9.2直线与平面垂直
直线与平面垂直的性质课件
又 E 为 AD 的中点,∴MN 綊 DE. ∴四边形 DENM 为平行四边形. ∴EN∥DM.且 DM⊂平面 PDC. ∴EN∥平面 PDC. (2)∵四边形 ABCD 是边长为 2 的菱形,且∠BAD=60°, ∴BE⊥AD. 又∵侧面 PAD 是正三角形,且 E 为中点,∴PE⊥AD, ∴AD⊥平面 PBE.又∵AD∥BC, ∴BC⊥平面 PEB.
[知识点二] 两平面垂直的性质定理
知识点
名称
面面垂直的性质定理
定理内容
两个平面垂直,则一个平面内垂直于 交线 的直线与另 一个平面 垂直
符号语言
α⊥β
α∩β=m
l⊂α
⇒l⊥β
l⊥m
图示语言
[思考] 4.α⊥β,a⊂α,则a⊥β对吗? 提示:不对.只有当a与α、β的交线垂直时,a与β才垂直. 5.α⊥β,α∩β=l,a⊥l,则a⊥β对吗? 提示:不对.只有a⊂α时,a与β才垂直. 6.线面垂直的常用判定方法有哪些? 提示:(1)线面垂直的判定定理;(2)线面垂直的性质定理的推论;(3)面面垂直的性质定理.
[题型一] 线面垂直性质的应用 [例 1]如图所示,在正方体 ABCD-A1B1C1D1 中,M 是 AB 上一点, N 是 A1C 的中点,MN⊥平面 A1DC. 求证:(1)MN∥AD1; (2)M 是 AB 的中点.
[思路点拨] (1)要证线线平行, 则先证线面垂直,即证 AD1⊥平面 A1DC. (2)可证 ON=AM,ON=12AB.
直线与平面垂直的性质 平面与平面垂直的性质
1.直线与平面垂直,则与平面内的 任何一条 直线垂直. 2.直线与平面垂直,则 经过 该直线的平面与已知平面垂直.
[知识点一] 直线与平面垂直的性质定理
直线与平面垂直的判定PPT课件
例题二:求点到直线的距离
方法一
利用点到直线的距离公式,通过计算 点到直线上任意一点的向量在直线方 向向量上的投影长度,从而得出点到 直线的距离。
方法二
利用向量的叉积,通过计算点到直线上 两个点的向量与直线方向向量的叉积的 模,再除以直线方向向量的模,从而得 出点到直线的距离。
例题三:解决实际问题中的应用
方法三:结合图形进行判断
• 步骤 • 观察图形中已知直线与平面的位置关系; • 如果看起来垂直,则可以直接判断已知直线与平面垂直。 • 注意:以上三种方法都可以用来判断一条直线是否与一个平
面垂直,但具体使用哪种方法需要根据题目的具体情况来决 定。同时,在实际应用中,还需要注意一些特殊情况的处理, 例如当已知直线在平面内或与平面平行时,需要采用其他方 法进行判断。
点到直线距离公式可以用来辅助判断直线与平面是否垂直。
03
直线与平面垂直的判定方 法
方法一:利用定义直接判断
定义:如果一条直线与一个平面内的任意 一条直线都垂直,那么这条直线与这个平 面垂直。
如果都垂直,则已知直线与平面垂直。
步骤
验证已知直线与这两条相交直线是否垂直;
在平面内任意取两条相交直线;
方法二:利用判定定理进行判断
直线与平面垂直 的判定PPT课件
目录
• 直线与平面垂直的基本概念 • 直线与平面垂直的判定定理 • 直线与平面垂直的判定方法 • 直线与平面垂直的应用举例 • 直线与平面垂直的拓展延伸
01
直线与平面垂直的基本概 念
直线与平面的位置关系
01
02
03
直线在平面内
直线上的所有点都在平面 内。
直线与平面相交
步骤
验证这两条直线是否垂直;
2024年高考数学总复习第九章《平面解析几何》两条直线的位置关系
2024年高考数学总复习第九章《平面解析几何》§9.2两条直线的位置关系最新考纲1.能根据斜率判定两条直线平行或垂直.2.能用解方程组的方法求两直线的交点坐标.3.探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.1.两条直线的位置关系(1)两条直线平行与垂直①两条直线平行:(ⅰ)对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.(ⅱ)当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2.②两条直线垂直:(ⅰ)如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2.(2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组1x +B 1y +C 1=0,2x +B 2y +C 2=0的解.2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B2.概念方法微思考1.若两条直线l 1与l 2垂直,则它们的斜率有什么关系?提示当两条直线l 1与l 2的斜率都存在时,12l l k k ⋅=-1;当两条直线中一条直线的斜率为0,另一条直线的斜率不存在时,l 1与l 2也垂直.2.应用点到直线的距离公式和两平行线间的距离公式时应注意什么?提示(1)将方程化为最简的一般形式.(2)利用两平行线之间的距离公式时,应使两平行线方程中x ,y 的系数分别对应相等.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.(×)(2)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.(√)(3)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.(×)(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(√)(5)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k ,且线段AB 的中点在直线l 上.(√)题组二教材改编2.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于()A.2B .2-2 C.2-1D.2+1答案C 解析由题意得|a -2+3|1+1=1.解得a =-1+2或a =-1- 2.∵a >0,∴a =-1+ 2.3.已知P (-2,m ),Q (m,4),且直线PQ 垂直于直线x +y +1=0,则m =________.答案1解析由题意知m -4-2-m=1,所以m -4=-2-m ,所以m =1.4.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.答案-9解析=2x ,+y =3,=1,=2.所以点(1,2)满足方程mx +2y +5=0,即m ×1+2×2+5=0,所以m =-9.题组三易错自纠5.直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m 等于()A .2B .-3C .2或-3D .-2或-3答案C解析直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2m =2或-3.故选C.6.直线2x +2y +1=0,x +y +2=0之间的距离是______.答案324解析先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =|2-12|2=324.7.若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________.答案0或1解析由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a )(a +4)=0,解得a =0或a =1.题型一两条直线的平行与垂直例1已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0.(1)试判断l 1与l 2是否平行;(2)当l 1⊥l 2时,求a 的值.解(1)方法一当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为l 1:y =-a2x -3,l 2:y =11-ax -(a +1),l 1∥l 2-a2=11-a ,3≠-(a +1),解得a =-1,综上可知,当a=-1时,l1∥l2,a≠-1时,l1与l2不平行.方法二由A1B2-A2B1=0,得a(a-1)-1×2=0,由A1C2-A2C1≠0,得a(a2-1)-1×6≠0,∴l1∥l2(a-1)-1×2=0,(a2-1)-1×6≠0,2-a-2=0,(a2-1)≠6,可得a=-1,故当a=-1时,l1∥l2.a≠-1时,l1与l2不平行.(2)方法一当a=1时,l1:x+2y+6=0,l2:x=0,l1与l2不垂直,故a=1不成立;当a=0时,l1:y=-3,l2:x-y-1=0,l1不垂直于l2,故a=0不成立;当a≠1且a≠0时,l1:y=-a2x-3,l2:y=11-ax-(a+1),·11-a=-1,得a=23.方法二由A1A2+B1B2=0,得a+2(a-1)=0,可得a=23.思维升华(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x,y的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.跟踪训练1(1)(2018·潍坊模拟)直线l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8,则“m=-1或m=-7”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析由题意,当直线l1∥l2时,满足3+m2=45+m≠5-3m8,解得m=-7,所以“m=-1或m=-7”是“l1∥l2”的必要不充分条件,故选B.(2)(2018·青岛模拟)已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.①l1⊥l2,且直线l1过点(-3,-1);②l 1∥l 2,且坐标原点到这两条直线的距离相等.解①∵l 1⊥l 2,∴a (a -1)-b =0,又∵直线l 1过点(-3,-1),∴-3a +b +4=0.故a =2,b =2.②∵直线l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在.∴k 1=k 2,即ab=1-a .又∵坐标原点到这两条直线的距离相等,∴l 1,l 2在y 轴上的截距互为相反数,即4b=b .故a =2,b =-2或a =23,b =2.题型二两直线的交点与距离问题1.(2018·西宁调研)若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是()A .-23 B.23C .-32D.32答案A解析由题意,设直线l 的方程为y =k (x -1)-1,分别与y =1,x -y -7=0联立解得1,又因为MN 的中点是P (1,-1),所以由中点坐标公式得k =-23.2.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为()A.95B.185C.2910D.295答案C解析因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910.3.已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.答案-16,解析方法一=kx +2k +1,=-12x +2,=2-4k 2k +1,=6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴又∵交点位于第一象限,,,解得-16<k <12.方法二如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点),∴动直线的斜率k 需满足k P A <k <k PB .∵k P A =-16,k PB =12.∴-16<k <12.4.已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,若在坐标平面内存在一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2,则P点坐标为________________.答案(1,-4)解析设点P 的坐标为(a ,b ).∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2).而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3,即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上,∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2,∴|4a +3b -2|42+32=2,即4a +3b -2=±10,②由①②a =1,b =-4a =277,b =-87.∴所求点P 的坐标为(1,-4)277,-87思维升华(1)求过两直线交点的直线方程的方法先求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.题型三对称问题命题点1点关于点中心对称例2过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.答案x +4y -4=0解析设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.命题点2点关于直线对称例3如图,已知A (4,0),B(0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是()A .33B .6C .210D .25答案C解析直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线经过的路程为|CD |=62+22=210.命题点3直线关于直线的对称问题例4直线2x -y +3=0关于直线x -y +2=0对称的直线方程是______________.答案x -2y +3=0解析设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),-y +y 02+2=0,(y -y 0),0=y -2,0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上,∴2(y -2)-(x +2)+3=0,即x -2y +3=0.