高二数学选修2-2导数12种题型归纳(中等难度)

合集下载

高二数学选修2-2导数12种题型归纳(中等难度)汇编

高二数学选修2-2导数12种题型归纳(中等难度)汇编

导数题型分类解析(中等难度)一、变化率与导数函数)(0x f y =在x 0到x 0+x ∆之间的平均变化率,即)('0x f =0lim →∆x xy∆∆=0lim →∆x x x f x x f Δ)()Δ(00-+,表示函数)(0x f y =在x 0点的斜率。

注意增量的意义。

例1:若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+-- 的值为( )A .'0()f xB .'02()f xC .'02()f x - D .0 例2:若'0()3f x =-,则000()(3)limh f x h f x h h→+--=( )A.3- B .6- C .9- D .12-例3:求0lim →h hx f h x f )()(020-+二、“隐函数”的求值将)('0x f 当作一个常数对)(0x f 进行求导,代入0x 进行求值。

例1:已知()()232f x x x f '+=,则()='2f例2:已知函数()x x f x f sin cos 4+⎪⎭⎫⎝⎛'=π,则⎪⎭⎫ ⎝⎛4πf 的值为 .例3:已知函数)(x f 在R 上满足88)2(2)(2-+--=x x x f x f ,则曲线)(x f y =在点))1(,1(f 处的切线方程为( )A. 12-=x yB. x y =C. 23-=x yD. 32+-=x y三、导数的物理应用如果物体运动的规律是s=s (t ),那么该物体在时刻t 的瞬间速度v=s ′(t )。

如果物体运动的速度随时间的变化的规律是v=v (t ),则该物体在时刻t 的加速度a=v′(t )。

例1:一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,求物体在3秒末的瞬时速度。

高中数学人教版选修22导数及其应用知识点总结.pdf

高中数学人教版选修22导数及其应用知识点总结.pdf

数学选修 2-2 数系的扩充和复数的概念知识点必记
30.复数的概念是什么? 答:形如 a.+.b.i.的数叫做复数,其中 i 叫虚数单位, a 叫实部, b 叫虚部,数集
C = a + bi | a,b R 叫做复数集。
规定:a + bi = c + di a.=.c.且.b.=.d.,强调:两复数不能比较大小,只有相等或不相
和综合法常结合使用,不要将它们:即反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的
否定是错误的,从而肯定原结论是正确的证明方法。
25.反证法的一般步骤是什么?
答:(1)假设命题结论不成立,即假设结论的反面成立;
(2)从假设出发,经过推理论证,得出矛盾;
22.什么是综合法?
答:综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条
件,直至推出要证的结论。
23.什么是分析法?
答:分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者
一定成立的式子,可称为“由果索因”。
要注意叙述的形式:要证 A,只要证 B,B 应是 A 成立的充分条件. 分析法
个是最小值。 注:实际问题的开区间唯一极值点就是所求的最值点;
9.求曲边梯形的思想和步骤是什么?
答:分割 → 近似代替 → 求和 → 取极限 (“以直代曲”的思想)
10.定积分的性质有哪些? 根据定积分的定义,不难得出定积分的如下性质:
性质 1
b
1dx = b − a
a
性质 5
若 f (x) 0,
特别地:
b
kf (x)dx = k
a
b f (x)dx(k为常数)
a

(word完整版)高二数学选修22导数12种题型归纳(中等难度),文档

(word完整版)高二数学选修22导数12种题型归纳(中等难度),文档

导数题型分类剖析〔中等难度〕一、变化率与导数函数 y f ( x0 ) 在x0到x0+x之间的平均变化率,即 f ' ( x0 ) =lim y= limf (x0x) f ( x0 ),表示x 0x x x 函数 y f (x0 ) 在x0点的斜率。

注意增量的意义。

例 1:假设函数y f ( x) 在区间 (a,b) 内可导,且A .f' ( x )B.2 f'( x0)例 2:假设f'( x0)3,那么lim f ( xh) f ( xh0hA. 3B.6f ( x0h2 ) f ( x0 )例 3:求lim hh0x0 (a,b) 那么limf ( xh) f (xh)的值为〔〕h0hC.2 f'(x0)D.03h)〕〔C.9D.12二、“隐函数〞的求值将 f ' ( x0 ) 看作一个常数对 f (x0 ) 进行求导,代入x0进行求值。

2例 1: f x x3xf 2 ,那么 f2例 2:函数 f x f cos x sin x ,那么f4的值为.4例 3:函数 f ( x) 在R上满足f ()2f(2x)x2 8x8,那么曲线y f ( x) 在点(1, f (1)) 处的切线方程x为〔〕A. y2x 1B.y xC.y3x2D. y2x3三、导数的物理应用若是物体运动的规律是s=s〔t〕,那么该物体在时辰t 的瞬时速度 v=s′〔t 〕。

若是物体运动的速度随时间的变化的规律是v=v 〔 t〕,那么该物体在时辰t 的加速度 a=v′〔 t〕。

例 1:一个物体的运动方程为s 1t t 2其中 s 的单位是米,t的单位是秒,求物体在 3 秒末的瞬时速度。

例 2:汽车经过启动、加速行驶、匀速行驶、减速行驶此后停车,假设把这一过程中汽车的行驶行程s 看作时间t 的函数,其图像可能是〔〕s s s sO t O t O t O tA.B.C.D.四、根本导数的求导公式① C0; 〔C为常数〕②x n nx n 1;③ (sin x)cos x ;④ (cos x)sin x ;1;⑧l o g a x 1 log a e.⑤ (e x ) e x ;⑥ (a x)a x ln a ;⑦ln xx x例 1:以下求导运算正确的选项是( )A . x1 11B . log 2x=1 C . 3 x3 xlog 3 e D . x 2 cosx2xsin xx 2x ln 2x例 2:假设f x x f x f x f xf x, fxf x n N ,那么 fx0 sin ,1 0,2 1,n 1n ,2005五、导数的运算法那么常数乘积: (Cu )' Cu ' . 和差: ( u v)' u ' v ' .乘积: (uv ) 'u ' v uv ' .除法: uu' v uv 'vv 2例 1:〔 1〕函数 yx 3 log 2 x 的导数是〔 2〕函数 x n e 2 x 1 的导数是六、复合函数的求导f [ ( x)] f ( )* (x) ,从最外层的函数开始依次求导。

高中新课程数学(新课标人教A版)选修2-2《第一章 导数及其应用》知识点、考点、及其例题

高中新课程数学(新课标人教A版)选修2-2《第一章 导数及其应用》知识点、考点、及其例题

第一章导数及其应用知识点及练习题知识点1:导数概念的引入1. 导数的物理意义:瞬时速率。

一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。

容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim ()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆考点:导数的几何意义及其应用[例题] 已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程; (3)求斜率为4的曲线的切线方程.[变式训练] 已知函数f(x)=x3+x -16.(1)求曲线y =f(x)在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f(x)的切线,且经过原点,求直线l 的方程及切点坐标.知识点2:导数的计算1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x xαα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()xf x a =,则()ln x f x a a '=6 若()x f x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'=2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'= 3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•考点:导数的求导及运算1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x =3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )319.316.313.310.D C B A 4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是() A.30° B.45° C.60° D.90° 5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =知识点3:导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;(2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.考点:1.导数在研究函数单调性中的应用2.导数在求函数极值与最值中的应用题型一:导数在研究函数单调性中的应用[例题] 设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y=(e -1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间.[变式训练] 设函数f(x)=xekx(k ≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k 的取值范围.题型二:导数在求函数极值与最值中的应用[例题]已知函数f(x)=-x3+ax2+bx在区间(-2,1)内,当x=-1时取极小值,当x=23时取极大值.(1)求函数y=f(x)在x=-2时的对应点的切线方程;(2)求函数y=f(x)在[-2,1]上的最大值与最小值.[变式训练] 设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线方程与x轴平行,求a;(2)若f(x)在x=2处取得极小值,求a的取值范围.知识点4:解决实际问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用题型一:导数在切线方程中的运用1.曲线3x y =在P 点处的切线斜率为k,若k=3,则P 点为( ) A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)2.曲线53123+-=x x y ,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为( ) A.6π B.4π C.3π D.π43题型二:导数在单调性中的运用1.函数32()31f x x x =-+是减函数的区间为( ) A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)2.关于函数762)(23+-=x x x f ,下列说法不正确的是( ) A .在区间(∞-,0)内,)(x f 为增函数 B .在区间(0,2)内,)(x f 为减函数 C .在区间(2,∞+)内,)(x f 为增函数 D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数3.已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )4、(2010年山东21)(本小题满分12分)已知函数).(111)(R a xaax nx x f ∈--+-= (Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1f x f y a=-=(Ⅱ)当12a ≤时,讨论()f x 的单调性.题型三:导数在最值、极值中的运用1.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2B. 3C. 4D.52.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 163.已知函数)0()(3≠++=adcxaxxf是R上的奇函数,当1=x时)(xf取得极值-2.(1)试求a、c、d的值;(2)求)(xf的单调区间和极大值;4.设函数2312)(bxaxexxf x++=-,已知12=-=xx和为)(xf的极值点。

