高二理科数学下学期月考卷
四川省凉山州宁南中学2022-2023学年高二下学期第二次月考理科数学试题
【详解】解:∵ A = {x 1 < x < 2}, B = {x 1 £ x £ 2} ,
∴ A Ç B = {x 1 < x < 2} ,
故选:D. 2.C 【分析】由复数运算法则可得 z 代数形式,后可得其虚部.
【详解】
z
=
3 + 2i 1+ i
=
(3 + 2i)(1- i) (1+ i)(1- i)
=
5
2
i
=
5 2
-
1 2
i
,则
z
的虚部是
-
1 2
.
故选:C 3.B
【分析】根据点 P ( x, y) 在椭圆上得
x2 a2
+
y2 b2
= 1,且 -a
£
x
£ a ,再利用两点距离求得
PF1
=
c a
x + a ,从而可确定
PF1
a, c 的最大值与最小值,即可求得 的值,即可得离心率
e
=
c a
的值.
【详解】设椭圆的半焦距为 c ,若椭圆上一点 P ( x,
为圆柱下底面圆
O
的直径,C
是下底面圆周上一点,已知
ÐAOC
=
π 3
,
OA
=
2
,圆柱的高为
5.若点
D
在圆柱表面上运动,且满足
uuur BC
×
uuur CD
=
0
,则点
D
的轨
迹所围成图形的面积为________.
试卷第31 页,共33 页
16.已知函数 f ( x) = aln2x +1- x (a Î R) 有且仅有一条切线经过点 (0, 0) .若"x Î[1, +¥) , f ( x) + mlnx £ 0 恒成立,则实数 m 的最大值是______.
高二第二学期月考数学试卷(理科)及答案
.高二第二学期月考数学试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.设集合A={1,2,3},B={4,5},M={x |x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )A.3B.4C.5D.62.已知i 是虚数单位,则复数z = 2−i4+3i 在复平面内对应的点所在的象限为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.曲线y = x 2+3x 在点A (2,10)处的切线的斜率k 是( ) A.7 B.6 C.5 D.44.(√x −1x )9展开式中的常数项是( )A.-36B.36C.-84D.845.已知命题p :∃a 0∈(0,+∞),a 02-2a 0-3>0,那么命题p 的否定是( ) A.∃a 0∈(0,+∞),a 02 - 2a 0 -3≤0 B.∃a 0∈(-∞,0),a 02 - 2a 0 -3≤0 C.∀a ∈(0,+∞),a 2 - 2a -3≤0 D.∀a ∈(-∞,0),a 2 - 2a -3≤06.已知F 1,F 2是双曲线12222=-b x a y(a >0,b >0)的下、上焦点,点F 2关于渐近线的对称点恰好落在以F 1为圆心,|OF 1|为半径的圆上,则双曲线的离心率为( ) A.√2 B.2 C.√3 D.37.某餐厅的原料费支出x 与销售额y (单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y 与x 的线性回归方程为∧y=8.5x +7.5,则表中的m 的值为( )A.50B.55C.60D.658.若f (x )=x 2 - 2x - 4lnx ,则)('x f <0的解集( )A.(0,+∞)B.(0,2)C.(0,2)∪(-∞,-1)D.(2,+∞)9.设△ABC 的三内角A 、B 、C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是( )A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形10.设等差数列{a n }的前n 项和为S n ,若a 1 = - 11,a 4 + a 6= - 6,则当S n 取最小值时,n 等于( ) A.6 B.7 C.8 D.911.由曲线y =√x ,直线y = x - 2及y 轴所围成的图形的面积为( ) A.103B.4C.163D.612.定义在R 上的函数f (x )满足:f (x )+)('x f >1,f (0)= 4,则不等式e x f (x )>e x +3(其中e 为自然对数的底数)的解集为( ) A.(0,+∞) B.(-∞,0)∪(3,+∞) C.(-∞,0)∪(0,+∞) D.(3,+∞)二、填空题(本大题共4小题,共20.0分)13.设随机变量X ~N (μ,σ2),且P (X <1)=12, P (X >2)=p ,则P (0<X <1)= ______ . 14.已知函数f (x )=13x 3+ax 2+x +1有两个极值点,则实数a 的取值范围是 ______ .15.已知函数xx f x f sin cos )4()('+=π,则f (π4)= ______ .16.观察下列一组等式:①sin 230°+cos 260°+sin 30°cos 60° = 34, ②sin 215°+cos 245°+sin 15°cos 45° = 34, ③sin 245°+cos 275°+sin 45°cos 75° = 34,…,那么,类比推广上述结果,可以得到的一般结果是: ______ .三、解答题(本大题共6小题,共72.0分).17.已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,√3sin C cos C - cos 2C = 12,且c =3 (1)求角C(2)若向量m⃗⃗ =(1,sin A )与n⃗ =(2,sin B )共线,求a 、b 的值.18.已知正数数列 {a n } 的前n 项和为S n ,且对任意的正整数n 满足2√S n =a n +1. (Ⅰ)求数列 {a n } 的通项公式; (Ⅱ)设11+⋅=n n n a a b ,求数列 {b n } 的前n 项和B n .19.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (Ⅰ)求在1次游戏中获奖的概率;(Ⅱ)求在2次游戏中获奖次数X 的分布列及数学期望E (X ).20.如图,在直三棱柱ABC-A 1B 1C 1中,∠BAC=90°,AC=2√3,AA 1=√3,AB=2,点D 在棱B 1C 1上,且B 1C 1=4B 1D(Ⅰ)求证:BD ⊥A 1C(Ⅱ)求二面角B-A 1D-C 的大小.21.已知椭圆C :x 2a 2+y 2b 2=1的左焦点F 1的坐标为(-√3,0),F 2是它的右焦点,点M 是椭圆C 上一点,△MF 1F 2的周长等于4+2√3. (1)求椭圆C 的方程;(2)过定点P (0,2)作直线l 与椭圆C 交于不同的两点A ,B ,且OA ⊥OB (其中O 为坐标原点),求直线l 的方程.22.已知函f (x )= ax 2 - e x (a ∈R ).(Ⅰ)a =1时,试判断f (x )的单调性并给予证明; (Ⅱ)若f (x )有两个极值点x 1,x 2(x 1<x 2). (i ) 求实数a 的取值范围; (ii )证明:1)(21-<<-x f e(注:e 是自然对数的底数)【解析】1. 解:因为集合A={1,2,3},B={4,5},M={x |x =a +b ,a ∈A ,b ∈B},所以a +b 的值可能为:1+4=5、1+5=6、2+4=6、2+5=7、3+4=7、3+5=8, 所以M 中元素只有:5,6,7,8.共4个. 故选B .利用已知条件,直接求出a +b ,利用集合元素互异求出M 中元素的个数即可. 本题考查集合中元素个数的最值,集合中元素的互异性的应用,考查计算能力. 2. 解:复数z =2−i4+3i =(2−i)(4−3i)(4+3i)(4−3i)=5−10i 25=15−25i 在复平面内对应的点(15,−25)所在的象限为第四象限. 故选:D ..利用复数的运算法则及其几何意义即可得出.本题考查了复数的运算法则及其几何意义,属于基础题. 3. 解:由题意知,y =x 2+3x ,则y ′=2x +3, ∴在点A (2,10)处的切线的斜率k =4+3=7, 故选:A .根据求导公式求出y ′,由导数的几何意义求出在点A (2,10)处的切线的斜率k . 本题考查求导公式和法则,以及导数的几何意义,属于基础题.4. 解:(√x −1x )9展开式的通项公式为T r +1=C 9r•(-1)r •x9−3r2,令9−3r 2=0,求得r =3,可得(√x −1x )9展开式中的常数项是-C 93=-84,故选:C .先求出二项式展开式的通项公式,再令x 的幂指数等于0,求得r 的值,即可求得展开式中的常数项的值.本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题. 5. 解:根据特称命题的否定是全称命题,得; 命题p :∃a 0∈(0,+∞),a 02-2a 0-3>0, 那么命题p 的否定是:∀a ∈(0,+∞),a 2-2a -3≤0. 故选:C .根据特称命题的否定是全称命题,写出命题p 的否定命题¬p 即可. 本题考查了特称命题与全称命题的应用问题,是基础题目.6. 解:由题意,F 1(0,-c ),F 2(0,c ),一条渐近线方程为y =ab x ,则F 2到渐近线的距离为√a 2+b 2=b .设F 2关于渐近线的对称点为M ,F 2M 与渐近线交于A ,∴|MF 2|=2b ,A 为F 2M 的中点, 又0是F 1F 2的中点,∴OA ∥F 1M ,∴∠F 1MF 2为直角, ∴△MF 1F 2为直角三角形, ∴由勾股定理得4c 2=c 2+4b 2 ∴3c 2=4(c 2-a 2),∴c 2=4a 2, ∴c =2a ,∴e =2. 故选:B .首先求出F 2到渐近线的距离,利用F 2关于渐近线的对称点恰落在以F 1为圆心,|OF 1|为半径的圆上,可得直角三角形,即可求出双曲线的离心率.本题主要考查了双曲线的几何性质以及有关离心率和渐近线,考查勾股定理的运用,考查学生的计算能力,属于中档题. 7. 解:由题意,x .=2+4+5+6+85=5,y .=25+35+m+55+755=38+m5,∵y 关于x 的线性回归方程为y ^=8.5x +7.5, 根据线性回归方程必过样本的中心, ∴38+m5=8.5×5+7.5,∴m =60. 故选:C .计算样本中心点,根据线性回归方程恒过样本中心点,列出方程,求解即可得到结论. 本题考查线性回归方程的运用,解题的关键是利用线性回归方程恒过样本中心点,这是线性回归方程中最常考的知识点.属于基础题.8. 解:函数f (x )=x 2-2x -4lnx 的定义域为{x |x >0}, 则f '(x )=2x -2-4x =2x 2−2x−4x,由f '(x )=2x 2−2x−4x <0,得x 2-x -2<0,解得-1<x <2,∵x >0, ∴不等式的解为0<x <2, 故选:B .求函数的定义域,然后求函数导数,由导函数小于0求解不等式即可得到答案.本题主要考查导数的计算以及导数不等式的解法,注意要先求函数定义域,是基础题. 9. 解:∵△ABC 的三内角A 、B 、C 成等差数列, ∴∠B=60°,∠A+∠C=120°①; 又sin A 、sin B 、sin C 成等比数列, ∴sin 2B=sin A •sin C=34,②由①②得:sin A •sin (120°-A )=sin A •(sin 120°cos A-cos 120°sin A )=√34sin 2A+12•1−cos2A2=√34sin 2A-14cos 2A+14 =12sin (2A-30°)+14 =34,∴sin (2A-30°)=1,又0°<∠A <120° ∴∠A=60°. 故选D .先由△ABC 的三内角A 、B 、C 成等差数列,求得∠B=60°,∠A+∠C=120°①;再由sin A 、sin B 、sin C 成等比数列,得sin 2B=sin A •sin C ,②,①②结合即可判断这个三角形的形状.本题考查数列与三角函数的综合,关键在于求得∠B=60°,∠A+∠C=120°,再利用三角公式转化,着重考查分析与转化的能力,属于中档题.10. 解:设该数列的公差为d ,则a 4+a 6=2a 1+8d =2×(-11)+8d =-6,解得d =2, 所以S n =−11n +n(n−1)2×2=n 2−12n =(n −6)2−36,所以当n =6时,S n 取最小值.故选A .条件已提供了首项,故用“a 1,d ”法,再转化为关于n 的二次函数解得. 本题考查等差数列的通项公式以及前n 项和公式的应用,考查二次函数最值的求法及计算能力.11. 解:联立方程{y =x −2y=√x得到两曲线的交点(4,2),因此曲线y =√x ,直线y =x -2及y 轴所围成的图形的面积为:S=∫(40√x−x+2)dx=(23x32−12x2+2x)|04=163.故选C.利用定积分知识求解该区域面积是解决本题的关键,要确定出曲线y=√x,直线y=x-2的交点,确定出积分区间和被积函数,利用导数和积分的关系完成本题的求解.本题考查曲边图形面积的计算问题,考查学生分析问题解决问题的能力和意识,考查学生的转化与化归能力和运算能力,考查学生对定积分与导数的联系的认识,求定积分关键要找准被积函数的原函数,属于定积分的简单应用问题.12. 解:设g(x)=e x f(x)-e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)-e x=e x[f(x)+f′(x)-1],∵f(x)+f′(x)>1,∴f(x)+f′(x)-1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+3,∴g(x)>3,又∵g(0)═e0f(0)-e0=4-1=3,∴g(x)>g(0),∴x>0故选:A.构造函数g(x)=e x f(x)-e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.13. 解:随机变量X~N(μ,σ2),可知随机变量服从正态分布,X=μ,是图象的对称轴,可知P(X<1)=12,P(X>2)=p,P(X<0)=p,则P(0<X<1)=12−p.故答案为:12−p.直接利用正态分布的性质求解即可.本题考查正态分布的简单性质的应用,基本知识的考查.14. 解:函数f(x)=13x3+ax2+x+1的导数f′(x)=x2+2ax+1由于函数f(x)有两个极值点,则方程f′(x)=0有两个不相等的实数根,即有△=4a2-4>0,解得,a>1或a<-1.故答案为:(-∞,-1)∪(1,+∞)求出函数的导数,令导数为0,由题意可得,判别式大于0,解不等式即可得到.本题考查导数的运用:求极值,考查二次方程实根的分布,考查运算能力,属于基础题.15. 解:由f(x)=f′(π4)cosx+sinx,得f′(x)=-f′(π4)sinx+cosx,所以f′(π4)=-f′(π4)sinπ4+cosπ4,f′(π4)=-√22f′(π4)+√22..解得f′(π4)=√2-1.所以f(x)=(√2-1)cosx+sinx则f(π4)=(√2-1)cosπ4+sinπ4=√22(√2−1)+√22=1.故答案为:1.由已知得f′(π4)=-f′(π4)sinπ4+cosπ4,从而f(x)=(√2-1)cosx+sinx,由此能求出f(π4).本题考查函数值的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.16. 解:观察下列一组等式:①sin230°+cos260°+sin30°cos60°=34,②sin215°+cos245°+sin15°cos45°=34,③sin245°+cos275°+sin45°cos75°=34,…,照此规律,可以得到的一般结果应该是sin2x+sinx)cos(30°+x)+cos2(30°+x),右边的式子:34,∴sin2x+sinxcos(30°+x)+cos2(30°+x)=34.证明:sin2x+sinx(√32cosx−12sinx)+(√32cosx−12sinx)2=sin2x+√32sinxcosx-12sin2x+34cos2x-√32sinxcosx+14sin2x=3 4sin2x+34cos2x=34.故答案为:sin2x+sinxcos(30°+x)+cos2(30°+x)=34.观察所给的等式,等号左边是sin230°+cos260°+sin30°cos60°,3sin215°+cos245°+sin15°cos45°…规律应该是sin2x+sinxcos(30°+x)+cos2(30°+x),右边的式子:34,写出结果.本题考查类比推理,考查对于所给的式子的理解,从所给式子出发,通过观察、类比、猜想出一般规律,不需要证明结论,该题着重考查了类比的能力.答案和解析【答案】1.B2.D3.A4.C5.C6.B7.C8.B9.D 10.A 11.C 12.A13.12−p14.(-∞,-1)∪(1,+∞)15.116.sin2(30°+x)+sin(30°+x)cos(30°-x)+cos2(30°-x)=34.17.解:(1)∵√3sinCcosC −cos 2C =12, ∴√32sin2C −1+cos2C2=12∴sin (2C-30°)=1∵0°<C <180° ∴C=60°(2)由(1)可得A+B=120° ∵m ⃗⃗⃗ =(1,sinA)与n ⃗ =(2,sinB)共线, ∴sin B-2sin A=0∴sin (120°-A )=2sin A 整理可得,cosA =√3sinA 即tan A=√33∴A=30°,B=90° ∵c =3.∴a =√3,b =2√3 18.解:(Ⅰ)由2√S n =a n +1,n =1代入得a 1=1, 两边平方得4S n =(a n +1)2(1),(1)式中n 用n -1代入得4S n−1=(a n−1+1)2&(n ≥2)(2), (1)-(2),得4a n =(a n +1)2-(a n -1+1)2,0=(a n -1)2-(a n -1+1)2,(3分) [(a n -1)+(a n -1+1)]•[(a n -1)-(a n -1+1)]=0, 由正数数列{a n },得a n -a n -1=2,所以数列{a n }是以1为首项,2为公差的等差数列,有a n =2n -1.(7分) (Ⅱ)b n =1an ⋅a n+1=1(2n−1)(2n+1)=12(12n−1−12n+1),裂项相消得B n =n2n+1.(14分)19.(I )解:设“在X 次游戏中摸出i 个白球”为事件A i (i =,0,1,2,3),“在1次游戏中获奖”为事件B ,则B=A 2∪A 3, 又P (A 3)=C 32C 21C 52C 32=15,P (A 2)=C 32C 22+C 31C 21C 21C 52C 32=12,且A 2,A 3互斥,所以P (B )=P (A 2)+P (A 3)=12+15=710; (II )解:由题意可知X 的所有可能取值为0,1,2.X ~B(2,710) 所以X 的分布列是 X 012P9100215049100X 的数学期望E (X )=0×9100+1×2150+2×49100=75. 20.(Ⅰ)证明:分别以AB 、AC 、AA 1所在直线为x 、y 、z 轴建立空间直角坐标系,∵AC=2√3,AA 1=√3,AB=2,点D 在棱B 1C 1上,且B 1C 1=4B 1D , ∴B (2,0,0),C (0,2√3,0),A 1(0,0,√3),D (32,√32,√3).则BD ⃗⃗⃗⃗⃗⃗ =(−12,√32,√3),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,−√3), ∴BD ⃗⃗⃗⃗⃗⃗ ⋅A 1C ⃗⃗⃗⃗⃗⃗⃗ =−12×0+√32×2√3−√3×√3=0.∴BD ⊥A 1C ;(Ⅱ)解:设平面BDA 1的一个法向量为m ⃗⃗⃗ =(x ,y ,z),BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(−2,0,√3),BD ⃗⃗⃗⃗⃗⃗ =(−12,√32,√3),∴{m ⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =−12x +√32y +√3z =0m ⃗⃗⃗ ⋅BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =−2x+√3z=0,取z =2,则m ⃗⃗⃗ =(√3,−3,2);设平面A 1DC 的一个法向量为n ⃗ =(x ,y ,z),DC ⃗⃗⃗⃗⃗ =(−32,3√32,−√3),CA 1⃗⃗⃗⃗⃗⃗⃗=(0,−2√3,√3),∴{n ⃗ ⋅CA 1⃗⃗⃗⃗⃗⃗⃗ =−2√3y +√3z =0n⃗⃗ ⋅DC ⃗⃗⃗⃗⃗⃗ =−32x+3√32y−√3z=0,取y =1,得n ⃗ =(−√3,1,2). ∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗ |m⃗⃗⃗ ||n ⃗⃗ |=4×22=−√28.