第18讲 面积计算
小学六年级奥数--面积计算(二)
二、精讲精练
练习3: 3.如图所示,AB=BC=8厘米,求阴影部分的面积。
二、精讲精练
【例题4】如图19-14所示,求阴影部分的面积(单位:厘米)。 【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还 原成长方形后(如图所示)。
I和II的面积相等。 因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的 两组三角形面积分别相等,所以
二、精讲精练
练习5: 4、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。
谢谢观看
二、精讲精练 练习1: 1.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练 练习1: 2.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练 练习3: 3.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练
【例题2】求图中阴影部分的面积(单位:厘米)。 【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形 (如图所示)。
二、精讲精练
练习2: 3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
二、精讲精练
【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影 部分的面积相等。求长方形ABO1O的面积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相 等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于 长方形面积的一半(如图19-10右图所示)。所以 3.14×12×1/4×2=1.57(平方厘米)
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积 的一半。
3.14×-4×4÷2÷2=8.56(平方厘米) 答:阴影部分的面积是8.56平方厘米。
二、精讲精练
小学数学之面积计算
小学数学之面积计算
面积计算是小学数学中比较重要的一个概念,学生们在学习这个概念时,需要理解它的定义、特点和习题解答等方面。
本文将就面积计算在小
学数学中的概念、特点及计算习题进行详细介绍,以期能帮助学生能够更
加快速地掌握面积计算的知识。
一、面积计算的概念
面积计算是指用解释几何图形面积的方法来计算所需要的其中一种特
定面积值。
它的定义比较宽泛,但是它主要是用来求解几何图形中的面积。
在学习中,重点在于理解它是如何计算几何图形的面积,如何根据图形的
比例和形状来判断面积的大小。
二、面积计算的特点
1、面积计算是一种特定的数学概念,它同时涉及几何图形的形状和
特征,以及面积的计算,它特殊的地方在于,面积的计算是根据形状的不
同而不同的。
所以,当学生在计算面积时,不仅要理解面积的定义,还要
根据形状情况,结合图形来推断出相应的公式,以计算出所求的面积。
2、面积计算是根据图形的形状来定义的,它具有一定的通用性。
当
学生进行面积计算时,可以使用相同的公式来计算对应图形的面积,这样
可以极大地提高计算的速度和精确度。
三、面积计算的习题。
面积的概念
面积的变换:如将三角形的 面积转换为矩形的面积
面积的证明:如证明两个图 形的面积相等
测量房间面积:了 解房间大小,选择 合适的家具和装饰
计算地毯面积:选 择合适的地毯尺寸, 避免浪费
计算墙面面积:选 择合适的壁纸或涂 料,避免浪费
计算花园面积:规周长是指封闭图形一周的长度,面积是指封闭图形内部的大小。
使用面积测量工具,如面 积尺、面积仪等
通过计算物体的体积,间 接得到面积
平方米(m²):最常用的面积单位,用于测量土地、建筑等 平方千米(km²):用于测量较大的土地面积,如国家、城市等 平方毫米(mm²):用于测量较小的面积,如电路板、芯片等 平方厘米(cm²):用于测量中等面积,如家具、房间等 平方分米(dm²):用于测量中等面积,如家具、房间等 平方码(sq ft):用于测量土地、建筑等,主要用于英制国家
面积的单位通常 为平方米、平方 厘米等
面积的计算公式 为:面积=长×宽
测量工具:直尺、卷尺等
测量步骤:选择合适的测量工 具,测量物体的长度和宽度, 计算面积
注意事项:测量时要准确,避 免误差
适用范围:适用于规则形状的 物体,如矩形、正方形等
利用已知面积的物体进行 对比
通过测量物体的长度、宽 度等参数,计算面积
平方厘米(cm²):常用于测量小面积 平方分米(dm²):常用于测量中等面积 平方米(m²):常用于测量大面积 平方千米(km²):常用于测量超大面积 平方英里(sq mi):常用于测量土地面积 平方英尺(sq ft):常用于测量室内面积
比较图形的面积:如比较两 个三角形的面积大小
计算图形的面积:如三角形、 矩形、圆形等
计算方法不同:周长通常通过测量图形各边的长度相加得到,面积则需要通过计算图形内部的 大小得到。
面积的测量掌握面积的计算公式和测量技巧
面积的测量掌握面积的计算公式和测量技巧面积作为数学中的一个重要概念,是我们日常生活中不可或缺的一部分。
无论是家庭装修、土地测量还是建筑设计,准确计算和测量面积都是必不可少的。
本文将介绍面积的计算公式和测量技巧,帮助读者准确掌握面积的测量方法。
一、面积的计算公式1. 矩形的面积计算公式:矩形是最基本的图形之一,其面积计算公式非常简单。
一个矩形的面积等于其长度乘以宽度,即:面积 = 长度 ×宽度。
2. 正方形的面积计算公式:正方形是一种特殊的矩形,其边长相等。
因此,正方形的面积计算公式可以简化为:面积 = 边长 ×边长,或者面积 = 边长²。
3. 三角形的面积计算公式:三角形是另一个常见的图形,其面积计算公式稍微复杂一些。
我们常用的计算公式是海伦公式:面积= √[s(s-a)(s-b)(s-c)],其中,s为三角形的半周长,a、b、c分别为三角形的三边长。
4. 圆的面积计算公式:圆是一种特殊的图形,其面积计算公式与其他图形不同。
圆的面积等于π乘以半径的平方,即:面积= πr²。
二、面积的测量技巧1. 使用测量工具:在实际测量中,使用准确的测量工具是非常重要的。
常见的测量工具包括直尺、量角器、卷尺等。
选择合适的工具可以提高测量的精确度。
2. 注意单位转换:面积的计量单位有平方米(m²)、平方厘米(cm²)、平方分米(dm²)等。
在测量时,需要注意单位的转换,确保统一使用同一种单位进行计算和比较。
3. 利用实际图形进行测量:对于规则的图形,可以直接通过测量边长来计算面积。
例如,测量矩形的长度和宽度,计算乘积即可得到面积。