高二数学选修2-2导数及其应用测试题(含答案)

高二数学选修2-2导数及其应用测试题(含答案)

高二数学选修2-2导数及其应用测试题一、 选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案写在答题卡上)1.设xx y sin 12-=,则='y ( ).A .x x x x x 22sin cos )1(sin 2---B .xx x x x 22sin cos )1(sin 2-+-C .x x x x sin )1(sin 22-+-D .xx x x sin )1(sin 22---2.设1ln)(2+=x x f ,则=)2('f ( ). A .54 B .52 C .51 D .53 3.已知2)3(',2)3(-==f f ,则3)(32lim3--→x x f x x 的值为( ).A .4-B .0C .8D .不存在 4.曲线3x y =在点)8,2(处的切线方程为( ).A .126-=x yB .1612-=x yC .108+=x yD .322-=x y5.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点)0,(),0,0(1x ,)0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ⋅的值为( ) A .4 B .5 C .6 D .不确定 6.在R 上的可导函数c bx ax x x f +++=22131)(23,当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则12--a b 的取值范围是( ). A .)1,41( B .)1,21( C .)41,21(- D .)21,21(-7.函数)cos (sin 21)(x x e x f x +=在区间]2,0[π的值域为( ). A .]21,21[2πe B .)21,21(2πe C .],1[2πe D .),1(2πe8.积分=-⎰-aadx x a 22( ).A .241a π B .221a πC .2a πD .22a π9.由双曲线12222=-by a x ,直线b y b y -==,围成的图形绕y 轴旋转一周所得旋转体的体积为( )A .238ab π B .b a 238π C .b a 234π D .234ab π 10.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). A .18B .338C .316 D .1611.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( ). A.3V B.32V C.34V D .32V 12.某人要剪一个如图所示的实心纸花瓣,纸花瓣的边界 由六段全等的正弦曲线弧)0(sin π≤≤=x x y 组成,其中 曲线的六个交点正好是一个正六边形的六个顶点,则这个 纸花瓣的面积为( ). A .2336π+ B .223312π+ C .26π+ D .22336π+第Ⅱ卷(非选择题,共90分)二、填空题(每小题4分,共16分。

高二数学选修2-2导数12种题型归纳(中等难度)

高二数学选修2-2导数12种题型归纳(中等难度)

导数题型分类解析(中等难度)一、变化率与导数函数)(0x f y =在x 0到x 0+x ∆之间的平均变化率,即)('0x f =0lim →∆x xy∆∆=0lim →∆x x x f x x f Δ)()Δ(00-+,表示函数)(0x f y =在x 0点的斜率。

注意增量的意义。

例1:若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+-- 的值为( )A .'0()f xB .'02()f xC .'02()f x - D .0 例2:若'0()3f x =-,则000()(3)limh f x h f x h h→+--=( )A.3- B .6- C .9- D .12-例3:求0lim →h hx f h x f )()(020-+二、“隐函数”的求值将)('0x f 当作一个常数对)(0x f 进行求导,代入0x 进行求值。

例1:已知()()232f x x x f '+=,则()='2f例2:已知函数()x x f x f sin cos 4+⎪⎭⎫⎝⎛'=π,则⎪⎭⎫ ⎝⎛4πf 的值为 .例3:已知函数)(x f 在R 上满足88)2(2)(2-+--=x x x f x f ,则曲线)(x f y =在点))1(,1(f 处的切线方程为( )A. 12-=x yB. x y =C. 23-=x yD. 32+-=x y三、导数的物理应用如果物体运动的规律是s=s (t ),那么该物体在时刻t 的瞬间速度v=s ′(t )。

如果物体运动的速度随时间的变化的规律是v=v (t ),则该物体在时刻t 的加速度a=v′(t )。

例1:一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,求物体在3秒末的瞬时速度。

高中数学选修2-2全套知识点及练习答案解析

高中数学选修2-2全套知识点及练习答案解析

选修2-2 知识点及习题答案解析导数及其应用一.导数概念的引入1. 导数的物理意义:瞬时速率。

一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆,我们称它为函数()y f x =在x x =处的导数,记作0()f x '或|x x y =',即0()f x '=000()()limx f x x f x x∆→+∆-∆2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。

容易知道,割线n PP 的斜率是00()()n nn f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即00()()lim ()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即()()()limx f x x f x f x x∆→+∆-'=∆二.导数的计算基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln x f x a a '=6 若()x f x e =,则()x f x e '=7 若()log xaf x =,则1()ln f x x a '= 8 若()ln f x x =,则1()f x x'=导数的运算法则1. [()()]()()f x g x f x g x '''±=±2.[()()]()()()()f x g x f x g x f x g x '''∙=∙+∙3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''∙-∙'= 复合函数求导 ()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数(())()y f g x g x '''=∙三.导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系: 在某个区间(,)a b 内(1)如果()0f x '>,那么函数()y f x =在这个区间单调递增;(2)如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况.求函数()y f x =的极值的方法是:(1)如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值(2)如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数求函数()y f x =在[,]a b 上的最大值与最小值的步骤: (1)求函数()y f x =在(,)a b 内的极值; (2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理. 考点三 数学归纳法1. 它是一个递推的数学论证方法.2. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础;B.假设在n=k 时命题成立; C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。

高中数学选修2-2知识点总结(最全版)

高中数学选修2-2知识点总结(最全版)

高中数学选修2-2知识点总结第一章、导数1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,平均变化率 可正,可负,可零。

注2:函数的平均变化率可以看作是物体运动的平均速度。

2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim0000.3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。

4导数的背景(1)切线的斜率;(2)瞬时速度;6、常见的导数和定积分运算公式:若()g x均可导(可积),则有:f x,().用导数求函数单调区间的步骤:①求函数f(x)的导数'()f x②令'()f x>0,解不等式,得x的范围就是递增区间.③令'()f x<0,解不等式,得x的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。

7.求可导函数f(x)的极值的步骤:(1)确定函数的定义域。

(2) 求函数f(x)的导数'()f x(3)求方程'()f x=0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如检查/()果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值8.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。

人教版高中数学【选修2-2】[知识点整理及重点题型梳理]_《导数及其应用》全章复习与巩固(提高)(理)

人教版高中数学【选修2-2】[知识点整理及重点题型梳理]_《导数及其应用》全章复习与巩固(提高)(理)

