Die-casting design guideline 压铸件设计手册
【设计规范_07】压铸产品相关设计要求
【设计规范_07】压铸产品相关设计要求导读压铸产品开始流行,都忘了是什么时候了,记得moto的刀锋系列就是镁合金压铸的,着实火了一把,现在的手机产品中压铸件使用也越来越多,今天我们就介绍下压铸产品设计的注意事项:1什么是压铸?压铸(英文:die casting)是一种金属铸造工艺,其特点是利用模具腔对融化的金属施加高压。
模具通常是用强度更高的合金加工而成的,这个过程有些类似注塑成型。
压铸设备和模具的造价高昂,因此好的产品结构更为重要,产品不但影响模具寿命,甚至对机台都会有影响;2压铸产品设计要求1.壁厚须力求平均2.孔径与深度关系3.肋与壁厚关系D≦4~5t 在此比例下应不会产生缩水痕,但非必要还是以力求壁厚平均为佳。
4.圆角当T1=T2时,若R2=R1+T1则 R1=T1 ,若R2=0则 R1=1~1.25T1当T2 > T1时,则R1=2/3( T1+T2) & R2=0~(R1+T2)当十字或Y型相接时:当Θ=90°时,则 R1= T1当Θ=45°时,则 R1= 0.7 T1 & R2= 1.5 T1当Θ=30°时,则 R1= 0.5 T1 & R2= 2.5 T15.拔模角3产品结构规避风险设计1.压铸产品进胶与塑胶产品不同,产品必需要有足够的进浇空间,且进浇位置尽量要平缓(不要有较大的高度落差),尽量让进浇平缓均匀,如下图说明:不合理:1.1 两边包胶燕尾槽分布较多,进浇无足够的空间1.2 内框太深,模具上形成高的钢位,阻挡了进浇的流向,且钢位易被冲击腐蚀;1.3外部料位有较大的断开,进浇需走高低差,压铸模不现实改进方式:1.1 取消部分燕尾槽,减少其分布密度1.2 内框深度做浅,其深度尽量控制在2.0MM以内1.3 断开处在装配要求允许的情况下尽量加胶连接起来2.产品进浇尽量避开正面冲击产品通孔,插穿扣位及较小的碰穿孔,如下说明:弊端:2.1.产品进浇正面冲击模具上通孔的碰穿柱,影响进浇的走向2.2.由于碰穿柱较小,正面冲击易致其断裂,压铸后产品通孔不通改进方式:2.1.减少通孔的分布数量,加大孔径,以加强此通孔模具上碰穿柱的强度2.2.此通孔拉胶位可做成沟槽的形式,模具强度较好3.产品内侧壁的厚度不要过于单薄弊端:3.1.由于壁厚过薄,会影响进浇的流动性,导致产品不易打满,影响产品的致密性及整体强度3.2.由于薄壁处强度较弱,产品脱模时易断裂改进方式:3.1.其厚度最小做到0.8MM左右3.2.条件允许下,可做些补丁形式的骨位,加强其强度,如右下效果图4.燕尾包胶槽的设计上图所示的两种燕尾槽形式,在产品压铸后都需冲模冲切成型,由于上左图所示的燕尾槽开口宽度尺寸较小,导致冲模冲头钢位较弱,而且模具加工困难,所冲出的产品精度不易控制,右图形式较为合理,具体如下:1.燕尾槽开口处的尺寸最小在1.8-2.5MM左右,冲模冲头钢位强度相对较理想2.此通孔式的燕尾槽压铸模易成型,有利于模具生产及产品的稳定。
压铸模具术语
压铸模具术语1.压力铸造die casting 将熔融合金在高温、高压条件下填充模具型腔,并在高压下冷却凝固成型的铸造方法。
2.压铸模具die-casting die 压力铸造成型工艺中,用以成型铸件所用的模具。
3.定模fixed die 固定在压铸机定模安装板上的模具部分。
前模,A4.动模moving die 随压铸机动模安装板开合移动的模具部分。
后模,B5.型腔cavity 模具闭合后用以充填熔融合金,成型铸件的空腔。
6.分型面parting line 模具上为取出铸件和浇注系统凝料可分离的接触表面。
7.投影面积project area 模具型腔、浇注系统及溢流系统在垂直于锁模力方向上投影的面积总和。
8.收缩率shringkage 在室温下,模具型腔与铸件的对应线性尺寸之差和模具型腔对应线性尺寸之比。
9.锁模力locking force 在充型过程中,为使动、定模相互紧密闭合而施加在模具上的力。
10.压力中心pressure center 在平行于锁模力方向上,熔融合金传递给模具的压力合力的作用点。
11.充填速度filling velocity 熔融合金在压力作用下通过内浇口的速度。
12.压射速度injection speed 压射冲头运动的线速度。
13.压射比压injection pressure 冲型结束时压射冲头作用于熔融合金单位面积上的压力。
14.脱模斜度Draft 为使铸件顺利脱模,在模具型腔沿壁脱模或抽拔方向上设计的斜度。
15.闭合高度die shut height 模具处于闭合状态下的总高度。
16.最大开距maximum opening daylight 压铸机动模、定模安装板之间可分开的最大距离。
17.脱模距stripper distance 为取出铸件和浇注系统凝料,动、定模所需分开的距离。
18.浇注系统casting system 熔融合金在压力作用下充填模具型腔的通道,包括:直浇道,横浇道和内浇口。
压铸模设计手册第一季
热流道与普通流道实物对比
Mass Saved Kilograms 40 to 80 tonnes 80 to 160 tonnes 50,000 83,000
Cost Saved Dollars $30,000 $50,000
160 to 320 tonnes
320 to 650 tonnes
190,000
原理:把镁合金颗粒投入料斗,原 料经过加热到高温的筒,螺杆的转 动对镁合金产生剪切作用,使其成 为具有触变物理性能的半固态浆料, 快速注射到模具内成形。
成形原理
射铸成形过程(1)
射铸成形过程(2)
射铸成形机
射铸成形产品图
第一讲 完
使枝晶破一流变压铸rheocasting金属锭液态制备浆料搅拌冷却半固态浆搅拌冷却半固态浆料压铸二触变压铸thixocasting金属锭液态制备浆料搅拌冷却半固态浆搅拌冷却料淬冷铸锭切割胚料重新加热触变压铸半固态浆半固态压铸工艺过程优点
第一讲 压 铸 新 工 艺
压 铸 简
压力铸造的定义:
介
熔融金属在压射冲头作用 下,高压高速充填型腔,并且在 高压下凝固形成铸件的铸造工艺。
热压室压铸机 (Hot Chamber Die Casting Machine)
热压室压铸机压铸工艺简图
冷压室压铸机 (Cold Chamber Die Casting Machine)
冷压室压铸机压铸工艺简图
压铸工艺的优点
1、可以制造形状复杂、轮廓 清晰的铸件。 2、压铸件表层组织致密,使 压铸件具有较高的硬度和强 度。
(二)触变压铸(Thixocasting) 金属锭→液态→制备浆料 (搅拌→ 冷却)→半固态浆 料→淬冷→铸锭→ 切割胚料 → 重新加热→触变压铸
压铸件控制计划标准模板
目测 visual 对比样件 contrast sample
100%
连续 (continu
e)
目测 visual
1模(1 cavities)
隔离
Each 4hours 每4小时
Check Location inspection 现场检验
通知领班、巡 检
segregate,in form forman
零件/
过程 编号 Part/ proce ss
过程名称/操作 描述Process name/operatio n description
生产设备 Machine, device,
jig, tools
编 号 No.