∴二面角B-A 1D-C 的大小为arccos √28.21.解:(1)∵椭圆C :x 2a2+y 2b 2=1的左焦点F 1的坐标为(-√3,0),F 2是它的右焦点,点M 是椭圆C 上一点,△MF 1F 2的周长等于4+2√3, ∴{c =√32a +2c =4+2√3a 2=b 2+c 2,解得a =2,b =1, ∴椭圆C 的方程为x 24+y 2=1.(2)当直线l 的斜率不存在时,不满足题意.当直线l 的斜率存在时,设直线l 的方程为y =kx -2,A (x 1,y 1),B (x 2,y 2),联立{x 24+y 2=1y =kx −2,得(1+4k 2)x 2-16kx +12=0,△=(-16k )2-48(1+4k 2)>0,由根与系数关系得x 1+x 2=16k1+4k 2,x 1•x 2=121+4k 2, ∵y 1=kx 1-2,y 2=kx 2-2,∴y 1y 2=k 2x 1•x 2-2k (x 1+x 2)+4. ∵OA ⊥OB ,∴x 1x 2+y 1y 2=0,∴(1+k 2)x 1x 2-2k (x 1+x 2)+4=0, ∴12(1+k 2)1+4k -32k 21+4k +4=0,解得k =±2,∴直线l 的方程是y =2x -2或y =-2x -2. 22.解:(Ⅰ)当a =1时,f (x )=x 2-e x ,f (x )在R 上单调递减.事实上,要证f ′(x )=x 2-e x 在R 上为减函数,只要证明f ′(x )≤0对∀x ∈R 恒成立即可,设g (x )=f ′(x )=2x -e x ,则g ′(x )=2-e x ,.. 当x =ln 2时,g ′(x )=0,当x ∈(-∞,ln 2)时,g ′(x )>0,当x ∈(ln 2,+∞)时,g ′(x )<0.∴函数g (x )在(-∞,ln 2)上为增函数,在(ln 2,+∞)上为减函数.∴f ′(x )max =g (x )max =g (ln 2)=2ln 2-2<0,故f ′(x )<0恒成立所以f (x )在R 上单调递减; (Ⅱ)(i )由f (x )=ax 2-e x ,所以,f ′(x )=2ax -e x .若f (x )有两个极值点x 1,x 2,则x 1,x 2是方程f ′(x )=0的两个根,故方程2ax -e x =0有两个根x 1,x 2,又因为x =0显然不是该方程的根,所以方程2a =e x x 有两个根, 设ℎ(x)=e x x ,得ℎ′(x)=e x (x−1)x 2.若x <0时,h (x )<0且h ′(x )<0,h (x )单调递减.若x >0时,h (x )>0.当0<x <1时h ′(x )<0,h (x )单调递减,当x >1时h ′(x )>0,h (x )单调递增.要使方程2a =e x x 有两个根,需2a >h (1)=e ,故a >e 2且0<x 1<1<x 2.故a 的取值范围为(e 2,+∞).(ii )证明:由f ′(x 1)=0,得:2ax 1−e x 1=0,故a =e x 12x 1,x 1∈(0,1) f(x 1)=ax 12−e x 1=e x 12x 1⋅x 12−e x 1=e x 1(x 12−1),x 1∈(0,1)设s (t )=e t (t 2−1)(0<t <1),则s ′(t)=e t (t−12)<0,s (t )在(0,1)上单调递减 故s (1)<s (t )<s (0),即−e 2<f(x 1)<−1.。
高二数学下学期第二次月考试题 理含解析 试题
智才艺州攀枝花市创界学校二中二零二零—二零二壹高二下学期第二次月考数学试卷(理科)一、选择题〔此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕1.,且,那么实数的值是〔〕A.0B.1C. D.【答案】C【解析】【分析】先计算,再求得,利用模的计算公式求得a.【详解】∵,∴∴=3,得,那么,∴a=,应选:C.【点睛】此题主要考察复数模的运算、虚数i的周期,属于根底题.2.①是三角形一边的边长,是该边上的高,那么三角形的面积是,假设把扇形的弧长,半径分别看出三角形的底边长和高,可得到扇形的面积;②由,可得到,那么①、②两个推理依次是A.类比推理、归纳推理B.类比推理、演绎推理C.归纳推理、类比推理D.归纳推理、演绎推理【答案】A【解析】试题分析:根据类比推理、归纳推理的定义及特征,即可得出结论.详解:①由三角形性质得到圆的性质有相似之处,故推理为类比推理;②由特殊到一般,故推理为归纳推理.应选:A.点睛:此题考察的知识点是类比推理,归纳推理和演绎推理,纯熟掌握三种推理方式的定义及特征是解答此题的关键.满足,那么〔〕A. B.C. D.【答案】A【解析】【分析】由求得,利用复数的除法运算法那么化简即可.【详解】由得,所以=,应选A.【点睛】复数是高考中的必考知识,主要考察复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、一共轭复数、复数的模这些重要概念,复数的运算主要考察除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.=(i是虚数单位),那么复数的虚部为〔〕A.iB.-iC.1D.-1【答案】C【解析】故答案为C的导数是()A. B. C. D.【答案】D【解析】【分析】将f〔x〕=sin2x看成外函数和内函数,分别求导即可.【详解】将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x应选:D.【点睛】此题考察复合函数的求导,熟记简单复合函数求导,准确计算是关键,是根底题=的极值点为()A. B.C.或者D.【答案】B【解析】【分析】首先对函数求导,判断函数的单调性区间,从而求得函数的极值点,得到结果.【详解】==,函数在上是增函数,在上是减函数,所以x=1是函数的极小值点,应选B.【点睛】该题考察的是有关利用导数研究函数的极值点的问题,属于简单题目.()A.5B.6C.7D.8【答案】D【解析】时,时,应选D.与直线及所围成的封闭图形的面积为()A. B. C. D.【答案】D【解析】曲线与直线及所围成的封闭图形如下列图,图形的面积为,选.考点:定积分的简单应用.9.某校高二(2)班每周都会选出两位“进步之星〞,期中考试之后一周“进步之星〞人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,小赵说:“一定没有我,肯定有小宋〞,小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,小谭说:“小赵说的对〞.这四人中有且只有两人的说法是正确的,那么“进步之星〞是()A.小马、小谭B.小马、小宋C.小赵、小谭D.小赵、小宋【答案】C【解析】【分析】根据题意,得出四人中有且只有小马和小宋的说法是正确的,“进步之星〞是小赵和小谭.【详解】小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,假设小马说假话,那么小赵、小宋、小谭说的都是假话,不合题意,所以小马说的是真话;小赵说:“一定没有我,肯定有小宋〞是假话,否那么,小谭说的是真话,这样有三人说真话,不合题意;小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,是真话;小谭说:“小赵说的对〞,是假话;这样,四人中有且只有小马和小宋的说法是正确的,且“进步之星〞是小赵和小谭.应选:C.【点睛】此题考察了逻辑推理的应用问题,分情况讨论是关键,是根底题目.,直线过点且与曲线相切,那么切点的横坐标为()A. B.1 C.2 D.【答案】B【解析】【分析】设出切点坐标,求出原函数的导函数,得到曲线在切点处的切线方程,把点〔0,﹣e〕代入,利用函数零点的断定求得切点横坐标.【详解】由f〔x〕=e2x﹣1,得f′〔x〕=2e2x﹣1,设切点为〔〕,那么f′〔x0〕,∴曲线y=f〔x〕在切点处的切线方程为y〔x﹣〕.把点〔0,﹣e〕代入,得﹣e,即,两边取对数,得〔〕+ln〔〕﹣1=0.令g〔x〕=〔2x﹣1〕+ln〔2x﹣1〕﹣1,显然函数g〔x〕为〔,+∞〕上的增函数,又g〔1〕=0,∴x=1,即=1.应选:B.【点睛】此题考察利用导数研究过曲线上某点处的切线方程,考察函数零点的断定及应用,是中档题.f(x)的导函数f'(x)的图象如下列图,f(-1)=f(2)=3,令g(x)=(x-1)f(x),那么不等式g(x)≥3x-3的解集是() A.[-1,1]∪[2,+∞) B.(-∞,-1]∪[1,2]C.(-∞,-1]∪[2,+∞)D.[-1,2]【答案】A【解析】【分析】根据图象得到函数f〔x〕的单调区间,通过讨论x的范围,从而求出不等式的解集.【详解】由题意得:f〔x〕在〔﹣∞,1〕递减,在〔1,+∞〕递增,解不等式g〔x〕≥3x﹣3,即解不等式〔x﹣1〕f〔x〕≥3〔x﹣1〕,①x﹣1≥0时,上式可化为:f〔x〕≥3=f〔2〕,解得:x≥2,②x﹣1≤0时,不等式可化为:f〔x〕≤3=f〔﹣1〕,解得:﹣1≤x≤1,综上:不等式的解集是[﹣1,1]∪[2,+∞〕,应选:A.【点睛】此题考察了函数的单调性问题,考察导数的应用,分类讨论思想,准确判断f(x)的单调性是关键,是一道中档题.在上存在导函数,对于任意的实数,都有,当时,.假设,那么实数的取值范围是〔〕A. B. C. D.【答案】A【解析】试题分析:∵,设,那么,∴为奇函数,又,∴在上是减函数,从而在上是减函数,又等价于,即,∴,解得.考点:导数在函数单调性中的应用.【思路点睛】因为,设,那么,可得为奇函数,又,得在上是减函数,从而在上是减函数,在根据函数的奇偶性和单调性可得,由此即可求出结果.二、填空题〔此题一共4小题,每一小题5分,一共20分〕为纯虚数,那么实数的值等于__________.【答案】0【解析】试题分析:由题意得,复数为纯虚数,那么,解得或者,当时,〔舍去〕,所以.考点:复数的概念.,,那么__________〔填入“〞或者“〞〕.【答案】.【解析】分析:利用分析法,逐步分析,即可得到与的大小关系.详解:由题意可知,那么比较的大小,只需比较和的大小,只需比较和的大小,又由,所以,即,即.点睛:此题主要考察了利用分析法比较大小,其中解答中合理利用分析法,逐步分析,得出大小关系是解答的关键,着重考察了推理与论证才能.15..【答案】.【解析】试题分析:根据定积分性质:,根据定积分的几何意义可知,表示以为圆心,1为半径的圆的四分之一面积,所以,而,所以.考点:定积分.,假设对任意实数都有,那么实数的取值范围是____________.【答案】【解析】构造函数,函数为奇函数且在上递减,即,即,即,所以即恒成立,所以,所以,故实数的取值范围是.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤〕〔i为虚数单位〕.〔1〕当时,求复数的值;〔2〕假设复数在复平面内对应的点位于第二象限,求的取值范围.【答案】〔Ⅰ〕〔Ⅱ〕【解析】【分析】〔Ⅰ〕将代入,利用复数运算公式计算即可。
高二数学(理)下学期第二次月考试题(含答案)
上学期第二次月考高二数学卷(理)考试时间:120分钟 满分:150一、选择题(每小题5分,共12题)1、已知全集{,,,,}U a b c d e =,{,,}M a c d =,{,,}N b d e =,则N M C U ⋂)( = ( )A .{}bB .{}dC .{,}b eD .{,,}b d e2、 5()a x x +(x R ∈)展开式中3x 的系数为10,则实数a 等于( )A .-1B .12 C .1 D .23、某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( )A. 24种B. 36种C. 38种D. 108种4、计算888281808242C C C C ++++ =( )A 、62B 、82C 、83 D 、63 5、一个盒子里有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每次取后不放回,则若已知第一只是好的,则第二只也是好的概率为( ) A.23 B.512 C.59 D.796、已知△ABC 的重心为P ,若实数λ满足:AB AC AP λ+=,则λ的值为A .2B .23C .3D .67、在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,问实验顺序的编排方法共有 ( )A .34种B .48种C .96种D .144种8、35(1(1+的展开式中x 的系数是(A )4- (B )2- (C )2 (D )49、某体育彩票规定: 从01到36共36个号码中抽出7个号码为一注,每注2元 某人想先选定吉利号18,然后再从01到17中选3个连续的号,从19到29中选2个连续的号,从30到36中选1个号组成一注,则此人把这种要求的号买全,至少要花( )A.1050元B. 1052元C. 2100元D. 2102元10、9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的种数是( )A.2524C C ⋅ B.443424C C C ++ C.2524C C + D.054415342524C C C C C C ⋅+⋅+⋅11、已知,)(为偶函数x f x x f x x f x f 2)(,02),2()2(=≤≤--=+时当,若*,(),n n N a f n ∈=则2011a = ( )A .1B .21C . 14D .1812、如图,在A 、B 间有四个焊接点,若焊接点脱落,而可能导致电路不通,如今发现A 、B 之间线路不通,则焊接点脱落的不同情况有 ( )A .10B .13C .12D .15二、填空题(每小题5分,共4小题)13、已知(1-2x)n的展开式中,二项式系数的和为64,则它的二项展开式中,系数最大的是第_____________项.14、乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_.15、同时投掷三颗骰子,至少有一颗骰子掷出6点的概率是_____________ (结果要求写成既约分数).16、用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有_______种不同的涂色方案。
高二数学第二学期理科第一次月考(含答案)
精品基础教育教学资料,仅供参考,需要可下载使用!第二学期第一次月考高二数学理科试卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,仅有一项符合题目要求)1. 已知集合P={x|1≤x≤3},Q={x|(x-1)2≤4},则P Q=()A.[-1,3] B . [1,3] C. [1,2] D. (],3-∞2. 已知,则()A.f(2)>f(e)>f(3) B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e) D.f(e)>f(3)>f(2)3.下列说法正确的是()A.“sinα=”是“cos2α=”的必要不充分条件B.命题“若xy=0,则x=0或y=0”的否命题是“若xy≠0,则x≠0或y≠0”C.已知命题p:∃x∈R,使2x>3x;命题q:∀x∈(0,+∞),都有<,则p∧(¬q)是真命题D.从匀速传递的生产流水线上,质检员每隔5分钟从中抽取一件产品进行某项指标检测,这是分层抽样4.已知函数f(x)的定义域为[﹣1,4],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示.x ﹣1 0 2 3 4f(x) 1 2 0 2 0当1<a<2时,函数y=f(x)﹣a的零点的个数为()A.2 B.3 C.4 D.55. 如图,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A. B.C. D.6.函数f(x)=sinx•ln(x2+1)的部分图象可能是()A. B.C. D.7.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.18B.16C. D.18.如果函数f (x )为奇函数,当x<0时,f (x )= ln(-x)+3x,则曲线在点(1,-3)处的切线方程为 ( ).32(1) .32(1) .34(1) .34(1)A y x B y x C y x D y x +=--+=-+=--=+9. 已知圆C :(x ﹣3)2+(y ﹣4)2=1和两点A (﹣m ,0),B (m ,0)(m >0),若圆C 上存在点P ,使得∠APB=90°,则m 的最大值为( ) A .7B .6C .5D .410.如图,四棱锥P ﹣ABCD 中,∠ABC=∠BAD=90°,BC=2AD ,△PAB 和△PAD 都是等边三角形,则异面直线CD 与PB 所成角的大小为( ) A .45° B .75° C .60° D .90° 11.已知椭圆E :+=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x ﹣4y=0交椭圆E 于A ,B 两点,若|AF|+|BF|=4,点M 到直线l 的距离不小于,则椭圆E 的离心率的取值范围是( ) A .(0,] B .(0,] C .[,1) D .[,1)12. 设函数f (x )在(m ,n )上的导函数为g (x ),x ∈(m ,n ),若g (x )的导函数小于零恒成立,则称函数f (x )在(m ,n )上为“凸函数”.已知当a ≤2时,3211()62f x x ax x =-+,在x ∈(﹣1,2)上为“凸函数”,则函数f (x )在(﹣1,2)上结论正确的是( ) A .有极大值,没有极小值 B .没有极大值,有极小值C .既有极大值,也有极小值D .既无极大值,也没有极小值二、填空题(本大题共4小题,每小题5分,共20分). 13.设向量(,1)a m =,(1,2)b =,且222a b a b +=+,则m=________. 14.函数2cos 2y x =的图象可由sin 2cos 2y x x =+的图象至少向左平移_______个单位长度得到.15.若函数2()f x x x a =-()在 2x =处取得极小值,则a =________. 16. 设函数()f x 的导函数是'()f x ,且'1()2() () ,2f x f x x R f e ⎛⎫>∈=⎪⎝⎭(e 是自然对数的底数),则不等式2()f lnx x <的解集为___________.三.解答题(本大题共6小题,共70分;说明:17-21共5小题,每题12分,第22题10分). 17. 已知数列{a n }(n ∈N *)的前n 项的S n =n 2. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若,记数列{b n }的前n 项和为T n ,求使成立的最小正整数n 的值.18.设函数f (x )=lnx ﹣x+1. (Ⅰ)分析f (x )的单调性; (Ⅱ)证明:当x ∈(1,+∞)时,1<<x.19.如图,△ABC 和△BCD 所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E 、F 分别为AC 、DC 的中点.(Ⅰ)求证:EF ⊥BC ;(Ⅱ)求二面角E ﹣BF ﹣C 的正弦值.20.已知椭圆E :+=1(a >b >0)的离心率为,F 是椭圆的焦点,点A (0,﹣2),直线AF 的斜率为,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.21.已知函数2()1xe f x x mx =-+.(Ⅰ)若()2,2m ∈-,求函数()y f x =的单调区间;(Ⅱ)若10,2m ⎛⎤∈ ⎥⎝⎦,则当[]0,1x m ∈+时,函数()y f x =的图象是否总在直线y x =上方?请写出判断过程.22.(选修4-4坐标系与参数方程)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.