人教版高中数学选修2-2知识点梳理重点题型(常考知识点)巩固练习《导数及其应用》全章复习与巩固【学习目标】1. 会利用导数解决曲线的切线的问题.2. 会利用导数解决函数的单调性等有关问题.3. 会利用导数解决函数的极值、最值等有关问题.4. 能通过运用导数这一工具解决生活中的一些优化问题:例如利润最大、用料最省、效率最高等问题【知识网络】【要点梳理】要点一:有关切线问题直线与曲线相切,我们要抓住三点: ①切点在切线上; ②切点在曲线上;③切线斜率等于曲线在切点处的导数值. 要点诠释:通过以上三点可以看出,抓住切点是解决此类题的关键,有切点直接求,无切点则设切点,布列方程组.要点二:有关函数单调性的问题设函数()y f x =在区间(a ,b )内可导,(1)如果恒有'()0f x >,则函数()f x 在(a ,b )内为增函数; (2)如果恒有'()0f x <,则函数()f x 在(a ,b )内为减函数; (3)如果恒有'()0f x =,则函数()f x 在(a ,b )内为常数函数. 要点诠释:(1)若函数()f x 在区间(a ,b )内单调递增,则'()0f x ≥,若函数()f x 在(a ,b )内单调递减,则'()0f x ≤.(2)'()0f x ≥或'()0f x ≤恒成立,求参数值的范围的方法: ① 分离参数法:()m g x ≥或()m g x ≤.② 若不能隔离参数,就是求含参函数(,)f x m 的最小值min (,)f x m ,使min (,)0f x m ≥. (或是求含参函数(,)f x m 的最大值max (,)f x m ,使max (,)0f x m ≤) 要点三:函数极值、最值的问题 函数极值的问题(1)确定函数的定义域; (2)求导数)(x f '; (3)求方程0)(='x f 的根;(4)检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点诠释: ①先求出定义域②一般都要列表:然后看在每个根附近导数符号的变化:若由正变负,则该点为极大值点; 若由负变正,则该点为极小值点.注意:无定义的点不用在表中列出③根据表格给出结论:注意一定指出在哪取得极值. 函数最值的问题若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下:(1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根;(3)求在),(b a 内所有使0)(='x f 的的点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数()y f x =在闭区间],[b a 上的最小值.要点诠释:①求函数的最值时,不需要对导数为0的点讨论其是极大还是极小值,只需将导数为0的点和端点的函数值进行比较即可.②若)(x f 在开区间),(b a 内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值. 要点四:优化问题在实际生活中用料最省、利润最大、效率最高等问题,常常可以归结为函数的最大值问题,从而可用导数来解决.我们知道,导数是求函数最大(小)值的有力工具,导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题.利用导数解决实际问题中的最值的一般步骤:(1) 分析实际问题中各量之间的关系,找出实际问题的数学模型,写出实际问题中变量之间的函数关系式()y f x =;(2) 求函数的导数'()f x ,解方程'()0f x =;(3) 比较函数在区间端点和极值点的函数值大小,最大(小)者为最大(小)值. 要点诠释:①解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系.再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 利用导数解决优化问题的基本思路:②得出变量之间的关系()y f x =后,必须由实际意义确定自变量x 的取值范围;③在实际问题中,有时会遇到函数在区间内只有一个点使f ′(x )=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.④在求实际问题的最大(小)值时,一定要注意考虑实际问题的意义,不符合实际意义的值应舍去. 要点五:定积分的概念如果函数=()y f x 在区间[]a b ,上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间[]a b ,等分成n 个小区间,在每个小区间[]1,i i x x -上取点()1,2,,i i n =ξ,作和式:11()()nnn i i i i b aS f x f n==-=∆=∑∑ξξ.当n →+∞时,上述和式n S 无限趋近于常数,那么称该常数为函数()f x 在区间[,]a b 上的定积分,记作:()baf x dx ⎰,即+1()lim()nbi an i b af x dx f n→∞=-=∑⎰ξ.要点诠释: (1)定积分()baf x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时),记为()baf x dx ⎰,而不是n S .(2) 定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即()()()bbbaaaf x dx f u du f t dt ===⎰⎰⎰(称为积分形式的不变性),另外定积分()()baf x d x ⎰与积分区间[a ,b ]息息相关,不同的积分区间,定积分的积分上下限不同,所得的值也就不同,例如120(1)x dx +⎰与320(1)x dx +⎰的值就不同.要点六:定积分的几何意义要点诠释:(1)当()0f x ≤时,由()y f x =、x =a 、x =b 与x 轴所围成的曲边梯形位于x 轴的下方,积分()d baf x x⎰在几何上表示上述曲边梯形面积的相反数(负数).所以[()]d ()bbaaS f x x f x S =-=-=-⎰⎰,即()d baf x x S =-⎰,如图(b ).(2)当()f x 在区间[a ,b ]上有正有负时,积分()d b af x x ⎰在几何上表示几个小曲边梯形面积的代数和(x 轴上方面积取正号,x 轴下方面积取负号).在如图(c )所示的图象中,定积分132()d baf x x S S S =+-⎰.要点七:定积分的运算性质 性质1:()d ()bba ak f x x k f x kS ==⎰⎰;性质2:[()g()]d ()g()d bb baaaf x x x f x x x ±=±⎰⎰⎰;性质3:定积分关于积分区间具有可加性。

(完整版)高中数学人教版选修2-2导数及其应用知识点总结,推荐文档

(完整版)高中数学人教版选修2-2导数及其应用知识点总结,推荐文档

19 反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否 定是错误的,从而肯定原结论是正确的证明方法。
反证法的一般步骤(1)假设命题结论不成立,即假设结论的反面成立; (2)从假设出发,经过推理论证,得出矛盾;(3)从矛盾判定假设不正确, 即所求证命题正确。反证法的思维方法:正难则反。矛盾(1)与已知条件矛盾: (2)与已有公理、定理、定义矛盾; (3)自相矛盾. 20 常见的“结论词”与“反义词”
常见的导数和定积分运算公式:若 f x, g x均可导(可积),则有:
和差的导数运算 积的导数运算 商的导数运算 复合函数的导数 微积分基本定理
和差的积分运算
积分的区间可加性
-1-
六安一中东校区高二数学选修 2-x)的导数 f '(x) ②令 f '(x) >0,解不等
证明当 n=k+1 时命题也成立.由(1),(2)可知,命题对于从 n0 开始的所有正整数
n
都正确
新疆 王新敞
[注]:常用于证明不完全归纳法推测所得命题的正确性的证明。
b
f (x)dx
a
a
c1
ck
11 定积分的取值情况:定积分的值可能取正值,
也可能取负值,还可能是 0.
( l )当对应的曲边梯形位于 x 轴上方时,
定积分的值取正值,且等于 x 轴上方的图形面积;
(2)当对应的曲边梯形位于 x 轴下方时, 定积分的值取负值,且等于 x 轴上方图形面积的 相反数;
(3)当位于 x 轴上方的曲边梯形面积等于 位于 x 轴下方的曲边梯形面积时,定积分的值 为 0,且等于 x 轴上方图形的面积减去下方的图 形的面积.
原结论词
反义词