思维升华解决对称问题的方法(1)中心对称①点P (x ,y )关于Q (a ,b )的对称点P ′(x ′,y ′)′=2a -x ,′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决.(2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有1,B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.跟踪训练2已知直线l :3x -y +3=0,求:(1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程;(3)直线l 关于(1,2)的对称直线.解(1)设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′),∵k PP ′·k l =-1,即y ′-yx ′-x×3=-1.①又PP ′的中点在直线3x -y +3=0上,∴3×x ′+x 2-y ′+y 2+3=0.②由①②′=-4x +3y -95,③′=3x +4y +35.④把x =4,y =5代入③④得x ′=-2,y ′=7,∴点P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 对称的直线方程为-4x +3y -95-3x +4y +35-2=0,化简得7x +y +22=0.(3)在直线l :3x -y +3=0上取点M (0,3),关于(1,2)的对称点M ′(x ′,y ′),∴x ′+02=1,x ′=2,y ′+32=2,y ′=1,∴M ′(2,1).l 关于(1,2)的对称直线平行于l ,∴k =3,∴对称直线方程为y -1=3×(x -2),即3x -y -5=0.妙用直线系求直线方程在求解直线方程的题目中,可采用设直线系方程的方式简化运算,常见的直线系有平行直线系,垂直直线系和过直线交点的直线系.一、平行直线系例1求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程.解由题意,设所求直线方程为3x +4y +c =0(c ≠1),又因为直线过点(1,2),所以3×1+4×2+c =0,解得c =-11.因此,所求直线方程为3x +4y -11=0.二、垂直直线系例2求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程.解因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +C =0,又直线过点A (2,1),所以有2-2×1+C =0,解得C =0,即所求直线方程为x -2y =0.三、过直线交点的直线系例3求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解方法一-2y +4=0,+y -2=0,得P (0,2).∵l 3的斜率为34,且l ⊥l 3,∴直线l 的斜率为-43,由斜截式可知l 的方程为y =-43x +2,即4x +3y -6=0.方法二设直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0.又∵l ⊥l 3,∴3×(1+λ)+(-4)×(λ-2)=0,解得λ=11.∴直线l 的方程为4x +3y -6=0.1.直线2x +y +m =0和x +2y +n =0的位置关系是()A .平行B .垂直C .相交但不垂直D .不能确定答案C解析直线2x +y +m =0的斜率k 1=-2,直线x +2y +n =0的斜率k 2=-12,则k 1≠k 2,且k 1k 2≠-1.故选C.2.已知直线l 1:x +my +7=0和l 2:(m -2)x +3y +2m =0互相平行,则实数m 等于()A .-1或3B .-1C .-3D .1或-3答案A解析当m =0时,显然不符合题意;当m ≠0时,由题意得,m -21=3m ≠2m7,解得m =-1或m =3,故选A.3.已知过点A (-2,m )和B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为()A .-10B .-2C .0D .8答案A解析因为l 1∥l 2,所以k AB =4-mm +2=-2.解得m =-8.又因为l 2⊥l 3,所以-1n ×(-2)=-1,解得n =-2,所以m +n =-10.4.过点M (-3,2),且与直线x +2y -9=0平行的直线方程是()A .2x -y +8=0B .x -2y +7=0C .x +2y +4=0D .x +2y -1=0答案D 解析方法一因为直线x +2y -9=0的斜率为-12,所以与直线x +2y -9=0平行的直线的斜率为-12,又所求直线过M (-3,2),所以所求直线的点斜式方程为y -2=-12(x +3),化为一般式得x +2y -1=0.故选D.方法二由题意,设所求直线方程为x +2y +c =0,将M (-3,2)代入,解得c =-1,所以所求直线为x +2y -1=0.故选D.5.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为()A.423B .42 C.823D .22答案C解析∵l 1∥l 2,∴a ≠2且a ≠0,∴1a -2=a 3≠62a,解得a =-1,∴l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2的距离d =|6-23|2=823.6.已知直线l1:y=2x+3,直线l2与l1关于直线y=-x对称,则直线l2的斜率为()A.1 2B.-12C.2D.-2答案A解析直线y=2x+3与y=-x的交点为A(-1,1),而直线y=2x+3上的点(0,3)关于y=-x的对称点为B(-3,0),而A,B两点都在l2上,所以kl2=1-0-1-(-3)=12.7.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则a=________,此时点P的坐标为________.答案1(3,3)解析∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,即a=1+y-6=0,-y=0,易得x=3,y=3,∴P(3,3).8.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m,n)重合,则m+n=________.答案34 5解析由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y=2x-3,它也是点(7,3)与点(m,n)连线的中垂线,2×7+m2-3,=-12,=35,=315,故m+n=34 5 .9.直线l1:y=2x+3关于直线l:y=x+1对称的直线l2的方程为______________.答案x-2y=0解析=2x+3,=x+1,解得直线l1与l的交点坐标为(-2,-1),所以可设直线l2的方程为y+1=k(x+2),即kx-y+2k-1=0.在直线l上任取一点(1,2),由题设知点(1,2)到直线l1,l2的距离相等,由点到直线的距离公式得|k -2+2k -1|k 2+1=|2-2+3|22+1,解得k =12(k =2舍去),所以直线l 2的方程为x -2y =0.10.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为______________.答案6x -y -6=0解析设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,=-1,-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.11.已知方程(2+λ)x -(1+λ)y -2(3+2λ)=0与点P (-2,2).(1)证明:对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;(2)证明:该方程表示的直线与点P 的距离d 小于42.(1)解显然2+λ与-(1+λ)不可能同时为零,故对任意的实数λ,该方程都表示直线.∵方程可变形为2x -y -6+λ(x -y -4)=0,x -y -6=0,-y -4=0,=2,=-2,故直线经过的定点为M (2,-2).(2)证明过P 作直线的垂线段PQ ,由垂线段小于斜线段知|PQ |≤|PM |,当且仅当Q 与M 重合时,|PQ |=|PM |,此时对应的直线方程是y +2=x -2,即x -y -4=0.但直线系方程唯独不能表示直线x -y -4=0,∴M 与Q 不可能重合,而|PM |=42,∴|PQ |<42,故所证成立.12.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5.若能,求点P 的坐标;若不能,说明理由.解(1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =7510,所以|a +12|5=7510,即|a +12|=72,又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若P 点满足条件②,则P 点在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12|c +12|5,即c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0;若P 点满足条件③,由点到直线的距离公式,有|2x 0-y 0+3|5=25|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,0=-3,0=12,(舍去)联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,=19,0=3718.所以存在点P 13.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C的坐标为()A.(-2,4)B.(-2,-4) C.(2,4)D.(2,-4)答案C解析设A(-4,2)关于直线y=2x的对称点为(x,y),则2=-1,2×-4+x2,解得=4,=-2,∴BC所在直线方程为y-1=-2-14-3(x-3),即3x+y-10=0.同理可得点B(3,1)关于直线y=2x的对称点为(-1,3),∴AC所在直线方程为y-2=3-2-1-(-4)(x+4),即x-3y+10=0.x+y-10=0,-3y+10=0,=2,=4,则C(2,4).故选C.14.若三条直线y=2x,x+y=3,mx+ny+5=0相交于同一点,则点(m,n)到原点的距离的最小值为()A.5B.6C.23D.25答案A解析=2x,+y=3,解得x=1,y=2.把(1,2)代入mx+ny+5=0可得,m+2n+5=0.∴m=-5-2n.∴点(m,n)到原点的距离d=m2+n2=(5+2n)2+n2=5(n+2)2+5≥5,当n=-2,m=-1时取等号.∴点(m,n)到原点的距离的最小值为 5.15.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知△ABC的顶点A (1,0),B (0,2),且AC =BC ,则△ABC 的欧拉线的方程为()A .4x +2y +3=0B .2x -4y +3=0C .x -2y +3=0D .2x -y +3=0答案B解析因为AC =BC ,所以欧拉线为AB 的中垂线,又A (1,0),B (0,2),故AB k AB =-2,故AB 的中垂线方程为y -1即2x -4y +3=0.16.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,4)对称,求直线l 的方程.解由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1:y =k (x -3)+5+b ,将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,则平移后的直线方程为y =k (x -3-1)+b +5-2,即y =kx +3-4k +b ,∴b =3-4k +b ,解得k =34,∴直线l 的方程为y =34x +b ,直线l 1为y =34x +114+b ,取直线l 上的一点,b P 关于点(2,4)-m ,8-b ∴8-b -3m 4=34(4-m )+b +114,解得b =98.∴直线l 的方程是y =34x +98,即6x -8y +9=0.。
2020届高三理数一轮讲义:9.2-两直线的位置关系(含答案)
