全国高中数学联合竞赛1998年试卷及答案

合集下载

1998年全国卷高考文科数学真题及答案

1998年全国卷高考文科数学真题及答案

1998年全国卷高考文科数学真题及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试120分钟.第Ⅰ卷(选择题共65分)一.选择题:本大题共15小题;第(1)-(10)题每小题4分,第(11)-第(15)题每小题5分,65分.在每小题给出四项选项,只一项符合题目要求的(1) sin600º( )(A)21 (B) -21 (C) 23 (D) -23 (2) 函数y =a |x |(a >1)的图像是 ( )(3) 已知直线x =a (a >0)和圆(x -1)2+y 2=4相切,那么a 的值是( )(A) 5 (B) 4 (C) 3 (D) 2 (4) 两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是( )(A) A 1A 2+B 1B 2=0 (B) A 1A 2-B 1B 2=0 (C)12121-=B B A A (D) 12121=A A BB (5) 函数f (x )=x1( x ≠0)的反函数f -1(x )= ( ) (A) x (x ≠0) (B) x 1(x ≠0) (C) -x (x ≠0) (D) -x 1(x ≠0)(6) 已知点P(sin α-cos α,tg α)在第一象限,则[ 0,2π]内α的取值范围是 ( )(A) (432ππ,)∪(45ππ,) (B) (24ππ,)∪(45ππ,) (C) (432ππ,)∪(2325ππ,) (D) (24ππ,)∪(ππ,43) (7) 已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面积展开图扇形的圆心角为( )(A) 120º (B) 150º (C) 180º (D) 240º (8) 复数-i 的一个立方根是i ,它的另外两个立方根是( )(A)2123±I (B) -2123±I (C) ±2123+I (D)±2123-i(9) 如果棱台的两底面积是S,S′,中截面的面积是S0,那么( )(A) 2SSS'+=(B) S0=SS'(C) 2S0=S+S′(D) SSS'=22(10) 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共( )(A) 6种 (B) 12种 (C) 18种 (D) 24种(11) 向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图像如右图所示,那么水瓶的形状是( )(12) 椭圆31222yx+=1的焦点为F1,点P在椭圆上,如果线段PF1的中点M在y轴上,那么点M的纵坐标是( )(A) ±43(B) ±23(C) ±22(D) ±43(13) 球面上有3个点,其中任意两点的球面距离都等于大圆周长为61,经过这3个点的小圆的周长为4π,那么这个球的半径为( )(A) 43 (B)23 (C) 2 (D) 3(14) 一个直角三角形三内角的正弦值成等比数列,其最小内角的正弦值为( )(A)251-(B)2252-(C)215-(D)2252+(15) 等比数列{a n}的公比为-21,前n项的和S n满足∞→nlim S n=11a,那么11a的值为( )(A)3± (B)±23 (C) 2± (D) 26± 二.填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.(16) 设圆过双曲线116922=-y x 的一个顶点和一个焦点,圆心在双曲线上,则圆心到双曲线中心距离是__________(17) (x +2)10(x 2-1)的展开的x 10系数为____________(用数字作答)(18) 如图,在直四棱柱A 1B 1C 1D 1-ABCD 中,当底面四边形ABCD 满足条件____________时,有A 1C ⊥B 1D 1.(注:填上你认为正确的一种条件即可,不必考试所有可能的情形)(19) 关于函数f (x )=4sin(2x +3π)(x ∈R ),有下列命题 ①y =f (x )的表达式可改写为y =4cos(2x -6π);②y =f (x )是以2π为最小正周期的周期函数;③y =f (x )的图像关于点⎪⎭⎫⎝⎛-06,π对称; ④y =f (x )的图像关于直线x =-6π对称.其中正确的命题的序号是______ (注:把你认为正确的命题的序号都.填上.) 三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤. (20) (本小题满分10分)设a ≠b ,解关于x 的不等式a 2x +b 2(1-x )≥[ax +b (1-x )]2.21) (本小题满分11分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,设a +c =2b ,A -C=3π,求sin B 的值.以下公式供解题时参考:2cos2sin2sin sin ϕθϕθϕθ-+=+, 2sin2cos2sin sin ϕθϕθϕθ-+=-,2cos 2cos 2cos cos ϕθϕθϕθ-+=+, 2sin 2sin 2cos cos ϕθϕθϕθ-+-=-.