对于不规则的图形,可以将其分解为多个规则图形进行测量,然后将各个部分的面积相加得到最终的面积。
4. 利用数学公式进行测量:对于一些复杂的图形,可以利用数学公式来计算面积。
例如,利用海伦公式计算三角形的面积,或者利用圆的面积公式计算圆的面积。
北师大版九年级下册数学第18讲《弧长和扇形面积》知识点梳理
北师大版九年级下册数学第 18 讲《弧长和扇形面积》知识点梳理【学习目标】1.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.能准确计算组合图形的面积.【要点梳理】要点一、弧长公式半径为R 的圆中360°的圆心角所对的弧长(圆的周长)公式:n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180 都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.2.扇形面积公式半径为R 的圆中360°的圆心角所对的扇形面积(圆面积)公式:n°的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.3 (3) 扇形面积公式 ,可根据题目条件灵活选择使用,它与三角形面积公式 有点类似,可类比记忆;(4) 扇形两个面积公式之间的联系: .【典型例题】类型一、弧长和扇形的有关计算1. 如图(1),AB 切⊙O 于点 B ,OA= 2,AB=3,弦 BC∥OA ,则劣弧 B»C 的弧长为( ). A . 3 π B . 3 π 3 2 C .π D . 3π 2A图(1)【答案】A.【解析】连结 OB 、OC ,如图(2)则∠OBA =90︒ ,OB= , ∠A =30︒ , ∠AOB =60︒ ,由弦 BC ∥OA 得∠OBC =∠AOB = 60︒ ,所以△OBC 为等边三角形, ∠BOC =60︒ .则劣弧 B»C 的弧长为 60π 3 = 3π ,故选 A. 图(2) 180 3【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料, 试计算如图所示的管道的展直长度,即的长(结果精确到 0.1mm)3 C B O【答案】R=40mm,n=110∴的长= = ≈76.8(mm)因此,管道的展直长度约为76.8mm.2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)【答案与解析】∵弦AB 和半径OC 互相平分,∴OC⊥AB,OM=MC= OC= OA.∴∠B=∠A=30°,∴∠AOB=120°∴S 扇形= .【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2 为半径的⊙A 与BC 相切于点D,交AB 于E,交AC 于F,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是().A.4 -4πB.4 -8πC.8 -4πD.8 -8π 9 9 9 9A PE FB D C图(1)的面积是: 【答案】连结 AD ,则 AD ⊥BC ,△ABC 的面积是:BC•AD= ×4×2=4,∠A=2∠EPF=80°.则扇形 80π 22 EAF = 8π.360 9故阴影部分的面积=△ABC 的面积-扇形 EAF 的面积= 4- 8π. 图(2) 9故选 B .3.(2015•ft西模拟)如图,已知⊙O 是△ABC 的外接圆,AC 是直径,∠A=30°,BC=2,点 D 是 AB 的中点, 连接 DO 并延长交⊙O 于点 P ,过点 P 作 PF⊥AC 于点 F .(1) 求劣弧 PC 的长;(结果保留 π)(2) 求阴影部分的面积.(结果保留 π).【答案与解析】解:(1)∵点 D 是 AB 的中点,PD 经过圆心,∴PD⊥AB,∵∠A=30°,∴∠POC=∠AOD=60°,OA=2OD ,∵PF⊥AC,∴∠OPF=30°,∴OF=OP ,∵OA=OC,AD=BD ,∴BC=2OD,∴OA=BC=2,∴⊙O 的半径为 2,∴劣弧 PC 的长===π;(2)∵OF=OP ,∴OF=1,∴PF== ,∴S阴影=S 扇形﹣S△OPF=﹣×1×=π﹣.【总结升华】本题考查了垂径定理的应用,弧长公式以及扇形的面积公式等知识,求得圆的半径和扇形的圆心角的度数是解题的关键.类型二、组合图形面积的计算4.(2015•槐荫区三模)如图,AB 是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC= =2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S 扇形OBC=π×OC2= π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。
面积的计算方法
面积的计算方法面积是研究几何学的一个重要概念,用于测量平面图形或物体的大小。
不同形状的物体有不同的面积计算方法。
本文将介绍几种常见的面积计算方法。
一、矩形的面积计算方法矩形是最简单的平面图形,其面积计算公式为:面积 = 长 ×宽。
可以通过测量矩形的长度和宽度,将两个数值相乘得到矩形的面积。
例如,如果一个矩形的长为5米,宽为3米,那么它的面积可以通过计算 5 × 3 = 15 平方米得到。
二、三角形的面积计算方法三角形也是常见的平面图形,其面积计算公式为:面积 = 底边长度×高 ÷ 2。
三角形的底边为任意一边的长度,高为从底边到与之平行的另一边的垂直距离。
例如,如果一个三角形的底边长度为6米,高为4米,那么它的面积可以通过计算 6 × 4 ÷ 2 = 12 平方米得到。
三、圆的面积计算方法圆是一个连续曲线所围成的一个闭合图形,其面积计算公式为:面积= π × 半径的平方。
其中,π是一个无理数,约等于3.14159。
例如,如果一个圆的半径为2米,那么它的面积可以通过计算3.14159 × 2 × 2 = 12.56636 平方米得到。
在实际应用中,我们通常会直接使用已知形状的面积计算公式,不需要进行详细的推导计算。
四、复杂图形的面积计算方法对于由多个简单图形组合形成的复杂图形,可以通过将其划分为简单的部分,计算各个部分的面积,然后将它们相加得到整个图形的面积。
例如,如果一个房间的形状是一个矩形底部加上一个三角形的屋顶,我们可以先计算矩形的面积,然后计算三角形的面积,最后将它们相加得到整个房间的面积。
总结面积是用来描述平面图形或物体大小的一个重要指标。
不同形状的物体有不同的面积计算方法,如矩形的面积等于长乘以宽,三角形的面积等于底边长度乘以高除以2,圆的面积等于π乘以半径的平方。
对于复杂图形,可以通过划分为简单部分,然后逐个计算各个部分的面积,再相加得到整个图形的面积。
高中数学圆锥曲线系统讲解第18讲《三角形面积公式的坐标形式》练习及答案