第2节 两直线的位置关系最新考纲 1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.知 识 梳 理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行. (2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.距离公式(1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2.(2)点到直线的距离公式平面上任意一点P 0(x0,y0)到直线l:Ax+By+C=0的距离d=|Ax0+By0+C|A2+B2.(3)两条平行线间的距离公式一般地,两条平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离d=|C1-C2|A2+B2.[微点提醒]1.两直线平行的充要条件直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0平行的充要条件是A1B2-A2B1=0且B1C2-B2C1≠0(或A1C2-A2C1≠0).2.两直线垂直的充要条件直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)当直线l1和l2的斜率都存在时,一定有k1=k2⇒l1∥l2.()(2)如果两条直线l1与l2垂直,则它们的斜率之积一定等于-1.()(3)若两直线的方程组成的方程组有唯一解,则两直线相交.()(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.()解析(1)两直线l1,l2有可能重合.(2)如果l1⊥l2,若l1的斜率k1=0,则l2的斜率不存在.答案(1)×(2)×(3)√(4)√2.(必修2P114A10改编)两条平行直线3x+4y-12=0与ax+8y+11=0之间的距离为()A.235 B.2310 C.7 D.72解析由题意知a=6,直线3x+4y-12=0可化为6x+8y-24=0,所以两平行直线之间的距离为|11+24|36+64=72.答案 D3.(必修2P89练习2改编)已知P(-2,m),Q(m,4),且直线PQ垂直于直线x+y +1=0,则m=________.解析由题意知m-4-2-m=1,所以m-4=-2-m,所以m=1.答案 14.(2019·郑州调研)直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则m=()A.2B.-3C.2或-3D.-2或-3解析直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则有2m=m+13≠4-2,故m=2或-3.答案 C5.(2018·昆明诊断)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.1B.2C. 2D.2 2解析圆(x+1)2+y2=2的圆心坐标为(-1,0),由y=x+3得x-y+3=0,则圆心到直线的距离d=|-1-0+3|12+(-1)2= 2.答案 C6.(2019·高安期中)经过抛物线y2=2x的焦点且平行于直线3x-2y+5=0的直线l 的方程是()A.6x -4y -3=0B.3x -2y -3=0C.2x +3y -2=0D.2x +3y -1=0解析 因为抛物线y 2=2x 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l 的方程为y =32⎝ ⎛⎭⎪⎫x -12,化为一般式,得6x -4y -3=0.答案 A考点一 两直线的平行与垂直【例1】 (1)(2019·河北五校联考)直线l 1:mx -2y +1=0,l 2:x -(m -1)y -1=0,则“m =2”是“l 1∥l 2”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件(2)已知三条直线2x -3y +1=0,4x +3y +5=0,mx -y -1=0不能构成三角形,则实数m 的取值集合为( )A.⎩⎨⎧⎭⎬⎫-43,23 B.⎩⎨⎧⎭⎬⎫-43,23,43 C.⎩⎨⎧⎭⎬⎫43,-23D.⎩⎨⎧⎭⎬⎫-43,-23,23 解析 (1)由l 1∥l 2得-m (m -1)=1×(-2),得m =2或m =-1,经验证,当m =-1时,直线l 1与l 2重合,舍去,所以“m =2”是“l 1∥l 2”的充要条件. (2)由题意得直线mx -y -1=0与2x -3y +1=0,4x +3y +5=0平行,或者直线mx -y -1=0过2x -3y +1=0与4x +3y +5=0的交点.当直线mx -y -1=0与2x -3y +1=0,4x +3y +5=0分别平行时,m =23或-43;当直线mx -y -1=0过2x -3y +1=0与4x +3y +5=0的交点时,m =-23.所以实数m 的取值集合为⎩⎨⎧⎭⎬⎫-43,-23,23.答案 (1)C (2)D规律方法 1.当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.2.在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.【训练1】 (一题多解)已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0.(1)当l 1∥l 2时,求a 的值; (2)当l 1⊥l 2时,求a 的值.解 (1)法一 当a =1时,l 1:x +2y +6=0, l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2; 当a ≠1且a ≠0时,两直线方程可化为l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由l 1∥l 2可得⎩⎪⎨⎪⎧-a2=11-a ,-3≠-(a +1),解得a =-1. 综上可知,a =-1.法二 由l 1∥l 2知⎩⎨⎧A 1B 2-A 2B 1=0,A 1C 2-A 2C 1≠0,即⎩⎨⎧a (a -1)-1×2=0,a (a 2-1)-1×6≠0⇒⎩⎨⎧a 2-a -2=0,a (a 2-1)≠6⇒a =-1. (2)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不符合;当a ≠1时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由l 1⊥l 2,得⎝ ⎛⎭⎪⎫-a 2·11-a =-1⇒a =23.法二 ∵l 1⊥l 2,∴A 1A 2+B 1B 2=0, 即a +2(a -1)=0,得a =23. 考点二 两直线的交点与距离问题【例2】 (1)求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程为________________.(2)(2019·广州模拟)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.(3)(2019·厦门模拟)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.解析 (1)先解方程组⎩⎪⎨⎪⎧3x +2y -1=0,5x +2y +1=0,得l 1,l 2的交点坐标为(-1,2), 再由l 3的斜率35求出l 的斜率为-53, 于是由直线的点斜式方程求出l : y -2=-53(x +1),即5x +3y -1=0.(2)由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解之得0≤a ≤10, 所以a 的取值范围是[0,10].(3)依题意知,63=a -2≠c-1,解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c 2=0,又两平行线之间的距离为21313,所以⎪⎪⎪⎪⎪⎪c 2+132+(-2)2=21313,解得c =2或-6.答案 (1)5x +3y -1=0 (2)[0,10] (3)2或-6 规律方法 1.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.2.利用距离公式应注意:(1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;(2)应用两平行线间的距离公式要把两直线方程中x ,y 的系数分别化为相等.【训练2】 (1)(2019·贵阳监测)已知曲线y =a x (a >0且a ≠1)恒过点A (m ,n ),则点A 到直线x +y -3=0的距离为________.(2)(一题多解)直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析 (1)由题意,可知曲线y =a x (a >0且a ≠1)恒过点(0,1),所以A (0,1),点A (0,1)到直线x +y -3=0的距离d =|0+1-3|2= 2.(2)法一 当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13. ∴直线l 的方程为y -2=-13(x +1), 即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.法二 当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1.答案 (1)2 (2)x +3y -5=0或x =-1 考点三 对称问题多维探究角度1 对称问题的求解【例3-1】 若点(a ,b )关于直线y =2x 的对称点在x 轴上,则a ,b 满足的条件为( ) A.4a +3b =0 B.3a +4b =0 C.2a +3b =0D.3a +2b =0解析 设点(a ,b )关于直线y =2x 的对称点为(t ,0),则有⎩⎪⎨⎪⎧b -0a -t ×2=-1,b +02=2×a +t 2,解得4a +3b =0. 答案 A角度2 对称问题的应用【例3-2】 (一题多解)光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程. 解 法一 由⎩⎨⎧x -2y +5=0,3x -2y +7=0,得⎩⎨⎧x =-1,y =2.∴反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0), 由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5.而PP ′的中点Q 的坐标为⎝ ⎛⎭⎪⎫x 0-52,y 02,又Q 点在l 上,∴3·x 0-52-2·y 02+7=0. 由⎩⎪⎨⎪⎧y 0x 0+5=-23,32(x 0-5)-y 0+7=0,得⎩⎪⎨⎪⎧x 0=-1713,y 0=-3213.根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0.法二 设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ),则y 0-y x 0-x=-23, 又PP ′的中点Q ⎝ ⎛⎭⎪⎫x +x 02,y +y 02在l 上,∴3×x +x 02-2×y +y 02+7=0,由⎩⎪⎨⎪⎧y 0-y x 0-x =-23,3×x +x2-(y +y 0)+7=0. 可得P 点的横、纵坐标分别为x 0=-5x +12y -4213,y 0=12x +5y +2813,代入方程x -2y +5=0中,化简得29x -2y +33=0, ∴所求反射光线所在的直线方程为29x -2y +33=0.规律方法 1.解决点关于直线对称问题要把握两点,点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,且直线l 与直线MN 垂直.2.如果直线或点关于点成中心对称问题,则只需运用中点公式就可解决问题.3.若直线l 1,l 2关于直线l 对称,则有如下性质:(1)若直线l 1与l 2相交,则交点在直线l 上;(2)若点B 在直线l 1上,则其关于直线l 的对称点B ′在直线l 2上. 【训练3】 已知三角形的一个顶点A (4,-1),它的两条角平分线所在直线的方程分别为l 1:x -y -1=0和l 2:x -1=0,则BC 边所在直线的方程为________. 解析 A 不在这两条角平分线上,因此l 1,l 2是另两个角的角平分线所在直线.点A 关于直线l 1的对称点A 1,点A 关于直线l 2的对称点A 2均在边BC 所在直线l 上.设A 1(x 1,y 1),则有⎩⎪⎨⎪⎧y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=3,所以A 1(0,3).同理设A 2(x 2,y 2),易求得A 2(-2,-1). 所以BC 边所在直线方程为2x -y +3=0. 答案 2x -y +3=[思维升华]1.两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l 1,l 2,l 1∥l 2⇔k 1=k 2;l 1⊥l 2⇔k 1·k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率一定要特别注意.2.对称问题一般是将线与线的对称转化为点与点的对称.利用坐标转移法解决问题. [易错防范]1.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据判定定理判断,若直线无斜率,要单独考虑.2.在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B2时,一定要注意将两方程中x ,y的系数分别化为相同的形式.数学抽象——活用直线系方程1.数学抽象素养水平表现为能够在关联的情境中抽象出一般的数学概念和规则,能够将已知数学命题推广到更一般情形.本课时中研究直线方程时常用到直线系方程就是其具体表现之一.2.直线系方程的常见类型(1)过定点P(x0,y0)的直线系方程是:y-y0=k(x-x0)(k是参数,直线系中未包括直线x=x0),也就是平常所提到的直线的点斜式方程;(2)平行于已知直线Ax+By+C=0的直线系方程是:Ax+By+λ=0(λ是参数且λ≠C);(3)垂直于已知直线Ax+By+C=0的直线系方程是:Bx-Ay+λ=0(λ是参数);(4)过两条已知直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0的交点的直线系方程是:A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R,但不包括l2).类型1相交直线系方程【例1】(一题多解)已知两条直线l1:x-2y+4=0和l2:x+y-2=0的交点为P,求过点P且与直线l3:3x-4y+5=0垂直的直线l的方程.解法一解l1与l2组成的方程组得到交点P(0,2),因为k3=34,所以直线l的斜率k=-43,方程为y-2=-43x,即4x+3y-6=0.法二设所求l的直线为:4x+3y+c=0,由法一可知:P(0,2),将其代入方程,得c=-6,所以直线l的方程为4x+3y-6=0.法三设所求直线l的方程为:x-2y+4+λ(x+y-2)=0,即(1+λ)x+(λ-2)y+4-2λ=0,因为直线l与l3垂直,所以3(1+λ)-4(λ-2)=0,所以λ=11,所以直线l的方程为4x+3y-6=0.类型2平行直线系方程【例2】求过点A(1,-4)且与直线2x+3y+5=0平行的直线方程.解设所求直线方程为2x+3y+c=0(c≠5),由题意知,2×1+3×(-4)+c=0,所以c=10,故所求直线方程为2x+3y+10=0.【例3】已知直线l1与直线l2:x-3y+6=0平行,l1能和x轴、y轴围成面积为8的三角形,请求出直线l1的方程.解设直线l1的方程为:x-3y+c=0(c≠6),则令y=0,得x=-c;令x=0,得y=c3,依照题意有:12×|-c|×⎪⎪⎪⎪⎪⎪c3=8,c=±4 3.所以l1的方程是:x-3y±43=0.