2016中考数学第一轮复习
中考数学一轮综合复习同步讲义(第8课三角形认识)
中考数学一轮复习第08课 三角形认识知识点:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧镶嵌问题:边形每个内角公式:正边形每个外角公式:正边形对角线条数:;外角和:边形内角和公式:多边形外角性质:;内角和:外角和:三边关系定理:,性质:角平分线:,性质:中线:,性质:高线:与三角形有关的线段定义:三角形n n n n在三角形中,两内角平分线形成的夹角公式:在三角形中,两外角平分线形成的夹角公式:在三角形中,一内角一外角形成的夹角公式:三角形沿某条直线折叠,顶点落在形内公式: (∠BDA 、∠AEC 与∠A 的数量关系) 三角形沿某条直线折叠,顶点落在形外公式: (∠BDA 、∠AEC 与∠A 的数量关系)课堂同步:1.a 、b 、c 为三角形的三边长,化简c b a c b a c b a c b a -+-+-----++,结果是( )A.0B.2a+2b+2cC.4aD.2b-2c2.已知ΔABC 中,周长为12,)(21c a b +=,则b 为( ) A.3 B.4 C.5 D.63.已知三角形的两边长分别是3 和8,且第三边长是奇数,那么第三边的长度为( )A.7 或5B.7C.9D.7 或94.如果三角形的一个外角和与它不相邻的两个内角的和为1200,那么与这个外角相邻的内角的度数为( )A.30°B.60°C.90°D.120°5.若一个多边形共有十四条对角线,则它是( )A.六边形B.七边形C.八边形D.九边形6.如图,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S △ABC =4cm 2,则S 阴影等于( )A.2cm 2B.1cm 2C.12cm 2D.14cm 2第6题图 第7题图 第8题图 7.如图,在钝角△ABC 中,点D 、E 分别是边AC 、BC 的中点,且DA=DE,那么下列结论错误的是( )A.∠1=∠2B.∠1=∠3C.∠B=∠CD.∠B=∠18.如图,∠1、∠2、∠3、∠4应满足的关系式是( )A.∠1+∠2=∠3+∠4B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3D.∠1+∠4=∠2-∠39.下列说法中正确的个数为( ).(1)一种三角形都能铺满地面;(2)能够铺满地面的正多边形只有正三角形、正方形和正六边形;(3)能够铺满地面的正多边形的组合只有正三角形,正方形和正六边形之间组合;(4)一个正五边形和两个正十边形的组合能够铺满地面.A.0B.1C.2D.310.等腰三角形中,若底边长为6,则它的腰长x 的取值范围是 ;若等腰三角的周长为18,则它的腰长a 的取值范围是____________11.已知一个三角形的三边长是2、3 和x ,且此三角形的周长是偶数,则x 的值是__________13.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20°,则此三角形的最小内角的度数是________.14.在四边形ABCD中,∠A=900,∠B:∠C:∠D=1:2:3,则∠B=______,∠C=______,∠D=_____15.若一个正多边形的内角和为23400,则边数为______,它的外角等于______16.如图,将一副三角板按图示的方法叠在一起,则图中∠α等于______度.第16题图第17题图17.如图,△ABC中,∠A=360,∠B=720,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF= 度。
【免费阅读】(教师版)中考数学专题复习第一轮第二讲代数式
中考数学专题复习第一轮第二讲代数式★重点★代数式的有关概念及性质,代数式的运算一、重要概念分类:1.代数式、有理式、无理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母。
没有根号的代数式叫有理式。
如:a、。
22a b+2.整式和分式分母中含有字母的代数式叫做分式。
如:。
分母中不含有字母的代数式叫做整式。
1a整式和分式统称有理式,或含有加、减、乘、除、乘方运算的代数式叫做有理式。
3.单项式与多项式数字和字母之间,字母和字母之间只有乘除运算的代数式叫单项式。
如:,23a bc 。
单独的一个数或字母也是单项式。
如:、0、-3。
几个单项式的和或差,叫213a bc a做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
如为分式。
xx4.系数与指数区别与联系:①从位置上看;②从表示的意义上看5.同类项及其合并条件:①字母相同;②相同字母的指数相同。
合并依据:乘法分配律6.根式表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:、是根式,但不是无理式,是无理数。
377.各种方根的概念1.平方根:如果一个数的平方等于另一个数,那么这个数叫另一个数的平方根.即:2,a aχχχ==叫的平方根记作2.算术平方根:一个正数的平方等于另一个数,这个正数叫另个一数的算术平方根。
a单项式多项式整式分有理式无理式代数式配还发兄弟体活⑴正数a 的正的平方根([a≥0—与“平方根”的区别]);a ⑵算术平方根与绝对值①联系:都是非负数,=│a│2a ②区别:│a│中,a 为一切实数;中,a 为非负数。
a 3.立方根:一个数的立方等于另一个数,这个数叫另个一数的立方根。
如:3,a a χχχ==叫的立方根 记作 8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
人教版初中数学中考复习 一轮复习-一次方程及其解法(含参)(2)
x y 3的解,求a的值。
考点二:二元一次方程含参问题
已知方程组2mxx5nyy246, 与n3xx m5 yy
8 ,
36
有相同的解,求m,
n的值。
考点二:二元一次方程含参问题
类型二:解的性质
1.如果关于x、y的二元一次方程组2ax3x
2y 5 (a 2) y
的x与y的值相等, 4
那么a
D.无法判断
追问:m的值是多少?
考点三:二元一次方程与一次函数
2.在二元一次方程组
2x 3y 1 0 6x my 3 0
中,当m=
无数组解。
追问:请你讨论该方程解的情况。
时,这个方程有
考点三:二元一次方程与一次函数
3.已知方程组
2x ky 4
x
2
y
0
有正数解,则k的取值范围是
。
考点三:二元一次方程与一次函数
练习1.
