边三角形,AD是∠BAC的平分线,∴AB=BC=CA,BD=CD,∵等边△ABC周长是12,∴BC=4,∴BD=2.故答案为2.10.【答案】C【解析】首先求得点A关于直线a的对称点A′,连接A′B,即可求得答案.解:如图,点A′是点A关于直线a的对称点,连接A′B,则A′B与直线a的交点,即为点P,此时PA+PB最短,∵A′B与直线a交于点C,∴点P应选C点.故答案为:C.11.【答案】1或3【解析】当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF﹣BC求出CF的长,即可得到CD的长;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=∠EBF=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF+BC求出CF的长,即可得到CD的长.解:当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,可得∠EFB=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=60°,∴∠BEF=30°,∵BE=AB+AE=1+2=3,∴FB=12EB=32,∴CF=FB﹣BC=12,则CD=2CF=1;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,可得∠EFC=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=∠EBF=60°,∴∠BEF=30°,∵BE=AE﹣AB=2﹣1=1,∴FB=12BE=12,∴CF=BC+FB=32,则CD=2CF=3,综上,CD的值为1或3.故答案为:1或3.12.【答案】20°【解析】根据轴对称的性质求出∠A′,再利用三角形的内角和等于180°列式计算即可得解.解:∵△ABC与△A′B′C′关于直线l对称,∴∠A′=∠A=50°,在△A′B′C′中,∠C′=180°﹣∠A′﹣∠B′=180°﹣50°﹣110°=20°.故答案为:20°.13.【答案】40【解析】根据垂直平分线的性质与三角形的全等可以得出∠A=∠ACD,再根据三角形的内角和和角的比计算.解:∵DE垂直平分AC,∴EA=EC,AD=CD,∠ADE=∠CDE=90°∴Rt△ADE≌Rt△CDE∴∠A=∠ACD又∵∠ACD:∠BCD=5:3,∴∠ACD:∠ACB=5:8∴∠A:∠ACB=5:8又∵∠B=115°∴∠A+∠ACB=65°∴∠ACB=(65×8)÷13=40°.14.【答案】4【解析】根据三线合一定理即可求解.解:∵AB=AC,AD平分∠BAC,∴BD=BC=4.故答案是:4.15.【答案】120【解析】根据△ABC是等边三角形,得出∠ABC的度数,进而求出∠ABD的度数即可.解:∵△ABC是等边三角形,∴∠ABC=60°,则∠ABD=120°.故答案为:120.16.【答案】等边 3【解析】本题考查平移的性质,经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等.解:∵AB∥DE,∴∠MEC=∠B,∠CME=∠A,∵△ABC是等边三角形,∴∠MEC=∠EMC=∠ACB,∴△MEC是等边三角形,沿BC向右平移3cm,∴BE=3cm,EC=2cm,∴DM=DE﹣EM=5﹣2=3cm.17.【答案】证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).【解析】根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.18.【答案】解:(1)△MB1C1即为所求;(2)如图所示,点D即为所求点.【解析】(1)把△ABC向右平移,使点A与点M重合即可;(2)画出点B关于直线AC的对称点D即可.19.【答案】解:(1)如图:(2)△A′B′C′的面积=5×5-×5×3-=6.5.【解析】(1)分别作出点A,B,C的对称点A′,B′,C′,然后顺次连接各点即可,根据图形然后直接写出A′,B′,C′的坐标;(2)利用图形的面积的和差关系可计算出△A′B′C′的面积.20.【答案】如图所示,直线AK即为所求的一条对称轴(解答不唯一).【解析】方法不唯一,至少可以有以上两种方法.如左图所示,因为五边形ABCDE是轴对称图形,点B,E是一对对称点,则C,D为一对对称点,故连接BD,CE,可以利用三角形全等说明K即为所求.第二幅图,因为五边形ABCDE是轴对称图形,点B,E是一对对称点,故延长BC,延长ED,则两线的交点必然为对称轴上一点,故连接AK即可.21.【答案】解:设三角形的腰AB=AC=x cm若AB+AD=24cm,则:x+x=24∴x=16三角形的周长为24+30=54(cm)所以三边长分别为16cm,16cm,22cm;若AB+AD=30cm,则:x+x=30∴x=20∵三角形的周长为24+30=54(cm)∴三边长分别为20cm,20cm,14cm;因此,三角形的三边长为16cm,16cm,22cm或20cm,20cm,14cm.【解析】两种情况讨论:当AB+AD=30 cm,BC+DC=24 cm或AB+AD=24 cm,BC+DC=30 cm,所以根据等腰三角形的两腰相等和中线的性质可求得,三边长为16cm,16cm,22cm或20cm,20cm,14cm.。

最新人教版初中八年级上册数学第13章《轴对称》单元测试含答案解析

最新人教版初中八年级上册数学第13章《轴对称》单元测试含答案解析

《第13章轴对称》一、选择题1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个2.已知点A(4,3)和点B是坐标平面内的两个点,且它们关于直线x=﹣3对称,则平面内点B 的坐标为()A.(0,﹣3)B.(4,﹣9)C.(4,0) D.(﹣10,3)3.如图,已知△ABC中,AB=AC,∠C=30°,AB⊥AD,则下列关系式正确的为()A.BD=CD B.BD=2CD C.BD=3CD D.BD=4CD4.桌面上有A,B两球,若要将B球射向桌面任意一边,使一次反弹后击中A球,则如图所示8个点中,可以瞄准的点有()个.A.1 B.2 C.4 D.65.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B. C.D.6.如图,△ABC中∠ACB=90°,CD是AB边上的高,∠BAC的平分线AF交CD于E,则△CEF必为()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形二、填空题7.把一张纸各按图中那样折叠后,若得到∠AOB′=70°,则∠B′OG=度.8.如图,黑颜色的三角形与哪些图形成轴对称(填写序号)9.如图,△ABC中,AB=AC=8,BC=6,DE垂直平分AC,则△BDC的周长是.10.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 度.11.在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有个.12.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是.13.已知:等腰三角形的周长为50厘米,若底边长为x厘米,则x的取值范围是.三、画图题14.直线l的两旁分别有点A、B,在直线l求作一点P使|PB﹣PA|最大.15.如图,某住宅小区拟在休闲场地的三条道路上修建三个凉亭A、B、C且凉亭与长廊两两连通.如果凉亭A、B的位置己经选定,那么凉亭C建在什么位置,才能使工程造价最低?请用尺规作出图形(不写作法,但保留作图痕迹),并简要说明理由.四、证明题16.已知:如图,△ABC和△BDE均为等边三角形,B、D、C三点在一条直线上,AC⊥CE,判断线段DE与AC的数量关系,并加以证明.判断:证明:17.如图,在△ABC中,AB=AC,∠ABD=∠ACD,AD的延长线交BC于E.求证:AE⊥BC.四、综合题18.已知:AD是等腰△ABC一边上的高,且∠DAB=60°,∠ABC= 度.19.已知:如图,△ABC中,点D、E分别在AB、AC边上,点F是CD中点,连BF交AC于点E,∠ABE+∠CEB=180°,比较线段BD与CE的大小,并证明你的结论.20.如图,四边形ABCD中,AC、BD是对角线,AB=AC,∠ABD=60°,过D作ED⊥AD,交AC于点E,恰有DE平分∠BDC.试判断线段CD、BD与AC之间有怎样的数量关系?并证明你的结论.《第13章轴对称》参考答案与试题解析一、选择题1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【解答】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【点评】本题考查了轴对称与轴对称图形的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.已知点A(4,3)和点B是坐标平面内的两个点,且它们关于直线x=﹣3对称,则平面内点B的坐标为()A.(0,﹣3)B.(4,﹣9)C.(4,0) D.(﹣10,3)【考点】坐标与图形变化-对称.【分析】根据轴对称的定义列式求出点B的横坐标,然后解答即可.【解答】解:设点B的横坐标为x,∵点A(4,3)与点B关于直线x=﹣3对称,∴=﹣3,解得x=﹣10,∵点A、B关于直线x=﹣3对称,∴点A、B的纵坐标相等,∴点B(﹣10,3).故选D.【点评】本题考查了坐标与图形变化﹣对称,熟记对称的性质并列出方程求出点B的横坐标是解题的关键.3.如图,已知△ABC中,AB=AC,∠C=30°,AB⊥AD,则下列关系式正确的为()A.BD=CD B.BD=2CD C.BD=3CD D.BD=4CD【考点】含30度角的直角三角形;等腰三角形的性质.【专题】计算题.【分析】根据AB=AC,判断出∠B=∠C=30°,从而求出∠BAC=120°,然后根据∠BAD=90°,求出∠1=30°,得到DC=AD,然后根据30°的角所对的直角边是斜边的一半解答.【解答】解:∵AB=AC,∠C=30°,∴∠B=∠C=30°,∴∠BAC=180﹣30°×2=120°,又∵BAD=90°,∴∠1=120°﹣90°=30°,∴∠1=∠C=30°,∴DC=AD,∵在Rt△ABD中,∠B=30°,∴AD=BD,则CD=BD.∴BD=2CD.故选B.【点评】本题考查了含30°角的直角三角形和等腰三角形的性质,知道30度的角所对的直角边是斜边的一半是解题的关键.4.桌面上有A,B两球,若要将B球射向桌面任意一边,使一次反弹后击中A球,则如图所示8个点中,可以瞄准的点有()个.A.1 B.2 C.4 D.6【考点】生活中的轴对称现象.【专题】应用题.【分析】根据题意分析可得:分别找出入射点B和反射点B,看看是否符合即可.【解答】解:由图可知可以瞄准的点有2个..故选B.【点评】本题考查轴对称图形的定义.如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.解此题关键是找准入射点和反射点.5.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B. C.D.【考点】剪纸问题.【专题】操作型.【分析】把一个正方形的纸片向上对折,向右对折,向右下方对折,从上部剪去一个等腰直角三角形,展开,看得到的图形为选项中的哪个即可.【解答】解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.【点评】考查学生的动手操作能力,也可从剪去的图形入手思考.6.如图,△ABC中∠ACB=90°,CD是AB边上的高,∠BAC的平分线AF交CD于E,则△CEF必为()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形【考点】等腰三角形的判定.【分析】根据角平分线的定义求出∠1=∠2,再根据等角的余角相等求出∠3=∠4,根据对顶角相等可得∠5=∠4,然后求出∠3=∠5,再利用等角对等边可得CE=CF,从而得解.【解答】解:如图,∵AF是∠BAC的平分线,∴∠1=∠2,∵∠ACB=90°,CD是AB边上的高,∴∠1+∠3=90°,∠2+∠4=90°,∴∠3=∠4,∵∠5=∠4(对顶角相等),∴∠3=∠5,∴CE=CF,∴△CEF是等腰三角形.故选B.【点评】本题考查了等腰三角形的判定,角平分线的定义,直角三角形两锐角互余的性质,等角的余角相等的性质,利用阿拉伯数字加弧线表示角更形象.二、填空题7.把一张纸各按图中那样折叠后,若得到∠AOB′=70°,则∠B′OG=55 度.【考点】角的计算.【专题】计算题.【分析】根据题意∠B′OG=∠BOG,根据平角和角平分线的定义即可求得.【解答】解:由题意可得∠B′OG=∠BOG,则∠B′OG=(180﹣∠AOB′)÷2=55°.故答案为55.【点评】已知折叠问题就是已知图形全等,因而得到相等的角.8.如图,黑颜色的三角形与哪些图形成轴对称1,3,5,7 (填写序号)【考点】轴对称的性质.【分析】根据轴对称的性质即可得出结论.【解答】解:由轴对称的性质可知,黑颜色的三角形与1,3,5,7可形成轴对称图形.故答案为:1,3,5,7.【点评】本题考查的是轴对称的性质,熟知如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线是解答此题的关键.9.如图,△ABC中,AB=AC=8,BC=6,DE垂直平分AC,则△BDC的周长是14 .【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】先根据线段垂直平分线的性质得出AD=CD,进而可得出结论.【解答】解:∵DE垂直平分AC,∴AD=CD.∵AB=AC=8,BC=6,∴△BDC的周长=BC+(BD+CD)=BC+(BD+AD)=BC+AB=6+8=14.故答案为:14.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.10.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 15 度.【考点】等边三角形的性质;三角形的外角性质;等腰三角形的性质.【专题】几何图形问题.【分析】根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.【点评】本题考查了等边三角形的性质,互补两角和为180°以及等腰三角形的性质,难度适中.11.在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有 4 个.【考点】坐标与图形性质;等腰三角形的判定.【分析】如果OA为等腰三角形的腰,有两种可能,以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;如果OA为等腰三角形的底,只有一种可能,作线段OA的垂直平分线,与y轴有一个交点;符合条件的点一共4个.【解答】解:分二种情况进行讨论:当OA为等腰三角形的腰时,以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点.∴符合条件的点一共4个.故答案为:4.【点评】本题考查了等腰三角形的判定及坐标与图形的性质;针对线段OA在等腰三角形中的地位,分类讨论用画圆弧的方式,找与y轴的交点,比较形象易懂.12.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是8:00 .【考点】镜面对称.【分析】镜子中的时间和实际时间关于钟表上过6和12的直线对称,作出相应图形,即可得到准确时间.【解答】解:由图中可以看出,此时的时间为8:00.故答案为:8:00.【点评】考查了镜面对称的知识,解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形.13.已知:等腰三角形的周长为50厘米,若底边长为x厘米,则x的取值范围是0<x<25 .【考点】等腰三角形的性质;三角形三边关系.【分析】已知周长和底边,可表示腰长.根据三角形三边关系得不等式求解.【解答】解:∵等腰三角形的周长为50,底边长为x,∴两腰和=50﹣x.∴50﹣x>x>0,解得 0<x<25.故答案是:0<x<25.【点评】此题考查等腰三角形的性质及三角形三边关系定理,解题的关键是设出的底边的长表示出两腰的和,难度不大.三、画图题14.直线l的两旁分别有点A、B,在直线l求作一点P使|PB﹣PA|最大.【考点】轴对称-最短路线问题.【分析】点A关于直线l的对称点A′,则PA=PA′,因而|PA﹣PB|=|PA′﹣PB|,则当A′,B、P 在一条直线上时,|PA﹣PB|的值最大.【解答】解:如图所示:作点A关于直线l的对称点A′,连A′B并延长交直线l于P.【点评】本题考查的是作图﹣轴对称变换,熟知“两点之间线段最短”是解答此题的关键.15.如图,某住宅小区拟在休闲场地的三条道路上修建三个凉亭A、B、C且凉亭与长廊两两连通.如果凉亭A、B的位置己经选定,那么凉亭C建在什么位置,才能使工程造价最低?请用尺规作出图形(不写作法,但保留作图痕迹),并简要说明理由.【考点】作图—应用与设计作图.【分析】工程造价最低,那么三个凉亭间的距离最短,又在直线l上,那么应作出点A关于直线l 的对称点A′,连接A′B交直线l于点C,点C就是所求的点.【解答】解:三个凉亭间的距离实际相当于A'B的距离,两点之间,线段最短,所以符合题意.【点评】涉及在同一条直线的一旁的两点与这条直线上的一点的最短路线问题,一般属于点关于直线对称问题.四、证明题16.已知:如图,△ABC和△BDE均为等边三角形,B、D、C三点在一条直线上,AC⊥CE,判断线段DE与AC的数量关系,并加以证明.判断:DE=AC证明:【考点】等边三角形的性质;含30度角的直角三角形.【专题】探究型.【分析】根据等边三角形的性质,由△ABC为等边三角形得到AC=BC,∠ACB=60°,则由AC⊥CE可计算出∠BCE=30°,再利用△BDE为等边三角形得到DE=BE,∠DBE=60°,于是根据三角形内角和定理可计算出∠BEC=90°,然后在Rt△BEC中利用含30度的直角三角形三边的关系可得BE=BC,所以DE=AC.【解答】解:DE=AC.证明如下:∵△ABC为等边三角形,∴AC=BC,∠ACB=60°,∵AC⊥CE,∴∠ACE=90°,∴∠BCE=90°﹣60°=30°,∵△BDE为等边三角形,∴DE=BE,∠DBE=60°,∴∠BEC=180°﹣60°﹣30°=90°,在Rt△BEC中,∵∠BCE=30°,∴BE=BC,∴DE=AC.故答案为DE=AC.【点评】本题考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.也考查了含30度的直角三角形三边的关系.17.如图,在△ABC中,AB=AC,∠ABD=∠ACD,AD的延长线交BC于E.求证:AE⊥BC.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】证明题.【分析】首先证明∠DBC=∠DCB,可得DB=DC,根据线段垂直平分线的判定可得D在BC的垂直平分线上,由AB=AC,得出A在BC的垂直平分线上,于是AD垂直平分BC,即AE⊥BC.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,∵∠ABD=∠ACD,∴∠ABC﹣∠ABD=∠ACB﹣∠ACD,即∠DBC=∠DCB,∴DB=DC,∴D在BC的垂直平分线上,∵AB=AC,∴A在BC的垂直平分线上,∵两点确定一条直线,∴AD垂直平分BC,∴AE⊥BC.【点评】此题考查了等腰三角形的判定,线段垂直平分线的判定,难度适中.证明出D在BC的垂直平分线上是解题的关键.四、综合题18.已知:AD是等腰△ABC一边上的高,且∠DAB=60°,∠ABC= 30或150 度.【考点】等腰三角形的性质.【分析】由于BC为腰,则点B可为顶角的顶点,也可为底角的顶点,高AD可在三角形内部也可在三角形外部,故应分三种情况分析计算.【解答】解:由题意得,分三种情况:(1)当点B为顶角的顶点时,且AD在三角形内部,∠ABC=90°﹣∠DAB=90°﹣60°=30°;(2)当点B为顶角的顶点时,且AD在三角形外部,∠ABC=∠D+∠DAB=90°+∠60°=150°;(3)当点C为顶角的顶点时,∠ABC=90°﹣∠DAB=90°﹣60°=30°,当点A为顶角的顶点时,AD在三角形内部,∠ABC=﹣∠ADB﹣∠DAB=90°﹣60°=30°,故答案为:30或150【点评】本题考查了等腰三角形的性质,三角形的内角和定理,直角三角形的性质.注意分类讨论是正确解答本题的关键.19.已知:如图,△ABC中,点D、E分别在AB、AC边上,点F是CD中点,连BF交AC于点E,∠ABE+∠CEB=180°,比较线段BD与CE的大小,并证明你的结论.【考点】等腰三角形的判定与性质.【分析】延长BF至点G,使FG=BF,连CG,证△GFC≌△BFD,∠CGF=∠FBD,CG=DB,求出∠CGF=∠CEG,推出CG=CE,即可得出答案.【解答】结论:BD=CE证明:延长BF至点G,使FG=BF,连CG,∵F为CD中点,∴CF=DF,在△GFC和△BFD中∴△GFC≌△BFD(SAS),∴∠CGF=∠FBD,CG=DB,又∵∠ABE+∠CEB=180°,∠CEG+∠CEB=180°,∴∠CGF=∠CEG,∴CG=CE,∴BD=CE.【点评】本题考查了全等三角形的性质和判定的应用.正确添加辅助线构造全等三角形是解题的关键.20.如图,四边形ABCD中,AC、BD是对角线,AB=AC,∠ABD=60°,过D作ED⊥AD,交AC于点E,恰有DE平分∠BDC.试判断线段CD、BD与AC之间有怎样的数量关系?并证明你的结论.【考点】全等三角形的判定与性质.【分析】求出∠ADB=∠ADF,根据SAS证△ABD≌△FED,推出∠F=∠ABD=60°,AB=AF=AC,得出△ACF是等边三角形,推出AC=CF即可.【解答】解:AC=BD+CD,理由是:延长CD到F,使DF=BD,连接AF,∵ED⊥AD,DE平分∠BDC,∴∠ADB=90°﹣∠BDC,∴∠AD F=180°﹣(90°﹣∠BDC)﹣∠BDC=90°﹣,∴∠ADB=∠ADF,在△ABD和△AFD中,,∴△ABD≌△AFD(SAS),∴∠F=∠ABD=60°,AB=AF,∵AB=AC,∴AF=AC,∴△ACF是等边三角形,∴AC=CF=CD+DF=BD+CD.【点评】本题考查了全等三角形的性质和判定,等边三角形的性质和判定,正确的作出辅助线是解题的关键.作者留言:非常感谢!您浏览到此文档。

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AE,且AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,若△ABC周长为16,AC =6,则DC为()A.5B.8C.9D.103.如图,在△ABC中,∠ACB=90°,CD是高,∠B=60°,则下列关系正确的是()A.B.C.D.4.如图,在△ABC中,AB=AC,CD平分∠ACB,交AB于点D,若∠BAC=100°,则∠ADC的度数为()A.60°B.50°C.65°D.70°5.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A′B′C′成轴对称,则△ABC一定与△A′B′C′全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.1B.2C.3D.46.已知等腰三角形两边的长x、y满足|x2﹣9|+(y﹣4)2=0,则三角形周长为()A.10B.11C.12D.10或117.如图,在等边三角形ABC中,BC边上的中线AD=6,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是()A.6B.4C.3D.28.如图,在正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.49.如图,△ABC是等腰三角形,AB=AC,∠BAC是钝角.点D在底边BC上,连接AD,恰好把△ABC分割成两个等腰三角形,则∠B的度数是()A.30°B.36°C.45°D.60°10.若二元一次方程组的解x,y的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m的值为()A.4B.1.5或2C.2D.4或2二.填空题(共8小题)11.等边三角形的两条中线所成的锐角的度数是度.12.已知点P(1﹣a,3+2a)关于x轴的对称点落在第三象限,则a的取值范围是.13.等腰三角形一腰上的高与另一腰的夹角为42°,则顶角为.14.如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.15.如图,在△ABC中,DE是BC的垂直平分线,若AB=6,AC=9,则△ABD的周长是.16.如图,∠ABC和∠ACB的角平分线相交于点M,且过点M的直线DE∥BC,分别交AB、AC于D、E两点,若AB =12,AC=10,则△ADE的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.如图,在△ABC中,AB=AC,BC=4,△ABC的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则BM+DM的最小值为.三.解答题(共7小题)19.△ABC在直角坐标系内的位置如图所示:(1)分别写出点A,C的坐标:A的坐标:,C的坐标:;(2)请在这个坐标系内画出与△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(3)求△A1B1C1的面积.20.已知一个三角形的两条边长分别为4cm,8cm.设第三条边长为x cm.(1)求x的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.21.如图所示,△ABC是等边三角形,AD为中线,AD=AE.(1)求∠EDC的度数;(2)若AD=2,求△AED的面积.22.如图,DC平分∠ACE,且AB∥CD,求证:△ABC为等腰三角形.23.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.24.如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,BD=4,EC=6,求AC的长.25.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,CD的垂直平分线MF交AC 于F,交BC于M.(1)求∠BDE的度数;(2)证明△ADF是等边三角形;(3)若MF的长为2,求AB的边长.参考答案一.选择题(共10小题)1.B.2.A.3.:D.4.A.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题(共8小题)11.60.12.a>1.13.48°或132°.14.250.15.15.16.22.17.4.18.10.三.解答题(共7小题)19.解:(1)A(0,3),C(﹣2,1);(2)如图所示,△A1B1C1即为所求;点B1(﹣4,﹣4);故答案为:(﹣4,﹣4);(3)△A1B1C1的面积=.20.解:(1)根据三角形三边关系得,8﹣4<x<8+4即4<x<12;(2)∵三角形是等腰三角形,等腰三角形两条边长分别为4cm,8cm,且4<x<12∴等腰三角形第三边只能是8cm∴等腰三角形周长为4+8+8=20cm.21.(1)解:∵△ABC是等边三角形∴∠BAC=60°AB=AC=BC∵AD为中线∴AD⊥CD∵AD=AE∴∴∠CDE=∠ADC﹣∠ADE=15°;(2)解:过D作DH⊥AC于H∴∠AHD=90°∵∠CAD=30°∴∵AD=AE=2∴.22.证明:∵AB∥CD∴∠A=∠ACD,∠B=∠DCE.∵DC平分∠ACE∴∠ACD=∠DCE∴∠B=∠A∴AC=BC∴△ABC为等腰三角形.23.解:(Ⅰ)∵三角形ABC为等边三角形∴∠BAE=60°∵∠BAD=15°∴∠DAC=60°﹣15°=45°∵∠DAE=80°∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE∴∠ADE=(180°﹣80°)=50°∠ADC=∠BAD+∠B=15°+60°=75°又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.24.(1)证明:∵AB=AC∴∠B=∠C∵FE⊥BC∴∠F+∠C=90°,∠B+∠BDE=90°∴∠F=∠BDE∵∠BDE=∠FDA∴∠F=∠FDA∴AF=AD∴△ADF是等腰三角形;(2)解:∵DE⊥BC∴∠DEB=90°∵∠F=30°∴∠BDE=30°∵BD=4∴∵AB=AC∴△ABC是等边三角形∴AC=AB=BE+EC=825.(1)解:在△ABC中,AB=AC,∠BAC=120°∴∠B=∠C=×(180°﹣∠BAC)=30°在△BDE中,BD=BE∴∠BDE=∠BED=×(180°﹣∠B)=75°;(2)证明:∵CD的垂直平分线MF交AC于F,交BC于M ∴DF=CF,∠FMC=90°∴∠FDC=∠C=30°∴∠AFD=∠FDC+∠C=60°在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线∴∠BAD=∠CAD=∠BAC=60°∴∠CAD=∠AFD=60°∴△ADF是等边三角形;(3)在Rt△FMC中,∠C=30°,MF=2∴CF=2MF=4∴DF=CF=4由(2)可知:△ADF是等边三角形∴AF=DF=4∴AB=AC=AF+CF=4+4=8.。

八年级初二上册数学 人教版单元测试《轴对称》 练习试题 测试卷(含答案)(1)

八年级初二上册数学 人教版单元测试《轴对称》 练习试题 测试卷(含答案)(1)