【例4】(一题多解)已知直线方程3x-4y+7=0,求与之平行而且在x轴、y轴上的截距和是1的直线l的方程.解法一设存在直线l:xa+yb=1,则a+b=1和-ba=34组成的方程组的解为a=4,b=-3.故l的方程为:x4-y3=1,即3x-4y-12=0.法二根据平行直线系方程的内容可设直线l为:3x-4y+c=0(c≠7),则直线l在两坐标轴上截距分别对应的是-c3,c4,由-c3+c4=1,知c=-12.故直线l的方程为:3x-4y-12=0.类型3垂直直线系方程【例5】求经过A(2,1),且与直线2x+y-10=0垂直的直线l的方程.解因为所求直线与直线2x+y-10=0垂直,所以设该直线方程为x-2y+c=0,又直线过点A(2,1),所以有2-2×1+c=0,解得c=0,即所求直线方程为x-2y=0.类型4直线系方程的应用【例6】已知三角形三边所在的直线方程分别为:2x-y+4=0,x+y-7=0,2x-7y-14=0,求边2x-7y-14=0上的高所在的直线方程.解设所求高所在的直线方程为2x-y+4+λ(x+y-7)=0,即(2+λ)x+(λ-1)y+(4-7λ)=0,可得(2+λ)×2+(λ-1)×(-7)=0,解得λ=11 5,所以所求高所在的直线方程为7x+2y-19=0.【例7】求过直线2x+7y-4=0与7x-21y-1=0的交点,且和A(-3,1),B (5,7)等距离的直线方程.解 设所求直线方程为2x +7y -4+λ(7x -21y -1)=0,即(2+7λ)x +(7-21λ)y +(-4-λ)=0,由点A (-3,1),B (5,7)到所求直线等距离,可得 |(2+7λ)×(-3)+(7-21λ)×1-4-λ|(2+7λ)2+(7-21λ)2=|(2+7λ)×5+(7-21λ)×7-4-λ|(2+7λ)2+(7-21λ)2, 整理可得|43λ+3|=|113λ-55|,解得λ=2935或λ=13,所以所求的直线方程为21x -28y -13=0或x =1.基础巩固题组(建议用时:40分钟)一、选择题1.直线2x +y +m =0和x +2y +n =0的位置关系是( )A.平行B.垂直C.相交但不垂直D.不能确定 解析 直线2x +y +m =0的斜率k 1=-2,直线x +2y +n =0的斜率为k 2=-12,则k 1≠k 2,且k 1k 2≠-1.答案 C2.已知两直线方程分别为l 1:x +y =1,l 2:ax +2y =0,若l 1⊥l 2,则a =( )A.2B.-2C.12D.-12解析 因为l 1⊥l 2,所以k 1k 2=-1,即a 2=-1,解得a =-2. 答案 B3.(一题多解)过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为( )A.19x -9y =0B.9x +19y =0C.19x -3y =0D.3x +19y =0解析 法一 由⎩⎪⎨⎪⎧x -3y +4=0,2x +y +5=0,得⎩⎪⎨⎪⎧x =-197,y =37,则所求直线方程为:y =37-197x =-319x ,即3x +19y =0.法二 设直线方程为x -3y +4+λ(2x +y +5)=0,即(1+2λ)x -(3-λ)y +4+5λ=0,又直线过点(0,0),所以(1+2λ)·0-(3-λ)·0+4+5λ=0,解得λ=-45,故所求直线方程为3x +19y =0.答案 D4.从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为( )A.x +2y -4=0B.2x +y -1=0C.x +6y -16=0D.6x +y -8=0 解析 由直线与向量a =(8,4)平行知,过点(2,3)的直线的斜率k =12,所以直线的方程为y -3=12(x -2),其与y 轴的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式知A 正确. 答案 A5.(2019·运城二模)在平面直角坐标系内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2=( ) A.102 B.10 C.5 D.10解析 由题意知P (0,1),Q (-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,∴MP ⊥MQ ,∴|MP |2+|MQ |2=|PQ |2=9+1=10.答案 D6.(2019·安庆模拟)若直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,则m =( )A.7B.172C.14D.17解析 直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离为10,所以|2m +3|4+36=10,求得m =172.答案 B7.已知坐标原点关于直线l 1:x -y +1=0的对称点为A ,设直线l 2经过点A ,则当点B (2,-1)到直线l 2的距离最大时,直线l 2的方程为( )A.2x +3y +5=0B.3x -2y +5=0C.3x +2y +5=0D.2x -3y +5=0 解析 设A (x 0,y 0),依题意可得⎩⎪⎨⎪⎧x 02-y 02+1=0,y 0x 0=-1,解得⎩⎪⎨⎪⎧x 0=-1,y 0=1,即A (-1,1).设点B (2,-1)到直线l 2的距离为d ,当d =|AB |时取得最大值,此时直线l 2垂直于直线AB ,又-1k AB=32,∴直线l 2的方程为y -1=32(x +1),即3x -2y +5=0 . 答案 B8.一只虫子从点(0,0)出发,先爬行到直线l :x -y +1=0上的P 点,再从P 点出发爬行到点A (1,1),则虫子爬行的最短路程是( )A. 2B.2C.3D.4解析 点(0,0)关于直线l :x -y +1=0的对称点为(-1,1),则最短路程为(-1-1)2+(1-1)2=2.答案 B二、填空题9.(2018·郑州模拟)如果直线ax +2y +3a =0与直线3x +(a -1)y =a -7平行,则a=________.解析 ∵直线ax +2y +3a =0与直线3x +(a -1)y =a -7平行,即直线ax +2y +3a =0与直线3x +(a -1)y -(a -7)=0平行,∴a 3=2a -1≠3a -(a -7),解得a =3.答案 310.(2019·安徽四校联考)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析 设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a -(-3)=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 答案 6x -y -6=011.(一题多解)(2018·南昌模拟)已知点A (1,0),B (3,0),若直线y =kx +1上存在一点P ,满足PA ⊥PB ,则k 的取值范围是________.解析 法一 设P (x 0,kx 0+1),依题意可得k PA ·k PB =-1,即kx 0+1x 0-1×kx 0+1x 0-3=-1,即(k 2+1)x 20+(2k -4)x 0+4=0,则Δ=(2k -4)2-16(k 2+1)≥0,化简得3k 2+4k ≤0,解得-43≤k ≤0,故k 的取值范围是⎣⎢⎡⎦⎥⎤-43,0. 法二 若直线y =kx +1上存在点P ,满足PA ⊥PB ,则直线y =kx +1与以AB 为直径的圆(x -2)2+y 2=1有公共点,故|2k +1|1+k 2≤1,即3k 2+4k ≤0,故-43≤k ≤0,k 的取值范围为⎣⎢⎡⎦⎥⎤-43,0.答案 ⎣⎢⎡⎦⎥⎤-43,0 三、解答题12.已知方程(2+λ)x -(1+λ)y -2(3+2λ)=0与点P (-2,2).(1)证明:对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;(2)证明:该方程表示的直线与点P 的距离d 小于4 2.(1)解 显然2+λ与-(1+λ)不可能同时为零,故对任意的实数λ,该方程都表示直线.∵方程可变形为2x -y -6+λ(x -y -4)=0,∴⎩⎨⎧2x -y -6=0,x -y -4=0,解得⎩⎨⎧x =2,y =-2, 故直线经过的定点为M (2,-2).(2)证明 过P 作直线的垂线段PQ ,由垂线段小于斜线段知|PQ |≤|PM |,当且仅当Q 与M 重合时,|PQ |=|PM |,此时对应的直线方程是y +2=x -2,即x -y -4=0.但直线系方程唯独不能表示直线x -y -4=0,∴M 与Q 不可能重合,即|PM |=42,∴|PQ |<42,故所证成立.能力提升题组(建议用时:15分钟)13.(2018·丹东二模)已知直线l 1:2x -y +3=0,直线l 2:4x -2y -1=0和直线l 3:x +y -1=0,若点M 同时满足下列条件:(1)点M 是第一象限的点;(2)点M 到l 1的距离是到l 2的距离的12;(3)点M 到l 1的距离与到l 3的距离之比是2∶ 5.则点M 的坐标为( )A.⎝ ⎛⎭⎪⎫13,2 B.⎝ ⎛⎭⎪⎫13,3718 C.⎝ ⎛⎭⎪⎫19,2 D.⎝ ⎛⎭⎪⎫19,3718 解析 设点M (x 0,y 0),若点M 满足(2),则|2x 0-y 0+3|5=12×|4x 0-2y 0-1|16+4,故2x 0-y 0+132=0或2x 0-y 0+116=0,若点M (x 0,y 0)满足(3),由点到直线的距离公式,得|2x 0-y 0+3|5=25×|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,故x 0-2y 0+4=0或3x 0+2=0,由于点M (x 0,y 0)在第一象限,故3x 0+2=0不符合题意,联立方程得⎩⎨⎧2x 0-y 0+132=0,x 0-2y 0+4=0,解得⎩⎨⎧x 0=-3,y 0=12不符合题意;联立方程得⎩⎨⎧2x 0-y 0+116=0,x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=19,y 0=3718,即点M 的坐标为⎝ ⎛⎭⎪⎫19,3718. 答案 D 14.(2019·岳阳模拟)已知动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m )且Q (4,0)到动直线l 的最大距离为3,则12a +2c 的最小值为( )A.92B.94C.1D.9解析 因为动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),所以a +bm +c -2=0,设点Q (4,0)到直线l 的距离为d ,当d =|PQ |时取最大值,所以(4-1)2+(-m )2=3,解得m =0.所以a +c =2,则12a +2c =12(a +c )·⎝ ⎛⎭⎪⎫12a +2c =12·⎝ ⎛⎭⎪⎫52+c 2a +2a c ≥12(52+2c 2a ·2a c )=94,当且仅当c =2a =43时取等号.答案 B15.若△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,则直线BC 的方程为________. 解析 由AC 边上的高BH 所在直线方程为x -2y -5=0可以知道k AC =-2,又A (5,1),AC 边所在直线方程为2x +y -11=0,联立直线AC 与直线CM 方程得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,解得⎩⎪⎨⎪⎧x =4,y =3,所以顶点C 的坐标为C (4,3). 设B (x 0,y 0),AB 的中点M 为⎝ ⎛⎭⎪⎫x 0+52,y 0+12, 由M 在直线2x -y -5=0上,得2x 0-y 0-1=0,B 在直线x -2y -5=0上,得x 0-2y 0-5=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0.解得⎩⎪⎨⎪⎧x 0=-1,y 0=-3,所以顶点B 的坐标为(-1,-3).于是直线BC 的方程为6x -5y -9=0.答案 6x -5y -9=016.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,3)对称,则直线l 的方程是________________.解析 由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1:y =k (x -3)+5+b ,将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,则平移后的直线方程为y =k (x -3-1)+b +5-2,即y =kx +3-4k +b ,∴b =3-4k +b ,解得k =34,∴直线l 的方程为y =34x +b ,直线l 1为y =34x +114+b ,取直线l 上的一点P ⎝ ⎛⎭⎪⎫m ,b +3m 4,则点P 关于点(2,3)的对称点为⎝ ⎛⎭⎪⎫4-m ,6-b -3m 4, ∴6-b -3m 4=34(4-m )+b +114,解得b =18.∴直线l 的方程是y =34x +18,即6x -8y +1=0.答案 6x -8y +1=0。
直线与平面的垂直关系
a
P
b
在上作两条相交直线
a ,m ,n , a m, a n, a // b b m, b n, m n P b
8
mn P
m
n
3.线面垂直的性质(公理) (1)过一点有且只有一条直线和一个平面垂直;
OC与OA的射影OB所成的角为1 ,设∠AOC为2
求证:cos2= cos 1 ×cos
A
θ2
O
B
C
1
40
例6、已知正方体ABCD-A1B1C1D1中,求直线B1C和 平面D1AC所成的角。 D1
A1
C1 B1
H D C
A
B
41
平面与平面垂直的判定与性质
42
一.二面角的定义及求法
M
O
斜线上一点与垂足间的线段叫做这个点到平面的垂线段。 垂足与斜足间的线段叫做这点到平面的斜线段在这个平 面上的射影。
20
思考:直线l在平面上的射影与点A在l上的取法是 否有关? 假设在直线l上另取点A'(异 于M),在面AMO内过A'作 A'O'//AO交MO于点O'。 因为AO⊥平面 , 所以A'O'⊥平面 。 所以直线l在平面 上的投影是直线MO' (即MO) 直线l在平面上的射影与点A在l上的取法无关! 即对于任意一条斜线在平面内的射影是唯一的!