第18讲 三角形面积公式的坐标形式知识与方法公式1:设点()11,A x y ,()22,B x y ,O 为原点,则122112OABS x y x y =−. 公式2:设点()11,A x y ,()22,B x y ,()33,C x y , 则()()()()2131312112ABCSx x y y x x y y =−−−−−. 典型例题【例题】在平面直角坐标系xOy 中,已知点()2,1A ,()1,3B −,则OAB 的面积为______.【解析】解法1:如图,易求得OA OA 的方程为2 0x y −=,所以点B 到直线OA 的距离d ==,从而1722OABS==解法2:()17231122OABS =⨯−−⨯=. 【答案】72变式1 在平面直角坐标系xOy 中,已知点()2,1A ,()1,3B −,()1,1C −,则ABC 的面积为______.【解析】解法1:直线AC 的斜率()11221k −−==−,所以直线AC 的方程为()122y x −=−,即230x y −−=,从而点B 到直线AC 的距离d =,又AC ==,所以11422ABCSAC d =⋅==.解法2:如图,将A 、B 、C 三点同时向左移1个单位,向上移1个单位,则C 移到原点,A 、B 分别移到()1,2A ',()2,4B '−, 所以()1142242ABCOA B SS''==⨯−−⨯=. 【答案】4 【反思】当三角形的三个顶点都不在原点时,可以通过平移转化为有一个顶点在原点的情形来计算面积.变式2 在平面直角坐标系xOy 中,已知A 、B 为抛物线2:2C y x =上的两点,若OA OB ⊥,则OAB 的面积最小值为______.【解析】解法1:如图,显然直线AB 不与y 轴垂直,故可设其方程为()0x my t t =+≠),设()11,A x y ,()22,B x y ,联立22x my ty x=+⎧⎨=⎩消去x 整理得:2220y my t −−=,判别式()242m t ∆=+, 由韦达定理,122y y t =−,所以222121222y y x x t =⋅=,因为OA OB ⊥,所以121221OA OB y y k k x x t⋅=⋅=−=−,从而2t =,满足0∆>,故直线AB 过定点()2,0D ,所以1211124222OABSOD y y OD =⋅−=⋅=⨯=, 当且仅当0m =时取等号,所以OAB 的面积的最小值为4.解法2:设直线OA 的方程为()0y kx k =≠,则直线OB 的方程为1y x k=−,联立22y kx y x=⎧⎨=⎩解得:00x y =⎧⎨=⎩或222x k y k ⎧=⎪⎪⎨⎪=⎪⎩,所以222,A k k ⎛⎫ ⎪⎝⎭,将k 换成1k −即得()22,2B k k −,所以()2212222222242OABSk k k k k k k k =⋅−−⋅=+=+≥=, 当且仅当22k k=,即1k =±时取等号,故OAB 的面积的最小值为4. 解法3:设()211A y,()222B y ,则由题意,1222121221y y y y ⋅==−,所以122y y =−,212y y =−,从而()2212211212111112242OABSy y y y y y y y ⎫=−=−=+=+≥=⎪⎪⎭ 当且仅当112y y =,即1y =时取等号,故OAB 的面积的最小值为4. 【答案】4强化训练1.(★★)在平面直角坐标系xOy 中,已知点()1,0A ,()2,2B ,()1,3C −,则ABC 的面积为______.【解析】如图,()()()()172130112022ABCS=⨯−⨯−−−−⨯−=.【答案】722.(★★★)设直线:22l y x =−与抛物线2:4C y x =相交于A 、B 两点,若点()0,1D ,则DAB 的面积为______.【解析】解法1:如图,设()11,A x y ,()22,B x y ,联立2224y x y x=−⎧⎨=⎩消去y 整理得:2310x x −+=,不难发现直线l 过抛物线C 的焦点F ,所以1225AB x x =++=, 而点D 到直线l 的距离d ==11522DABSAB d =⋅=⨯=. 解法2:如图,由题意,可设()11,22A x x −,()22,22B x x −, 联立2224y x y x=−⎧⎨=⎩消去y 整理得:2310x x −+=判别式()234115∆=−−⨯⨯=, 所以()()()()12211213302210221222DABSx x x x x x =−−−−−−−=−==.3.(★★★★)在平面直角坐标系xOy 中,已知A 、B 为抛物线2:4C y x =上的两点,若直线OA 、OB 的斜率之积等于2−,则OAB 的面积最小值为______.【解析】解法1:如图,显然直线AB 不与y 轴垂直,故可设其方程为()0x my t t =+≠,设()11,A x y ,()22,B x y ,联立24x my t y x=+⎧⎨=⎩消去x 整理得:2440y my t −−=,判别式()216m t ∆=+,由韦达定理,124y y m +=,124y y t =−,所以222121244y y x x t =⋅=,故直线OA 、OB 的斜率之积为12124y y x x t⋅=−,由题意,42t−=−,故2t =,满足0>,从而直线AB 过定点()2,0D ,故1211122212OABSOD y y OD =⋅−=⋅⋅=⨯= 当且仅当0m =时取等号,所以OAB的面积的最小值为解法2:设直线OA 的方程为()0y kx k =≠,则直线OB 的方程为2y x k=−,联立24y kx y x=⎧⎨=⎩解得:00x y =⎧⎨=⎩或244x k y k ⎧=⎪⎪⎨⎪=⎪⎩,所以244,A k k ⎛⎫ ⎪⎝⎭,将k 换成2k −即得()2,2B k k −,所以()22144442222OABSk k k k k k k k =⋅−−⋅=+=+≥=, 当且仅当42k k=,即k =OAB的面积的最小值为 解法3:设()211,2A y y ,()222,2B y y ,则由题意,122112122242y y y y y y ⋅==−,所以122y y =−,212y y =−,从而 ()22122112121111122222222OABSy y y y y y y y y y y y ⎛⎫=⋅−⋅=−=+=+≥⨯= ⎪ ⎪⎝⎭当且仅当112y y =,即1y =时取等号,故OAB的面积的最小值为【答案】。
第18讲面积计算
第18讲面积计算一、知识要点运算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,假如我们能认真观看图形,分析、研究已知条件,并加以深化,再运用我们已有的差不多几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。
有些平面图形的面积运算必须借助于图形本身的特点,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再通过分析推导,方能寻求出解题的途径。