高二第一次月考理科数学参考答案一、BDCCC DBBBD BA 二、13. -2 ; 14 . 8π; 15. 2 ; 16. ()0,e .三、 17.解:(Ⅰ)∵S n =n 2,当n ≥2时,S n ﹣1=(n ﹣1)2∴相减得a n =S n ﹣S n ﹣1=2n ﹣1又a 1=S 1=1符合上式∴数列{a n },的通项公式a n =2n ﹣1 (II )由(I )知∴T n =b 1+b 2+b 3++b n ==又∵∴∴成立的最小正整数n 的值为518.解:(Ⅰ)由f (x )=lnx ﹣x+1,有'1()(0)xf x x x-=>,则()f x 在(0,1)上递增,在(1,+∞)递减; (Ⅱ)证明:当x ∈(1,+∞)时,1<<x ,即为lnx <x ﹣1<xlnx .结合(Ⅰ)知,当1x >时'()0f x <恒成立,即()f x 在(1,+∞)递减,可得f (x )<f (1)=0,即有lnx <x ﹣1;设F (x )=xlnx ﹣x+1,x >1,F′(x )=1+lnx ﹣1=lnx ,当x >1时,F′(x )>0,可得F (x )递增,即有F (x )>F (1)=0, 即有xlnx >x ﹣1,则原不等式成立; 19.解:(Ⅰ)证明:由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系,易得B (0,0,0),A (0,﹣1,),D (,﹣1,0),C (0,2,0),因而E (0,,),F (,,0),所以=(,0,﹣),=(0,2,0),因此•=0,所以EF ⊥BC .(Ⅱ)在图中,设平面BFC 的一个法向量=(0,0,1),平面BEF 的法向量=(x ,y ,z ),又=(,,0),=(0,,),由得其中一个=(1,﹣,1),设二面角E ﹣BF ﹣C 的大小为θ,由题意知θ为锐角,则 cosθ=|cos <,>|=||=,因此sinθ==,即所求二面角正弦值为.20.解:(Ⅰ) 设F (c ,0),由条件知,得又,所以a=2,b 2=a 2﹣c 2=1,故E 的方程.….(6分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y=kx ﹣2,设P (x 1,y 1),Q (x 2,y 2) 将y=kx ﹣2代入,得(1+4k 2)x 2﹣16kx+12=0, 当△=16(4k 2﹣3)>0,即时,从而又点O 到直线PQ 的距离,所以△OPQ 的面积=,设,则t >0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ 的面积最大时,l 的方程为:y=x ﹣2或y=﹣x ﹣2.…(12分)21. 解:(Ⅰ)易知()2,2m ∈-时,函数的定义域为R ,()()()2'2222(1)2(1)(1)()11x xx e x mx x m e e x x m f x xmx xmx -+-----==-+-+,①若11,m +=即0m =,则'()0f x ≥,此时()f x 在R 上递增;②11,m +>即02m <<,则当(),1x ∈-∞和()1,x m ∈++∞时,'()0f x >,()f x 递增;当()1,1x m ∈+时,'()0f x <,()f x 递减;综上,当0m =时,()f x 的递增区间为(),-∞+∞;当02m <<时,()f x 的递增区间为(),1-∞和()1,m ++∞,()f x 的减区间为()1,1m +(Ⅱ)当10,2m ⎛⎤∈ ⎥⎝⎦时,由(Ⅰ)知()f x 在()0,1上单调递增,在()1,1m +上单调递减.令()g x x =,①当[]0,1x ∈时min max ()(0)1,()1,f x f g x ===这时函数()f x 的图象总在直线()g x 上方. ②当[]1,1x m ∈+时,函数()f x 单调递减,所以1min()(1)2m e f x f m m +=+=+,()g x 的最大值为1m +.下面(1)f m +判断与1m +的大小,即判断xe 与(1)x x +的大小,其中311,.2x m ⎛⎤=+∈ ⎥⎝⎦解法一:令()(1)xm x e x x =-+,则'()21xm x e x =--,令'()()h x m x =,则'()2xh x e =-.因为311,.2x m ⎛⎤=+∈ ⎥⎝⎦所以'()20x h x e =->,所以'()m x 单调递增.又因为'(1)30m e =-<,3'23()402m e =->,所以存在031,2x ⎛⎤∈ ⎥⎝⎦,使得0'00()210.x m x e x =---所以()m x 在()01,x 上单调递减,在03,2x ⎛⎫ ⎪⎝⎭上单调递增,所以022200000000()()21 1.x m x m x e x x x x x x x ≥=--=+--=-++因为当031,2x ⎛⎤∈ ⎥⎝⎦时,2000()10,m x x x =-++>所以(1)x e x x >+,即(1)1f m m +>+,所以函数()f x 的图象总在直线y x =上方.解法二:判断xe 与(1)x x +的大小可以转化为比较x 与[]ln (1)x x +的大小.令[]()ln (1)x x x x ϕ=-+,则2'21()x x x x x ϕ--=+,令2()1,u x x x =--当31,2x ⎛⎤∈ ⎥⎝⎦时,易知()u x 递增,所以31()()024u x u ≤=-<,所以当31,2x ⎛⎤∈ ⎥⎝⎦时,'()0x ϕ<,()x ϕ递减,所以3315()()ln0224x ϕϕ≥=->.所以[]ln (1)x x x >+,所以(1)xe x x >+,所以(1)1f m m +>+,所以函数()f x 的图象总在直线y x =上方. 22.解:(1)曲线C 1的参数方程为(α为参数),移项后两边平方可得+y 2=cos 2α+sin 2α=1,即有椭圆C 1:+y 2=1; 曲线C 2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y ﹣4=0,即有C 2的直角坐标方程为直线x+y ﹣4=0; (2)由题意可得当直线x+y ﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).。
福建省福州市高二数学下学期3月月考试卷理(含解析)
福建省福州市高二数学下学期3月月考试卷理(含解析)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的1.一个物体的运动方程为s=1﹣t+t2其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是()A.7米/秒B.6米/秒C.5米/秒D.8米/秒2.若f'(x)=3,则等于()A.3 B.C.﹣1 D.13.若曲线y=x2+ax+b在点(1,b)处的切线方程是x﹣y+1=0,则()A.a=1,b=2 B.a=﹣1,b=2 C.a=1,b=﹣2 D.a=﹣1,b=﹣24.设f(x)=xlnx,若f′(x0)=2,则x0=()A.e2B.e C. D.ln25.下列积分不正确的是()A.B.C. D.6.已知函数f(x)=x3+ax2+(a+6)x+1有极值,则a的取值范围是()A.﹣1<a<2 B.﹣3<a<6 C.a<﹣3或a>6 D.a<﹣1或a>27.设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围是,则点P横坐标的取值范围是()A.B.[﹣1,0] C.[0,1] D.[,1]8.若函数f(x)=x3+ax﹣2在区间(1,+∞)内是增函数,则实数a的取值范围是()A.[﹣3,+∞)B.(﹣3,+∞)C.[0,+∞)D.(0,+∞)9.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.C.D.﹣210.曲线y=ln(2x﹣1)上的点到直线2x﹣y+8=0的最短距离是()A.B.2 C.3 D.011.设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是()A.(﹣3,0)∪(3,+∞)B.(﹣3,0)∪(0,3)C.(﹣∞,﹣3)∪(3,+∞)D.(﹣∞,﹣3)∪(0,3)12.已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有的最小值为()A.2 B.C.3 D.二、填空题:共4小题,每小题5分,共20分.13.函数y=x2﹣lnx的单调递减区间为.14.已知函数f(x)=f′()sinx+cosx,则f()= .15.由y2=4x与直线y=2x﹣4所围成图形的面积为.16.已知函数f(x)的定义域为[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图示.x ﹣1 0 4 5 f(x) 1 2 2 1下列关于f(x)的命题:①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)﹣a有4个零点;⑤函数y=f(x)﹣a的零点个数可能为0、1、2、3、4个.其中正确命题的序号是.三、解答题:共6小题,共70分,解答写出文字说明、证明过程或演算步骤.17.已知等差数列{a n}满足a3=6,a4+a6=20(1)求通项a n;(2)设{b n﹣a n}是首项为1,公比为3的等比数列,求数列{b n}的通项公式及其前n项和T n.18.在三角形ABC中,∠A、∠B、∠C的对边分别为a、b、c,若bcosC=(2a﹣c)cosB (Ⅰ)求∠B的大小(Ⅱ)若、a+c=4,求三角形ABC的面积.19.已知椭圆=1(a>b>0)的一个顶点为A(0,1),离心率为,过点B(0,﹣2)及左焦点F1的直线交椭圆于C,D两点,右焦点设为F2.(1)求椭圆的方程;(2)求△CDF2的面积.20.设f(x)=ax3+bx2+cx的极小值为﹣8,其导函数y=f′(x)的图象经过点,如图所示,(1)求f(x)的解析式;(2)若对x∈[﹣3,3]都有f(x)≥m2﹣14m恒成立,求实数m的取值范围.21.已知函数f(x)=ln(ax+1)+,x≥0,其中a>0.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)若f(x)的最小值为1,求a的取值范围.22.已知函数,g(x)=x+lnx,其中a>0.(1)若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值;(2)若对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,求实数a的取值范围.2016-2017学年福建省福州市文博中学高二(下)3月月考数学试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的1.一个物体的运动方程为s=1﹣t+t2其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是()A.7米/秒B.6米/秒C.5米/秒D.8米/秒【考点】62:导数的几何意义.【分析】求导数,把t=3代入求得导数值即可.【解答】解:∵s=1﹣t+t2,∴s′=﹣1+2t,把t=3代入上式可得s′=﹣1+2×3=5由导数的意义可知物体在3秒末的瞬时速度是5米/秒,故选C2.若f'(x)=3,则等于()A.3 B.C.﹣1 D.1【考点】6F:极限及其运算.【分析】由=﹣=﹣×f'(x0),由题意,即可求得答案.【解答】解:=﹣=﹣×f'(x0)=﹣×3=﹣1,故选C.3.若曲线y=x2+ax+b在点(1,b)处的切线方程是x﹣y+1=0,则()A.a=1,b=2 B.a=﹣1,b=2 C.a=1,b=﹣2 D.a=﹣1,b=﹣2【考点】6H:利用导数研究曲线上某点切线方程.【分析】由y=x2+ax+b,知y′=2x+a,再由曲线y=x2+ax+b在点(1,b)处的切线方程为x ﹣y+1=0,求出a和b.【解答】解:∵y=x2+ax+b,∴y′=2x+a,∵y′|x=1=2+a,∴曲线y=x2+ax+b在点(1,b)处的切线方程为y﹣b=(2+a)(x﹣1),∵曲线y=x2+ax+b在点(1,b)处的切线方程为x﹣y+1=0,∴a=﹣1,b=2.故选B.4.设f(x)=xlnx,若f′(x0)=2,则x0=()A.e2B.e C. D.ln2【考点】65:导数的乘法与除法法则.【分析】利用乘积的运算法则求出函数的导数,求出f'(x0)=2解方程即可.【解答】解:∵f(x)=xlnx∴∵f′(x0)=2∴lnx0+1=2∴x0=e,故选B.5.下列积分不正确的是()A.B.C. D.【考点】68:微积分基本定理.【分析】利用微积分基本定理即可得出.【解答】解:A. = =ln3,因此正确;B.∵=2.故B不正确.==,因此正确;D. = = =.因此正确.综上可知:只有B不正确.故选B.6.已知函数f(x)=x3+ax2+(a+6)x+1有极值,则a的取值范围是()A.﹣1<a<2 B.﹣3<a<6 C.a<﹣3或a>6 D.a<﹣1或a>2【考点】6D:利用导数研究函数的极值.【分析】求出函数的导数,利用导数有两个不相等的实数根,通过△>0,即可求出a的范围.【解答】解:函数f(x)=x3+ax2+(a+6)x+1,所以函数f′(x)=3x2+2ax+(a+6),因为函数有极值,所以导函数有两个不相等的实数根,即△>0,(2a)2﹣4×3×(a+6)>0,解得:a<﹣3或a>6,故选:C.7.设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围是,则点P横坐标的取值范围是()A.B.[﹣1,0] C.[0,1] D.[,1]【考点】62:导数的几何意义.【分析】根据题意知,倾斜角的取值范围,可以得到曲线C在点P处斜率的取值范围,进而得到点P横坐标的取值范围.【解答】解:设点P的横坐标为x0,∵y=x2+2x+3,∴y′=2x0+2,利用导数的几何意义得2x0+2=tanα(α为点P处切线的倾斜角),又∵,∴0≤2x0+2≤1,∴.故选:A.8.若函数f(x)=x3+ax﹣2在区间(1,+∞)内是增函数,则实数a的取值范围是()A.[﹣3,+∞)B.(﹣3,+∞)C.[0,+∞)D.(0,+∞)【考点】6A:函数的单调性与导数的关系.【分析】由已知,f′(x)=3x2≥0在[1,+∞)上恒成立,可以利用参数分离的方法求出参数a的取值范围.【解答】解:f′(x)=3x2+a,根据函数导数与函数的单调性之间的关系,f′(x)≥0在[1,+∞)上恒成立,即a≥﹣3x2,恒成立,只需a大于﹣3x2的最大值即可,而﹣3x2在[1,+∞)上的最大值为﹣3,所以a≥﹣3.即数a的取值范围是[﹣3,+∞).故选A.9.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.C.D.﹣2【考点】62:导数的几何意义.【分析】(1)求出已知函数y在点(3,2)处的斜率;(2)利用两条直线互相垂直,斜率之间的关系k1•k2=﹣1,求出未知数a.【解答】解:∵y=∴y′=﹣∵x=3∴y′=﹣即切线斜率为﹣∵切线与直线ax+y+1=0垂直∴直线ax+y+1=0的斜率为﹣a.∴﹣•(﹣a)=﹣1得a=﹣2故选D.10.曲线y=ln(2x﹣1)上的点到直线2x﹣y+8=0的最短距离是()A.B.2 C.3 D.0【考点】6H:利用导数研究曲线上某点切线方程;3H:函数的最值及其几何意义;IT:点到直线的距离公式.【分析】在曲线y=ln(2x﹣1)上设出一点,然后求出该点处的导数值,由该导数值等于直线2x﹣y+8=0的斜率求出点的坐标,然后由点到直线的距离公式求解.【解答】解:设曲线y=ln(2x﹣1)上的一点是P( m,n),则过P的切线必与直线2x﹣y+8=0平行.由,所以切线的斜率.解得m=1,n=ln(2﹣1)=0.即P(1,0)到直线的最短距离是d=.故选B.11.设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是()A.(﹣3,0)∪(3,+∞)B.(﹣3,0)∪(0,3)C.(﹣∞,﹣3)∪(3,+∞)D.(﹣∞,﹣3)∪(0,3)【考点】6B:利用导数研究函数的单调性.【分析】先根据f’(x)g(x)+f(x)g’(x)>0可确定[f(x)g(x)]'>0,进而可得到f(x)g(x)在x<0时递增,结合函数f(x)与g(x)的奇偶性可确定f(x)g(x)在x>0时也是增函数,最后根据g(﹣3)=0可求得答案.【解答】解:设F(x)=f (x)g(x),当x<0时,∵F′(x)=f′(x)g(x)+f (x)g′(x)>0.∴F(x)在当x<0时为增函数.∵F(﹣x)=f (﹣x)g (﹣x)=﹣f (x)•g (x)=﹣F(x).故F(x)为(﹣∞,0)∪(0,+∞)上的奇函数.∴F(x)在(0,+∞)上亦为增函数.已知g(﹣3)=0,必有F(﹣3)=F(3)=0.构造如图的F(x)的图象,可知F(x)<0的解集为x∈(﹣∞,﹣3)∪(0,3).故选D12.已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有的最小值为()A.2 B.C.3 D.【考点】63:导数的运算;3R:函数恒成立问题;7F:基本不等式.【分析】由对于任意实数x,f(x)≥0成立求出a的范围及a,b c的关系,求出f(1)及f′(0),作比后放缩去掉c,通分后利用基本不等式求最值.【解答】解:∵f(x)≥0,知,∴c.又f′(x)=2ax+b,∴f′(0)=b>0,f(1)=a+b+c.∴≥1+=≥1+=2.当且仅当4a2=b2时,“=”成立.故选A.二、填空题:共4小题,每小题5分,共20分.13.函数y=x2﹣lnx的单调递减区间为(0,1] .【考点】6B:利用导数研究函数的单调性.【分析】根据题意,先求函数的定义域,进而求得其导数,即y′=x﹣=,令其导数小于等于0,可得≤0,结合函数的定义域,解可得答案.【解答】解:对于函数,易得其定义域为{x|x>0},y′=x﹣=,令≤0,又由x>0,则≤0⇔x2﹣1≤0,且x>0;解可得0<x≤1,即函数的单调递减区间为(0,1],故答案为(0,1]14.已知函数f(x)=f′()sinx+cosx,则f()= 0 .【考点】63:导数的运算.【分析】求函数的导数,先求出f′()的值即可得到结论.【解答】解:函数的导数为f′(x)=f′()cosx﹣sinx,令x=,得f′()=f′()cos﹣sin=﹣1,则f(x)=﹣sinx+cosx,则f()=﹣sin+cos=,故答案为:0.15.由y2=4x与直线y=2x﹣4所围成图形的面积为9 .【考点】67:定积分.【分析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出曲线yy2=4x与直线y=2x﹣4所围成的封闭图形的面积,即可求得结论【解答】解:联立方程组,解得或,∴曲线y=x2与直线y=x围成的封闭图形的面积为S=(y+2﹣y2)dy=(y2+2y﹣)|=9,故答案为:916.已知函数f(x)的定义域为[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图示.x ﹣1 0 4 5 f(x) 1 2 2 1下列关于f(x)的命题:①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)﹣a有4个零点;⑤函数y=f(x)﹣a的零点个数可能为0、1、2、3、4个.其中正确命题的序号是①②⑤.【考点】6E:利用导数求闭区间上函数的最值;6D:利用导数研究函数的极值.【分析】由导数图象可知,函数的单调性,从而可得函数的极值,故可得①,②正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x∈[﹣1,t]函数f(x)的最大值是4,当2≤t≤5,所以t的最大值为5,所以③不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)﹣a有几个零点,所以④不正确,根据函数的单调性和极值,做出函数的图象如图,即可求得结论.