人教版八年级数学上册 《第十三章 轴对称》单元测试卷一、选择题(共8小题,4*8=32)1.下面四幅图是我国传统文化与艺术中的几个经典图案,其中不是轴对称图形的是( )2.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .l 1B .l 2C .l 3D .l 43.下列说法正确的是( )A .等腰三角形的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的两个底角相等D .等腰三角形一边不可以是另一边的2倍4.如图,在Rt △ABC 中,∠C =90°,∠B =15°,DE 垂直平分AB 交BC 于点E ,BE =4,则AC 的长为( )A .2B .3C .4D .以上都不对5.如图,在△ABC 中,AB =AC ,∠A =36°,BD ,CE 分别为∠ABC 与∠ACB 的角平分线,BD ,CE 相交于点F ,则图中的等腰三角形有( )A .6个B .7个C .8个D .9个6.如图,在已知的△ABC 中,按以下步骤作图:①分别以点B ,C 为圆心,以大于12 BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠A =50°,则∠ACB 的度数为( )A.90° B.95° C.100° D.105°7.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是( )A.10 B.8 C.6 D.48.在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P有()A.1个B.2个C.3个D.4个二、填空题(共6小题,4*6=24)9.如图,△ABC沿着直线MN折叠后,与△DEF完全重合,AC,DF交于点P.△ABC与△DEF 关于直线_______对称,直线MN是_________;10.如图,A,B,C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为点D,则∠EBC的度数为_____.11.如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C 落在C′处,连接BC′,则BC′的长为________.12.已知a>0,b<0,则点P(a+1,b-1)关于y轴的对称点一定在第__ __象限.13.如图,在三角形纸片ABC中,∠C=90°,∠A=30°,AC=6,折叠该纸片,使点C落在AB边上的点D处,折痕BE与AC交于点E,则折痕BE的长为__ __.14.如图,在四边形ABCD中,AB=BC=CD=AD,点D到AB的距离为3,∠BAD=60°,点F为AB的中点,点E为AC上的任意一点,则EF+EB的最小值为________.三、解答题(共5小题,44分)15.(6分) 如图,在△AOB中,点C在OA上,点E,D在OB上,且CD∥AB,CE∥AD,AB=AD,求证:△CDE是等腰三角形.16.(8分) 如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC +∠BCF=150°,求∠AFE+∠BCD的大小.17.(8分) 如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.18.(10分) 如图,已知点B,C,D在同一条直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H.(1)求证△BCE≌△ACD;(2)求证CF=CH;(3)判断△CFH的形状并说明理由.19.(12分) (1)如图①,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD 的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC 得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.因此,AB,AD,DC之间的等量关系是__ __;(2)问题探究:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.参考答案1-4DCCA 5-8CDCD9.MN,对称轴10.100°11.312.三13.414.315.解:∵CD∥AB,∴∠CDE=∠B.又∵CE∥AD,∴∠CED=∠ADB,又AB=AD,∴∠B=∠ADB,∴∠CDE=∠CED,∴△CDE是等腰三角形16.解:∵六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,∠AFC+∠BCF =150°,∴∠AFC=∠EFC,∠BCF=∠DCF,∴∠AFE+∠BCD=2(∠AFC+∠BCF)=300°17.解:(1)∵AB=AC,∴∠B=∠C=30°,∴∠BAC=120°,∠DAC=∠BAC-∠BAD=120°-45°=75°(2)∵∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,又∵AB=AC,∴DC=AB18.(1)证明:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠ACB=∠ECD =60°.∴∠BCE=60°+∠ACE=∠ACD.∴△BCE≌△ACD(SAS).(2)证明:∵△BCE≌△ACD,∴∠FBC=∠HAC.∵∠ACB=60°,∠FCH=180°-∠ACB -∠ECD=60°,∴∠BCF=∠ACH.又∵BC=AC,∴△BCF≌△ACH(ASA).∴CF=CH.(3)解:△CFH是等边三角形.理由:∵CF=CH,∠FCH=60°,∴△CFH是等边三角形.19.解:(1)AD=AB+DC(2)AB=AF+CF.证明如下:如图,延长AE交DF的延长线于点G,∵AB∥DC,∴∠BAE =∠G,又∵BE=CE,∠AEB=∠GEC,∴△AEB≌△GEC(AAS),∴AB=GC.∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵∠BAG=∠G,∴∠FAG=∠G,∴AF=FG.∵CG=FG+CF,∴AB=AF+CF。

人教版八年级数学上第十三章轴对称单元测试(含答案)

人教版八年级数学上第十三章轴对称单元测试(含答案)

数学人教版八年级上第十三章轴对称演习一.选择题1.下列由数字构成的图形中,是轴对称图形的是( ).2.下列语句中准确的个数是( ).①关于一条直线对称的两个图形必定能重合;②两个能重合的图形必定关于某条直线对称;③一个轴对称图形不必定只有一条对称轴;④轴对称图形的对应点必定在对称轴的两侧.A.1 B.2 C.3 D.43.已知等腰△ABC的周长为18 cm,BC=8 cm,若△ABC与△A′B′C′全等,则△A′B′C′的腰长等于( ).A.8 cmB.2 cm或8 cmC.5 cmD.8 cm或5 cm4.已知等腰三角形的一个角等于42°,则它的底角为( ).A.42° B.69°C.69°或84° D.42°或69°5.已知A.B两点的坐标分离是(-2,3)和(2,3),则下面四个结论中准确的有 ( ).①A.B关于x轴对称;②A.B关于y轴对称;③A.B不轴对称;④A.B之间的距离为4.A.1个 B.2个C.3个 D.4个二.填空题(本大题共8小题,每小题3分,共24分.把准确答案填在题中横线上)9.不雅察纪律并填空:10.点E(a,-5)与点F(-2,b)关于y轴对称,则a=__________,b=__________.11.如图,在等边△ABC中,AD⊥BC,AB=5 cm,则DC的长为__________.(第11题图) (第12题图)12.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的等分线,若BD=10,则CD=__________.13.如图,∠BAC=110°,若MP和NQ分离垂直等分AB和AC,则∠PAQ的度数是__________.14.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=__________.(第13题图) (第14题图)15.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为__________.16.如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC.DE垂直于横梁AC,AB=8 m,∠A=30°,则DE长为__________.三.解答题(本大题共5小题,共52分) 17.(本题满分10分)如图,在△ABC中,AB=AC,△ABC的两条中线BD.CE交于O点,求证:OB=OC. 19.(本题满分10分)如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B的度数.20.(本题满分10分)如图,E在△ABC的AC边的延伸线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G).21.(本题满分12分)如图,C为线段AE上一动点(不与点A.E重合),在AE同侧分离作等边△ABC和等边△CDE,AD与BC订交于点P,BE与CD订交于点Q,衔接PQ.求证:△PCQ为等边三角形.参考答案1.A点拨:数字图案一般是沿中央竖直线或程度线折叠,看是否是轴对称图形,只有A选项是轴对称图形.2.B点拨:①③准确,②④不准确,个中④对应点还可能在对称轴上.3.D点拨:因为BC是腰是底不肯定,因而有两种可能,当BC是底时,△ABC的腰长是5 cm,当BC是腰时,腰长就是8 cm,且均能构成三角形,因为△A′B′C′与△ABC全等,所以△A′B′C′的腰长也有两种雷同的情形:8 cm或5 cm. 4.D点拨:在等腰三角形中,当一个锐角在未指明为顶角照样底角时,必定要分类评论辩论.①42°的角为等腰三角形底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角消失两种情形,∴42°或69°.5.B点拨:①③不准确,②④准确.6.D 点拨:DE 垂直等分AB ,∠B =30°,所以AD 等分∠CAB ,由角等分线性质和线段垂直等分线性质可知 A.B.C 都准确,且AC≠AD =BD ,故D 错误.7.C 点拨:经由三次轴对称折叠,再剪切,得到的图案是C 图(也可将各选项图案按原步调折叠回复复兴).8.B 点拨:本题中的台球经由多次反射,每一次的反射就是一次轴对称变换,直到最后落入球袋,可用轴对称作图(如图),该球最后将落入2号袋.9.点拨:不雅察可知本题图案是两个数字雷同,且轴对称,由分列可知是雷同的偶数数字构成的,故此题答案为6构成的轴对称图形.10.2 -5点拨:点E .F 关于y 轴对称,横坐标互为相反数,纵坐标不变.11.2.5 cm 点拨:△ABC 为等边三角形,AB =BC =CA ,AD ⊥BC ,所以点D 等分BC .2.5 cm.==DC 所以12.5点拨:∠C =90°,∠A =30°, 则∠ABC =60°,BD 是∠ABC 的等分线,5.==CD 所以,30°=D CB 则∠ 13.40°点拨:因为MP .NQ 分离垂直等分AB 和AC ,所以PA =PB ,QA =QC ,∠PAB =∠B ,∠QAC =∠C ,∠PAB +∠QAC=∠C +∠B =180°-110°=70°,所以∠PAQ 的度数是40°.14.25°点拨:设∠C =x ,那么∠ADB =∠B =2x ,因为∠ADB +∠B +∠BAD =180°,代入解得x =25°.15.60°或120°点拨:有两种可能,如下图(1)和图(2),AB =AC ,CD 为一腰上的高,过A 点作底边BC 的垂线,图(1)中,∠BAC=60°,图(2)中,∠BAC =120°.16.2 m 点拨:依据30°角所对的直角边是斜边的一半,可知2 m.===DE 17.证实:∵BD .CE 分离是AC .AB 边上的中线,∴BE =.=CD ,又∵AB =AC ,∴BE =CD .,中CBD 和△BCE 在△ ∴△BCE ≌△CBD (SAS).∴∠ECB =∠DBC .∴OB =OC ..1C 1B 1A 如图所示的△(1)解:.18 .2C 2B 2A 如图所示的△(2) 19. 解:如图,在CH 上截取DH=BH,衔接AD,∵AH ⊥BC,∴AH 垂直等分BD.∴AB=AD.∴∠B=∠ADB.∵AB+BH=HC,∴AD+DH=HC=DH+CD.∴AD=CD.∴∠C=∠DAC=35°.∴∠B=∠ADB=∠C+∠DAC=70°.20. 证实:如图,过D 作DG ∥AC 交BC 于G,则∠GDF=∠E,∠DGB=∠ACB,在△DFG 和△EFC 中,∴△DFG ≌△EFC(ASA).∴CE=GD,∵BD=CE.∴BD=GD.∴∠B=∠DGB.∴∠B=∠ACB.∴△ABC 为等腰三角形.21. 证实:如图,∵△ABC 和△CDE 为等边三角形,∴AC =BC ,CE =CD ,∠ACB =∠ECD =60°.∴∠ACB +∠3=∠ECD +∠3, 即∠ACD =∠BCE .又∵C 在线段AE 上,∴∠3=60°.在△ACD 和△BCE 中,∴△ACD ≌△BCE .∴∠1=∠2.在△APC 和△BQC 中,∴△APC ≌△BQC .∴CP =CQ .∴△PCQ 为等边三角形(有一个角是60°的等腰三角形是等边三角形).。

新人教版八年级(上)数学 第13章 轴对称 单元测试卷(解析版)

新人教版八年级(上)数学 第13章 轴对称 单元测试卷(解析版)

第13章轴对称单元测试卷一、选择题(共10小题).1.(3分)如图所示,下列图案中,是轴对称图形的是()A.①②B.①④C.②③D.③④2.(3分)下列说法错误的是()A.有2个内角是70°与40°的三角形是等腰三角形B.一个外角的平分线平行于一边的三角形是等腰三角形C.有2个内角不等的三角形不是等腰三角形D.有2个不同顶点的外角相等的三角形是等腰三角形3.(3分)在△ABC中,AB=AC,∠ABC的平分线交AC于D,∠A=36°,则∠BDC 的度数为()A.72°B.36°C.54°D.80°4.(3分)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC =BC,则下列选项正确的是()A.B.C.D.5.(3分)如图所示,在△ABC中,AB=AC,OA=OB=OC,且∠OBC=2∠OBA,则∠BAC的度数为()A.22.5°B.45°C.36°D.25°6.(3分)如图,直线l1与l2相交,且夹角为45°,点P在角的内部,小明用下面的方法作点P的对称点:先以l1为对称轴作点P关于l1的对称点P1,再以l2为对称轴作点P1关于l2的对称点P2,然后再以l1为对称轴作点P2关于l1的对称点P3,以l2为对称轴作点P3关于l2的对称点P4,…,如此继续,得到一系列的点P1,P2,…,P n,若点P n与点P重合,则n的值可以是()A.2019B.2018C.2017D.20167.(3分)在4×4的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△ABC关于某条直线对称的格点三角形,最多能画()个.A.5B.6C.7D.88.(3分)如图,两个三角形关于某条直线成轴对称,其中已知某些边的长度和某些角的度数,则x的度数是()A.55°B.60°C.65°D.70°9.(3分)如图,已知△ABC是等边三角形,点O是BC上任意一点,OE,OF分别于两边垂直,等边三角形的高为2,则OE+OF的值为()A.1B.3C.2D.410.(3分)已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD =AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④∠ACE=∠DBC.其中结论正确的个数有()A.1B.2C.3D.4二、填空题(共10小题).11.(3分)等腰三角形的两边长分别为4cm和7cm,那么此等腰三角形的周长为cm.12.(3分)点M(﹣3,5)关于直线x=1对称的点M′的坐标为.13.(3分)已知点A(a,3)和点B(1,b)关于y轴对称,则a﹣b=.14.(3分)在△ABC中,AB=AC,∠B,∠C的平分线相交于点O,若∠BOC=100°,则∠A=.15.(3分)如图所示,在边长为2的正三角形ABC中,E、F、G分别为AB、AC、BC 的中点,点P为线段EF上一个动点,连接BP、GP,则△BPG的周长的最小值是.16.(3分)如图,△ABC是等边三角形,点D是BC边的中点,点P在直线AC上,若△PAD是轴对称图形,则∠APD的度数为.17.(3分)已知:如图,∠AOB=45°,点P为∠AOB内部的点,点P关于OB,OA的对称点P1,P2的连线交OA,OB于M,N两点,连接PM,PN,若OP=2,则△PMN 的周长=.18.(3分)如图,等边△ABC中,AD=BD,过点D作DF⊥AC于点F,过点F作FE ⊥BC于点E,若AF=4,则线段BE的长为.19.(3分)等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为3cm,则腰长为.20.(3分)已知正方形ABCD,以BC为边作正△PBC,则∠APD=.三、解答题(共40分)21.(6分)如图,公路MN和公路PQ在点P处交汇且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响(已知拖拉机的速度为18km/h),那么拖拉机在公路MN上眼PN方向行驶时,学校收到噪声影响的时间为多少秒?22.(6分)已知:如图,已知△ABC中,其中A(0,﹣2),B(2,﹣4),C(4,﹣1).(1)画出与△ABC关于y轴对称的图形△A1B1C1;(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.23.(6分)如图所示,∠A=20°,AB=BC=CD=DE=EF,求∠EDF的度数.24.(6分)现要在三角地ABC内建一中心医院,使医院到A、B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请确定这个中心医院的位置.25.(8分)如图1,已知△ABC中,点D在AB边上,DE∥BC交边AC于点E,且DE 平分∠ADC.(1)求证:DB=DC;(2)如图2:在BC边上取点F,使∠DFC=60°,若BC=7,BF=2,求DF的长.26.(8分)在等腰三角形ABC中,AB=AC,CE是∠ACB的平分线,交AB于点E,ED =EC,且点D在CB的延长线上,如图1.(1)求证:DB=BE;(2)将题中CE换成∠ACB的外角平分线,交直线AB与点E,其余条件均不变,试问DB和BE的相等关系还成立吗?请在备用图中补全图形说明理由.四、附加题(共10分)27.等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.(1)如图(1),已知C点的横坐标为﹣1,直接写出点A的坐标;(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE;(3)如图(3),若点A在x轴上,且A(﹣4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连结CD交y轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度.参考答案一、选择题(每小题3分,共30分1.(3分)如图所示,下列图案中,是轴对称图形的是()A.①②B.①④C.②③D.③④解:第一个图案和第四个图案是轴对称图形,第二个图案和第三个图案是轴对称图形,故选:B.2.(3分)下列说法错误的是()A.有2个内角是70°与40°的三角形是等腰三角形B.一个外角的平分线平行于一边的三角形是等腰三角形C.有2个内角不等的三角形不是等腰三角形D.有2个不同顶点的外角相等的三角形是等腰三角形解:A、∵三角形中,2个内角是70°与40°,∴第三个内角为180°﹣(70°+40°)=70°,∴三角形中有两个角相等,都为70°,则此三角形为等腰三角形,本选项不合题意;B、一个外角的平分线平行于一边的三角形是等腰三角形,理由如下:如图所示:AD为△ABC外角∠EAC的平分线,∴∠EAD=∠DAC,又AD∥BC,∴∠EAD=∠B,∠DAC=∠C,∴∠B=∠C,∴AB=AC,即三角形ABC为等腰三角形,本选项不合题意;C、有2个内角不等的三角形不一定是等腰三角形,也可以为等腰三角形,例如:在△ABC中,∠A=∠C=50°,∠B=80°,其中∠A≠∠B,但是∠A=∠C,可得出BA=BC,此时三角形ABC为等腰三角形,本选项符合题意;D、有2个不同顶点的外角相等的三角形是等腰三角形,理由为:已知:∠ABD与∠ACE为△ABC的外角,且∠ABD=∠ACE,求证:△ABC为等腰三角形,证明:∵∠ABD+∠ABC=180°,∠ACE+∠ACB=180°,且∠ABD=∠ACE,∴∠ABC=∠ACB,∴AB=AC,即△ABC为等腰三角形,本选项不合题意.故选:C.3.(3分)在△ABC中,AB=AC,∠ABC的平分线交AC于D,∠A=36°,则∠BDC 的度数为()A.72°B.36°C.54°D.80°解:∵AB=AC,∴∠ABC=∠C,=(180°﹣∠A)=(180°﹣36°)=72°,∵BD平分∠ABC,∴∠ABD=∠ABC=×72°=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°.故选:A.4.(3分)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC =BC,则下列选项正确的是()A.B.C.D.解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:D.5.(3分)如图所示,在△ABC中,AB=AC,OA=OB=OC,且∠OBC=2∠OBA,则∠BAC的度数为()A.22.5°B.45°C.36°D.25°解:∵OA=OB=OC,∴∠OBC=∠OCB,∠OBA=∠OAB,∠OCA=∠OAC,设∠OBA=x,则∠OBC=2x,∵AB=AC,∴∠ABC=∠ACB,∵∠ABC+∠ACB+∠BAC=180°,∴2x+x+2x+x+x+x=180°,解得x=22.5°,∴∠BAC=45°,故选:B.6.(3分)如图,直线l1与l2相交,且夹角为45°,点P在角的内部,小明用下面的方法作点P的对称点:先以l1为对称轴作点P关于l1的对称点P1,再以l2为对称轴作点P1关于l2的对称点P2,然后再以l1为对称轴作点P2关于l1的对称点P3,以l2为对称轴作点P3关于l2的对称点P4,…,如此继续,得到一系列的点P1,P2,…,P n,若点P n与点P重合,则n的值可以是()A.2019B.2018C.2017D.2016解:如图所示:P1,P2,…,P n,每对称变换8次回到P点,∵2016÷8=252,∴P n与P重合,则n的可以是:2016.故选:D.7.(3分)在4×4的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△ABC关于某条直线对称的格点三角形,最多能画()个.A.5B.6C.7D.8解:如图,最多能画出7个格点三角形与△ABC成轴对称.故选:C.8.(3分)如图,两个三角形关于某条直线成轴对称,其中已知某些边的长度和某些角的度数,则x的度数是()A.55°B.60°C.65°D.70°解:根据图形可知,所求角与第一个图形的未知角是对应角,所以x=180°﹣65°﹣55°=60°.故选:B.9.(3分)如图,已知△ABC是等边三角形,点O是BC上任意一点,OE,OF分别于两边垂直,等边三角形的高为2,则OE+OF的值为()A.1B.3C.2D.4解:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°又∵OE⊥AB,OF⊥AC,∠B=∠C=60°,∴OE=OB•sin60°=OB,同理OF=OC.∴OE+OF=(OB+OC)=BC.在等边△ABC中,高h=AB=BC.∴OE+OF=h.又∵等边三角形的高为2,∴OE+OF=2,故选:C.10.(3分)已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD =AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④∠ACE=∠DBC.其中结论正确的个数有()A.1B.2C.3D.4解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,本选项正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,本选项正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,本选项正确;④∵∠ABD=∠ACE,∴只有当∠ABD=∠DBC时,∠ACE=∠DBC才成立.综上所述,正确的结论有3个.故选:C.二、填空题(每小题3分,共30分)11.(3分)等腰三角形的两边长分别为4cm和7cm,那么此等腰三角形的周长为15或18cm.解:①当腰长为4cm时,三角形的三边分别为4cm,4cm,7cm,符合三角形的三关系,则三角形的周长=4+4+7=15(cm);②当腰长为7cm时,三角形的三边分别为4cm,7cm,7cm,符合三角形的三关系,则三角形的周长=4+7+7=18(cm);故它的周长为15或18.故答案为:15或18.12.(3分)点M(﹣3,5)关于直线x=1对称的点M′的坐标为(5,5).解:∵点M(﹣3,5)与点N关于直线x=1对称,而1×2﹣(﹣3)=5,∴点M(﹣3,5)关于直线x=1对称的点N的坐标是(5,5),故答案为(5,5).13.(3分)已知点A(a,3)和点B(1,b)关于y轴对称,则a﹣b=﹣4.解:∵点A(a,3)和点B(1,b)关于y轴对称,∴a=﹣1,b=3,故a﹣b=﹣1﹣3=﹣4.故答案为:﹣4.14.(3分)在△ABC中,AB=AC,∠B,∠C的平分线相交于点O,若∠BOC=100°,则∠A=20°.解:如图,∵∠BOC=100°,∴∠OBC+∠OCB=80°,∵∠ABC与∠ACB的平分线相交于O点,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=160°,∴∠BAC=20°.故答案为:20°.15.(3分)如图所示,在边长为2的正三角形ABC中,E、F、G分别为AB、AC、BC 的中点,点P为线段EF上一个动点,连接BP、GP,则△BPG的周长的最小值是3.解:要使△PBG的周长最小,而BG=1一定,只要使BP+PG最短即可,连接AG交EF于M,∵等边△ABC,E、F、G分别为AB、AC、BC的中点,∴AG⊥BC,EF∥BC,∴AG⊥EF,AM=MG,∴A、G关于EF对称,即当P和E重合时,此时BP+PG最小,即△PBG的周长最小,AP=PG,BP=BE,最小值是:PB+PG+BG=AE+BE+BG=AB+BG=2+1=3.故答案为:3.16.(3分)如图,△ABC是等边三角形,点D是BC边的中点,点P在直线AC上,若△PAD是轴对称图形,则∠APD的度数为15°或30°或75°或120°.解:如图,当△PAD是等腰三角形时,是轴对称图形.当AP=AD时,可得∠AP1D=15°,∠AP3D=75°.当PA=PD时,可得∠AP2D=120°.当DA=DP时,可得∠AP4D=30°,综上所述,满足条件的∠APD的值为120°或75°或30°或15°.故答案为:120°或75°或30°或15°.17.(3分)已知:如图,∠AOB=45°,点P为∠AOB内部的点,点P关于OB,OA的对称点P1,P2的连线交OA,OB于M,N两点,连接PM,PN,若OP=2,则△PMN 的周长=.解:连接OP1,OP2,由题意可得,OP1=OP,OP2=OP,∠P1OB=∠POB,∠POA=∠P2OA,∵∠AOB=45°,OP=2,∴∠P1OP2=90°,OP1=OP2=2,∴P1P2=2,∵PN=P1N,PM=P2M,∴PM+PN+MN=P2M+P1N+MN=P1P2=2,即△PMN的周长=2,故答案为:2.18.(3分)如图,等边△ABC中,AD=BD,过点D作DF⊥AC于点F,过点F作FE ⊥BC于点E,若AF=4,则线段BE的长为10.解:∵△ABC是等边三角形,∴∠A=∠C=60°,AB=AC=BC,∵DF⊥AC,∴∠AFD=90°,∴∠ADF=90°﹣∠A=30°,∴AD=2AF=8,∴AB=16,∴AC=BC=16,∴FC=12,在Rt△FEC中,∠EFC=90°﹣∠C=30°,∴EC=FC=6,∴BE=BC﹣EC=10,故答案为:10.19.(3分)等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为3cm,则腰长为8cm.解:设腰长为2x,一腰的中线为y,则(2x+x)﹣(5+x)=3或(5+x)﹣(2x+x)=3,解得:x=4,x=1,∴2x=8或2,①三角形ABC三边长为8、8、5,符合三角形三边关系定理;②三角形ABC三边是2、2、5,2+2<5,不符合三角形三边关系定理;故答案为:8cm.20.(3分)已知正方形ABCD,以BC为边作正△PBC,则∠APD=30°或150°.解:如右图所示,∵△BCP是等边三角形,四边形ABCD是正方形,∴DC=CB=AB=PC=PB,∠PCB=60°,∠DCB=90°,当点P在点P1的位置时,则∠DCP1=150°,∵DC=CP1,∴∠CDP1=∠CP1D=15°,同理可得,∠BP1A=15°,∵∠CP1B=60°,∴∠DP1A=30°;当点P在点P2的位置时,同理可得,∠DP2A=150°;故答案为:30°或150°三、解答题(共40分)21.(6分)如图,公路MN和公路PQ在点P处交汇且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响(已知拖拉机的速度为18km/h),那么拖拉机在公路MN上眼PN方向行驶时,学校收到噪声影响的时间为多少秒?解:作AB⊥MN于B,则AB为A到道路的最短距离.在Rt△APB中,AB=AP sin30°=80<100,∴会影响;过A作AB⊥MN,以A为圆心,100m为半径画弧,与MN交于C、D,如图所示,∵拖拉机速度为18km/h=5m/s,在Rt△ABD中,BD==60(米),∴受影响的时间为:60×2÷5=24(s),∴会受影响24秒.22.(6分)已知:如图,已知△ABC中,其中A(0,﹣2),B(2,﹣4),C(4,﹣1).(1)画出与△ABC关于y轴对称的图形△A1B1C1;(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.解:(1)所作图形如图所示;(2)A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);(3)S△ABC=3×4﹣×2×3﹣×4×1﹣×2×2=12﹣3﹣2﹣2=5.23.(6分)如图所示,∠A=20°,AB=BC=CD=DE=EF,求∠EDF的度数.解:∵AB=BC,∠A=20°,∴∠ACB=∠A=20°,∠CBD=2∠A=40°,∵BC=DC,∴∠CBD=∠CDB=40°,∴∠BCD=100°,∴∠ECD=180°﹣∠ACB﹣∠BCD=180°﹣20°﹣100°=60°,∵CD=DE,∴∠CED=∠DCE=60°,∴∠EDF=∠A+∠CED=20°+60°=80°.24.(6分)现要在三角地ABC内建一中心医院,使医院到A、B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请确定这个中心医院的位置.解:作AB的垂直平分线EF,作∠BAC的角平分线AM,两线交于P,则P为这个中心医院的位置.25.(8分)如图1,已知△ABC中,点D在AB边上,DE∥BC交边AC于点E,且DE 平分∠ADC.(1)求证:DB=DC;(2)如图2:在BC边上取点F,使∠DFC=60°,若BC=7,BF=2,求DF的长.解:(1)证明:∵DE∥BC,∴∠1=∠B,∠2=∠3,∵DE平分∠ADC,∴∠1=∠2,∴∠B=∠3,∴DB=DC.(2)作DG⊥BC于点G,∵DB=DC,DG⊥BC,∴GB=BC×7=3.5,∴GF=GB﹣BF=3.5﹣2=1.5,∵Rt△DGF中,∠DFG=60°,∴∠FDG=30°∴DF=2GF=2×1.5=3.26.(8分)在等腰三角形ABC中,AB=AC,CE是∠ACB的平分线,交AB于点E,ED =EC,且点D在CB的延长线上,如图1.(1)求证:DB=BE;(2)将题中CE换成∠ACB的外角平分线,交直线AB与点E,其余条件均不变,试问DB和BE的相等关系还成立吗?请在备用图中补全图形说明理由.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵CE平分∠ACB,∴∠ACB=2∠ECD,∴∠ABC=2∠ECD,∵ED=EC,∴∠D=∠ECD,∴∠ABC=2∠D,∵∠ABC=∠DEB+∠D,∴∠DEB=∠D,∴DB=BE;(2)成立.理由:如图,∵AB=AC,∴∠ABC=∠ACB,∵CE平分∠FCB,∴∠ACB=180°﹣2∠ECD,∴∠DBE=∠ABC=180°﹣2∠ECD,∵ED=EC,∴∠D=∠ECD,∴∠DBE=180°﹣2∠D,∵∠DBE+∠DEB+∠D=180°,∴∠DBE=180°﹣∠DEB﹣∠D,∴∠DEB=∠D,∴DB=BE.故成立.四、附加题(共10分)27.等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.(1)如图(1),已知C点的横坐标为﹣1,直接写出点A的坐标;(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE;(3)如图(3),若点A在x轴上,且A(﹣4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连结CD交y轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度.解:(1)如图(1),过点C作CF⊥y轴于点F,∵CF⊥y轴于点F,∴∠CFA=90°,∠ACF+∠CAF=90°,∵∠CAB=90°,∴∠CAF+∠BAO=90°,∴∠ACF=∠BAO,在△ACF和△ABO中,,∴△ACF≌△ABO(AAS),∴CF=OA=1,∴A(0,1);(2)如图2,过点C作CG⊥AC交y轴于点G,∵CG⊥AC,∴∠ACG=90°,∠CAG+∠AGC=90°,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠AGC=∠ADO,在△ACG和△ABD中,,∴△ACG≌△ABD(AAS),∴CG=AD=CD,∠ADB=∠G,∵∠ACB=45°,∠ACG=90°,∴∠DCE=∠GCE=45°,在△DCE和△GCE中,,∴△DCE≌△GCE(SAS),∴∠CDE=∠G,∴∠ADB=∠CDE;(3)BP的长度不变,理由如下:如图(3),过点C作CE⊥y轴于点E.∵∠ABC=90°,∴∠CBE+∠ABO=90°.∵∠BAO+∠ABO=90°,∴∠CBE=∠BAO.∵∠CEB=∠AOB=90°,AB=AC,∴△CBE≌△BAO(AAS),∴CE=BO,BE=AO=4.∵BD=BO,∴CE=BD.∵∠CEP=∠DBP=90°,∠CPE=∠DPB,∴△CPE≌△DPB(AAS),∴BP=EP=2.。