(22) (本小题满分12分)如图,直线l 1和l 2相交于点M ,l 1 ⊥l 2,点N ∈l 1.以A 、B 为端点的曲线段C 上的任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM |=17,|AN |=3,且|BN |=6.建立适当的坐标系,求曲线C 的方程.(23) (本小题满分12分)已知斜三棱柱ABC -A 1 B 1 C 1的侧面A 1 ACC 1与底面ABC 垂直,∠ABC =90º,BC =2,AC=23,且AA 1 ⊥A 1C ,AA 1= A 1 C 1.(Ⅰ)求侧棱A 1A 与底面ABC 所成角的大小; (Ⅱ)求侧面A 1 ABB 1 与底面ABC 所成二面角的大小; (Ⅲ)求侧棱B 1B 和侧面A 1 ACC 1的距离.(24) (本小题满分12分)如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱.污水从A 孔流入,经沉淀后从B 孔流出.设箱体的长度为a 米,高度为b 米.已知流出的水中该杂质的质量分数与a ,b 的乘积ab 成反比.现有制箱材料60平方米.问当a ,b 各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A 、B 孔的面积忽略不计).(25) (本小题满分12分)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=100. (Ⅰ)求数列{b n }的能项b n ; (Ⅱ)设数列{a n }的通项a n =lg(1+nb 1),记S n 是数列{a n }的前n 项的和.试比较S n 与21lg b n +1的大小,并证明你的结论.1998年普通高等学校招生全国统一考试 数学试题(文史类)参考解答及评分标准一.选择题:本题考查基本知识和基本运算.第(1)-(10)题每小题4分,第(11)-(15)题每小题5分.满分65分.(1) D (2) B (3) C (4) A (5) B (6) B (7) C (8) D (9) A (10) B (11) B (12) A (13) B (14) C (15) D 二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(16)316(17) -5120 (18) AC ⊥BD ,或任何能推导出这个条件的其他条件.例如ABCD 是正方形,菱形等 (19)①,③注:第(19)题多填、漏填的错填均给0分. 三.解答题:(20)本小题主要考查不等式基本知识,不等式的解法.满分10分. 解:将原不等式化为(a 2-b 2)x +b 2≥(a -b )2x 2+2(a -b )bx +b 2, 移项,整理后得 (a -b )2(x 2-x ) ≤0, ∵ a ≠b 即 (a -b )2>0, ∴ x 2-x ≤0, 即 x (x -1) ≤0.解此不等式,得解集 {x |0≤x ≤1}.(21) 本小题考查正弦定理,同角三角函数基本公式,诱导公式等基础知识,考查利用三角公式进行恒等变形的技能及运算能力.满分11分.解:由正弦定理和已知条件a +c =2b 得sin A +sin C =2sin B .由和差化积公式得B CA C A sin 22cos 2sin 2=-+. 由A +B +C =π,得 2)sin(C A +=2cos B,又A -C =3π,得23cos 2B =sin B ,∴23cos 2B =2sin 2B cos 2B .∵ 0<2B <2π, 2cos B ≠0,∴sin2B =43, 从而cos2B =2sin 12B -=413 ∴ sin B =⨯23413=839(22) 本小题主要考查根据所给条件选择适当的坐标系,求曲线方程的解析几何的基本思想.考查抛物线的概念和性质,曲线与方程的关系以及综合运用知识的能力.满分12分.解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点.依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛线段的一段,其中A 、B 分别为C 的端点.设曲线段C 的方程为y 2=2px (p >0),(x A ≤x ≤x B ,y >0),其中x A ,x B 分别为A ,B 的横坐标,P =|MN |.所以 M (-2P ,0),N (2P,0). 由 |AM |=17,|AN |=3得(x A +2P )2+2Px A =17, ① (x A -2P )2+2Px A =9. ②由①、②两式联立解得x A =P4,再将其代入①式并由p >0解得⎩⎨⎧==14A x p 或⎩⎨⎧==22Ax p . 因为△AMN 是锐角三角形,所以2P>x A ,故舍去⎩⎨⎧==22A x p .∴ P =4,x A =1.由点B 在曲线段C 上,得x B =|BN |-2P=4. 综上得曲线段C 的方程为y 2=8x (1≤x ≤4,y >0).解法二:如图建立坐标系,分别以l 1、l 2为x 、y 轴,M 为坐标原点. 作AE ⊥l 1,AD ⊥l 2,BF ⊥l 2,垂足分别为E 、D 、F . 设 A (x A ,y A )、B (x B ,y B )、N (x N ,0). 