选修2-2导数计算题型大全

选修2-2导数计算题型大全

导数计算题型一 利用运算法则求导【例1-1】(2019·海南高三月考)下列求导运算正确的是() A .(ln 2)'0= B .(cos )sin x x '=C .()xxe e--'=D .()5615xx --=-'【例1-2】(2019·西藏高二期末)求下列函数的导数. (1)2sin y x x =;(2)n 1l y x x=+;(3)322354y x x x =-+-.【举一反三】1.(2019·陕西高二期末(文))求下列函数的导数:(Ⅰ)22ln cos y x x x =++;(Ⅱ)3e xy x =.2.(2017·全国高二课时练习)求下列函数的导数. (1)y =x 4-3x 2-5x +6;(2)y =3x 2+x cos x ;(3)y =22x +33x(4)y =lg x -21x ;(5)y题型二 复合函数求导【例2】(2019·江苏启东中学高二期中)求下列函数的导函数(1)y =; (2)2sin y x =.(3)()cos 32y x =-; (4)312x y +=.【举一反三】1.(2019·青海高二月考(理))求下列函数的导数:(1)()*()2+1ny x n N ∈=,; (2)(ln y x =;(3)11x x e y e +=-; (4)2)2(+5y xsin x =.2.求下列函数的导数.(1)y =x 2sin x ;(2)y =ln x +;(3)y =sin 23x π⎛⎫+⎪⎝⎭;(4)y =ln(2x -5).题型三 求切线方程【例3】(2019·安徽高二期末)已知函数()3f x x x =-.(1)求曲线()y f x =在点()1,0处的切线方程; (2)求过点()1,0且与曲线()y f x =相切的直线方程.【举一反三】1.(2019·安徽合肥一中高二期中(文))已知函数3()16f x x x =+- (1)求曲线()y f x =在点(1,14)-处的切线的方程;(2)直线l 为曲线()y f x =的切线,且经过原点,求直线l 的方程及切点坐标. 2.(2019·河北安平中学高二月考)曲线xy sinx e =+在点()0,1处的切线斜率是( )A .2B .2-C .1D .1-3.(2019·重庆高三(理))已知函数()3123f x x x =-,则曲线()y f x =在点(1,(1))f 处的切线的倾斜角是( )A .6πB .4πC .23πD .34π4.(2019·黑龙江牡丹江一中高二期中(理))过点(2,6)P -作曲线3()3f x x x =-的切线,则切线方程为( )A .30x y +=或24540x y --=B .30x y -=或24540x y --=C .30x y +=或24540x y -+=D .24540x y --=题型四 利用导数求值【例4】(1)(2019·贵州高三月考(文))已知函数()f x 的导函数为()f x ',且()()22ln 22f x x x f x '=-+,则()2f '=( ) A .2B .3C .4D .5(2)(2019·昌吉市第九中学高二月考)设函数f (x )=ax +3x 2,若f ′(1)=3,则a 等于( ) A .1 B .−1 C .3 D .−3【举一反三】1.(2019·四川高三(文))设函数()f x 的导函数为()f x ',若()1ln 1x f x e x x=+-,则()1f '=() A .3e - B .2e -C .1e -D .e2.(2019·福建省南安市侨光中学高三月考(理))已知2019()ln f x e x x =+g ,则()1f '=()A .1B .20191e +C .20191e -D .2019e3.(2019·江西高二期末(理))已知函数()f x 的图像在点()()22f ,处的切线方程是210x y -+=,若()()f x h x x=,则()2h '=( ) A .12 B .12-C .18-D .58题型五 综合运用【例5】(2019·江苏启东中学高二期中)曲线2x y e x =++在点()0,3处的切线与坐标轴围成的三角形的面积为___________. 【举一反三】 1.曲线y =x -1x +1在点(0,-1)处的切线与两坐标轴围成的封闭图形的面积为( ) A.18 B.14 C.12 D .1 2.(2019·湖北高二期末(文))设函数()bf x ax x-=,曲线()y f x =在点(2,(2))f 处的切线方程为3240x y --=.(1)求()f x 的解析式;(2)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形的面积为定值,并求此定值. 课后练习1.(2019·全国高三)已知下列四个命题,其中正确的个数有() ①'1(2)2x x x -=⋅,②'(sin 2)cos 2x x =,③'(log )ln x a x a a =(0a >,且1a ≠),④'1(ln 2)2=A .0个B .1个C .2个D .3个2.(2019·陕西高二期末)函数2(21)y x =+的导数为() A .21y x '=+B .2(21)y x ='+C .3(21)y x ='+D .4(21)y x ='+3.(2019·浙江高二期末)函数2()ln sin 1f x x x x =+++的导函数是()A .12cos 1x x x +++ B .12cos x x x -+ C .12cos x x x+-D .12cos x x x++4.(2019·抚顺市第十中学高二期中(理))下列求导运算正确的是( ) A .2111x x x '⎛⎫+=+ ⎪⎝⎭B .21(log )ln 2x x '=C .3(3)3log e x x'=D .2(cos )2sin x x x x '=-5.(2019·湖北高二期末(文))下列求导运算正确的是( )A .2()x x '= B .'=C .()xxe e --'=D .2ln 2(log )x x'=6.(2019·昌吉市第九中学高二月考)曲线23y x x =+在点()2,10A 处的切线方程是( ) A .740x y --= B .10150x y --= C .10x y -+=D .+10x y -=7.(2019·山东高三期中)已知函数()2f x x =的图象在1x =处的切线与函数()e xg x a=的图象相切,则实数a =( )A B .2C .2D .8.(2019·河南高三(理))设曲线(1)ln y a x x =--在点()1,0处的切线方程为33y x =-,则a =( ) A .1B .2C .3D .49.(2019·甘肃临夏中学高三(文))函数()1ln x f x x+=的图像在1e x =处的切线方程是( ).A .10ex y --=B .10ex y +-=C .20e x y e +-=D .20e x y e --=10.(2019·江西高三月考)已知直线y x m =-+ 是曲线23ln y x x =-的一条切线,则m 的值为( )A .0B .2C .1D .311.(2019·山东高考模拟(理))函数()2ln f x x x =-+的图像在1x =处的切线方程为( ) A .210x y +-=B .210x y -+=C .10x y -+=D .10x y ++=12.(2019·辽宁高二期末(理))已知过点(1,1)P 且与曲线3y x =相切的直线的条数有( ). A .0B .1C .2D .313.(2019·河南高三期中)已知函数()f x 的导函数为()f x ',()()222f x x xf '+=,则不等式()0f x <的解集为__________.14(2019·全国高三月考(理))已知函数3()2(1)3f x x f x '=+-,则(2)f '=________.15(2019·河北高三开学考试(理))已知函数()f x 的导函数为()f x ',且满足()2(1)ln f x xf x '=+,则(1)f =______.16.(2019·甘肃高三月考)已知()2123f x x xf ⎛⎫'=+- ⎪⎝⎭,则1()3f '-=_____.17.(2019·贵州高二期末(理))已知函数()f x 的导函数为()f x ',且()()2ln f x xf e x '=-,则()e f '=_____18.(2019·广东高二期末(理))若()sin 2cos2f x x x =+,则'6f π⎛⎫=⎪⎝⎭____ 19.(2019·湖南高二期末(理))已知函数2()xf x e =,则过原点且与曲线()y f x =相切的直线方程为____________.20.已知函数()()()10ln 212f x f x x +'=-+,则()0=f '________. 21(2019·湖南师大附中高三月考(文))曲线cos y x x =+在点(0,1)处的切线方程为__________.22(2019·河北高三月考)若()()321111322f x f x x x '=-++,则曲线() y f x =在点()(1,)1f 处的切线方程是__________.23.(2019·江苏省黄桥中学高三月考(理))函数()2cos f x x =在点(6P π处的切线的倾斜角是_____________.24.(2019·内蒙古高三月考(文))已知曲线()3f x x x =-,则过点()1,0P -,且与曲线相切的直线方程为______.25.(2019·重庆高三(理))已知直线y kx =与曲线ln 2y x =相切,则实数k 的值为_________. 26.(2019·河北高三月考(理))已知曲线3y x x =-在点()00,x y 处的切线平行于直线220x y --=,则0x =______.27.(2019·河南高三月考)已知函数()(0xf x a a =>且1)a ≠,若曲线()y f x =在点()()0,0f 处的切线与直线1y x =+垂直,则a 的值为________.28.(2019·天津高考模拟)已知函数()xf x e ax =+的图象在点()()0,0f 处的切线与曲线ln y x =-相切,则a =______.29.(2019·原平市范亭中学高二月考(理))已知曲线2()f x x = 求: (1)曲线在点(1,1)P 处的切线方程 (2)曲线过点()3,5P 的切线方程30.(2019·福建高二期中(理))已知曲线2:2C y x x =-+. (1)求曲线C 在点()1,2处的切线方程,(2)求过点()2,3且与曲线C 相切的直线的方程.31.(2019·贵州高二期中(理))已知曲线32()2f x x x x =-+. (1) 求曲线()y f x =在()2,2处的切线方程; (2) 求曲线()y f x =过原点O 的切线方程.。

人教版高中数学【选修2-2】[知识点整理及重点题型梳理]_《导数及其应用》全章复习与巩固(基础)(理)

人教版高中数学【选修2-2】[知识点整理及重点题型梳理]_《导数及其应用》全章复习与巩固(基础)(理)