人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)

人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)
【答案】C
【解析】
【分析】
首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底角,所以要分两种情况进行讨论.
【详解】本题可分两种情况:
①当70°角为底角时,顶角为180°−2×70°=40°;
②70°角为等腰三角形的顶角;
因此这个等腰三角形的顶角为40°或70°.
故选C
【点睛】考查等腰三角形的性质,注意分类讨论,不要漏解.
∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,
∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,
∵BC=9cm,∴MN=3cm.
故答案为3cm.
考点:1.线段垂直平分线的性质;2.等腰三角形的性质;
【点睛】考查等边三角形 性质,熟练掌握等边三角形的性质是解题的关键.
4.等腰三角形的周长为16,其一边长为6,则另两边为_____.
【答案】6和4或5和5.
【解析】
当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;
当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理.
故该等腰三角形的另两边为6和4或5和5.
A. B. C. D. 7
【答案】A
【解析】
【分析】
根据轴对称性质可得出PM=MQ,PN=RN,因此先求出QN的长度,然后根据QR=QN+NR进一步计算即可.
【详解】由轴对称性质可得:PM=MQ=2.5cm,PN=RN=3cm,
∴QN=MN−MQ=1.5cm,
∴QR=QN+RN=4.5cm,

第13章 轴对称 人教版数学八年级上册单元测试卷(含答案)

第13章 轴对称 人教版数学八年级上册单元测试卷(含答案)

第十三章 轴对称时间:60分钟 满分:100分一、选择题(本大题共10小题,每小题3分,满分30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·辽宁盘锦双台子区期末)下列由黑白棋子摆成的图案中,是轴对称图形的是( ) A B C D2.(2022·福建福州鼓楼区期中改编)在平面直角坐标系中,若点(2,m)与点(n,3)关于x 轴对称,则(m+n)2 023的值为( )A.0B.-1C.1D.32 0233.如图是3×3的正方形网格,其中已有2个小方格被涂成了黑色.现在要从编号为①—④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是( )A.①B.②C.③D.④4.(2022·四川遂宁期末)若等腰三角形的一个外角等于70°,则它的底角的度数为( ) A.35° B.70° C.110° D.55°5.(2022·河南周口期末)元旦联欢会上,同学们玩抢凳子游戏,在与A,B,C三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A,B,C三名同学所在位置看作△ABC的三个顶点,那么凳子应该放在△ABC的( )A.三边中线的交点处B.三边垂直平分线的交点处C.三边上高的交点处D.三条角平分线的交点处6.(2022·山东菏泽期中)如图,在△ABC中,AB=AC,AD,BE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ABE的度数为( ) A.20° B.35° C.40° D.70°(第6题) (第7题)7.如图,直线a,b相交形成的夹角中,锐角为52°,交点为O,点A在直线a上,直线b 上存在点B,使以点O,A,B为顶点的三角形是等腰三角形,这样的点B有( )A.4个B.3个C.2个D.1个8.(2022·广东广州天河区期末)在△ABC中,AB=AC,∠A=36°,若按如图所示的尺规作图方法作出线段BD,则下列结论错误的是( )A.AD=BDB.∠BDC=72°C.S△ABD∶S△BCD=BC∶ACD.△BCD的周长=AB+BC9.(2022·山东烟台期末)如图,∠AOB=60°,点P在射线OA上,OP=22,点M,N在射线OB上(点M在点N的左侧),且PM=PN.若MN=4,则OM的长为( ) A.7 B.8 C.9 D.11(第9题) (第10题) 10.(2022·辽宁大连期末)如图,∠ABC=30°,点D是∠ABC内部的一点,连接BD.若BD=1m,点E,F分别是边BA,BC上的动点,则△DEF的周长的最小值为( )A.0.5mB.1mC.1.5mD.2m二、填空题(本大题共6小题,每小题3分,共18分)11.新风向开放性试题汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性,黑体的汉字“王”“中”“田”等都是轴对称图形,请再写出两个这样的汉字: .12.(2022·安徽合肥庐阳区期末改编)如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE.若CE=3,则AE= .(第12题) (第13题)13.如图,在△ABC中,AB=AD=DC,若∠BAD=24°,则∠C的度数为 .14.新风向新定义试题(2021·江苏苏州期末)定义:等腰三角形的一个底角与其顶角的度数的比值k(k>1)称为这个等腰三角形的优美比.若在等腰三角形ABC中,∠A=36°,则它的优美比为 .15.(2022·河南济期末)在平面直角坐标系中,对△ABC进行如图所示的轴对称变换.若原来点A的坐标是(a,b),则经过第2 023次变换后,点A所对应的坐标是 .16.(2021·北京西城区期末)如图,△ABC是等边三角形,AD⊥BC于点D,DE⊥AC于三、解答题(共6小题,共52分)17.(6分)(2022·湖北十堰期末节选)如图,△ABC的顶点A,B,C都在小正方形的格点上,利用网格线按下列要求画图.(1)画出△A1B1C1,使它与△ABC关于直线l成轴对称;(2)在直线l上找一点P,使点P到点A,B的距离之和最短.(要求:不写作法,保留作图痕迹)18.(8分)(2022·湖北十堰郧阳区期中改编)某市发生地震后,为了抢救伤员,一架救援直升机从该市A地起飞,运送一批地震伤员沿正北方向到机场N,如图.上午8时,直升机从A地出发,以200 km/h的速度向正北方向飞行,9时到达B地,此时,机场的导航站传来信息:在C处有一座高山,因受天气影响,高山周围80 km内能见度低,飞行时会遇到危险.经测量得∠NAC=15°,∠NBC=30°.问该直升机继续向机场N飞行是否有危险,请说明理由.19.(8分)新风向开放性试题(2022·江苏南京鼓楼区期中)证明:有两个角相等的三角形是等腰三角形.已知:如图,在△ABC中, .求证: .证明:20.(8分)如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=15°,求∠AEB的度数;21.(10分)新风向探究性试题(2022·河北石家庄裕华区期末)【问题】如图,在△ABC中,点D为BC边上一点,BD=BA.EF垂直平分AC,交AC 于点E,交BC于点F,连接AD,AF.若∠B=30°,∠BAF=90°,求∠DAC的度数.【探究】如果把【问题】中的条件“∠B=30°”去掉,其他条件不变,那么∠DAC的度数会变吗?请说明理由.22.(12分)如图,在△ABC中,AB=BC=AC=12 cm,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N 第一次到达点B时,M,N同时停止运动.(1)当点M,N运动几秒时,M,N两点重合?(2)当点M,N运动几秒时,可得到等边三角形AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如果能,请求出此时M,N运动的时间.第十三章 轴对称选择填空题答案速查12345678910D B D A B B A C C B11.甲,本(答案不唯一)12.613.39°14.215.(-a,b)16.181.D高分锦囊判断一个图形是不是轴对称图形,关键看能否找到这样一条直线,使这个图形沿这条直线折叠,直线两旁的部分能够互相重合.2.B ∵点(2,m)与点(n,3)关于x轴对称,∴m=-3,n=2,∴(m+n)2 023=(2-3)2 023=-1.3.D 图示速解如图,将编号为④的小方格涂成黑色,黑色部分不是轴对称图形.4.A 由题意可得,与等腰三角形的这个外角相邻的内角等于110°.∵三角形的内×(180°-110°)=35°.角和为180°,∴底角不可能等于110°,∴底角度数为125.B ∵三角形的三边垂直平分线的交点到三角形三个顶点的距离相等,∴凳子应放在△ABC的三边垂直平分线的交点处.6.B ∵AD是△ABC的中线,AB=AC,∠CAD=20°,【关键】等腰三角形的“三线合一”∴∠CAB=2∠CAD=40°,∴∠ABC=1×(180°-40°)=70°.∵BE是△ABC的角平分线,2∴∠ABE=1∠ABC=35°.2一题多解∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴AD⊥BC,∴∠C=90°-20°=70°,∴∠ABC=∠C=70°.又BE是△ABC的角平分线,∴∠ABE=1∠ABC=35°.27.A 图示速解如图,要使△OAB为等腰三角形,应分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B1;②当OA=AB时,以点A为圆心,OA 的长为半径作圆,与直线b交于点B2;③当OA=OB时,以点O为圆心,OA的长为半径作圆,与直线b交于点B3,B4.故选A.8.C ∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.由作图痕迹可知BD平分∠ABC∴∠DBC=∠ABD=∠A=36°,【关键】由尺规作图可以得出BD平分∠ABC∴AD=BD,∠BDC=72°.故A,B选项不符合题意.由以上可知∠C=∠BDC,∴BD=BC,∴AD=BC.∵S△ABD∶S△BCD=AD∶CD,∴S△ABD∶S△BCD=BC∶CD.【关键】两三角形同高不同底故C选项符合题意.∵BD=AD,△BCD的周长=BC+CD+BD,∴△BCD的周长=BC+CD+AD=BC+AC=AB+BC.故D选项不符合题意.7.C 如图,过点P作PC⊥OB于点C,∵∠AOB=60°,∴∠OPC=90°-∠AOB=30°.∵OP=22,∴OC=1OP=11.∵2MN=2,∴OM=OC-MC=11-2=9.PM=PN,MN=4,∴MC=1210.B (转化思想)如图,作点D关于AB的对称点G,作点D关于BC的对称点H,连接GH交AB于点E,交BC于点F,此时△DEF的周长有最小值,连接GB,BH.由线段垂直平分线的性质可得,GE=ED,DF=FH,由轴对称的性质得BG=BD,BD=BH,∴ED+DF+EF=GE+EF+FH=GH,此时△DEF的周长最小值为GH.∵∠GBA=∠ABD,∠DBC=∠CBH,BD=m,∴∠GBH=2∠ABC=2×30°=60°,∴△GBH是等边三角形,∴GH=BG=BD=m,∴△DEF的周长的最小值为m.【关键】发现△GBH是等边三角形11.甲,本(答案不唯一,只要是轴对称图形即可)12.6 ∵∠C=90°,∠A=30°,∴∠CBA=60°.∵DE是线段AB的垂直平分线,∴BE=AE,∴∠ABE=∠A=30°,∴∠CBE=60°-30°=30°.∵∠C=90°,CE=3,∴BE=2CE=2×3=6,∴AE=6.13.39° ∵AB=AD,∠BAD=24°,∴∠B=∠ADB=1×(180°-24°)=78°.2又AD=DC ,∴∠C=∠CAD=12∠ADB=12×78°=39°.14.2 (分类讨论思想)当∠A 为顶角时,则底角∠B=∠C=72°,此时,优美比=72°36°=2;当∠A 为底角时,则顶角为108°,此时,优美比=36°108°=13(不合题意,舍去).15.(-a ,b ) 第1次变换后,点A 在第四象限;第2次变换后,点A 在第三象限;第3次变换后,点A 在第二象限;第4次变换后,点A 在第一象限,回到原始位置,…,以此类推,每4次变换为一组循环.因为2 023÷4=505……3,所以第2 023次变换后,点A 在第二象限,坐标为(-a ,b ).16.18 ∵△ABC 是等边三角形,∴∠C=∠BAC=60°.∵AD ⊥BC ,∴BD=CD ,∠DAC=12∠BAC=30°.∵AD=12,∴DE=12AD=6.∵DE ⊥AC ,∴∠EDC=90°-∠C=90°-60°=30°,∴EC=12DC ,∴BC=4EC.∵S △EDC =12ED ·EC=12×6×EC=3EC ,S △ABC =12AD×BC=12×12×BC=6BC=24EC ,∴S △EDCS △ABC =3EC24EC =18.17.【参考答案】(1)如图,△A 1B 1C 1即为所求作.(3分)(2)如图,点P 即为所求作.(6分)18.【参考答案】该直升机继续向机场N 飞行无危险.(1分)理由:如图,过点C 作CD ⊥AN 于点D ,∵∠NAC=15°, ∠NBC=30°,∴∠ACB=15°,CD=12BC ,∴∠ACB=∠NAC ,∴BC=AB.(5分)由题意可得,AB=200 km,∴BC=200 km,∴CD=100 km.∵100>80,∴该直升机继续向机场N飞行无危险.(8分)19.【参考答案】已知:如图,在△ABC中,∠B=∠C.(2分)求证:△ABC是等腰三角形.(4分)证明:如图,过点A作AD⊥BC,垂足为点D.∵AD⊥BC,∴∠ADB=∠ADC=90°.在△ABD和△ACD中,∠B=∠C,∠ADB=∠ADC,AD=AD,∴△ABD≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.(8分)20.【参考答案】(1)补全图形如图所示. (3分) (2)在等边三角形ABC中,AC=AB ,∠BAC=60°.由对称可知AD=AC ,∠PAD=∠PAC=15°,∴∠BAD=90°,AB=AD ,∴∠ABD=∠D=45°,∴∠AEB=∠D+∠PAD=60°.(8分)21.思路导图【参考答案】【问题】∵AB=BD ,∠B=30°,∴∠BAD=∠ADB=180°―30°2=75°.∵∠BAF=90°,∴∠AFB=90°-30°=60°.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=30°,∴∠CAD=∠ADB-∠C=75°-30°=45°.(5分)【探究】不变.(6分)理由:∵AB=BD ,∴∠BAD=∠ADB=180°―∠B 2=90°-12∠B.∵∠BAF=90°,∴∠AFB=90°-∠B.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=45°-12∠B ,∴∠CAD=∠ADB-∠C=90°-12∠B-(45°-12∠B )=45°.(10分)22.【参考答案】(1)设当点M ,N 运动x s 时,M ,N 两点重合,由题意,可得x×1+12=2x ,解得x=12.故当点M ,N 运动12 s 时,M ,N 两点重合.(2分)(2)设当点M ,N 运动t s 时,可得到等边三角形AMN ,此时AM=t ,AN=AB-BN=12-2t ,∴t=12-2t ,解得t=4.(4分)故当点M ,N 运动4 s 时,可得到等边三角形AMN.(5分)(3)当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰三角形.(6分)若△AMN 是以MN 为底边的等腰三角形,则AN=AM ,∴∠AMN=∠ANM ,∴∠AMC=∠ANB.∵在△ABC 中,AB=BC=AC ,∴△ACB 是等边三角形,∴∠C=∠B=60°.(8分)在△ACM 和△ABN 中,∠AMC =∠ANB ,∠C =∠B ,AC =AB ,∴△ACM ≌△ABN ,∴CM=BN.(10分)设当点M ,N 运动时间为y s 时,△AMN 是以MN 为底边的等腰三角形,∴CM=y-12,NB=36-2y ,∴y-12=36-2y ,解得y=16.故能得到以MN 为底边的等腰三角形AMN ,此时M ,N 运动的时间为16 s .(12分)。

人教版初中八年级数学上册第十三章《轴对称》经典测试题(含答案解析)

人教版初中八年级数学上册第十三章《轴对称》经典测试题(含答案解析)