已知xy
21是二元一次方程组mmxx nnyy
7的解,则m 1
n
考点二:二元一次方程含参问题
练习2.
已知xy
25和
x 1 是方程ax y 10
by
15的两个解,则a
考点二:二元一次方程含参问题
类型二:方程同解
1.已知关于x、y的二元一次方程组4xxayy
1 的解也是二元一次方程 3
x2 y 1
考点一:二元一次方程(组)及其解法
例2. 用代入法解方程组2xxyy1106
① ②
解:由①得x=10-y ③ 把③代入②,得2(10-y)+y=16 y=4 把y=4代入③,得x=6
所以这个方程的解为 xy
6 4
人教版九年级数学中考复习第一轮专题--6.强化训练第六章 圆
∵DO=BO, ∴∠ODB=∠OBD, ∴∠AOD=2∠ODB=∠EDO. ∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB, ∴∠ODB=15°=∠OBD. ∵∠BAF=∠DBA=15°,
∴AF=BF,∠AFD=30°. ∵AB 是直径,∴∠ADB=90°, ∴AF=2AD,DF= AD, ∴BD=DF+BF= AD+2AD,
C.G,H,E
D.H,E,F
5.(2018 福建)如图,AB 是☉O 的直径,BC 与☉O 相切于点 B,AC 交
☉O 于点 D,若∠ACB=50°,则∠BOD 等于( D )
A.40°
B.50°
C.60°
D.80°
第 5 题图
第 6 题图
6.(2018 哈尔滨)如图,点 P 为☉O 外一点,PA 为☉O 的切线,A 为切
(1)求证:EG 是☉O 的切线;
(2)延长 AB 交 GE 的延长线于点 M,若 AH=2,CH=2 2,求 OM 的 长. (1)证明:连接 OE,如图,
∵GE=GF,∴∠GEF=∠GFE. 而∠GFE=∠AFH,∴∠GEF=∠AFH. ∵AB⊥CD,∴∠OAF+∠AFH=90°, ∴∠GEA+∠OAF=90°. ∵OA=OE,∴∠OEA=∠OAF, ∴∠GEA+∠OEA=90°,即∠GEO=90°, ∴OE⊥GE,
第23讲 与圆有关的位置关系
1.(2011.(2019 南岗)如图,在 Rt△ABC 中,∠C=90°,AC=3,BC=4,以
点 A 为圆心作圆,如果圆 A 与线段 BC 没有公共点,那么圆 A 的半
安徽省中考数学总复习第一轮中考考点系统复习第四单元图形的初步认识与三角形第18讲解直角三角形试题
第18讲解直角三角形1.(2016·亳州模拟)如果一个三角形三个内角的度数比为1∶2∶3,那么这个三角形最小角的正切值为( C )A。
错误! B.错误! C.错误! D.错误! 2.(2016·芜湖南陵县模拟)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC =3,则sinB的值是( A )A。
错误! B。
错误! C。
错误! D。
错误!3.(2016·乐山)如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是( C )A.sinB=错误! B.sinB=错误!C.sin B=错误! D.sinB=错误!4.(2014·巴中)在Rt△ABC中,∠C=90°,sinA=错误!,则tanB的值为( D )A.错误!B.错误! C。
错误! D。
错误! 5.(2016·益阳)小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为( A )A。
错误!米 B。
错误!米 C。
错误!米 D。
错误!米6.(2016·白银)如图,点A(3,t)在第一象限,射线OA与x轴所夹的锐角为α,tanα=错误!,则t的值是错误!.7.(2016·岳阳)如图,一山坡的坡度为i=1∶错误!,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了100米.8.(2016·灵璧县模拟)某校加强社会主义核心价值观教育,在清明节期间,为缅怀先烈足迹,组织学生参观滨湖渡江战役纪念馆,渡江战役纪念馆实物如图1所示.某数学兴趣小组同学突发奇想,我们能否测量斜坡的长和馆顶的高度?他们画出渡江战役纪念馆示意图如图2,经查资料,获得以下信息:斜坡AB的坡比i=1∶3,BC=50 m,∠ACB=135°.求AB及过A 点作的高是多少?(结果精确到0。
中考数学第一轮复习 第章第讲 平面直角坐标系ppt(共20张PPT)
技法点拨►在平面直角坐标系中,解决点所处的象限与坐标符号之间的关系问题,综合各象限的坐标特征,经常利用不等式(组)解答.
技法点拨C►.应(用2函0数1图1,象解2题)的三D步.骤:(2(10)找1:0,找清0图)象的横、纵坐标各自具有的含义;
典型例题运用 类型1 平面直角坐标系中点的坐标
(【3)思点路P(分x,析y【A】)到.根原例据点第每1的一】一距A段离函象等数若于图限⑤象点_的__A倾_(B斜a.程+度第,1反,二映b象了-水限面1上)升在速第度的二快慢象,限再观,察则容器点的粗B(细-,作a出,判断b.+2)在(
)
.第三象限 .第四象限 C D (2)点P(x,y)在第二、四象限角平分线上⇔x+y=0
提示
确定位置常用的方法一般有两种:(1)用有序实数对(a,b)表示;(2)用方向和 距离表示.
考点2 点的坐标特征
象限内的点 第一象限:x>0,y>0; 第二象限:x<0,y>0;
第三象限:x<0,y<0; 第四象限:x>0,y<0
(1)点P(x,y)在x轴上⇔y=0,x为任意实数;
坐标轴上的点
(2)点P(x,y)在y轴上⇔x=0,y为任意实数; (3)点P(x,y)既在x轴上,又在y轴上⇔x=y=0,即点
B 以时间为点P的下标.观察,发现规律:P0(0,0),P1(1,1), P2(2,0),P3(3,-1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n +1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1).∵2017= 504×4+1,∴第2017秒时,点P的坐标为(2017,1).