依题意有x A =|ME|=|DA|=|AN|=3, y A =|DM |=22DA AM -=22,由于△AMN 为锐角三角形,故有x N =|AE |+|EN |=4.=|ME |+22AE AN -=4X B =|BF |=|BN |=6.设点P (x ,y )是曲线段C 上任一点,则由题意知P 属于集合 {(x ,y )|(x -x N )2+y 2=x 2,x A ≤x ≤x B ,y >0}. 故曲线段C 的方程y 2=8(x -2)(3≤x ≤6,y >0).(23) 本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,棱柱的性质,空间的角和距离的概念,逻辑思维能力、空间想象能力及运算能力.满分12分.注:题中赋分为得到该结论时所得分值,不给中间分. 解:(Ⅰ)作A 1D ⊥AC ,垂足为D ,由面A 1ACC 1⊥面ABC ,得A 1D ⊥面ABC ,∴ ∠A 1AD 为A 1A 与面ABC 所成的角. ∵ AA 1⊥A 1C ,AA 1=A 1C ,∴ ∠A 1AD=45º为所求.(Ⅱ)作DE ⊥AB ,垂足为E ,连A 1E ,则由A 1D ⊥面ABC ,得A 1E ⊥AB . ∴∠A 1ED 是面A 1ABB 1与面ABC 所成二面角的平面角.由已知,AB ⊥BC ,得ED ∥BC .又D 是AC 的中点,BC =2,AC =23,∴ DE =1,AD =A 1D =3,tg A 1ED=DEDA 1=3. 故∠A 1ED=60º为所求.(Ⅲ) 作BF ⊥AC ,F 为垂足,由面A 1ACC 1⊥面ABC ,知BF ⊥面A 1ACC 1. ∵ B 1B ∥面A 1ACC 1,∴ BF 的长是B 1B 和面A 1ACC 1的距离. 在Rt △ABC 中,2222=-=BC AC AB ,∴ 362=⋅=AC BC AB BF 为所求. (24) 本小题主要考查综合应用所学数学知识、思想和方法解决实际问题的能力,考查建立函数关系、不等式性质、最大值、最小值等基础知识.满分12分.解法一:设y 为流出的水中杂质的质量分数,则y =abk,其中k >0为比例系数,依题意,即所求的a ,b 值使y 值最小.根据题设,有4b +2ab +2a =60(a >0,b >0), 得 aab +-=230 (0<a <30=, ① 于是 aa a k ab k y +-==230226432+-+-=a a k⎪⎭⎫ ⎝⎛+++-=264234a a k()2642234+⋅+-≥a a k18k =当a +2=264+a 时取等号,y 达最小值.这时a =6,a =-10(舍去). 将a =6代入①式得b =3.故当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小. 解法二:依题意,即所求的a ,b 的值使ab 最大. 由题设知 4a +2ab +2a =60 (a >0,b >0) 即 a +2b +ab =30 (a >0,b >0). ∵ a +2b ≥2ab , ∴ 22ab +ab ≤30,当且仅当a =2b 时,上式取等号. 由a >0,b >0,解得0<ab ≤18.即当a =2b 时,ab 取得最大值,其最大值18. ∴ 2b 2=18.解得b =3,a =6.故当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小.(25) 本小题主要考查等差数列基本概念及其通项求法,考查对数函数性质,考查归纳,推理能力以及用数学归纳法进行论证的能力.满分12分.解:(Ⅰ)设数列工{b n }的公差为d ,由题意得b 1=1,10b 1+d2)110(10-=100.解得 b 1=1,d =2.∴ b n =2n -1. (Ⅱ)由b n =2n -1,知S n =lg(1+1)+lg(1+31)+…+lg(1+121-n ) =lg[(1+1)(1+31)· … ·(1+121-n )],21lg b n +1=lg 12+n . 因此要比较S n 与21lg b n +1的大小,可先比较(1+1)(1+31)· … ·(1+121-n )与12+n 的大小.取n =1有(1+1)>112+⋅,取n =2有(1+1)(1+31)>112+⋅ 由此推测(1+1)(1+31)· … ·(1+121-n )>12+n . ①若①式成立,则由对数函数性质可判定:S n >21lgb n +1. 下面用数学归纳法证明①式. (i)当n =1时已验证①式成立.(ii)假设当n =k (k ≥1)时,①式成立,即 (1+1)(1+31)· … ·(1+121-k )>12+k ,那么,当n =k +1时, (1+1)(1+31)· … ·(1+121-k )(1+1)1(21-+k )>12+k (1+121+k ) =1212++k k (2k +2).∵ [1212++k k (2k +2)]2-[32+k ]2=123848422+++++k k k k k=121+k >0, ∴1212++k k (2k +2) >32+k =()112++k .因而 (1+1)(1+31)· … ·(1+121-k )(1+121+k )>1)1(2++k . 这就是说①式当n =k +1时也成立.由(i),(ii )知①式对任何正整数n 都成立.由此证得:S n >21lg b n +1.。