Numbe
Characteristics 特性
产品 Product
过程 Process
去料柄
100% 100% 100% 100%
连续 (continu
e)
隔离
Check 通知领班、巡
Location
检
inspection segregate,in
现场检验 form forman
and patrol
连续 Continuo
us
连续 Continuo
us
目测 visual inspection
us inspection
5件 5 pcs
每4小时 检验记录单 Each 4 inspection hours record
Concentrate
05
smelting raw materials原材
料集中熔炼
熔化炉 melt furnace
2
3
回料比例 温度
特殊
Methods 方法
压铸模具设计和制造手册
模具分类与条款Awintech 已向客户建立了三类压铸模具,这三类压铸模具为原型模具、预生产模具和生产模具。
生产模具使用在与全能力生产的有关方面,它符合本手册中提到的标准压铸设计和制造。
其模具寿命与常规模具非常相似。
数量达到20,000 件以上则适合于这类模具。
上内模和滑阀面是用优质的H13 级钢制成的。
预生产模具使用在这些方面,如客户需要生产有限的超越产品寿命的的零件。
用铝压铸的这种模具能持续达到近20,000 射出。
铸造时使用锌或镁都将延长其使用寿命。
原型模具则使用在这些方面,当客户只要求用380 铝生产非常有限数量,仅达到500 件这样的零件。
此类模具寿命会比用其它合金制成的模具寿命要长一些。
在本手册以后章节中会提到与设计和制造有关的特定模具条款。
最值得一提是在每一类模具中为客户制造合格的压铸产品的生产性能作为最首要的目标。
如果模具生产无法满足客户的需求,则毫无价值。
我们尝试详细说明一下品质标准,在这三类模具中每一个品质标准都要向客户提供。
另外,我们也在努力确保他们对每一类模具生产的铸件质量有所了解。
与Awintech 作生意Awintech 的目标就是向客户提供符合预期要求并交付及时的高品质模具。
本手册中我们详细说明向客户提供的模具标准。
不过,如果有任何关于模具设计和制造的疑问,请与我们联系。
铸造模,电极、CNC 程序、设计、计算机程序、模板以及与该工作有关的需采购的所有东西都是Awintech 所具备的。
它们应由模具制造商保留或根据客户要求提供给我们。
以下是模具加工付款条件:随订购单先预付50%模具加工费,模具加工完成后再付40%,最后模具样品合格后再付10%。
备注:以上条件需双方共同达成一致,否则无效。
目录1.0.0 模具分类与条款1.1.0 与Awintech 作生意1.2.0 总体步骤与规格1.3.0 胚模规格1.4.0 料表1.5.0 上内模1.6.0 公模滑块零件1.7.0 拉圾钉1.8.0 顶出系统1.9.0 加热与冷却2.0.0 胚模零件2.1.0 液压汽缸筒和接近开关2.2.0 合金工具钢的热处理2.3.0 合金工具钢表面处理2.4.0 焊接2.5.0 金属进料与真空系统2.6.0 文档资料与证明2.7.0 压铸冲模设计和制造总指南和专用指南设计检测表模具加工检测表Awintech 模具改善表Awintech 模具检测规划报告拉极钉概要热电偶安装设计压铸机台板布局真空安装规格1.2.0 总体步骤与规格1、Awintech 会向模具供应商提供最新的客户产品印刷物或资料库用以询价,模具设计和制造。
压铸的工艺流程英文手册
压铸的工艺流程英文手册Die casting is a metal casting process that involves forcing molten metal into a mold cavity under high pressure. 压铸是一种金属铸造工艺,其过程涉及将熔化金属在高压下注入模腔。
This process is commonly used for manufacturing complex parts with high accuracy and consistency. 这种过程通常用于制造具有高准确性和一致性的复杂零件。
Die casting is known for its ability to produce parts with excellent surface finish and dimensional accuracy. 压铸以生产具有出色表面光洁度和尺寸精度的零件而闻名。
The die casting process begins with the preparation of the mold, which is usually made of steel. 压铸过程始于模具的准备,通常是由钢制成。
The mold is then closed and molten metal is injected into the cavity at high pressure. 然后封闭模具,将熔化金属以高压注入腔体内。
The metal solidifies within the mold cavity and the part is ejected once it has cooled. 金属在模腔内固化,一旦冷却便可以取出零件。
This process can be repeated hundreds or thousands of times to produce large quantities of parts. 这个过程可以被重复数百次甚至数千次,以生产大量零件。
压铸模设计手册第一季
$113,000
$180,000
(二)点浇口的热流道技术
普通浇口、热流道侧浇口、热流道点浇口
二、半固态压铸 (Semi-Solid Casting)
原理:在合金液冷却过程中 施加剧烈的搅拌,使枝晶破 碎,得到一种悬浮一定量球 状固相的浆料,进行成形。
(一)流变压铸(Rheocasting) 金属锭→液态→制备浆料 (搅拌→ 冷却)→半固态浆 料→压铸
热流道与普通流道实物对比
Mass Saved Kilograms 40 to 80 tonnes 80 to 160 tonnes 50,000 83,000
Cost Saved Dollars $30,000 $50,000
160 to 320 tonnes
320 to 650 tonnes
190,000
第一讲 压 铸 新 工 艺
压 铸 简
压力铸造的定义:
介
熔融金属在压射冲头作用 下,高压高速充填型腔,并且在 高压下凝固形成铸件的铸造工艺。
热压室压铸机 (Hot Chamber Die Casting Machine)
热压室压铸机压铸工艺简图
冷压室压铸机 (Cold Chamber Die Casting Machine)
原理:把镁合金颗粒投入料斗,原 料经过加热到高温的筒,螺杆的转 动对镁合金产生剪切作用,使其成 为具有触变物理性能的半固态浆料, 快速注射到模具内成形。
成形原理
射铸成形过程(1)
射铸成形过程(2)Fra bibliotek 射铸成形机射铸成形产品图
第一讲 完
安装在模具上的热流道
(2)压 铸 过 程
(3)标准化设计 1)可以使用不同的热流杯长度配 合模具设计。 2)又单流、双流、管状的导流块。 3)配合温控仪,可控制热流温度、 水冷、加热及显示温度。
压铸模设计说明书
序言在现代机械制造工业中,模具工业已经成为国民经济中非常重要的行业。
现代产品的大批量生产有两方面的基本要求,一是技术上要求产品的质量严格符合图样设计要求;二是经济上要求产品的成本低、生产效率高,即将单件产品的加工工时减少到最低限度,以最少的能耗达到产品结构的特性和使用要求。
模具因其设计的多样化。
成形产品的再现性和质量的可控制性,使其在现代成形方法中,在提高产品的质量与产生效益。
降低能耗等方面发挥着极其重要的作用。
采用模具成形技术生产零部件已经成为现代工业生产的重要手段和工艺发展方向。
许多新产品的开发生产,在很大程度上依赖与模具的设计与制造,特别是在汽车、摩托车、家电、电子和航天工业中显得尤为重要。
模具设计水平的高低和模具制造水平的强弱,已经成为衡量一个国家机械制造水平的重要标志之一,直接影响到国民经济中许多行业的发展。
压铸是压力铸造的简称。
压力铸造是将熔融的合金液注入压铸机的压室中,压室中的压射冲头以高压、高速将其充填入金属模具的型腔,并在高压下冷却凝固成形为金属零件的一种方法。
铸造是一门科学技术,也是历史上最悠久的一种金属成形工艺,它促进了社会生产力的发展,是标志一个民族具有悠久历史文化的见证,也是人类智慧和文明的记载者。
第一章压铸设计的特点压力铸造的主要成形工艺特征是液态金属以高压、高速充填金属模具的型腔,并且在高压下结晶、凝固和成形,因此压铸成形过程中金属液流动的状态将会影响到压铸件的质量。
同时,针对压铸的工艺特点,压铸件的结构工艺性对压铸件质量的影响也需要引起足够的重视。
压铸机是压力铸造的基本设备,压铸的过程是通过压铸机实现的。
压铸机一般可分为热压室压铸机和冷压室压铸机两大类,本次设计使用的是冷压室压铸机。
冷压室压铸机的压室与熔化合金的坩埚是分开的,压铸时,需要从熔化炉的坩埚内盛取金属液注入压室后再进行压铸。
按照压铸模与压室的相对位置,冷压室压铸机又可分为立式、卧式和全立式三种形式。
本次设计选用的是卧式压铸机。
die casting knowledge
by Henry wang
CONTENTS
1
die-casting introduction
Die-casting design guideline
Metal (Mg/Al/Zn) Introduction Design Recommendation Grounding Solution
Die-casting Design Guidelines
Material (Mg/Al/Zn) Introduction
Material AZ91D ADC12 Zamark3
Element ( %)
Si <0.08 9.6~12.0 Mg Others 0.3 0.02-0.05 Fe <0.004 1.3 ≦0.1 Cu <0.025 1.5~3.5 ≦0.25 Mn 0.170.40 0.5 Zn 0.450.90 1 Others Al 8.3-9.7 Others 3.5-4.3 Ni <0.001 0.5 Pb Sn 0.3 Cr Cd ≦0.004
Mg alloy:
Degreasing---Cleaning---Acid washing---Cleaning—Alkaline washing—Cleaning--- Phosphorization --Drying(130-150℃)
Material:Mg Typical technology: Painting
Mobile Phone Parts
Anodizing Samples Machine Type:Fanuc CNC Material:Al 6063 Typical technology:Extrusion +CNC machining+ Anodizing
压铸件设计指南
压铸件设计指南压铸件设计指南一、引言压铸件是一种常见的金属制造工艺,广泛应用于汽车、航空航天、电子等领域。
本指南旨在提供详细的压铸件设计指导,帮助工程师设计出高质量的压铸件。
二、材料选择1、材料性能介绍:详细介绍常用的压铸件材料,如铝合金、镁合金等,包括其力学性能、耐热性能等。
2、材料选择原则:根据压铸件的功能和应用环境,提供材料选择的指导原则,确保材料与设计要求相匹配。
三、几何设计1、壁厚设计:介绍壁厚的选择原则,包括最小壁厚、一致的壁厚和壁厚过渡的考虑。
2、强度设计:介绍压铸件的强度设计原则,包括应力集中的避免、适当的加强结构设计等。
3、浇注系统设计:详细介绍浇注系统的设计要点,包括浇注口设计、浇注系统流线型等。
四、协同设计注意事项1、合模方式:介绍常见的合模方式,包括单向模、双向模等,提供选择依据和设计考虑。
2、模具设计:提供模具设计的指导,包括模腔结构、排气系统设计等,确保模具与压铸件设计的协同性。
3、模具温控设计:介绍模具温控的重要性,包括冷却通道设计、温度控制要点等。
五、加工工艺1、压铸工艺参数:介绍常见的压铸工艺参数,如射压、射速等,提供优化建议。
2、表面处理:提供常用的压铸件表面处理方法,如喷砂、电镀等,讲解其工艺流程和注意事项。
3、精密加工:介绍压铸件的精密加工方法,如C加工、热处理等。
六、质量控制1、尺寸控制:详细介绍尺寸控制的方法和工具,如测量仪器、尺寸检测方法等。
2、表面质量控制:提供表面质量控制的标准和方法,如光洁度要求、表面缺陷检测等。
3、力学性能测试:介绍压铸件力学性能测试的方法,如拉伸试验、冲击试验等。
附件:1、压铸件设计实例:提供一些压铸件设计的实例供参考。
2、压铸工艺流程图:附带压铸工艺的流程图,便于理解和操作。
注释:1、压铸件法律名词及注释:- 压铸件:通过将熔化金属注入模具中并施加压力,制造出形状复杂的金属件的加工工艺。
- 浇注系统:金属液体进入模具的通道系统,包括浇注口和冷却液道。
压铸的工艺流程英文手册