2016届中考数学第一轮知识点习题复习课件23
4.在涉及折叠的相关问题中,若原图形中含有直角或折叠后产生直角, 常常把所求的量与已知条件利用折叠的性质,借助等量代换转化到一个 直角三角形中,利用勾股定理建立方程求解. 小结论:1.等腰三角形常用辅助线:底边上的高线或底边上的中线或顶角 平分线; 2.等边三角形面积= 43×边长 2; 3.30°的直角三角形三边的比为短直角边∶长直角边∶斜边=1∶ 3∶2.
等
边
(1)三边相等;
(1)三条边相等的三角形是等边三角形;
三
(2)各角相等,且都等于60°;
(2)三个角都相等的三角形是等等腰边三三角角形形;
角
(3)是轴对称图形,有三条对称轴
(3)有一个角等于60°的______________是等 边三角形
形
直 角 三
(1)两锐角之和等于90°;一半 (2)斜边上的中线等于斜边的______; (3)30°角所对的直角边等于斜边的一半;
DF2+CD2= ( 2)2+( 2)2=2,∵BE⊥AC,AE=EC,∴AF =CF=2,∴AD=AF+DF=2+ 2
第11页,共28页。
等腰三角形有关边角的讨论
【例1】 (1)(2015·荆门)已知一个等腰三角形的两边长分别是2和4,则该等腰三角形
的周长为( )
C
A.8或10 B.8
C.10 D.6或12
(2)(葫芦岛模拟)等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次
方程x2-12x+k=0的两个根,则k的值是( )
B
A.27 B.36 C.27或36 D.18
解析:分两种情况:①当其他两条边中有一个为3时,将x=3代入原方程,得
32-12×3+k=0,k=27,将k=27代入原方程,得x2-12x+27=0,解得x=3或9.3,
中考数学第一轮系统复习夯实基础第三章函数及其图象第13讲二次函数课件
1.将抛物线解析式写成 y=a(x-h)2+k 的形式,则顶点坐标为(h,k), 对称轴为直线 x=h,也可应用对称轴公式 x2.解题时尽可能画出草图.
【解析】如图所示:图象与x轴有两个交点,则b2-4ac>0,故①错 误;根据图象有a>0, b<0, c<0,∴abc>0,故②正确;当x=-1时 ,a-b+c>0,故③错误;二次函数y=ax2+bx+c的顶点坐标纵坐 标为-2,∵关于x的一元二次方程ax2+bx+c-m=0有两个不相等的 实数根,∴m>-2,故④正确.故选B.
二次函数是中考的重点内容: 1.直接考查二次函数的概念、图象和性质等. 2实际情境中构建二次函数模型,利用二次函数的性质来解释、解决实 际问题. 3在动态的几何图形中构建二次函数模型,常与方程、不等式、几何知 识等结合在一起综合考查. 4.体现数形结合思想、转化的思想、方程的思想.
1.(2016·衢州)二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x, y)对应值列表如下:
(2)∵将 x=0 代入 y=12x+32得 y=32,将 x=1 代入得 y=2,∴直线 y=12x +32经过点(0,32),(1,2).直线 y=12x+32的图象如图所示,由函数图象可 知:当 x<-1.5 或 x>1 时,一次函数的值小于二次函数的值 (3)先向上平移54个单位,再向左平移12个单位,平移后的顶点坐标为 P(-1, 1).平移后的表达式为 y=(x+1)2+1,即 y=x2+2x+2.点 P 在 y=12x+32的 函数图象上.理由:∵把 x=-1 代入得 y=1,∴点 P 的坐标符合直线的 解析式,∴点 P 在直线 y=12x+32的函数图象上
中考数学知识点总结(完整版)-第一轮
中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不循环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
中考数学备考第一轮复习策略
中考数学备考第一轮复习策略中考数学备考第一轮复习策略一:第一轮复习:全面复习基础知识,加强基本技能训练这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。
做到如下四点。
n 重视课本,系统复习。
(按知识块组织复习 )以课本为主,绝不能脱离课本,应把书中的内容进行归纳整理,使之形成体系;搞清课本上的每一个概念、公式、法则、性质、公理、定理;抓住基本题型,记住常用公式,理解来龙去脉对经常使用的数学公式,要进一步了解其推理过程,并对推导过程中产生的一些可能变化进行探究.使学生更好地掌握公式,胜过做大量习题,而且往往会有意想不到的效果。
n 夯实基础,学会思考。
数学中考试题中,基础分值占的最多。
因此,初三数学复习教学中,必须扎扎实实地夯实基础,使每个学生对初中数学知识都能达到“理解”和“掌握”的要求;在应用基础知识时能做到熟练、正确和迅速。
让学生学会思考是从根本上提高成绩,解决问题的良方,这里讲的不是“教会学生思考”,而是“让学生学会思考”。
会思考是要学生自己“悟”出来,自己“学”出来的,教师能教的,是思考问题的方法和策略,然后让学生用学到的方法和策略,在解决具有新情境问题的过程中,感悟出如何进行正确的思考。
n 强调通法,淡化技巧,数学基本方法过关中考数学命题除了注重基础知识外,还非常重视对数学方法的考查,如待定系数法、求交点法、匹配法、换元法等可操作的数学方法。
复习的时候要熟悉每一种方法,它适合的题型,包括解题的步骤。
n 重视对数学思想理解及运用的渗透要对数学思想有目的,有机会的渗透,不可能全到第二轮复习中才讲。
如告诉了自变量与因变量,要求写出函数解析式,或者用函数解析式去求交点等问题,都需用到函数的思想,教师要让学生加深对这一思想的深刻理解,多做一些相关内容的题目。
再如方程思想,它是利用已知量与未知量之间联系和制约的关系,通过建立方程把未知量转化为已知量;再如数形结合的思想。
中考数学 第一轮 系统复习 夯实基础 第五章 基本图形(一)第19讲 等腰三角形
解:连结 PQ,∵△ABC 为等边三角形,∴∠BAC=60°,AB=AC,∵
线段 AP 绕点 A 顺时针旋转 60°得到线段 AQ,∴AP=PQ=6,∠PAQ
=60°,∴△APQ 为等边三角形,∴PQ=AP=6,∵∠CAP+∠BAP=
60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,在△APC 和△AQB
9.如图,已知△ABC为等腰直角三角形,∠BAC=90°,BE是 ∠ABC的平分线,DE⊥BC,垂足为D. (1)写出图中所有的等腰三角形,不需证明; (2)请你判断AD与BE是否垂直,并说明理由; (3)如果BC=12,求AB+AE的长.