历年全国高中数学竞赛试卷及答案(77套)

历年全国高中数学竞赛试卷及答案(77套)
8.设 ,其中 是虚数单位,若 成等比数列,则实数a的值是___________.
9.若 是双曲线 上的点,则 的最小值是_________.
10. 如图,设正方体 的棱长为1,α为过直线 的平面,则α截该正方体的截面面积的取值范围是_________.
11.已知实数 满足: 的最大值是____.
12.设集合 则集合A中元素的个数是___________
二.填空题(本大题共4小题,每小题10分):
1.设x≠y,且两数列x,a1,a2,a3,y和b1,x,b2,b3,y,b4均为等差数列,那么 =.
解:a2-a1= (y-x),b4-b3= (y-x), = .
2.( +2)2n+1的展开式中,x的整数次幂的各项系数之和为.
解:( +2)2n+1-( -2)2n+1=2(C 2xn22n+1).
1.设x≠y,且两数列x,a1,a2,a3,y和b1,x,b2,b3,y,b4均为等差数列,那么 =.
2.( +2)2n+1的展开式中,x的整数次幂的各项系数之和为.
3.在△ABC中,已知∠A=α,CD、BE分别是AB、AC上的高,则 =.
4.甲乙两队各出7名队员,按事先排好顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,……直至一方队员全部淘汰为止,另一方获得胜利,形成一种比赛过程.那么所有可能出现的比赛过程的种数为.
⑴ 点(1,1)∈ln,(n=1,2,3,……);
⑵kn+1=an-bn,其中kn+1是ln+1的斜率,an和bn分别是ln在x轴和y轴上的截距,(n=1,2,3,……);
⑶knkn+1≥0,(n=1,2,3,……).