【解答】解:由导数图象可知,当﹣1<x<0或2<x<4时,f'(x)>0,函数单调递增,当0<x<2或4<x<5,f'(x)<0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以①正确;②正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x∈[﹣1,t]函数f(x)的最大值是4,当2≤t≤5,所以t的最大值为5,所以③不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)﹣a有几个零点,所以④不正确,根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)<1或1≤f(2)<2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以⑤正确,综上正确的命题序号为①②⑤.故答案为:①②⑤.三、解答题:共6小题,共70分,解答写出文字说明、证明过程或演算步骤.17.已知等差数列{a n}满足a3=6,a4+a6=20(1)求通项a n;(2)设{b n﹣a n}是首项为1,公比为3的等比数列,求数列{b n}的通项公式及其前n项和T n.【考点】8E:数列的求和.【分析】(1)由已知条件,利用等差数列的通项公式列出方程组,求出等差数列的首项和公差,由此能求出等差数列的通项公式.(2)由a n=2n,{b n﹣a n}是首项为1,公比为3的等比数列,利用等比数列的通项公式,能求出数列{b n}的通项公式,再利用分组求和法能求出数列{b n}的前n项和T n.【解答】解:(1)∵等差数列{a n}满足a3=6,a4+a6=20,∴,解得,∴.(2)∵a n=2n,{b n﹣a n}是首项为1,公比为3的等比数列,∴,∴,∴.18.在三角形ABC中,∠A、∠B、∠C的对边分别为a、b、c,若bcosC=(2a﹣c)cosB (Ⅰ)求∠B的大小(Ⅱ)若、a+c=4,求三角形ABC的面积.【考点】HR:余弦定理;HP:正弦定理.【分析】(Ⅰ)根据正弦定理得: ===2R解出a、b、c代入到已知条件中,利用两角和的正弦函数的公式及三角形的内角和定理化简,得到cosB的值,然后利用特殊角的三角函数值求出B即可;(Ⅱ)要求三角形的面积,由三角形的面积公式S=acsinB知道就是要求ac的积及sinB,由前一问的cosA的值利用同角三角函数间的基本关系求出sinA,可根据余弦定理及、a+c=4可得到ac的值,即可求出三角形的面积.【解答】解(Ⅰ)由已知及正弦定理可得sinBcosC=2sinAcosB﹣cosBsinC∴2sinAcosB=sinBcosC+cosBsinC=sin(B+C)又在三角形ABC中,sin(B+C)=sinA≠0∴2sinAcosB=sinA,即,得(Ⅱ)∵b2=7=a2+c2﹣2accosB∴7=a2+c2﹣ac又∵(a+c)2=16=a2+c2+2ac∴ac=3∴即19.已知椭圆=1(a>b>0)的一个顶点为A(0,1),离心率为,过点B(0,﹣2)及左焦点F1的直线交椭圆于C,D两点,右焦点设为F2.(1)求椭圆的方程;(2)求△CDF2的面积.【考点】K4:椭圆的简单性质.【分析】(1)根据椭圆的基本概念和平方关系,建立关于a、b、c的方程,解出a=,b=c=1,从而得到椭圆的方程;(2)求出F1B直线的斜率得直线F1B的方程为y=﹣2x﹣2,与椭圆方程联解并结合根与系数的关系算出|x1﹣x2|=,结合弦长公式可得|CD|=,最后利用点到直线的距离公式求出F2到直线BF1的距离d,即可得到△CDF2的面积.【解答】解:(1)∵椭圆=1(a>b>0)的一个顶点为A(0,1),离心率为,∴b==1,且=,解之得a=,c=1可得椭圆的方程为;…(2)∵左焦点F1(﹣1,0),B(0,﹣2),得F1B直线的斜率为﹣2∴直线F1B的方程为y=﹣2x﹣2由,化简得9x2+16x+6=0.∵△=162﹣4×9×6=40>0,∴直线与椭圆有两个公共点,设为C(x1,y1),D(x2,y2),则∴|CD|=|x1﹣x2|=•=•=又∵点F2到直线BF1的距离d==,∴△CDF2的面积为S=|CD|×d=×=.20.设f(x)=ax3+bx2+cx的极小值为﹣8,其导函数y=f′(x)的图象经过点,如图所示,(1)求f(x)的解析式;(2)若对x∈[﹣3,3]都有f(x)≥m2﹣14m恒成立,求实数m的取值范围.【考点】6D:利用导数研究函数的极值;36:函数解析式的求解及常用方法;3R:函数恒成立问题.【分析】(1)求出y=f'(x),因为导函数图象经过(﹣2,0)和(,0),代入即可求出a、b、c之间的关系式,再根据图象可知函数的单调性,而f(x)极小值为﹣8可得f(﹣2)=﹣8,解出即可得到a、b、c的值;(2)根据函数增减性求出函数在区间[﹣3,3]的最小值大于等于m2﹣14m,即可求出m的范围.【解答】解:(1)∵f'(x)=3ax2+2bx+c,且y=f'(x)的图象经过点(﹣2,0),,∴∴f(x)=ax3+2ax2﹣4ax,由图象可知函数y=f(x)在(﹣∞,﹣2)上单调递减,在上单调递增,在上单调递减,由f(x)极小值=f(﹣2)=a(﹣2)3+2a(﹣2)2﹣4a(﹣2)=﹣8,解得a=﹣1∴f(x)=﹣x3﹣2x2+4x(2)要使对x∈[﹣3,3]都有f(x)≥m2﹣14m恒成立,只需f(x)min≥m2﹣14m即可.由(1)可知函数y=f(x)在[﹣3,﹣2)上单调递减,在上单调递增,在上单调递减且f(﹣2)=﹣8,f(3)=﹣33﹣2×32+4×3=﹣33<﹣8∴f(x)min=f(3)=﹣33﹣33≥m2﹣14m⇒3≤m≤11故所求的实数m的取值范围为{m|3≤m≤11}.21.已知函数f(x)=ln(ax+1)+,x≥0,其中a>0.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)若f(x)的最小值为1,求a的取值范围.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(Ⅰ)对函数求导,令f′(1)=0,即可解出a值.(Ⅱ)f′(x)>0,对a的取值范围进行讨论,分类解出单调区间.a≥2时,在区间(0,+∞)上是增函数,(Ⅲ)由(2)的结论根据单调性确定出最小值,当a≥2时,由(II)知,f(x)的最小值为f(0)=1,恒成立;当0<a<2时,判断知最小值小于1,此时a无解.当0<a<2时,(x)的单调减区间为,单调增区间为【解答】解:(Ⅰ),∵f′(x)在x=1处取得极值,f′(1)=0即 a+a﹣2=0,解得 a=1(Ⅱ),∵x≥0,a>0,∴ax+1>0①当a≥2时,在区间(0,+∞)上f′(x)>0.∴f(x)的单调增区间为(0,+∞)②当0<a<2时,由f′(x)>0解得由∴f(x)的单调减区间为,单调增区间为(Ⅲ)当a≥2时,由(II)知,f(x)的最小值为f(0)=1当0<a<2时,由(II)②知,处取得最小值,综上可知,若f(x)的最小值为1,则a的取值范围是[2,+∞)22.已知函数,g(x)=x+lnx,其中a>0.(1)若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值;(2)若对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,求实数a的取值范围.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(1)通过、x=1是函数h(x)的极值点及a>0,可得,再检验即可;(2)通过分析已知条件等价于对任意的x1,x2∈[1,e]都有[f(x)]min≥[g(x)]max.结合当x∈[1,e]时及可知[g(x)]max=g(e)=e+1.利用,且x∈[1,e],a>0,分0<a<1、1≤a≤e、a>e三种情况讨论即可.【解答】解:(1)∵,g(x)=x+lnx,∴,其定义域为(0,+∞),∴.∵x=1是函数h(x)的极值点,∴h′(1)=0,即3﹣a2=0.∵a>0,∴.经检验当时,x=1是函数h(x)的极值点,∴;(2)对任意的x1,x2∈[1,e]都有f(x1)≥g(x2)成立等价于对任意的x1,x2∈[1,e]都有[f(x)]min≥[g(x)]max.当x∈[1,e]时,.∴函数g(x)=x+lnx在[1,e]上是增函数.∴[g(x)]max=g(e)=e+1.∵,且x∈[1,e],a>0.①当0<a<1且x∈[1,e]时,,∴函数在[1,e]上是增函数,∴.由1+a2≥e+1,得a≥,又0<a<1,∴a不合题意;②当1≤a≤e时,若1≤x<a,则,若a<x≤e,则.∴函数在[1,a)上是减函数,在(a,e]上是增函数.∴[f(x)]min=f(a)=2a.由2a≥e+1,得a≥,又1≤a≤e,∴≤a≤e;③当a>e且x∈[1,e]时,,∴函数在[1,e]上是减函数.∴.由≥e+1,得a≥,又a>e,∴a>e;综上所述:a的取值范围为.。
高二下学期第二次月考(6月)数学(理)试题(解析版)
高二年级下学期第二次月考数学试题(理)注意事项:1.本试卷分第Ⅰ卷(选择题)和Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟. 2.答题前请仔细阅读答题卡(纸)上的“注意事项”,按照“注意事项”的规定答题. 3.选择题答案涂在答题卡上,非选择题答案写在答题卡上相应位置,在试卷和草稿纸上作答无效.第Ⅰ卷 选择题(共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求,将正确答案填涂在答题卡上.1.已知集合{}2|3100A x x x =-++≥,{|121}B x m x m =+≤≤-,若A B ⋂≠∅,则m 的取值范围是( ) A. 1,42⎡⎤⎢⎥⎣⎦B. 1,(4,)2⎛⎫-∞+∞ ⎪⎝⎭U C. [2,4] D. (2,4)【答案】C 【解析】 【分析】化简出集合[]2,5A =-,由题意先说明B 不是空集,再解A B ⋂≠∅. 【详解】解:∵集合{}[]2|31002,5A x x x =-++≥=-,又∵{|121}B x m x m =+≤≤-,A B ⋂≠∅, 则121m m +≤-,即2m ≥; 此时,15m +≤,解得,4m ≤; 故m 的取值范围为[2,4]. 故选:C.【点睛】本题考查了集合的交集的应用,注意A B ⋂≠∅的前提是,A B 都不是空集,属于基础题. 2.在复平面内,复数12iz i+=,则z 对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】 【分析】化简复数,求出共轭复数,可得对应的点的坐标,即可得出结论. 【详解】解:复数122iz i i+==-, 共轭复数2z i =+, 对应的点()2,1位于第一象限. 故选:A.【点睛】本题考查复数的几何意义,考查复数的运算,正确化简复数是关键. 3.下列命题中,真命题的是( ) A. 00,0x x R e∃∈≤B. 2,2x x R x ∀∈>C. 0a b +=的充要条件是1ab=- D. 若,x y R ∈,且2x y +>,则,x y 中至少有一个大于1 【答案】D 【解析】 【分析】利用全称命题和特称命题的定义判断A ,B.利用充要条件和必要条件的定义判断C.利用反证法证明D . 【详解】解:A ,根据指数函数的性质可知x e 0>恒成立,所以A 错误. B.当x 1=-时,1212(1)12-=<-=,所以B 错误. C.若a b 0==时,ab无意义0,即充分性不成立,所以C 错误. D.假设x ,y 都小于1,则x 1<,y 1<,所以x y 2+<与x y 2+>矛盾,所以假设不成立,所以D 正确. 故选D .【点睛】本题主要考查命题的真假判断,考查充分、必要条件的判断,属于基础题.4.若函数22,1,()log ,1,x x f x x x ⎧<=⎨-≥⎩ 则函数()f x 的值域是( )A. (,2)-∞B. (,2]-∞C. [0,)+∞D. (,0)(0,2)-∞U【答案】A 【解析】 【分析】画出函数的图像,由此确定函数的值域.【详解】画出函数的图像如下图所示,由图可知,函数的值域为(),2-∞,故选 A.【点睛】本小题主要考查指数函数和对数函数的图像,考查分段函数的值域,考查数形结合的数学思想方法,属于基础题.5.已知定义在R 上的奇函数()f x 满足:当0x <时,()()2log 1f x x =-,则()()7f f =( )A .1-B. 2-C. 1D. 2【答案】D 【解析】 【分析】根据()f x 为定义在R 上的奇函数,先求出()7f ,进而可求出()()7ff .【详解】因为()f x 为定义在R 上的奇函数,当0x <时,()()2log 1f x x =-,所以()()()277log 173f f =--=-+=-;所以()()()()273log 132ff f =-=+=.故选D【点睛】本题主要考查函数的奇偶性,根据函数的奇偶性求函数的值,熟记奇函数的定义即可求解,属于基础题型.6.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p = A. 0.7 B. 0.6C. 0.4D. 0.3【答案】B 【解析】分析:判断出为二项分布,利用公式()()D X np 1p =-进行计算即可.()()D X np 1p =-Qp 0.4∴=或p 0.6=()()()()6444661010P X 41P X 61C p p C p p Q ==-<==-,()221p p ∴-<,可知p 0.5>故答案选B.点睛:本题主要考查二项分布相关知识,属于中档题. 7.用数学归纳法证明:()()*222111112(2)232121n n n n N +++⋅⋅⋅+<-≥∈--时第一步需要证明( ) A. 11221<-- B. 21112221n+<-- C. 22111122321++<-- D. 222211*********+++<-- 【答案】C 【解析】 【分析】直接利用数学归纳法写出2n =时左边的表达式即可,不等式的左边需要从1加到()22121-,不要漏掉项.【详解】解:用数学归纳法证明()()*222111112(2)232121n n n n N +++⋅⋅⋅+<-≥∈--,第一步应验证不等式为:222111122321++<--. 故选:C.【点睛】在利用数学归纳法证明问题中,第一步一定要分析不等式左边的项的特点,不能多写也不能少写,否则会引起答案的错误.8.若极坐标方程()ρρθ=满足()()ρθρπθ=-,则()ρρθ=表示的图形关于( )对称. A. 极轴 B. 极点C. 射线2πθ=D. 不确定【答案】C 【解析】 【分析】由()()ρρθρπθ==-,可得22θπθπ+-=,即可判断出结论.【详解】解:∵()()ρρθρπθ==-, ∴22θπθπ+-=,因此方程()ρρθ=表示的图形关于射线2πθ=对称.故选:C.【点睛】本题考查了极坐标方程的意义,考查了推理能力,属于基础题. 9.函数||4cos x y x e =-的图象可能是( )A. B.C. D.【答案】A 【解析】 【分析】求导,判断导函数函数值的正负,从而判断函数的单调性,通过单调性判断选项. 【详解】解:当0x >时,4cos xy x e =-,则'4sin x y x e =--,若0,2x π⎛⎫∈ ⎪⎝⎭,sin 0,0x x e >>,'4sin 0x y x e =--<,若,2x π⎡⎫∈+∞⎪⎢⎣⎭,44sin 4x -≤≤,()3222.74x e e π≥>>,则'4sin 0xy x e =--<恒成立, 即当0x >时,'4sin 0xy x e =--<恒成立, 则4cos x y x e =-在()0,∞+上单调递减,故选:A.【点睛】本题主要考查函数的图象,可以通过函数的性质进行排除,属于中档题.10.已知抛物线22(0)y px p =>为双曲线22221(0,0)x y a b a b-=>>有相同的焦点F ,点A 是两曲线的一个点,且AF ⊥x 轴,则双曲线的离心率为( )A.1B.1C.1D.2【答案】A 【解析】 【分析】求出抛物线与双曲线的焦点坐标,将其代入双曲线方程求出A 的坐标,将A 代入抛物线方程求出双曲线的三参数,,a b c 的关系,则双曲线的离心率可求.【详解】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,双曲线的焦点坐标为(),0c , 2p c ∴=,Q 点A 是两曲线的一个交点,且AF x ⊥轴,将x c =代入双曲线方程得到2,b A c a ⎛⎫⎪⎝⎭,将A 的坐标代入抛物线方程可得,422222444b pc c a b a===+,即4224440a a b b +-=,解得ba= 222222b c a a a -∴==+)22231c a=+=解得1ce a==,故选A .【点睛】本题主要考查双曲线性质与双曲线的离心率,是中档题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解.11.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = A. 12-B.13C.12D. 1【答案】C 【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+,设()11eex x g x --+=+,则()()21111111e 1eeee e x x x x x x g x ---+----=-=-=', 当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 【名师点睛】利用函数零点的情况求参数的值或取值范围的方法:(1)利用零点存在性定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图像的上、下关系问题,从而构建不等式求解.12.定义域为R 的函数()f x 满足()()f x f x '>,则不等式1()(21)x e f x f x -<-的解为( ) A. 1(,)4+∞ B. 1(,)2+∞C. (1,)+∞D. (2,)+∞【答案】C 【解析】 【分析】由()()f x f x '>,构造函数()()exf xg x =,对其求导可知()()()0e xf x f xg x -''=>,所以函数()()exf xg x =是R 的单调递增函数,不等式()()121x ef x f x -<-可化为()()2121eexx f x f x --<,由()g x 的单调性可知21x x <-,解不等式即可得到答案. 【详解】构造函数()()e xf xg x =,则()()()()()2e e 0e e x x xxf x f x f x f xg x ''--='=>,则函数()()exf xg x =是R 的单调递增函数,对不等式()()1e21x f x f x -<-的两端同时除以21e x -得()()2121e e xx f x f x --<,则21x x <-,解得1x >. 故答案为C.【点睛】由()()f x f x '>,构造增函数()()exf xg x =,是本题的一个难点,需要学生在平常的学习中多积累这样的方法.第Ⅱ卷 非选择题(共90分)二、填空题:本大题共4小题,每小题5分,共20分,将答案填在答题卡上相应位置.13.设1x ≥,则函数()()231x x y x ++=+的最小值是______.【答案】6 【解析】【分析】根据题意,令1t x =+,则函数(1)(2)2=3t t y t t t ++=++(2t ≥),进行求导可得出函数2=3y t t++的单调性,进而即可求出最小值. 【详解】令1t x =+,则函数(1)(2)2=3t t y t t t++=++(2t ≥),因为2t ≥,所以2210y t'=->, 即函数23y t t=++为增函数, 所以23y t t=++在2t =时取到最小值, 代入可得最小值为6. 故答案为:6.【点睛】本题考查了换元法以及用导数求函数单调性,考查了转化思想,属于中档题. 14.若0sin a xdx π=⎰,则9a x ⎛- ⎝的展开式中常数项为______.【答案】672 【解析】 【分析】先由微积分基本定理求出a ,再由二项展开式的通项公式,即可求出结果. 【详解】因为()sin 020a xdx cosx cos cos πππ==-=-+=⎰;所以92x ⎛ ⎝的展开式的通项公式为:()()39999221992121k k kkkkk k kk T C xx C x----+=-=-,令3902k -=,则6k =,所以常数项为()6637921672T C =-=. 故答案为672【点睛】本题主要考查微积分基本定理和二项式定理,熟记公式即可求解,属于基础题型.15.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)【答案】1260. 