压铸的工艺流程英文手册下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!Here's an outline of the die casting process in English based on the information you've provided, along with additional industry knowledge:Die Casting Process OverviewDie casting is a manufacturing technique used to produce high-volume, intricately shaped metal parts with tight tolerances and excellent surface finish. The following is a comprehensive overview of the die casting process:1. Design & Tooling DevelopmentPart Design: Engineers create a part design considering factors such as functionality, material properties, dimensional requirements, and manufacturability for die casting.Tooling Design & Fabrication: Die makers develop dies (male and female molds) using specialized software, ensuring proper draft angles, parting lines, gating systems, and cooling channels. Dies are typically made from high-strength steel or other durable alloys, and machined to precise dimensions.Prototype & Testing: A prototype die may be produced for initial testing and validation of the part design, tooling performance, and process parameters.2. Material PreparationAlloy Selection: Choose a suitable alloy (e.g., aluminum, zinc, magnesium, copper-based) based on the required mechanical properties, thermal conductivity, corrosion resistance, and cost considerations.Melting & Holding Furnace: Alloys are melted in induction or gas-fired furnaces and held at a controlled temperature, ensuring proper fluidity and minimizing oxidation.3. Machine Setup & Pre-productionMachine Calibration: Adjust and calibrate the die casting machine according to the specific requirements of the dies and the chosen alloy.Die Installation & Preheating: Install the dies into the machine and preheat them to reduce thermal shock during casting and improve mold release.Sprue & Runner System Setup: Configure the sprue bushing, runners, gates, and overflows to ensure efficient filling of the cavity and minimize turbulence, cold shuts, and porosity.4. Injection & SolidificationCharge Ladling: Molten metal is ladled from the holding furnace and poured into the shot sleeve of the die casting machine.Injection: The hydraulic or mechanical plunger forces the molten metal into the die cavity under high pressure (typically 10-210 MPa), rapidly filling the intricate cavities and solidifying the metal within milliseconds to seconds.Pressure Holding: After injection, maintain pressure on the molten metal to compensate for shrinkage during solidification and ensure dimensional stability.5. Ejection & TrimmingDie Opening: Once the part has cooled and solidified, the die halves are separated.Ejection: Utilize ejection pins or stripper plates to remove the cast part from the die.Trimming: Remove excess material (sprues, runners, flash) from the part using trimming presses, saws, or automated trimming machines.6. Inspection, Finishing, & Post-processingQuality Control: Perform visual inspections, dimensional checks, and non-destructive testing (NDT) such as X-ray, ultrasound, or pressure testing to ensure part quality and integrity.Heat Treatment: Subject parts to processes like annealing,quenching, or aging to improve mechanical properties or relieve internal stresses.Surface Finishing: Apply surface treatments such as painting, powder coating, electroplating, or polishing to enhance appearance, corrosion resistance, or functional performance.Assembly or Machining: If required, perform secondary operations like drilling, tapping, or assembly to incorporate threaded inserts, mating components, or other features.7. Maintenance & Continuous ImprovementDie Maintenance: Regularly inspect, clean, and repair dies to maintain their dimensional accuracy and extend their service life.Process Monitoring & Control: Utilize sensors, data acquisition systems, and statistical process control (SPC) techniques to monitor and optimize process parameters, minimize scrap, and improve overall efficiency.Continuous Improvement Initiatives: Implement lean manufacturing principles, Six Sigma methodologies, or other continuous improvement programs to drive waste reduction, cost savings, and quality enhancements.This overview outlines the essential steps involved in the diecasting process, providing a comprehensive understanding of the technology, equipment, materials, and procedures used to manufacture high-quality metal components. Detailed guidelines, standards, and best practices can be found in industry-specific die casting manuals and resources.。
压铸模具简明设计手册
压铸模具简明设计手册
压铸模具设计手册应包含以下内容:
1. 模具基本尺寸和结构设计:模具的外形尺寸、厚度、孔位置等基本参数,以及模具的整体结构和零件组成。
2. 零件加工工艺:具体说明模具各个零件的加工工艺,包括加工方法、设备和工序要求。
3. 模具材料选择:根据所需产品的要求,选择合适的模具材料,包括模具底板、模具芯块、模具导套等。
4. 模具零件连接方式:详细说明模具各个零件的连接方式,如螺纹连接、销连接、焊接等。
5. 模具零件尺寸和公差设计:模具各个零件的几何尺寸和公差要求,以确保模具零件的加工精度和装配质量。
6. 模具冷却系统设计:指导模具冷却系统的设计,包括冷却水道的布置和尺寸计算等。
7. 模具注塑系统设计:指导模具注塑系统的设计,包括喷嘴、喉口、导向柱等的尺寸和位置设计。
8. 模具表面处理:根据产品的要求,选择合适的模具表面处理方式,如抛光、喷砂、电镀等。
9. 模具试模和调试方法:详细说明模具的试模和调试方法,包括模具组装、调试参数和注意事项等。
10. 模具维护和保养:指导模具的维护和保养工作,包括清洁、润滑、更换易损件等。
11. 模具设计注意事项:总结模具设计过程中需要注意的一些
常见问题和注意事项,如回缩量、顶出方式、模具分型等。
压铸模具设计手册应该简明扼要地介绍上述内容,方便模具设计人员参考和应用。
Die-casting design guideline 压铸件设计手册
DIE CASTING HANKBOOK 压铸手册目录( Table of Contents )1.压铸简介( An Intruduction to Die Casting )1>压铸 —— 工业体系( Die Casting ―― The Industrial System )2>配套工业( Supporting Industries )3>北美压铸学会( The North Amercian Die Casting Association )4>压铸业( The Die Casting Industry )5>开发历史( Historical Development )2.压铸原理和理论( Principles and Theory of Die Casting )1>压铸过程( Die Casting Process )2>压铸机能力 – PQ2分析 ( Machine Capacity――PQ2 )3>填料时间分析( Fill Time Analysis )4>压铸热流理论( Heat Flow Theory for Die Casting )3. 压铸合金和合金熔化与处理( Die Casting Alloys and Alloy Melting and Handling )1>铝 ( Aluminum )2>镁( Magnesium )3>锌( Zinc )4. 市场和产品设计( Markets and Product Design )1>压铸件的市场( Markets for Die Castings )2>工业设计标准( Industry Design Standards )5.高完整性压铸件( High Integrity Die Castings )1>高完整性铸造过程( High Integrity Casting Processes )2>高完整性零件设计标准( High Integrity Part Design Standards )6. 模具材料和模具设计( Die Materials and Die Design )1>模具材料和热处理( Die Materials and Heat Treat )2>压铸模设计( Die Casting Die Design )3>模具涂层和表面处理( Die Coatings and Surface Finish )4>计算机模拟( Computer Simulation )7.压铸机标准( Die Casting Machine Standards )1>压铸机革新( Innovations in Die Casting Machines )2>描述冷室机的规格( Specifying a Cold Chamber Machine )3>最佳的压射司筒性能( Optimizintg shot sleeve Performance )4>压铸机安全标准( Machine Safety Standards )8. 生产过程和自动化设备( Processing and Automation Equipment )1>浇包( Ladles )2>往复运动机装置( Reciprocators )3>脱模器 ( Extractors )4>精加工体系 ( Finishing System9. 环境问题( Environmental Issues )1>废水管理 (Wastewater management )2>雨水管理( Storm Water Management )3>油和有害废物管理( Oil and Hazardous Waste Management )4>空气排放( Air Emissions )5>压铸工业的ISO 14001 ( ISO 14001 for the Die Casting Industry )10. 