③求出斜线段、射影、垂线段的长度;
④解此直角三角形。
其中关键是确定斜足和垂足
34
回顾有关概念: AM 平面α的一条斜线 M 线段AM 斜足
直线平面垂直的判定及其性质
如果一条直线与一个平面垂直,则这条直线垂直于这个平面内的任意一条直线 。
直线与平面垂直的判定定理
如果一条直线垂直于一个平面内的两条相交直线,则这条直 线与这个平面垂直。
如果一个平面内的一条直线垂直于这个平面外的一条直线, 则这个平面与这条直线垂直。
直线与平面垂直的充分必要条件
光学
直线与平面垂直的性质在光学中也有应用,例如光线从 一个介质射向另一个介质时会发生折射,而光线的折射 方向通常与光线所在的平面垂直。
05
直线与平面垂直的习题与解析
例题一:直线与平面垂直的判定
总结词
直线与平面垂直的判定定理是,如果一条直线垂直于 一个平面内的两条相交直线,则这条直线垂直于这个 平面。
利用判定定理证明
总结词
利用直线与平面垂直的判定定理证明。
详细描述
根据直线与平面垂直的判定定理,如果一条 直线垂直于平面内两条相交的直线,那么这 条直线与这个平面垂直。因此,要证明直线 与平面垂直,我们可以将直线与平面内两条 相交的直线垂直作为已知条件,然后利用判
定定理进行证明。利用性质来自明要点一关系。
垂直平分线
利用直线与平面垂直的性质,我们 可以找到一个图形的垂直平分线, 从而将图形分为两个相等的部分。
等腰三角形
在几何作图中,直线与平面垂直的 性质可以帮助我们证明一个三角形 是等腰三角形,以及找到它的腰和 底边。
在立体几何中的应用
空间直线与平面
在立体几何中,直线与平面垂直 的性质可以帮助我们确定空间直
线和平面之间的关系。
体积计算
通过利用直线与平面垂直的性质 ,我们可以计算某些立体图形的
体积。
投影问题
在立体几何中,直线与平面垂直 的性质可以帮助我们解决投影问 题,例如一个平面投影到一个直
直线与平面垂直平面与平面垂直的性质
2023-10-28CATALOGUE目录•直线与平面垂直的性质•平面与平面垂直的性质•直线与平面垂直和面面垂直在几何中的应用•直线与平面垂直和平面与平面垂直的证明方法01直线与平面垂直的性质03直线与平面垂直的性质定理如果一条直线与一个平面垂直,则这条直线垂直于这个平面内的任意一条直线。
直线与平面垂直的定义01直线与平面垂直的定义如果一条直线垂直于一个平面内的任意一条直线,则这条直线与这个平面垂直。
02直线与平面垂直的判定定理如果一条直线垂直于一个平面内的两条相交直线,则这条直线与这个平面垂直。
直线与平面垂直的判定定理证明直线与平面垂直的方法利用直线与平面垂直的判定定理,如果一条直线垂直于一个平面内的两条相交直线,则这条直线与这个平面垂直。
实际应用在几何学中,直线与平面垂直的判定定理可以用来证明线面垂直关系,进而解决实际问题。
直线与平面垂直的判定定理如果一条直线垂直于一个平面内的两条相交直线,则这条直线与这个平面垂直。
直线与平面垂直的性质定理直线与平面垂直的性质定理如果一条直线与一个平面垂直,则这条直线垂直于这个平面内的任意一条直线。
证明直线与平面垂直的方法利用直线与平面垂直的性质定理,如果一条直线与一个平面垂直,则这条直线垂直于这个平面内的任意一条直线。
实际应用在几何学中,直线与平面垂直的性质定理可以用来证明线面垂直关系,进而解决实际问题。
02平面与平面垂直的性质平面与平面垂直的定义如果一个平面与另一个平面内的任何一条直线都垂直,那么这两个平面就互相垂直。
定义的应用通过定义可以判断两个平面是否垂直,也可以通过已知一个平面垂直于另一个平面来推导其他线面、面面的垂直关系。
平面与平面垂直的定义定理内容如果一个平面内垂直于两个平面的交线的直线垂直于另一个平面,那么这两个平面就互相垂直。
定理的推导通过交线的垂直关系,可以推导出其他线面、面面的垂直关系。
如果两个平面互相垂直,那么其中一个平面内的直线垂直于另一个平面。
直线与平面垂直、平面与平面垂直的性质课件(优质课)
在工程设计中的应用
机械设计
在机械设计中,直线与平面垂直、平面与平面垂直的性质对于确保机械部件的稳定性和精 确性至关重要。例如,在制造精密仪器或高精度机械设备时,需要严格控制各个部件之间 的垂直关系。
电子设备
在设计和制造电子设备如电视、电脑和手机时,需要利用直线与平面垂直、平面与平面垂 直的性质来确保设备的稳定性和可靠性。
C. 平行于同一条直线的两条直线一定 平行
基础习题
4、题目:下列说法正确的是( )
A.垂直于同一平面的两直线平行 B.平行于同一平面的两直线平行
C.若直线$a$不垂直于平面$beta$内的无数条直线,则$a$也不垂直于平 面$beta$ D.若直线$a$不垂直于平面$beta$,则直线$a$与平面$beta$ 有斜交
解析:根据空间线面位置关系的定义及判定定理得D正确.在A中,过 $a$上任一点 $P$作直线 $c/backslash/$ $a$,则 $c,b$相交或为异面直线,故A错误;在B中, 可取 $a/backslash/b$判断B错误;在C中,可取 $a,b$都垂直于第三个平面判断C 错误.故选D.
THANKS
直线与平面垂直的性质定理
性质定理一
如果一条直线与平面垂直, 那么这条直线与平面内的任 意一条直线都垂直。
性质定理二
如果一条直线与平面垂直, 那么这条直线上任意一点到 平面的距离都相等。
性质定理三
如果两条直线分别与同一 个平面垂直,那么这两条 直线平行。
Part
02
平面与平面垂直的性质
平面与平面垂直的定义
A. 若直线与平面有两个公共点,则该直线在平面内
进阶习题
B. 若直线 l 上有无数个点不在 平面 α 内,则 l ∥ α
直线和平面垂直
《直线和平面垂直》课件
如何判定直线和平面是否垂直?
方法一
找到平面上的一条直线,然后判断这条直线与 给定直线的夹角是否为90度。
方法二
判断给定直线上的两个不同点是否在平面内, 并且这两条线段与平面上某条线段共线。
垂直线和平面的应用
建筑工程
在建筑工程中,垂直线和平面的应用非常重要, 特别是在确定墙壁、柱子和梁等结构的位置时。
1 垂直定义
两个物体或几何图形之间的关系,使它们形成一个直角。
2 垂直关系
两个对象之间的垂直关系是指它们之间存在一个垂直角或垂直线。
直线和平面垂直的概念
1 定义
当一条直线与一个平面相交时,如果这条直线与该平面的任意一条线垂直相交,则称该 直线和平面垂直。
2 性质
垂直线与平面的交点是平面上到垂直线最短距离的垂足。
数学
垂直关系是几何学中一个重要的基本概念,涉及 到垂直线段、垂直角等概念的计算。
如何画出垂直线和。
2
步骤二
画出一个线段从垂足到平面上的一个点。
3
步骤三
画出一条直线通过垂足与这个线段相交。
垂足的概念和性质
垂足的定义
垂足是直线与平面相交时,所在直线在平面 上的垂直投影所在的点。
垂足的性质
垂足到直线的距离最短,垂足到平面的距离 也最短。
垂线的作用
1 标定垂直角的度量
通过垂线可以测量两条交叉直线之间的垂直角。
2 判断垂直关系
通过观察垂线的存在与否,我们可以判断两个物体或几何图形之间是否存在垂直关系。
直线和平面垂直
在这个PPT课件中,你将学习到直线和平面的垂直关系。我们将探索其定义、 性质以及应用,并了解如何判断、画出垂直线和平面。
直线和平面的定义
数学-直线与平面垂直
直线与平面垂直高中数学1.了解直线与平面垂直的定义;了解直线与平面所成角的概念.2.掌握直线与平面垂直的判定定理,并会用定理判定线面垂直.3.掌握直线与平面垂直的性质定理,并会用定理证明相关问题.导语 在日常生活中,我们对直线与平面垂直有很多感性认识.比如,旗杆与地面的位置关系,教室里相邻墙面的交线与地面的位置关系等,都给我们以直线与平面垂直的形象.一、直线与平面垂直的定义问题1 如图,假设旗杆与地面的交点为点B ,在阳光下观察,直立于地面的旗杆AB 及它在地面的影子BC ,随着时间的变化,影子BC的位置在不断地变化,它们的位置关系如何?提示 始终保持垂直.问题2 在同一平面内,过一点有且只有一条直线与已知直线垂直,将这一结论推广到空间,过一点垂直于已知平面的直线有几条?提示 可以发现,过一点垂直于已知平面的直线有且只有一条.知识梳理 1.直线与平面垂直的定义及画法定义如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直记法l ⊥α有关概念直线l 叫做平面α的垂线,平面α叫做直线l 的垂面,它们唯一的公共点P 叫做垂足图示画法画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直2.过一点垂直于已知平面的直线有且只有一条,该点与垂足间的线段叫做这个点到该平面的垂线段,垂线段的长度叫做这个点到该平面的距离.例1 (多选)下列命题中,不正确的是( )A.若直线l与平面α内的一条直线垂直,则l⊥αB.若直线l不垂直于平面α,则α内没有与l垂直的直线C.若直线l不垂直于平面α,则α内也可以有无数条直线与l垂直D.若直线l与平面α内的无数条直线垂直,则l⊥α答案 ABD解析 当l与α内的一条直线垂直时,不能保证l与平面α垂直,所以A不正确;当l与α不垂直时,l可能与α内的无数条平行直线垂直,所以B不正确,C正确;若l在α内,l也可以和α内的无数条直线垂直,故D错误.反思感悟 对于线面垂直的定义要注意“直线垂直于平面内的所有直线”说法与“直线垂直于平面内无数条直线”不是一回事.跟踪训练1 (多选)下列说法,正确的是( )A.若直线l垂直于α,则直线l垂直于α内任一直线B.若直线l垂直于平面α,则l与平面α内的直线可能相交,可能异面,也可能平行C.若a∥b,a⊂α,l⊥α,则l⊥bD.若a⊥b,b⊥α,则a∥α答案 AC解析 由线面垂直的定义知,A正确;当l⊥α时,l与α内的直线相交或异面,但不会平行,故B错;C显然是正确的;而D中,a可能在α内,所以D错误.二、直线与平面垂直的判定定理问题3 如图,过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD,DC与桌面接触).观察并思考:折痕AD与桌面垂直吗?为什么?若不垂直,如何翻折才能使折痕AD与桌面所在的平面垂直?提示 折痕AD是BC边上的高时,AD与桌面垂直.这时,由于翻折之后垂直关系不变,所以直线AD与平面α内的两条相交直线BD,CD都垂直.知识梳理 文字语言如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直l⊥a,l⊥b,a⊂α,b⊂α,a∩b=P⇒l符号语言⊥α图形语言例2 如图所示,在正方体ABCD-A1B1C1D1中,M为CC1的中点,AC与BD交于点O,求证:A1O⊥平面MBD.证明 ∵四边形ABCD为正方形,∴BD⊥AC,又AA1⊥平面ABCD,∴AA1⊥BD且AA1∩AC=A,∴BD⊥平面AA1O,∴BD⊥A1O,令正方体的棱长为2,连接OM,A1M(图略),63则A1O=,OM=,A1M=3,∴A1O2+OM2=A1M2,∴A1O⊥OM,又OM∩BD=O,∴A1O⊥平面MBD.反思感悟 证明线面垂直的方法(1)由线线垂直证明线面垂直:①定义法(不常用);②判定定理(最常用),要着力寻找平面内的两条相交直线(有时需要作辅助线),使它们与所给直线垂直.(2)平行转化法(利用推论):①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.跟踪训练2 如图,AB为⊙O的直径,PA垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足.(1)求证:AN ⊥平面PBM ;(2)若AQ ⊥PB ,垂足为Q ,求证:NQ ⊥PB .证明 (1)∵AB 为⊙O 的直径,∴AM ⊥BM .又PA ⊥平面ABM ,BM ⊂平面ABM ,∴PA ⊥BM .又∵PA ∩AM =A ,PA ,AM ⊂平面PAM ,∴BM ⊥平面PAM .又AN ⊂平面PAM ,∴BM ⊥AN .又AN ⊥PM ,且BM ∩PM =M ,BM ,PM ⊂平面PBM ,∴AN ⊥平面PBM .(2)由(1)知AN ⊥平面PBM ,PB ⊂平面PBM ,∴AN ⊥PB .又∵AQ ⊥PB ,AN ∩AQ =A ,AN ,AQ ⊂平面ANQ ,∴PB ⊥平面ANQ .又NQ ⊂平面ANQ ,∴PB ⊥NQ .三、直线与平面所成的角问题4 当一支铅笔一端放在桌面上,另一端逐渐离开桌面,铅笔和桌面所成角逐渐增大,观察思考铅笔和桌面所成角怎样定义?提示 铅笔和它在桌面上的射影所成的角.