【解析】分析:按是否取零分类讨论,若取零,则先排首位,最后根据分类与分步计数原理计数. 详解:若不取零,则排列数为224534C C A ,若取零,则排列数为21135333C C A A ,因此一共有22421135345333C C A C C A A 1260+=个没有重复数字的四位数.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法. 16.已知矩形ABCD 中,AB =1,BC =,将矩形ABCD 沿对角线AC 折起,使平面ABC 与平面ACD 垂直,则B 与D 之间的距离为__________. 【答案】10【解析】 【分析】过B ,D 分别向AC 作垂线,垂足分别为M ,N .则可求得AM =,BM =,CN =,DN =,MN =1.再求出=++,平方即得||=.【详解】过B ,D 分别向AC 作垂线,垂足分别为M ,N .则可求得AM =,BM =,CN =,DN =,MN =1.由于=++, ∴||2=(++)2=||2+||2+||2+2(·+·+·)=()2+12+()2+2(0+0+0)=, ∴||=. 故答案为【点睛】(1)本题主要考查空间向量的线性运算和向量的模的计算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)空间向量a r的模2||a a =rr 三、解答题:大本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.在平面直角坐标系中,以原点为极点.以x 轴非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 4sin 4ρρθρθ=-+,直线1l 的极坐标方程为()cos sin 3ρθθ-=.(1)写出曲线C 和直线1l 的直角坐标方程;(2)设直线2l 过点()10P -,与曲线C 交于不同两点A B ,,AB 的中点为M ,1l 与2l 的交点为N ,求PM PN ⋅.【答案】(Ⅰ)C: ()()22129x y -++= ;直线1l 的直角坐标方程30x y --= (Ⅱ)8【解析】【分析】(Ⅰ)由极坐标方程与直角坐标方程的互化公式可直接得出结果;(Ⅱ)先写出直线2l 的参数方程,代入曲线C 的普通方程,得到PM ,再由直线2l 的参数方程代入30x y --=,得到PN ,进而可得出结果.【详解】(Ⅰ)曲线2:2cos 4sin 4C ρρθρθ=-+的直角坐标方程为:22244x y x y +=-+; 即()()22129x y -++= ()1:cos sin 3l ρθθ-=的直角坐标方程为:30x y --=(Ⅱ)直线2l 的参数方程1x tcos y tsin αα=-+⎧⎨=⎩(t 为参数), 将其代入曲线C 的普通方程并整理得()24cos sin 10t t αα---=,设,A B 两点的参数分别为12,t t ,则()124cos sin t t αα+=-因为M 为AB 的中点,故点M 的参数为()122cos sin 2t t αα+=-, 设N 点的参数分别为3t ,把1x tcos y tsin αα=-+⎧⎨=⎩代入30x y --=整理得34cos sin t αα=- 所以12342cos sin 82cos sin t t PM PN t αααα+⋅=⋅=-⋅=-. 【点睛】本题主要考查极坐标方程与直角坐标方程的互化,熟记公式即可;本题也考查了参数的方法求弦长的问题,熟记参数方程即可求解,属于常考题型.18.已知函数()||f x x a =-.(1)若不等式()3f x ≤的解集为{|15}x x -≤≤,求实数a 的值;(2)在(1)的条件下,若()(5)f x f x m ++≥对一切实数x 恒成立,求实数m 的取值范围.【答案】(1) 2a =;(2) m 的取值范围(5]-∞,. 【解析】【详解】(1)∵|x-a|≤3 ,∴a-3≤x≤a+3,∵f (x )≤3的解集为[-1,5] ,∴,∴a=2.(2)∵f (x )+f (x+5)=|x-2|+|x+3|≥|(x-2)-(x+3)|=5又f (x )+f (x+5)≥m 恒成立 ,∴m≤5.19.每年3月21日是世界睡眠日,良好的睡眠状况是保持身体健康的重要基础.为了做好今年的世界睡眠日宣传工作,某社区从本辖区内同一年龄层次的人员中抽取了100人,通过问询的方式得到他们在一周内的睡眠时间(单位:小时),并绘制出如右的频率分布直方图:(Ⅰ)求这100人睡眠时间的平均数x (同一组数据用该组区间的中点值代替,结果精确到个位);(Ⅱ)由直方图可以认为,人的睡眠时间t 近似服从正态分布()2N μσ,,其中μ近似地等于样本平均数x ,2σ近似地等于样本方差2s ,233.6s ≈.假设该辖区内这一年龄层次共有10000人,试估计该人群中一周睡眠时间位于区间(39.2,50.8)的人数. 33.6 5.8≈.若随机变量Z 服从正态分布()2N μσ,,则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=.【答案】(1)45; (2)6826人.【解析】【分析】(I)结合题表,计算期望,得到平均数,即可.(II)结合题意,得到该区间位于距离平均数一个标准差之内,计算概率,计算人数,即可.【详解】(Ⅰ)0.06340.18380.20420.28460.16500.10540.025844.7245 x=⨯+⨯+⨯+⨯+⨯+⨯+⨯=≈;(Ⅱ)由题意得,39.250.8,μσμσ-≈+≈,()39.250.80.6826P t<<=,所以估计该人群中一周睡眠时间在区间()39.250.8,的人数约为100000.68266826⨯=(人);【点睛】本道题考查了正态分布曲线,考查了期望计算公式,难度中等.20.如图,在正三棱柱111ABC A B C-中,11AB BC⊥,P是1AA的中点.(1)求平面1PBC将三棱柱分成的两部分的体积之比;(2)求平面1PBC与平面ABC所成二面角的正切值.【答案】(1)1:1;(22【解析】【分析】(1)设1,AB a AA b==,分别求出111ABC A B CV-,1B ACC PV-,即可得体积比;(2)取BC的中点M,连接1,AM B M,通过11AB BC⊥及11AB BC⊥,可得1BC⊥面1AMB,根据计算可得222a b=,不妨设2b=,则22a=由题可得1PBCV在面ABC上的投影为ABCV,设平面1PBC与平面ABC所成二面角的大小为θ,求出1BPCSV,ABCSV,可得1cos ABCBPCSSθ=VV,进而可得正切值.【详解】解:(1)设1,AB a AA b==,则1112213sin 6024ABC AB C V a b a b -=⋅⋅=o , 12113332228B ACC P b V b a a a b -⎛⎫=⋅⋅+⋅⋅= ⎪⎝⎭, 则平面1PBC 将三棱柱分成的两部分的体积之比为1:1;(2)如图:取BC 的中点M ,连接1,AM B M , 由已知得面ABC ⊥面11BCC B ,又AM BC ⊥,则AM ⊥面11BCC B ,又1BC ⊂面11BCC B ,1AM BC ∴⊥,又11AB BC ⊥,且1AM A AB =I ,则1BC ⊥面1AMB ,11BC B M ∴⊥,则111BMB B BC V :V ,1111BB BM BB B C ∴=, 2ab b a ∴=,222a b ∴=, 不妨设2b =,则22a = 则()212213BP PC ==+=,()2212223BC =+=, 则1212333322BPC S =⨯-=V (2132322ABC S =⨯⨯=V由题可得1PBC V 在面ABC 上的投影为ABC V ,设平面1PBC 与平面ABC 所成二面角的大小为θ,则1cos 3ABC BPC S S θ===V V ,sin tan cos 2θθθ∴=== 所以平面1PBC 与平面ABC. 【点睛】本题考查棱柱,棱锥体积的求解,考查利用面积的射影法求二面角的大小,是中档题. 21.已知椭圆222:2(0)C x y a a +=>,过原点O 且斜率不为0的直线与椭圆C 交于P ,Q 两点. (1)若(1,0)F 为椭圆C 的一个焦点,求椭圆C 的标准方程;(2)若经过椭圆C 的右焦点的直线l 与椭圆C 交于A ,B 两点,四边形OAPB 能否为平行四边形?若能,求此时直线OP 的方程,若不能,说明理由.【答案】(1)2212x y +=;(2)0x = 【解析】【分析】(1)变形2222:12x y C a a+=,根据,,a b c 的关系求解即可; (2)设直线l 的方程为2x my a =+,代入椭圆方程,根据韦达定理及向量的坐标运算,求得P 点坐标,代入椭圆方程,即可求得m 的值,进而可得直线OP 的方程.【详解】解:(1)由已知得2222:12x y C a a +=,则2212a a -=,解得22a =, 所以椭圆C 的标准方程为2212x y +=; (2)设()()()112200,,,,,A x y B x y P x y ,椭圆C 的右焦点,02F a ⎛⎫ ⎪⎪⎝⎭,当直线l 的斜率为0时,,,O A B 三点共线,不符合题意,所以可设直线l的方程为x my =, 联立2222x y a +=,可得()222202a m y ++-=, 显然,>0∆,则1222y y m +=-+, 若四边形OAPB 为平行四边形,则OP OA OB =+u u u r u u u r u u u r ,所以,01222y y y m =+=-+, ()0121222x x x m y y m =+=++=+, 因为P 在椭圆上,所以222002x y a +=,即()()222222228422a a m a m m +=++,解得m =,所以四边形OAPB能为平行四边行,此时002OP y m k x ==-=, 直线OP的方程为y x =即0x ±=. 【点睛】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,计算能力,属于中档题.22.设函数()ln f x x x =-,() 21xg x xe x =--. (1) 关于x 的方程()2103f x x x m =-+在区间[1,3]上有解,求m 的取值范围; (2) 当0x >时,()()g x a f x -≥恒成立,求实数a 的取值范围.【答案】(1) m 的取值范围为35[ln 32,ln]24-+;(2) a 的取值范围为0a ≤. 【解析】试题分析:(1)方程()2103f x x m =-+等价于()27ln 3h x x x x m =-+=,利用导数研究函数的单调性,结合函数图象可得m 的取值范围;(2)()()g x a f x -≥恒成立等价于()()()ln 1x F x g x f x x e x x a =-=⋅---≥恒成立,两次求导,求得()F x 的最小值为零,从而可得实数a 的取值范围.试题解析:(1)方程()2103f x x x m =-+即为27ln 3x x x m -+=,令()()27ln 03h x x x x x =-+>,则()()()312317'233x x h x x x x+-=-+=-,∴当[]1,3x ∈时,()()',h x h x 随x 变化情况如表:()()443351,3ln 32,ln 33224h h h ⎛⎫==-<=+ ⎪⎝⎭Q ,∴当[]1,3x ∈时,()35ln 32,ln 24h x ⎡⎤∈-+⎢⎥⎣⎦,m ∴的取值范围是35ln 32,ln24⎡⎤-+⎢⎥⎣⎦. (2)依题意,当0x >时,()()g x f x a -≥恒成立,令()()()()ln 10x F x g x f x x e x x x =-=⋅--->,则()()()()11'111x x x F x x e x e x x +=+⋅--=⋅⋅-,令()1x G x x e =⋅-,则当0x >时,()()'10x G x x e =+⋅>,∴函数()G x 在()0,∞+上递增,()()010,110G G e =-<=->Q ,()G x ∴存在唯一的零点()0,1c ∈,且当()0,x c ∈时,()0G x <,当(),x c ∈+∞时,()0G x >,则当()0,x c ∈时,()'0E x <,当(),x c ∈+∞时,()'0F x >,()F x ∴在()0,c 上递减,在(),c +∞上递增,从而()()2ln 1F x F c ce c c ≥=---,由()0G c =得10,1c c ce ce -==,两边取对数得ln 0c c +=,()()()0,0,0F c F x F c a ∴=∴≥=∴≤,即实数a 的取值范围是0a ≤.。
人教版高二下数学第一次月考试卷(理科)
高二下学期理科数学第一次月考试卷一、选择题(每小题5分,共60分)1.在曲线12+=x y 的图象上取一点(1,2)及附近一点)2,1(y x ∆+∆+,则x y ∆∆为( ) A.21+∆+∆x x B.21-∆-∆x x C.2+∆x D.xx ∆-∆+12 2.设4)(+=ax x f ,若2)1('=f ,则a 的值( ) A. 2 B .-2 C. 3 D.-33.dx x ⎰--1121等于( )A.4πB.2π C.π D. π2 4.关于函数的极值,下列说法正确的是( )A.导数为0的点一定是函数的极值点;B.函数的极小值一定小于它的极大值;C.)(x f 在定义域内最多只能有一个极大值,一个极小值;D.若)(x f 在),(b a 内有极值,那么)(x f 在),(b a 内不是单调函数.5.函数x x x f -=33)(的极大值、极小值分别是 ( )A 1,-1B 132,612-C 1,-17D 29,29- 6.函数x x y 2cos 2=的导数为( )A.x x x x y 2sin 2cos 22'-=B.xx x x y 2sin 22cos 22'-= C.x x x x y 2sin 22cos 2'-= D.xx x x y 2sin 22cos 22'+= 7.设曲线2ax y =在点),1(a 处的切线与直线平行062=--y x ,则=a ( ) A. B. C. D.8.设P 是正弦曲线x y sin =上一点,以P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )A.]4,4[ππ-B.]4,0[πC.),43[ππD.]4,0[π ),43[ππ 9. 以初速度40m/s 竖直向上抛一物体,t 秒时刻的速度21040t v -=,则此物体达到最高时的高度为( )A.m 320B.m 340C.m 380D.m 3160 10.函数x e x x f )3()(-=的单调递增区间是( )A .)2,(-∞B .)3,0(C .)4,1(D .),2(+∞11.由曲线2x y =与直线x y 2=所围成的平面图形的面积为( )A.316B.38C.34D.3212下列函数中,在),0(+∞内为增函数是( ) A.x x f sin )(= B.x xe x f =)( C.x x x f -=3)( D.x x x f -=ln )(二.填空题(每题5分,共20分)13. 若曲线4x y =的一条切线与直线480x y +-=垂直,则的方程是_ ____. 14.函数m x x x f +-=2362)((m 为常数) 在[22]-,上有最大值3,那么此函数在[22]-,上的最小值为15. 220(3)10,x k d x k +==⎰则_______________, 8-=⎰_____________.16.若函数k x x x f --=3)(3在R 上只有一个零点,则常数k 的取值范围是 . 三、解答题(共70分)17.计算下列函数的定积分:(1)dx xx x ⎰-20sin cos 2cos π; (2) ⎰-+242x dx 18. 已知曲线22x x y -=上有两点A (2,0),B (1,1),求:(1)割线AB 的斜率AB k ; (2)点A 处的切线的方程;(3) 过点A 的切线斜率AT k .19. 计算由直线4-=x y ,曲线x y 2=以及x 轴所围成图形的面积。
高二下期月考理科数学试题(导数)
高二数学月考试题(理科)第Ⅰ卷 (选择题 共60分)一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知函数x x x f 2)(2+-=,函数)(x f 从2到x ∆+2的平均变化率为A .x ∆-2B .x ∆+2C .x ∆--2D .x x ∆-∆2)(2 2.一物体作直线运动,其位移s 与时间t 的关系是23t t s -=,则物体的初速度为A .3B .0C .2-D .t 23- 3.函数)(x f 的图象如图所示,下列数值排序正确的是A .)2()3()3(')2('0f f f f -<<<B .)2(')2()3()3('0f f f f <-<<C .)2()3()2(')3('0f f f f -<<<D .)3(')2(')2()3(0f f f f <<-<4.若函数)1('2)(2xf x x f +=,则)0('f 等于 A . 0 B .2 C .2- D .4-5.若函数b bx x x f 33)(3+-=在)1,0(内有极小值,则A .10<<bB .1<bC .0>bD .21<b 6.函数51232)(23+--=x x x x f 在]3,0[上的最大值和最小值分别是A .15,4--B .4,5-C .15,5-D .16,5-7.设函数)(x f 在],[b a 上是连续函数,下列说法成立的个数是①⎰⎰+=+b a b a dx x f dx x f 1)(2]1)(2[ ② ⎰⎰=b a ba dx x f dx x f 22])([)]([ ③ 若⎰>ba dx x f 0)(,则)(x f 在],[b a 上恒正④ 若)(x f 在],[b a 上恒正,则⎰>ba dx x f 0)(A .0B .1C .2D .38.函数)(x f 的定义域为开区间),(b a ,其导函数 )('x f 在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点A .1个B .2个C .3个D .4个 9.若)2ln(21)(2++-=x b x x f 在),1(+∞-上是减函数,则b 的取值范围是 A .),1[+∞- B .),1(+∞- C .)1,(--∞ D .]1,(--∞10.设b a <,函数)()(2b x a x y --=的图象可能是A .B .C .D .11.曲线)12ln(-=x y 上的点到直线032=+-y x 的最短距离为A .0B .52C .53D .512.若函数x x x f sin )(=,且1021<<<x x ,设11sin x x a =,22sin x x b =,则a ,b 的大 小关系是A .b a =B .b a <C .b a >D .不能确定。
2020-2021学年高二数学下学期第一次月考试题理[1]