客户质量和过程控制( Customer Quality and Process Control )1>品质: 生产力和利润(Quality, Productivity and Profitability )2>质量和生产力: 公司轮廓( Quality and Productivity : Company Profiles )3>过程控制的实施(Implementation of Process Control )4>水管线路图和它的使用( The Waterline Diagram and Its Use )5>压铸装配图( Die Casting Set-up Chart )11. 教育和认证( Education and certification )1>认证等级( Certification levels )2>认证类型( Certification Types )3>初级认证( Initial Certification )4>认证的维护( Maintenance of Certification )12. 词汇表( Dictionary of Terms )附录 ( Appendix )NADCA 出版物清单 ( NADCA Publication list )NADCA 教育课程简述( NADCA Education Course Descriptions )前言(Preface):这本手册第二版由北美压铸学会(NADCA)编纂. 它更新了1982年以前出版的压铸手册, 这本手册的目的是给压铸工业提供一般性技朮信息. 包括的课题有: 压铸件如何开发及何时开始开发, 零件如何通过压铸过程设计并生产, 压铸件的市场, 压铸工业中的环境问题是什么, 各种压铸过程的优点, 还包括压铸中常用词条的详细解释.这本手册的各个章节由压铸工业特别课题专家编制. 为了提高整个压铸工业的认识, 这本手册包含了这些工业专家的智能和专门知识. 这本手册从头至尾对各个课题都提供了更祥细的信息以供参考.我们希望这本手册对你是有用的工具, 使你致力于学习和实践压铸的过程中取得更大的成功. 压铸对于许多复杂组件的生产是一个稳定的和成本有效的过程, 压铸工业的前景是非常美好的, 但是要维持加工过程的竟争性优点就要求持续改善. 这本手册是一本专以压铸工业的持续改善为目标.谢启(Acknowledgements):这本手册通过北美压铸工业许多技朮专家的奉献及自愿参预了排字、校订和各章节的编纂工作. 他们希望通过分亨他们的智慧和经验, 压铸业会壮大和美好, 以下是对此书的出版作出贡献的人员名单. (略)I.压铸简介( An Introduction to Die Casting )由于金属熔化之后会按要求在具有腔型的设计模具内凝固, 所以压铸过程是真实的金属铸造过程. 在铸造过程中利用沙或石膏为模具, 熔化金属的热量或者铸件在出模之时毁坏了模具. 在压铸过程中, 由硬质钢制成的模具可以承受铸造热量, 而且由可动模块组建的模具使凝固铸件易于清除出模腔. 因此, 这些模具可以重复使用, 而且可以用来生产出成千上万甚至百万件铸件. 这些模具称作 “dies”, 是因为它们具有永久性、并可重复使用, 还可承受强大的压力或强度且包括复杂的机能.压铸过程实际上有三个子过程. 它们是: (1) 金属型铸模铸造(有时称腔型压铸); (2) 低压力压铸; (3) 高压力压铸. 在北美尽管技朮包含所有的三个子过程, 但是压铸过程通常指高压力压铸. 三种过程主要的不同点在于把熔化金属压入模中所用的压力大小不一样. 三种过程都使用可重复利用(通常是硬质钢)的模作为模具。
压铸的工艺流程英文手册
压铸的工艺流程英文手册English:Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mold cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly to an injection mold during the process. The process begins with the preparation of the mold, which involves coating the dies with a release agent to prevent the molten metal from sticking. The next step involves injecting the molten metal into the cavity at high pressures using a hydraulic press. Once the metal has solidified, the dies are opened and the casting is removed. The excess material, known as flash, is trimmed off and the casting undergoes various post-processing steps such as heat treatment, machining, and surface finishing to achieve the desired final product. Die casting is commonly used in the production of a wide range of metal components for industries such as automotive, aerospace, and electronics due to its ability to produce parts with high dimensional accuracy and surface finish.中文翻译:压铸是一种金属铸造工艺,其特点是将熔融金属在高压下注入模腔。
压铸岛英文说明书
压铸岛英文说明书**Introduction**The die-casting island, a crucial component in many manufacturing processes, plays a pivotal role in ensuring the efficiency and quality of production. This comprehensive guide aims to provide a detailed understanding of the die-casting island, its operations, and maintenance procedures, to ensure optimal performance and extended lifespan.**Understanding the Die-Casting Island**The die-casting island is an integrated system that combines various components, including the die-casting machine, molding equipment, and auxiliary devices. It is designed to handle the entire die-casting process, from material preparation to post-processing. The island's design allows for a streamlined workflow, minimizing waste and maximizing productivity.**Operations Manual****1. Startup Procedure**Before commencing operations, it is crucial to conduct a thorough inspection of all equipment to ensure they arein good working condition. Once confirmed, follow these steps:* Activate the power supply and initiate the pre-heating process for the die-casting machine. * Prepare the mold and ensure it is properly installed and aligned. * Set the desired parameters, such as temperature, pressure, and casting time, based on the material and product specifications. * Once the machine reaches the optimal temperature, insert the material and commence the die-casting process.**2. In-Process Monitoring**During the die-casting process, regular monitoring is crucial. Operators should pay attention to the following: * Monitor the material flow and ensure it is consistent and uniform. * Check the temperature and pressure gauges regularly to ensure they are within the specified range. * Inspect the castings for any defects or imperfections and adjust the parameters accordingly.**3. Shutdown Procedure**After completing the die-casting process, follow these steps to safely shut down the system:* Allow the die-casting machine to cool down gradually before turning off the power supply. * Remove the mold and clean it thoroughly to prevent rusting or corrosion. * Conduct a post-operation inspection to identify any potential issues or malfunctions.**Maintenance Guidelines**Regular maintenance is essential to ensure the longevity and performance of the die-casting island. Here are some key maintenance tips:* Lubricate moving parts regularly to reduce friction and wear. * Clean the machine and auxiliary equipment regularly to prevent dust and dirt buildup. * Inspect the power supply and cables regularly for any signs of damage or wear. * Replace worn-out parts promptly to prevent further damage or breakdowns.**Conclusion**The die-casting island is a crucial component of modern manufacturing processes. With proper operations and maintenance, it can provide consistent, high-quality production output. This comprehensive guide aims to assist operators in understanding and mastering the die-casting process, ensuring optimal performance and maximum productivity.**压铸岛英文说明书详解与操作指南****引言**压铸岛作为许多制造流程中的关键组成部分,在确保生产效率和产品质量方面发挥着至关重要的作用。
压铸设计流程
压铸设计流程Designing a process for die casting involves several important steps. 铸造设计流程涉及几个重要步骤。
The first step is to create a detailed design concept. 首先要制定详细的设计概念。
This includes understanding the specific requirements of the part or product that will be die cast. 这包括理解将要压铸的零件或产品的具体要求。
It is crucial to consider factors such as material selection, part geometry, and production volume. 需要考虑诸如材料选择、零件几何形状和生产量等因素。
The design concept should also take into account any potential challenges or limitations that may impact the die casting process. 设计概念还应考虑可能影响压铸过程的任何潜在挑战或限制。