1998年全国高中数学联赛试题及详细解析

1998年全国高中数学联赛试题及详细解析

一、选择题(本题满分36分,每小题6分)1. 若a > 1, b > 1, 且lg(a + b )=lg a +lg b , 则lg(a –1)+lg(b –1) 的值( ) (A )等于lg2 (B )等于1(C ) 等于0 (D ) 不是与a , b 无关的常数2.若非空集合A={x |2a +1≤x ≤3a – 5},B={x |3≤x ≤22},则能使A ⊆A ∩B 成立的所有a 的集合是( )(A ){a | 1≤a ≤9} (B ) {a | 6≤a ≤9} (C ) {a | a ≤9} (D ) Ø6.在正方体的8个顶点, 12条棱的中点, 6个面的中心及正方体的中心共27个点中, 共线的三点组的个数是( )(A ) 57 (B ) 49 (C ) 43 (D )37 二、填空题( 本题满分54分,每小题9分) 各小题只要求直接填写结果.1.若f (x ) (x ∈R )是以2为周期的偶函数, 当x ∈[ 0, 1 ]时,f (x )=x 11000,则f (9819),f (10117),f (10415)由小到大排列是 . 2.设复数z=cos θ+i sin θ(0≤θ≤180°),复数z ,(1+i )z ,2-z 在复平面上对应的三个点分别是P , Q , R .当P , Q , R 不共线时,以线段PQ , PR 为两边的平行四边形的第四个顶点为S , 点S 到原点距离的最大值是___________.3.从0, 1, 2, 3, 4, 5, 6, 7, 8, 9这10个数中取出3个数, 使其和为不小于10的偶数, 不同的取法有________种.4.各项为实数的等差数列的公差为4, 其首项的平方与其余各项之和不超过100, 这样的数列至多有_______项.5.若椭圆x 2+4(y -a )2=4与抛物线x 2=2y 有公共点,则实数a 的取值范围是 .6.∆ABC 中, ∠C = 90o , ∠B = 30o, AC = 2, M 是AB 的中点. 将∆ACM 沿CM 折起,使A ,B 两点间的距离为 2 2 ,此时三棱锥A -BCM 的体积等于__________.三、(本题满分20分)已知复数z=1-sinθ+i cosθ(π2<θ<π),求z的共轭复数-z的辐角主值.四、(本题满分20分)设函数f (x) =ax 2 +8x +3 (a<0).对于给定的负数a , 有一个最大的正数l(a) ,使得在整个区间 [0, l(a)]上, 不等式| f (x)| ≤ 5都成立.问:a为何值时l(a)最大? 求出这个最大的l(a).证明你的结论.五、(本题满分20分)已知抛物线y2= 2px及定点A(a, b), B( –a, 0) ,(ab≠ 0, b2≠ 2pa).M是抛物线上的点, 设直线AM, BM与抛物线的另一交点分别为M1, M2.求证:当M点在抛物线上变动时(只要M1, M2存在且M1 ≠M2),直线M1M2恒过一个定点.并求出这个定点的坐标.第二试二、(满分50分)设a1,a2,…,a n,b1,b2,…,b n∈[1,2]且nΣi=1a2i=nΣi=1b2i,求证:nΣi=1a3ib i≤1710nΣi=1a2i.并问:等号成立的充要条件.三、(满分50分)对于正整数a、n,定义F n(a)=q+r,其中q、r为非负整数,a=qn+r,且0≤r<n.求最大的正整数A,使得存在正整数n1,n2,n3,n4,n5,n6,对于任意的正整数a≤A,都有F n6(F n5(F n4(F n3(F n2(F n1(a))))))=1.证明你的结论.一九九八年全国高中数学联赛解答 第一试一.选择题(本题满分36分,每小题6分)2.若非空集合A={x |2a +1≤x ≤3a – 5},B={x |3≤x ≤22},则能使A ⊆A ∩B 成立的所有a 的集合是( )(A ){a | 1≤a ≤9} (B ) {a | 6≤a ≤9} (C ) {a | a ≤9} (D ) Ø 【答案】B【解析】A ⊆B ,A ≠Ø.⇒ 3≤2a +1≤3a -5≤22,⇒6≤a ≤9.故选B .4.设命题P :关于x 的不等式a 1x 2 + b 1x 2 + c 1 > 0与a 2x 2+ b 2x + c 2 > 0的解集相同;命题Q :a 1a 2=b 1b 2=c 1c 2. 则命题Q ( )(A ) 是命题P 的充分必要条件(B ) 是命题P 的充分条件但不是必要条件 (C ) 是命题P 的必要条件但不是充分条件(D ) 既不是是命题P 的充分条件也不是命题P 的必要条件【答案】D【解析】若两个不等式的解集都是R ,否定A 、C ,若比值为-1,否定A 、B ,选D .5.设E , F , G 分别是正四面体ABCD 的棱AB ,BC ,CD 的中点,则二面角C —FG —E 的大小是( )(A ) arcsin 63 (B ) π2+arccos 33 (C ) π2-arctan 2 (D ) π-arccot226.在正方体的8个顶点, 12条棱的中点, 6个面的中心及正方体的中心共27个点中, 共线的三点组的个数是( )(A ) 57 (B ) 49 (C ) 43 (D )37【答案】B【解析】8个顶点中无3点共线,故共线的三点组中至少有一个是棱中点或面中心或体中心.⑴ 体中心为中点:4对顶点,6对棱中点,3对面中心;共13组; ⑵ 面中心为中点:4×6=24组;⑶ 棱中点为中点:12个.共49个,选B .二、填空题( 本题满分54分,每小题9分) 各小题只要求直接填写结果.1.若f (x ) (x ∈R )是以2为周期的偶函数, 当x ∈[ 0, 1 ]时,f (x )=x 11000,则f (9819),f (10117),f (10415)由小到大排列是 .2.设复数z=cos θ+i sin θ(0≤θ≤180°),复数z ,(1+i )z ,2-z 在复平面上对应的三个点分别是P , Q , R .当P , Q , R 不共线时,以线段PQ , PR 为两边的平行四边形的第四个顶点为S , 点S 到原点距离的最大值是___________. 【答案】3【解析】 →OS =→OP +→PQ +→PR =→OP +→OQ -→OP +→OR -→OP =→OQ +→OR -→OP=(1+i )z +2-z -z=iz +2-z=(2cos θ-sin θ)+i (cos θ-2sin θ).∴ |OS |2=5-4sin2θ≤9.即|OS |≤3,当sin2θ=1,即θ=π4时,|OS |=3.4.各项为实数的等差数列的公差为4, 其首项的平方与其余各项之和不超过100, 这样的数列至多有_______项.【答案】8【解析】设其首项为a ,项数为n .则得a 2+(n -1)a +2n 2-2n -100≤0.△=(n -1)2-4(2n 2-2n -100)=-7n 2+6n +401≥0.∴ n ≤8. 取n=8,则-4≤a ≤-3.即至多8项.(也可直接配方:(a +n -12)2+2n 2-2n -100-(n -12)2≤0.解2n 2-2n -100-(n -12)2≤0仍得n ≤8.)6.∆ABC 中, ∠C = 90o , ∠B = 30o, AC = 2, M 是AB 的中点. 将∆ACM 沿CM 折起,使A ,B 两点间的距离为 2 2 ,此时三棱锥A -BCM 的体积等于 .【答案】223【解析】由已知,得AB=4,AM=MB=MC=2,BC=23,由△AMC 为等边三角形,取CM 中点,则AD ⊥CM ,AD 交BC 于E ,则AD=3,DE=33,CE=233.折起后,由BC 2=AC 2+AB 2,知∠BAC=90°,cos ∠ECA=33. ∴ AE 2=CA 2+CE 2-2CA ·CE cos ∠ECA=83,于是AC 2=AE 2+CE 2.⇒∠AEC=90°.∵ AD 2=AE 2+ED 2,⇒AE ⊥平面BCM ,即AE 是三棱锥A -BCM 的高,AE=263. S △BCM =3,V A —BCM =223.三、(本题满分20分)2223222EBCAMD23222AEMDCB四、(本题满分20分)设函数f (x) =ax2 +8x+3 (a<0).对于给定的负数a , 有一个最大的正数l(a) ,使得在整个区间 [0, l(a)]上, 不等式| f (x)| 5都成立.问:a为何值时l(a)最大? 求出这个最大的l(a).证明你的结论.五、(本题满分20分)已知抛物线y 2 = 2px 及定点A (a , b ), B ( – a , 0) ,(ab ≠ 0, b 2≠ 2pa ).M 是抛物线上的点, 设直线AM , BM 与抛物线的另一交点分别为M 1, M 2. 求证:当M 点在抛物线上变动时(只要M 1, M 2存在且M 1 ≠ M 2.)直线M 1M 2恒过一个定点.并求出这个定点的坐标.第二试一、(满分50分)如图,O 、I 分别为△ABC 的外心和内心,AD 是BC 边上的高,I 在线段OD 上。