一、选择题1.如图,在△ABD 中,分别以点A 和点D 为圆心,大于12AD 的长为半径画弧,两弧相交于点M 、N ,作直线MN 分别交BD 、AD 于点C 、E .若AE=5cm ,△ABC 的周长=15cm ,则△ABD 的周长是( )A .35cmB .30cmC .25cmD .20cm C解析:C【分析】 利用线段的垂直平分线的性质即可解决问题.【详解】解:∵MN 垂直平分线段AD ,∴AC=DC ,AE+ED=AD=10cm ,∵AB+BC+AC=15cm , ∴AB+BC+DC=15cm ,∴△ABD 的周长=AB+BC+DC+AD=15+10=25cm ,故选:C .【点睛】本题考查了作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.2.已知123n A A A A 、、中,1A 与2A 关于x 轴对称,2A 与3A 关于y 轴对称,3A 与4A 关于x 轴对称,4A 与5A 关于y 轴对称……,如果1A 在第二象限,那么100A 在( ) A .第一象限B .第二象限C .第三象限D .第四象限A解析:A【分析】根据关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数,以及循环的规律就可以得到.【详解】解:A 1与A 2关于x 轴对称,A 2与A 3关于y 轴对称,A 3与A 4关于x 轴对称,A 4与A 5关于y 轴对称,A 1与A 5是同一个点,四次一循环,100÷4=25,A 100与A 4重合,即第一象限,故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3.如图,在ABC ∆中,90,30C B ︒︒∠=∠= ,以A 为圆心,任意长为半径画弧分别交AB AC 、于点M 和N ,再分别以M N 、为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP ,并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ︒∠=;③点D 在AB 的垂直平分线上﹔④若2AD =,则点D 到AB 的距离是1,:1:2DAC ABC S S ∆∆=A .2B .3C .4D .5B 解析:B【分析】先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD 得到DA=DB ,根据线段垂直平分线的性质定理的逆定理可对③进行判断.利用30度角所对的直角边是斜边的一半、三角形的面积计算公式即可得出两个三角形的面积之比.【详解】解:由作法得,AD 平分∠BAC ,所以①正确;∵∠C=90°,∠B=30°,∴∠BAC=60°,∴∠BAD=∠CAD=12×60°=30°, ∴∠ADC=90°-∠CAD=60°,所以②正确;∵∠B=∠BAD ,∴DA=DB ,∴点D 在AB 的垂直平分线上,所以③正确;在直角△ACD 中,∠CAD=30°,∴CD=12AD ,∴BC=CD+BD=12AD+AD=32AD ,1124DAC S AC CD AC AD ∆=⋅=⋅. ∴11332224ABC S AC BC AC AD AC AD ∆=⋅=⋅=⋅, ∴13::1:344DAC ABC S S AC AD AC AD ∆∆=⋅⋅=,故④错误. 所以,正确的结论有3个故选:B .【点睛】 本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.4.三个等边三角形的摆放位置如图所示,若12100︒∠+∠=,则3∠的度数为( )A .80︒B .70︒C .45︒D .30︒A解析:A【分析】 由平角的性质可得∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,可得∠1+∠2+∠3+∠4+∠5+∠6=540°−180°,将∠1+∠2=100°代入可求解.【详解】∵∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=540°−180°=360°,∵∠4+∠5+∠6=180°,∴∠1+∠2+∠3=360°-180°=180°,∴∠3=180°−(∠1+∠2)=80°,故选:A .【点睛】本题考查了等边三角形的性质,平角的性质,三角形内角和定理,熟练运用这些性质进行推理是本题的关键.5.如图,C 是线段AB 上的一点,ACD △和BCE 都是等边三角形,AE 交CD 于M ,BD 交CE 于N ,交AE 于O ,则①DB AE =;②AMC DNC ∠=∠;③60AOB ∠=︒;④DN AM =;⑤CMN △是等边三角形.其中,正确的有( )A .2个B .3个C .4个D .5个C解析:C【分析】 易证△ACE ≌△DCB ,可得①正确;即可求得∠AOB =120°,可得③错误;再证明△ACM ≌△DCN ,可得②④正确和CM =CN ,即可证明⑤正确;即可解题.【详解】解:∵ACD △和BCE 都是等边三角形∵∠ACD =∠BCE =60°,∴∠DCE =60°,在△ACE 和△DCB 中,AC DC ACE DCB CB CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△DCB (SAS ),∴∠BDC =∠EAC ,DB =AE ,①正确;∠CBD =∠AEC ,∵∠AOB =180°−∠OAB−∠DBC ,∴∠AOB =180°−∠AEC−∠OAB =120°,③错误;在△ACM 和△DCN 中,60BDC EAC DC ACACD DCN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ACM ≌△DCN (ASA ),∴AM =DN ,④正确;∠AMC =∠DNC ,②正确;CM =CN ,∵∠ACD =∠BCE =60°,∴∠MCN =180°-∠ACD-∠BCE =60°,∴△CMN 是等边三角形,⑤正确;故有①②④⑤正确.故选:C .【点睛】本题考查了全等三角形的判定和全等三角形对应边、对应角相等的性质,本题中求证△ACE≌△DCB和△ACM≌△DCN是解题的关键.6.若海岛N位于海岛M北偏东30°的方向上,则从海岛N出发到海岛M的航线可能是()A.B.C.D. D解析:D【分析】根据题意画出图形,再利用“上北下南”求出方向角即可.【详解】解:如图:∵海岛N位于海岛M的北偏东30°方向上,∴海岛N在海岛M上方,故排除A、B选项,根据直角三角形中30°角所对的边等于斜边的一半,排除选项C,故选D.【点睛】本题考查了方向角,解题的关键是熟练掌握方向角的概念.7.如图,ABC中,AC AD BD==,80∠=,则B等于()CAD︒A.25︒B.30︒C.35︒D.40︒A解析:A【分析】利用AD=AC ,求出∠ADC=∠C=50︒,利用AD=AB ,即可求得∠B=∠BAD 1252ADC ==∠︒. 【详解】∵AD=AC ,∴∠ADC=∠C ,∵80CAD ︒∠=,∴∠ADC=∠C=50︒,∵AD=AB ,∴∠B=∠BAD 1252ADC ==∠︒, 故选:A .【点睛】此题考查等边对等角的性质,三角形的内角和定理,三角形的外角性质,熟练掌握等腰三角形的性质是解题的关键.8.如图,在ABC 中,DE 是AC 的垂直平分线,交AC 边于E ,交BC 边于D ,连接AD ,若3AE =,ABD △的周长为13,则ABC 的周长( )A .16B .19C .20D .24B解析:B【分析】 根据线段垂直平分线性质得出 AD = DC ,求出和 AB + BC 的长,即可求出答案.【详解】DE 是 AC 的垂直平分线,AE=3cm,.∴ AC=2AE=6cm ,AD = DC ,△ ABD 的周长为13cm ,∴ AB + BD +AD=13cm ,∴AB + BD + DC = AB +BC=13cm∴ △ ABC 的周长为 AB + BC +AC=13cm+6cm=19cm ,故选 B .【点睛】本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.9.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm D解析:D【分析】 延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,AB AC =,AD 平分BAC ∠,∴AN BC ⊥,BN CN =,∴90ANB ANC ∠=∠=,60EBC E ∠=∠=,∴EBM △是等边三角形,6BE cm =,∴6EB EM BM cm ===,//DF BC ,∴60EFD EBM ∠=∠=,∴EFD △是等边三角形,2DE cm =,∴2EF FD ED cm ===,∴4DM cm =,EBM △是等边三角形,∴60EMB∠=,∴30NDM∠=,∴2NM cm=,∴4BN BM NM cm=-=,∴28BC BN cm==.故选:D.【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN的长度是解决问题的关键.10.等腰三角形腰上的高与另一腰的夹角为30,则底角度数是()A.30B.60︒C.40︒或50︒D.30或60︒D解析:D【分析】由三角形的高可在三角形的内部,也可在三角形的外部,所以分锐角三角形和钝角三角形两种情况作出符合题意的图形,再结合等腰三角形的性质与三角形的内角和定理求解即可.【详解】解:如图,分两种情况:①如图,当三角形的高在三角形的内部时,AB=AC,BD⊥AC,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=1802A︒-∠=60°;②如图,当三角形的高在三角形的外部时,AB=AC,BD⊥AC,∠ABD=30°,∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC= 180302BAC︒-∠=︒.故选:D.【点睛】本题考查了等腰三角形的性质和直角三角形的两锐角互余,三角形的内角和定理的应用,三角形的高的含义,分类讨论的数学思想,掌握分类讨论解决问题是解题的关键.二、填空题11.如图,点CD在线段AB的同侧,CA=6,AB=14,BD=12,M为AB中点,∠CMD=120°.则CD的最大值为____.25【分析】作点A关于CM的对称点A作点B关于DM的对称点B证明△AMB 为等边三角形在根据两点之间线段最短即可解决问题【详解】解:作点A关于CM的对称点A作点B关于DM的对称点B如下图所示:∴∠1=解析:25【分析】作点A关于CM的对称点A’,作点B关于DM的对称点B’,证明△A’MB’为等边三角形,在根据两点之间线段最短即可解决问题.【详解】解:作点A关于CM的对称点A’,作点B关于DM的对称点B’,如下图所示:∴∠1=∠2,∠3=∠4,∵∠CMD=120°,∴∠2+∠3=60°,即∠A’MB’=120°-60°=60°,又M为AB的中点,∴AM=MA’=MB’=MB,∴△A’MB’为等边三角形,∴A’B’=AM=7,由两点之间线段最短可知:CD≤CA’+A’B’+B’D=CA+AM+BD=6+7+12=25,故答案为:25.【点睛】本题主要考查了几何变换之折叠,等边三角形的判定和性质,两点之间线段最短等知识点,解题的关键是作点A 关于CM 的对称点A’,作点B 关于DM 的对称点B’,学会利用两点之间线段最短解决最值问题.12.如图,ABC 中,AB BC =,点D 在线段BC 上(不与点,B C 重合). 作法如下:①连接AD ,作AD 的垂直平分线分别交直线,AB AC 于点,P Q ,连接,DP DQ ,则APQ DPQ △≌△;②过点D 作AC 的平行线交AB 于点P ,在线段AC 上截取AQ ,使AQ DP =,连接,PQ DQ ,则APQ DQP △≌△;③过点D 作AC 的平行线交AB 于点P ,过点D 作AB 的平行线交AC 于点Q ,连接PQ ,则APQ DQP △≌△;④过点D 作AB 的平行线交AC 于点Q ,在直线AB 上取一点P ,连接DP ,使DP AQ =,连接PQ ,则APQ DPQ △≌△.以上说法一定成立的是__________.(填写正确的序号)①②③【分析】根据题意画出图形再根据垂直平分线的性质平行线的性质和三角形全等的判定可以得证【详解】解:①如图∵PQ 为AD 的垂直平分线∴PA=PDQA=QD ∴在△APQ 和△DPQ 中∴△APQ ≌△DPQ解析:①②③【分析】根据题意画出图形,再根据垂直平分线的性质,平行线的性质和三角形全等的判定可以得证.【详解】解:①如图,∵PQ 为AD 的垂直平分线,∴PA=PD ,QA=QD ,∴ 在△APQ 和△DPQ 中,PA PD PQ PQ QA QD =⎧⎪=⎨⎪=⎩,∴△APQ ≌△DPQ (SSS ),①正确;②如图,∵PD ∥AC ,∴∠DPQ=∠AQP ,∴在△APQ 和△DQP 中,AQ DP AQP DPQ QP PQ =⎧⎪∠=∠⎨⎪=⎩,∴△APQ ≌△DQP (SAS ),②正确 ;③如图,∵PD ∥AC ,∴∠DPQ=∠AQP ,同理∠DQP=∠APQ ,∴在△APQ 和△DQP 中,DPQ AQP PQ PQDQP APQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△APQ ≌△DQP (ASA ),③正确 ;④如图,△APQ ≌△DPQ 不成立,④错误;故答案为①②③.【点睛】本题考查三角形与平行线的综合应用,熟练掌握垂直平分线的性质,平行线的性质和三角形全等的判定是解题关键.13.如图,在ABC 中,AB 的垂直平分线DE 分别与,AB BC 交于点,D E ,AC 的垂直平分线FG 分别与,BC AC 交于点,F G ,10,3BC EF ==,则AEF 的周长是________.16【分析】根据线段的垂直平分线的性质得到EB =EAAF =FC 根据三角形的周长公式计算得到答案【详解】解:∵DE 是AB 边的垂直平分线∴EB =EA ∵FG 是AC 边的垂直平分线∴AF =FC ∴△AEF 的周长 解析:16【分析】根据线段的垂直平分线的性质得到EB =EA 、AF =FC ,根据三角形的周长公式计算,得到答案.【详解】解:∵DE 是AB 边的垂直平分线,∴EB =EA ,∵FG是AC边的垂直平分线,∴AF=FC,∴△AEF的周长=AF+AE+EF=FC+BE+EF=EC+EF+BE+EF=BC+2EF=10+6=16,故答案为:16.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.如图,在△ABC中,AB=AC,∠BAC=120°,P是BC上一点,且∠BAP=90°,CP=4cm.则BP的长=________.8cm【分析】先根据已知条件求得PA=PC再含30度直角三角形的性质求得BP的长即可【详解】解:∵AB=AC∠BAC=120°∴∠B=∠C=30°∵∠BAC=120°∠BAP=90°∴∠PAC=30解析:8cm【分析】先根据已知条件求得PA=PC,再含30度直角三角形的性质求得BP的长即可.【详解】解:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵∠BAC=120°,∠BAP=90°,∴∠PAC=30°,∴∠C=∠PAC,∴PA=PC=4cm,∵∠BAP=90°,∠B=30°,∴BP=2AP=8cm.故答案为:8cm【点睛】本题考查了含30度直角三角形的性质,等腰三角形的性质,解题关键是根据已知条件求得PA=PC=4cm,再根据含30度直角三角形的性质求得BP的长.15.如图,等边△ABC的边长为4,点D在边AC上,AD=1.(1)△ABC的周长等于_____;(2)线段PQ在边BA上运动,PQ=1,BQ>BP,连接QD,PC,当四边形PCDQ的周长取得最小值时,请在如图所示的矩形区域内,用无刻度的直尺和圆规,画出线段PC,QD,并简要说明点P 和点Q 的位置是如何找到的(保留作图痕迹,不要求证明)_____.见解析过点C 作CE ∥AB 且CE=1作点D 关于AB 的对称点F 连接EF 交AB 于一点为Q 在AB 上BQ 之间截取PQ=1连接CPDQ 则四边形PCDQ 为所求的周长最小的四边形【分析】(1)根据三角形周长公式计算解析:见解析,过点C 作CE ∥AB ,且CE=1,作点D 关于AB 的对称点F ,连接EF 交AB 于一点为Q ,在AB 上BQ 之间截取PQ=1,连接CP 、DQ ,则四边形PCDQ 为所求的周长最小的四边形【分析】(1)根据三角形周长公式计算;(2)过点C 作CE ∥AB ,且CE=1,作点D 关于AB 的对称点F ,连接EF 交AB 于一点为Q ,在AB 上BQ 之间截取PQ=1,连接CP 、DQ ,则四边形PCDQ 为所求的周长最小的四边形.【详解】(1)△ABC 的周长等于4312⨯=,故答案为:12;(2)如图:故答案为:过点C 作CE ∥AB ,且CE=1,作点D 关于AB 的对称点F ,连接EF 交AB 于一点为Q ,在AB 上BQ 之间截取PQ=1,连接CP 、DQ ,则四边形PCDQ 为所求的周长最小的四边形..【点睛】此题考查等边三角形的性质,三角形周长计算公式,轴对称的性质,综合掌握各知识点是解题的关键.16.如图,E 是腰长为2的等腰直角ABC 斜边上一点,且BE BC P =,为CE 上任意一点,PQ BC ⊥于点Q PR BE ⊥,于点R ,则PQ PR +的值是___________.【分析】连接BP 过点E 作EF ⊥BC 根据可得PQ+PR=EF 结合等腰直角三角形三边长的关系即可求解【详解】连接BP 过点E 作EF ⊥BC ∵∴=BC×PQ+BE×PR=BC×(PQ+PR)=BC×EF ∴PQ 解析:2【分析】连接BP ,过点E 作EF ⊥BC ,根据BCE BPE BPC S S S =+,BE BC =,可得PQ+PR=EF ,结合等腰直角三角形三边长的关系,即可求解.【详解】连接BP ,过点E 作EF ⊥BC ,∵BE BC =,∴BCE BPE BPC SS S =+ =12BC×PQ+12BE×PR =12BC×(PQ+PR) =12BC×EF , ∴PQ+PR=EF ,∵ABC 是等腰直角三角形,∴∠B=45°,∴EFB △是等腰直角三角形,且BE=BC=2,∴EF=BE÷2=2÷2=2,∴PQ PR+=2,故答案是:2.【点睛】本题主要考查等腰直角三角形的性质,掌握“等积法”是解题的关键.17.在△ABC中,按以下步骤作图:①分别以A,C为圆心,以大于12AC的同样长为半径画弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.请回答:若BC=DC,∠B=100°,则∠ACB的度数为____.30°【分析】依据等腰三角形的性质即可得到∠BDC的度数再根据线段垂直平分线的性质即可得出∠A的度数进而得到∠ACB的度数【详解】解:根据题意如图:∵BC=DC∠ABC=100°∴∠BDC=∠CBD解析:30°【分析】依据等腰三角形的性质,即可得到∠BDC的度数,再根据线段垂直平分线的性质,即可得出∠A的度数,进而得到∠ACB的度数.【详解】解:根据题意,如图:∵BC=DC,∠ABC=100°,∴∠BDC=∠CBD=180°-100°=80°,根据题意得:MN是AC的垂直平分线,∴CD=AD,∴∠ACD=∠A,∴∠A=1(18080)502⨯︒-︒=︒,∴∠ACB=∠CBD-∠A=80°-50°=30°.故答案为:30°.【点睛】此题主要考查了线段垂直平分线的性质以及等腰三角形的性质.解题时注意线段垂直平分线上任意一点,到线段两端点的距离相等.18.如图,已知∠AOB=60°,点P在边OA上,OP=24,点M,N在边OB上,PM=PN,若NM=6,则OM=______________.9【分析】过P作PD⊥OB交OB于点D在直角三角形POD中求出OD的长再由PM=PN利用三线合一得到D为MN中点根据MN 求出MD的长由OD-MD即可求出OM的长【详解】解:过P作PD⊥OB交OB 于点解析:9【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD-MD即可求出OM的长.【详解】解:过P作PD⊥OB,交OB于点D,∵∠AOB=60°,∴∠OPD=30°,∴OD=1OP=12.2∵PM=PN,PD⊥MN,∴MD=ND=1MN=3,2∴OM=OD﹣MD=12﹣3=9.故答案为:9.【点睛】本题考查的是含30度直角三角形的性质,等腰三角形的性质等知识,根据题意添加适当辅助线是解本题的关键.19.如图,在22的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的ABC为格点三角形,在图中最多能画出______个不同的格点三角形与ABC成轴对称.5【分析】画出所有与成轴对称的三角形【详解】解:如图所示:和对称和对称和对称和对称和对称故答案是:5【点睛】本题考查轴对称图形解题的关键是掌握画轴对称图形的方法解析:5【分析】画出所有与ABC成轴对称的三角形.【详解】解:如图所示:ABC和ADC对称,ABC和EBD△对称,ABC和DEF对称,ABC和DCB对称,ABC和CDA对称,故答案是:5.【点睛】本题考查轴对称图形,解题的关键是掌握画轴对称图形的方法.20.如图,△ABC中,AB=AC,点D、E、F分别在AB、BC、CA边上,且BE=CF,BD=CE,如果∠A=44°,则∠EDF的度数为__.56°【分析】根据可求出根据△DBE≌△ECF利用三角形内角和定理即可求出的度数【详解】解:∵AB=AC∴∠ABC=∠ACB在△DBE和△CEF 中∴△DBE≌△ECF(SAS)∴DE=EF∴△DEF解析:56°【分析】根据44A ∠=︒可求出68ABC ACB ∠=∠=︒,根据△DBE ≌△ECF ,利用三角形内角和定理即可求出 EDF ∠的度数.【详解】解:∵AB =AC ,∴∠ABC =∠ACB ,在△DBE 和△CEF 中BE CF ABC ACB BD CE =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△ECF (SAS ),∴DE =EF ,∴△DEF 是等腰三角形,∵△DBE ≌△ECF ,∴∠1=∠3,∠2=∠4,∵∠A +∠B +∠C =180°, ∴()118044682B ∠=︒-︒=︒, ∴1218068∠+∠=︒-︒,∴3218068∠+∠=︒-︒,∴∠DEF =68°, ∴18068562EDF ︒-︒∠==︒. 故答案为:56°.【点睛】 此题主要考查全等三角形的判定与性质的理解和掌握,主要应用了三角形内角和定理和平角是180︒,根据等腰三角形的性质得出B C ∠=∠是解题的关键.三、解答题21.如图,网格中小正方形的边长为1,(1)画出△ABC 关于x 轴对称的△A 1B 1C 1(其中A 1、B 1、C 1分别为A 、B 、C 的对应点); (2)△ABC 的面积为 ;点B 到边AC 的距离为 ;(3)在x轴上是否存在一点M,使得MA+MB最小,若存在,请直接写出MA+MB的最小值;若不存在,请说明原因解析:(1)见解析;(2)112,113434;(3)存在,17【分析】(1)根据对称点的坐标规律,关于x轴对称的点,横坐标相同,纵坐标互为相反数,找出对称点,顺次连接即可;(2)利用△ABC所在矩形面积减去周围三角形面积,计算后即可得出答案,点B到边AC 的距离即为△ABC的AC边上的高,利用勾股定理求得AC的长,再根据已求得的△ABC的面积从而求解结果;(3)根据两点之间线段最短,利用轴对称的性质先作点A关于x轴的对称点A',连接A'B与x轴相交于点M,此时MA+MB最小,且最小值为线段A'B的长度,利用勾股定理计算即可.【详解】解:(1)如图所示,△A1B1C1即为所求.(2)S△ABC=11111 451235342222⨯-⨯⨯-⨯⨯-⨯⨯=.设点B到边AC的距离为h,∵网格中小正方形的边长为1,∴AC223534+=∵11122ABC S h AC ==, 即1113422h =, 解得113434h =. 故答案为:112,113434. (3)如图,在x 轴上存在一点M ,使得MA +MB 最小,作点A 关于x 轴的对称点A ',连接A 'B 与x 轴相交于一点,此交点即为点M ,由两点之间线段最短可得,此时MA +MB 最小.根据轴对称的性质可得:MA =MA ',∴22'4117MA MB A B +==+=.【点睛】此题考查了轴对称变换、三角形面积的计算等知识,掌握轴对称与坐标变换并根据题意得出对应点位置是解题关键.22.如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC ∆经过一次轴对称变换后得到'''A B C ∆,图中标出了点C 的对应点'C()1在给定方格纸中画出变换后的'''A B C ∆;()2画出AC 边上的中线BD 和BC 边上的高线AE ;()3求'''A B C ∆的面积.解析:(1)见解析;(2)见解析;(3)152【分析】 (1)连接CC′,作CC′的垂直平分线l ,然后分别找A 、B 关于直线l 的对称点A′、B′,连接A′、B′、C′,即可得到A B C ''';(2)作AC 的垂直平分线找到中点D ,连接BD ,BD 就是所求的中线;从A 点向BC 的延长线作垂线,垂足为点E ,AE 即为BC 边上的高;(3)根据三角形面积公式即可求出A B C '''的面积.【详解】解:(1)如图,A B C '''即为所求;(2)如图,线段BD 和线段AE 即为所求;(3)111553222A B C ABC S S BC AE '''∆∆==⋅⋅=⨯⨯=. 【点睛】 本题主要考查几何变换作图,作已知图形关于某直线的对称图形的一般步骤:(1)找:在原图形上找特殊点(如线段的端点、线与线的交点等);(2)作:作各个特殊点关于已知直线的对称点;(3)连:按原图对应连接各对称点.熟练掌握作图步骤是解题的关键. 23.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A B C ,,的坐标分别为()()()4,5,2,1,1,3--- (1)作出ABC ∆关于y 轴对称的A B C ∆''',并写出点'B 的坐标(2)点P 是x 轴上的动点,当A BP ∆'周长最小时,找出点P ,并直接写出点P 的坐标解析:(1)见解析,()'2,1B ;(2)见解析,()1,0P -【分析】(1)分别作出A ,B ,C 关于y 轴对称的对应点A′,B′,C′,即可得到答案.(2)作点B 关于x 轴的对称点B″,连接A′B″交x 轴于P ,点P 即为所求.【详解】解:()1如图'''A B C ∆即为所求,由图可知,()'2,1B ;()2如图所示,点()1,0P -即为所求点.【点睛】本题考查作图——轴对称变换,轴对称——最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.在平面直角坐标系中,点A 在x 轴正半轴上,以OA 为边在x 轴上方作等边OAC . (1)如图1,在AC 的右上方作线段AD ,点D 在y 轴正半轴上,10DAC ∠=︒,以AD 为边在AD 右侧作等边ADE ,则AEC ∠=______.(2)如图2,点P 是x 轴正半轴上且在点A 右侧的一动点,PAM △为等边三角形,OM 与PC 交于点F .求证:AF MF PF +=.(3)如图3,点P 是x 轴正半轴上且在点A 右侧的一动点,CPM △为等边三角形,MA 的延长线交y 轴于点N ,请直接写出线段AM 、AP 、AN 的数量关系______.解析:(1)20°;(2)证明见解析;(3)12AM AN AP =+. 【分析】 (1)借助等边三角形的性质可证明△CAE ≌△OAD ,再利用直角三角形两锐角互余即可得出结论;(2)在OM 上截取EM=PF ,证明△FAP ≌△EAM ,得出AE=AF ,∠EAM=∠FAP ,再利用角的和差可得∠EAF=∠MAP=60°,即△AEF 为等边三角形,继而得出结论;(3)证明△CAM ≌△COP 可得AM=OP=OA+AP ,利用三角形内角和定理和对顶角相等可得∠OAN=60°,∠ONA=30°,根据直角三角形30°角所对边是斜边的一半可得12OA AN =,继而可得12AM AN AP =+. 【详解】解:(1)∵△AOC 和△DAE 是等边三角形,∴AC=AO ,AE=AD ,∠OAC=∠EAD=60°,∵10DAC ∠=︒, 6070CAE DAO DAC ∴∠=∠=︒+∠=︒,在△CAE 和△OAD 中∵AC AO CAE OAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△CAE ≌△OAD (SAS ),∴∠AEC=∠ADO ,∵∠ADO=90°-∠DAO=20°,∴∠AEC=20°,∴故答案为:20°;(2)与(1)同理可证,△OAM ≌△CAP ,∴∠OMA=∠CPA ,AM=AP ,如下图,在OM 上截取EM=PF ,在△FAP 和△EAM 中,∵PF ME OMA CPA AP AM =⎧⎪∠=∠⎨⎪=⎩,∴△FAP ≌△EAM (SAS ),∴∠EAM=∠FAP ,EA=FA ,∵∠EAF=∠EAM-∠FAM ,∠MAP=∠FAP-∠FAM ,∴∠EAF=∠MAP=60°,∴△AEF 为等边三角形,EF=AF ,∴AF MF EF MF EM PF +=+==,即AF MFPF +=;(3)与(1)同理可证△CAM ≌△COP ,∠MCP=60°,∴AM=OP=OA+AP ,∠AMC=∠OPC ,∵OP=OA+AP ,∴AM=OA+AP ,∵∠CEM=∠AEP ,∠AMC=∠OPC ,∴∠PAM=∠MCP=60°,∴∠OAN=60°,∠ONA=30°, ∴12OA AN =, ∴12AM AN AP =+,故答案为:12AM AN AP =+. 【点睛】 本题考查全等三角形的性质和判定,等边三角形的性质和判定.(1)中理解等边三角形三边相等,三角都等于60°是解题关键;(2)能根据“截长补短”作出辅助线构造全等三角形是解题关键;(3)中根据三角形内角和定理和对顶角相等得出∠OAN=60°是解题关键. 25.如图,90BAD CAE ∠=∠=︒,AB AD =,AE AC =,AF CB ⊥,垂足为F .(1)求证:ABC ADE △≌△;(2)求FAE ∠的度数.解析:(1)见解析;(2)135FAE ∠=︒.【分析】(1)根据题意和题目中的条件可以找出△ABC ≌△ADE 的条件;(2)根据(1)中的结论和等腰直角三角形的定义可以得到∠FAE 的度数.【详解】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°.【点睛】本题考查全等三角形的判定与性质及等腰三角形的性质,解答本题的关键是明确题意,找出全等所需要的条件.26.如图,△ABC为等边三角形,直线l经过点C,在l上位于C点右侧的点D满足∠BDC =60°.(1)如图1,在l上位于C点左侧取一点E,使∠AEC= 60°,求证:△AEC≌△CDB;(2)如图2,点F、G在直线l上,连AF,在l上方作∠AFH =120°,且AF=HF,∠HGF =120°,求证:HG+BD=CF;(3)在(2)的条件下,当A、B位于直线l两侧,其余条件不变时(如图3),线段HG、CF、BD的数量关系为.解析:(1)证明见解析;(2)证明见解析;(3)HG=CF+BD.【分析】(1)先利用角的和差证明∠BCD=∠EAC,然后利用AAS即可证明△AEC≌△CDB;(2)在l上C点左侧取一点E,使∠AEC=60°,连接AE,依次证明△AEC≌△CDB和△HGF≌△FEA即可得出结论;(3)在l上位于C点右侧取一点E,使∠AED=60°,连接AE,在l上取一点M,使BM=BD,依次证明△ACE≌△CBM和△HGF≌△FEA即可得出结论.【详解】解:(1)证明:∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠BCD+∠ACE=120°,∵∠AEC=60°,∴∠ACE+∠EAC=120°,∴∠BCD=∠EAC,在△AEC和△CDB中∵60 AEC BDCBCD EACAC BC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△AEC≌△CDB(AAS);(2)证明:如图2,在l上C点左侧取一点E,使∠AEC=60°,连接AE,由(1)知:△AEC≌△CDB,∴BD=CE,∵∠AEC=60°,∴∠AEF =120°,∵∠AFH =120°,∴∠AFE+∠FAE=∠AFE+∠GFH=60°,∴∠FAE=∠GFH,∵∠HGF=∠AEF=120°,AF=FH,∴△HGF≌△FEA(AAS),∴GH=EF,∴CF=EF+CE=HG+BD;(3)解:HG=CF+BD,理由是:如图3,在l上位于C点右侧取一点E,使∠AED=60°,连接AE,在l上取一点M,使BM=BD,∵∠BDC=60°,∴△BDM是等边三角形,∴∠BMD=60°,∵∠AED=60°,∴∠AEC=∠CMB=120°,∵∠ACB=60°,∴∠ACE+∠BCE=∠ACE+∠CAE=60°,∴∠CAE=∠BCE,∵AC=BC,∴△ACE ≌△CBM (AAS ),∴CE=BM=BD ,由(2)可证△HGF ≌△FEA (AAS ),∴GH=FE ,∵EF=CF+CE∴HG=CF+BD .故答案为:HG=CF+BD .【点睛】本题考查等边三角形的性质和判定,全等三角形的性质和判断,三角形外角的性质等.掌握一线三等角的模型,能借助一线三等角证明对应角相等是解题关键.27.已知:如图,//AC BD ,AE ,BE 分别平分CAB ∠和ABD ∠,点E 在CD 上.用等式表示线段AB 、AC 、BD 三者之间的数量关系,并证明.解析:AB=AC+BD ,证明见详解.【分析】延长AE ,交BD 的延长线于点F ,先证明AB=BF ,进而证明△ACE ≌△FDE ,得到AC=DF ,问题得证.【详解】解:延长AE ,交BD 的延长线于点F ,∵//AC BD ,∴∠F=∠CAF ,∵AE 平分CAB ∠,∴∠CAF=∠BAF ,∴∠F=∠BAF ,∴AB=BF ,∵BE 平分ABF ∠,∴AE=EF ,∵∠F=∠CAF ,∠AEC=∠FED ,∴△ACE ≌△FDE ,∴AC=DF ,∴AB=BF=BD+DF=BD+AC .【点睛】本题考查了等腰三角形的判断与性质,全等三角形的判定与性质,根据题意添加辅助线构造等腰三角形和全等三角形是解题关键.28.如图,ABC 中,AD 平分BAC ∠,BC 的垂直平分线DG 交AD 于D ,DE AB ⊥于E ,DF AC ⊥于F .求证:(1)BE CF =.(2)2AB AC CF -=.解析:(1)证明见解析;(2)证明见解析【分析】(1)连接DB 、DC ,先由角平分线的性质就可以得出DE=DF ,再证明△BDE ≌△CDF 就可以得出结论;(2)由条件可以得出△DAE ≌△DAF 就可以得出AE=AF ,进而就可以求出结论.【详解】(1)连接DB 、DC ,如图所示,DG 垂直平分BC ,DB DC ∴=,又AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,DE DF ∴=,90DEB DFG ∠=∠=︒,DAE DAF ∠=∠, 在Rt BDE 和Rt CDF 中,DB DC DE DF =⎧⎨=⎩, ()HL Rt BDE Rt CDF ∴≅,BE CF ∴=.(2)在Rt DAE 和Rt DAF △中,DA DA DE DF =⎧⎨=⎩, ()Rt DAE Rt DAF HL ∴≅,AE AF ∴=,AB AE BE -=,AB AF CF ∴-=,()AB AC CF CF -+=,AB AC CF CF --=,2AB AC CF -=.【点睛】本题考查了角平分线的性质的运用,线段垂直平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.。