二、精讲精练【例题1】已知如图,三角形ABC的面积为8平方厘米,AE=ED,BD=2/3BC,求阴影部分的面积。
练习1:1、如图,AE=ED,BC=3BD,S△ABC=30平方厘米。
求阴影部分的面积。
2、如图所示,AE=ED,DC=1/3BD,S△ABC=21平方厘米。
求阴影部分的面积。
3、如图所示,DE=1/2AE,BD=2DC,S△EBD=5平方厘米。
求三角形ABC的面积。
【例题2】两条对角线把梯形ABCD分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?练习2:1、两条对角线把梯形ABCD分割成四个三角形,(如图所示),已知两个三角形的面积,求另两个三角形的面积是多少?2、已知AO=1/3OC,求梯形ABCD的面积(如图所示)。
【例题3】四边形ABCD的对角线BD被E、F两点三等分,且四边形AECF的面积为15平方厘米。
求四边形ABCD的面积(如图所示)。
练习3:1、四边形ABCD的对角线BD被E、F、G三点四等分,且四边形AECG的面积为15平方厘米。
求四边形ABCD的面积(如图)。
2、如图所示,求阴影部分的面积(ABCD为正方形)。
【例题4】如图所示,BO=2DO,阴影部分的面积是4平方厘米。
那么,梯形ABCD的面积是多少平方厘米?练习4:1、如图所示,阴影部分面积是4平方厘米,OC=2AO。
求梯形面积。
2、已知OC=2AO,S△BOC=14平方厘米。
小学五年级奥数第18讲 组合图形的面积(含答案分析)
第18讲组合图形面积(一)一、知识要点组合图形是由两个或两个以上的简单的几何图形组合而成的。
组合的形式分为两种:一是拼合组合,二是重叠组合。
由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。
要正确解答组合图形的面积,应该注意以下几点:1.切实掌握有关简单图形的概念、公式,牢固建立空间观念;2.仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;3.适当采用增加辅助线等方法帮助解题;4,采用割、补、分解、代换等方法,可将复杂问题变得简单。
二、精讲精练【例题1】一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?练习1:1.求四边形ABCD的面积。
(单位:厘米)2.已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。
3.有一个梯形,它的上底是5厘米,下底7厘米。
如果只把上底增加3厘米,那么面积就增加4.5平方厘米。
求原来梯形的面积。
【例题2】正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。
求中间长方形的面积。
练习2:1.(如下图)已知大正方形的边长是12厘米,求中间最小正方形的面积。
2.正图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。
3.求下图(上右图)长方形ABCD的面积(单位:厘米)。
【例题3】四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。
三角形CDH的面积是多少平方厘米?练习3:1.图中两个正方形的边长分别是6厘米和4厘米,求阴影部分的面积。
2.下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。
(单位:厘米)3.下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?【例题4】下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?练习4:1.如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。
小学六年级奥数面积计算二
二、精讲精练
【例题5】如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7 平方厘米,∠ABC=30度,求阴影部分的面积(得数保留两位小数)。 【思路导航】阴影部分的面积等于平行四边形的面积减去扇形AOC的面积,再 减去三角形BOC的面积。 半径:4÷2=2(厘米)
扇形的圆心角:180-(180-30×2)=60(度) 扇形的面积:2×2×3.14×60/360≈2.09(平方厘米) 三角形BOC的面积:7÷2÷2=1.75(平方厘米) 7-(2.09+1.75)=3.16(平方厘米) 答:阴影部分的面积是3.16平方厘米。
6×4=24(平方厘米) 答:阴影部分的面积是24平方厘米。
二、精讲精练
练习4: 1.如图所示,求四边形ABCD的面积。
二、精讲精练
练习4:
2.如图所示,BE长5厘米,长方形AEFD面积是38平方厘米。求CD的 长度。
二、精讲精练
练习4:
3.图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件 求阴影部分的面积(单位:厘米)。
二、精讲精练
练习2: 3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
二、精讲精练
【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影 部分的面积相等。求长方形ABO1O的面积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相 等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于 长方形面积的一半(如图19-10右图所示)。所以 3.14×12×1/4×2=1.57(平方厘米)
二、精讲精练
练习5: 4、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。
谢谢观看
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积 的一半。
第18讲 面积计算(一)生
面积计算(一)知识点:计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
练习1:1、如图,AE=ED,BC=3BD,S△ABC=30平方厘米。
求阴影部分的面积。
例2、两条对角线把梯形ABCD分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?练习2:1、两条对角线把梯形ABCD分割成四个三角形,(如图所示),已知两个三角形的面积,求另两个三角形的面积是多少?3、已知三角形AOB的面积为15平方厘米,线段OB的长度为OD的3倍。
求梯形ABCD 的面积。
(如图所示)。