解:(1)△ABD,△EAD,△CDE,△ABC (2)∵∠BAE=∠BDE ,∠ABE=∠DBE,BE=BE,∴△ABE≌△DBE,AB=DB,又 ∵∠ABE=∠DBE,∴AD⊥BE (3)∵∠C=∠DEC=45°, ∴CD=DE,∴AE=DE=DC,∴AB+AE=BD+DC=BC=12
4.(2017·预测)如图,△ABC中,AB=AC,BC=12 cm,点D在AC上, DC=4 cm,将线段DC沿BC方向平移7 cm得到线段EF,点E,F分别落 在AB,BC上,则△EBF的周长是____13cm. 【解析】∵CD沿CB平移7 cm至EF,∴EF∥CD,CF=7,∴BF=BC- CF=5,EF=CD=4,∠EFB=∠C,∵AB=AC,∴∠B=∠C,∴EB =EF=4,∴C△EBF=EB+EF+BF=4+4+5=13. 5.已知等腰三角形的周长为10,若设腰长为x,则x的取值范围是 __2_._5_<__x_<__5____. 【解析】等腰三角形周长为10,腰长为x,则2x>5且2x<10,即2.5 <x<5.
2.如图,在△ABC中,AB=AC,点D在BC上,且BD=AD,DC=AC. 求∠B的度数. 解析:第1题由于未说明两边哪个是腰,哪个是底,故需分两种情况讨论 :(1)当等腰三角形的腰为2;(2)当等腰三角形的腰为4,从而得到其周长 ;第2题设∠B为x°,分别表示出∠ADC,∠CAD,依据三角形内角和定 理列出方程求解. 解:∵AB=AC,∴∠B=∠C.同理:∠B=∠BAD,∠CAD=∠CDA.设 ∠B为x°,则∠C=x°,∠BAD=x°,∴∠ADC=2x°,∠CAD= 2x°.在△ADC中,∵∠C+∠CAD+∠ADC=180°,∴x°+2x°+ 2x°=180°,∴x°=36°,∴∠B=36°
精品 中考数学一轮综合复习 第04 课 方程与不等式(一元一次不等式、不等式组)
中考数学一轮复习第04课方程与不等式(一元一次不等式、不等式组)知识点:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<>>>>⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧不等式组的解集。
的公共部分,作为整个利用数轴求出这些解集个不等式的解集;分别求出不等式组中每解不等式组步骤:。
;;;)(法:不等式组解集的确定方式组的解集。
叫做这个一元一次不等几个不等式解集的组中解集:一元一次不等式。
叫做一元一次不等式组不等式组的几个不等式所组成的定义:含有相同未知数一元一次不等式组解法步骤:定义:一元一次不等式那么,公式表示:若,,不等号的方向不等式两边性质那么,公式表示:若,,不等号的方向不等式两边性质,那么公式表示:若,,不等号的方向不等式两边性质不等式的性质。
,小向大向圆圈;再确定方向:则是原点;不好喊边界点,若解集包含边界点,是界点。
体表示方法是先确定边上直观的表示出来,具以在注意:不等式的解集可解集。
的全体,叫做不等式的有未知数的不等式的解不等式的解集:一个含,叫做不等式的解。
成立的不等式的解:使不等式等式,常见的不等号有连接起来的式子叫做不不等式定义:用不等式)2()1()4()3()2(1,,,,0.3,0.2.1c b a c b a b a 同步练习:1.根据下图甲、乙所示,对a,b,c 三种物体的重量判断不正确的是()A.a<cB.a<bC.a>cD.b<c2.如果关于x 的不等式1)1(+>+a x a 的解集为1<x ,那么a 的取值范围是()A.a>0B.a<0C.a>-1D.a<-13.已知方程组21321x y mx y m +=+⎧⎨+=-⎩的解满足0x y +<,则()A.m >-1B.m >1C.m <-lD.m <14.已知关于x 的不等式52->+m x 的解集如图所示,则m 的值为()A.1B.0C.-1D.-25.不等式组⎩⎨⎧-<++≤14242x x xx 的正整数解有()A.1个B.2个C.3个D.4个6.已知a,b,c 均为实数,若a>b,c≠0,下列结论不一定正确的是()A.a+c>b+cB.c-a<c-bC.a c 2>bc2D.a 2>ab>b27.已知关于x,y 的方程组⎩⎨⎧=--=+a y x a y x 343,其中﹣3≤a≤1,给出下列结论:①⎩⎨⎧-==15y x 是方程组的解;②当a=-2时,x,y 的值互为相反数;③当a=1时,方程组的解也是方程x+y=4-a 的解;④若x≤1,则1≤y≤4.其中正确的是()A.①②B.②③C.②③④D.①③④8.函数31x y x +=+的自变量x 的取值范围是_____________9.若y x y y x y x >-->+,,那么(1)x+y>0;(2)y-x<0;(3)xy≤0;(4)yx<0中,正确结论的序号为________。
中考数学第一轮复习教案9篇
中考数学第一轮复习教案9篇中考数学第一轮复习教案9篇数学教案对于老师是很重要的。
教案是老师在进行教学的重要参考材料,对教学进度和节奏的把控有重要的作用,可以提高教学效率。
下面小编给大家带来关于中考数学第一轮复习教案,希望会对大家的工作与学习有所帮助。
中考数学第一轮复习教案(篇1)本学期是初中学习的关键时期,教学任务非常艰巨。
因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。
九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。
下面特制定以下教学复习计划。
一、学情分析经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。
通过上个学期多次摸底测试及期末检测发现,本班的特点是两极分化现象极为严重。
虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。
其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。
二、指导思想坚持贯彻党的__大教育方针,继续深入开展新课程教学改革。
立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。
并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。
三、教学内容分析本学期,除了要完成规定的所学内容,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。
在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。
在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。