Once the design concept has been established, the next step is to create a detailed design for the die casting mold. 一旦设计概念确立,下一步就是为压铸模具制定详细设计。
This involves determining the specific cavities and components of the mold, as well as the gating and venting systems. 这涉及确定模具的具体腔体和组件,以及浇口和通气系统。
第7部分:压铸件设计指南
1. 零件壁厚 2. 压铸件最小孔 3. 避免压铸模局部过薄 4. 加强筋的设计
DFMA
5. 脱模斜度 6. 圆角的设计 7. 支柱的设计 8. 字符 9. 螺纹 10. 为飞边和浇口的去除提供方
便 11. 压铸件的公差 12. 简化模具结构、降低模具成
本 13. 避免机械加工 14. 使用压铸件简化产品结构
DFMA
B. 合理选择分模线,提高重要零件尺寸的精度
如果D1和D2的同心度很重要,选择C-C为分模线 如果D1和D3的同心度很重要,选择B-B为分模线 如果需要保证D1在左端或右端直径的一致,则选择A-A为分模线
27
12. 简化模具结构,降低模具成本
DFMA
A. 避免内部侧凹
内部侧凹通过侧抽芯机构或通过二次加工来获得,这会大幅增加模具或 者零件的成本
优点:
生产效率高,生产过程容易实现机械化和自动化; 压铸件的尺寸精度高,表面质量高; 压铸件的力学性能较高; 可压铸复杂薄壁零件; 压铸件中可嵌注其他材料的零件;
缺点:
压铸件中容易产生气孔; 不适宜小批量生产; 压铸高熔点合金时模具寿命较低;
DFMA
5
3. 独特优势
DFMA
独特优势:
原始的设计
C. 添加加强筋辅助熔化金属的流动,
优化的设计
辅助熔化金属的流动,提高零件的充填性能
加强筋的方向与熔化金属的流向一致
13
4. 加强筋的设计
D. 加强筋的位置分布要合理,尽量做到对称、均匀
DFMA
原始的设计
E.加强筋连接处避免局部壁太厚
优化的设计
原始的设计
优化的设计
14
5. 脱模斜度
压铸件质量通用检验指导书
版本:A/2文件編号:DG-QA-061版本/版次修改事项/摘要生效日期A/1 初版发行2019年8月10日编制:职位:品质经理签署:日期:审核:职位:工厂经理签署:日期:批准:职位:总经理签署:日期:此文件若盖有红色“受控文件章”的印章,则是正式文件,任何员工不得私自影印正本印章受控发行章版本:A/2文件編号:DG-QA-061 1.目的为我司进料压铸件提供外观依据,确保压铸件符合客户品质要求2.范围公司所有进料压铸件3.定义3.1 压铸(英文:die casting)是一种金属铸造工艺,其特点是利用模具腔对融化的金属施加高压。
3.2压铸件:经过时效处理、打磨、喷砂、整形、电镀、喷涂或电泳等表面处理后的压铸产品。
3.3压铸件常见缺陷特征:3.3.1 外部缺陷及其定义粘模:顺着脱模方向,由于金属粘附,模具制造斜度太小而造成铸件表面的拉伤痕迹,严重时称为拉伤面;冷隔:在压铸件表面,明显、不规则、下陷的线形纹路(有穿透与不穿透两种),形状细小而狭长;有时交接边缘光滑,有断开的可能。
龟裂毛刺:由于模具型腔表面产生热疲劳而形成的铸件表面上的网状凸起痕迹和金属刺;凹陷:铸件的厚度,部分表面有平滑下凹现象。
欠铸:铸件表面有浇铸不足的部位,导致轮廓不清;飞边、毛刺:在分型面边缘出现金属薄片,或粗糙、锋利的棱角。
错位:铸件的一部分与一部分在分型面上错开,发生相对位移。
脱皮:铸件表面部分与基体剥离的现象。
色斑:铸件表面上呈现的不用于基体金属的斑点,一般为涂料化学反应形成。
3.3.2 内部缺陷及其定义砂孔:在压铸件中,由于压铸的特殊性,合金是在高温、高压、高速的状态下成型的,所以压铸件内部是不可避免的存在孔洞,我们统称这些孔洞为砂孔。
锁孔:铸件凝固过程中,金属补偿不足所形成的呈现暗色、形状不规则的孔洞,即为缩孔。
气孔:因卷入气体而导致的压铸件内部的孔状缺陷,解剖后外观检验或探伤检验,气孔具有光滑的表面、形状为圆形。
Design Tips for Die Casting Parts铸件设计要点
Design Tips for Die Casting PartsNearly every part of a product, or the entire product, has its genesis in the die casting process. Die casting describes a manufacturing process that allows manufacturers to create sharply defined smooth- or textured-surface metal parts. Utilizing a cold- or hot-chamber manufacturing technique that relies on high-pressure, the process forces and injects molten metal into a reusable steel die at a speed of 60-100 miles per hour. A number of clamps holds the mold in place during the injection, cooling and solidification stage.Similar to the injection molding process, which uses another class of materials, die casting produces parts from a durable range of non-ferrous metals, such as zinc, magnesium, aluminum and an array of composite materials. The type of metal chosen to fabricate the part determines whether the manufacturers will use the hot chamber or cold chamber method to inject the metal into the die.Many manufacturers prefer die casting over other manufacturing processes because of the ability to create such an array of parts and products at high-speed and with precision. The current uses for die castings include machinery, vehicles, appliances, toys, sporting goods, office equipment heat sinks, enclosures and many other applications.In addition, die casting enables the production of components with fine details like lettering, textured surfaces and other features without the need for additional processing. The ability to maintain close tolerances, which often eliminates all machining, makes die casting suitable for lower-volume products as well.In recent years, innovations in manufacturing technology and material science have eliminated many of the old design assumptions and process challenges. These advances have resulted in new specifications for essential design elements, including dimensional control, draft and flatness.For designers involved in die casting, here are some tips and hints on how to design your part or product efficiently and economically.1 Parting Lines for Die Cast Components and ProductsOne of the most important elements of die casting design will be to decide on some type of parting line that will split the part and produce a contact surface between two or more components. Where the designer places this line depends on the geometrical shapes and the tolerances of the different surfaces. The designer has two choices — either a straight parting line or a broken parting line. You should try to design parts with a straight parting line because it is the least expensive option as far as tooling costs. When making a decision on the parting line, the designer should consider the following factors:∙Customer’s specifications— Usually, the part or product specification of the customer will make it challenging to place the parting line. The customer’s tolerance requirements also become an issue because parting line surfaces tend to have a lower quality compared to other surfaces.∙Die costs— A straight parting line can lower the cost of tooling. However, in some cases it will be more economical to design a broken parting line. This is due to adding features in the part that wouldrequire side die pulls, which are usually more expensive than stepping the parting line.∙Machining— Many parts require post -production machining. Areas that have critical tolerance or finishing requirement should be located to one side of the die In addition, the area near the parting line should not have essential cosmetic requirement because the gates and vents that will be positioned along this line will be visible. Furthermore, this area will need additional processing to minimize or removematerial from the casting.∙Metal flow— The importance of the filling process depends on the proper placement of the gate inlet. The inlet, which must be located in the parting line, determines if the casting fills properly with the molten metal. Under high-pressure die casting, the injection or filling mechanism can press the metal into the casting to prevent the part from shrinking during solidification.∙Cores— The positions of cores (cores form holes in the part) will determine the placement of the parting line. The designer must consider the location of the core, as well as the size of the diameter and length of each core for each hole needed in the casting.