例3、四边形ABCD的对角线BD被E、F两点三等分,且四边形AECF的面积为15平方厘米。
求四边形ABCD的面积(如图所示)。
练习3:1、四边形ABCD的对角线BD被E、F、G三点四等分,且四边形AECG的面积为15平方厘米。
求四边形ABCD的面积(如图)。
2.已知四边形ABCD的对角线被E、F、G三点四等分,且阴影部分面积为15平方厘米。
求四边形ABCD的面积(如图所示)。
3.如图所示,求阴影部分的面积(ABCD为正方形)。
例4、如图所示,BO=2DO,阴影部分的面积是4平方厘米。
那么,梯形ABCD的面积是多少平方厘米?练习4:1、如图所示,阴影部分面积是4平方厘米,OC=2AO。
求梯形面积。
2、已知OC=2AO,S△BOC=14平方厘米。
求梯形的面积(如图所示)。
3、已知S△AOB=6平方厘米。
OC=3AO,求梯形的面积(如图所示)。
例5、如图所示,长方形ADEF的面积是16,三角形ADB的面积是3,三角形ACF的面积是4,求三角形ABC的面积。
面积的概念与计算方法
面积的概念与计算方法面积是一个非常基础且常见的概念,它在日常生活中随处可见。
无论是家庭装修、建筑设计、农田规划还是地理测量,都离不开对面积的概念和计算方法。
本文将介绍面积的定义、常见的面积计算方法,并以实例加深理解。
一、面积的定义面积是二维几何形状所占据的空间大小。
它通常表示为平方单位,如平方米(m²)、平方厘米(cm²)等。
面积的计算基于几何形状的尺寸,其中最常见的形状包括矩形、三角形、圆形和梯形。
二、矩形的面积计算方法矩形是最简单的形状之一,其面积计算公式为:面积 = 长度 ×宽度。
例如,一个长为5米、宽为3米的矩形的面积可以通过计算5 × 3 = 15平方米获得。
三、三角形的面积计算方法三角形的面积计算需要知道底边的长度以及高的长度。
面积 = 底边×高 / 2。
例如,一个底边长为6米,高为4米的三角形的面积可以通过计算 6 × 4 / 2 = 12平方米获得。
四、圆形的面积计算方法圆形的面积计算需要知道半径的长度。
面积= π × 半径²,其中π是一个数学常数,近似值为3.14。
例如,一个半径为5米的圆形的面积可以通过计算 3.14 × 5² = 78.5平方米获得。
五、梯形的面积计算方法梯形是一个有两个平行底边的四边形,其面积计算需要知道两个底边的长度以及高的长度。
面积 = (上底 + 下底)×高 / 2。
例如,一个上底长为3米、下底长为7米,高为4米的梯形的面积可以通过计算(3 + 7)× 4 / 2 = 20平方米获得。
六、实例应用面积的计算方法在很多领域都有广泛的应用。
以下将介绍两个具体的实例。
1. 家庭装修在家庭装修中,计算房间的面积是常见的需求。
例如,如果一间卧室的长宽分别为4米和5米,我们可以将其面积计算为 4 × 5 = 20平方米。
通过计算房间的面积,我们可以合理地安排家具和装饰品,使得空间更加美观和舒适。
小学奥数:第18讲四年级数学图形的周长和面积教案 ;;
1、上节学习了几何计数问题,利用上节课学到的知识和技能解答下面题目:(1)数一数下图中,各有多少条线段?各有多少个三角形?(2)如下图数一数图中长方形的个数。
一、专题导入同学们都知道,长方形的周长=(长+宽)×2,正方形的周长=边长×4。
长方形、正方形的周长公式只能用来计算标准的长方形和正方形的周长。
如何应用所学知识巧求表面上看起来不是长方形或正方形的图形的周长,还需同学们灵活应用已学知识,掌握转化的思考方法,把复杂的问题转化为标准的图形,以便计算它们的周长。
二、专题精讲【例1】有5张同样大小的纸如下图(a)重叠着,每张纸都是边长6厘米的正方形,重叠的部分为边长的一半,求重叠后图形的周长。
分析解答:根据题意,我们可以把每个正方形的边长的一半同时向左、右、上、下平移(如图b),转化成一个大正方形,这个大正方形的周长和原来5个小正方形重叠后的图形的周长相等。
因此,所求周长是18×4=72厘米。
【例2 】一块长方形木板,沿着它的长度不同的两条边各截去4厘米,截掉的面积为192平方厘米。
现在这块木板的周长是多少厘米?分析解答:思路导航把截掉的192平方厘米分成A、B、C三块(如图),其中AB的面积是192-4×4=176(平方厘米)。
把A和B移到一起拼成一个宽4厘米的长方形,而此长方形的长就是这块木板剩下部分的周长的一半。
176÷4=44(厘米),现在这块木板的周长是44×2=88(厘米)。
【例3 】已知下图中,甲是正方形,乙是长方形,整个图形的周长是多少?分析解答:从图中可以看出,整个图形的周长由六条线段围成,其中三条横着,三条竖着。
三条横着的线段和是(a+b)×2,三条竖着的线段和是b×2。
所以,整个图形的周长是(a+b)×2+b×2,即2a+4b。
【例4 】下图是边长为4厘米的正方形,求正方形中阴影部分的周长。
小学六年级奥数- 面积计算(一)
小学六年级奥数- 面积计算(一)
二、精讲精练
【例题5】如图所示,长方形ADEF的面积是16,三角形ADB的面积是3,三角 形ACF的面积是4,求三角形ABC的面积。 【思路导航】连接AE。仔细观察添加辅助线AE后,使问题可有如下解法。 由图上看出:三角形ADE的面积等于长方形面积的一半(16÷2)=8。用8减 去3得到三角形ABE的面积为5。同理,用8减去4得到三角形AEC的面积也为4。 因此可知三角形AEC与三角形ACF等底等高,C为EF的中点,而三角形ABE与 三角形BEC等底,高是三角形BEC的2倍,三角形BEC的面积为5÷2=2.5, 所以,三角形ABC的面积为16-3-4-2.5=6.5。
二、精讲精练 练习1: 1.如图,AE=ED,BC=3BD,S△ABC=30平方厘米。 求阴影部分的面积。
小学六年级奥数- 面积计算(一)
二、精讲精练 练习1: 2.如图所示,AE=ED,DC=1/3BD,S△ABC=21平方 厘米。求阴影部分的面积。
小学六年级奥数- 面积计算(一)
二、精讲精练 练习3: 2.如图所示,AE=ED,DC=1/3BD,S△ABC=21平方 厘米。求阴影部分的面积。
小学奥数 举一反三
(六年级)
小学六年级奥数- 面积计算(一)
第18讲 面积计算(一) 一、知识要点
计算平面图形的面积时,有些问题乍一看,在已知条 件与所求问题之间找不到任何联系,会使你感到无从下手。 这时,如果我们能认真观察图形,分析、研究已知条件, 并加以深化,再运用我们已有的基本几何知识,适当添加 辅助线,搭一座连通已知条件与所求问题的小“桥”,就 会使你顺利达到目的。有些平面图形的面积计算必须借助 于图形本身的特征,添加一些辅助线,运用平移旋转、剪 拼组合等方法,对图形进行恰当合理的变形,再经过分析 推导,才能寻求出解题的途径。
六年级上册数学培优奥数讲义-第18讲 与圆有关的组合图形2
第18讲与圆有关的组合图形2知识与方法在进行组合图形的面积计算时,要仔细观察,认真思考,不仅要看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件以及要求的问题间的关系。