中考数学一轮综合复习同步讲义(第9课全等三角形)
中考数学一轮分复习第09课 全等三角形知识点:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧;倍长中线:截长补短:角平分线上:已知角平分线及垂足在上一点到一边距离:已知角平分线及平分线辅助线做法:共边问题:重叠角问题:已知两角,已知两边,全等三角形判定方法:角平分线画法:角平分线判定:角平分线性质:,,,,全等三角形判定:全等三角形性质:定义:全等三角形课堂练习:1.下列说法错误的有( )①只有两个三角形才能完全重合; ②如果两个图形全等,它们的形状和大小一定都相同; ③两个正方形一定是全等图形; ④边数相同的图形一定能互相重合.A.4 个B.3 个C.2 个D.1 个2.已知△ABC 与△DEF 全等,∠A=∠D=900,∠B=370,则∠E 的度数是( )A.37°B.53°C.37°或63°D.37°或53°3.如图,已知∠1=∠2,要使△ABC ≌△ADE ,还需条件( )A.AB=AD,BC=DEB.BC=DE,AC=AEC.∠B=∠D,∠C=∠ED.AC=AE,AB=AD4.在△ABC 中,AC=5,中线AD=4,则边AB 的取值范围是( )A.1<AB<9B.3<AB<13C.5<AB<13D.9<AB<135.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=6.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠ACB=∠AED=1050,∠CAD=150 ,∠B=∠D=300,则∠1的度数为第6题图第7题图第8题图7.如图,AB=DB,∠ABD=∠CBE,请添加一个适当条件,使△ABC≌△DBE.(只需添加一个即可)8.如图,在Rt△ABC中,∠ACB=900,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= cm.9.如图,已知AB⊥BD 于B,ED⊥BD 于D,AB=CD,BC=DE,则∠ACE=____.10.如图,F在正方形ABCD的边BC边上,E在AB 的延长线上,FB=EB,AF 交CE 于G,则∠AGC的度数是______.11.如图,△ABC是不等边三角形,DE=BC,以D,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.12.如图,AE=DB,BC=EF,BC∥EF,求证:△ABC≌△DEF.13.如图∠BAC=∠DAE,∠ABD=∠ACE,BD=CE.求证:AB=AC.14.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.15.如图,E、F是四边形ABCD的对角线BD上的两点,AE∥CF,AE=CF,BE=DF.求证:△ADE≌△CBF.16.如图,ΔABC和ΔBDE是等边三角形,D在AE 延长线上.求证:BD+DC=AD.17.如图,在△ABC中,∠ACB=900,AC=BC,D是AB上一点,AE⊥GD于E,BF⊥CD交CD的延长线于F.求证:AE=EF+BF.18.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=900,BE⊥AD,垂足为E.求证:BE=DE.19.已知,在ΔABC中,∠B=2∠C,AD平分∠A交BC于D点,求证:AC=AB+BD.20.如图,等腰 Rt△OAB中,∠AOB=90o,等腰Rt△EOF中,∠EOF=90o,连结AE、BF.求证:(1)AE=BF;(2)AE⊥BF.21.已知在Rt△ABC中,∠C=900,AC=BC,AD为∠BAC的平分线,DE⊥AB,垂足为C.求证:△DBE的周长等于AB的长.22.已知,如图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC.求证:∠BAD+∠BCD=180°.23.如图①,点E在正方形ABCD边BC上,BF⊥AE于F,DG⊥AE于G,可知△ADG≌△BAF.(不要求证明)拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF.应用:如图③,在等腰三角形ABC中,AB=AC,B>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为.第09课全等三角形测试题日期:月日满分:100分时间:20分钟姓名:得分:1.如图∠1=∠2=200,AD=AB,∠D=∠B,E 在线段BC 上,则∠AEC=()A.200B.700C.500D.800第1题图第2题图第3题图2.某同学把一块三角形的玻璃打碎也成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是() A.带①去 B.带②去 C.带③去 D.带①和②去3.已知图中的两个三角形全等,则∠α度数是()A.72°B.60°C.58°D.50°4.如图,已知点A、D、C、F在同一直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还要添加一个条件是()A.∠BCA=∠FB.∠B=∠EC.BC∥EFD.∠A=∠EDF第4题图第5题图第6题图5.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等6.如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC≠BD,则图中全等三角形有()A.4对B.6对C.8对D.10对7.在下列定理中假命题是()A.一个等腰三角形必能分成两个全等的直角三角形B.一个直角三角形必能分成两个等腰三角形C.两个全等的直角三角形必能拼成一个等腰三角形D.两个等腰三角形必能拼成一个直角三角形8.如图,△ABC中,∠C=900,AC=BC,AD是∠BAC的平分线,DE⊥AB于E,若AC=10cm,则△DBE的周长等于( )A.10cm B.8cm C.6cm D.9cm第8题图第9题图9.如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1 处B.2 处C.3 处D.4 处10.若两个三角形的面积相等, 则这两个三角形________全等.(选择:一定或不一定)11.已知:如图,∠B=∠DEF,AB=DE,要说明△ABC≌△DEF,(1)若以“ASA”为依据,还缺条件 .(2)若以“AAS ”为依据,还缺条件 .(3)若以“SAS ”为依据,还缺条件 .12.如图,AD 是△ABC 的中线,∠ADC=600,BC=6,把△ABC 沿直线AD 折叠,点C 落在C /处,连接BC /,那么BC /的长为 .