人教版八年级数学上册《第十三章轴对称》单元检测卷带答案

人教版八年级数学上册《第十三章轴对称》单元检测卷带答案

人教版八年级数学上册《第十三章轴对称》单元检测卷带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.下列说法正确的是( )A .等腰三角形的高线、中线、角平分线互相重合B .有两个角是60︒的三角形是等边三角形C .两个全等的三角形一定关于某直线对称D .有两边及一角相等的等腰三角形全等3.如图,ABC 中,点D 为BC 边上的一点,且BD BA =,连接AD ,BP 平分ABC ∠交AD 于点P ,连接PC ,若ABC 面积为26cm ,则BPC 的面积为( )A .23cmB .24cmC .27cm 2D .216cm 54.如图,直线EF GH ∥,等腰三角形ABC 的顶点B C ,分别在直线GH EF ,上,边AB 交EF 于点D .若CD 平分ACB ∠,顶角50A ∠=︒,则DBG ∠=( )A .82.5︒B .83︒C .83.5︒D .84︒5.如图,在ABC 中,AB=AC ,AD 、CE 是ABC 的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP EP +最小值的是( )A .BCB .ADC .CED .AC6.如图,在Rt ABC △中90ACB ∠=︒ BAC ∠的平分线交BC 于点D ,过点C 作CG AB ⊥于点G ,交AD 于点E ,过点D 作DF AB ⊥于点F ,下列这些结论:①CED CDE ∠=∠;①::AEC AEG S S AC AG =△△;①2ADF FDB ∠=∠;①CE DF =,其中正确的是( )A .①①①B .①①①C .①①D .①①①①7.ABC 中90AC BC C AD =∠=︒,,平分BAC DE AB ∠⊥,于E ,则下列结论:①AD 平分CDE ∠;①BAC BDE ∠=∠;①DE 平分ADB ∠;①BE AC AB +=.其中正确的有( )A .1个B .2个C .3个D .4个8.如图,在ABC 中,AB=AC ,120A ︒∠= 6BC cm = AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为( )A .4cmB .3cmC .2cmD .1cm二、填空题9.在平面直角坐标系中,点(),2m -与点()3n ,关于x 轴对称,则m n += .10.已知等边三角形的边长为2,则该等边三角形的周长为 .11.在ABC 中60A B ∠=∠=︒ 3AB =则BC 等于 .12.若点()2,M a 与点()1,3N b +关于x 轴对称,则()2a b -的值为 . 13.等腰三角形的两边长分别为3和6,则这个三角形的周长为 .14.如图,在Rt ABC △中90C ∠=︒,AD 是CAB △的平分线,DE 垂直平分AB ,若3CD =,则BD = .15.如图,正六边形ABCDEF 的顶点B 、C 分别在正方形AGHI 的边AG GH 、上,若4AB =,则AG 的长度为 .16.如图,AD 是等边ABC 的高,点M 是线段AD 上一点,连接BM ,以BM 为边向右下方作等边BMN ,当BN DN +的值最小时,BMD ∠的大小为 .三、解答题17.如图,在ABC中,请用尺规作图法,作边BC上的高.(保留痕迹,不写作法)DE AC交BC于点E,求证:BDE是等18.如图,ABC是等边三角形,D是边AB上的点,过点D作∥边三角形.19.如图,已知,在①ABC中90∠=︒,AB的垂直平分线DE交AC于点D,垂足为E,若①A=30°,CD=4cm,C求AC的长.20.如图,在平面直角坐标系中,每个小方格都是边长为1的正方形,ABC 的顶点均在格点上.(1)画出ABC 关于y 轴对称的111A B C △;(2)直接写出点1A 的坐标为___________.21.如图,在ABC 中,AB=AC ,60BAC ∠=度,AD 是BAC ∠的平分线,E 为AD 上一点,以BC 为一边,且在BE 下方作等边BEF ,连接CF .(1)求证,ABE CBF ≌;(2)求ACF ∠的度数.22.如图所示,A 、C 、B 三点共线,DAC △与EBC 都是等边三角形,AE BD 、相交于点P ,且分别与CD CE 、交于点M ,N .(1)求证:ACE DCB ≌(2)求APD ∠的度数23.如图,在ABC 中,BD 是ABC 的角平分线,且BD BC =,E 为BD 延长线上一点,BE BA =连接AE 、CE .(1)AD 与CE 相等吗?为什么?(2)若75BCD ∠=︒,求ACE ∠的度数.24.如图,在ABC 中,AD 平分CAB ∠,过点D 作DM AB ⊥于M ,DN AC ⊥的延长线于N ,且BM CN =.(1)求证:点D 在BC 的垂直平分线上;(2)若8AB =,AC=4,求BM 的长.25.如图,在ABC 中,已知AB AC =,AB 的垂直平分线交AB 于点N ,交AC 于点M ,连接MB .(1)若70ABC ∠=︒,则NMA ∠的度数是 度;(2)若8cm AB =,MBC △的周长是14cm .①求BC 的长度;①若点P 为直线MN 上一点,请你直接写出PBC △周长的最小值.26.如图,在平面直角坐标系中,点A 的坐标是(1,0),以线段OA 为边向下侧作等边①AOB ,点C 为x 轴的正半轴上一动点(1OC >),连接BC ,以线段BC 为边向下侧作等边①CBD ,连接DA 并延长,交y 轴于点E .(1)①OBC 与①ABD 全等吗?请说明理由;(2)当以A ,E ,C 为顶点的三角形是等腰三角形时,求点C 的坐标.参考答案1.A【分析】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线对折后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形.根据轴对称图形的定义,依次判断即可.【详解】解:B 、C 、D 选项中的图形分别沿一条直线折叠,直线两旁的部分能够完全重合,是轴对称图形;而选项A 中的图形不是轴对称图形.故选: A .2.B【分析】根据等腰三角形的 “三线合一”、等边三角形的判定、轴对称的定义及全等三角形的判定逐一判断即可求解.【详解】解:A 、等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合,则A 选项说法错误,故不符合题意;B 、有两个角是60︒的三角形是等边三角形,则B 说法正确,故符合题意;C 、两个全等的三角形不一定关于某直线对称,则C 说法错误,故不符合题意;D 、有两边及一对应角相等的等腰三角形全等,则D 说法错误,故不符合题意故选B .【点睛】本题考查了等腰三角形的 “三线合一”、等边三角形的判定、轴对称的定义及全等三角形的判定,熟练掌握其基础知识是解题的关键.3.A【分析】本题考查的是等腰三角形的性质、三角形的面积计算,掌握等腰三角形的三线合一是解题的关键.根据等腰三角形的性质得到AP PD =,根据三角形的面积公式计算,得到答案. 【详解】解:BD BA = BP 平分ABC ∠ ∴AP PD =∴APB DPB SS = APC DPC S S = ∴21163cm 22BPC DPB DPC ABCS S S S =+==⨯= 故选:A .4.A 【分析】先由等腰三角形性质及三角形内角和定理求出ABC ACB ∠∠、,再由角平分线定义及平行线性质得到32.5CBH BCD ∠=∠=︒,最后由平角定义求解即可得到答案.【详解】解:ABC 是等腰三角形50A ∠=︒18050652ABC ACB ︒-︒∴∠=∠==︒ CD 平分ACB ∠116532.522ACD BCD ACB ∴∠=∠=∠=⨯︒=︒ EF GH32.5CBH BCD ∴∠=∠=︒1801806532.582.5DBG ABC CBH ∴∠=︒-∠-∠=︒-︒-︒=︒故选:A .【点睛】本题考查求角度,涉及等腰三角形性质、三角形内角和定理、角平分线定义、平行线性质及平角定义等知识,熟练掌握相关几何性质求角度是解决问题的关键.5.C【分析】本题考查了等腰三角形的性质,线段垂直平分线的性质,两点间线段最短,掌握等腰三角形“三线合一”的性质是关键.由等腰三角形三线合一的性质,得到AD 垂直平分BC ,则BP CP =,从而得出BP EP CP EP CE +=+≥,即可求解.【详解】解:如图,连接CPAB AC =,AD 是ABC 的中线AD BC ∴⊥ BD CD =AD ∴垂直平分BCBP CP ∴=BP EP CP EP CE ∴+=+≥即BP EP +的最小值是线段CE 的长故选:C .6.A【分析】本题主要考查了角平分线的性质定理、垂直的定义、三角形外角的定义和性质、等腰三角形的判定与性质等知识.熟练掌握相关知识是解题的关键.结合题意证明CAD BAD ∠=∠,ACE B ∠=∠结合CED CAE ACE ∠=∠+∠ CDE B DAB ∠=∠+∠可证明CED CDE ∠=∠,可判定结论①;证明CDE 为等腰三角形,再结合角平分线的性质定理可得CD DF =,可知CE DF =,即可判定结论①;过点E 作EH AC ⊥于点H ,结合角平分线的性质定理可得EH EG =,结合三角形面积公式可得::AEC AEG S S AC AG =△△,即可判断结论①;无法证明2ADF FDB ∠=∠,故结论①不正确.【详解】解:①AD 平分BAC ∠①CAD BAD ∠=∠①90ACB ∠=︒ CG AB ⊥①90ACE BCG ∠+∠=︒ 90B BCG ∠+∠=︒①ACE B ∠=∠①CED CAE ACE ∠=∠+∠ CDE B DAB ∠=∠+∠①CED CDE ∠=∠故结论①正确;①CED CDE ∠=∠①CE CD =①AE 平分CAB ∠ DC AC ⊥ DF AB ⊥①CD DF =①CE DF =,故结论①正确;如下图,过点E 作EH AC ⊥于点H①AE 平分CAB ∠ EG AB ⊥ EH AC ⊥①EH EG = ①12AEC SAC EH =⨯ 12AEG S AG EG =⨯ ①11:::22AEC AEG S S AC EH AG EG AC AG =⨯⨯=,故结论①正确; 无法证明2ADF FDB ∠=∠,故结论①不正确.综上所述,正确的结论是①①①.故选:A .7.C【分析】本题考查了全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理等知识,由“AAS ”可证,ACD AED ≌可得,,,CD DE AC AE CDA ADE ==∠=∠可判断①①,由等腰直角三角形的性质可判断①①.【详解】解:①AD 平分,BAC ∠,CAD DAB ∴∠=∠且90C DEA AD AD ∠=∠=︒=,()AAS ,ACD AED ∴≌,,,CD DE AC AE CDA ADE ∴==∠=∠AD ∴平分,,CDE AB AE BE AC EB ∠=+=+①①①正确,90AC BC C =∠=︒45CAB B ∴∠=∠=︒,且DE AB ⊥45,B BDE ∴∠=∠=︒①180135,CDE BDE ∠=︒-∠=︒ ①167.52ADE CDE ∠=∠=︒ ,67.5,BAC BDE ADE BDE ∴∠=∠∠=︒≠∠①①正确,①错误故选:C .8.C【分析】本题考查了等边三角形的判定与性质、线段的垂直平分线性质以及等腰三角形的性质;正确作出辅助线是解答本题的关键.此类题要通过作辅助线来沟通各角之间的关系,首先求出BMA △与CNA 是等腰三角形,再证明AMN 为等边三角形即可.【详解】解:连接AM AN ,.①AB 的垂直平分线交BC 于M ,交AB 于E ,AC 的垂直平分线交BC 于N ,交AC 于F①BM AM CN AN ==,①MAB B CAN C ∠=∠∠=∠,.①AB AC = 120A ∠=︒①30B C ∠=∠=︒①6060BAM CAN AMN ANM ∠+∠=︒∠=∠=︒,①AMN 是等边三角形①AM AN MN ==①BM MN NC ==.①6cm BC①2cm MN =.故选:C .9.5【分析】先根据点坐标关于x 轴对称的变换规律求出,m n 的值,再代入计算即可得. 【详解】解:点(),2m -与点()3n ,关于x 轴对称3,2m n ∴==325m n ∴+=+=故答案为:5.【点睛】本题考查了点坐标关于x 轴对称的变换规律,熟练掌握点坐标关于x 轴对称的变换规律(横坐标相同,纵坐标互为相反数)是解题关键.10.6【分析】本题考查等边三角形的性质,三角形的周长,根据等边三角形的三条边相等求解.【详解】解:①等边三角形的三边相等①周长为326⨯=.故答案为6.11.3【分析】本题主要考查了等边三角形的判定与性质.由已知三角形两个角都是60︒,可判定三角形ABC 是等边三角形,进而利用等边三角形的性质得出结论.【详解】解:ABC 中60A B ∠=∠=︒60C ∴∠=︒ABC ∴是等边三角形又3AB =3BC ∴=故答案为:3.12.16【分析】此题主要考查了关于x 轴对称点的坐标特点.关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;先求出a 、b 的值,再代入计算即可.【详解】解:①点()2,M a 与点()1,3N b +关于x 轴对称①12b += 3a =-①1b =①()()223116a b -=--=.故答案为:16.13.15【分析】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论并利用三角形三边关系判断是否能组成三角形.分3是腰长与底边长两种情况讨论求解.【详解】解:①3是腰长时,三角形的三边分别为3、3、6 336+=∴不能组成三角形①3是底边时,三角形的三边分别为6、6、3能组成三角形周长66315=++=.综上所述,这个等腰三角形的周长为15.故答案为:15.14.6【分析】本题主要考查线段垂直平分线的性质、30︒所对的直角边是斜边的一半,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.由角平分线和线段垂直平分线的性质可求得30B CAD DAB ∠=∠=∠=︒,在Rt ACD △中,根据直角三角形的性质可求得AD ,则可得出BD 的长.【详解】解:DE 垂直平分ABDA DB ∴=B DAB ∴∠=∠ AD 平分CAB ∠CAD DAB ∴∠=∠90C ∠=︒390CAD ∴∠=︒30CAD ∴∠=︒26AD CD ∴==6BD AD ∴==.故答案为:6.15.6【分析】本题考查的是正多边形的有关计算;求出正六边形的内角的度数,根据直角三角形的性质求出BG ,再根据正多边形的性质计算. 【详解】正六边形的内角的度数(62)1801206-⨯︒==︒ 则18012060CBG ∠=︒-︒=︒ 30BCG ∴∠=︒11222BG AB BC ∴=== 6AG AB BG ∴=+=故答案为:6.16.60°/60度【分析】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,轴对称的性质等等,连接CN ,证明()SAS ABM CBN ≌,得到30BCN BAD ∠=∠=︒,则点N 在直线CN 上运动,如图,作点D 关于CN 的对称点G ,连接NG CG ,,则DN GN =,故当B ,N ,G 在同一直线上时,NG BN +的最小值,即此时BN DN+最小,由轴对称的性质,可得260DCG BCN ∠=∠=︒,CD=CG ,则CDG 是等边三角形,得到60CDG ∠=︒CD DG BD ==求出1302DBN DNB CDG ===︒∠∠∠则BD MN ⊥,进而可得M D N 、、三点共线,据此可得答案.【详解】解:连接CN ,如图所示:①ABC 、BMN 都是等边三角形,AD 是等边ABC 的高①AB BC = BM BN = 60∠=∠=︒ABC MBN 30BAD ∠=︒①ABC MBC MBN MBC ∠-∠=∠-∠①ABM CBN ∠=∠①()SAS ABM CBN ≌①30BCN BAD ∠=∠=︒①点N 在直线CN 上运动如图,作点D 关于CN 的对称点G ,连接NG CG ,,则DN GN =①当B ,N ,G 在同一直线上时,NG BN +的最小值,即此时BN DN +最小由轴对称的性质,可得260DCG BCN ∠=∠=︒ CD CG =①CDG 是等边三角形①60CDG ∠=︒ CD DG BD == ①1302DBN DNB CDG ===︒∠∠∠ ①BD MN ⊥又①AD BC ⊥①M D N 、、三点共线①60BMD ∠=︒故答案为:60︒.【点睛】本题主要考查了三角形全等的判定和性质,等边三角形的性质,三角形内角和定理,轴对称的性质,垂线段最短,解题的关键是作出辅助线,证明BAE BCF ≌.17.见解析【分析】根据三角形的高的定义以及垂线的作图方法画图即可.【详解】解:如图,AD 即为所求.18.见解析【分析】本题考查了等边三角形的判定,利用平行线的性质,证明三角形的三个内角都是60︒即可.【详解】①ABC 是等边三角形①60∠=∠=∠=︒A B C .①∥DE AC①60A BDE C BED ∠=∠=∠=∠=︒①BDE 是等边三角形.19.12cm【分析】由题意易得①ABC=60°,进而可得①A=①ABD=30°,则有①CBD=30°,然后根据含30°直角三角形的性质可得AD=BD=8cm ,进而问题可求解.【详解】解:①90,30∠=︒∠=︒C A①①ABC=60°①DE 是AB 的垂直平分线①BD=AD①①A=①ABD=30°①①CBD=30°①CD=4cm①BD=2CD=8cm①AD=8cm①AC=CD+AD=12cm .【点睛】本题主要考查垂直平分线的性质及含30°直角三角形的性质,熟练掌握垂直平分线的性质及含30°直角三角形的性质是解题的关键.20.(1)作图见详解(2)()1,3-【分析】本题主要考查平面直角坐标系中图形的变化,坐标与图形(1)根据轴对称图形的性质作图即可求解;(2)根据坐标与图形即可求解.【详解】(1)解:根据题意,作图如下(2)解:根据图形可得,()11,3A -故答案为:()1,3-.21.(1)见解析;(2)90︒.【分析】(1)根据等边三角形的判定得ABC 是等边三角形 于是可得到AB BC = BE BF = ABE CBF ∠=∠ 即可得到证明;(2)根据角平分线及全等三角形得到==30BCF BAE ∠∠︒ 结合等边三角形每个角都是60︒即可得到答案.【详解】(1)证明:①AB AC = 60BAC ∠=度①ABC 是等边三角形①AB BC = 60ABE EBC ∠+∠=︒①BEF △是等边三角形①BE BF = 60CBF EBC ∠+∠=︒①ABE CBF ∠=∠在ABE 和CBFAB CB ABE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩①SAS ABE CBF ≌(); (2)解:①等边ABC 中 AD 是BAC ∠的角平分线①=30BAE ∠︒ =60ACB ∠︒①ABE CBF △≌△①==30BCF BAE ∠∠︒①==3060=90ACF BCF ACB ∠∠+∠︒+︒︒.【点睛】本题考查等边三角形性质及全等三角形判定与性质,解题的关键是根据等边三角形性质得到角度加减从而得到角相等.22.(1)证明见解析(2)60APD ∠=︒【分析】考查了等边三角形的性质及全等三角形的判定方法,关键是根据等边三角形的性质解答. (1)根据等边三角形的性质和全等三角形的判定证明即可;(2)根据三角形的内角和相等,对顶角相等,即可求解;【详解】(1)证明:DAC 与EBC 都是等边三角形60AC CD CE BC ACD ECB ∴︒==∠=∠=,,180120180120ACE ECB DCB ACD =︒-∠=︒︒∠∠=︒-∠=,ACE DCB ∴∠=∠在ACE △和DCB △中AC CD ACE DCB CE BC =⎧⎪∠=∠⎨⎪=⎩(SAS)ACE DCB ∴△≌△(2)解:ACE DCB ≌CAM CDP ∴∠=∠在DMP 和AMC 中180MDP DMP APD CAM AMC ACM ∠︒∠∠∠++=++=∠∠又,CAM CDP DMP AMC ∠=∠∠=∠60APD ACM ∴∠=∠=︒23.(1)=AD CE ,理由见解析;(2)30︒.【分析】(1)由SAS 证明ABD EBC ∆≅∆,根据全等三角形的性质即可得出=AD CE ;(2)根据等腰三角形的性质可得75BCD BDC ∠=∠=︒,由三角形的内角和以及角平分线的定义得出30DBC ABD ∠=∠=︒,再根据全等三角形的性质和三角形的内角和即可求解.【详解】(1)解:=AD CE理由:BD 为ABC ∆的角平分线ABD CBE ∴∠=∠在ABD ∆和EBC ∆中BA BE ABD CBE BD BC =⎧⎪∠=∠⎨⎪=⎩()ABD EBC SAS ∴∆≅∆AD CE ∴=;(2)解:BD BC = 75BCD ∠=︒75BCD BDC ∴∠=∠=︒30DBC ABD ∴∠=∠=︒60ABC ∴∠=︒由(1)知ABD EBC ∆≅∆BAD BEC ∴∠=∠ADB EDC ∠=∠30ACE ABD ∴∠=∠=︒.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质与判定、角平分线、三角形内角和定理等知识,解题的关键是证明三角形全等.24.(1)见解析(2)2【分析】本题主要考查了角平分线的性质和全等三角形的判定和性质、线段垂直平分线的判定. (1)连接BD ,CD ,由角平分线性质可得DM DN =,再证明DMB DNC ≌△△(SAS ),可得BD CD =,即点D 在BC 的垂直平分线上.(2)证明Rt Rt DMA DNA ≌△△(HL ),可得AM AN =,由线段的和差即可求解.【详解】(1)证明:如图,连接BD ,CDAD 是CAB ∠的平分线DM AB ⊥ DN AC ⊥∴DM DN =在DMB 和DNC △中90DM DN DMB DNC MB NC =⎧⎪∠=∠=︒⎨⎪=⎩∴DMB DNC ≌△△(SAS )∴BD CD =∴点D 在BC 的垂直平分线上.(2)解:在Rt DMA △和Rt DNA △中,AD AD DM DN =⎧⎨=⎩∴Rt Rt DMA DNA ≌△△(HL )∴AM AN =AM AB BM =- AN AC CN =+∴AB BM AC CN -=+.BM CN =∴2844BM AB AC =-=-=∴2BM =.25.(1)50(2)①6cm ;①14cm【分析】本题主要考查了轴对称的性质,等腰三角形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记这些性质是解题的关键.(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM BM =,然后求出MBC △的周长AC BC =+,再代入数据进行计算即可得解;①连接PA ,当点P 与M 重合时,PBC △周长的值最小,于是得到结论.【详解】(1)解:AB AC =70C ABC ∴∠=∠=︒40A ∴∠=︒ AB 的垂直平分线交AB 于点N90ANM ∴∠=︒50NMA ∴∠=︒故答案为:50;(2)解:①MN 是AB 的垂直平分线AM BM ∴=∴MBC △的周长BM CM BC AM CM BC AC BC =++=++=+8AB =,MBC △的周长是141486(cm)BC ∴=-=;①连接PA ,如图则PA PB =;当点P 与M 重合时,PBC △周长的值最小PB PC PA PC +=+ PA PC AC +≥P ∴与M 重合时PA PC AC +=,此时PB PC +最小∴PBC △周长的最小值8614AC BC =+=+=.26.(1)全等,见解析(2)(3,0)【分析】(1)先根据等边三角形的性质得60OBA CBD ∠=∠=︒,OB=BA ,BC=BD ,则OBC ABD ∠=∠,然后可根据“SAS ”可判定OBC ABD ∆≅∆;(2)先根据全等三角形的性质以及等边三角形的性质,求得120EAC ∠=︒,进而得出以A ,E ,C 为顶点的三角形是等腰三角形时,AE 和AC 是腰,最后根据Rt AOE 中,OA=1,30OEA ∠=︒求得2AC AE ==,据此得到123OC =+=,即可得出点C 的位置.【详解】(1)解:OBC ABD ∆∆≌.证明:AOB ∆,CBD ∆都是等边三角形OB AB ∴= CB DB = ABO DBC ∠=∠OBC ABD ∴∠=∠在OBC ∆和ABD ∆中OB AB OBC ABD CB DB =⎧⎪∠=∠⎨⎪=⎩()OBC ABD SAS ∴∆∆≌;(2)解:OBC ABD ∆∆≌60BOC BAD ∴∠=∠=︒又60OAB ∠=︒180606060OAE ∴∠=︒-︒-︒=︒120EAC ∴∠=︒,30OEA ∠=︒∴以A ,E ,C 为顶点的三角形是等腰三角形时,AE 和AC 是腰在Rt AOE 中1OA = 30OEA ∠=︒2AE ∴=2AC AE ∴==123OC ∴=+=∴当点C 的坐标为(3,0)时,以A ,E ,C 为顶点的三角形是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质的运用,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.解题的关键是利用等腰三角形的性质求出点C 的坐标.。

最新人教版八年级数学上册第十三章轴对称单元试卷含答案

最新人教版八年级数学上册第十三章轴对称单元试卷含答案

(第4题图)(第5题图)第十三章《轴对称》测试题班别 姓名 成绩(一)、选择题(每题5分,共35分)1、下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是( )A :B :C :D :2、点M (1,2)关于x 轴对称的点的坐标为( )A :(-1,-2)B :(-1,2)C :(1,-2)D :(2,-1) 3、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( )A :11cmB :7.5cmC :11cm 或7.5cmD : 以上都不对 4、如图,DE 是∆ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10 厘米,则∆EBC 的周长为( )厘米A :16B :18C :26D :285、如图,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出 下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( )A :1个B :2个C :3个D :4个6.如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作 DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②DE=BD+CE ;•③△ADE 的周长等于AB 与AC 的和; ④BF=CF .其中正确的有( )A .①②③B .①②③④C .①②D .①7.如图,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CDCEBDAl OCBDA第6题第7题(第10题图)(二)、填空题(每小题5分,共35分)8、等腰三角形的一内角等于50°,则其它两个内角各为 ; 9、如图,在Rt △ABC 中,∠C=90°,∠A=30°, AB +BC=12㎝,则AB= ㎝;10、如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是________;11.已知P 1点关于x 轴的对称点P 2(3-2a ,2a -5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P 1点的坐标是__________.12.等腰三角形的腰长与底边的比为4:3,一边长为24,则三角形的周长为_____________ ;13.如右图,在△ABC 中,BC=8,AB 的垂直平分线交BC 于D , AC 的垂直平分线交BC 与E ,则△ADE 的周长等于________.14.如下图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换, 若原来点A 坐标是(a ,b ),则经过第2013次变换后所得的A 点坐标是________.(三)、解答题(共50分)15、(6分) 如图所示,∠ABC 内有一点P ,在BA 、BC 边上各取一点P 1、P 2,使△PP 1P 2的周长最小.(保留作图痕迹)CBAy x O A B C y x Oyx O yx O yxO 第1次关于x 轴对称第2次 关于y 轴对称 第3次 关于x 轴对称 第4次 关于y 轴对称第9题16、(6分)已知A(a+b,1),B(―2,2a―b),若点A,B关于x轴对称,求a,b的值.15、(7分)如图,在△ABC中,∠B=90°,AB=BD,AD=CD,求∠CAD的度数。

八年级数学上册第十三章轴对称基础过关卷单元测试卷含解析新版新人教版

八年级数学上册第十三章轴对称基础过关卷单元测试卷含解析新版新人教版

第十三章轴对称基础过关满分120分时间100分钟一.选择题(每题3分,共计30分)1.(2020•泰兴市一模)如图,四个图标分别是剑桥大学、北京理工大学、浙江大学和北京大学的校徽的重要组成部分,其中是轴对称图形的是()A.B.C.D.【解析】D【解答】A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.2.(2020•大丰区期末)如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B度数为()A.30° B.60° C.90° D.120°【解析】C【解答】∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠C=∠C′=60°,∵∠A=30°,∴∠B=180°﹣∠A﹣∠C=90°,故选:C.3.(2020•顺德区四模)若点A(﹣3,2)与点B关于x轴对称,则点B的坐标是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)【解析】B【解答】∵点A(﹣3,2)与点B关于x轴对称,∴点B的坐标是(﹣3,﹣2).故选:B.4.(2020•忻州期末)如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位【解析】A【解答】∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选:A.5.(2020•宿豫区期中)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12 B.10 C.8 D.6【解析】B【解答】∵DE是AB的垂直平分线,∴EA=EB,由题意得,BC+CE+BE=18,则BC+CE+AE=18,即BC+AC=18,又BC=8,∴AC=10,故选:B.6.(2020•碑林区模拟)如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35° B.30° C.28° D.26°【解析】B【解答】∵CD=DE,∴∠DEC=∠C=75°,∴∠D=180°﹣∠C﹣∠DEC=180°﹣75°﹣75°=30°,∵AB∥CD,∴∠A=∠D=30°;故选:B.7.(2020 •北镇市期中)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm【解析】D【解答】∵CD是斜边AB上的高,∴∠ADC=90°,∵∠A=60°,∠ACB=90°,∴∠B=180°﹣∠ACB﹣∠A=30°,∠ACD=180°﹣∠ADC﹣∠A=30°,∵AD=3cm,∴AC=2AD=6cm,∴AB=2AC=12cm,故选:D.8.(2020•上城区二模)若等腰三角形的一个外角度数为100°,则该等腰三角形顶角的度数为()A.80° B.100°C.20°或100°D.20°或80°【解析】D【解答】当100°的角是顶角的外角时,顶角的度数为180°﹣100°=80°;当100°的角是底角的外角时,底角的度数为180°﹣100°=80°,所以顶角的度数为180°﹣2×80°=20°;故顶角的度数为80°或20°.故选:D.9.(2020•方城县期末)如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根B.8根C.9根D.10根【解析】B【解答】∵添加的钢管长度都与BD相等,∠ABC=10°,∴∠DBE=∠DEB=10°,∴∠EDF=∠DBE+∠DEB=20°,∵DE=EF,∴∠EDF=∠EFD=20°,∴∠FEG=∠ABC+∠EFD=30°,…由此思路可知:第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,第四个是40°,第五个是50°,第六个是60°,第七个是70°,第八个是80°,第九个是90°(与三角形内角和为180°相矛盾)就不存在了.所以一共有8个,∴添加这样的钢管的根数最多是8根.故选:B.10.(2020•射阳县期末)如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3)B.(3,5)C.(0,2)D.(2,0)【解析】D【解答】由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.二.填空题(每题3分,共计15分)11.(2020•萧山区期末)在平面直角坐标系xOy中,点(﹣3,2)与点(3,2)关于(填写x或y)轴对称.【解析】y【解答】∵点(﹣3,2)与点(3,2)的横坐标互为相反数,纵坐标相同,∴点(﹣3,2)与点(3,2)关于y轴对称,故答案为y.12.(2020•厦门模拟)如图,AB=AC,AD∥BC,∠DAC=50°,则∠B的度数是.【解析】50°【解答】∵AD∥BC,∠DAC=50°,∴∠C=∠DAC=50°,∵AB=AC,∴∠B=∠C=50°,故答案为:50°.13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.【解析】6【解答】∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE∥AB,DF∥AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.14.(2020•宿豫区期中)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为.【解析】18【解答】∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠ABO=∠MOB,∴BM=OM,同理CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=10+8=18.故答案为:18.15.(2020•平潭县期末)已知A(0,2)和B(4,2),点P在x轴上,若要使PA+PB最小,则点P的坐标为.【解析】(2,0)【解答】如图,∵A(0,2)∴点A关于x轴的对称点A′(0,﹣2),连接A′B交x轴于点P,∵AB=4,AB∥x轴,O是AA′中点,∴P是A′B的中点,∴OP是△A′AB的中位线,∴OP=12AB=2,若要使PA+PB最小,则点P的坐标为(2,0).故答案为(2,0).三.解答题(共75分)16.(8分)(2020 •南岗区期中)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.解:(1)当等腰三角形的腰长为4,∴底边长为18﹣4×2=10,∵4+4<10,∴4、4、10不能组成三角形,当等腰三角形的底边长为4,∴腰长为(18﹣4)÷2=7,∵4+7>7,∴4、7、7能组成三角形,综上所述,其他两边分别为4和7.(2)设等腰三角形的三边长为x、x、y,由题意可知:2x+y=18,且2x>y,∴y<9,∵x=18−y2=9−y2,x与y都是整数,∴y是2的倍数, ∴y=2时,x=8,y=8,x=5.17.(9分)(2020•平谷区期末)如图,已知∠AOB,作∠AOB的平分线OC,将直角尺DEMN如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P.(1)猜想△DOP是等腰三角形;(2)补全下面证明过程:∵OC平分∠AOB∴∠DOP=∠BOP∵DN∥EM∴∠DPO=∠BOP∴∠DOP=∠DPO∴OD=PD解:(1)我们猜想△DOP是等腰三角形;(2)补全下面证明过程:∵OC平分∠AOB,∴∠DOP=∠BOP,∵DN∥EM,∴∠DPO=∠BOP,∴∠DOP=∠DPO,∴OD=PD.故答案为:等腰,∠DOP,∠BOP,∠DPO,∠BOP,∠DOP,∠DPO,OD,PD.18.(9分)(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.证明:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∠A=36°,∴BD=AD,即△ABD是等腰三角形;(2)∵点E是AB的中点,∴AE=EB,∴∠DEB=90°,∴∠BDE=90°﹣36°=54°.19.(9分)(2020黑河期末)如图,在正方形网格中,△ABC的三个顶点都在格点上,A(2,3),B (1,1),C(4,2).结合所给的平面直角坐标系解答下列问题:(1)直接写出△ABC的面积;(2)请在图中作出与△ABC关于x轴对称的△A'B'C';(3)在(2)的条件下,若M(x,y)是△ABC内部任意一点,请直接写点M在△A'B'C'内部的对应点M'的坐标.解:(1)△ABC的面积为2×3−12×1×2−12×1×2−12×1×3=52;(2)如图所示,△A'B'C'即为所求.(3)点M在△A'B'C'内部的对应点M'的坐标为(x,﹣y).20.(9分)(2020•兴化市期中)△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于点E、F.(1)求证:EF=BE+FC;(2)若△ABC的周长比△AEF的周长大10,试求出BC的长度.解:(1)∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵∠ABC和∠ACB的平分线交于点O,∴∠EBO=∠OBC,∠OCB=∠FCO,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,OF=FC;∴EF=BE+FC;(2)由(1)证得BE=OE,OF=CF,∴△AEF的周长=AE+EF+AF=AE+EO+OF+AF=AE+BE+FC+AF=AB+AC,∵△ABC的周长比△AEF的周长大10,∴BC=AB+AC+BC﹣AB+AC=10.21.(10分)(2020•曹县期末)如图,已知△ABC,点B在直线a上,直线a,b相交于点O.(1)画△ABC关于直线a对称的△A1B1C1;(2)在直线b上画出点P,使BP+CP最小.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,点P即为所求.22.(10分)(2020•永安市期末)已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.解:(1)∵△ABC是等边三角形,∴∠B=∠A=∠C=60°,∵∠B+∠1+∠DEB=180°,∠DEB+∠DEF+∠2=180°,∵∠DEF=60°,∴∠1+∠DEB=∠2+∠DEB,∴∠2=∠1=50°;(2)∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°,又∵∠B=60°,∠DEF=60°,∠1=∠3,∴∠FDE=∠DEB,∴DF∥BC.23.(11分)(2020•济源期末)如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)解:(1)①△BMN≌△CDM.理由如下:∵V N=V M=3厘米/秒,且t=2秒,∴CM=2×3=6(cm)BN=2×3=6(cm)BM=BC﹣CM=10﹣6=4(cm)∴BN=CM∵CD=4(cm)∴BM=CD∵∠B=∠C=60°,∴△BMN ≌△CDM .(SAS )②设运动时间为t 秒,△BMN 是直角三角形有两种情况: Ⅰ.当∠NMB =90°时,∵∠B =60°,∴∠BNM =90°﹣∠B =90°﹣60°=30°.∴BN =2BM ,∴3t =2×(10﹣3t )∴t =209(秒);Ⅱ.当∠BNM =90°时,∵∠B =60°,∴∠BMN =90°﹣∠B =90°﹣60°=30°.∴BM =2BN ,∴10﹣3t =2×3t∴t =109(秒).∴当t =209秒或t =109秒时,△BMN 是直角三角形;(2)分两种情况讨论: I .若点M 运动速度快,则 3×25﹣10=25V N ,解得 V N =2.6; Ⅱ.若点N 运动速度快,则 25V N ﹣20=3×25,解得 V N =3.8. 故答案是 3.8或2.6.。