初级挑战1求图中阴影部分的面积。
(单位:厘米)思维点拨:观察发现,阴影部分的面积=()-()。
答案:2×2-π×1²=0.86(平方厘米)能力探索1如图所示,圆的半径为2厘米,∠AOC为直角,则图中阴影部分的面积是多少?答案:3.14×22÷4-22÷2=1.14(平方厘米)如图,扇形AFB是一个圆心角为90的扇形,四边形BCDE和AFBG都是正方形。
那么图中阴影部分的面积是多少?(单位:厘米)思路点拨:方法一:如下图,连接AB,将阴影部分分为①②两部分,分别计算出两部分的面积,再相加即可。
方法二:如图,阴影部分的面积也可看成是三角形ACG的面积减去空白部分③的面积,分别算出这两部分的面积,再相减即可。
答案:[3.14×42÷4-4×4÷2]+3×4÷2=10.56(平方厘米)能力探索2如图,边长为3cm与5cm的两个正方形并排放在一起,在大正方形中画一个以它的顶点B为圆心,边长为半径的圆弧,则阴影部分的面积是多少?答案:(3+5)×3÷2+3.14×25÷4-(3+5)×3÷2=19.625(平方厘米)已知下图中正方形的周长是40厘米,图中阴影部分的面积是多少?思维点拨:方法一:图中阴影部分是由四个以正方形的边长为直径的半圆相交而成的,因此可将阴影部分进行分解再求。
方法二:四个半圆加起来,减去一个正方形的面积,正好是阴影部分的面积。
答案:正方形的边长a=40÷4=10(厘米)圆的半径r=10÷2=5(厘米)方法一(连接正方形的对角线画圆):3.14×52-10×5÷2=14.25(平方厘米),14.25×4=57(平方厘米)方法二:正方形的边长a=40÷4=10(厘米)圆的半径r=10÷2=5(厘米)阴影部分面积:πr2÷2×4-a2=50π-100=157-100=57(平方厘米)能力探索2下图中,正方形的边长是10厘米,求图中阴影部分的面积。
面积计算(平方厘米)
面积计算(平方厘米)面积计算是数学中的一个重要概念,用于计算物体的大小或表面的覆盖范围。
面积通常以平方单位进行计量,而平方厘米则是常用的一种面积单位。
在本文中,我们将介绍面积计算的基本原理和一些常见图形的面积计算公式。
一、矩形的面积计算矩形是最简单的图形之一,其面积计算公式为:面积 = 长 ×宽。
假设某矩形的长为12厘米,宽为8厘米,则其面积可以计算为:12厘米× 8厘米 = 96平方厘米。
二、正方形的面积计算正方形是一种特殊的矩形,其四条边长度相等。
因此,正方形的面积计算公式为:面积 = 边长 ×边长,或简化为:面积 = 边长^2。
例如,假设某正方形的边长为10厘米,则其面积可以计算为:10厘米 × 10厘米 = 100平方厘米。
三、三角形的面积计算三角形的面积计算相对复杂,但我们可以利用底边和高来计算。
三角形的面积公式为:面积 = 底边 ×高 / 2。
例如,假设某三角形的底边长为6厘米,高为4厘米,则其面积可以计算为:6厘米 × 4厘米 / 2 = 12平方厘米。
四、圆形的面积计算圆形是一种没有直角的特殊图形,其面积计算公式为:面积= π ×半径^2。
其中,π是一个常数,约等于3.14159。
假设某圆形的半径为5厘米,则其面积可以计算为:3.14159 × 5厘米 × 5厘米 = 78.53975平方厘米。
除了以上常见图形的面积计算,还有许多其他图形的面积计算方法,如梯形、圆环等。
这些图形的面积计算公式可以在数学教材或网络资料中找到。
对于复杂的图形,我们可以将其分解为几个简单形状的组合求解。
在面积计算中,我们需要注意单位的转换。
如果给出的边长或半径不是以厘米为单位,我们需要根据实际情况进行转换,确保最终结果的单位是平方厘米。
此外,对于一些不规则形状的面积计算,我们可以利用图形的近似拆分或利用数值方法进行估算。
面积计算及单位转换
面积计算及单位转换面积是指一个平面内所包含的空间大小,常用于描述物体的大小或者地理空间的范围。
在日常生活中,我们经常需要计算面积或者进行面积单位的转换。
本文将介绍面积的计算方法以及常见的面积单位转换。
一、面积的计算方法1. 矩形面积计算矩形的面积计算公式为:面积 = 长 ×宽。
其中,长和宽分别为矩形的两条相邻边的长度。
例如,一个长为5米,宽为3米的矩形的面积为15平方米。
2. 正方形面积计算正方形的面积计算公式为:面积 = 边长 ×边长。
正方形的四条边长度相等,所以只需要知道一条边的长度即可。
例如,一个边长为4米的正方形的面积为16平方米。
3. 圆形面积计算圆形的面积计算公式为:面积= π × 半径 ×半径。
其中,半径为圆的半径长度,π取近似值3.14。
例如,一个半径为2米的圆的面积约为12.56平方米。
4. 三角形面积计算三角形的面积计算公式为:面积 = 底边长 ×高 ÷ 2。
其中,底边长为底边的长度,高为从底边到对边的垂直距离。
例如,一个底边长为6米,高为4米的三角形的面积为12平方米。
二、面积单位转换在不同的场景中,我们常常会遇到不同的面积单位,需要进行单位之间的转换。
下面是一些常见的面积单位及其换算关系:1 平方米(m²) = 100平方分米(dm²)= 10,000平方厘米(cm²)1平方千米(km²)= 1,000,000平方米(m²)1平方英尺(ft²)约等于0.0929平方米(m²)1平方码(yd²)约等于0.836平方米(m²)1英亩(acre)约等于4046.86平方米(m²)以上是一些常见的面积单位之间的换算关系,可以根据需要进行相应的转换计算。
例如,如果需要将一个面积为200平方米的房子转换为平方英尺,可以使用以下计算公式:面积(平方米)× 10.764 = 面积(平方英尺)。
面积计算方法
面积计算方法面积是一个物体所占据的平面范围的大小,它在日常生活和工作中有着广泛的应用。
计算面积的方法有很多种,下面将介绍几种常见的面积计算方法。
首先,我们来介绍计算矩形和正方形面积的方法。
对于一个矩形或者正方形,其面积可以通过长度和宽度相乘来计算,即面积=长度×宽度。
这是最基本的面积计算方法,也是最常用的一种方法。
例如,一个长为5米,宽为3米的矩形的面积就是15平方米。
其次,我们来介绍计算三角形面积的方法。
对于一个三角形,其面积可以通过底边长和高相乘再除以2来计算,即面积=(底边长×高)/2。
这也是比较常用的计算方法。
例如,一个底边长为4米,高为3米的三角形的面积就是(4×3)/2=6平方米。
接下来,我们来介绍计算梯形面积的方法。
对于一个梯形,其面积可以通过上底和下底之和再乘以高再除以2来计算,即面积=(上底+下底)×高/2。
这是计算梯形面积的常用方法。
例如,一个上底长为3米,下底长为5米,高为4米的梯形的面积就是(3+5)×4/2=16平方米。
最后,我们来介绍计算圆形面积的方法。
对于一个圆形,其面积可以通过半径的平方再乘以π来计算,即面积=半径×半径×π。
这是计算圆形面积的常用方法。
例如,一个半径为2米的圆形的面积就是2×2×π≈12.57平方米。
除了上述介绍的几种常见的面积计算方法外,还有一些特殊形状的面积计算方法,比如椭圆、多边形等,这里就不一一列举了。