2020-2021学年高二数学下学期第一次月考试题理本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是 符合题目要求的.(1)已知集合{1,2,}M zi =,i 为虚数单位,{3,4}N =,{4}MN =,则复数z =(A )2i - (B )2i (C )4i - (D )4i (2)已知函数()y f x =的图象在点(1,(1))M f 处的切线方程是122y x =+,则()()11f f +'的值等于(A )1 (B )52 (C )3 (D )0 (3)已知函数52()ln 33f x x x =-,则0(1)(1)limx f f x x∆→-+∆=∆ (A )1 (B )1- (C )43- (D )53-(4)某班数学课代表给全班同学出了一道证明题.甲说:“丙会证明.”乙说:“我不会证明.”丙说:“丁会证明.”丁说:“我不会证明.”以上四人中只有一人说了真话,只有一人会证明此题.根据以上条件,可以判定会证明此题的人是 (A )甲 (B )乙 (C )丙 (D )丁 (5)已知,x y R ∈, i 为虚数单位,若()123xi y i +=--,则x yi +=(A )10 (B )3 (C )5 (D )2 (6)函数()()3e xf x x =-的单调递增区间是(A )()0,3 (B )()1,4 (C )()2,+∞ (D )(),2-∞(7)函数32()23f x x x a =-+的极大值为6,那么a 的值是(A )6 (B )5 (C )1 (D )0(8)以正弦曲线sin y x =上一点P 为切点得切线为直线l ,则直线l 的倾斜角的范围是(A )30,,424πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭ (B )[)0,π (C )3,44ππ⎡⎤⎢⎥⎣⎦(D )30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭(9)在复平面内,若2(1)(4)6z m i m i i =+-+-所对应的点位于第二象限,则实数m 的取值范围是(A )(0,3) (B )(,2)-∞- (C )(2,0)- (D )(3,4)(10)设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,错误..的是(11)若函数()2(0)xf x a x a=>+在[)1,+∞上的最大值为33,则a = (A )31- (B )34 (C )43(D )31+ (12)已知()f x 是定义在区间(0)+∞,上的函数,其导函数为()f x ',且不等式()2()x f x f x '<恒成立,则(A )4(1)(2)f f < (B )4(1)(2)f f > (C )(1)4(2)f f < (D )(1)4(2)f f '<第II 卷二、填空题:本题共4小题,每小题5分. (13)若函数321()(1)3f x x f x x '=-⋅+,则(1)f '=__________. (14)由曲线xy e x =+与直线0,1,0x x y ===所围成图形的面积等于__________. (15)观察下列各式: 1a b +=, 223a b +=, 334a b +=, 447a b +=, 5511a b +=,…,则1010a b +=(16)若直线y kx b =+是曲线ln 1y x =+的切线,也是曲线ln(2)y x =+的切线,则k =_______.三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)已知复数()()227656z a a a a i a R =-++--∈,求a 分别为何值时,(1)z 是实数; (2)z 是纯虚数; (3)当106za =-时,求z 的共轭复数.(18)(本小题满分10分) 已知数列{}n a 满足)(1,111++∈+==N n a a a a nnn (1)分别求234,,a a a 的值;(2)猜想{}n a 的通项公式n a ,并用数学归纳法证明.(19)(本小题满分12分)已知函数32()f x x ax bx =++在23x =-与1x =处都取得极值. (1)求函数()f x 的解析式;(2)求函数()f x 在区间[2,2]-的最大值与最小值.(20)(本小题满分12分)已知函数f (x )=ln xx.(1)判断函数()f x 的单调性;(2)若y =xf (x )+1x的图象总在直线y =a 的上方,求实数a 的取值范围.(21)(本小题满分12分)某商场为了获得更大的利润,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t (百万元),可增加的销售额为25t t -+(百万元)03t ≤≤(). (1)若该商场将当年的广告费控制在三百万元以内,则应投入多少广告费,才能使公司由广告费而产生的收益最大?(注:收益=销售额-投入费用)(2)现在该商场准备投入三百万元,分别用于广告促销和技术改造.经预算,每投入技术改造费x (百万元),可增加的销售额约为32133x x x -++(百万元),请设计一个资金分配方案,使该商场由这两项共同产生的收益最大.(22)(本小题满分12分) 已知函数()ln m f x x x=+(其中m R ∈),()161x g x e x +=-+(其中e 为自然对数的底数).(1)若曲线()y f x =在1x =处的切线与直线2450x y -+=垂直,求()f x 的单调区间和极值;(2)若对任意11,22x ⎡⎤∈⎢⎥⎣⎦,总存在[]22,3x ∈使得()()312120f x g x e -+-≥成立,求实数m 的取值范围.xx 第二学期第一次考试 高二年级理科数学试题参考答案一、 选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CCBBACADDDAB(1)【答案】C 【解析】由M ∩N ={4},知4∈M ,故z i =4,故z =4i =4i i 2=-4i.(2)【答案】C 【解析】由导数的几何意义得()()1151,112.222k f f ===⨯+=' 所以()()11f f +'=15+=322,故选C. (3)【答案】B(4)【答案】B 【解析】如果甲会证明,乙与丁都说了真话,与四人中只有一人说了真话相矛盾,不合题意;排除选项A ;如果丙会证明,甲乙丁都说了真话,与四人中只有一人说了真话相矛盾,不合题意,排除选项C ;如果丁会证明,丙乙都说了真话,与四人中只有一人说了真话相矛盾,不合题意,排除选项D ,故选B. (5)【答案】A 【解析】()123xi y i +=-- 21{3y x -=⇒=- 3{1x y =-⇒=,则10x yi +=. (6)【答案】C 【解析】()()()e 3e e2xxxf x x x '=+-=-,令()()e 20x f x x '=->,解得2x >,所以函数()f x 的单调增区间为()2,+∞.故选C . (7)【答案】A 【解析】()()322()23,6661f x x x a f x x x x x '=-+∴=-=-,令()0,f x '=可得0,1x =,容易判断极大值为()06f a ==.故选A. (8)【答案】D 【解析】由题得cos y x '=,设切线的倾斜角为α,则][3tan cos 1tan 10,,44k x ππαααπ⎡⎫==∴-≤≤∴∈⋃⎪⎢⎣⎭,故选D.(9)【答案】D 【解析】整理得22(4)(6)z m m m m i =-+--对应的点位于第二象限,则224060m m m m ⎧-<⎪⎨-->⎪⎩,解得34m <<. (10)【答案】D 【解析】经检验,A :若曲线为原函数图象,先减后增,则其导函数先负后正,正确;B :若一直上升的函数为原函数图象,单调递增,则其导函数始终为正,正确;C:若下方的图象为原函数图象,单调递增,则其导函数始终为正,正确;D :若下方的函数为原函数,则其导函数为正,可知原函数应单调递增,矛盾;若上方的函数图象为原函数图象,则由导函数可知原函数应先减后增,矛盾.故选D. (11)【答案】A②当1a ≤,即1a ≤时, ()f x 在[)1,+∞上单调递减,故()()max 111f x f a ==+. 令1313a =+,解得31a =-,符合题意. 综上31a =-.(12)【答案】B 【解析】设函数2()()f x g x x=(0)x >, 则243()2()()2()()0x f x xf x xf x f x g x x x''--'==<, 所以函数()g x 在(0,)+∞上为减函数,所以(1)(2)g g >,即22(1)(2)12f f >, 所以4(1)(2)f f >,故选B. 二、填空题 (13)【答案】23【解析】∵f (x )=13x 3-f ′(1)·x 2+x ,∴f ′(x )=x 2-2f ′(1)·x +1, ∴f ′(1)=1-2f ′(1)+1,∴f′(1)=23. (14)【答案】e -12 【解析】由已知面积S =10⎰(e x+x )d x =⎝⎛⎭⎪⎫e x +12x 210|=e +12-1=e -12.(15)123(16)【答案】12【解析】设直线y kx b =+与曲线ln 1y x =+和ln(2)y x =+的切点分别为()11,x kx b +,()22,x kx b +.由导数的几何意义可得12112k x x ==+,得122x x =+,再由切点也在各自的曲线上,可得1122ln 1,(),ln 2kx b x kx b x +=++=+⎧⎨⎩联立上述式子解得12k =. 三、解答题(17)解:(1)Z 是实数, 2560a a --=,得61a a ==-或(2)Z 是纯虚数, 2760a a -+=,且2560a a --≠,得1a = (3)当106za =-时, ()()1110a a i -++=, 得()()221110a a -++=,得2a =± 当2a =时, 412z i =--,得412Z i =-+; 当2a =-时, 248z i =+,得248Z i =-(18) 解: (1)3111,2112121223112=+=+==+=a a a a a a ,41113131334=+=+=a a a (2)猜想)(1+∈=N n na n ①当n =1时命题显然成立②假设)(+∈=N k k n 命题成立,即ka k 1= 当11111111+=+=+=+=+k a a ,ak n kk k k k 时 1+=∴k n 时命题成立综合①②,当+∈N n 时命题成立(19)解:(1) 2()32f x x ax b '=++,由题意2()03(1)0f f ⎧'-=⎪⎨⎪'=⎩即44033320ab a b ⎧-+=⎪⎨⎪++=⎩ 解得122a b ⎧=-⎪⎨⎪=-⎩,经检验符合题意,321()22f x x x x ∴=--(2)由(1)知2()3()(1)3f x x x '∴=+-, 令()0f x '=,得122,13x x =-=, 当x 变化时,f ′(x ),f (x )的变化情况如下表:x -2⎝⎛⎭⎪⎫-2,-23 -23 ⎝ ⎛⎭⎪⎫-23,1 1 (1,2) 2f ′(x )+0 -0 +f (x ) -6极大值2227极小值-322由上表知f max (x )=f (2)=2,f min (x )=f (-2)=-6. (20)解:(I) 21ln ()xf x x-'=当0x e << 时,()0f x '>,()f x 为增函数; 当x e >时,()0f x '<,()f x 为减函数. (2)依题意得,不等式1ln a x x<+对于0x >恒成立.令1()ln g x x x =+,则22111()x g x x x x-'=-=. 当(1,)x ∈+∞时,21()0x g x x -'=>,则()g x 是(1,)+∞上的增函数; 当(0,1)x ∈时,()0g x '<,则()g x 是(0,1)上的减函数. 所以()g x 的最小值是(1)1g =, 从而a 的取值范围是(,1)-∞.(21)解:(1)设投入广告费t (百万元)后由此增加的收益为()f t (百万元),则()2254f t t t t t t =-+-=-+ ()224t =--+, 03t ≤≤.所以当2t =时, ()max 4f t =,即当商场投入两百万元广告费时,才能使商场由广告费而产生的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告促销的费用为()3x -(百万元),则由此两项所增加的收益为()()23213[33g x x x x x =-+++-- ()3153]3433x x x +--=-++.()2'4g x x =-+,令()2'40g x x =-+=,得2x =或2x =-(舍去).当02x <<时, ()'0g x >,即()g x 在[)0,2上单调递增; 当23x <<时, ()'0g x <,即()g x 在(]2,3上单调递减, ∴当2x =时, ()()max 2523g x g ==. 故在三百万资金中,两百万元用于技术改造,一百万元用于广告促销,这样商场由此所增加的收益最大,最大收益为253百万元. (22)(2)由()161x g x ex +=-+, ()1'6x g x e +=-,当[]2,3x ∈时, ()'0g x >, ()g x 单调递增,故()g x 有最小值()3211g e =-,因为对任意11,22x ⎡⎤∈⎢⎥⎣⎦,总存在[]22,3x ∈使得()()312120f x g x e -+-≥,即()()31212f x e g x +-≥成立,所以对任意11,22x ⎡⎤∈⎢⎥⎣⎦,都有()3311211f x e e +-≥-,即()11f x ≥, 也即11ln 1m x x +>成立,从而对任意11,22x ⎡⎤∈⎢⎥⎣⎦,都有111ln m x x x ≥-成立, 构造函数()ln x x x x ϕ=- 1,22x ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,则()'ln x x ϕ=-,令()'0x ϕ=,得1x =,当1,12x ⎛⎫∈ ⎪⎝⎭时, ()'0x ϕ>, ()x ϕ单调递增;当()1,2x ∈时, ()'0x ϕ<, ()x ϕ单调递减,∴()x ϕ的最大值为()11ϕ=,∴1m ≥,综上,实数m 的取值范围为[)1,+∞.【感谢您的阅览,下载后可自由编辑和修改,关注我 每天更新】。
2021-2022年高二数学下学期第一次月考(4月)试题 理
2021-2022年高二数学下学期第一次月考(4月)试题理一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.从2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为A.6 B.12 C.18 D.242.已知随机变量服从正态分布,则A.0.21B. 0.58C. 0.42D. 0.293.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中最多命中一次的概率为,则该队员的每次罚球命中率为A. B. C. D.4.一个篮球运动员投篮一次得3分的概率为,得2分的概率为,不得分的概率为(、、),已知他投篮一次得分的数学期望为2(不计其它得分情况),则的最大值为A.B.C.D.5.某公共汽车上有10名乘客,沿途有5 个车站,乘客下车的可能方式有A:种 B:种 C:50 种 D:以上都不对6.在(|x |+-2)3的展开式中的常数项是( ) A.12 B.-12 C.-20 D.207.在(1-x)11的展开式中,x 的奇次幂的项的系数之和是( )A.-211B.-210C.211D.210-18.从10名女学生中选2名,40名男生中选3名,担任ABCDE 五种不同的职务,规定女生不担任B 职务,不同的分配方案有( )A.A 102A 403B.C 102A 31A 44C 403C.C 152C 403A 55D.C 102C 4039.某学习小组共12人,其中有五名是“三好学生”,现从该小组中任选5人参加竞赛,用表示这5人中“三好学生”的人数,则下列概率中等于的是( )A. B. C. D.10.在实验室进行的一项物理实验中,要先后实施个程序,其中程序只能出现在第一或最后一步, 程序和在实施时必须相邻,则实验顺序的编排方法共有( )A . 种B .种C .种D .种11. 以平行六面体的任意三个顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率是( )A .B .C .D .12.设a,b ∈{1,2,3,4,5,6},则有不同离心率的椭圆,(a >b)的个数为( )A.30 B.15 C.11D.6二、填空题:本大题共4小题,每小题5分,共20分.13.已知随机变量满足=2,则___________14.设函数则导函数的展开式项的系数为______________15.4个男生,3个女生排成一排,其中有且只有两个女生相邻排在一起的排法总数___________.16.已知的展开式中的常数项为,是以为周期的偶函数,且当时,,若在区间内,函数有4个零点,则实数的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.连续6次射击,把每次命中与否按顺序记录下来。
高二数学下月考试卷理科学科试卷
高二数学下月考试卷理科学科试卷高二数学下册月考试卷理科一、选择题(本大题共10个小题,每小题5分,共50分)1.设l、m、n均为直线,其中m、n在平面_alpha;内,则l_perp;_alpha;是l_perp;m且l_perp;n的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.已知直线m、n和平面_alpha;、_beta;满足m_perp;n,m_perp;_alpha;,_alpha;_perp;_beta;,则( )A.n_perp;_beta;B.n∥_beta;,或n_sub;_beta;C.n_perp;_alpha;D.n∥_alpha;,或n_sub;_alpha;3..若平面_alpha;∥平面_beta;,直线a∥平面_alpha;,点B_isin;_beta;,则在平面_beta;内且过B点的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线4.一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于( )A.a2B.2a2C.a2D.a25.如图,若一个空间几何体的三视图中,正视图和侧视图都是直角三角形,其直角边均为1,则该几何体的体积为( )A.B.C.D.16.一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面()A.必定都不是直角三角形B.至多有一个直角三角形C.至多有两个直角三角形D.可能都是直角三角形7.如右图所示,正方体ABCD_shy;A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是( )A.AC_perp;BEB.EF∥平面ABCDC.三棱锥A_shy;BEF的体积为定值D.△AEF的面积与△BEF的面积相等8.已知矩形ABCD的面积为8,当矩形ABCD周长最小时,沿对角线AC把△ACD折起,则三棱锥D-ABC的外接球表面积等于( )A.8_pi;B.16_pi;C.48_pi;D.不确定的实数9.已知A、B、C、D为同一球面上的四点,且连接每点间的线段长都等于2,则球心O到平面BCD的距离等于()A.B.C.D.10.三棱锥P-ABC的高PO=8,AC=BC=3,_ang;ACB=30_deg;,M、N分别在BC和PO上,且CM=_,PN=2CM,则下面四个图象中大致描绘了三棱锥N-AMC 的体积V与_变化关系(__isin;(0,3))是()第Ⅱ卷二、填空题(本大题共5小题,每小题5分,共25分)11.设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为。
高二数学下学期月考试题 理含解析 试题