第12题图 第13题图 第14题图13.如图,△ABD 与△AEC 都是等边三角形,AB ≠AC,下列结论中:①BE=DC ;②∠BOD=60°;③△BOD ∽△COE.正确的序号是 14.如图,△ABD 的三边AB 、BC 、CA 的长分别是20、30、40、其中三条角平分线将△ABD 分为三个三角形,则CAO BCO ABO S S S ∆∆∆:: 等于______.15.如图,AB ∥CD,O 是∠BAC 、∠ACD 的平分线的交点,OE ⊥AC 于E,且OE=3,则AB 与CD 间的距离等于16.如图,AC ⊥BC,BD ⊥AD,AC 与BD 交于O,AC=BD.求证:(1)BC=AD ;(2)△OAB 是等腰三角形.17.如图,已知AD 是∠BAC 的平分线,DE ⊥AB 于E,DF ⊥AC 于F,且BD=CD.求证:BE=CF .18.如图,在四边形ABCD 中,AD ∥BC,E 是AB 的中点,连接DE 并延长交CB 的延长线于点F,点G 在边BC 上,且∠GDF=∠ADF .(1)求证:△ADE ≌△BFE ;(2)连接EG,判断EG 与DF 的位置关系并说明理由.。
中考数学一轮复习第2讲 整式(一)
第2讲 整式(一)【考查要求】1.代数式(1)借助现实情境了解代数式,进一步理解用字母表示数的意义.(2)能分析简单问题中的数量关系,并用代数式表示.(3)会求代数式的值.2.整式(1)了解整数指数幂的意义和基本性质;(2)理解整式的概念,掌握合并同类项和去括号的法则,能进行简单的整式加法和减法运算;能进行简单的整式乘法运算(其中多项式相乘仅指一次式之间 以及一次式与二次式相乘).(3)能推导乘法公式:(a +b )(a -b )=a 2+b 2;(a ±b )2= a 2±2ab +b 2.了解公式的几何背景,并能利用公式进行简单计算.(4)了解代数推理.【基础过关】1.(1)-13x 2y 的系数是 ,次数是 ; (2)多项式x 2-2x 2y 2+3y 3的次数是 ,各项系数分别是 .2.下列运算中,正确的是( ).A .a 2a 3=a 6B .a 3÷a 2=aC .(a 3)2=a 9D .a 2+a 2=a 53.若2x 3y m 与-3x n y 2 是同类项,则m +n =_________.4.计算:(1)b -(-a +2b )= ;(2)(-2xy )2·x 2= ;(3)(2a -b )(b +2a )= .5.先化简,再求值:(x +1)2-(x -1)(x+1),其中x =1.【典型例题】例1 用代数式表示(1)原价为a 元的某种常用药降价40%,则降价后此药的价格是 元;(2)一辆汽车以80千米/小时的速度行驶,从A 城到B 城需t 小时,如果该车行驶速度增加v 千米/小时,那么从A 城到B 城需 小时.例2 计算:(1)3x 2-2(5x -2x 2);(2)(1-a )2-(a +2)2;(3)(a -1)2-(1-a )(a +1); (4)(x -2y +1)(x +2y -1).例3 (1)若3a 2-a -2=0,则5+2a -6a 2= ;(2)计算:.【课后作业】1.用代数式表示:(1)买一个篮球需要m 元,买一个排球需要n 元,则买3个篮球和5个排球共需要 元;(2)观察一列单项式:a ,-2a 2,4a 3,-8a 4,… 根据你发现的规律,第n 个单项式为 ;(3)从边长为a 的正方形内去掉一个边长为b 的小正方形(如图1),然后将剩余部分剪去拼成一个矩形(如图2),根据两个图形的面积关系得到的数学公式 .⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛------⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛----51413121615141312116151413121514131211图12.填空题:(1)多项式4x2+Mxy+9y2是一个完全平方式,则M等于;(2)计算(-a)3÷(-a2)的结果是;(3)“减去一个数,等于加上这个数的相反数”是实数的减法法则,请通过字母表示数,借助符号描述该法则:;(4)如果a-b-2=0,那么代数式1-2a+2b的值是.3.选择题:(1)(-a2)3的运算结果是( ).A.-a6B.a6C.-a5D.a5(2)计算(b+2a)(2a-b)的结果( ).A.4a2-b2 B.b2-4a2C.2a2-b2D.b2-2a2(3)计算a8÷(-a3)2×a5的结果是( ).A.-a8B.-a7C.a7D.a84.计算:(1)5a2b•(-2ab3)2;(2)(2x2)3-3x4(x2-x);(3)9×3n×3n-1;(4)[(x-y)2+(x+y)(x-y)]÷2x.5.先化简,再求值:2a(a+b)-(a+b)2,其中a=3,b=5.6.有若干张如图所示的正方形卡片A、B和长方形卡片C,如果要拼一个长为(2a+b)、宽为(a+b)的矩形,则需要A类卡片张,B类卡片张,C类卡片张.请你在右下方的大矩形中画出一种拼法.a+b2a+b【挑战中考】一、选择题1.(2022•泰州)下列计算正确的是()A.3ab+2ab=5ab B.5y2﹣2y2=3C.7a+a=7a2D.m2n﹣2mn2=﹣mn2 2.(2022•宿迁)下列运算正确的是()A.2m﹣m=1B.m2•m3=m6C.(mn)2=m2n2D.(m3)2=m5 3.(2022•淮安)计算a2•a3的结果是()A.a2 B.a3C.a5D.a6 4.(2022•镇江)下列运算中,结果正确的是()A.3a2+2a2=5a4B.a3﹣2a3=a3C.a2•a3=a5D.(a2)3=a5 5.(2022•徐州)下列计算正确的是()A.a2•a6=a8B.a8÷a4=a2C.2a2+3a2=6a4D.(﹣3a)2=﹣9a2 6.(2022•盐城)下列计算,正确的是()A.a+a2=a3B.a2•a3=a6C.a6÷a3=a2D.(a2)3=a6二、填空题7.(2022•连云港)计算:2a+3a=.8.(2022•苏州)计算:a•a3=.9.(2022•常州)计算:m4÷m2=.10.(2022•宿迁)按规律排列的单项式:x,﹣x3,x5,﹣x7,x9,…,则第20个单项式是.三、解答题11.(2022•常州)(x+1)2﹣(x﹣1)(x+1).12.(2022•无锡)a(a+2)﹣(a+b)(a﹣b)﹣b(b﹣3).13.(2022•苏州)已知3x2﹣2x﹣3=0,求(x﹣1)2+x(x+)的值.14.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.。
人教版初中数学中考复习 一轮复习 —一元一次不等式(组)解法及含字母(参数)问题
8
4
.