人教版高中数学选修2-2知识点梳理重点题型(常考知识点)巩固练习《导数及其应用》全章复习与巩固【学习目标】1. 会利用导数解决曲线的切线的问题.2. 会利用导数解决函数的单调性等有关问题.3. 会利用导数解决函数的极值、最值等有关问题.4. 能通过运用导数这一工具解决生活中的一些优化问题:例如利润最大、用料最省、效率最高等问题【知识网络】【要点梳理】要点一:有关切线问题直线与曲线相切,我们要抓住三点: ①切点在切线上; ②切点在曲线上;③切线斜率等于曲线在切点处的导数值. 要点诠释:通过以上三点可以看出,抓住切点是解决此类题的关键,有切点直接求,无切点则设切点,布列方程组.要点二:有关函数单调性的问题设函数()y f x =在区间(a ,b )内可导,(1)如果恒有'()0f x >,则函数()f x 在(a ,b )内为增函数; (2)如果恒有'()0f x <,则函数()f x 在(a ,b )内为减函数; (3)如果恒有'()0f x =,则函数()f x 在(a ,b )内为常数函数. 要点诠释:(1)若函数()f x 在区间(a ,b )内单调递增,则'()0f x ≥,若函数()f x 在(a ,b )内单调递减,则'()0f x ≤.(2)'()0f x ≥或'()0f x ≤恒成立,求参数值的范围的方法: ① 分离参数法:()m g x ≥或()m g x ≤.② 若不能隔离参数,就是求含参函数(,)f x m 的最小值min (,)f x m ,使min (,)0f x m ≥. (或是求含参函数(,)f x m 的最大值max (,)f x m ,使max (,)0f x m ≤) 要点三:函数极值、最值的问题 函数极值的问题(1)确定函数的定义域; (2)求导数)(x f '; (3)求方程0)(='x f 的根;(4)检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点诠释: ①先求出定义域②一般都要列表:然后看在每个根附近导数符号的变化:若由正变负,则该点为极大值点; 若由负变正,则该点为极小值点.注意:无定义的点不用在表中列出③根据表格给出结论:注意一定指出在哪取得极值. 函数最值的问题若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下:(1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根;(3)求在),(b a 内所有使0)(='x f 的的点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数()y f x =在闭区间],[b a 上的最小值.要点诠释:①求函数的最值时,不需要对导数为0的点讨论其是极大还是极小值,只需将导数为0的点和端点的函数值进行比较即可.②若)(x f 在开区间),(b a 内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值. 要点四:优化问题在实际生活中用料最省、利润最大、效率最高等问题,常常可以归结为函数的最大值问题,从而可用导数来解决.我们知道,导数是求函数最大(小)值的有力工具,导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题.利用导数解决实际问题中的最值的一般步骤:(1) 分析实际问题中各量之间的关系,找出实际问题的数学模型,写出实际问题中变量之间的函数关系式()y f x =;(2) 求函数的导数'()f x ,解方程'()0f x =;(3) 比较函数在区间端点和极值点的函数值大小,最大(小)者为最大(小)值. 要点诠释:①解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系.再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 利用导数解决优化问题的基本思路:②得出变量之间的关系()y f x =后,必须由实际意义确定自变量x 的取值范围;③在实际问题中,有时会遇到函数在区间内只有一个点使'()0f x =的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.④在求实际问题的最大(小)值时,一定要注意考虑实际问题的意义,不符合实际意义的值应舍去. 要点五:定积分的概念如果函数=()y f x 在区间[]a b ,上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间[]a b ,等分成n 个小区间,在每个小区间[]1,i i x x -上取点()1,2,,i i n =ξ,作和式:11()()nnn i i i i b aS f x f n==-=∆=∑∑ξξ.当n →+∞时,上述和式n S 无限趋近于常数,那么称该常数为函数()f x 在区间[,]a b 上的定积分,记作:()baf x dx ⎰,即+1()lim()nbi an i b af x dx f n→∞=-=∑⎰ξ.要点诠释: (1)定积分()baf x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时),记为()baf x dx ⎰,而不是n S .(2) 定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即()()()bbbaaaf x dx f u du f t dt ===⎰⎰⎰(称为积分形式的不变性),另外定积分()()baf x d x ⎰与积分区间[a ,b ]息息相关,不同的积分区间,定积分的积分上下限不同,所得的值也就不同,例如120(1)x dx +⎰与320(1)x dx +⎰的值就不同.要点六:定积分的几何意义要点诠释:(1)当()0f x ≤时,由()y f x =、x =a 、x =b 与x 轴所围成的曲边梯形位于x 轴的下方,积分()d baf x x⎰在几何上表示上述曲边梯形面积的相反数(负数).所以[()]d ()bbaaS f x x f x S =-=-=-⎰⎰,即()d baf x x S =-⎰,如图(b ).(2)当()f x 在区间[a ,b ]上有正有负时,积分()d b af x x ⎰在几何上表示几个小曲边梯形面积的代数和(x 轴上方面积取正号,x 轴下方面积取负号).在如图(c )所示的图象中,定积分132()d baf x x S S S =+-⎰.要点七:定积分的运算性质 性质1:()d ()bba ak f x x k f x kS ==⎰⎰;性质2:[()g()]d ()g()d bb baaaf x x x f x x x ±=±⎰⎰⎰;性质3:定积分关于积分区间具有可加性。

高中数学人教版选修2-2导数及其应用知识点总结

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记1.函数的平均变化率是什么?答:平均变化率为注1:其中是自变量的改变量,可正,可负,可零。

注2:函数的平均变化率可以看作是物体运动的平均速度。

2、导函数的概念是什么?答:函数在处的瞬时变化率是,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=.3.平均变化率和导数的几何意义是什么?答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。

4导数的背景是什么?答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。

5、常见的函数导数和积分公式有哪些?函数导函数不定积分0 ————————————————6、常见的导数和定积分运算公式有哪些?答:若,均可导(可积),则有:和差的导数运算积的导数运算特别地:商的导数运算特别地:复合函数的导数微积分基本定理(其中)和差的积分运算特别地:积分的区间可加性6.用导数求函数单调区间的步骤是什么?答:①求函数f(x)的导数②令>0,解不等式,得x的范围就是递增区间.③令<0,解不等式,得x的范围,就是递减区间;注:求单调区间之前一定要先看原函数的定义域。

7.求可导函数f(x)的极值的步骤是什么?答:(1)确定函数的定义域。

(2) 求函数f(x)的导数(3)求方程=0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值8.利用导数求函数的最值的步骤是什么?答:求在上的最大值与最小值的步骤如下:⑴求在上的极值;⑵将的各极值与比较,其中最大的一个是最大值,最小的一个是最小值。

注:实际问题的开区间唯一极值点就是所求的最值点;9.求曲边梯形的思想和步骤是什么?答:分割近似代替求和取极限(“以直代曲”的思想)10.定积分的性质有哪些?根据定积分的定义,不难得出定积分的如下性质:性质1性质5 若,则①推广:②推广:11定积分的取值情况有哪几种?答:定积分的值可能取正值,也可能取负值,还可能是0.( l )当对应的曲边梯形位于 x 轴上方时,定积分的值取正值,且等于x轴上方的图形面积;(2)当对应的曲边梯形位于 x 轴下方时,定积分的值取负值,且等于x轴上方图形面积的相反数;(3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0,且等于x轴上方图形的面积减去下方的图形的面积.12.物理中常用的微积分知识有哪些?答:(1)位移的导数为速度,速度的导数为加速度。

选修2-2导数精选解答题及答案

选修2-2导数精选解答题及答案

1.已知函数32()32f x x ax bx =-+在1x =处有极小值1-, (1)试求a b ,的值,并求出()f x 的单调区间.(2)若关于x 的方程a x f =)(有3个不同实根,求实数a 的取值范围.解:(1)函数f (x )=x 3-3ax 2+2bx 的导数为f ′(x )=3x 2-6ax+2b∵函数f (x )=x 3-3ax 2+2bx 在x=1处有极小值-1,∴f ′(1)=0,f (1)=-1 即3-6a+2b=0,1-3a+2b=-1,解得a=1/3,b=-1/2∴f (x )=x 3-x 2-x ,f ′(x )=3x 2-2x-1令f ′(x )=0,即3x 2-2x-1=0,解得,x=-1/3,或x=1又∵当x >1时,f ′(x )>0,当-1/3<x <1时,f ′(x )<0,当x <-1/3时,f ′(x )>0,∴函数在x=-13时有极大值为f (-1/3)=5/27 函数在x=1时有极小值为f (1)=-1的方程a x f =)(有3个不同实根,则需满足2 )0(>a(1)若)(x f 在[1,)∞+上递增,求a 的取值范围; (2)求)(x f 在[1,4]上的最小值 解(1)a 大于等于2 (2 [1,4]x ∈ (a )当2a ≥时,在[1,4]x ∈ 上()0f x '≥ ∴min ()(1)f x f a == …………8分 (b )当01a ≤≤时,在[1,4]x ∈ 上()0f x '≤ ∴min ()(4)22ln 2f x f a ==-…10分 (c上()0f x '≥ 综上所述:min 22ln 21()22ln 22ln 2a a f x a a a a - 0≤≤⎧⎪=-+ 1<≤⎨⎪ 2<⎩3.已知x = 4是函数2()ln 12f x a x x x b =+-+的一个极值点,(a ,b ∈R ). (Ⅰ)求a 的值; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)若函数()y f x =有3个不同的零点,求b 的取值范围.3.…………………2’解得16a=. ……4’(Ⅱ)由(Ⅰ)知,()()216ln12,0,f x x x x b x=+-+∈+∞,当()0,2x∈时,()'0f x>;当()2,4x∈时,()'0f x<;()4,x∈+∞时,()'0f x>. 所以()f x的单调增区间是()()0,2,4,+∞;()f x的单调减区间是()2,4.…………8’(Ⅲ)由(Ⅱ)知,()f x在()0,2内单调递增,在()2,4内单调递减,在()4,+∞上单调递增,且当2x=或4x=时,()'0f x=.所以()f x的极大值为()216ln220f=-+b,极小值为()432ln232f=-+b.…………10’又因为()()1664ln26416ln2202f b b f=++>-+=,()()23232ln2324f e b b f-<-+<-+=.当且仅当()()402f f<<,()y f x=有三个零点.…………12’所以,b的取值范围为()2016ln2,3232ln2--. ………………………14’4.已知)(xf是定义在[,]e e-上的奇函数,当],0(ex∈时()2ln,().f x ax x a R=+∈(1)求)(xf的解析式;(2)是否存在实数a,使得当)(,)0,[xfex时-∈的最小值是4?如果存在,求出a的值;如果不存在,请说明理由..解:(1)设[,0),(0,]x e x e∈--∈则()2ln().f x ax x∴-=-+-()f x是奇函数,()()2ln().f x f x ax x∴=--=--…(3分)又(0)0f=…(4分)故函数)(xf的解析式为:2ln(),[,0)()002ln,(0,]ax x x ef x xax x x e--∈-⎧⎪==⎨⎪+∈⎩…(5分)(2)假设存在实数a,使得当[,0),x e∈-时()2ln()f x ax x =--有最小值是4.…(6分) ①当0a ≥或由于.0)(),0,[≥'-∈x f e x 则故函数()2ln()[,0)f x ax x e =---是上的增函数。