卜人入州八九几市潮王学校湄潭求是高中二零二零—二零二壹第二学期第一次月考高二理科数学试题一、选择题:〔在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的,一共12小题,每一小题5分,一共60分〕1.“〞是“〞的〔〕A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】B【解析】【分析】由不等式性质及充分必要条件判断即可.【详解】由不等式性质可知:“〞,那么“〞成立反之,假设x=1,y=0,满足但不成立,所以“〞是“〞的充分不必要条件应选:B【点睛】此题考察充分必要条件判断,不等式性质的应用,熟记断定定理是关键,是根底题的倾斜角为()A. B. C. D.【答案】C【解析】【分析】先求出直线的斜率,再求直线的倾斜角.【详解】∵直线x+y﹣20的斜率k,设倾斜角为,那么tan=∴直线x+y﹣2=0倾斜角为.应选:C.【点睛】此题考察直线的倾斜角的求法,熟记斜率与倾斜角的关系是关键,是根底题3.如图,在等腰中,,M为的中点,沿BM把它折成二面角,折后A与C的间隔为,那么二面角的大小为〔〕A.30°B.60°C.90°D.120°【答案】D【解析】【分析】由得折叠之后AM=CM,AM⊥BM,CM⊥BM,∠AMC是二面角C﹣BM﹣A的平面角,由此能求出二面角C﹣BM﹣A的大小.【详解】∵等腰直角△BC中,B=BC=2,M为C中点,∴折之前C2,BM⊥C,∴折之后AM=CM,AM⊥BM,CM⊥BM,∴∠AMC是二面角C﹣BM﹣A的平面角,∵折后A,C间的间隔为,由余弦定理得cos∠AMC=,∵∠AMC∴二面角C﹣BM﹣A的大小为,即为120°应选:D.【点睛】此题考察二面角的大小的求法,是中档题,解题时要注意空间思维才能的培养,证明∠AMC是二面角C﹣BM﹣A的平面角是关键,是根底题上一点P到椭圆一个焦点的间隔是3,那么点P到另一个焦点的间隔为()A.3B.5C.7D.9【答案】D【解析】【分析】先根据条件求出a=6;再根据椭圆定义得到关于所求间隔d的等式即可得到结论.【详解】设所求间隔为d,由题得:a=6.根据椭圆的定义椭圆上任意一点到两个焦点间隔的和等于2a得:2a=3+d⇒d=2a﹣3=9.应选:D.【点睛】此题主要考察椭圆的定义.在解决涉及到圆锥曲线上的点与焦点之间的关系的问题中,圆锥曲线的定义往往是解题的打破口.5.如下列图,梯形是一平面图形的直观图(斜二测画法),假设,,,,那么四边形ABCD的面积是〔〕A. B. C. D.【答案】D【解析】【分析】如图,根据直观图画法的规那么,确定面图形四边形ABCD的形状,求出底边边长,上底边边长,以及高,然后求出面积.【详解】如图,根据直观图画法的规那么,直观图中A1D1∥O′y′,,⇒原图中AD∥Oy,从而得出AD⊥DC,且AD=,直观图中,,⇒原图中AB∥CD,AB=CD=4,即四边形ABCD上底和下底边长分别为4,6,高为4,如图.故其面积S〔4+6〕×4=20应选:D.【点睛】此题考察平面图形的直观图,考察计算才能,作图才能,熟记斜二测画法是关键,是根底题,直线,假设,那么实数的值是()A.±4B.-4C.4D.±2【答案】B【解析】∵直线l1:ax+2y-1=0,直线l2:8x+ay+2-a=0,且l1∥l2∴,且∴应选B点睛:〔1〕当直线的方程存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意的系数不能同时为零的这一隐含条件;〔2〕在判断两条直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.的图象与抛物线的图象关于直线对称,那么抛物线的准线方程是()A. B. C. D.【答案】B【解析】【分析】先求出曲线的准线,然后根据对称性的求解关于直线y=﹣x对称的直线,即为所求曲线的准线方程.【详解】因y=2x2的准线方程为y,关于y=﹣x对称方程为x.所以所求的抛物线的准线方程为:x应选:B.【点睛】此题主要考察了抛物线的准线的求解,曲线关于直线对称的求解,属于对根底知识的考察,试题比较容易.与的公一共弦长等于()A. B. C. D.【答案】A【解析】【分析】求出圆心和半径以及公一共弦所在的直线方程,再利用点到直线的间隔公式,弦长公式,求得公一共弦的长.【详解】∵两圆为x2+y2+4x﹣4y=0①,x2+y2+2x﹣12=0,②①﹣②可得:x﹣2y+6=0.∴两圆的公一共弦所在直线的方程是x﹣2y+6=0,∵x2+y2+4x﹣4y=0的圆心坐标为〔﹣2,2〕,半径为2,∴圆心到公一共弦的间隔为d=0,∴公一共弦长=4.应选:A.【点睛】此题主要考察圆与圆的位置关系,求两个圆的公一共弦所在的直线方程的方法,点到直线的间隔公式,弦长公式的应用,属于根底题.在其定义域内可导,其图象如下列图,那么导函数的图象可能为〔〕A. B. C.D.【答案】C【解析】由函数f(x)的图象可知,函数在自变量逐渐增大的过程中,函数先递增,然后递减,再递增,当x>0时,函数单调递增,所以导数f′(x)的符号是正,负,正,正。
高二数学下学期月考试题理含解析
第HY学2021届4月份阶段性测试高二理科数学试题一、选择题〔每一小题5分,一共60分〕1.是成立的〔〕A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】解出含有绝对值的不等式的解集,根据小范围推大范围得到结果即可.【详解】解得到假设,一定有反之不一定,故是成立的充分不必要条件.故答案为:A.【点睛】判断充要条件的方法是:①假设p⇒q为真命题且q⇒p为假命题,那么命题p是命题q的充分不必要条件;②假设p⇒q为假命题且q⇒p为真命题,那么命题p是命题q的必要不充分条件;③假设p⇒q为真命题且q⇒p为真命题,那么命题p是命题q的充要条件;④假设p⇒q为假命题且q⇒p为假命题,那么命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分〞的原那么,判断命题p与命题q的关系.2.在同一平面直角坐标系中,经过伸缩变换后,曲线变为曲线,那么曲线的方程为〔〕A. B. C. D.【答案】B【解析】【分析】将代入曲线化简可得到式子.【详解】将代入曲线方程得到。
故答案为:B.【点睛】此题考察了曲线的变换公式的应用,属于根底题.分别与轴,轴交于,两点,点在圆上,那么面积的取值范围是A. B. C. D.【答案】B【解析】【分析】根据条件得到三角形的底边长为,高有最大值和最小值,最小值为最大值为进而得到面积的范围.【详解】根据题意得到,三角形面积的大小,取决于三角形的高的大小,点P到AB的间隔,最小是圆心到直线的间隔减半径,最大是圆心到直线的间隔加半径,根据点到直线的间隔得到,三角形的高最大值为三角形的高的最小值为面积为:故范围是:.故答案为:B.【点睛】这个题目考察的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者者定点的间隔时,一般是转化为圆心到直线或者者圆心到定点的间隔,再加减半径,分别得到最大值和最小值.在点处的切线方程为,那么〔〕A. B. C. D.【答案】C【解析】【分析】对函数求导,得到根据切线方程得到【详解】曲线,,切线方程,故得到故答案为:C.【点睛】这个题目考察了根本初等函数的求导公式,以及导数的几何意义,题目比拟简单.,且,那么的值是〔〕A. B. C. D.【答案】C【解析】【分析】根据三角函数的求导公式得到,再由两角和公式得到结果.【详解】函数,那么故答案为:C.【点睛】这个题目考察了三角函数的二倍角公式的应用,题目比拟简单.的参数方程为,那么直线的倾斜角为( )A. B. C. D.【答案】B【解析】【分析】根据直线的参数方程得到倾斜角为通过三角函数的诱导公式得到结果. 【详解】直线的参数方程为(t为参数〕进而得到直线的倾斜角为故答案为:B.【点睛】这个题目考察了直线的参数方程的应用,考察了参数方程中系数的几何意义.:(为参数)和抛物线:,与分别交于点,那么点到两点间隔之和是( )A. 10B.C.D.【答案】D【解析】【分析】联立直线和抛物线方程,根据参数t的几何意义得到. 【详解】直线:(为参数)和抛物线:联立得到,根据参数t的几何意义得到点到两点间隔之和是:故答案为:D.【点睛】此题主要考察了参数方程与直角坐标方程的互化,以及直线参数方程的应用,其中解答中熟记极坐标方程与直角坐标方程的互化公式,以及直线参数方程中参数的几何意义的合理应用是解答的关键,着重考察了推理与运算才能,属于根底题.的条件下,五个结论:①;②;③;④;⑤设都是正数,那么三个数至少有一个不小于,其中正确的个数是( )A. 2B. 3C. 4D. 5【答案】C【解析】【分析】根据不等式的性质以及变形做差的方法得到①②③④正确,⑤由反证法可得证.【详解】对于①等价于,恒成立,故正确;②,等价于恒成立,故正确;③,等价于恒成立,故正确;④,等价于这个不等式应该是非负的,故不正确;⑤设都是正数,设三个数全都小于2,因为,假如每个值都小于2,那么这三组的和应小于6,这互相矛盾,故原命题正确.故答案为:C.【点睛】这个题目考察了命题真假的判断,不等式性质的应用,以及反证法的应用,题目比拟综合.,直线的方程为,那么曲线上到直线的间隔为4的点的个数为〔〕A. 1B. 2C. 3D. 4【答案】B【解析】【分析】曲线C表示以〔2,﹣1〕为圆心,以3为半径的圆,圆心C〔2,﹣1〕到直线l的间隔d<3,从而直线与圆相交.所以与l平行的直线与圆的2个交点满足题意.【详解】由曲线C的参数方程为,得〔x﹣2〕2+〔y+1〕2=9.∴曲线C表示以〔2,﹣1〕为圆心,以3为半径的圆,那么圆心C〔2,﹣1〕到直线l的间隔d=所以直线与圆相交.所以与l平行的直线与圆的2个交点满足题意,又3﹣d<4,故满足题意的点有2个.应选:B.【点睛】此题考察曲线C上到直线l间隔为4的点的个数的求法,是中档题,解题时要认真审题,注意极坐标方程、直角坐标方程互化公式合理运用.10.,且,那么的最小值是〔〕A. B. C. D.【答案】B【解析】【分析】根据柯西不等式得到不等式关系,进而求解.【详解】根据柯西不等式得到进而得到最小值是:故答案为:B.【点睛】这个题目考察了柯西不等式的应用,比拟根底.11.,且,那么的取值范围是〔〕A. B. C. D.【答案】A【解析】【分析】根据不等式的性质将原式化简为化简得到.【详解】因为故答案为:A.【点睛】在利用根本不等式求最值时,要特别注意“拆、拼、凑〞等技巧,使其满足根本不等式中“正〞(即条件要求中字母为正数)、“定〞(不等式的另一边必须为定值)、“等〞(等号获得的条件)的条件才能应用,否那么会出现错误.中,圆的参数方程为〔为参数〕,以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为,〔〕.假设直线与圆相交于,两点,的面积为2,那么值为〔〕A. 或者3B. 1或者5C. 或者D. 2或者6 【答案】C【解析】圆的普通方程为,所以圆心为,半径为,由,可得等腰直角三角形,到的间隔为,直线化为直角坐标方程为,即,由点到直线的间隔公式可得,得或者,应选C.二、填空题〔每一小题5分,一共20分〕,且,那么______________;【答案】【解析】【分析】赋值法,令x=-1,1解方程得到,再代入得到结果.【详解】函数,,进而得到-1.故答案为:-1.【点睛】这个题目考察了导数的根本运算,以及赋值法的应用,比拟根底.中,曲线与的交点的极坐标为______________________;【答案】【解析】转化为直角坐标系下与的交点为〔0,〕,该点在极坐标系下表示为15.最小值为5,那么_____________;【答案】【解析】【分析】讨论a的范围,分情况去掉绝对值,找到不同情况下的最值,进而得到参数值.【详解】当时,,此时最小值是当时,代入得到a=12或者-18,故此时a=12;当时,、此时函数在x=处获得最小值,代入得到a=-18.故答案为:12或者-18.【点睛】这个题目考察了绝对值不等式的最值的求法,常见的解法是零点分区间去掉不等式.,不等式恒成立,那么实数的范围是 ____【答案】【解析】试题分析:x=0时,恒成立;x>0时,3x2﹣2ax≥x﹣可化为2a≤3x+﹣1,∵3x+≥2=3,∴2a≤3﹣1,∴a≤1;x<0时,3x2﹣2ax≥﹣x﹣可化为﹣2a≤〔﹣3x〕﹣﹣1,∵﹣3x﹣≥3,∴﹣2a≤3﹣1,∴a≥﹣1∴﹣1≤a≤1.考点:函数恒成立问题,等式的解法.点评:此题考察了函数恒成立问题,考察根本不等式的运用,考察分类讨论.三、解答题〔一共70分〕(1)解不等式(2)假设在上有实数解,求的取值范围.【答案】〔1〕;〔2〕【解析】【分析】〔1〕零点分区间写出函数的表达式,分段解决即可;〔2〕由绝对值三角不等式得到,故原不等式转化为,解出即可.【详解】(1) 零点分区间,函数,解得:解集为.〔2〕=根据绝对值三角不等式得到故得到假设在上有实数解,即根据二次函数的性质得到解为:.【点睛】此题主要考察了绝对值不等式的求解,以及不等式的有解问题,其中解答中根据绝对值的定义,合理去掉绝对值号,及合理转化有解问题是解答此题的关键,着重考察分析问题和解答问题的才能,以及转化思想的应用.18.平面直角坐标系中,是过定点且倾斜角为的直线,在极坐标系〔以坐标原点为极点,以轴非负半轴为极轴,取一样单位长度〕中,曲线的极坐标方程为.〔1〕写出直线的参数方程,并将曲线的方程为化直角坐标方程;〔2〕假设曲线与直线相交于不同的两点,求的取值范围。
人教A版选修2-2高二(下)第三次月考数学试卷(理科).docx
马鸣风萧萧高中数学学习材料唐玲出品高二(下)第三次月考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2012•浙江)已知i 是虚数单位,则=()A.1﹣2i B.2﹣i C.2+i D.1+2i考点:复数代数形式的乘除运算.专题:计算题.分析:由题意,可对复数代数式分子与分母都乘以1+i,再由进行计算即可得到答案解答:解:故选D点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握2.(3分)由1,2,3,4,6这5个数字,组成无重复数字的三位数中,其中是2的倍数的有()个.A.60 B.40 C.36 D.30考点:排列、组合及简单计数问题.专题:计算题.分析:先排个位,方法有种,其余的两位任意排有种方法,根据分步计数原理,求得满足条件的三位数的个数.解答:解:要使这个数是2的倍数,必须个位是偶数,故从2、4、6中任意选一个排在个位上,方法有种方法;其余的2位没有限制条件,任意排,共有种方法.精心制作仅供参考唐玲出品精心制作仅供参考唐玲出品根据分步计数原理,满足条件的三位数有 •=36个,故选C .点评: 本题主要考查排列与组合及两个基本原理,排列数公式、组合数公式的应用,属于中档题.3.(3分)计算=( )A .B .5 C .D .考点: 微积分基本定理. 专题: 计算题.分析: 欲求函数x 2+1的定积分值,故先利用导数求出x 2+1的原函数,再结合微积分基本定理即可求出.解答: 解:∵∫02(x 2+1)dx=(x 3+x )|02=23+2=.故选A .点评: 本小题主要考查直定积分的简单应用、定积分、利用导数研究原函数等基础知识,考查运算求解能力.属于基础题.4.(3分)下面几种推理过程是演绎推理的是( ) A . 在数列{a n}中,由此得出{a n}的通项公式.B . 大足中学高一一班有63人,二班65人,三班62人,由此得高一所有班人数都超过60人.C . 两条直线平行,内错角相等,如果∠A 与∠B 是两条平行直线的内错角,则∠A=∠B .D . 由平面内正三角形的性质,推知空间正四面体的性质.考点: 演绎推理的基本方法. 专题: 规律型.分析: 逐个选项来验证,A 选项和C 选项都属于归纳推理,D 选项属于类比推理,只有C 选项符合题意. 解答: 解:A 选项,在数列{a n}中,,由此归纳出{a n}的通项公式,属于归纳推理;B 选项,大足中学高一一班有63人,二班65人,三班62人,由此得高一所有班人数都超过60人,也属于归纳推理;C 选项,具有明显的大前提,小前提,结论,属于典型的演绎推理的三段论形式.D 选项,由平面三角形的性质,推测空间四面体性质,属于类比推理; 综上,可知,只有C 选项为演绎推理. 故选C .点评: 本题考查演绎推理,掌握几种推理的定义和特点是解决问题的关键,属基础题.5.(3分)已知(x 2+)n的二项展开式的各项系数和为32,则二项展开式中x 的系数为( ) A . 5 B .10 C .20 D .40精心制作仅供参考唐玲出品马鸣风萧萧考点:二项式定理.专题:计算题.分析:由题意可知,二项展开式的项的系数等于二项式系数,由此求出n的值,由通项得到含x的系数项,则答案可求.解答:解:(x2+)n的二项展开式的各项系数和为32,即在(x2+)n中取x=1后所得的值等于32,所以2n=32,则n=5.二项式的展开式的通项为.由10﹣3r=1,得r=3.所以二项展开式中x的系数为.故选B.点评:本题考查了二项式定理,考查了二项展开式的项的系数和二项式系数,考查了学生生的计算能力,是基础题.6.(3分)用数学归纳法证明命题时,某命题左式为,则n=k+1与n=k时相比,左边应添加的项为()A.B.C.D.考点:数学归纳法.专题:规律型.分析:n=k时,最后一项为,n=k+1时,最后一项为,由此可得由n=k变到n=k+1时,左边增加的项即可.解答:解:由题意,n=k时,最后一项为,n=k+1时,最后一项为,∴由n=k变到n=k+1时,左边增加了,故选B.点评:本题考查数学归纳法,考查学生分析解决问题的能力,找出规律是解题的关键,属于基础题.7.(3分)将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实根的概率为()A.B.C.D.精心制作仅供参考唐玲出品精心制作仅供参考唐玲出品考点: 等可能事件的概率. 专题: 计算题.分析: 先根据题中的条件可判断属于等可能事件的概率模型,然后分别求解试验产生的所有结果n ,基本事件的结果数m ,代入古典概率模型的计算公式P (A )=进行计算.解答: 解:将一枚骰子抛掷两次,若先后出现的点数分别为b ,c ,共有36种结果:记“方程x 2+bx+c=0有实根”为事件A ,则△=b 2﹣4c ≥0⇒,A 包含的结果有:(2,1)(3,1)(4,1)(5,1) (6,1)(3,2)(4,2)(5,2)(6,2)(4,3)(5,3)(6,3)(4,4) (5,4)(6,4)(5,5)(6,5)(5,6)(6,6)共19种结果,由的可能事件概率的计算公式可得,P (A )=.故选D .点评: 本题主要考查了等可能事件概率的求解和一元二次方程有解的充要条件,本题解题的关键是列举出使得方程有解的可能的情况,本题是一个基础题.8.(3分)方程x 3﹣6x 2+9x ﹣4=0的实根的个数为( ) A . 0 B . 1 C . 2 D . 3考点: 根的存在性及根的个数判断. 专题: 计算题.分析: 由方程x 3﹣6x 2+9x ﹣4=0的实根的个数,等于函数f (x )=x 3﹣6x 2+9x ﹣4零点的个数,我们利用导数法求了函数f (x )=x 3﹣6x 2+9x ﹣4的极值,分析后即可得到结论.解答: 解:令f (x )=x 3﹣6x 2+9x ﹣4,则f ′(x )=3x 2﹣12x+9=3(x ﹣1)(x ﹣3). 由f ′(x )>0得x >3或x <1, 由f ′(x )<0得1<x <3.∴f (x )的单调增区间为(3,+∞),(﹣∞,1),单调减区间为(1,3), ∴f (x )在x=1处取极大值,在x=3处取极小值, 又∵f (1)=0,f (3)=﹣4<0,∴函数f (x )的图象与x 轴有两个交点, 即方程x 3﹣6x 2+9x ﹣4=0有两个实根. 故选C .点评: 本题考查的知识点是根的存在性及根的个数判断,根据方程根的个数与对应函数的零点个数相等,我们将问题转化为求函数f (x )=x 3﹣6x 2+9x ﹣4零点的个数,是解答本题的关键.9.(3分)(2012•自贡一模)下列图象中,有一个是函数f (x )=x 3+ax 2+( a 2﹣1)x+1(a ∈R ,a ≠0)的导数f'(x )的图象,则f (﹣1)的值为( )A .B .﹣C .D .﹣或考点: 二次函数的图象.精心制作仅供参考唐玲出品马鸣风萧萧专题:数形结合.分析:求出导函数,据导函数的二次项系数为正得到图象开口向上;利用函数解析式中有2ax,故函数不是偶函数,得到函数的图象.解答:解:∵f′(x)=x2+2ax+(a2﹣1),∴导函数f′(x)的图象开口向上.又∵a≠0,∴f(x)不是偶函数,其图象不关于y轴对称其图象必为第三张图.由图象特征知f′(0)=0,且对称轴﹣a>0,∴a=﹣1.故f(﹣1)=﹣﹣1+1=﹣.故选B.点评:本题考查导函数的运算法则、二次函数的图象与二次函数系数的关系:开口方向与二次项系数的符号有关、对称轴公式.10.(3分)(2006•江西)将7个人(含甲、乙)分成三个组,一组3人,另两组2人,不同的分组数为a,甲、乙分到同一组的概率为p,则a、p的值分别为()A.a=105 p=B.a=105 p=C.a=210 p=D.a=210 p=考点:等可能事件.分析:本题是一道平均分组问题,将7个人(含甲、乙)分成三个组,一组3人,另两组2人,有两个组都是两个人,而这两个组又没有区别,所以分组数容易重复,甲、乙分到同一组的概率要分类计算.解答:解:a==105甲、乙分在同一组的方法种数有(1)若甲、乙分在3人组,有=15种(2)若甲、乙分在2人组,有C53=10种,故共有25种,所以P=故选A点评:平均分组问题是概率中最困难的问题,解题时往往会忽略有些情况是相同的,若4人分成两组,则有种分法.二、填空题(共5小题,每小题3分,满分15分)11.(3分)(2007•湖北)已知函数y=f(x)的图象在M(1,f(1))处的切线方程是+2,f(1)+f′(1)=3.考点:导数的运算.分析:先将x=1代入切线方程可求出f(1),再由切点处的导数为切线斜率可求出f'(1)的值,最后相加精心制作仅供参考唐玲出品精心制作仅供参考唐玲出品即可.解答:解:由已知切点在切线上,所以f (1)=,切点处的导数为切线斜率,所以,所以f (1)+f ′(1)=3 故答案为:3点评: 本题主要考查导数的几何意义,即函数在某点的导数值等于以该点为切点的切线的斜率. 12.(3分)某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.在男生甲被选中的情况下,则女生乙也被选中的概率是.考点: 古典概型及其概率计算公式.专题: 概率与统计.