知识梳理 直线与平面所成的角有关概念对应图形斜线一条直线与一个平面相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,如图中直线PA斜足斜线和平面的交点,如图中点A射影过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面上的射影,如图中斜线PA 在平面α上的射影为直线AO直线与平面所成的角定义:平面的一条斜线和它在平面上的射影所成的角,如图中∠PAO规定:一条直线垂直于平面,它们所成的角是90°;一条直线和平面平行,或在平面内,它们所成的角是0°取值范围设直线与平面所成的角为θ,则0°≤θ≤90°例3 如图,在正方体ABCD -A 1B 1C 1D 1中.(1)求A 1B 与平面AA 1D 1D 所成的角;(2)求A 1B 与平面BB 1D 1D 所成的角.解 (1)∵AB ⊥平面AA 1D 1D ,∴∠AA 1B 就是A 1B 与平面AA 1D 1D 所成的角,在Rt △AA 1B 中,∠BAA 1=90°,AB =AA 1,∴∠AA 1B =45°,∴A 1B 与平面AA 1D 1D 所成的角是45°.(2)连接A 1C 1交B 1D 1于点O ,连接BO .∵A 1O ⊥B 1D 1,BB 1⊥A 1O ,BB 1∩B 1D 1=B 1,BB 1,B 1D 1⊂平面BB 1D 1D ,∴A 1O ⊥平面BB 1D 1D ,∴∠A 1BO 就是A 1B 与平面BB 1D 1D 所成的角.设正方体的棱长为1,则A 1B =,A 1O =.222又∵∠A 1OB =90°,∴sin ∠A 1BO ==,又0°≤∠A 1BO ≤90°,A 1O A 1B 12∴∠A 1BO =30°,∴A 1B 与平面BB 1D 1D 所成的角是30°.反思感悟 求直线与平面所成的角的步骤(1)作(找)——作(找)出直线和平面所成的角.(2)证——证明所作或找到的角就是所求的角.(3)求——常用解三角形的方法(通常是解由垂线、斜线、射影所组成的直角三角形).(4)答.跟踪训练3 如图,在正方体ABCD -A 1B 1C 1D 1中,求直线A 1B 和平面A 1DCB 1所成的角.解 连接BC 1,BC 1与B 1C 相交于点O ,连接A 1O .设正方体的棱长为a .因为A 1B 1⊥B 1C 1,A 1B 1⊥B 1B ,B 1C 1∩B 1B =B 1,B 1C 1,B 1B ⊂平面BCC 1B 1,所以A 1B 1⊥平面BCC 1B 1,所以A 1B 1⊥BC 1.又因为BC 1⊥B 1C ,A 1B 1∩B 1C =B 1,A 1B 1,B 1C ⊂平面A 1DCB 1,所以BC 1⊥平面A 1DCB 1,所以A 1O 为斜线A 1B 在平面A 1DCB 1上的射影,∠BA 1O 为A 1B 和平面A 1DCB 1所成的角.在Rt △A 1BO 中,A 1B =a ,BO =a ,222所以BO =A 1B .12所以∠BA 1O =30°,所以直线A 1B 和平面A 1DCB 1所成的角为30°.四、直线与平面垂直的性质定理问题5 我们知道,在平面内,垂直于同一条直线的两条直线平行,在空间中是否有类似的性质呢?提示 在空间中,垂直于同一直线的两直线不一定平行,但是垂直于同一平面的两直线一定平行.知识梳理 文字语言垂直于同一个平面的两条直线平行符号语言Error!⇒a∥b图形语言注意点:(1)直线与平面垂直的性质定理给出了判定两条直线平行的另一种方法.(2)直线与平面垂直的性质定理揭示了空间中平行与垂直关系的内在联系,提供了垂直与平行关系转化的依据.例4 如图,在四棱锥P-ABCD中,底面ABCD是矩形,AB⊥平面PAD,AD=AP,E是PD的中点,M,N分别在AB,PC上,且MN⊥AB,MN⊥PC.证明:AE∥MN.证明 ∵AB⊥平面PAD,AE⊂平面PAD,∴AE⊥AB,又AB∥CD,∴AE⊥CD.∵AD=AP,E是PD的中点,∴AE⊥PD.又CD∩PD=D,CD,PD⊂平面PCD,∴AE⊥平面PCD.∵MN⊥AB,AB∥CD,∴MN⊥CD.又∵MN⊥PC,PC∩CD=C,PC,CD⊂平面PCD,∴MN⊥平面PCD,∴AE∥MN.反思感悟 证明线线平行的常用方法(1)利用线线平行定义:证共面且无公共点.(2)利用基本事实4:证两线同时平行于第三条直线.(3)利用线面平行的性质定理:把证线线平行转化为证线面平行.(4)利用线面垂直的性质定理:把证线线平行转化为证线面垂直.(5)利用面面平行的性质定理:把证线线平行转化为证面面平行.跟踪训练4 如图,α∩β=l,PA⊥α,PB⊥β,垂足分别为A,B,a⊂α,a⊥AB.求证:a∥l.证明 ∵PA⊥α,l⊂α,∴PA⊥l.同理PB⊥l.∵PA∩PB=P,PA,PB⊂平面PAB,∴l⊥平面PAB.又∵PA⊥α,a⊂α,∴PA⊥a.∵a⊥AB,PA∩AB=A,PA,AB⊂平面PAB,∴a⊥平面PAB.∴a∥l.1.知识清单:(1)直线与平面垂直的定义.(2)直线与平面垂直的判定定理.(3)直线与平面所成的角.(4)直线与平面垂直的性质定理.2.方法归纳:转化思想,数形结合.3.常见误区:判定定理理解“平面内找两条相交直线”与该直线垂直.1.给出下列三个命题:①一条直线垂直于一个平面内的三条直线,则这条直线和这个平面垂直;②一条直线与一个平面内的任何直线所成的角相等,则这条直线和这个平面垂直;③一条直线垂直于平面内的任意一条直线,则这条直线与这个平面垂直.其中正确的个数是( )A.0 B.1 C.2 D.3答案 C解析 ①错误,②③正确.2.(多选)下列命题正确的是( )A.Error!⇒b⊥αB.Error!⇒b∥αC.Error!⇒a⊥βD.Error!⇒a∥b答案 ACD3.正方体ABCD-A1B1C1D1的棱长为a,E是CC1的中点,则E到A1B的距离是( )A.aB.a 3362C.aD.a 52324答案 D 解析 如图,取BB 1的中点F ,过点F 作FH ⊥A 1B 于点H ,连接EF ,EH .在正方形BCC 1B 1中,E ,F 分别是CC 1,BB 1的中点,∴EF ∥BC ,又BC ⊥平面ABB 1A 1,∴EF ⊥平面ABB 1A 1,∴EF ⊥A 1B ,又FH ⊥A 1B ,FH ∩EF =F ,∴A 1B ⊥平面EFH ,∴A 1B ⊥EH ,故EH为点E 到直线A 1B 的垂线段.在Rt △FHB 中,FB =,∠FBH =,故FH =FB ·sin ∠FBH =a 2π4a ,在Rt △FEH 中,EF =a ,EH ===a ,24EF 2+FH 2a 2+(24a )2324∴E 到A 1B 的距离等于a .3244.如图所示,在三棱锥P -ABC 中,PA ⊥平面ABC ,PA =AB ,则直线PB 与平面ABC 所成角的度数为________.答案 45°解析 因为PA ⊥平面ABC ,所以斜线PB 在平面ABC 上的射影为AB ,所以∠PBA 即为直线PB 与平面ABC 所成的角.在△PAB 中,∠BAP =90°,PA =AB ,所以∠PBA =45°,即直线PB 与平面ABC 所成的角等于45°.课时对点练1.已知△ABC ,若直线l ⊥AB ,l ⊥AC ,直线m ⊥BC ,m ⊥AC ,则l ,m 的位置关系是( )A .相交B .异面C .平行D .不确定答案 C解析 依题意知l⊥平面ABC,m⊥平面ABC,∴l∥m.2.如图,在正方体ABCD-A1B1C1D1中,与AD1垂直的平面是( )A.平面DD1C1CB.平面A1DB1C.平面A1B1C1D1D.平面A1DB答案 B解析 ∵AD1⊥A1D,AD1⊥A1B1,A1D∩A1B1=A1,A1D,A1B1⊂平面A1DB1,∴AD1⊥平面A1DB1.3.下列说法中,正确的有( )①如果一条直线垂直于平面内的四条直线,那么这条直线和这个平面垂直;②过直线l外一点P,有且仅有一个平面与l垂直;③如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面;④过点A垂直于直线a的所有直线都在过点A垂直于a的平面内.A.1个B.2个C.3个D.4个答案 C解析 ①不正确,其他三项均正确.4.如图,α∩β=l,点A,C∈α,点B∈β,且BA⊥α,BC⊥β,那么直线l与直线AC的关系是( )A.异面B.平行C.垂直D.不确定答案 C解析 ∵AB⊥α,l⊂α,∴AB⊥l,又∵BC⊥β,l⊂β,∴BC⊥l,又AB∩BC=B,AB,BC⊂平面ABC,∴l⊥平面ABC,又AC⊂平面ABC,∴l⊥AC.5.如图,三棱柱ABC-A1B1C1的各棱长均相等,且侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面ABC所成的角为( )A.30° B.45°C.60° D.90°答案 A6.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC为( )A.锐角三角形B.直角三角形C.钝角三角形D.无法确定答案 B解析 易证AC⊥平面PBC,又BC⊂平面PBC,所以AC⊥BC.7.在长方体ABCD-A1B1C1D1中,E∈BD,F∈B1D1,且EF⊥AB,则EF与AA1的位置关系是________.答案 平行解析 如图,∵AB⊥BB1,AB⊥EF,且AB不垂直于平面BB1D1D,∴EF与BB1不相交,∴EF∥BB1,又AA1∥BB1,∴EF∥AA1.28.在矩形ABCD中,AB=1,BC=,PA⊥平面ABCD,PA=1,则PC与平面ABCD所成的角是________.答案 30°解析 由题意知∠PCA 为PC 与平面ABCD 所成的角.在Rt △PAC 中,tan ∠PCA ===,PA AC 1333∴∠PCA =30°.9.如图所示,四边形ABCD 是正方形,DE ⊥平面ABCD ,DE =DA =2.(1)求证:AC ⊥平面BDE ;(2)求AE 与平面BDE 所成角的大小.(1)证明 ∵四边形ABCD 是正方形,∴AC ⊥BD .∵DE ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥DE ,∵BD ,DE ⊂平面BED ,BD ∩DE =D ,∴AC ⊥平面BDE .(2)解 设AC ∩BD =O ,连接EO ,如图所示.∵AC ⊥平面BDE ,∴EO 是直线AE 在平面BDE 上的射影,∴∠AEO 即为AE 与平面BDE 所成的角.在Rt △EAD 中,EA ==2,AO =,AD 2+DE 222∴在Rt △EOA 中,sin ∠AEO ==,AO EA 12∴∠AEO =30°,即AE 与平面BDE 所成的角为30°.10.如图,在正方体ABCD -A 1B 1C 1D 1中,EF 与异面直线AC ,A 1D 都垂直.求证:EF ∥BD 1.证明 如图所示,连接AB 1,B 1D 1,B 1C ,BD ,∵DD1⊥平面ABCD,AC⊂平面ABCD,∴DD1⊥AC.又AC⊥BD,DD1∩BD=D,DD1,BD⊂平面BDD1B1,∴AC⊥平面BDD1B1,又BD1⊂平面BDD1B1,∴AC⊥BD1.同理可证BD1⊥B1C,又AC∩B1C=C,AC,B1C⊂平面AB1C,∴BD1⊥平面AB1C.∵EF⊥A1D,A1D∥B1C,∴EF⊥B1C.又∵EF⊥AC,AC∩B1C=C,AC,B1C⊂平面AB1C,∴EF⊥平面AB1C,∴EF∥BD1.11.如图,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点,现在沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么,在这个空间图形中必有( )A.AG⊥△EFH所在平面B.AH⊥△EFH所在平面C.HF⊥△AEF所在平面D.HG⊥△AEF所在平面答案 B解析 根据折叠前、后AH⊥HE,AH⊥HF不变,可推出AH⊥平面EFH.12.在四面体P-ABC中,若PA=PB=PC,则点P在平面ABC内的射影一定是△ABC的( ) A.外心B.内心C.垂心D.重心答案 A解析 如图,设点P 在平面ABC 内的射影为点O ,连接OP ,则PO ⊥平面ABC ,连接OA ,OB ,OC ,∴PO ⊥OA ,PO ⊥OB ,PO ⊥OC ,又PA =PB =PC ,∴Rt △POA ≌Rt △POB ≌Rt △POC ,则OA =OB =OC ,∴O 为△ABC 的外心.13.如图所示,在正三棱柱ABC -A 1B 1C 1中,若AB ∶BB 1=∶1,则AB 1与平面BB 1C 1C 所2成角的大小为( )A .45°B .60°C .30°D .75°答案 A 解析 取BC 的中点D ,连接AD ,B 1D ,∵AD ⊥BC 且AD ⊥BB 1,BC ∩BB 1=B ,BC ,BB 1⊂平面BCC 1B 1,∴AD ⊥平面BCC 1B 1,∴∠AB 1D 即为AB 1与平面BB 1C 1C 所成的角.设AB =,则AA 1=1,AD =,AB 1=,2623∴sin ∠AB 1D ==,∴∠AB 1D =45°.AD AB 122即AB 1与平面BB 1C 1C 所成的角为45°.14.