∙Knockout Pins (also called ejector pins)— The parting line location decides the degree of force required to knock out the part when pressure die-casting. You should try to avoid undercuts when possible, but especially parallel to the parting line. These features may require additional die components ormachining.In the die casting design process, metal flow is one of the most important considerations. If the mold does not fill correctly, it can result in defects such as visible surface flowlines and air pockets that create internal porosity in the part. You will also need to consider the ejector pins that will eject the casting part from the die. You must design the pins in a manner that leaves a minimum number of residual pin marks on the surface of the casting. In addition, the ejector pins keep the part from bending. Ejector pin marks result in depressed or raised impressions of about 015” (.381 mm). The diameter of the ejector pin marks will vary depending on the size of the casting. For optimal manufacturability, use raised ejector pin marks.2 Flash Formation and LocationAt the parting line of the two die halves, an extension of metal can form on the casting or where separate die parts cast a feature. In addition, a seam of metal can result from regular operation of the ejector pins. You can account for this flash in the design phase and determine the amount of metal you must remove as well as the method of removal. Dealing with issues early during the design phase may produce cost savings for the overall manufacturing process.3 Proper Draft for Die Casting PartsThe designer must incorporate drafts in the casting. The draft refers to the taper or slope assigned to cores and other parts of the die cavity. This element prevents the casting from getting trapped in the mold ortool during the ejection of the casting, making it much easier to open the die and easily eject the casting from the die casting die. Always try to introduce drafts in the process as early as possible. The drafts start from the parting line. The placement of the draft — on an inside wall, outside wall and/or hole — will have different calculations. The variations in shrinkage will determine the correct calculation (amount of draft).Generally, in the formula, the figure is always a constant. It depends on the alloy used and the depth of the surface. However, any die cast surface that is parallel with the opening direction of the die should be tapered for proper ejection of the part from the die. In this case, the draft requirement results in an angle and is not constant.Outside wall placement requires the least amount of drafts because the casting tends to shrink away from the die steel forming outside the surfaces. In contrast, untapped holes require the most draft. As the casting shrinks during solidification, it exerts great force around the die steel, which forms the interior surface of the hole. The inside wall also undergoes casting shrinkage onto the die steel that creates the surfaces of the inside walls.A die that is easy to open and get the part ejected will result in a part that is more precise forstraightness/flatness and one that has a higher surface quality.4 Radii & FilletThe use of both fillet and radii can increase structural integrity. To promote metal flow, use a liberal radii and transition. For intersecting surfaces that meet at a sharp corner or edge, fillets can prevent high stress concentrations at the juncture, in both the die casting die and the parts. Fillets reduce the concentration of heat in the die and the part. The proper use of fillets will reduce the die maintenance costs and increase the life of the tool.For a fillet projected in a location that is perpendicular to the parting line, you must add draft. The amount of draft depends on the draft of the intersecting surface. To maintain continuity for the edges and smoothness for the components, create constant-radius fillets. Shallow castings tend to have smaller fillets. Deep pockets and other inside corners require larger fillets.5 Wall ThicknessesGenerally, die castings consist of thin-wall structures that do not have any hard and fast rules for minimum and maximum wall thicknesses. It is important to design uniform walls throughout the part and where variations occur. This will ensure a smooth metal flow during filling and minimize distortion caused from cooling and shrinkage. A good mold filling will produce parts with excellent properties and few defects. The key is to design the casting so the entire mold fills before solidification begins. Failure to fill the whole mold first could lead to cold shuts (poor surface finish) in the casting. You can reduce the risk of cold shuts without any sharp or unnecessary corners, which impede the melts flow in the mold, by using radii.Innovations in die casting technology make it possible to produce parts with minimum and maximum thicknesses that were unattainable a few years ago. Utilize this capability only when you find it necessary to enhance performance or to achieve economic benefits. Otherwise, stick with uniform wall thicknesses. You can make the metal flow better through the mold with thicker walls and ribs. When the main wall has protruding features, make sure they do not add significantly to the thickness of the wall. Excessive bulk can delay cooling.When viewing the part from the die opening direction, make sure the features that project from the side wall do not lie behind one another so you can avoid die casting depressions.Although design casting allows for the production of intricately detailed components, the designer should avoid the use of interior undercuts when designing the parts because the moving interior core mechanics are difficult to operate. You can produce this feature by machining, which increases part cost but reduces the tool cost by avoiding core pulls in the die.When you design a part, you must add ribs on thin walls. Ribs can increase the stiffness and add strength to fabricate a more solid part. Often, the addition of ribs can do more to strengthen a component than solid material because of the