分析: 求得所有的选法有 种,在男生甲被选中的情况下,则女生乙也被选中的选法有种,由此求得在男生甲被选中的情况下,则女生乙也被选中的概率.解答: 解:所有的选法有=20种,在男生甲被选中的情况下,则女生乙也被选中的选法有=4种,故在男生甲被选中的情况下,则女生乙也被选中的概率等于 =,故答案为 .点评: 本题考查古典概型及其概率计算公式的应用,属于基础题. 13.(3分)用火柴棒按图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数a n 与所搭三角形的个数n 之间的关系式可以是 a n =2n+1 .考点: 归纳推理. 专题: 探究型.分析: 由题设条件可得出三角形的个数增加一个,则火柴棒个数增加2个,所以所用火柴棒数a n 是一个首项为3,公差为2的等差数列,由此易得火柴棒数a n 与所搭三角形的个数n 之间的关系式解答: 解:由题意,三角形的个数增加一个,则火柴棒个数增加2个,所以所用火柴棒数a n 与是一个首项为3,公差为2的等差数列所以火柴棒数a n 与所搭三角形的个数n 之间的关系式可以是a n =3+2(n ﹣1)=2n+1 故答案为 a n =2n+1点评: 本题考点是归纳推理,由图形观察出规律是解题的重点,本题查了归纳推理的能力及根据图形判断的能力14.(3分)设函数f (x )=g (x )+x 2,曲线y=g (x )在点(1,g (1))处的切线方程为y=2x+1,则曲线y=f (x )在点(1,f (1))处切线的斜率为 4 .考点: 利用导数研究曲线上某点切线方程;导数的加法与减法法则. 专题: 计算题.分析: 先根据曲线y=g (x )在点(1,g (1))处的切线方程为y=2x+1,可得g ′(1)=2,再利用函数f (x )精心制作仅供参考唐玲出品马鸣风萧萧=g (x )+x 2,可知f ′(x )=g ′(x )+2x ,从而可求曲线y=f (x )在点(1,f (1))处切线的斜率.解答: 解:由题意,∵曲线y=g (x )在点(1,g (1))处的切线方程为y=2x+1∴g ′(1)=2∵函数f (x )=g (x )+x 2, ∴f ′(x )=g ′(x )+2x ∴f ′(1)=g ′(1)+2 ∴f ′(1)=2+2=4∴曲线y=f (x )在点(1,f (1))处切线的斜率为4 故答案为:4点评: 本题考查的重点是曲线在点处切线的斜率,解题的关键是利用导数的几何意义.15.(3分)(2012•浙江)若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…a 5为实数,则a 3= 10 .考点: 二项式定理的应用. 专题: 计算题.分析: 将x 5转化[(x+1)﹣1]5,然后利用二项式定理进行展开,使之与f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5进行比较,可得所求.解答: 解:f (x )=x 5=[(x+1)﹣1]5=(x+1)5+(x+1)4(﹣1)+(x+1)3(﹣1)2+(x+1)2(﹣1)3+(x+1)1(﹣1)4+(﹣1)5而f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,∴a 3=(﹣1)2=10故答案为:10点评: 本题主要考查了二项式定理的应用,解题的关键利用x 5=[(x+1)﹣1]5展开,同时考查了计算能力,属于基础题.三、解答题(共6小题,满分75分)16.(13分)(2012•重庆)已知函数f (x )=ax 3+bx+c 在点x=2处取得极值c ﹣16. (Ⅰ)求a ,b 的值;(Ⅱ)若f (x )有极大值28,求f (x )在[﹣3,3]上的最小值.考点: 利用导数求闭区间上函数的最值;函数在某点取得极值的条件. 专题: 综合题;探究型;方程思想;转化思想.分析: (Ⅰ)由题设f (x )=ax 3+bx+c ,可得f ′(x )=3ax 2+b ,又函数在点x=2处取得极值c ﹣16,可得解此方程组即可得出a ,b 的值;(II )结合(I )判断出f (x )有极大值,利用f (x )有极大值28建立方程求出参数c 的值,进而可求出函数f (x )在[﹣3,3]上的极小值与两个端点的函数值,比较这此值得出f (x )在[﹣3,3]上的最小值即可.解答: 解:(Ⅰ)由题f (x )=ax 3+bx+c ,可得f ′(x )=3ax 2+b ,又函数在点x=2处取得极值c ﹣16∴,即,化简得解得a=1,b=﹣12精心制作仅供参考唐玲出品精心制作仅供参考唐玲出品(II )由(I )知f (x )=x 3﹣12x+c ,f ′(x )=3x 2﹣12=3(x+2)(x ﹣2)令f ′(x )=3x 2﹣12=3(x+2)(x ﹣2)=0,解得x 1=﹣2,x 2=2当x ∈(﹣∞,﹣2)时,f ′(x )>0,故f (x )在∈(﹣∞,﹣2)上为增函数;当x ∈(﹣2,2)时,f ′(x )<0,故f (x )在(﹣2,2)上为减函数;当x ∈(2,+∞)时,f ′(x )>0,故f (x )在(2,+∞)上为增函数;由此可知f (x )在x 1=﹣2处取得极大值f (﹣2)=16+c ,f (x )在x 2=2处取得极小值f (2)=c ﹣16, 由题设条件知16+c=28得,c=12此时f (﹣3)=9+c=21,f (3)=﹣9+c=3,f (2)=﹣16+c=﹣4 因此f (x )在[﹣3,3]上的最小值f (2)=﹣4点评: 本题考查利用导数求闭区间上函数的最值及利用导数求函数的极值,解第一小题的关键是理解“函数在点x=2处取得极值c ﹣16”,将其转化为x=2处的导数为0与函数值为c ﹣16两个等量关系,第二小时解题的关键是根据极大值为28建立方程求出参数c 的值.本题考查了转化的思想及方程的思想,计算量大,有一定难度,易因为不能正确转化导致无法下手求解及计算错误导致解题失败,做题时要严谨认真,严防出现在失误.此类题是高考的常考题,平时学习时要足够重视.17.(13分)在长为12cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,求该矩形面积小于32cm 2的概率.考点: 几何概型. 专题: 概率与统计.分析: 设AC=x ,则0<x <12,若矩形面积为小于32,则x >8或x <4,从而利用几何概型概率计算公式,所求概率为长度之比.解答: 解:设AC=x (0≤x ≤12),则BC=12﹣x ,矩形的面积S=x (12﹣x )=﹣x 2+12x <32, 解得0<x <4或12>x >8,故由几何概型可得所求事件的概率为P=.…(13分)点评: 本题主要考查了几何概型概率的意义及其计算方法,将此概率转化为长度之比是解决本题的关键,属基础题18.(13分)计算: (1)设a ,b ∈R ,(i 为虚数单位),求a+b 的值.(2)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有m 种.求m 的值.考点: 复数代数形式的乘除运算;计数原理的应用. 专题: 计算题. 分析:(1)由题意可对复数代数式分子与分母都乘以1+2i ,再进行化简计算,再由复数相等的条件求出a 和b 的值,即可得答案;(2)根据题意需要分三类计算:①4个偶数;②2个奇数,2个偶数;③4个奇数,再由组合公式求解即可.解答:解:(1)∵a+bi=,∴a=5,b=3,a+b=8.;(2)根据题意偶数为2、4、6、8,奇数为1、3、5、7、9,精心制作仅供参考唐玲出品马鸣风萧萧需要分三类计算:①4个偶数;②2个奇数,2个偶数;③4个奇数,则符合题意的取法共有:m=C C+C C+C C=1+60+5=66(种)点评:本题考查复数代数形式的乘除运算和组合公式,解题的关键是分子分母都乘以分母的共轭复数和明确进行分类,复数的四则运算是复数考查的重要内容,要熟练掌握.19.(12分)(2012•浙江)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.(1)求X的分布列;(2)求X的数学期望E(X).考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:计算题.分析:(1)X的可能取值有:3,4,5,6,求出相应的概率可得所求X的分布列;(2)利用X的数学期望公式,即可得到结论.解答:解:(1)X的可能取值有:3,4,5,6.P(X=3)=;P(X=4)=;P(X=5)=;P(X=6)=.故所求X的分布列为X 3 4 5 6P(2)所求X的数学期望E(X)=3×+4×+5×+6×=点评:本题主要考查随机事件的概率和随机变量的分布列、数学期望等概念,同时考查抽象概括、运算能力,属于中档题.20.(12分)今有标号为1,2,3,4,5的五封信,另有同样标号的五个信封.现将五封信任意地装入五个信封,每个信封装入一封信,试求至少有两封信配对的概率.考点:互斥事件的概率加法公式;等可能事件的概率.专题:计算题.分析:至少有两封信配对包括恰有两封信配对、恰有三封信配对、恰有五封信配对三种情况,而这三种情况对应事件为互斥事件,故分别求概率再取和即可.而每种情况对应的概率可由古典概型求解.解答:解:设恰有两封信配对为事件A,恰有三封信配对为事件B,恰有四封信(也即五封信配对)为事件C,则“至少有两封信配对”事件等于A+B+C,且A、B、C两两互斥.∵P(A)=,P(B)=,P(C)=,∴所求概率P(A)+P(B)+P(C)=.精心制作仅供参考唐玲出品答:至少有两封信配对的概率是.点评:本题考查古典概型、互斥事件的概率加法、排列、组合等知识,考查分析问题、解决问题的能力.21.(12分)已知函数f(x)=ax3+bx 2+cx(a≠0,x∈R)为奇函数,且f(x)在x=1处取得极大值2.(1)求函数y=f(x)的解析式;(2)记,求函数y=g(x)的单调区间;(3)在(2)的条件下,当k=2时,若函数y=g(x)的图象在直线y=x+m的下方,求m的取值范围.考点:利用导数求闭区间上函数的最值;奇函数;利用导数研究函数的单调性;函数在某点取得极值的条件.专题:综合题.分析:(1)根据函数为奇函数求出b,然后根据函数f(x)在x=1取得极大值2,建立a与c的方程组,解之即可求出函数y=f(x)的解析式(2)先求函数的定义域,讨论k与﹣1的大小,然后利用导数的符号确定函数的单调性即可.(3)令h(x)=g(x)﹣(x+m)=﹣x2﹣x+3lnx+3﹣m,求出函数的导数即可.解答:解:(1)由f(x)=ax3+bx2+cx(a≠0)为奇函数,∴f(﹣x)=﹣f(x),代入得,b=0∴f'(x)=3ax2+c,且f(x)在x=1取得极大值2.∴解得a=﹣1,c=3,∴f(x)=﹣x3+3x(2)∵g(x)=﹣x2+3+(k+1)lnx,∴因为函数定义域为(0,+∞),所以①当,k=﹣1时,g'(x)=﹣2x<0,函数在(0,+∞)上单调递减;②当k<﹣1时,k+1<0,∵x>0,∴.可得函数在(0,+∞)上单调递减;③k>﹣1时,k+1>0,令g'(x)>0,得,∵x>0,∴﹣2x2+(k+1)>0,得,结合x>0,得;令g'(x)<0,得,同上得2x2>(k+1),解得,∴k>﹣1时,单调递增区间为(0,),单调递增区间为(,+∞)精心制作仅供参考唐玲出品精心制作仅供参考唐玲出品马鸣风萧萧综上,当k≤﹣1时,函数的单调递减区间为(0,+∞),无单调递增区间;当k>﹣1时,函数的单调递增区间为(0,),单调递减区间为(,+∞)(包含不扣分)(3)当k=2时,g(x)=﹣x2+3+3lnx,令h(x)=g(x)﹣(x+m)=﹣x2﹣x+3lnx+3﹣m,(11分),令h′(x)=0,,得x=1,(舍去).由函数y=h(x)定义域为(0,+∞),则当0<x<1时,h'(x)>0,当x>1时h'(x)<0,∴当x=1时,函数h(x)取得最大值1﹣m.由1﹣m<0得m>1故m的取值范围是(1,+∞).点评:本题主要考查了函数解析式的求解,以及利用导数研究函数的单调性,考查了分类讨论的数学思想,是高考中常考的题型,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年下学期月考卷高二理科数学本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,全卷满分150分,考试用时120分钟。
一、选择题(本大题共12个小题,每小题5分,共60分。
)1.在求函数的平均变化率时,自变量的增量x ∆应满足条件( )A .0>∆xB .0<∆xC .0=∆xD .0≠∆x2.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m ,t 的单位是:s ,那么物体在t =3 s 时的瞬时速度为( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s3.设f (x )=ax +4,若f ′(1)=2,则a =( )A .2B .-2C .3D .不确定4.已知曲线y =f (x )在x =5处的切线方程是y =-x +8,则f (5)与f ′(5)分别为( )A .3,3B .3,-1C .-1,3D .-1,-1 5.已知x x f 4log )(=,则=')2(f ( )A.2ln 21 B.2ln 41 C.4ln 1 D.4ln 216.若f (x )=x cos 3sin-π,则f ′ (α)等于( )A .sin αB .cos αC .a cos 3sin +πD .a sin 3cos+π7.y =cos 3 x 的导数是( )A .y ′=-3cos 2 x sin xB .y ′=-3cos 2 xC .y ′=-3sin 2 xD .y ′=-3cos x sin 2 x8.函数y =24x +x1的单调增区间是( ) A .),0(+∞ B .)1,(-∞ C.),21(+∞D .),1(+∞9.函数f (x )的定义域为R ,导函数f ′ (x )的图象如图所示,则函数f (x )( )A .无极大值点,有四个极小值点B .有三个极大值点、两个极小极值点题第9C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点 10.在计算由曲线y =-x 2以及直线x =-1,x =1,y =0所围成的图形的面积时,若将区间[-1,1]n 等分,则每个小区间的长度为( )A.n 1 B.n 2 C.12-n D.12+n 11.设⎩⎨⎧-∞∈∈=]0,(,),0(,sin )(x e x x x f x π则⎰-11)(dx x f =( )A.⎰-11sin xdx B.⎰-11dx e xC.⎰⎰+-101sin dx e xdx xD.⎰⎰+-11sin xdx dx e x12.设曲线1+=n x y (*N n ∈)在(1,1)处的切线与x 轴的交点的横坐标为n x ,则201320142201412014log log log x x x +++ 的值为()A .2013log 2014-B .-1C .12014)2013(log -D .1第II 卷(非选择题 90分)二、填空题(本大题共4个小题,每小题5分,共20分。
) 13.已知点P 和点Q 是曲线322--=x xy 上的两点,且点P 的横坐标标是1,点Q 的横坐标是4,则割线PQ 的斜率是14.已知函数)(x f 的导函数)(x f ',且满足关系式)2(3)(2f x x x f '+=,则)2(f '的值为 15.=-⎰-2224x16.函数x x y ln 212-=的单调递减区间是 三、解答题(本大题共6个小题,共70分。
) 17.(本题满分10分) 求下列函数的导数(1)、)1)(1(2-+=x x y (2)、x y x lg 3-=.18.(本题满分12分) 计算下列定积分(1)dx x )42(6⎰- (2)⎰-11||dx x19.(本题满分12分)(1)已知曲线y =13x 3+43.求曲线在点P (2,4)处的切线方程;(2).已知曲线f (x )=x 3-3x ,过点A (0,16)作曲线f (x )的切线,求曲线的切线方程.20.(本题满分12分) 求下列函数的极值:3126)(x x x f +-= (2)x x x f ln )(=21.(本题满分12分)已知函数f (x )=-13x 3+2ax 2-3a 2x +b (a >0).(1)当f (x )的极小值为-73,极大值为-1时,求函数f (x )的解析式;(2)若f (x )在区间[1,2]上为增函数,在区间[6,+∞)上为减函数,求实数a 的取值范围.22.(本题满分12分)设函数ax x x a x f +-=22ln )(,(0>a ) (1)求)(x f 的单调区间。
(2)求所有的实数a ,使2)(1e x f e ≤≤-对],1[e x ∈恒成立。
答案1、D2、C3、A4、B5、D6、A7、A8、C9、C 10、B 11、D 12、B 13、答案 3 14、答案 -215、答案16、答案17、(1)∵y =(x 2+1)(x -1)=x 3-x 2+x -1 ∴y ′=(x 3)′-(x 2)′+x ′-1′=3x 2-2x +1.(2)函数y =3x -lg x 是函数f (x )=3x 与函数g (x )=lg x 的差.由导数公式表分别得出 f ′(x )=3x ln 3,g ′(x )=10ln 1x , 利用函数差的求导法则可得 (3x -lg x )′=f ′(x )-g ′(x )=3x ln 3-10ln 1x . 18、(1)⎰-60)42(dx x =602]4[x x - =6462⨯- =12(2)19、(1)∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2,∴在点P (2,4)处的切线的斜率为y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2) 设切点为(x 0,y 0),则由导数定义得切线的斜率k =f ′(x 0)=3x 20-3,∴切线方程为y =(3x 20-3)x +16, 又切点(x 0,y 0)在切线上, ∴y 0=3(x 20-1)x 0+16,即x 30-3x 0=3(x 20-1)x 0+16,解得x 0=-2,∴切线方程为9x -y +16=0.20、23312)(126)(x x f x x x f R+-='∴+-= 函数的定义域为令2,2,0)(=-=='x x x f 或解得变化情况如下表,变化时,当)()(x f x f x '10)(2-=为有极小值,并且极小值时,当x f x的变化情况如下表变化时,当得令),函数的定义域为()(),(10)(1ln )(,ln )(0)2(x fx f x ex x f x x f x x x f '=='+='∴=∞+ex f e x )(-=为有极小值,并且极小值时,因此,当21、解 (1)f ′(x )=-x 2+4ax -3a 2=-(x -a )(x -3a ),令f ′(x )≥0,得a ≤x ≤3a , 令f ′(x )≤0,得x ≥3a 或x ≤a ,∴f (x )在(-∞,a ]上是减函数,在[a,3a ]上是增函数,在[3a ,+∞)上是减函数,∴f (x )在x =a 处取极小值,在x =3a 处取极大值. 由已知有⎩⎪⎨⎪⎧f (a )=-73,f (3a )=-1,即⎩⎪⎨⎪⎧-13a 3+2a 3-3a 3+b =-73,-13×27a 3+18a 3-9a 3+b =-1,解得⎩⎨⎧a =1,b =-1,∴f (x )=-13x 3+2x 2-3x -1.(2)由(1)知f (x )在(-∞,a ]上是减函数,在[a,3a ]上是增函数,在[3a ,+∞)上是减函数,∴要使f (x )在区间[1,2]上为增函数,在区间[6,+∞)上是减函数,则必须有⎩⎨⎧a ≤1,3a ≥2,3a ≤6,解得23≤a ≤1.22.(12分)ax x x a x f +-=22ln )(∴函数的定义域为(0,∞+)xa x a x x ax x a a x x a x f )2)((22)(222+--=+-=+-='∴令0)(>'x f0>x0)2)((<+-∴a x a x 0>aa x a<<-∴2又0>a a x <<∴0令0)(<'x f 得a x >),),单调减区间为(,的单调增区间为((∞+∴a a x f 0) 2)由题意得11)1(-≥-=e a f 即e a ≥由(1)知)内单调递增,在((e x f 1) 要使2)(1e x f e ≤≤-对],1[e x ∈恒成立 只要⎩⎨⎧≤+-=-≥-=222)(11)1(eae e a e f e a f 解得e a =。