总的来说,计算面积的方法有很多种,但是掌握了基本的计算方法之后,对于不同形状的物体,我们就可以根据其特点来选择合适的计算方法,从而准确地计算出其面积。
希望上述介绍对大家有所帮助。
简单的面积计算
简单的面积计算面积计算是数学中的基础概念,用于测量二维几何图形的大小。
在日常生活中,我们经常需要计算物体的面积,比如房屋的面积、田地的面积等等。
本文将介绍一些简单的面积计算方法,帮助读者更好地理解和应用这一概念。
一、正方形的面积计算正方形是最简单的二维几何图形之一,其边长相等且四个角均为90度。
计算正方形的面积可以通过其边长的平方来获得。
假设一个正方形的边长为a,则其面积S等于a的平方,即S=a^2。
二、长方形的面积计算长方形是另一种常见的二维几何图形,它有两对相等的边,并且四个角也均为90度。
计算长方形的面积需要知道其长度和宽度。
假设一个长方形的长度为l,宽度为w,则其面积S等于长度乘以宽度,即S=l*w。
三、三角形的面积计算三角形是由三条边所围成的三边形,它的面积计算比正方形和长方形稍微复杂一些。
有两种常见的三角形面积计算方法:海伦公式和底乘高的方法。
a) 海伦公式海伦公式可用于计算任意三角形的面积,只需知道三条边的长度。
假设一个三角形的三条边长分别为a、b和c,p为半周长(即p =(a+b+c)/2),则三角形的面积S可以用以下公式计算:S = √(p*(p-a)*(p-b)*(p-c))。
b) 底乘高对于直角三角形,即拥有一个90度角的三角形,可以使用底乘高的方法来计算面积。
假设一个直角三角形的底边长为b,高为h,则三角形的面积S等于底边长乘以高的一半,即S = (b*h)/2。
四、圆的面积计算圆是由一条曲线所围成的图形,其中心到曲线的距离称为半径。
计算圆的面积需要知道其半径的长度。
假设一个圆的半径为r,则其面积S可以通过以下公式计算:S = π * r^2。
其中,π是一个常数,约等于3.14159。
综上所述,我们介绍了几种常见的面积计算方法。
无论是正方形、长方形、三角形还是圆形,每个几何图形都有其独特的计算公式。
了解并掌握这些方法将有助于我们更好地进行面积测量和计算。
希望本文能够帮助读者更好地理解面积计算,并在实际生活中得心应手地应用这些概念。
面积计算方法
面积计算方法面积是描述一个平面图形所占据的空间大小的概念,是几何学中的重要内容之一。
在日常生活和工作中,我们经常需要计算各种图形的面积,比如矩形、三角形、圆形等。
下面,我将介绍几种常见的面积计算方法。
首先,我们来看矩形的面积计算方法。
矩形是最简单的图形之一,其面积计算公式为,面积=长×宽。
也就是说,矩形的面积等于它的长乘以宽。
这个公式非常容易理解和记忆,只要知道矩形的长和宽,就可以轻松计算出其面积。
其次,我们来看三角形的面积计算方法。
三角形的面积计算公式为,面积=底边长×高÷2。
其中,底边长是三角形的底边长度,高是从底边到顶点的垂直距离。
通过这个公式,我们可以快速计算出三角形的面积,而不必进行复杂的几何推导。
接下来,我们来看圆形的面积计算方法。
圆形的面积计算公式为,面积=π×半径的平方。
其中,π是一个数学常数,约等于3.14159,半径是圆的半径长度。
通过这个公式,我们可以轻松计算出圆形的面积,而不必进行复杂的圆周率推导。
除了上述几种常见的图形外,还有许多其他图形的面积计算方法,比如正方形、梯形、菱形等。
每种图形都有其特定的面积计算公式,我们可以根据具体情况选择合适的公式进行计算。
在实际应用中,面积计算方法经常用于房屋面积计算、土地面积计算、工程设计等领域。
掌握好面积计算方法,可以帮助我们更好地理解和应用几何学知识,提高工作效率。
总之,面积计算方法是几何学中的重要内容,通过掌握各种图形的面积计算公式,我们可以轻松计算出各种图形的面积,应用于日常生活和工作中。
希望本文介绍的面积计算方法对大家有所帮助,谢谢阅读!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第18讲面积计算(一)一、知识要点计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
二、精讲精练【例题1】已知如图,三角形ABC的面积为8平方厘米,AE =ED,BD=2/3BC,求阴影部分的面积。
【思路导航】阴影部分为两个三角形,但三角形AEF的面积无法直接计算。
由于AE=ED,连接DF,可知S△AEF=S△EDF(等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF的面积。
因为BD=2/3BC,所以S△BDF=2S△DCF。
又因为AE=ED,所以S△ABF=S△BDF=2S △DCF。
因此,S△ABC=5 S△DCF。
由于S△ABC=8平方厘米,所以S△DCF=8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。
练习1:1、如图,AE=ED,BC=3BD,S△ABC=30平方厘米。
求阴影部分的面积。
2、如图所示,AE=ED,DC=1/3BD,S△ABC=21平方厘米。
求阴影部分的面积。
3、如图所示,DE=1/2AE,BD=2DC,S△EBD=5平方厘米。
求三角形ABC的面积。
【例题2】两条对角线把梯形ABCD分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知S△BOC是S△DOC的2倍,且高相等,可知:BO=2DO;从S△ABD与S△ACD相等(等底等高)可知:S△ABO等于6,而△ABO与△AOD的高相等,底是△AOD的2倍。
所以△AOD的面积为6÷2=3。
因为S△ABD与S△ACD等底等高所以S△ABO=6因为S△BOC是S△DOC的2倍所以△ABO是△AOD的2倍所以△AOD=6÷2=3。
答:△AOD的面积是3。
练习2:1、两条对角线把梯形ABCD分割成四个三角形,(如图所示),已知两个三角形的面积,求另两个三角形的面积是多少?2、已知AO=1/3OC,求梯形ABCD的面积(如图所示)。
3、已知三角形AOB的面积为15平方厘米,线段OB的【例题3】四边形ABCD的对角线BD被E、F两点三等分,且四边形AECF的面积为15平方厘米。
求四边形ABCD的面积(如图所示)。
【思路导航】由于E、F三等分BD,所以三角形ABE、AEF、AFD是等底等高的三角形,它们的面积相等。
同理,三角形BEC、CEF、CFD的面积也相等。
由此可知,三角形ABD的面积是三角形AEF面积的3倍,三角形BCD的面积是三角形CEF面积的3倍,从而得出四边形ABCD 的面积是四边形AECF面积的3倍。
15×3=45(平方厘米)答:四边形ABCD的面积为45平方厘米。
练习3:1、四边形ABCD的对角线BD被E、F、G三点四等分,且四边形AECG的面积为15平方厘米。
求四边形ABCD的面积(如图)。
2、已知四边形ABCD的对角线被E、F、G三点四等分,且阴影部分面积为15平方厘米。