如图,在直三棱柱ABC -A 1B 1C 1中,BC =CC 1,当底面A 1B 1C 1满足条件________时,有AB1⊥BC1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况)答案 ∠A1C1B1=90°解析 如图所示,连接B1C,由BC=CC1,可得BC1⊥B1C,因此,要证AB1⊥BC1,则只要证明BC1⊥平面AB1C,即只要证AC⊥BC1即可,由直三棱柱可知,只要证AC⊥BC即可.因为A1C1∥AC,B1C1∥BC,故只要证A1C1⊥B1C1即可.(或者能推出A1C1⊥B1C1的条件,如∠A1C1B1=90°等)15.(多选)如图所示,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中正确的是( )A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角答案 ABC解析 对于选项A,由题意得SD⊥AC,AC⊥BD,SD∩BD=D,SD,BD⊂平面SBD,∴AC⊥平面SBD,故AC⊥SB,故A正确;对于选项B,∵AB∥CD,AB⊄平面SCD,CD⊂平面SCD,∴AB∥平面SCD,故B正确;对于选项C,由对称性知SA与平面SBD所成的角与SC与平面SBD所成的角相等,故C正确.16.如图,PA⊥矩形ABCD所在的平面,M,N分别是AB,PC的中点.(1)求证:MN ∥平面PAD ;(2)若PD 与平面ABCD 所成的角为α,当α为多少度时,MN ⊥平面PCD ?(1)证明 取PD 的中点E ,连接NE ,AE ,如图.又∵N 是PC 的中点,∴NE ∥DC 且NE =DC ,12又∵DC ∥AB 且DC =AB ,AM =AB ,12∴AM ∥CD 且AM =CD ,∴NE ∥AM ,且NE =AM ,12∴四边形AMNE 是平行四边形,∴MN ∥AE .∵AE ⊂平面PAD ,MN ⊄平面PAD ,∴MN ∥平面PAD .(2)解 当α=45°时,MN ⊥平面PCD ,证明如下.∵PA ⊥平面ABCD ,∴∠PDA 即为PD 与平面ABCD 所成的角,∴∠PDA =45°,∴AP =AD ,∴AE ⊥PD .又∵MN ∥AE ,∴MN ⊥PD .∵PA ⊥平面ABCD ,CD ⊂平面ABCD ,∴PA ⊥CD .又∵CD ⊥AD ,PA ∩AD =A ,PA ,AD ⊂平面PAD ,∴CD ⊥平面PAD .∵AE ⊂平面PAD ,∴CD ⊥AE ,∴CD ⊥MN .又CD ∩PD =D ,CD ,PD ⊂平面PCD ,∴MN ⊥平面PCD .。
直线与平面垂直的性质、平面与平面垂直的性质课件
2.分别垂直于两个平行平面的两条直线是否平行? 提示:平行.因为一条直线垂直于一个平面,那么这 条直线垂直于这个平面的平行平面,所以这两条直线垂直 于同一个平面,所以这两条直线平行.
3.垂直于同一条直线的两平面平行吗?
提示:如右图,过直线l作两个平面,分别与两个平面 α,β相交于a,a′,b,b′,∵l⊥α,∴l⊥a, l⊥b.∵l⊥β,∴l⊥a′,l⊥b′.∴a∥a′,b∥b′.又a与b相 交,a′与b′相交,∴α∥β.∴垂直于同一条直线的两个平 面平行.
若已知一条直线和某个平面垂直,证明这条直线和另一条 直线平行,可考虑利用线面垂直的性质定理,证明另一条直线 和这个平面垂直,证明时注意利用正方形、平行四边形及三角 形中位线的有关性质.
面面垂直性质定理的应用
[例2] 如图所示,P是四边形ABCD所在平面外的一 点,四边形ABCD是∠DAB=60°,且边长为a的菱形.侧 面PAD为正三角形,其所在平面垂直于底面ABCD.
由(1),得AD⊥平面PBG,而AD 平面ABCD,
所以平面PBG⊥平面ABCD, 所以平面DEF⊥平面ABCD.
掌握线线、线面、面面垂直的性质和判定是三种垂直相互 转化的关键.由线面垂直可知线与面内任何一条直线都垂直; 由线面垂直亦可得到面面垂直面面垂直的判定.因此说线面垂 直是线线垂直和面面垂直的枢纽.
取AD的中点G, 连接PG,BG
→
证AD⊥PG, AD⊥BG
→ AD⊥平面PBG → AD⊥PB
(2)可取PC的中点F,利用三角形中位线及菱形的性质证得
平面DEF∥平面PBG,然后结合(1)的结论即可得出结论.
[解] (1)证明:设G为AD的中点,连接PG,BG,如右 图所示.
因为△PAD为等边三角形,所以PG⊥AD. 在菱形ABCD中,∠DAB=60°, G为AD的中点,所以BG⊥AD. 又因为BG∩PG=G,所以AD⊥平面PBG. 因为PB 平面PBG,所以AD⊥PB.
3、直线与平面垂直、平面与平面垂直
直线与平面垂直、平面与平面垂直1.直线与平面垂直(1)判定直线和平面垂直的方法①定义法:如果一条直线与一个平面内的任意一条直线都垂直,则称该直线与该平面垂直.②利用判定定理:一条直线和一个平面内的两条直线都垂直,则该直线和此平面垂直.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也这个平面.(2)直线和平面垂直的性质①直线垂直于平面,则垂直于该平面内的直线.②垂直于同一个平面的两条直线.③垂直于同一直线的两平面.2.斜线和平面所成的角斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角.3.平面与平面垂直(1)平面与平面垂直的判定方法①定义法:如果两个平面所成的二面角是直二面角,则这两个平面互相垂直.②利用判定定理:一个平面经过另一个平面的,则这两个平面垂直.(2)平面与平面垂直的性质定理两平面垂直,则一个平面内垂直于的直线垂直于另一个平面.4.二面角的平面角一般地,以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的射线,这两条射线所成的角叫做二面角的平面角.基础自测:1.直线a不垂直于平面α,则α内与a垂直的直线有.2.给出下列四个命题:①若直线垂直于平面内的两条直线,则这条直线与平面垂直;②若直线与平面内的任意一条直线都垂直,则这条直线与平面垂直;③若直线垂直于梯形的两腰所在的直线,则这条直线垂直于两底边所在的直线;④若直线垂直于梯形的两底边所在的直线,则这条直线垂直于两腰所在的直线.其中正确的命题共有___________个.3.如果一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的大小关系是(写出你认为正确的序号).①相等②互补③相等或互补④不确定4.PA垂直于正方形ABCD所在平面,连结PB,PC,PD,AC,BD,则下列结论中成立的序号是.①面PAB⊥面PBC;②面PAB⊥面PAD;③面PAB⊥面PCD;④面PAB⊥面PAC.题型分析:题型一直线与平面垂直的判定与性质例1 如图所示,在四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.变式训练1如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是∠DAB=60°且边长为a 的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD.若G为AD边的中点,求证:BG⊥平面PAD.例2、如图所示,在正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H为垂足,求证:B1H⊥平面AD1C.变式训练2、如图,在斜边为AB的Rt△ABC中,过A作PA⊥平面ABC,AM⊥PB于M,AN ⊥PC于N.求证:(1)BC⊥平面PAC;(2)PB⊥平面AMN.题型二平面与平面垂直的判定与性质例3、如图所示,△ABC为正三角形,EC⊥平面ABC,BD∥CE,EC=CA=2BD,M是EA 的中点.求证:(1)DE=DA;(2)平面BDM⊥平面ECA.变式训练3、如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面P AD.例4、如图所示,过点S引三条不共面的线段,SA=SB=SC,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC⊥平面BSC.变式训练4、在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ABD沿对角线BD折起,记折起后A的位置为P,且使平面PBD⊥平面BCD.求证:平面PBC⊥平面PCD.提醒三线面、面面垂直的综合应用例5、如图所示,在四棱锥P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4 5.(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;(2)求四棱锥P—ABCD的体积.变式训练5、如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:PQ ⊥平面DCQ ;(2)求棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值.例6、如图所示,直三棱柱ABC —A 1B 1C 1中,B 1C 1=A 1C 1,AC 1⊥A 1B ,M 、N 分别是A 1B 1、AB 的中点.(1)求证:C 1M ⊥平面A 1ABB 1; (2)求证:A 1B ⊥AM ;(3)求证:平面AMC 1∥平面NB 1C ; (4)求A 1B 与B 1C 所成的角.变式训练6、如图所示,在矩形ABCD 中,AB=2BC ,P 、Q 分别为线段AB 、CD 的中点,EP ⊥平面ABCD.(1)求证:DP ⊥面EPC ;(2)问在EP 上是否存在点F 使平面AFD ⊥平面BFC ?若存在,求出 的值.APFP例7、在四面体ABCD中,CB=CD,AD⊥BD,且E,F分别是AB,BD的中点,求证:(1)直线EF∥平面ACD;(2)平面EFC⊥平面BCD.题型四线面、二面角的求法例8、如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=22,∠BAD=∠CDA=45°.(1)求异面直线CE与AF所成角的余弦值;(2)证明:CD⊥平面ABF;(3)求二面角B-EF-A的正切值.练习:1.下列命题中正确命题的序号是.①若一直线垂直于一平面,则此直线必垂直于这平面内所有直线;②若一个平面通过另一个平面的一条垂线,则这两个平面互相垂直;③若一直线垂直于一个平面的一条垂线,则此直线必平行于这个平面;④若平面内的一条直线和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直.2.设O为平行四边形ABCD对角线的交点,P为平面AC外一点,且PA=PC,PB=PD,则PO 与平面ABCD的关系是.γγ3.已知平面α,β,及直线l,m满足:l⊥m,α⊥, ∩α=m, ∩β=l,则由此可推出:①β⊥;②l⊥α;③m⊥β中的.4. ①两平面相交,如果所成的二面角是直二面角,则这两个平面垂直;②一个平面经过另一个平面的一条垂线,则这两个平面一定垂直;③一直线与两平面中的一个平行与另一个垂直,则这两个平面垂直;④一平面与两平行平面中的一个垂直,则与另一个平面也垂直;⑤两平面垂直,经过第一个平面上一点垂直于它们交线的直线必垂直于第二个平面.上述命题中,正确的命题有个.5.设m、n是两条不同的直线,α、β是两个不同的平面.则下列命题中正确的是(填序号).①m⊥α,n β,m⊥n α⊥β②α∥β,m⊥α,n∥β m⊥n③α⊥β,m⊥α,n∥β m⊥n④α⊥β,α∩β=m,n⊥m n⊥β6.给定空间中的直线l及平面α.条件“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的条件.7.已知直线m、n和平面α、β满足m⊥n,m⊥α,α⊥β,则n与平面α的关系为_____.8.P为△ABC所在平面外一点,AC= a,△PAB,△PBC都是边长为a的等边三角形,则平面ABC和平面PAC的位置关系为.9.如图所示,四棱锥P—ABCD的底面是矩形,PA⊥平面ABCD,E、F分别是AB、PD的中点,又二面角P—CD—B为45°.(1)求证:AF∥平面PEC;(2)求证:平面PEC⊥平面PCD;11.如图所示,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC= ,等边三角形ADB以AB为轴转动.(1)当平面ADB⊥平面ABC时,求CD;(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.2。
课件直线与平面垂直平面与平面垂直的性质
3.课后阅读教材第70~73页.