高中数学选修2-2导数的概念及应用(包括切线的计算)

高中数学选修2-2导数的概念及应用(包括切线的计算)

导数的概念以及应用一、平均变化率(平均速度)例1.小明运动的路程S满足S(t)=14t2,求(1)小明在0秒到1秒的平均速度(2)在19秒到20秒的平均速度(3)在t1秒到t2秒的平均速度v̅=∆s∆t称为从t1秒到t2秒的平均变化率小结:对于函数y=f(x),当自变量x从x1变为x2时,函数值从f(x1)变为f(x2),它的平均变化率为:f(x2)−f(x1)x2−x1记∆x=x2−x1,∆y= f(x2)−f(x1),则∆y∆x =f(x2)−f(x1)x2−x1=f(x1+∆x)−f(x1)∆x平均变化率的几何意义:代表割线的斜率二、瞬时变化率(瞬时速度)已知函数f(x)在x=x0的瞬时变化率为lim∆x→0f(x0+∆x)−f(x0)∆x三、导数的定义一般的,函数y=f(x)在x=x0处的瞬时变化率为lim ∆x→0f(x0+∆x)−f(x0)∆x=lim∆x→0∆y∆x,我们称它为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=lim∆x→0∆y∆x=lim∆x→0f(x0+∆x)−f(x0)∆x小结:求函数y =f (x )在点x 0处的导数的步骤 1. 求函数的增量,∆y = f (x 0+∆x )−f(x 0) 2. 求函数的平均变化率,∆y∆x3. 取极限,得导数四、导数的几何意义(1)切线的概念:如图,对于割线PP n ,当点P n 趋近于点P 时,割线PP n 趋近于确定的位置,这个确定位置的直线PT 称为点P 处的切线.4.(2)导数的几何意义:函数f (x )在x =x 0处的导数就是切线PT 的斜率k ,即k =li m Δx →0f x 0+Δx -f x 0Δx=f ′(x 0).题型一、导数定义的应用1.用导数的定义求下列函数的导数:()1 2()y f x x ==;()2 24()y f x x ==2.()1已知000(2)()lim 13x f x x f x x→--=△△△,求0()f x '()2若(3)2f '=,则1(3)(12)lim 1x f f x x →-+=-3. 函数f (x )在x =0可导,则lim h →af (h )-f (a )h -a=( )A .f (a )B .f ′(a )C .f ′(h )D .f (h )4.已知函数y =x 2+1的图像上一点(1,2)及邻近点(1+Δx,2+Δy ),则lim Δx →0ΔyΔx =( )A .2B .2xC .2+ΔxD .2+Δx 25.设f (x )为可导函数,且满足lim x →0f (1)-f (1-2x )2x=-1,则f ′(1)的值为( )A .2B .-1C .1D .-26.若一物体运动方程如下:(位移:m ,时间:s)s =⎩⎪⎨⎪⎧3t 2+2 (t ≥3), ①29+3(t -3)2(0≤t <3). ② 求:(1)物体在t ∈[3,5]内的平均速度; (2)物体的初速度v 0;(3)物体在t =1时的瞬时速度.7.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( )A .不存在B .与x 轴平行或重合C .与x 轴垂直D .与x 轴斜交8.设f (x )=2x ,则lim x →af (x )-f (a )a -x等于( )A.-2a B.2aC.-2a2 D.2a2题型二、求曲线的切线方程[典例] 已知曲线C:y=13x3+43,求曲线C上的横坐标为2的点处的切线方程.【小结】1.过曲线上一点求切线方程的三个步骤2.求过曲线y=f(x)外一点P(x1,y1)的切线方程的六个步骤(1)设切点(x0,f(x0)).(2)利用所设切点求斜率k=f′(x0)=li mΔx→0f x+Δx-f x0Δx.(3)用(x0,f(x0)),P(x1,y1)表示斜率.(4)根据斜率相等求得x0,然后求得斜率k.(5)根据点斜式写出切线方程.(6)将切线方程化为一般式.【练习】过点(1,-1)且与曲线y=x3-2x相切的直线方程为( )A.x-y-2=0或5x+4y-1=0B.x-y-2=0C.x-y-2=0或4x+5y+1=0D.x-y+2=0题型三、求切点坐标【小结】求切点坐标可以按以下步骤进行(1)设出切点坐标;(2)利用导数或斜率公式求出斜率;(3)利用斜率关系列方程,求出切点的横坐标;(4)把横坐标代入曲线或切线方程,求出切点纵坐标[典例] 已知抛物线y=2x2+1分别满足下列条件,请求出切点的坐标.(1)切线的倾斜角为45°.(2)切线平行于直线4x-y-2=0.(3)切线垂直于直线x+8y-3=0..【练习】直线l:y=x+a(a≠0)和曲线C:y=x3-x2+1相切,则a的值为___________,切点坐标为____________.题型四:在点和过点的区别[典例] 已知曲线y =1x.(1)求曲线在点P (1,1)处的切线方程; (2)求曲线过点Q (1,0)处的切线方程.练习、当常数k 为何值时,直线y =x 与曲线y =x 2+k 相切?请求出切点.题型五、与切线有关的综合问题[典例] (1)函数y =2cos 2x 在x =π12处的切线斜率为________.(2)已知函数f (x )=ax 2+ln x 的导数为f ′(x ), ①求f (1)+f ′(1).②若曲线y =f (x )存在垂直于y 轴的切线,求实数a 的取值范围.【对点训练】1.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 的值为( )A .-1或-2564B .-1或214C .-74或-2564D .-74或72.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a=A. 0B.1C.2D.34.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=5.(2014江西)若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是6.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 7.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为A.1-ln2B.2(1-ln2)C.1+ln2D.2(1+ln2) 8.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 9.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 110.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是2.切线的条数问题切线的条数问题====以切点0x 为未知数的方程的根的个数 公切线问题:(1)切点相同。

选修2-2-《导数及其应用》题型总结

选修2-2-《导数及其应用》题型总结

《导数及其应用》经典题型总结一、知识网络结构题型一 求函数的导数及导数的几何意义 考点一 导数的概念,物理意义的应用例1.(1)设函数()f x 在2x =处可导,且(2)1f '=,求0(2)(2)lim2h f h f h h→+--;(2) ()2sin(25)f x x x =+,求()f x '(3)已知()(1)(2)(2008)f x x x x x =+++L ,求(0)f '.考点二 导数的几何意义与物理意义的应用例2: 已知抛物线y=ax 2+bx+c 通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a 、b 、c 的值 例3:已知曲线y=.34313+x (1)求曲线在(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程.例4:已知物体运动的位移s 与时间f 关系为s(t)= 221t t -+,则t=1时物体的速度与加速度分别为____________, ___________________题型二 函数单调性的应用考点一 利用导函数的信息判断f(x)的大致形状例1 如果函数y =f(x)的图象如图,那么导函数y =f(x)的图象可能是( )导 数导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值常见函数的导数 导数的运算法则例1 求函数5224+-=x x y 的单调区间.(不含参函数求单调区间)例2 已知函数f (x )=12x 2+a ln x (a ∈R ,a ≠0),求f (x )的单调区间.(含参函数求单调区间)练习:求函数xax x f +=)(的单调区间。