人教版初中八年级数学上册第十三章《轴对称》测试(含答案解析)(1)

人教版初中八年级数学上册第十三章《轴对称》测试(含答案解析)(1)

一、选择题1.如图,已知30MON ︒∠=,点123,,...A A A 在射线ON 上,点123,,B B B …在射线OM 上,112223334,,...A B A A B A A B A ∆∆∆1n n n A B A +∆均为等边三角形,若11OA =,则778A B A ∆的边长为( )A .16B .32C .64D .128C解析:C【分析】 根据三角形的外角性质以及等边三角形的判定和性质得出OA 1=B 1A 1=1,OA 2=B 2A 2=2,OA 3=B 3A 3=224=,OA 4=B 4A 4=328=,…进而得出答案.【详解】如图,∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠2=60°,∵∠MON=30°,∴∠MON=∠1=30°,∴OA 1=A 1B 1=1,∴A 2B 1= A 1A 2=1,∵△A 2B 2A 3是等边三角形,同理可得:OA 2=B 2A 2=2,同理;OA 3=B 3A 3=224=,OA 4=B 4A 4=328=,OA 5=B 5A 5=4216=,…,以此类推:所以OA 7=B 7A 7=6264=,故选:C .【点睛】本题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出OA 2=B 2A 2=2, OA 3=B 3A 3=224=,OA 4=B 4A 4=328=,…进而发现规律是解题的关键.2.如图,在等腰三角形ABC 中,,36,AB AC A D =∠=是AC 的中点,ED AC ⊥交AB 于点E ,已知6,2AC DE ==,则BC 的长为( )A 13B 32C 40D 20解析:A【分析】 根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE ,然后根据等边对等角可得∠ECD=∠A ,再根据三角形内角和等于180°求出∠B=72°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BEC=72°,然后根据等角对等边的性质和勾股定理解答.【详解】解:∵D 是AC 的中点,ED AC ⊥交AB 于点E ,∴ED 垂直平分AC ,∴AE=CE ,∴∠ECD=∠A ,∵∠A=36°,∴∠ECD=36°,∵AB=AC ,∠A=36°,∴∠B=12(180°-36°)=72°, ∵∠ECD=∠A=36°,∴∠BEC=∠ECD+∠A=36°+36°=72°,∴∠B=∠BEC ,∴BC=CE ,∵AE=CE ,ED ⊥AC ,∴CD=12AC =3, 在Rt △CED 中, 22222313DE CD ++∴BC=13,故选A .【点睛】本题考查了等腰三角形三线合一的性质,勾股定理,线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角以及等角对等边的性质,熟练掌握有关性质是解题的关键.3.如图,已知等腰ABC 的底角15C ︒∠=,顶点B 到边AC 的距离是3cm ,则AC 的长为( )A .3cmB .4cmC .5cmD .6cm D解析:D【分析】 根据等腰三角形的性质,可得∠BAD=30°,再利用30度角所对直角边等于斜边的一半,求出AB 即可.【详解】解:∵AB=AC ,∴∠C=∠ABC=15°,∴∠BAD=30°,∵BD ⊥AC ,∴∠BDA=90°,∴AB=2BD ,点B 到边AC 的距离是3cm ,即BD=3cm ,∴AB=2BD=6cm ,故选:D .【点睛】本题考查了等腰三角形的性质和含30度角的直角三角形的性质,解题关键是利用等腰三角形的性质把已知的15°角转化为30度角.4.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A.1个B.2个C.3个D.4个D解析:D【分析】首先根据等边三角形性质得出BC=AC,CD=CE,∠ACB=∠ECD=60°,即可证明△BCD与△ACE全等、△BCF与△ACG全等以及△DFC与△EGC全等,最后利用全等三角形性质以及等边三角形性质证明即可.【详解】∵△ABC与△CDE为等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,即:∠ACE=∠BCD,在△BCD与△ACE中,∵BC=AC,∠ACE=∠BCD,CD=CE,∴△BCD≌△ACE(SAS),∴AE=BD,即①正确;在△BCF与△ACG中,由①可知∠CBF=∠CAG,又∵AC=BC,∠BCF=∠ACG=60°,∴△BCF≌△ACG(ASA),∴AG=BF,即②正确;在△DFC与△EGC中,∵△BCF≌△ACG,∴CF=CG.即④正确;∵∠GCF =60°,∴△CFG为等边三角形,∴∠CFG=∠FCB=60°,∴FG ∥BE ,即③正确;综上,①②③④都正确.故选:D .【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质以及平行线的判定,解题的关键是正确寻找全等三角形来解决问题,.5.如图,在ABC ∆中,90,30C B ︒︒∠=∠= ,以A 为圆心,任意长为半径画弧分别交AB AC 、于点M 和N ,再分别以M N 、为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP ,并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ︒∠=;③点D 在AB 的垂直平分线上﹔④若2AD =,则点D 到AB 的距离是1,:1:2DAC ABC S S ∆∆=A .2B .3C .4D .5B 解析:B【分析】先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD 得到DA=DB ,根据线段垂直平分线的性质定理的逆定理可对③进行判断.利用30度角所对的直角边是斜边的一半、三角形的面积计算公式即可得出两个三角形的面积之比.【详解】解:由作法得,AD 平分∠BAC ,所以①正确;∵∠C=90°,∠B=30°,∴∠BAC=60°,∴∠BAD=∠CAD=12×60°=30°, ∴∠ADC=90°-∠CAD=60°,所以②正确;∵∠B=∠BAD ,∴DA=DB ,∴点D 在AB 的垂直平分线上,所以③正确;在直角△ACD 中,∠CAD=30°,∴CD=12AD , ∴BC=CD+BD=12AD+AD=32AD ,1124DAC S AC CD AC AD ∆=⋅=⋅. ∴11332224ABC S AC BC AC AD AC AD ∆=⋅=⋅=⋅, ∴13::1:344DAC ABC S S AC AD AC AD ∆∆=⋅⋅=,故④错误. 所以,正确的结论有3个故选:B .【点睛】 本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.6.如图,在ABC ∆中,DE 垂直平分BC 交AB 于点,D 交BC 于点E .若10,8AB cm AC cm ==,则ACD ∆的周长是( )A .12cmB .18cmC .16cmD .14cm B解析:B【分析】 由题意可知BD=CD ,因此ACD ∆的周长= AB+AC ,据此可解.【详解】解:∵DE 垂直平分BC ,∴BD=CD ,∴ACD ∆的周长=AD+CD+AC= AD+BD+AC= AB+AC=10+8=18(cm),故选:B .【点睛】本题主要考查线段垂直平分线的性质,关键在于求出BD=CD .7.如图,在ABC 中,87,A ABC ∠=︒∠的平分线BD 交AC 于点,D E 是BC 中点,且DE BC ⊥,那么C ∠的度数为( )A .16︒B .28︒C .31︒D .62︒C解析:C【分析】 根据角平分线的定义得到ABD CBD ∠=∠,根据线段垂直平分线的性质得到DB=DC ,进而得到DBC C ∠=∠,根据三角形内角和定理列式计算即可.【详解】∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∵DE BC ⊥,E 是BC 中点,∴DB=DC ,∴DBC C ∠=∠,∴ABD CBD C ∠=∠=∠,∴18087ABD CBD C ∠+∠+∠=︒-︒,解得:31C ∠=︒,故选:C .【点睛】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.8.如图,ABC 中,AB AC =,AB 的垂直平分线DE 分别交AB 、AC 于点E 、D ,若52BAC ∠=︒,则DBC ∠=( ).A .12︒B .14︒C .16︒D .18︒A解析:A【分析】 由在△ABC 中,AB =AC ,∠BAC =52°,又由DE 是AB 的垂直平分线,即可求得∠ABD 的度数,继而求得答案.【详解】在ABC 中,AB AC =,52BAC ∠=︒,()11802ABC ACB BAC ∴∠=∠=⨯︒-∠()1180522=⨯︒-︒64=︒, DE 为AB 的中垂线,AD BD ∴=,52ABD BAC ∴∠=∠=︒,12DBC ABC ABD ∴∠=∠-∠=︒.故选A .【点睛】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用. 9.如图,△ABC 中,AB =AC =5,BC =8,则sin B 的值为( )A .58B .45C .35D .12C 解析:C【分析】过A 点作AD BC ⊥交BC 于点D ,利用等腰三角形的三线合一求出BD ,利用勾股定理求出AD 即可解决问题.【详解】过A 点作AD BC ⊥交BC 于点D ,如图∵5AB AC ==,8BC =,∴4BD CD ==,∴2222543AD AB BD =--=, ∴3sin 5AD B AB ==. 故选:C .【点睛】本题考查等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10.已知等腰三角形的一个内角为50°,则它的顶角为( )A .50°B .80°C .65°或80°D .50°或80°D解析:D【分析】由50︒的角是顶角或底角,依据三角形内角和计算得出顶角的度数.【详解】当50︒的角为顶角时,它的顶角为50︒,当50︒的角为底角时,它的顶角为18050280︒-︒⨯=︒,∴它的顶角为50︒或80︒,故选:D .【点睛】此题考查等腰三角形等边对等角的性质,三角形内角和定理,熟记等边对等角的性质是解题的关键. 二、填空题11.如图,在平面直角坐标系中,直线l 与x 轴交于点1B ,与y 轴交点于D ,且111,60OB ODB =∠=︒,以1OB 为边长作等边三角形11AOB ,过点1A 作12A B 平行于x 轴,交直线l 于点2B ,以12A B 为边长作等边三角形212A A B ,过点2A 作23A B 平行于x 轴,交直线l 于点3B ,以23A B 为边长作等边三角形323A A B ,…,按此规律进行下去,则点6A 的横坐标是______.5【分析】过A1作A1A ⊥OB1于A 过A2作A2B ⊥A1B2于B 过A3作A3C ⊥A2B3于C 根据等边三角形的性质以及含30°角的直角三角形的性质分别求得A1的横坐标为A2的横坐标为A3的横坐标为进而解析:5【分析】过A 1作A 1A ⊥OB 1于A ,过A 2作A 2B ⊥A 1B 2于B ,过A 3作A 3C ⊥A 2B 3于C ,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为1212-,,A2的横坐标为2212-,A3的横坐标为3212-,进而得到A n的横坐标为212n-,据此可得点A6的横坐标.【详解】解:如图所示,过A1作A1A⊥OB1于A,则OA=12OB1=12,即A1的横坐标为12=1212-,∵160ODB∠=°,∴∠OB1D=30°,∵A1B2//x轴,∴∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=12A1B2=1,即A2的横坐标为12+1=2212-,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=12A2B3=2,即A3的横坐标为12+1+2=3212-,同理可得,A4的横坐标为12+1+2+4=4212-,由此可得,A n的横坐标为21 2n-,∴点A 6的横坐标是62163==31.522, 故答案为31.5.【点睛】本题是一道找规律问题,涉及到等边三角形的性质、含30度角的直角三角形,解题的关键要利用等边三角形的性质总结出关于点A 的系列点的规律.12.如图,∠C=90°,CB=CO ,且点B 坐标为(-2,0),则点C 坐标为_________.(-11)【分析】过点C 作CD ⊥y 轴于点D 根据等腰三角形的性质得出OD=CD=1得出结果【详解】解:过点C 作CD ⊥y 轴于点D ∵∠ACB=90°CB=CO ∴∠CBO=∠COB=45°∵CD ⊥y 轴∴∠C解析:(-1,1)【分析】过点C 作CD ⊥y 轴于点D ,根据等腰三角形的性质得出OD=CD=1,得出结果.【详解】解:过点C 作CD ⊥y 轴于点D ,∵∠ACB=90°,CB=CO ,∴∠CBO=∠COB=45°,∵CD ⊥y 轴,∴∠CDO=90°,∴∠COD=∠DOC ,∴OD=CD ,∵CD ⊥y 轴,CB=CO ,∴OD=12OB , ∵点B 坐标为(-2,0),∴OB=2,∴OD=CD=1,∴点C 坐标为(-1,1),故答案为(-1,1).【点睛】本题考查了等腰三角形的性质,解题的关键是正确作出辅助线.13.如图,30MON ∠=︒,点1234,,,A A A A ,…在射线ON 上,点123,,B B B ,…在射线OM 上,且112223334,,A B A A B A A B A △△△,…均为等边三角形,以此类推,若11OA =,则202120212022A B A △的边长为_______.【分析】根据是等边三角形得进而得可得以此类推即可求解【详解】解:∵是等边三角形∴∴∴∴同理:…均为等边三角形…则的边长为故答案是:【点睛】本题考查了规律型-图形的变化类解决本题的关键是观察图形的变化解析:20202.【分析】根据30MON ∠=︒,11OA =,112A B A △是等边三角形,得11260∠=︒B A A ,进而得1130∠=︒OB A ,1111AO B A ,可得22OA =,以此类推即可求解.【详解】 解:∵30MON ∠=︒,11OA =,112A B A △是等边三角形,∴11260∠=︒B A A∴1130∠=︒OB A∴1111AO B A∴22OA =同理:223A B A △,334A B A △,…均为等边三角形,2222B A OA ==,233342B A OA…则202120212022A B A △的边长为20202.故答案是:20202.【点睛】本题考查了规律型-图形的变化类,解决本题的关键是观察图形的变化寻找规律. 14.如图在钝角△ABC 中,已知∠BAC=135°,边AB 、AC 的垂直平分线分别交BC 于点D 、E ,连接AD 、AE ,则∠DAE=_____90°【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论【详解】解:连接DAEA如图∵∠BAC=135°∴∠B+∠C=180°-135°=45°∵DF是AB的垂直平分线EG是AC的垂直平解析:90°【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论.【详解】解:连接DA、EA,如图,∵∠BAC=135°,∴∠B+∠C=180°-135°=45°,∵DF是AB的垂直平分线,EG是AC的垂直平分线,∴DA=DB,EA=EC,∴∠B=∠DAB,∠C=∠EAC,∴∠DAB +∠EAC =∠B+∠C=45°,∴∠DAE=∠BAC –(∠DAB +∠EAC)=135°-45°=90°.故答案为:90°.【点睛】本题考查线段的垂直平分线的性质,解题的关键是熟练掌握线段的垂直平分线的性质.15.如图,等边△ABC的边长为4,点D在边AC上,AD=1.(1)△ABC的周长等于_____;(2)线段PQ在边BA上运动,PQ=1,BQ>BP,连接QD,PC,当四边形PCDQ的周长取得最小值时,请在如图所示的矩形区域内,用无刻度的直尺和圆规,画出线段PC,QD,并简要说明点P和点Q的位置是如何找到的(保留作图痕迹,不要求证明)_____.见解析过点C作CE∥AB且CE=1作点D关于AB的对称点F 连接EF 交AB 于一点为Q 在AB 上BQ 之间截取PQ=1连接CPDQ 则四边形PCDQ 为所求的周长最小的四边形【分析】(1)根据三角形周长公式计算解析:见解析,过点C 作CE ∥AB ,且CE=1,作点D 关于AB 的对称点F ,连接EF 交AB 于一点为Q ,在AB 上BQ 之间截取PQ=1,连接CP 、DQ ,则四边形PCDQ 为所求的周长最小的四边形【分析】(1)根据三角形周长公式计算;(2)过点C 作CE ∥AB ,且CE=1,作点D 关于AB 的对称点F ,连接EF 交AB 于一点为Q ,在AB 上BQ 之间截取PQ=1,连接CP 、DQ ,则四边形PCDQ 为所求的周长最小的四边形.【详解】(1)△ABC 的周长等于4312⨯=,故答案为:12;(2)如图:故答案为:过点C 作CE ∥AB ,且CE=1,作点D 关于AB 的对称点F ,连接EF 交AB 于一点为Q ,在AB 上BQ 之间截取PQ=1,连接CP 、DQ ,则四边形PCDQ 为所求的周长最小的四边形..【点睛】此题考查等边三角形的性质,三角形周长计算公式,轴对称的性质,综合掌握各知识点是解题的关键.16.如图,已知点D 、点E 分别是边长为2a 的等边三角形ABC 的边BC AB 、的中点,连接,AD 点F 为AD 上的一个动点,连接,EF BF 、若,AD b =则BEF 的周长的最小值是__________.【分析】过C 作CE ⊥AB 于E 交AD 于F 连接BF 则BF+EF 最小证△ADB ≌△CEB 得CE=AD=b 即BF+EF=b 再根据等边三角形的性质可得BE=a 从而可得结论【详解】解:过C 作CE ⊥AB 于E 交AD解析:+a b【分析】过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小,证△ADB≌△CEB得CE=AD=b,即BF+EF=b,再根据等边三角形的性质可得BE=a,从而可得结论.【详解】解:过C作CE⊥AB于E,交AD于F,连接BF,∵△ABC是等边三角形,∴BE=12AB a=∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,∵ADB CEBABD CBE AB CB∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADB≌△CEB(AAS),∴CE=AD=b,即BF+EF=b,∴BEF的周长的最小值为BE+CF=a+b,故答案为:a+b.【点睛】本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.17.若等腰三角形一腰上的高与另一腰的夹角为20°,则顶角的度数为______________70°或110°;【分析】分情况讨论:当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况【详解】解:①当等腰三角形的顶角是钝角时腰上的高在外部如图1根据三角形的一个外角等于与它不相邻的两个内解析:70°或110°;【分析】分情况讨论:当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【详解】解:①当等腰三角形的顶角是钝角时,腰上的高在外部,如图1,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;②当等腰三角形的顶角是锐角时,腰上的高在其内部,如图2,根据直角三角形两锐角互余可求顶角是90°-20°=70°.故答案为70°或110°.【点睛】本题考查了等腰三角形的性质,注意此类题的两种情况.其中考查了直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.=,DE是AB的垂直平分线,垂足为D,交AC于E.若18.如图,ABC中,AB AC=,BCE的周长为17cm,则BC=________cm.11AB cm6【分析】根据垂直平分线的性质可得AE=BE即可得出AC=BE+CE根据△BCE的周长即可得答案【详解】∵DE是AB的垂直平分线∴AE=BE∵AB=ACAC=AE+CEAB=11∴BE+CE=AC=解析:6【分析】根据垂直平分线的性质可得AE=BE,即可得出AC=BE+CE,根据△BCE的周长即可得答案.【详解】∵DE是AB的垂直平分线,∴AE=BE,∵AB=AC,AC=AE+CE,AB=11,∴BE+CE=AC=11,∵BCE 的周长为17cm ,∴BC+CE+BE=17,即BC+11=17,解得:BC=6.故答案为:6【点睛】本题考查了线段的垂直平分线性质,熟练掌握垂直平分线上任意一点,到线段两端点的距离相等是解题关键.19.已知等边三角形ABC .如图,(1)分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧相交于M ,N 两点; (2)作直线MN 交AB 于点D ;(3)分别以点A ,C 为圆心,大于12AB 的长为半径作弧,两弧相交于H ,L 两点; (4)作直线HL 交AC 于点E ; (5)直线MN 与直线HL 相交于点O ;(6)连接OA ,OB ,OC .根据以上作图过程及所作图形,下列结论:①2OC OD =;②2AB OA =;③OA OB OC ==;④120DOE ∠=︒,正确的是____________.①③④【分析】根据题意可得点O 是三边中垂线的交点从而结合等边三角形的性质以及中垂线的性质进行逐项分析即可【详解】由题可得点O 为等边三角形ABC 三边中垂线的交点即:MN ⊥ABHL ⊥AC ∴根据等边三角形 解析:①③④【分析】根据题意可得点O 是三边中垂线的交点,从而结合等边三角形的性质以及中垂线的性质进行逐项分析即可.【详解】由题可得点O 为等边三角形ABC 三边中垂线的交点,即:MN ⊥AB ,HL ⊥AC , ∴根据等边三角形的性质可得:∠DAO=∠EAO=30°,AD=AE ,∴△ADO ≌△AEO ,∴OD=OE ,又根据中垂线的性质得∠EAO=∠ECO=30°,∴在Rt △COE 中,OC=2OE ,∴OC=2OD ,故①正确;在Rt △ABE 中,显然AB=2AE ,而OA >AE ,∴AB≠2OA ,故②错误;根据中垂线性质可得OA=OB ,OA=OC ,∴OA=OB=OC ,故③正确;在四边形ADOE 中,∠ADO=∠AEO=90°,∠DAE=60°,∴∠DOE=360°-90°×2-60°=120°,故④正确;故答案为:①③④.【点睛】本题考查等边三角形的性质以及垂直平分线的画法和性质,以及全等三角形判定与性质,理解题意中所作图形的本质是解题关键.20.如图,△ABC 中,AB =AC ,点D 、E 、F 分别在AB 、BC 、CA 边上,且BE =CF ,BD =CE ,如果∠A =44°,则∠EDF 的度数为__.56°【分析】根据可求出根据△DBE ≌△ECF 利用三角形内角和定理即可求出的度数【详解】解:∵AB =AC ∴∠ABC =∠ACB 在△DBE 和△CEF 中∴△DBE ≌△ECF (SAS )∴DE =EF ∴△DEF解析:56°【分析】根据44A ∠=︒可求出68ABC ACB ∠=∠=︒,根据△DBE ≌△ECF ,利用三角形内角和定理即可求出 EDF ∠的度数.【详解】解:∵AB =AC ,∴∠ABC =∠ACB ,在△DBE 和△CEF 中BE CF ABC ACB BD CE =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△ECF (SAS ),∴DE =EF ,∴△DEF 是等腰三角形,∵△DBE ≌△ECF ,∴∠1=∠3,∠2=∠4,∵∠A +∠B +∠C =180°, ∴()118044682B ∠=︒-︒=︒, ∴1218068∠+∠=︒-︒,∴3218068∠+∠=︒-︒,∴∠DEF =68°,∴18068562EDF ︒-︒∠==︒. 故答案为:56°.【点睛】 此题主要考查全等三角形的判定与性质的理解和掌握,主要应用了三角形内角和定理和平角是180︒,根据等腰三角形的性质得出B C ∠=∠是解题的关键.三、解答题21.如图,已知:射线AM 是△ABC 的外角∠NAC 的平分线.(1)作BC 的垂直平分线PF ,交射线AM 于点P ,交边BC 于点F ;(要求:尺规作图,保留作图痕迹,不必写作法和证明)(2)过点P 作PD ⊥BA ,PE ⊥AC ,垂足分别为点D ,E ,请补全图形并证明BD =CE .解析:(1)见解析;(2)见解析【分析】(1)利用基本作图作BC 的垂直平分线即可;(2)先根据几何语言画出对应几何图形,再连接PB 、PC ,根据线段垂直平分线的性质得到PB =PC ,根据角平分线的性质得PD =PE ,则可判断Rt △BDP ≌Rt △CEP ,从而得到BD =CE .【详解】解:(1)如图,PF 为所作;(2)证明:如图,连接PB 、PC ,如图,∵PF 垂直平分BC ,∴PB =PC ,∵AM 是△ABC 的外角∠NAC 的平分线,PD ⊥BA ,PE ⊥AC ,∴PD =PE ,在Rt △BDP 和Rt △CEP 中,PB PC PD PE =⎧⎨=⎩, ∴Rt △BDP ≌Rt △CEP (HL ),∴BD =CE .【点睛】本题考查了线段垂直平分线和角平分线的性质以及全等三角形的判定和性质,掌握相关性质定理正确推理论证是解题关键.22.如图,在△ABC 中,AB =AC ,点D 在△ABC 内,BD =BC ,∠DBC =60°,点E 在△ABC 外,∠CBE =150°,∠ACE =60°.(1)求∠ADC 的度数.(2)判断△ACE 的形状并加以证明.(3)连接DE ,若DE ⊥CD ,AD =1,求DE 的长.解析:(1)150°;(2)等边三角形,见解析;(3)2【分析】(1)首先证明△DBC是等边三角形,推出∠BDC=60°,DB=DC,再证明△ADB≌△ADC,推出∠ADB=∠ADC即可解决问题;(2)利用ASA证明△ACD≌△ECB得到AC=CE,结合∠ACE=60°可得△ACE是等边三角形;(3)首先证明△DEB是含有30度角的直角三角形,求出EB与DE的关系,利用全等三角形的性质即可解决问题.【详解】(1)解:∵BD=BC,∠DBC=60°,∴△DBC是等边三角形.∴DB=DC,∠BDC=∠DBC=∠DCB=60°.在△ADB和△ADC中,∵AC=AB AD=AD DC=DB ⎧⎪⎨⎪⎩,∴△ADC≌△ADB(SSS).∴∠ADC=∠ADB.∴∠ADC=12(360°﹣60°)=150°.(2)解:△ACE是等边三角形.理由如下:∵∠ACE=∠DCB=60°,∴∠ACD=∠ECB.∵∠CBE=150°,∠ADC═150°,∴∠ADC=∠EBC.在△ACD和△ECB中,∵ACD=ECB CD=CBADC=EBC ∠∠⎧⎪⎨⎪∠∠⎩,∴△ACD≌△ECB(ASA).∴AC=CE.∵∠ACE=60°,∴△ACE是等边三角形.(3)解:连接DE .∵DE ⊥CD ,∴∠EDC =90°.∵∠BDC =60°,∴∠EDB =30°.∵∠CBE =150°,∠DBC =60°,∴∠DBE =90°.∴EB =12DE . ∵△ACD ≌△ECB ,AD =1,∴EB =AD =1,∴DE =2EB =2.【点睛】本题考查全等三角形的判定和性质、等边三角形的判定和性质、30度角的直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型. 23.如图,在ABC 中,90C ∠=︒.(1)用尺规作出BAC ∠的平分线,并标出它与边BC 的交点D (保留作图痕迹,不写作法);(2)若30B ∠=︒,1CD =,求BD 的长.解析:(1)见解析;(2)2【分析】(1)根据尺规作图的基本步骤进行画图,即可得到答案;(2)过点D 作DE AB ⊥,垂足为E ,由角平分线的性质定理,得到1DE CD ==,再由含30度直角三角形的性质,即可求出答案.【详解】(1)解:如图所示:(2)过点D 作DE AB ⊥,垂足为E . AD 为BAC ∠的平分线,90C AED ∠=∠=︒.1DE CD ∴==.在Rt BED △中,30B ∠=︒,22BD DE ∴==.【点睛】本题考查了尺规作图——作角平分线,角平分线的性质,以及含30度的直角三角形的性质,解题的关键是掌握所学的知识,正确的作出图形.24.已知:90,A D AB DC ︒∠=∠==,点,E F 在直线BC 上,位置如图所示,且BE CF =.(1)求证:AF DE =;(2)若PO 平分EPF ∠,求证:PO 垂直平分线段BC .解析:(1)证明见解析;(2)证明见解析.【分析】(1)根据已知条件证明Rt △ABF ≌Rt △DCE(HL)即可得出结论;(2)根据Rt △ABF ≌Rt △DCE 可得出∠E=∠F ,即△PEF 为等腰三角形,又因为PO 平分∠EPF ,根据三线合一可知PO 垂直平分EF ,从而得出PO 垂直平分BC .【详解】(1)证明:∵BE=CF ,BC=CB∴BF=CE ,在Rt △ABF 与Rt △DCE 中,BF CE AB DC =⎧⎨=⎩∴Rt △ABF ≌Rt △DCE(HL),∴AF=DE ;(2)∵Rt △ABF ≌Rt △DCE ,∴∠E=∠F∴△PEF 为等腰三角形,又∵PO 平分∠EPF∴PO ⊥BC(三线合一),EO=FO(三线合一)又∵EB=FC∴BO=CO ,∴PO 垂直平分线段BC.【点睛】本题考查的知识点是全等三角形的判定及性质、垂直平分线的判定、等腰三角形的性质,角平分线的性质,难度不大,但综合性较强,考验了学生综合分析问题的能力. 25.如图,90BAD CAE ∠=∠=︒,AB AD =,AE AC =,AF CB ⊥,垂足为F .(1)求证:ABC ADE △≌△;(2)若10AC =,求四边形ABCD 的面积;(3)求FAE ∠的度数.解析:(1)见解析;(2)50;(3)135°【分析】(1)由题意先求出∠BAC=∠EAD ,然后根据SAS 推出△ABC ≌△ADE ;(2)根据题意即可推出四边形ABCD 的面积=△ACE 的面积,进而分析计算即可得出答案;(3)根据题意可推出∠CAF=45°,再根据∠EAF =∠FAC +∠CAE 即可求出∠FAE 的度数.【详解】(1)证明:90BAD CAE ∠=∠=︒,90BAC CAD ∴∠+∠=︒,90CAD DAE ∠+∠=︒,BAC DAE ∴∠=∠,在ABC 和ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABC ADE ∴△≌△.解:(2)ABC ADE △≌△,ABC ADE S S ∴=△△,ABC ACD ADE ACD ACE ABCD S SS S S S ∴=+=+=四边形,10AC =,1010250ACE ABCD S S∴==⨯÷=四边形. (3)90CAE ∠=︒,AC AE =,45E ∴∠=︒,BAC DAE △≌△,45BCA E ∴∠=∠=︒,AF BC ⊥,45CAF ∴∠=︒,4590135FAE FAC CAE ∴∠=∠+∠=︒+︒=︒.【点睛】本题考查了全等三角形的性质和判定,等腰直角三角形的性质,直角三角形的性质,解题的关键是学会利用等腰直角三角形的性质解决问题,属于中考常考题型.26.如图,在ABC ∆中,,AB AC =过点A 作//AD BC 交ABC ∠的平分线BD 于点D ,求证:AC AD =.解析:见解析【分析】由已知可得∠ABD=∠D ,从而得到AB=AD ,进而得到AC=AD .【详解】证明:∵BD 是∠ABC 的平分线,∴∠ABD=∠CBD ,又AD//BC ,∴∠CBD=∠D ,∴∠ABD=∠D ,∴AB=AD ,∵AB=AC ,∴AC=AD .【点睛】本题考查等腰三角形的性质与判定,熟练掌握平行线的性质、角平分线的定义、等腰三角形的判定与性质是解题关键 .27.已知:(0,1),(2,0),(4,4)A B C -.(1)在图中所示的坐标系中描出各点,画出ABC ,并求ABC 的面积.(2)若ABC 各顶点的横坐标不变,纵坐标都乘以1-,在同一坐标系中描出对应的点A ',B ',C ',并依次连结这三个点得A B C ''',并写出ABC 与A B C '''有怎样的位置关系?解析:(1)图见解析,3;(2)ABC 与A B C '''关于x 轴对称【分析】(1)根据点坐标确定其在坐标系中的位置,顺次连线即可得到ABC ,利用割补法求面积;(2)根据点A 、B 、C 纵坐标都乘以1-,得到对应的点A ',B ',C '的坐标,再确定各点位置,即可得到两个三角形的关系.【详解】(1)如图,ABC 即为所求,111451245(15)23222ABC S =⨯-⨯⨯-⨯⨯-⨯+⨯=;(2)∵(0,1),(2,0),(4,4)A B C -,∴A '(0,-1),B '(2,0),C '(4,4),∴ABC 与A B C '''关于x 轴对称..【点睛】此题考查点坐标的确定,坐标与图形,图形的变换关系,正确根据点的坐标确定其在直角坐标系中的位置是解题的关键.28.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,ABC 的顶点均在格点上,点A 的坐标是(3,1)--.(1)将ABC 关于x 轴对称得到111A B C △,画出111A B C △,并写出点1B 的坐标; (2)把111A B C △平移,使点B 平移到2(3,4)B ,请作出111A B C △平移后的222A B C △,并写出2A 的坐标;(3)已知ABC 中有一点(,)D a b ,求222A B C △中的对应点2D 的坐标.解析:(1)图见解析,点B 1的坐标为(-2,4);(2)图见解析,A 2的坐标为(2,1);(3)D 2的坐标为(a+5,-b ).【分析】(1)分别作出点A 、B 、C 关于x 轴对称得到的对应点,再顺次连接可得;(2)根据B 1(-2,4)和2(3,4)B ,可得平移方式为向右平移5个单位,分别作出△A 1B 1C 1向右平移5个单位所得对应点,再顺次连接可得;(3)根据图形的变换方式即可得出D 点的变换方式,从而可得点2D 的坐标.【详解】解:(1)如图所示,△A 1B 1C 1即为所求,点B 1的坐标为(-2,4);(2)如图所示,△A2B2C2即为所求,A2的坐标为(2,1);(3)△A2B2C2中的对应点D2的坐标为(a+5,-b).【点睛】本题考查坐标与图形变换—轴对称和平移.理解点的变换和对应图形变换的关系是解题关键.。