4.设平面α ⊥平面β ,点P在平面α 内, 过点P作平面β 的垂线a,直线a与平面α 具有什么位置关系?
过点假O设与b直与线a不a平平行行的,且直b线∩,α即=mO∥,m是a 经βm 直线b与m确定平面β , a b
设α ∩β =c, 则O∈c, α c O 因为a⊥α ,b⊥α , 所以 a⊥c,b⊥c. 又因为m∥a, 所以 m⊥c 这样在平面β 内,经过直线c上同一点 O就有两条直线b、m与c垂直,显然不可能. 因此b∥a
α
β
思考2:足为B,那么直线
AB与平面 的位置关系如何?为什么?
在β 内引直线BE⊥CD, α
垂足为B,
A D
则∠ABE是二面角
B
E
α -CD-β 的平面角,β C
由α ⊥β 知, ∠ABE =90°即AB⊥BE
又AB⊥CD,BE与CD是内的两条相交直
l m
巩固练习
两个平面互相垂直,下列命题中,正确的在 括号内画“√”,错误的画“×”
1.一个平面内的已知直线必垂直于另一个
平面内的任意一条直线(×)
2.一个平面内的已知直线必垂直于另一个
平面内的无数条直线(×)
3.一个平面内的任意一条直线必垂直于另
一个平面(×)
4.过一个平面内任意点作交线的垂线,则
(3) 一条直线在平面内,另一条直线与这个
平面垂直,则这两条直线互相垂直.
(√ )
2.已知直线a、b和平面α ,且a⊥b,a⊥α ,
则b与α 的位置关系是_a_∥__α__,_或___a__α____
知识探究(二)平面与平面垂直的性质定理
直线与平面垂直的判定、平面与平面垂直的判定 课件
,所以
BO=
1 2
A1 B
,∠BA1O=30°.
故直线 A1B 和平面 A1B1CD 所成的角为 30°.
二面角
水平面
1、半平面: 平面内的一条直线,把这个平面分成两部 分,每一部分都叫做半平面。
2、二面角: 从一条直线引出的两个半平面所组成的图形叫做 二面角。这条直线叫做二面角的棱,这两个半平 面叫做二面角的面。
B’
则BD 平面AACC
A C’
D
BD AC
B
C
结论:当四边形ABCD的两条对角线互相垂直时,
BD AC
练习4.在三棱锥 V-ABC中,VA=VC,BA=BC .求证:VB⊥AC.
证明:取AC中点O,连接VO和BO
∵VA=VC,BA=BC
∴VO⊥AC,BO⊥AC, 即AC⊥OV,AC⊥OB
又OV⊂平面VOB,OB⊂平面VOB
A
且OV ∩OB=O
∴AC⊥平面VOB
又VB⊂平面VOB ∴AC⊥VB,即VB⊥AC
V
O
C
B
平面的斜线和平面所成的角
P
O
P′
1.定义:平面的一条斜线 和它在平面上的射影所成 的锐角,叫做这条直线和 这个平面所成的角。
一条直线垂直与平面,它们所成的角是直角; 一条直线和平面平行,或在平面内,它们所成的角 是0的角。
所以 b .
m
n
推论:两条平行线中的一条垂直一个平面,则另
一条也垂直于这个平面。
例2.如图,点P 是平行四边形ABCD 所在平面外一点,O 是对角
线AC与BD的交点,且PA=PC ,PB =PD .求证:PO⊥平面ABCD
P
证明:∵PA=PC,点O是AC的中点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时直线与平面垂直
⏹要点·疑点·考点
⏹课前热身
⏹能力·思维·方法
⏹延伸·拓展
⏹误解分析
要点·疑点·考点
一、定义
1.如果一条直线和一个平面内的任何一条直线都垂
直,则这条直线和这个平面垂直
2. 过一点有且只有一条直线和一个平面垂直,过一
点有且只有一个平面和一条直线垂直
二、判定方法
1.用定义
2. 判定定理
α
l P b a αb αa b l a
l ⊥⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=⊂⊂⊥⊥ (1)αl αa b a ⊥⇒⎭
⎬⎫⊥//(2)
β
l a l αl a βα⊥⇒⎪⎭
⎪⎬⎫⊥⊂= (3)αl βl βα⊥⇒⎭
⎬⎫⊥//(4)b a αb αa //⇒⎭
⎬⎫⊥⊥三、性质
PB l αl AB l αPB AB A αPA ⊥⇒⎪⎪⎭
⎪⎪⎬⎫⊂⊥⊥内的射影在是于四、三垂线定理
AB l αl PB l αPB AB A
αPA ⊥⇒⎪⎪⎭
⎪⎪⎬⎫⊂⊥⊥内的射影在是于返回
课前热身
1.已知a,b,c 是直线,是平面,下列条件中,能得出直线a ⊥平面的是( )(A)a ⊥b ,a ⊥c ,其中(B) a ⊥b ,b ∥(C)(D)a ∥b ,b ⊥αα
α
c αb ⊂⊂,β
a βα//,⊥α
βα、D
2. 已知a,b 是不同的直线,是平面,给出下列四个命题:
①;②;③;④其中错误命题的序号为_____________
b a αb αa //⇒⎭⎬⎫⊥⊥αb αa b a ⊥⇒⎭⎬⎫⊥//αb b a αa //⇒⎭⎬⎫⊥⊥b a αb αa //⇒⎭
⎬⎫⊥⊥α②④
3. (1)平行于同一条直线的两条直线互相平行
(2)垂直于同一条直线的两条直线互相平行
(3)平行于同一平面的两条直线互相平行(4)垂直于同一平面的两条直线互相平行
C
以上命题中,正确的是()
A(1)B(2)
C(1)(4)D(1)(2)(3)(4)
4. 空间四边形中,互相垂直的边最多有( )
(A)1对(B)2对(C)3对(D)4对
C
5.在正四棱柱ABCD—A
1B
1
C
1
D
1
中,E,F,G,H分
别是棱CC
1,C
1
D
1
,D
1
D,DC的中点,N是BC的
中点,点M在四边形EFGH的边及其内部运动,则M只须满足条件______________时,就有MN⊥AC.
M与F重合
返回
能力·思维·方法
1.如图,AB为⊙O的直径,C为⊙O上一点,AD⊥
面ABC,AE⊥BD于E,AF⊥CD于F.
求证:BD⊥平面AEF.
【解题回顾】证明线面垂直可转化为证线线垂直,而要证线线垂直又转化为证线面垂直,本题就是通过多次转化而获得证明的.这是证垂直问题的一个基本规律,须熟悉其转化关系
2.求证:四面体若有两组对棱互相垂直,则第三组对棱也互相垂直.
【解题回顾】由本题知,若三棱锥有两组对棱互相垂直,则顶点在底面上的射影为底面三角形的垂心,实际上,此四面体任一顶点在它对面上的射影均为该面三角形的垂心.类似的结论还有:
①若三条侧棱相等,则顶点在底面上的射影为底面三角形的外心;
②若顶点到底面三角形三条边的距离相等,则顶点在底面上的射影为底面三角形的内心或旁心;
③若侧棱与底面所成的角相等,则顶点在底面上的射影为底面三角形的外心;
④若侧面与底面所成的角相等,则顶点在底面上的射影为底面三角形的内心.
3.已知矩形ABCD,过A作SA⊥平面AC,再过A作AE⊥SB于E,过E作EF⊥SC于F.
(1)求证:AF⊥SC;
(2)若平面AEF交SD于G,求证:AG⊥SD.
【解题回顾】正确实现线线垂直与线面垂直的互相转化是解题的关键. 本题为后面求四棱锥相邻两侧面的二面角的大小作铺垫.
4. 在矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD,且PA=1. 请问:BC边上是否一定存在点Q,使得
PQ⊥QD?为什么?
5. 如图,已知直三棱柱ABC—A1
B1C1中,B1C1=
A1C1,A1B⊥AC
1,求证A
1
B⊥B1C .
延伸·拓展
【解题回顾】(1)欲证A 1B ⊥B 1C ,可以证明A 1B 垂直于B 1C 所在的平面(或者与B 1C 平行的平面),或者用三垂线定理.
(2)本题是证明线线垂直的很好例题,通过补形,把我们不熟悉的位置关系转化为我们熟悉的位置关系,为解题创造了条件.
(3)证明线线垂直常用下列三种方法:①按定义证明所成角为直角.②由线面垂直得到线线垂直.③利用三垂线定理.4.题的逆命题即变题1也成立.
变题1 直三棱柱ABC —A 1B 1C 1中,已知A 1B ⊥AC 1,A 1B ⊥B 1C ,求证:A 1C 1=B 1C 1.
变题2 正三棱柱ABC —A 1B 1C 1中,已知A 1B ⊥AC 1 . 求证:A 1B ⊥B 1C 且B 1C ⊥AC 1.
误解分析
1.在运用定理证明线面垂直时,需严格说明线垂直于面内的两相交直线,不能牵强附会.同样,用三垂线定理证明线线垂直时,要理清关系,垂线、垂面、斜线、射影要交待明确
2.在能力·思维·方法4中,有人盲目认为一定存在Q ∈BC,因只要AQ⊥QD 就有PQ⊥QD 但由于矩形是变动的,Q是否存在应与a取值有关.。