例3 若函数f(x)=x 3-ax 2+1在(0,2)内单调递减,求实数a 的取值范围.(单调性的逆向应用)练习1:已知函数0],1,0(,2)(3>∈-=a x x ax x f ,若)(x f 在]1,0(上是增函数,求a 的取值范围。

高二数学选修2-2导数12种题型归纳(中等难度)精品名师资料

高二数学选修2-2导数12种题型归纳(中等难度)精品名师资料

高二数学选修2-2导数12种题型归纳(中等难度)精品名师资料导数题型分类解析(中等难度)一、变化率与导数函数)(0x f y在x 0到x 0+x 之间的平均变化率,即)('0x f =0lim x xy =0limxxx f x x f Δ)()Δ(00,表示函数)(0x f y在x 0点的斜率。

注意增量的意义。

例1:若函数()yf x 在区间(,)a b 内可导,且0(,)x a b 则0()()limhf x h f x h h的值为()A .'0()f x B .'02()f x C .'02()f x D .0例2:若'0()3f x ,则0()(3)limh f x h f x h h()A.3B .6C .9D .12例3:求0limhhx f h x f )()(020二、“隐函数”的求值将)('0x f 当作一个常数对)(0x f 进行求导,代入0x 进行求值。

例1:已知232f x xxf ,则2f 例2:已知函数x xfxf sin cos 4,则4f的值为 .例3:已知函数)(x f 在R 上满足88)2(2)(2x x x f x f ,则曲线)(x f y在点))1(,1(f 处的切线方程为()A. 12x yB. xy C. 23x y D. 32x y 三、导数的物理应用如果物体运动的规律是s=s (t ),那么该物体在时刻t 的瞬间速度v=s ′(t )。

如果物体运动的速度随时间的变化的规律是v=v (t ),则该物体在时刻t 的加速度a=v ′(t )。

例1:一个物体的运动方程为21t ts 其中s 的单位是米,t 的单位是秒,求物体在3秒末的瞬时速度。

例2:汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是()四、基本导数的求导公式①0;C (C 为常数)②1;nn xnx ③(sin )cos x x ; ④(cos )sin x x ; ⑤();xxe e ⑥()ln xxa a a ; ⑦1ln xx;⑧1l g log a a o xe x .stOA .st Ost OstOB .C .D .。

人教A版高中数学高二选修2-2】1.3重视导数应用的热点题型

人教A版高中数学高二选修2-2】1.3重视导数应用的热点题型

重视导数应用的热点题型导数的应用在新高考中已成为新的热点,特别是对实际问题的解答,更应予以重视.下面就具体例题谈谈导数的应用题型及应对策略.1.求切线斜率根据导数的几何意义,函数)(x f 在点0x 处的导数是曲线)(x f 在点))(,(00x f x P 处的切线斜率.因此求函数在某点处的切线斜率,只要求函数在该点处的导数.例1 求曲线0532222=-+-++y x y xy x 在点)1,1(处的切线方程.分析 利用隐函数求导法则,得出在点)1,1(处的切线斜率,从而可求出切线方程. 解 对方程0532222=-+-++y x y xy x 两边关于x 求导,得0'32'22'22=+-+++y yy y xy x .解之得322222'++--=y x yx y .易知)1,1(点在曲线上,72')1,1(-=y .∴曲线在点)1,1(处的切线方程为)1(721--=-x y ,即0972=-+y x .评注:(1)两边对x 求导,特别要注意y 是x 的函数.(2)隐函数的导数表达式中常包含x ,y 两个变量.2.求单调性利用可导函数判断函数单调性的基本方法:设函数)(x f y =在某个区间内可导,如果导数0)('>x f ,则函数在这个区间上为增函数;如果导数0)('<x f ,则函数)(x f 在这个区间上为减函数.例2 (2004全国卷Ⅰ理)已知,R a ∈求函数axe x xf 2)(=的单调区间. 解 函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f +=+='(I )当0=a 时,若0<x ,则)(x f '<0,若0>x ,则)(x f '>0.所以当0=a 时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数.(II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得所以,当0>a 时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当0<a 时,由022>+ax x ,解得ax 20-<<, 由022<+ax x ,解得0<x 或ax 2->. 所以当0<a 时,函数)(x f 在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 3.求极值利用可导函数求函数极值的基本方法:设函数)(x f y =在点0x 处连续且0)('=x f .若在点0x 附近左侧0)('>x f ,右侧0)('<x f ,则)(0x f 为函数的极大值;若在点0x 附近左侧0)('<x f ,右侧0)('>x f ,则)(0x f 为函数的极小值.例 3 已知函数1)(3+++=bx ax x x f ,当1-=x ,1=x 时,取得极值,且极大值比极小值大4.(1)求a ,b 的值;(2)求)(x f 的极大值和极小值. 解 (1) b ax x x f ++=2435)('.∵1=x 时有极值,则035)1('=++=b a f . ∴53--=a b 代入)('x f 得)]53(5)[1)(1()('2++-+=a x x x x f .且0)53(52≠++a x .对任意实数x 成立,∴053>+a .∴5->a .)∴当1-=x 时取得极大值,1=x 时取极小值.即4)1()1(=--f f∴3-=+b a .再由53--=a b ,解出1-=a ,2-=b . (2)3)1(=-f 为极大值, 1)1(-=f 为极小值. 4.求最值在闭区间[]b a ,上连续的函数)(x f ,在[]b a ,上必有最大值与最小值,设函数)(x f 在[]b a ,上连续,在),(b a 内可导,先求出)(x f 在),(b a 内的极值,然后将)(x f 的各极值与)(a f 、)(b f 值比较,其中最大的一个为最大值,最小的一个为最小值.例4 (2004湖南理)已知函数e a e x x f ax,0,)(2≤=其中为自然对数的底数. (Ⅰ)讨论函数)(x f 的单调性;(Ⅱ)求函数)(x f 在区间[0,1]上的最大值. 解 (Ⅰ).)2()(axe ax x xf +='(i )当0=a 时,令 .0,0)(=='x x f 得若),0()(,0)(,0+∞>'>在从而则x f x f x 上单调递增; 若)0,()(,0)(,0-∞<'<在从而则x f x f x 上单调递减.(ii )当a <0时,令.20,0)2(,0)(ax x ax x x f -===+='或故得 若)0,()(,0)(,0-∞<'<在从而则x f x f x 上单调递减;若)2,0()(,0)(,20a x f x f a x ->'-<<在从而则上单调递增; 若,2a x ->),2()(,0)(+∞-<'ax f x f 在从而则上单调递减.(Ⅱ)(i )当0=a 时,)(x f 在区间[0,1]上的最大值是.1)1(=f(ii )当02<<-a 时,)(x f 在区间[0,1]上的最大值是ae f =)1(.(iii )当a ≤2-时,)(x f 在区间[0,1]上的最大值是.4)2(22ea a f =-5.求实际应用问题中的最值在实际问题中,有时会遇到函数在某区间内只有一个点使0)('=x f ,如果函数在这一点有极值,那么可不与区间端点处的函数值比较,即可断定该极值就是最值.例5 (2000高考)用总长8.14m 的钢条制做一个长方体容器的框架,如果所制做容器的底面的一边比另一边长5.0m ,那么高为多少时容器的容积最大?并求出它的最大容积.解 设容器底面边长为x m ,另一边长为)5.0(+x m ,高为x x x 22.34)5.0(448.14-=+--,由022.3>-x 和6.100<<⇒>x x .设容器的容积为y m 3,则有)6.10)(22.3)(5.0(<<-+=x x x x y即x x x y 6.12.2223++-= 令0'=y ,有06.14.462=++-x x 即154,1041115212-==⇒=--x x x x ,(不合题意,舍去) 所以当1=x 时,8.16.12.22max =++-=y (m 3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数题型分类解析(中等难度)一、变化率与导数函数)(0x f y =在x 0到x 0+x ∆之间的平均变化率,即)('0x f =0lim →∆x x y∆∆=0lim →∆x x x f x x f Δ)()Δ(00-+,表示函数)(0x f y =在x 0点的斜率。