人教版初中八年级数学上册第十三章《轴对称》测试(含答案解析)(1)

人教版初中八年级数学上册第十三章《轴对称》测试(含答案解析)(1)

一、选择题1.若实数a ,b 满足a 2-4a +4+(b -4)2=0,且a ,b 恰好是等腰△ABC 两条边的长,则△ABC 周长为( )A .8B .8或10C .12D .102.下列命题中,假命题是( )A .两条直角边对应相等的两个直角三角形全等B .等腰三角形顶角平分线把它分成两个全等的三角形C .相等的两个角是对顶角D .有一个角是60的等腰三角形是等边三角形3.下列命题正确的是( )A .全等三角形的对应边相等B .面积相等的两个三角形全等C .两个全等三角形一定成轴对称D .所有等腰三角形都只有一条对称轴 4.如图,在ABC 中,AB AC =,D 为BC 的中点,AD AE =,若40BAD ∠=︒,则CDE ∠的度数为( )A .10︒B .20︒C .30D .40︒ 5.如图,等边ABC 的顶点(1,1)A ,(3,1)B ,规定把等边ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,ABC 顶点C 的坐标为( )A .(2020,13)-+B .(2020,13)---C .(2019,13)-+D .(2019,13)--- 6.如图,在Rt ABC ∆中, 90,30,ACB A CD ︒︒∠=∠=是斜边AB 上的高,2BD =,那么AD 的长为( )A .2B .4C .6D .87.定义:等腰三角形的一个底角与其顶角的度数的比值()1k k >称为这个等腰三角形的“优美比”.若在等腰三角形ABC 中,36,A ∠=︒则它的优美比k 为( )A .32B .2C .52D .38.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( ) A .()2,2 B .(2,1)- C .()2,1- D .(2,1)-- 9.如图,在ABC 中,90C =∠,30B ∠=,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则:DAC ABC S S 等于( )A .1:2B .2:3C .1:3D .1:3 10.若海岛N 位于海岛M 北偏东30°的方向上,则从海岛N 出发到海岛M 的航线可能是( ) A . B .C .D .11.已知一个等腰三角形ABC 的两边长为5,7,另一个等腰三角形ABC 的两边为23x -,35x -,若两个三角形全等,则x 的值为( )A .5B .4C .4或5D .10312.如图,已知等腰三角形ABC 中,AB AC =,15DBC ∠=︒,分别以A 、B 两点为圆心,以大于12AB 的长为半径画圆弧,两弧分别交于点E 、F ,直线EF 与AC 相交于点D ,则A ∠的度数是( )A .50°B .60°C .75°D .45°13.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,连接ED ,EC 延长CE 交AD 于F 点,下列结论:①DAE CBE ∠=∠;②CE DE ⊥;③BD AF =;④AED 为等腰三角形;⑤BDE ACE S S =△△,其中正确的有( )A .①③⑤B .①②④C .①③④D .①②③⑤ 14.如图,在ABC ∆中,5AC =,线段AB 的垂直平分线交AC 于点,D BCD ∆的周长是9,则BC 的长为( )A .3B .4C .5D .615.如图,在Rt △ABC 中,∠BAC =90°,∠ACB =45°,点D 是AB 中点,AF ⊥CD 于点H ,交BC 于点F ,BE ∥AC 交AF 的延长线于点E ,给出下列结论:①∠BAE =∠ACD ,②△ADC ≌△BEA ,③AC =AF ,④∠BDE =∠EDC ,⑤BC ⊥DE .上述结论正确的序号是( )A .①②⑤B .②④⑤C .①②④D .①②③二、填空题16.如图,已知∠AOB =30°,点P 在射线OA 上,OP =16,点E 、点F 在射线OB 上,PE=PF ,EF =6.若点D 是射线OB 上一动点,当∠PDE =45°时,DF 的长为___________.17.平面直角坐标系中,已知A (8,0),△AOP 为等腰三角形,且△AOP 的面积为16,则满足条件的P 点个数是______.18.如图,在平面直角坐标系中,直线l 与x 轴交于点1B ,与y 轴交点于D ,且111,60OB ODB =∠=︒,以1OB 为边长作等边三角形11AOB ,过点1A 作12A B 平行于x 轴,交直线l 于点2B ,以12A B 为边长作等边三角形212A A B ,过点2A 作23A B 平行于x 轴,交直线l 于点3B ,以23A B 为边长作等边三角形323A A B ,…,按此规律进行下去,则点6A 的横坐标是______.19.如图,△ABC ≌△ADE ,点D 落在BC 上,且∠BAD =70°,则∠EDC =_____°.20.如图,在ABC 中,AB 的垂直平分线DE 分别与,AB BC 交于点,D E ,AC 的垂直平分线FG 分别与,BC AC 交于点,F G ,10,3BC EF ==,则AEF 的周长是________.21.如图,线段AB ,BC 的垂直平分线1l ,2l 相交于点O .若135∠=︒,则A C ∠+∠的度数为______.22.如图在钝角△ABC 中,已知∠BAC=135°,边AB 、AC 的垂直平分线分别交BC 于点D 、E ,连接AD 、AE ,则∠DAE=_____23.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.24.如图,在ABC 中,AB=AC ,40A ∠=,CD //AB ,则BCD ∠的度数是______°.25.如图,在22⨯的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的ABC 为格点三角形,在图中最多能画出______个不同的格点三角形与ABC 成轴对称.26.如图①,点D 为一等腰直角三角形纸片的斜边AB 的中点,E 是BC 边上的一点,将这张纸片沿DE 翻折成如图②,使BE 与AC 边相交于点F ,若图①中AB =2,则图②中△CEF 的周长为______________.三、解答题27.如图,ABC 和ADE 均为等边三角形,连接BD 并延长,交AC 于点F ,连接CD 并延长,交AB 于点G ,连接CE .(1)求证:ABD ACE △≌△;(2)若ADG CED ∠=∠,求证:AG CF =.28.如图,△ABC 为等边三角形,直线l 经过点C ,在l 上位于C 点右侧的点D 满足∠BDC =60°.(1)如图1,在l 上位于C 点左侧取一点E ,使∠AEC = 60°,求证:△AEC ≌△CDB ;(2)如图2,点F 、G 在直线l 上,连AF ,在l 上方作∠AFH =120°,且AF =HF ,∠HGF =120°,求证:HG +BD =CF ;(3)在(2)的条件下,当A 、B 位于直线l 两侧,其余条件不变时(如图3),线段HG 、CF 、BD 的数量关系为 .29.在如图所示的方格纸中,(1)作出ABC 关于MN 对称的111A B C △;(2)222A B C △是由111A B C △经过怎样的平移得到的?并求出111A B C △在平移过程中所扫过的面积.30.如图所示,已知AB AC =,AD 是中线,BE CF =.(1)求证:BDE CDF ≌;(2)当60B ∠=︒时,过AB 的中点G ,作//GH BD ,求证:4GH AB 1=.。

人教版初中八年级数学上册第十三章《轴对称》(含答案解析)(1)

人教版初中八年级数学上册第十三章《轴对称》(含答案解析)(1)

一、选择题1.如图,AD 是ABC ∆的中线,E 是AD 上一点,BE 交AC 于F ,若,9,6BE AC BF CF ===,则AF 的长度为( )A .1B .1.5C .2D .2.52.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,E 为AB 上一点,连接DE ,则下列四个结论正确的有( ).①∠CAD =30° ②AD =BD ③BD =2CD ④CD =EDA .1个B .2个C .3个D .4个3.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA , OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC CD DE ==,点D ,E 可在槽中滑动,若72BDE ︒∠=,则CDE ∠的度数是( )A .84︒B .82︒C .81︒D .78︒4.下列命题中,是假命题的是( )A .能够完全重合的两个图形全等B .两边和一角对应相等的两个三角形全等C .三个角都相等的三角形是等边三角形D .等腰三角形的两底角相等 5.已知123n A A A A 、、中,1A 与2A 关于x 轴对称,2A 与3A 关于y 轴对称,3A 与4A 关于x 轴对称,4A 与5A 关于y 轴对称……,如果1A 在第二象限,那么100A 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.如图,在ABC 中,90C ∠=︒,30B ∠=︒,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D .则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的中垂线上;④:2:5DAC ABC S S =△△A .1B .2C .3D .47.如图,ABC ∆和CDE ∆都是等边三角形,且62EBD ∠=,则AEB ∠的度数是( )A .124B .122C .120D .118 8.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- 9.已知点(),3M a ,点()2,N b 关于x 轴对称,则2020()a b +的值( )A .3-B .1-C .1D .3 10.如图,ABC 中,AB AC =,AB 的垂直平分线DE 分别交AB 、AC 于点E 、D ,若52BAC ∠=︒,则DBC ∠=( ).A .12︒B .14︒C .16︒D .18︒ 11.如图,△ABC 中,AB =AC =5,BC =8,则sin B 的值为( )A .58B .45C .35D .1212.如图所示,D 为 BC 上一点,且 AB =AC =BD ,则图中∠1 与∠2 的关系是( )A .∠1=2∠2B .∠1+∠2=180°C .∠1+3∠2=180°D .3∠2﹣∠1=180° 13.如图,C 是线段AB 上的一点,ACD △和BCE 都是等边三角形,AE 交CD 于M ,BD 交CE 于N ,交AE 于O ,则①DB AE =;②AMC DNC ∠=∠;③60AOB ∠=︒;④DN AM =;⑤CMN △是等边三角形.其中,正确的有( )A .2个B .3个C .4个D .5个 14.若海岛N 位于海岛M 北偏东30°的方向上,则从海岛N 出发到海岛M 的航线可能是( ) A . B .C .D .15.如图,ABC 中,AC AD BD ==,80CAD ︒∠=,则B 等于( )A .25︒B .30︒C .35︒D .40︒二、填空题16.平面直角坐标系xOy 中,先作出点P (2,3)-关于y 轴的对称点,再将该对称点先向下平移1个单位,再向左平移2个单位得到点P 1,称为完成一次图形变换,再将点P 1进行同样的图形变换得到点P 2,以此类推,则点P 2020的坐标为___________.17.如图,在ABC 中,90ACB ︒∠=,30B ,6AC =,P 为BC 边的垂直平分线DE 上一个动点,则ACP △周长的最小值为________.18.如图,在Rt ABC △中.AC BC ⊥,若5AC =,12BC =,13AB =,将Rt ABC △折叠,使得点C 恰好落在AB 边上的点E 处,折痕为AD ,点P 为AD 上一动点,则PEB △的周长最小值为___.19.如图,等边ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点.若2AE =,当EF CF +取最小值时,ECF ∠的度数为___________度.20.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.21.如图,在△ACB 中,∠ACB =∠90°,AB 的垂直平分线DE 交AB 于E ,交AC 于D ,∠DBC =30°,DC =4cm ,则D 到AB 的距离为________cm .22.如图,一棵大树在一次强台风中于距地面5米处倒下,则这棵树在折断前的高度为________米.23.已知等边三角形ABC .如图,(1)分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧相交于M ,N 两点; (2)作直线MN 交AB 于点D ;(3)分别以点A ,C 为圆心,大于12AB 的长为半径作弧,两弧相交于H ,L 两点; (4)作直线HL 交AC 于点E ; (5)直线MN 与直线HL 相交于点O ;(6)连接OA ,OB ,OC .根据以上作图过程及所作图形,下列结论:①2OC OD =;②2AB OA =;③OA OB OC ==;④120DOE ∠=︒,正确的是____________.24.右图是44⨯的正方形网格,每个小正方形的顶点称为格点,且边长为1,点,A B 均在格点上,在网格中建立平面直角坐标系.如果点C 也在此44⨯的正方形网格的格点上,且ABC ∆是等腰三角形,请写出一个满足条件的点C 的坐标_______;满足条件的点C 一共有_______个.25.如图①,点D 为一等腰直角三角形纸片的斜边AB 的中点,E 是BC 边上的一点,将这张纸片沿DE 翻折成如图②,使BE 与AC 边相交于点F ,若图①中AB =2,则图②中△CEF 的周长为______________.26.如图,ABC ∆中,ABC ∠与ACB ∠的平分线交于点F ,过点F 作//DE BC 交AB 于点D ,交AC 于点E ,那么下列结论:①BDF ∆和CEF ∆都是等腰三角形;②DE BD CE =+;③ADE ∆的周长等于AB 与AC 的和;④BF CF =;⑤若80A ∠=︒,则130BFC ∠=︒.其中正确的有_______.(填正确的序号).三、解答题27.如图,ABC 中,,90,AB AC BAC =∠=︒点D 是直线AB 上的一动点(不和A B 、重合),BE CD ⊥交CD 所在的直线于点,E 交直线AC 于F .()1点D 在边AB 上时,证明:AB FA BD =+;()2点D 在AB 的延长线或反向延长线上时,()1中的结论是否成立?若成立,请给出证明;若不成立,请画出图形,并直接写出,,AB FA BD 三者之间数量关系.28.如图:已知ABC 中AB AC =:(1)尺规作图:过A 点作//AE BC (不写作法,保留作图痕迹);(2)求证:AE 是ABC 的一个外角角平分线.29.如图,点E 、F 在BC 上,BE CF =,AB DC =,B C ∠=∠,AF 与DE 交于点G ,求证:GE GF =.30.如图所示,已知AB AC =,AD 是中线,BE CF =.(1)求证:BDE CDF ≌;(2)当60B ∠=︒时,过AB 的中点G ,作//GH BD ,求证:4GH AB 1=.。

人教版八年级上册第十三章《轴对称》单元知识点测试卷内含答案与解析

人教版八年级上册第十三章《轴对称》单元知识点测试卷内含答案与解析

第十三章《轴对称》单元知识点测试卷(时间:120 分钟满分:120 分)第Ⅰ卷选择题(共42 分)一、选择题(本大题共16个小题,1~6小题,每小题2 分;7~16 小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填入后面的括号里)1.下列图形中,不是轴对称图形的是【】答案:A解析:判断是否为轴对称图形关键是找对称轴,选项A 无对称轴,故不是轴对称图形.难易度:知识点:2.点(3,-2)关与x 轴的对称点的坐标为【】A.(-3,-2)B.(3,2)C.(-3,-2)D.(3,-2)答案:B解析:点(x,y)关于x 轴对称的点的坐标为(x,-y),关于y 轴对称的点的坐标为(-x,y).难易度:知识点:3.等腰三角形的一个外角为60°,则底角为【】A.120°B.30°C.30°或120°D.30°或60°答案:B解析:60°的外角只能是顶角的外角,故底角=1×60°=30°.2难易度:知识点:4.如图,直角三角形ABC 中,∠C=90°,AB 的垂直平分线交AC于D,则AD与BC 的大小关系是【】A.AD<BCB.AD=BCC.AD>BCD.不能确定答案:C解析:连接BD,则BD=AD,又在直角三角形BDC 中,BD>BC,故AD>BC.难易度:知识点:第4题图第6题图5.等腰三角形的周长为13,其中一边的长为5,则其他两边的长可能是【】A.5 和3B.4 和4C.5和3 或4 和4D.不能确定答案:C解析:本题应分情况讨论:当长为5 的边为腰时,另两条边的长为5 和3;当长为5的边为底边时,另两条边的长为4 和4.难易度:知识点:6.如图,梯形ABCD 与梯形EFGH 成轴对称,则它们组成的图形的对称轴有【】A.1 条B.2 条C.3 条D.4条答案:A解析:难易度:知识点:7.如图,公路BC 所在的直线恰为书店与学校连线AD 的垂直平分线,小花家与小梅家住在公路边,则下列说法中正确的是【】①小梅从家到书店与小花从家到书店的距离一样远;②小梅从家到书店与从家到学校一样远;③小花从家到书店与从家到学校一样远;④小梅从家到学校与小花从家到学校一样远.A.①②B.②③C.③④D.①④答案:B解析:∵BC 垂直平分AD,∴AB=BD,AC=CD,但AB 不一定等于AC,BD不一定等于CD.难易度:知识点:第7题图第8题图第9题图8.如图,在△ABC 中,CD⊥AB,∠A=30°,AB=6,△ACB 的面积为6,则AC的长为【】A.2B.4C.12D.16答案:B解析:∵∠A =30°,∠CDA =90°,∴AC=2CD. 又∵S△ACB =12CD·AB=6,AB=6,∴CD=2.∴AC=2CD=2×2=4.难易度:知识点:9.如图,四边形ABCD 中,AC 垂直平分BD,垂足为E,下列结论不一定成立的是【】A.AB=ADB.AC平分∠BCDC.AB=BDD.△BEC≌△DEC答案:C解析:由中垂线定理,知AB=AD,故A 正确,由三线合一知B正确,且有BC=CD,故D也正确,只有C 不一定成立.难易度:知识点:10.如图,在△ABC中,边AB的垂直平分线分别交AB,BC点于D,E,边AC的垂直平分线分别交AC,BC于点F,G,若BC=4,则△AEG的周长为【】A.12B.10C.8D.4 答案:D解析:本题主要考查线段垂直平分线的性质,△AEG 的周长等于BC的长.难易度:知识点:第10题图第11 题图11.如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO 的大小为【】A.70°B.110°C.140°D.150°答案:D解析:因为OA=OB=OC,∴∠BAO=∠ABO,∠CBO=∠BCO,∴∠BAO+∠BCO=∠ABO+∠CBO=∠ABC=70°,∴∠DAO+∠DCO=360°-∠ABC-(∠BAO+∠BCO)-∠ADC=150°.难易度:知识点:12.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,过点D 作DE ∥AB交AC于点E,则△CDE 的周长为【】A.20B.12C.14D.13答案:C解析:由AB=AC及AD 平分∠BAC得BD=CD= 1BC=4.由DE∥AB及AD平分∠BAC得∠2ADE=∠EAD,∴AE=DE. 故△CDE 的周长=CE+DE+CD=CE+AE+CD=AC+CD=14.难易度:知识点:第12 题图第13题图13.如图,小华把长方形纸片ABCD沿对角线折叠,重叠部分为△EBD,那么以下四种说法:①△EBD 是等腰三角形,EB=ED;②折叠后∠ABE 和∠CBD 一定相等;③折叠后得到的图形是轴对称图形;④△EBA 和△EDC 一定是全等三角形.其中正确的有【】A.1 个B.2 个C.3个D.4 个答案:C解析:①③④正确,②中两角不一定相等.难易度:知识点:14.将一张等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是【】A B C D答案:A解析:通过两次对折后,得到的三角形仍是等腰直角三角形.对于这个题目,可以通过动手操作解决问题,也可以利用轴对称的性质进行分析.难易度:知识点:15.如图,在网格中有一个直角三角形(网格中的每一个小正方形的边长均为1个单位长度),若以该三角形一边为公共边画一个新三角形与原来的直角三角形一起组成一个等腰三角形,要求新三角形与原来的直角三角形除了有一条公共边外,没有其他的公共点,新三角形的顶点不一定在格点上,那么符合要求的新三角形有【】A.4 个B.6 个C.7个D.9 个第15题图第16 题图答案:C解析:解:如图所示,∵根据题意可知:以4 为腰的等腰三角形有2 个,以5 为腰的三角形有4 个,以5 为底边的等腰三角形有1个,∴符合要求的新三角形有2+4+1=7 个.第15 题图难易度:知识点:16.如图,在直角坐标系中,点A、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A、B、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是【】A.(0,0)B.(0,1)C.(0,2)D.(0,3)答案:D解析:本题考查最短路线问题. 作B 点关于y 轴对称点B´点,连接AB´,交y 轴于点C,此时△ABC 的周长最小,∵点A、B 的坐标分别为(1,4)和(3,0),∴B´点坐标为:(-3,0),点C 的坐标是(0,3),故选D.难易度:知识点:第Ⅱ卷非选择题(共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填入题内的横线上)17.在十二地支“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”这12 个字中,可以看作接近于轴对称图形的有个.答案:4解析:“寅、未、申、酉”可以看作接近于轴对称图形.难易度:知识点:18.等腰三角形的对称轴有条.答案:1 或3解析:本题应分类讨论,当等腰三角形底与腰不相等时,其对称轴只有1 条;当等腰三角形底与腰相等,即为等边三角形时,其对称轴有3 条.考虑问题不全面时,易漏掉其中的一种情况.难易度:知识点:19.将一张长方形纸片ABCD按如图所示的方式折叠,EF、EG 是折痕,且使AE与BE 折叠后所对应的边EA´和EB´重合在同一条直线上.如果∠CFE=110°,那么∠AEG=°.答案:20解析:由折叠易知∠GEF=90°,∠FEB=180°-110°=70°,∴∠AEG=90°-70°=20°.知识点:第19题图第20题图20.在三角形纸片ABC 中,AB=10 cm,BC=7 cm,AC=6 cm,沿过点B的直线折叠这个三角形,使点C 落在AB边上的点E 处,折痕为BD(如图),则△AED 的周长为__________.答案:9 cm解析:由折叠易知BE=BC=7,DE=CD.故△AED 的周长=AD+DE+AE=AC+(AB-BE)=AC+(AB-BC)=6+(10-7)=9(cm).难易度:知识点:三、解答题(本大题共6个小题,共66 分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9 分)如图,∠A =90°,BD 是△ABC 的角平分线,DE 是BC 的垂直平分线,请分别求∠CDE 和∠ABC 的度数.答案:解:因为DE 垂直平分BC,所以DB=DC.所以∠C=∠DBC.又因为BD 平分∠ABC,所以∠ABD=∠DBC. 所以∠C=∠ABD=∠DBC=13×(180°-90°)=30°.所以∠CDE=90°-30°=60°,∠ABC=2∠ABD=2×30°=60°.解析:难易度:知识点:22.(本小题满分10 分)找出下图中的轴对称图形,并画出它们的对称轴.答案:解:第1个和第4个为轴对称图形.图略.难易度:知识点:23.(本小题满分10 分)如图,在游艺室的水平地面上,沿着地面AB边放一行球,参赛者从起点C 起步,跑向边AB任取一球,再折向D点跑去,将球放入D 点的纸箱内便完成任务,完成任务的时间最短者获得胜利.如果邀请你参加,你将跑去选取什么位置上的球?为什么?答案:解:作点D 关于AB 的对称点M,连接C酝交AB于点P,则点P所在的球就是选取的球.利用了轴对称的知识.解析:难易度:知识点:24.(本小题满分11 分)将一个等腰三角形沿对称轴对折后,剪掉一个60°的角,展开后得到如图所示形状.若∠B=15°,求∠A 的度数.答案:解:∠A=30°.解析:难易度:知识点:25.(本小题满分12 分)如图,△ABC 是等腰直角三角形,∠BAC=90°,BE 是∠ABC 的平分线,DE⊥BC,垂足为D.(1)请写出图中所有等腰三角形;(2)请判断AD与BE 是否垂直?为什么?(3)请比较AB垣AE与BC 的大小,并说明理由.答案:解:(1)△ABC,△ABD,△ADE,△CDE都是等腰三角形;(2)AD与BE互相垂直.理由是:因为BE 平分∠ABC,DE⊥BC,AE ⊥AB,所以AE =DE(角平分线上的点到这个角两边的距离相等),所以∠DAE=∠ADE,从而∠BAD=∠BDA,所以AB=BD,所以BE⊥AD(“三线合一”);(3)AB+AE=BC.理由如下:因为△ABC 是等腰直角三角形,所以∠C=45°,因为∠CDE=90°,所以∠DEC=45°,所以CD=DE(等角对等边),由(2)知AB=BD,BE⊥AD.所以AF=DF,∠AFE=∠DFE=90°.又EF=EF.所以△AFE≌△DFE.所以AE=DE.所以AE=CD,所以AB+AE=BD+DC=BC.解析:难易度:知识点:26.(本小题满分14 分)如图,△ABC 是边长为6 的等边三角形,P是AC 边上一动点,由A 向C 运动(与A、C 不重合),Q 是CB 延长线上一动点,与点P 同时以相同的速度由B 沿CB 延长线方向运动(Q 不与B重合),过P 作PE⊥AB于E,连接PQ 交AB于D.(1)当∠BQD=30°时,求AP的长;(2)在运动过程中线段DE的长是否发生变化?如果不变,求出线段DE 的长;如果发生改变,请说明理由答案:解:(1)过P 作PF∥QC 交AB 于点F,则△AFP是等边三角形.因为P,Q 同时出发,速度相同,即BQ=AP,所以BQ=PF,所以△DBQ≌△DFP,所以BD=DF.因为∠BQD=∠BDQ=∠FDP=∠FPD=30°,所以BD=DF=FP=AF=13AB=13×6=2,所以AP=2.(2)由(1)知BD=DF,而△APF是等边三角形,PE⊥AF,因为AE=EF,又DE+(BD+AE)=AB=6,所以DE+(DF+EF)=6,即DE+DE=6,所以DE=3 为定值,即DE 的长不变.解析:难易度:知识点:。