porosity, and ribs result in a lighter part. Improper rib design can result in the concentration of working stresses or the creation of unnecessary stresses at the edges of the ribs. You must place the ribs in the proper locations for the ejector pins to be placed on the ribs for ejection strength.Ribs should assist the flow of molten metal. Whenever possible, include radii and fillets with ribs to reduce the number of quick changes at sharp corners and in cross sections. It also allows for improved ejection of the casting. Design into the part an odd number of ribs. This technique eliminates the buildup of stress across to an adjacent rib and reduces the formation of thick intersections.External Corners— Occasionally the die casting die may have sharply squared external corners at certain locations. At parting line locations and die block intersections, the designer must have this type of corner. On other corners, the design should incorporate radii to avoid premature die failure. It also reduces the chances of damaging the edge of the part during handling and assembly, and it enhances safety for the personnel who handle the material.Metal Savers—Ribs have empty spaces between them called “metal savers.” Metal savers do not serve a functional purpose. However, when you design your parts, keep in mind that positioning ribs too close together can cause weak metal savers. When you design your parts, evaluate the design for the following design weaknesses.When designing your part, review the specifications as it relates to metal savers to avoid compromising the integrity of the part.Holes & Windows— Holes and windows may be among the most important considerations for design geometry. This element affects the molten metal flow through the component, and the configurations play a critical role in the manufacturability and the final quality of the component. The perimeters of holes and windows tend to latch onto the die steel during the cooling period, which can have an effect on the ejection of the part from the die. Remember, when calculating the draft, the holes and windows require more draft, compared to inside and outside wall features. For recommended drafts. refer to the NADCA Product Standard Publication#402. Draft charts are included in Chapter 4, Standard S-4A-7-15.7 Die Casting Lettering, Symbols & OrnamentationsMany casted parts require the designer to add lettering, logos, trademarks and other identification to the casting. Other castings have date marks to identify the manufacturing date to differentiate one batch from another.Manufacturers use two methods to create these characteristics. The first technique, which is the most common and cost effective, uses raised letters. In addition, because this method embeds the lettering into the cavity, they last longer. The second technique depresses the letterings into the component by forming protrudingcharacters on the die. This technique is more expensive to make in the die and it makes the characters susceptible to wear and requires more maintenance.8Incorporating Bosses Into Die Cast DesignMany parts require bosses to function as mounting points and standoffs. When adding this feature, the designer must take great care to maintain consistent wall thickness. This will require the addition of a hole in the middle of the boss. In addition, the inner and outer surface requires a draft. It is difficult for molten metal to flow up a tall narrow boss feature to fill it to the maximum level. Because of that, die casting designers usually add a generous amount of fillets and ribs (gussets) to assist the flow of the molten metal into these areas and to facilitate the ejection of the part from the die.9 Cast Surface Finish on Die Cast PartsThe finish on the tooling will determine the finished surface of a die cast component. A highly-polished finish on the die will produce good surface casting parts. The surface roughness of most tooling makes it easy to produce a matte finish. Some decorative cast components and other casting parts and products require the application of an external surface finish.So designers and manufacturers can plan for as-cast surface finishes from the outset of the die design, the NADCA divides finishes into five classes and offers the following guidelines:∙Class 1: Utility Grade— This class does not have any cosmetic requirement for as-cast finishes and allows for cold shut, rubs, porosity, lubricant build-up and other imperfections. The end-use finish can be as-cast, or the customer can choose a protective coating such as anodize (non-decorative) or chromate (yellow, clear).∙Class 2: Functional Grade— Allows surface imperfections that can be removed by spot polishing or covered by heavy paint. For the final finish, the customer may select decorative coating, such aslacquers, enamels, plating (Al), chemical finish or polished finish.∙Class 3: Commercial Grade— Permits the removal of surface imperfections by methods agreed to by the customer. For the final finish, the design can call for structural parts in high-stress areas. Other options are Plating (Zn), electrostatic painting and transparent paints.∙Class 4: Consumer Grade— This grade has non-objectionable surface imperfections. In the case of rejection because of surface waviness (flatness), as noted by the reflection of light, the customer can determine a course of action in agreement with the die caster. For end use, the designer can use decorative parts.∙Class 5: Superior Grade— The finish that applies to limited areas on the part has a maximum value expressed in micro-inches on the print. The end use consists of O-Ring Seats or Gasket areas.As-cast surface categories do not apply to machined surfaces. The designer must identify finished machined surfaces separately on the design drawing. The customer and the die caster must agree to the final selection.To facilitate the development of a die casting design model and to reduce the possibility for feature tree errors, NADCA recommends the use of the following CAD Feature Order:∙Base geometry features:Put the features that comprise the base geometry of the model at the top of the feature tree, including bosses,extrusions, revolves, cuts, shells, lofts and sweeps.