1998年全国高考数学试题及答案解析

1998年全国高考数学试题及答案解析

第 1 页 共 10 页 1998年普通高等学校招生全国统一考试
数学
(理工农医类)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.
第Ⅰ卷(选择题共65分)
一、 选择题:本大题共15小题;第(1) (10)题每小题4分,第(11) (15)题每小题5分,共65分,
在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)设集合M={x │0≤x<2},集合N={x │x 2-2x-3<0},集合M ∩N 为
(A){x │0≤x<1} (B){x │0≤x<2}
(C){x │0≤x ≤1} (D){x │0≤x ≤2}
[Key] B
(2)如果直线ax+2y+2=0与直线3x-y-2=0平行,那么系数a 为
32
)(23
)(6)(3)(D C B A ---
[Key] B
(3)函数
)x 31x 21(tg y -=在一个周期内的图象是
[Key] A
(4)已知三棱锥D-ABC 的三个则面与底面全等,且AB=AC=3,BC=2,则BC 为棱,以面BCD 与面BCA 为面的二面角的大小是
32)D (2)C (31
arccos )B (33
arccos )A (ππ
[Key] C
(5)函数x 2cos )x 23sin(y +-π=的最小正周期是
ππππ
4)D (2)C ()B (2)A (
[Key] B。