人教版八年级数学上《第13章轴对称》单元测试含答案解析

人教版八年级数学上《第13章轴对称》单元测试含答案解析

《第13章轴对称》一、选择题(共10小题,每小题3分,共30分)1.下列图形成轴对称图形的有()A.5个B.4个C.3个D.2个2.下列图形中,对称轴的条数最少的图形是()A.B.C.D.3.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有()A.1个B.2个C.3个D.4个4.若等腰三角形的顶角为40°,则它的底角度数为()A.40° B.50° C.60° D.70°5.若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12 B.9 C.12或9 D.9或76.如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于()A.B.2 C.1.5 D.7.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是()A.8 B.6 C.4 D.28.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和BC′F的周长之和为()A.3 B.4 C.6 D.89.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25° B.30° C.35° D.40°10.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°二、填空题(共6小题,每小题3分,共18分)11.轴对称是指个图形的位置关系,轴对称图形是指个具有特殊形状的图形.12.点A(﹣3,2)与点B(3,2)关于对称.13.已知等腰三角形的顶角为40°,则它一腰上的高与底边的夹角为.14.如图,在△ABC中,AB=AC,AB边的垂直平分线DE交AC于点D.已知△BDC的周长为14,BC=6,则AB= .15.在等边三角形ABC中,点D在AB边上,点E在BC边上,且AD=BE.连接AE、CD交于点P,则∠APD= .16.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.6 B.5 C.4 D.3三、解答题(共8题,共72分)17.如图是未完成的上海大众的汽车标志图案,该图案是以直线L为对称轴的轴对称图形,现已完成对称轴左边的部分,请你补全标志图案,画出对称轴右边的部分.(要求用尺规作图,保留痕迹,不写作法.)18.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.19.如图,BD是∠ABC的平分线,P为BD上的一点,PE⊥BA于点E,PE=4cm,则点P到边BC的距离为cm.20.如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边与点E,连接AD,若AE=4cm,求△ABD的周长.21.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.22.在平面直角坐标系中,等边三角形OAB关于x轴对称的图形是等边三角形OA′B′.若已知点A的坐标为(6,0),求点B′的横坐标.23.已知点A(2m+n,2),B (1,n﹣m),当m、n分别为何值时,(1)A、B关于x轴对称;(2)A 、B 关于y 轴对称.24.(12分)平面直角坐标系中,△ABC 的三个顶点坐标分别为A (0,4),B (2,4),C (3,﹣1).(1)试在平面直角坐标系中,标出A 、B 、C 三点;(2)求△ABC 的面积.(3)若△A 1B 1C 1与△ABC 关于x 轴对称,写出A 1、B 1、C 1的坐标.《第13章轴对称》参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.下列图形成轴对称图形的有()A.5个B.4个C.3个D.2个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念,全部都是轴对称图形.故选A.【点评】本题考查轴对称图形的概念,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.难度层次为基础题.2.下列图形中,对称轴的条数最少的图形是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴确定对称轴,进而可得答案.【解答】解:A、有4条对称轴,故此选项错误;B、有3条对称轴,故此选项正确;C、有4条对称轴,故此选项错误;D、有4条对称轴,故此选项错误;故选:B.【点评】此题主要考查了轴对称图形,关键是正确寻找对称轴.3.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【专题】压轴题;网格型.【分析】根据轴对称图形的概念求解.【解答】解:如图所示,有3个使之成为轴对称图形.故选C.【点评】此题通过利用格点图,考查学生轴对称性的认识.解题的关键是找对称轴,按对称轴的不同位置,可以有3种画法.4.若等腰三角形的顶角为40°,则它的底角度数为()A.40° B.50° C.60° D.70°【考点】等腰三角形的性质.【专题】计算题.【分析】根据等腰三角形的性质和三角形内角和定理可直接求出其底角的度数.【解答】解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:D.【点评】此题考查学生对等腰三角形的性质的理解和掌握,解答此题的关键是知道等腰三角形的两个底角相等.5.若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12 B.9 C.12或9 D.9或7【考点】等腰三角形的性质;三角形三边关系.【分析】利用等腰三角形的性质以及三角形三边关系得出其周长即可.【解答】解:∵一个等腰三角形的两边长分别是2和5,∴当腰长为2,则2+2<5,此时不成立,当腰长为5时,则它的周长为:5+5+2=12.故选:A.【点评】此题主要考查了等腰三角形的性质以及三角形三边关系,正确分类讨论得出是解题关键.6.如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于()A.B.2 C.1.5 D.【考点】翻折变换(折叠问题).【专题】压轴题.【分析】根据矩形的性质和折叠的性质,得到AO=AD,CO=BC,∠AOE=∠COF=90°,从而AO=CO,AC=AO+CO=AD+BC=2BC,得到∠CAB=30°,∠ACB=60°,进一步得到∠BCE=,所以BE=,再证明△AOE≌△COF,得到OE=OF,所以四边形AECF为菱形,所以AE=CE,得到BE=,即可解答.【解答】解:∵ABCD是矩形,∴AD=BC,∠B=90°,∵翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,∴AO=AD,CO=BC,∠AOE=∠COF=90°,∴AO=CO,AC=AO+CO=AD+BC=2BC,∴∠CAB=30°,∴∠ACB=60°,∴∠BCE=,∴BE=∵AB∥CD,∴∠OAE=∠FCO,在△AOE和△COF中,∴△AOE≌△COF,∴OE=OF,∴EF与AC互相垂直平分,∴四边形AECF为菱形,∴AE=CE,∴BE=,∴=2,故选:B.【点评】本题考查了折叠的性质,解决本题的关键是由折叠得到相等的边,利用直角三角形的性质得到∠CAB=30°,进而得到BE=,在利用菱形的判定定理与性质定理解决问题.7.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是()A.8 B.6 C.4 D.2【考点】等腰三角形的判定;矩形的性质.【分析】根据矩形的对角线相等且互相平分可得AO=BO=CO=DO,进而得到等腰三角形.【解答】解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∴△ABO,△BCO,△DCO,△ADO都是等腰三角形,故选:C.【点评】此题主要考查了等腰三角形的判定,以及矩形的性质,关键是掌握矩形的对角线相等且互相平分.8.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和BC′F的周长之和为()A.3 B.4 C.6 D.8【考点】翻折变换(折叠问题).【专题】几何变换.【分析】由折叠特性可得CD=BC′=AB,∠FC′B=∠EAB=90°,∠EBC′=∠ABC=90°,推出∠ABE=∠C′BF,所以△BAE≌△BC′F,根据△ABE和△BC′F的周长=2△ABE的周长求解.【解答】解:将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,由折叠特性可得,CD=BC′=AB,∠FC′B=∠EAB=90°,∠EBC′=∠ABC=90°,∵∠ABE+∠EBF=∠C′BF+∠EBF=90°∴∠ABE=∠C′BF在△BAE和△BC′F中,∴△BAE≌△BC′F(ASA),∵△ABE的周长=AB+AE+EB=AB+AE+ED=AB+AD=1+2=3,△ABE和△BC′F的周长=2△ABE的周长=2×3=6.故选:C.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,折叠前后图形的形状和大小不变,如本题中折叠前后角边相等.9.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25° B.30° C.35° D.40°【考点】轴对称-最短路线问题.【专题】压轴题.【分析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.【点评】本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.10.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°【考点】剪纸问题.【分析】折痕为AC与BD,∠BAD=120°,根据菱形的性质:菱形的对角线平分对角,可得∠ABD=30°,易得∠BAC=60°,所以剪口与折痕所成的角a的度数应为30°或60°.【解答】解:∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,∵∠BAD=120°,∴∠ABC=180°﹣∠BAD=180°﹣120°=60°,∴∠ABD=30°,∠BAC=60°.∴剪口与折痕所成的角a的度数应为30°或60°.故选D.【点评】此题主要考查菱形的判定以及折叠问题,关键是熟练掌握菱形的性质:菱形的对角线平分每一组对角.二、填空题(共6小题,每小题3分,共18分)11.轴对称是指两个图形的位置关系,轴对称图形是指一个具有特殊形状的图形.【考点】轴对称图形.【分析】关于某条直线对称的一个图形叫轴对称图形.直线两旁的部分能够互相重合的两个图形叫做这两个图形成轴对称.【解答】解:轴对称是指两个图形的位置关系,轴对称图形是指一个具有特殊形状的图形.【点评】需理解掌握轴对称和轴对称图形的概念.12.点A(﹣3,2)与点B(3,2)关于y轴对称.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可以直接得到答案.【解答】解:∵点A(﹣3,2),点B(3,2),∴A、B关于y轴对称,故答案为:y轴.【点评】此题主要考查了关于y轴对称点的坐标特点,关键是注意观察点的坐标的变化.13.已知等腰三角形的顶角为40°,则它一腰上的高与底边的夹角为20°.【考点】等腰三角形的性质.【分析】根据等腰三角形的性质和三角形内角和定理可求出等腰三角形的底角的度数,然后在一腰上的高与底边所构成的直角三角形中,可得出所求角的度数.【解答】解:如图:△ABC中,AB=AC,BD是边AC上的高.∵∠A=70°,且AB=AC,∴∠ABC=∠C=(180°﹣40°)÷2=570°;在Rt△BDC中,∠BDC=90°,∠C=70°;∴∠DBC=90°﹣70°=20°.故答案为:20°.【点评】本题主要考查等腰三角形的性质,及三角形内角和定理.求一个角的大小,常常通过三角形内角和来解决,注意应用.14.如图,在△ABC中,AB=AC,AB边的垂直平分线DE交AC于点D.已知△BDC的周长为14,BC=6,则AB= 8 .【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线性质得出AD=BD,求出△BDC的周长为AC+BC,代入求出即可.【解答】解:∵AB边的垂直平分线DE,∴AD=BD,∵△BDC的周长为14,BC=6,∴BC+BD+DC=14,∴AD+DC+6=14,∴AC=8,∴AB=AC=8,故答案为:8.【点评】本题考查了三角形内角和定理和等腰三角形性质、线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.15.在等边三角形ABC中,点D在AB边上,点E在BC边上,且AD=BE.连接AE、CD交于点P,则∠APD= 60°.【考点】等边三角形的性质;全等三角形的判定与性质.【分析】首先证明△ACD≌△BAE可得∠ACD=∠BAE,根据∠BAE+∠EAC=60°可得∠ACD+∠EAC=60°,再根据三角形内角与外角的关系可得∠APD=60°.【解答】解:∵△ABC是等边三角形,∴AC=AB,∠BAC=∠B=60°,在△ACD和△BAE中,,∴△ACD≌△BAE(SAS),∴∠ACD=∠BAE,∵∠BAE+∠EAC=60°,∴∠ACD+∠EAC=60°,∴∠APD=60°,故答案为:60°.【点评】此题主要考查了等边三角形的性质,以及全等三角形的判定与性质,关键是掌握等边三角形的三个内角都相等,且都等于60°.16.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.6 B.5 C.4 D.3【考点】角平分线的性质.【分析】过点P作PE⊥OB于点E,根据角平分线上的点到角的两边的距离相等可得PE=PD,从而得解.【解答】解:如图,过点P作PE⊥OB于点E,∵OC是∠AOB的平分线,PD⊥OA于D,∴PE=PD,∵PD=6,∴PE=6,即点P到OB的距离是6.故选:A.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,比较简单,熟记性质是解题的关键.三、解答题(共8题,共72分)17.如图是未完成的上海大众的汽车标志图案,该图案是以直线L为对称轴的轴对称图形,现已完成对称轴左边的部分,请你补全标志图案,画出对称轴右边的部分.(要求用尺规作图,保留痕迹,不写作法.)【考点】利用轴对称设计图案.【分析】根据轴对称图形的性质,先作垂线平分直径,得出半径长度,再利用截弧相等的方法找对称点,即可画出图形.【解答】解:如图所示:.【点评】此题主要考查了应用与设计作图,关键是掌握线段垂直平分线的作法是解决问题的关键.18.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是 4 .【考点】角平分线的性质.【专题】压轴题.【分析】首先根据CD平分∠ACB交AB于点D,可得∠DCE=∠DCF;再根据DE⊥AC,DF⊥BC,可得∠DEC=∠DFC=90°,然后根据全等三角形的判定方法,判断出△CED≌△CFD,即可判断出DF=DE;最后根据三角形的面积=底×高÷2,求出△BCD的面积是多少即可.【解答】解:∵CD平分∠ACB交AB于点D,∴∠DCE=∠DCF,∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°,在△DEC和△DFC中,(AAS)∴△DEC≌△DFC,∴DF=DE=2,=BC×DF÷2∴S△BCD=4×2÷2=4答:△BCD的面积是4.故答案为:4.【点评】(1)此题主要考查了角平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:角的平分线上的点到角的两边的距离相等.(2)此题还考查了全等三角形的判定和性质的应用,以及三角形的面积的求法,要熟练掌握.19.如图,BD是∠ABC的平分线,P为BD上的一点,PE⊥BA于点E,PE=4cm,则点P到边BC的距离为 4 cm.【考点】角平分线的性质.【分析】BD是∠ABC的平分线,再根据角平分线的性质即可得到点P到BC的距离.【解答】解:∵BD是∠ABC的平分线,PE⊥AB于点E,PE=4cm,∴点P到BC的距离=PE=4cm.故答案为4.【点评】本题考查了角平分线的性质.由已知能够注意到P到BC的距离即为PE长是解决的关键.20.如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边与点E,连接AD,若AE=4cm,求△ABD的周长.【考点】翻折变换(折叠问题).【分析】直接利用翻折变换的性质得出AE=EC,进而得出△ABD的周长=AB+AD+BD=AB+CD+BC﹣CD=AB+BC,进而得出答案.【解答】解:由图形和题意可知:AD=DC,AE=CE=4cm,则AB+BC=30﹣8=22(cm),故△ABD的周长=AB+AD+BD=AB+CD+BC﹣CD=AB+BC,即可求出周长为22cm.【点评】此题主要考查了翻折变换的性质,正确得出AB+BC的长是解题关键.21.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.【考点】等腰三角形的性质.【分析】根据等边对等角和三角形的内角和定理,可先求得∠CAD的度数;再根据外角的性质,求∠B的读数.【解答】解:∵AC=DC=DB,∠ACD=100°,∴∠CAD=(180°﹣100°)÷2=40°,∵∠CDB是△ACD的外角,∴∠CDB=∠A+∠ACD=100°=40°+100°=140°,∵DC=DB,∴∠B=(180°﹣140°)÷2=20°.【点评】此题很简单,考查了等腰三角形的性质,关键是根据三角形外角的性质及三角形的内角和定理解答.22.在平面直角坐标系中,等边三角形OAB关于x轴对称的图形是等边三角形OA′B′.若已知点A的坐标为(6,0),求点B′的横坐标.【考点】关于x轴、y轴对称的点的坐标;轴对称图形.【分析】根据等边三角形的性质,可得B点坐标,根据关于x轴对称的点的纵坐标互为相反数,横坐标相等,可得答案.【解答】解:如图所示,由等边三角形,得B点的横坐标为3,BC==3,即B点的坐标为(3,3).由等边三角形OAB关于x轴对称的图形是等边三角形OA′B′,得B′点的坐标为(3,﹣3).【点评】本题考查了关于x轴对称的点的坐标,利用等边三角形得出B点坐标是解题关键,关于x 轴对称的点的纵坐标互为相反数,横坐标相等.23.已知点A(2m+n,2),B (1,n﹣m),当m、n分别为何值时,(1)A、B关于x轴对称;(2)A、B关于y轴对称.【考点】关于x轴、y轴对称的点的坐标.【分析】(1)根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得,再解方程组即可;(2)根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得,再解方程组即可.【解答】解:(1)∵点A (2m+n ,2),B (1,n ﹣m ),A 、B 关于x 轴对称,∴, 解得;(2)∵点A (2m+n ,2),B (1,n ﹣m ),A 、B 关于y 轴对称,∴,解得:.【点评】此题主要考查了关于x 、y 轴对称的点的坐标,关键是掌握点的坐标特点.24.(12分)(2015秋•连城县期末)平面直角坐标系中,△ABC 的三个顶点坐标分别为A (0,4),B (2,4),C (3,﹣1).(1)试在平面直角坐标系中,标出A 、B 、C 三点;(2)求△ABC 的面积.(3)若△A 1B 1C 1与△ABC 关于x 轴对称,写出A 1、B 1、C 1的坐标.【考点】作图-轴对称变换.【专题】综合题.【分析】(1)根据三点的坐标,在直角坐标系中分别标出位置即可.(2)以AB为底,则点C到AB得距离即是底边AB的高,结合坐标系可得出高为点C的纵坐标的绝对值加上点B的纵坐标的绝对值,从而根据三角形的面积公式计算即可.(3)关于x轴对称的点的坐标,横坐标不变,纵坐标互为相反数,从而可得出A1、B1、C1的坐标.【解答】解:(1)如图所示:(2)由图形可得:AB=2,AB边上的高=|﹣1|+|4|=5,∴△ABC的面积=AB×5=5.(3)∵A(0,4),B(2,4),C(3,﹣1),△A1B1C1与△ABC关于x轴对称,∴A1(0,﹣4)、B1(2,﹣4)、C1.(3,1).【点评】本题考查轴对称作图及直角坐标系的知识,难度一般,解答本题的关键是正确的找出三点的位置,另外要掌握关于x轴对称的点的坐标的特点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版八年级数学上册单元测试《第13章轴对称》一、选择题(共5小题,每小题3分,满分15分)1.下列图形:其中所有轴对称图形的对称轴条数之和为()A.13 B.11 C.10 D.82.下面所给的交通标志图中是轴对称图形的是()A.B.C.D.3.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC4.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A.∠C=2∠A B.BD平分∠ABCC.S△BCD =S△BODD.点D为线段AC的黄金分割点5.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2) D.(1,﹣2)二、填空题(共5小题,每小题3分,满分15分)6.在等腰△ABC中,AB=AC,∠A=50°,则∠B= .7.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有个.8.平面直角坐标系中,点A(2,0)关于y轴对称的点A′的坐标为.9.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.10.如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.三、解答题11.已知:如图,直线AB与直线BC相交于点B,点D是直线BC上一点.求作:点E,使直线DE∥AB,且点E到B,D两点的距离相等.(在题目的原图中完成作图)结论:BE=DE.12.如图,AD∥BC,BD平分∠ABC.求证:AB=AD.13.如图,在边长为1的小正方形组成的10×10网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A、B、C、D分别在网格的格点上.(1)请你在所给的网格中画出四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于直线l对称,其中点A′、B′、C′、D′分别是点A、B、C、D的对称点;(2)在(1)的条件下,结合你所画的图形,直接写出线段A′B′的长度.14.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.15.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE ⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.《第13章轴对称》参考答案与试题解析一、选择题(共5小题,每小题3分,满分15分)1.下列图形:其中所有轴对称图形的对称轴条数之和为()A.13 B.11 C.10 D.8【考点】轴对称图形.【分析】根据轴对称及对称轴的定义,分别找到各轴对称图形的对称轴个数,然后可得出答案.【解答】解:第一个图形是轴对称图形,有1条对称轴;第二个图形是轴对称图形,有2条对称轴;第三个图形是轴对称图形,有2条对称轴;第四个图形是轴对称图形,有6条对称轴;则所有轴对称图形的对称轴条数之和为11.故选:B.【点评】本题考查了轴对称及对称轴的定义,属于基础题,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.2.下面所给的交通标志图中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.4.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A .∠C=2∠AB .BD 平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 的黄金分割点【考点】线段垂直平分线的性质;等腰三角形的性质;黄金分割.【分析】求出∠C 的度数即可判断A ;求出∠ABC 和∠ABD 的度数,求出∠DBC 的度数,即可判断B ;根据三角形面积即可判断C ;求出△DBC ∽△CAB ,得出BC 2=BC •AC ,求出AD=BC ,即可判断D .【解答】解:A 、∵∠A=36°,AB=AC ,∴∠C=∠ABC=72°,∴∠C=2∠A ,正确,B 、∵DO 是AB 垂直平分线,∴AD=BD ,∴∠A=∠ABD=36°,∴∠DBC=72°﹣36°=36°=∠ABD ,∴BD 是∠ABC 的角平分线,正确,C ,根据已知不能推出△BCD 的面积和△BOD 面积相等,错误,D 、∵∠C=∠C ,∠DBC=∠A=36°,∴△DBC ∽△CAB ,∴=,∴BC 2=CD •AC ,∵∠C=72°,∠DBC=36°,∴∠BDC=72°=∠C ,∴BC=BD ,∵AD=BD ,∴AD=BC ,∴AD 2=CD •AC ,即点D 是AC 的黄金分割点,正确,故选C.【点评】本题考查了相似三角形的性质和判定,等腰三角形性质,黄金分割点,线段垂直平分线性质的应用,主要考查学生的推理能力.5.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2) D.(1,﹣2)【考点】坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.【分析】先利用平移中点的变化规律求出点A′的坐标,再根据关于y轴对称的点的坐标特征即可求解.【解答】解:∵将点A(3,2)沿x轴向左平移4个单位长度得到点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y轴对称的点的坐标是(1,2).故选:C.【点评】本题考查坐标与图形变化﹣平移及对称的性质;用到的知识点为:两点关于y轴对称,纵坐标不变,横坐标互为相反数;左右平移只改变点的横坐标,右加左减.二、填空题(共5小题,每小题3分,满分15分)6.在等腰△ABC中,AB=AC,∠A=50°,则∠B= .【考点】等腰三角形的性质.【分析】根据等腰三角形性质即可直接得出答案.【解答】解:∵AB=AC,∴∠B=∠C,∵∠A=50°,∴∠B=(180°﹣50°)÷2=65°.故答案为:65°.【点评】本题考查学生对等腰三角形的性质的理解和掌握,此题难度不大,属于基础题.7.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有个.【考点】轴对称图形.【专题】压轴题;开放型.【分析】根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【解答】解:如图所示,有4个位置使之成为轴对称图形.故答案为:4.【点评】此题利用格点图,考查学生轴对称性的认识.此题关键是找对称轴,按对称轴的不同位置,可以有4种画法.8.平面直角坐标系中,点A(2,0)关于y轴对称的点A′的坐标为.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可以直接写出答案.【解答】解:点A(2,0)关于y轴对称的点A′的坐标为(﹣2,0),故答案为:(﹣2,0).【点评】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.9.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.【考点】含30度角的直角三角形;线段垂直平分线的性质.【分析】根据同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.【解答】解:∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又∵AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.故答案是:2.【点评】本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.10.如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.【考点】线段垂直平分线的性质;等腰三角形的性质;翻折变换(折叠问题).【专题】压轴题.【分析】连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,然后判断出点O是△ABC的外心,根据三角形外心的性质可得OB=OC,再根据等边对等角求出∠OCB=∠OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.【解答】解:如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×54°=27°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴∠OCB=∠OBC=36°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.故答案为:108.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.三、解答题11.已知:如图,直线AB与直线BC相交于点B,点D是直线BC上一点.求作:点E,使直线DE∥AB,且点E到B,D两点的距离相等.(在题目的原图中完成作图)结论:BE=DE.【考点】作图—复杂作图.【专题】压轴题.【分析】首先以D为顶点,DC为边作一个角等于∠ABC,再作出DB的垂直平分线,即可找到点E.【解答】解:如图所示:点E即为所求,BE=DE【点评】此题主要考查了复杂作图,关键是掌握作一个角等于已知角的方法和线段垂直平分线的作法.12.如图,AD∥BC,BD平分∠ABC.求证:AB=AD.【考点】等腰三角形的判定与性质;平行线的性质.【专题】证明题.【分析】根据AD∥BC,可求证∠ADB=∠DBC,利用BD平分∠ABC和等量代换可求证∠ABD=∠ADB,然后即可得出结论.【解答】证明:∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD.【点评】此题主要考查学生对等腰三角形的判定与性质和平行线性质的理解和掌握,此题很简单,属于基础题.13.如图,在边长为1的小正方形组成的10×10网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A、B、C、D分别在网格的格点上.(1)请你在所给的网格中画出四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于直线l对称,其中点A′、B′、C′、D′分别是点A、B、C、D的对称点;(2)在(1)的条件下,结合你所画的图形,直接写出线段A′B′的长度.【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质,找到各点的对称点,顺次连接即可;(2)结合图形即可得出线段A′B′的长度.【解答】解:(1)所作图形如下:.(2)A'B'==.【点评】本题考查了轴对称变换的知识,要求同学们掌握轴对称的性质,能用格点三角形求线段的长度.14.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)根据等腰三角形三线合一的性质可得∠BAE=∠EAC,然后利用“边角边”证明△ABE 和△ACE全等,再根据全等三角形对应边相等证明即可;(2)先判定△ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出∠EAF=∠CBF,然后利用“角边角”证明△AEF和△BCF全等即可.【解答】证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).【点评】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等腰直角三角形的判定与性质,同角的余角相等的性质,是基础题,熟记三角形全等的判定方法与各性质是解题的关键.15.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE ⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【考点】全等三角形的判定与性质;等边三角形的判定.【专题】压轴题.【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)由前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.【解答】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.。

相关文档
最新文档