∙Cast cored holes:Holes that you will cast during the manufacturing process, and which you may or may not tap or machine later.∙Parting lines:Placing the parting lines next in the feature order including any parting line that appears in a component after applying the draft.∙Draft:This feature goes next.∙Fillets:Add fillets to all geometries, with the exception of some parting lines.∙Machining:Lastly, add all machine features at the end of the feature order — suppressed and un-suppressed.Putting machining features last allow effortless creation of as-cast and machined model configurations. This is a good way to identify as-cast features and features that require machining. Sometimes, very large fillets, draft or highly tapered components may be included in core geometry features. Position these design elements at the top of the feature order tree.11Focus on These Principles for Successful Die Casting DesignIn summary, along with the functional requirement, the designer must incorporate numerous manufacturability-related-factors into the design of a part or product to produce successful castings economically. To achieve this overall design goal, keep the following objectives in mind during the design process:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DIE CASTING HANKBOOK 压铸手册目录( Table of Contents )1.压铸简介( An Intruduction to Die Casting )1>压铸 —— 工业体系( Die Casting ―― The Industrial System )2>配套工业( Supporting Industries )3>北美压铸学会( The North Amercian Die Casting Association )4>压铸业( The Die Casting Industry )5>开发历史( Historical Development )2.压铸原理和理论( Principles and Theory of Die Casting )1>压铸过程( Die Casting Process )2>压铸机能力 – PQ2分析 ( Machine Capacity――PQ2 )3>填料时间分析( Fill Time Analysis )4>压铸热流理论( Heat Flow Theory for Die Casting )3. 压铸合金和合金熔化与处理( Die Casting Alloys and Alloy Melting and Handling )1>铝 ( Aluminum )2>镁( Magnesium )3>锌( Zinc )4. 市场和产品设计( Markets and Product Design )1>压铸件的市场( Markets for Die Castings )2>工业设计标准( Industry Design Standards )5.高完整性压铸件( High Integrity Die Castings )1>高完整性铸造过程( High Integrity Casting Processes )2>高完整性零件设计标准( High Integrity Part Design Standards )6. 模具材料和模具设计( Die Materials and Die Design )1>模具材料和热处理( Die Materials and Heat Treat )2>压铸模设计( Die Casting Die Design )3>模具涂层和表面处理( Die Coatings and Surface Finish )4>计算机模拟( Computer Simulation )7.压铸机标准( Die Casting Machine Standards )1>压铸机革新( Innovations in Die Casting Machines )2>描述冷室机的规格( Specifying a Cold Chamber Machine )3>最佳的压射司筒性能( Optimizintg shot sleeve Performance )4>压铸机安全标准( Machine Safety Standards )8. 生产过程和自动化设备( Processing and Automation Equipment )1>浇包( Ladles )2>往复运动机装置( Reciprocators )3>脱模器 ( Extractors )4>精加工体系 ( Finishing System9. 环境问题( Environmental Issues )1>废水管理 (Wastewater management )2>雨水管理( Storm Water Management )3>油和有害废物管理( Oil and Hazardous Waste Management )4>空气排放( Air Emissions )5>压铸工业的ISO 14001 ( ISO 14001 for the Die Casting Industry )10. 客户质量和过程控制( Customer Quality and Process Control )1>品质: 生产力和利润(Quality, Productivity and Profitability )2>质量和生产力: 公司轮廓( Quality and Productivity : Company Profiles )3>过程控制的实施(Implementation of Process Control )4>水管线路图和它的使用( The Waterline Diagram and Its Use )5>压铸装配图( Die Casting Set-up Chart )11. 教育和认证( Education and certification )1>认证等级( Certification levels )2>认证类型( Certification Types )3>初级认证( Initial Certification )4>认证的维护( Maintenance of Certification )12. 词汇表( Dictionary of Terms )附录 ( Appendix )NADCA 出版物清单 ( NADCA Publication list )NADCA 教育课程简述( NADCA Education Course Descriptions )前言(Preface):这本手册第二版由北美压铸学会(NADCA)编纂. 它更新了1982年以前出版的压铸手册, 这本手册的目的是给压铸工业提供一般性技朮信息. 包括的课题有: 压铸件如何开发及何时开始开发, 零件如何通过压铸过程设计并生产, 压铸件的市场, 压铸工业中的环境问题是什么, 各种压铸过程的优点, 还包括压铸中常用词条的详细解释.这本手册的各个章节由压铸工业特别课题专家编制. 为了提高整个压铸工业的认识, 这本手册包含了这些工业专家的智能和专门知识. 这本手册从头至尾对各个课题都提供了更祥细的信息以供参考.我们希望这本手册对你是有用的工具, 使你致力于学习和实践压铸的过程中取得更大的成功. 压铸对于许多复杂组件的生产是一个稳定的和成本有效的过程, 压铸工业的前景是非常美好的, 但是要维持加工过程的竟争性优点就要求持续改善. 这本手册是一本专以压铸工业的持续改善为目标.谢启(Acknowledgements):这本手册通过北美压铸工业许多技朮专家的奉献及自愿参预了排字、校订和各章节的编纂工作. 他们希望通过分亨他们的智慧和经验, 压铸业会壮大和美好, 以下是对此书的出版作出贡献的人员名单. (略)I.压铸简介( An Introduction to Die Casting )由于金属熔化之后会按要求在具有腔型的设计模具内凝固, 所以压铸过程是真实的金属铸造过程. 在铸造过程中利用沙或石膏为模具, 熔化金属的热量或者铸件在出模之时毁坏了模具. 在压铸过程中, 由硬质钢制成的模具可以承受铸造热量, 而且由可动模块组建的模具使凝固铸件易于清除出模腔. 因此, 这些模具可以重复使用, 而且可以用来生产出成千上万甚至百万件铸件. 这些模具称作 “dies”, 是因为它们具有永久性、并可重复使用, 还可承受强大的压力或强度且包括复杂的机能.压铸过程实际上有三个子过程. 它们是: (1) 金属型铸模铸造(有时称腔型压铸); (2) 低压力压铸; (3) 高压力压铸. 在北美尽管技朮包含所有的三个子过程, 但是压铸过程通常指高压力压铸. 三种过程主要的不同点在于把熔化金属压入模中所用的压力大小不一样. 三种过程都使用可重复利用(通常是硬质钢)的模作为模具。
在金属型铸模中铸造时, 熔化金属流进模中且流动仅靠重力作用。
低压力过程使用的压力可达1.5Mpa (200磅/平方英寸)迫使熔化金属流进模中。
高压力压铸过程在压力为7.0至140Mpa (1000至20000磅/平方英寸)的条件下把熔化金属压入模中。
随着压力的增加, 要求把熔化金属填满模中所用的时间就会相应地减少。
随着熔化金属射料压力的增加, 要求机器使用相应增加的力保持两块半模贴在一起. 内部金属液压会非常高, 因此压铸机要夹紧闭合的模所用的力也要非常大. 大型压铸机使用超过25MN(3.000吨)的力夹紧模. 为了使用更大的压力, 熔化金属被舀进圆柱状室内并由液压驱动的柱塞把金属推进模中.机器依据运动的先后顺序被制造成自动化地循环. 循环过程包括: (1)合模; (2)给模施加夹紧力; (3) 舀进熔化金属; (4)把熔化金属射入模中; (5)等待金属在模中凝固; (6)开模; (7)铸件脱模. 模吸收铸件的凝固热量, 热量必须通过模被处理, 而且在制造下一个铸件之前要清理掉模腔区域的热量. 热流通过模的设计和控制是过程中最重要和颇具挑战性的状况之一. 这种过程技朮在使用消耗性的模具铸造过程中还没有对等物.(1) 压铸(DIE CASTING) --- 工业体系(THE INDUSTRIAL SYSTEM)压铸仅是工业体系内制造过程中把原材料加工成消费品的一个步骤. 原材料(金属)要么产生于矿石之中, 要么产生于废金属之中.锌压铸合金或镁压铸合金直接从矿石中开采出来, 再经过采矿公司和/或冶炼公司精炼成高纯度的合金锭并作为“原始”金属出售. 大型的压铸公司采购回这种“纯”合金锭后给其添加其它成分变成特殊用途的合金. 多数小型压铸公司要么从冶炼厂、要么从专门从事购买纯金属并生产压铸合金的合金厂采购预制合金. 锌采矿公司支持国际铅锌研究组织(ILZRO), 资助研究的目的在于开发这些金属的新用途(或更为有效的使用方法). 这些公司也支持另外一家叫做 “InterZinc”的组织, 促进锌的利用并协助开发新的市场. 压铸公司可以得到这些组织的技朮支持.大多数铝和铜压铸合金是二次合金, 它们由废金属精炼而成. 废金属可以从其它加工操作中收集, 比如板材冲压形成的碎屑, 或机加工操作中的刮屑. 大部分废金属来源于超过使用寿命的物品和准备处理的物品. 二次冶炼公司采购废料, 然后分选精炼成压铸合金。
在精炼过程中可以加入“新”金属以保证合金成分的正确性. 冶炼厂把合金浇铸成合金锭供压铸公司采购. 大多数铝合金在熔化状态下直接用特制的料罐车运到压铸公司. 这样一个过程使压铸公司节约了高额的再熔化成本. 二次铝冶炼公司支持一个名叫铝协会(AA)的贸易组织. 铜采矿公司支持名为铜开发协会(CDA)的贸易、市场开发和标准组织. 这样的协会支持国际铜协会(ICA), 国际铜协会赞助并促进研究, 其目的在于扩大铜的应用.在铸造之时, 每一次铸造都包括额外的、以直浇口(饼干), 浇道、溢流和批锋状态存在, 且又必须要清除掉的金属. 此种额外的材料通常要使用冲模在外力的作用下从铸件上切除掉. 这些毛边料在压铸公司作为废料使用.有些情况下, 压铸公司在铸件冲完水口的情况下就直接把铸件出售给加工铸件的公司. 也有些压铸公司会对铸件实施其它加工和金属表面处理(例如: 磨光, 抛光, 电镀, 喷油和加工), 然后再交付给客户. 在这种情况中, 压铸件采购商简单地把表面处理过的零件装配在最终的产品上, 压铸件的生产通常在诸如家庭用品制品厂、汽车公司和五金厂内进行.(2) 配套工业(SUPPORING INDUSTRIES )压铸业是制造业中高度专业化的一部分. 影响压铸业的工业是: 机械工具业、模具加工业、公用设施业、基础设施业、金融业、运输业和通讯业. 有些配套工业已发展成为集中服务压铸业的特殊团体. 比如: 机械工具业、模具加工业、过程润滑剂生产业、工业熔炉业。