1998年全国高中数学联赛试题及解答

1998年全国高中数学联赛试题及解答

一九九八年全国高中数学联合竞赛一、选择题(本题满分36分,每小题6分)1. 若a > 1, b > 1, 且lg(a + b )=lg a +lg b , 则lg(a –1)+lg(b –1) 的值( ) (A )等于lg2(B )等于1(C ) 等于0 (D ) 不是与a , b 无关的常数2.若非空集合A={x |2a +1≤x ≤3a – 5},B={x |3≤x ≤22},则能使A ⊆A ∩B 成立的所有a 的集合是( ) (A ){a | 1≤a ≤9}(B ) {a | 6≤a ≤9}(C ) {a | a ≤9} (D ) Ø3.各项均为实数的等比数列{a n }前n 项之和记为S n ,若S 10 = 10, S 30 = 70, 则S 40等于( )(A ) 150(B ) - 200(C ) 150或 - 200 (D ) - 50或4004.设命题P :关于x 的不等式a 1x 2+ b 1x 2+ c 1 > 0与a 2x 2+ b 2x + c 2 > 0的解集相同; 命题Q :a 1a 2=b 1b 2=c 1c 2. 则命题Q ( ) (A ) 是命题P 的充分必要条件(B ) 是命题P 的充分条件但不是必要条件(C ) 是命题P 的必要条件但不是充分条件(D ) 既不是是命题P 的充分条件也不是命题P 的必要条件5.设E , F , G 分别是正四面体ABCD 的棱AB ,BC ,CD 的中点,则二面角C —FG —E 的大小是( ) (A ) arcsin63 (B ) π2+arccos 33 (C ) π2-arctan 2 (D ) π-arccot 226.在正方体的8个顶点, 12条棱的中点, 6个面的中心及正方体的中心共27个点中, 共线的三点组的个数是( )(A ) 57 (B ) 49 (C ) 43 (D )37二、填空题( 本题满分54分,每小题9分) 各小题只要求直接填写结果.1.若f (x ) (x ∈R )是以2为周期的偶函数, 当x ∈[ 0, 1 ]时,f (x )=x 11000,则f (9819),f (10117),f (10415)由小到大排列是 .2.设复数z=cos θ+i sin θ(0≤θ≤180°),复数z ,(1+i )z ,2-z 在复平面上对应的三个点分别是P ,Q , R .当P , Q , R 不共线时,以线段PQ , PR 为两边的平行四边形的第四个顶点为S , 点S 到原点距离的最大值是___________.3.从0, 1, 2, 3, 4, 5, 6, 7, 8, 9这10个数中取出3个数, 使其和为不小于10的偶数, 不同的取法有________种.4.各项为实数的等差数列的公差为4, 其首项的平方与其余各项之和不超过100, 这样的数列至多有_______项.5.若椭圆x 2+4(y -a )2=4与抛物线x 2=2y 有公共点,则实数a 的取值范围是 .6.∆ABC 中, ∠C = 90o, ∠B = 30o, AC = 2, M 是AB 的中点. 将∆ACM 沿CM 折起,使A ,B 两点间的距离为 2 2 ,此时三棱锥A -BCM 的体积等于__________.三、(本题满分20分)已知复数z=1-sin θ+i cos θ(π2<θ<π),求z 的共轭复数-z 的辐角主值.四、(本题满分20分)设函数f (x ) = ax 2+8x +3 (a <0).对于给定的负数a , 有一个最大的正数l (a ) ,使得在整个 区间 [0, l (a )]上, 不等式| f (x )| ≤ 5都成立.问:a 为何值时l (a )最大? 求出这个最大的l (a ).证明你的结论.五、(本题满分20分)已知抛物线y2= 2px及定点A(a, b), B( –a, 0) ,(ab≠ 0, b2≠ 2pa).M是抛物线上的点, 设直线AM, BM与抛物线的另一交点分别为M1, M2.求证:当M点在抛物线上变动时(只要M1, M2存在且M1 ≠M2),直线M1M2恒过一个定点.并求出这个定点的坐标.第二试一、(满分50分)如图,O 、I 分别为△ABC 的外心和内心,AD 是BC 边上的高,I 在线段OD 上。

1998年高考数学试题及答案(全国理)

1998年高考数学试题及答案(全国理)