解:(2)去分母,得:8﹣(7x﹣1)>2(3x﹣2),
去括号,得:8﹣7x+1>6x﹣4,
移项,得:﹣7x﹣6x>﹣4﹣1﹣8,
合并同类项,得:﹣13x>﹣13,
系数化1,得:x<1.
考点二:解不等式(组)并在数轴上表示解(集)
5.(2021•武汉)解不等式组
2x x 1 ① 4x 10 x 1 ②
考点一:不等式的性质
C 1.(2021•常德)若a>b,下列不等式不一定成立的是( )
A.a﹣5>b﹣5
B.﹣5a<﹣5b
C. a b
cc
D.a+c>b+c
考点一:不等式的性质
2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,
A 则a+b<2b;④若b>0,则 1 1 ,其中正确的个数是( ) ab
性质3:不等式两边同时乘或除同一个负数,不等号的。方向改变
知识点梳理:
二、一元一次不等式(组)及其解法
一元一次不等 含有一个未知数,未知数的次数是
1
式定义
的不等式
解一元一次不 等式的步骤
去分母→去括号→移项→合并同类项→系数化为1
一元一次 一般地,关于同一个未知数的几个一元一次不等式合在一起,
不等式组 就组成一个一元一次不等式组
3.(2021•南京)解不等式1+2(x﹣1)≤3,并在数轴上表示解集. 解: 1+2(x﹣1)≤3, 去括号,得1+2x﹣2≤3. 移项、合并同类项,得2x≤4. 化系数为1,得x≤2.
表示在数轴上为:
考点二:解不等式(组)并在数轴上表示解(集)
Hale Waihona Puke 4.(2021•泰安)(2)解不等式: 1- 7x 1 3x 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016中考数学复习(十一)[以圆为背景的综合计算与证明题]类型之一圆与切线有关的问题1.[2014·黄冈]如图G11-1,在Rt△ABC中,∠C=90°.以AC为直径的⊙O与AB 边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.图G11-12.[2015·绥化]如图G11-2,以线段AB为直径作⊙O,CD与⊙O相切于点E,交AB 的延长线于点D,连接BE,过点O作OC∥BE交切线DE于点C,连接AC.(1)求证:AC是⊙O的切线;(2)若BD=OB=4,求弦AE的长.图G11-2类型之二圆与平行四边形结合的问题3.[2015·衡阳]如图G11-3,AB是⊙O的直径,点C,D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.(1)求证:CE为⊙O的切线;(2)判断四边形AOCD是否为菱形,并说明理由.图G11-34.[2014·吉林]如图G11-4,四边形OABC是平行四边形,以点O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O于点E,连接CD,CE,若CE是⊙O的切线,解答下列问题:(1)求证:CD是⊙O的切线;(2)若BC=3,CD=4,求平行四边形OABC的面积.图G11-4类型之三圆与三角函数结合的问题5.[2015·安顺]如图G11-5,在等腰三角形ABC中,AC=BC=10,AB=12,以BC 为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求cos E的值.图G11-5类型之四圆与相似三角形结合的问题6.[2015·潍坊]如图G11-6,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,与AB交于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.图G11-67.[2013·广东]如图G11-7,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.图G11-78.[2014·贺州]如图G11-8,AB,BC,CD分别与⊙O相切于点E,F,G,且AB∥CD,BO=6 cm,CO=8 cm.(1)求证:BO⊥CO;(2)求BE和CG的长.图G11-8【参考答案】1.解:(1)证明:证法一:如图,连接CD.∵AC为⊙O的直径,∠AC B=90°,∴CB为⊙O的切线.又∵DE切⊙O于点D,∴ED=EC,∴∠CD E=∠DCE.∵AC为⊙O的直径,∴∠AD C=90°,∴∠CD E+∠EDB=90°,∠DCE+∠B=90°,∴∠EDB=∠B,∴ED=EB,∴EB=EC.证法二:如图,连接OD.∵AC 为⊙O 的直径,∠C =90°, ∴CB 为⊙O 的切线.又∵DE 切⊙O 于点D ,∴ED =EC ,∠OD E =90°, ∴∠OD A +∠EDB =90°.∵OA =OD ,∴∠OD A =∠OAD . 又∵∠OAD +∠B =90°, ∴∠EDB =∠B ,∴ED =EB , ∴EB =EC.(2)△ABC 为等腰直角三角形. 理由:∵四边形OD EC 为正方形, ∴OC =CE.∵OC =12AC ,CE =EB =12BC ,∴AC =BC .∵∠C =90°,∴△ABC 为等腰直角三角形. 2.