求四边形ABCD的面积(如图所示)。
3、如图所示,求阴影部分的面积(ABCD为正方形)。
【例题4】如图所示,BO=2DO,阴影部分的面积是4平方厘米。
那么,梯形ABCD的面积是多少平方厘米?【思路导航】因为BO=2DO,取BO中点E,连接AE。
根据三角形等底等高面积相等的性质,可知S△DBC=S△CDA;S△COB=S △DOA=4,类推可得每个三角形的面积。
所以,S△CDO=4÷2=2(平方厘米) S△DAB=4×3=12平方厘米S梯形ABCD=12+4+2=18(平方厘米)答:梯形ABCD的面积是18平方厘米。
练习4:1、如图所示,阴影部分面积是4平方厘米,OC=2AO。
求梯形面积。
2、已知OC=2AO,S△BOC=14平方厘米。
求梯形的面积(如图所示)。
3、已知S△AOB=6平方厘米。
OC=3AO,求梯形的面积(如图所示)。
【例题5】如图所示,长方形ADEF的面积是16,三角形ADB的面积是3,三角形ACF的面积是4,求三角形ABC的面积。
【思路导航】连接AE。
仔细观察添加辅助线AE后,使问题可有如下解法。
由图上看出:三角形ADE的面积等于长方形面积的一半(16÷2)=8。
用8减去3得到三角形ABE的面积为5。
同理,用8减去4得到三角形AEC的面积也为4。
因此可知三角形AEC与三角形ACF等底等高,C为EF的中点,而三角形ABE与三角形BEC等底,高是三角形BEC的2倍,三角形BEC的面积为5÷2=2.5,所以,三角形ABC的面积为16-3-4-2.5=6.5。
练习5:1、如图所示,长方形ABCD的面积是20平方厘米,三角形ADF的面积为5平方厘米,三角形ABE的面积为7平方厘米,求三角形AEF的面积。
2、如图所示,长方形ABCD的面积为20平方厘米,S△ABE=4平方厘米,S△AFD=6平方厘米,求三角形AEF的面积。
3、如图所示,长方形ABCD的面积为24平方厘米,三角形ABE、第19讲面积计算(二)一、知识要点在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
二、精讲精练【例题1】求图中阴影部分的面积(单位:厘米)。
圆的面积。
【思路导航】如图所示的特点,阴影部分的面积可以拼成14=28.26(平方厘米)62×3.14×14答:阴影部分的面积是28.26平方厘米。
练习1:1、求下面各个图形中阴影部分的面积(单位:厘米)。
2、求下面各个图形中阴影部分的面积(单位:厘米)。
3、求下面各个图形中阴影部分的面积(单位:厘米)。
【例题2】求图中阴影部分的面积(单位:厘米)。
【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。
3.14×21-4×4÷2÷2=8.56(平方厘米)44答:阴影部分的面积是8.56平方厘米。
练习2:1、计算下面图形中阴影部分的面积(单位:厘米)。
2、计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
3、计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。
求长方形ABO1O的面积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。
又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。
所以3.14×12×1/4×2=1.57(平方厘米)答:长方形长方形ABO1O的面积是1.57平方厘米。
练习3:1、如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。
2、如图所示,直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积。
3、如图所示,AB=BC=8厘米,求阴影部分的面积。
【例题4】如图19-14所示,求阴影部分的面积(单位:厘米)。
【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还原成长方形后(如图所示)。
I和II的面积相等。
因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的两组三角形面积分别相等,所以6×4=24(平方厘米)答:阴影部分的面积是24平方厘米。
练习4:1、如图所示,求四边形ABCD的面积。
2、如图所示,BE长5厘米,长方形AEFD面积是38平方厘米。
求CD的长度。
3、图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积(单位:厘米)。
【例题5】如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30度,求阴影部分的面积(得数保留两位小数)。
【思路导航】阴影部分的面积等于平行四边形的面积减去扇形AOC的面积,再减去三角形BOC的面积。
半径:4÷2=2(厘米)扇形的圆心角:180-(180-30×2)=60(度)扇形的面积:2×2×3.14×60/360≈2.09(平方厘米)三角形BOC的面积:7÷2÷2=1.75(平方厘米)7-(2.09+1.75)=3.16(平方厘米)答:阴影部分的面积是3.16平方厘米。
练习5:1、如图所示,∠1=15度,圆的周长位62.8厘米,平行四边形的面积为100平方厘米。
求阴影部分的面积(得数保留两位小数)。
2、如图所示,三角形ABC的面积是31.2平方厘米,圆的直径AC=6厘米,BD:DC=3:1。
求阴影部分的面积。
3、如图所示,求阴影部分的面积(单位:厘米。
得数保留两位小数)。
4、如图所示,求阴影部分的面积(单位:厘米。
得数保留两位小数)。
第20讲面积计算一、知识要点对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。
有些图形可以根据“容斥问题“的原理来解答。
在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。
二、精讲精练【例题1】如图所示,求图中阴影部分的面积。
【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米[3.14×102×1/4-10×(10÷2)]×2=107(平方厘米)答:阴影部分的面积是107平方厘米。
解法二:以等腰三角形底的中点为中心点。
把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。
(20÷2)2×1/2-(20÷2)2×1/2=107(平方厘米)答:阴影部分的面积是107平方厘米。
练习1:1、如图所示,求阴影部分的面积(单位:厘米)2、如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。