注意增量的意义。

例1:若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+-- 的值为( )A .'0()f xB .'02()f xC .'02()f x - D .0 例2:若'0()3f x =-,则000()(3)limh f x h f x h h→+--=( )A.3- B .6- C .9- D .12-例3:求0lim →h hx f h x f )()(020-+二、“隐函数”的求值将)('0x f 当作一个常数对)(0x f 进行求导,代入0x 进行求值。

例1:已知()()232f x x x f '+=,则()='2f例2:已知函数()x x f x f sin cos 4+⎪⎭⎫⎝⎛'=π,则⎪⎭⎫⎝⎛4πf 的值为 . 例3:已知函数)(x f 在R 上满足88)2(2)(2-+--=x x x f x f ,则曲线)(x f y =在点))1(,1(f 处的切线方程为( )A. 12-=x yB. x y =C. 23-=x yD. 32+-=x y三、导数的物理应用如果物体运动的规律是s=s (t ),那么该物体在时刻t 的瞬间速度v=s ′(t )。

如果物体运动的速度随时间的变化的规律是v=v (t ),则该物体在时刻t 的加速度a=v′(t )。

例1:一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,求物体在3秒末的瞬时速度。

例2:汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )四、基本导数的求导公式①0;C '=(C 为常数) ②()1;n n xnx-'= ③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();xxe e '= ⑥()ln xxa a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x'=. 例1:下列求导运算正确的是 ( )A .2111x x x +='⎪⎭⎫ ⎝⎛+ B .()='x 2log =2ln 1x C .()e x x 3log 33=' D . ()x x x x sin 2cos 2-='例2:若()()()()()()()N n x f x f x f x f x f x f x x f n n ∈'=⋯⋯'='==+,,,,sin 112010,,则()=x f 2005五、导数的运算法则常数乘积:.)(''Cu Cu = 和差:(.)'''v u v u ±=±乘积:.)('''uv v u uv += 除法:='⎪⎭⎫ ⎝⎛v u 2''v uv v u - 例1:(1)函数32log y x x =+的导数是 (2)函数12+x n ex 的导数是六、复合函数的求导[()]()*()f x f x ϕμϕ'''=,从最外层的函数开始依次求导。

例1:(1)3(1cos 2)y x =+ (2)21siny x= 七、切线问题 (曲线上的点求斜率)例1:曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为( ) A .30° B .45° C .60° D .120°()._________1,y 21,=⎭⎬⎫⎩⎨⎧+=-=n n n n S n n a a x x x y n 项和为的前数列则轴的交点的纵坐标为处的切线与在设曲线例:对正整数(曲线外的点求斜率)例1:已知曲线2y x =,则过点(1,3)P -,且与曲线相切的直线方程为 . 例2:求过点(-1,-2)且与曲线32y x x =-相切的直线方程.A .B .C .D .(切线与直线的位置关系) 例1:曲线3()2f x x x在0p 处的切线平行于直线41y x ,则0p 点的坐标为( )A .(1,0)B .(2,8)C .(1,0)和(1,4)--D .(2,8)和(1,4)-- 例2:若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=八、函数的单调性 (无参函数的单调性) 例1:证明:函数ln ()xf x x=在区间(0,2)上是单调递增函数. (带参函数的单调性)例1:已知函数2()ln (2)f x x ax a x =-+-,讨论l ()x f x x=的单调性; 例2:已知函数),()(23R b a b ax x x f ∈++=,讨论)(x f 的单调性; 例3:已知()ax x x f -=ln ,讨论()x f y =的单调性.九、结合函数单调性和极值求参数范围例1:已知函数32()321f x x x =+-在区间()0,m 上是减函数,则m 的取值范围是 .例2:已知函数()()323m f x x x x m R =+-∈,函数()f x 在区间()2,+∞内存在单调递增区间,则m 的取值范围 .例3:已知函数()()321f x x ax x a R =+++∈,若函数()f x 在区间21,33⎛⎫-- ⎪⎝⎭内单调递减,则a 的取值范围 . 例4:已知函数3211()(2)(1)(0).32f x x a x a x a =+-+-≥若()f x 在[0,1]上单调递增,则a 的取值范围 .例5:已知函数3()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 .例6:已知函数()x a x x f ln 2+=,若()()xx f x g 2+=在[)+∞,1上是单调函数,求实数a 的取值范围 例7:如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )812十、函数的极值与最值 (无参函数的极值与最值)例1:函数f(x)=x 3+ax 2+bx+c,曲线y=f(x )在点x=1处的切线为l:3x-y+1=0,若x=32时,y=f(x )有极值. (1)求a,b,c 的值;(2)求y=f(x )在[-3,1]上的最大值和最小值. (含参函数的极值与最值) 例1:已知函数f (x )=axex -2(a >0),求函数在[1,2]上的最大值.例2:已知()ax x x f -=ln ,求函数在[1,2]上的最大值.十一、函数图像例1:f (x )的导函数 )(/x f 的图象如右图所示,则f (x )的图象只可能是( )(A ) (B ) (C ) (D )例2:函数14313+-=x x y 的图像为( )例3:函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点 个数为 .例4:已知函数)(x f x y '=的图象如图所示(其中 )(x f '是函数)(x f 的导函数),下面四个图象中)(x f y =的图象大致是 ( )xy o 4 -4 2 4 -42 -2 -2xyo 4 -4 2 4 -42 -2 -2xyy 4 -4 2 4-42-2 -26 6 6 6 yx-4-2 o4 2 24abxy)(x f y ?=O例5:已知函数y =f (x )的导函数y =f ′(x )的图象如右,则( )A .函数f (x )有1个极大值点,1个极小值点B .函数f (x )有2个极大值点,2个极小值点C .函数f (x )有3个极大值点,1个极小值点D .函数f (x )有1个极大值点,3个极小值点例6:函数f(x)的图象如图所示,下列数值排序正确的是 ( ) <)2('f <)3('f <f(3)-f(2)<)3('f <f(3)-f(2) <)2('f<f(3)<)2('f <f(3)-f(2)<f(3)-f(2)<)2('f <)3('f 十二、积分 (代数形式) 例1:⎰-+22)cos (sin ππdx x x 的值为( )B.4π例2:函数||)(x e x f =,则=⎰-42)(dx x f例3:定积分⎰---102])1(1[dx x x 等于( )A.42-π B. 12-π C. 41-π D. 21-π (面积形式)例1:由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.121 B.41 C. 31 D. 127 例2:求由抛物线342-+-=x x y 与它在点A (0,-3)和点B (3,0)的切线所围成的区域面积。

例3:如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ) A.41 B.51 C. 61 D. 71例4:如图,在一个长为π,宽为2的矩形OABC 内,曲线)0(sin πx x y ≤≤=与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A. π1B. π2C. 4πD. π3练习题1.(西安一中2015~2016高二下学期期中)若1Δ)()Δ2(lim000Δ=-+→xx f x x f x ,则)('0x f 等于( )A. 2B. -2C.21 D. 21- 2.(西安一中2015~2016高二下学期期中)已知6)1('2)(2-+=xf x x f ,则)1('f 等于( ) A. 4 B. -2 C. 0 D. 23. ()()()()()()()().________cos sin 201411211=∈'='=-=*++x f N n x f x f x f x f x f x f x x x f n n n n ,则,,,的导函数,即是,练:已知4. 若函数ax x x f -=ln )(在点P (1,b )处的切线与x+3y-2=0垂直,则2a+b=( ) D. -25.设曲线P 为曲线C :y =x 2-2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为]4,0[π,则点P 横坐标的取值范围为( )A. ]21,1[--B. ]0,1[-C. ]1,0[D. ]23,1[6. 已知函数x x x x f ln 3421)(2-+-=在区间[t,t+1]上不单调,则t 的取值范围是 7. 函数ax x a ax x g 3)1(2)(23--+=在区间)3,(a -∞内单调递减,则a 的取值范围是8. 若函数2)()(c x x x f -=在x =2处有极大值,则常数c 的值为9. 已知1)6()(23++++=x a ax x x f 有极大值和极小值,则a 的取值范围为10. 已知二次函数c bx ax x f ++=2)(的导数为)('x f ,0)0('>f ,对于任意实数x 都有0)(≥x f ,则)0(')1(f f 的最小值为( )A. 3B. 25C. 2D. 23。

相关文档
最新文档