解:(1)证明:连接OE ,∵CD 与⊙O 相切,∴OE ⊥CD ,∴∠CEO =90°. ∵BE ∥OC ,∴∠A OC =∠OBE ,∠C OE =∠OE B. ∵OB =OE ,∴∠OBE =∠OE B ,∴∠A OC =∠C OE . 在△A OC 和△E OC 中,∵⎩⎪⎨⎪⎧OA =OE ,∠AOC =∠COE ,OC =OC ,∴△A OC ≌△E OC (S A S ),∴∠CAO =∠CEO =90°, ∴AC 是⊙O 的切线.(2)在Rt △DEO 中,BD =OB , ∴BE =12OD =OB =4.∵OB =OE ,∴△B OE 为等边三角形, ∴∠ABE =60°.∵AB 为⊙O 的直径, ∴∠AEB =90°, ∴AE =BE ·tan 60°=4 3. 3.解:(1)证明:连接OD .∵点C ,D 为半圆O 的三等分点, ∴∠A OD =∠C OD =∠C OB =60°. ∵OA =OD ,∴△A OD 为等边三角形,∴∠A =60°,∴∠A =∠C OB ,∴AE ∥OC . ∵CE ⊥AD ,∴CE ⊥OC , ∴CE 为⊙O 的切线. (2)四边形A OCD 为菱形.理由:∵OD =OC ,∠C OD =60°, ∴△OCD 为等边三角形,∴CD =CO. 同理:AD =AO.∵AO =CO ,∴AD =AO =CO =DC , ∴四边形A OCD 为菱形. 4.解:(1)证明:连接OD ,∵OD =OA ,∴∠OD A =∠A. ∵四边形OABC 是平行四边形,∴OC ∥AB ,∴∠E OC =∠A ,∠C OD =∠OD A , ∴∠E OC =∠D OC .在△E OC 和△D OC 中,∵⎩⎪⎨⎪⎧OE =OD ,∠EOC =∠DOC ,OC =OC ,∴△E OC ≌△D OC (S A S ),∴∠OD C =∠OE C.∵CE 是⊙O 的切线,∴∠OE C =90°, ∴∠OD C =90°,即OD ⊥DC , ∴CD 是⊙O 的切线.(2)∵△E OC ≌△D OC ,∴CE =CD =4.∵四边形OABC 是平行四边形,∴OA =BC =3, ∴平行四边形OABC 的面积S =OA ×CE =3×4=12. 5.解:(1)证明:连接OD ,CD . ∵BC 是⊙O 的直径,∴CD ⊥AB . ∵AC =BC ,∴D 是AB 的中点. 又O 为CB 的中点,∴OD ∥AC . ∵DF ⊥AC ,∴OD ⊥EF , ∴EF 是⊙O 的切线.(2)连接BG.∵BC 是直径,∴∠BGC =90°. 在Rt △ACD 中,DC =AC 2-AD 2=102-62=8. ∵AB ·CD =2S △ABC =AC ·BG , ∴BG =AB ·CD AC =12×810=485.∵BG ⊥AC ,EF ⊥AC ,∴BG ∥EF ,∴∠E =∠CBG , ∴cos E =cos ∠CBG =BG BC =2425.6.解:(1)证明:如图,连接OD . ∵AB =AC ,∴∠B =∠C.∵OD =OC ,∴∠OD C =∠C , ∴∠OD C =∠B ,∴OD ∥AB . ∵DF ⊥AB ,∴OD ⊥DF.∵点D 在⊙O 上,∴直线DF 与⊙O 相切.(2)∵四边形ACD E 是⊙O 的内接四边形, ∴∠AED +∠C =180°.∵∠AED +∠BE D =180°,∴∠BE D =∠C. 又∵∠B =∠B , ∴△BE D ∽△BC A , ∴BD AB =BE BC. ∵OD ∥AB ,AO =CO ,∴BD =CD =12BC =3.又∵AE =7,∴37+BE =BE6,解得BE =2.∴AC =AB =AE +BE =7+2=9.7.解:(1)证明:在⊙O 中,∵弦BD =BA ,且∠BC A 和∠B AD 分别为弦BA 和BD 所对的圆周角,∴∠BC A =∠B AD .(2)∵BE ⊥DC ,∴∠E =90°, ∴∠ABC =∠E.又∵∠B AC =∠EDB , ∴△ABC ∽△DEB ,∴AB DE =AC BD. 在Rt △ABC 中,∠ABC =90°,AB =12,BC =5,由勾股定理,得AC =13, ∴12DE =1312,∴DE =14413.(3)证明:连接OB ,∵OA =OB ,∴∠OAB =∠OB A. 由BA =BD 可推出∠OBD =∠OB A. 又∠BD C =∠OAB ,∴∠OBD =∠BD C ,∴OB ∥DE , ∴∠OBE =∠E =90°, 即BE ⊥OB ,∴BE 是⊙O 的切线.8.解:(1)证明:∵AB ∥CD , ∴∠ABC +∠BCD =180°.∵AB ,BC ,CD 分别与⊙O 相切于点E ,F ,G , ∴BO 平分∠ABC ,CO 平分∠DCB , ∴∠OBC =12∠ABC ,∠OC B =12∠DCB ,∴∠OBC +∠OC B =12(∠ABC +∠DCB)=12×180°=90°,∴∠B OC =90°,∴BO ⊥CO.(2)连接OF ,则OF ⊥BC .∴Rt △BOF ∽Rt △BC O , ∴BF BO =BO BC. ∵在Rt △BOF 中,BO =6 cm ,CO =8 cm , ∴BC =62+82=10 (cm), ∴BF 6=610, ∴BF =3.6 cm.∵AB ,BC ,CD 分别与⊙O 相切, ∴BE =BF =3.6 cm ,CG =CF.∵CF =BC -BF =10-3.6=6.4 (cm), ∴CG =CF =6.4 cm.。