1998年普通高等学校招生全国统一考试数学 (理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷(选择题共65分) 一、选择题:本大题共15小题;第(1) (10)题每小题4分,第(11) (15)题每小题5分,共65分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、sin600°的值是23.D 23.C 21.B 21.A --[Key] D2、函数)1a (a y |x |>=的图象是[Key] B3、曲线的极坐标方程θ=ρsin 4化成直角坐标方程为A . 4)2y (x 22=++B . 4)2y (x 22=-+C . 4y )2x (22=+-D .4y )2x (22=++[Key] B4、两条直线0C y B x A ,0C y B x A 222111=++=++垂直的充要条件是 A . 0B B A A 2121=+B . 0B B A A 2121=-C . 1B B A A 2121-=D . 1B B A A 2121=[Key] A 5、函数)0x (x 1)x (f ≠=的反函数=-)x (f 1A . x(x ≠0)B . )0x (x 1≠C . -x(x ≠0)D .)0x (x 1≠-[Key] B6、已知点)tg ,cos (sin P αα-α在第一象限,则在)2,0(π内α的取值范围是A . )45,()43,2(ππ⋃ππ B . )45,()2,4(ππ⋃ππ C . )23,45()43,2(ππ⋃ππ D . ),43()2,4(ππ⋃ππ[Key] B °7、已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为 A .120° B .150° C .180° D .240° [Key] C8、复数-i 的一个立方根是i ,它的另外两个立方根是A . i 2123±B .i 2123±-C .i 2123+± D . i2123-± [Key] D9、如果棱台的两底面积分别是S , S',中截面的面积是S 0,那么A . 'S S +=22B . S 'S S =0C .'S S S +=02 D .S'S S 220=[Key] A10、向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如右图所示,那么水瓶的形状是[Key] B11、3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有A .90种B .180种C .270种D .540种 [Key] D12、椭圆131222=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的A .7倍B .5倍C .4倍D .3倍[Key] A13、球面上有3个点,其中任意两点的球面距离都等于大圆周长的1/6,经过这3个点的小圆的周长为4π,那么这个球的半径为A . 34B .32C .2D .3[Key] B14、一个直角三角形三内角的正弦值成等比数列,其最小内角为 A .215arccos- B . 215arcsin- C .251arccos- D . 251arcsin-[Key] B15、在等比数列{a n }中,a 1>1,且前n 项和S n 满足11lim a S n n =∞→,那么a 1的取值范围是A .(1,+∞)B .(1,4)C .(1,2)D .(1,2) [Key] D16、设圆过双曲线116922=+y x 的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是 _______。

1998年全国数学联赛试卷及答案

1998年全国数学联赛试卷及答案

1998年全国数学联赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( ) (A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cb c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( ) (A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)18 4、已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四 5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个 二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。

7、已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于___________。

8、已知圆环内直径为a cm ,外直径为b cm ,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为___________cm 。

9、已知方程()015132832222=+-+--a a x a a x a (其中a 是非负整数),至少有一个整数根,那么a =___________。

10、B 船在A 船的西偏北450处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是___________km 。

全国1998年初中数学联合竞赛试题(含解析)

全国1998年初中数学联合竞赛试题(含解析)

全国1998年初中数学联合竞赛试题(含解析)一、填空题 1.设15+=m ,那么mm 1+的整数部分是 . 2.在直角三角形ABC 中,两条直角边AB ,AC 的长分别为1厘米,2厘米,那么直角的角平分线的长度等于 厘米.3.已知013=--x x ,那么代数式123+-x x 的值是 .4.已知m ,n 是有理数,并且方程02=++n mx x 有一个根是25-,那么n m +的值是 .5. 如图,ABCD 为正方形,A ,E ,F ,G 在同一条直线上,并且AE =5厘米,EF =3厘米,那么FG = ________________厘米.6.满足19982+2m =19972+2n )19980(<<<n m 的整数对),(n m ,共有 _______个.7.设平方数2y 是11 个连续整数的平方和,则y 的最小值是 .8.直角三角形ABC 中,直角边AB 上有一点M ,斜边BC 上有一点P , 已知BMP BC MP ∆⊥,的面积等于四边形MPCA 的面积的一半, BP=2厘米, PC=3厘米,那么直角三角形ABC 的面积是__________平方厘米.9.已知正方形ABCD 的面积35平方厘米, E , F 分别为边AB , BC 上的点, AF , CE 相交于点G ,并且ABF ∆的面积为5平方厘米,BCE ∆的面积为14平方厘米,那么四边形BEGF的面积是____________平方厘米.10.把100个苹果分给若干个人,每人至少分一个,且每人分的数目各不相同,那么至多有__________人.11.设),(b a 为实数,那么b a b ab a 222--++的最小值是__________.12. 1, 2, 3,…98共98个自然数中,能够表示成两整数的平方差的个数是_______. 13.在右边的加法算式中,每一个□表示一个数字,任意两个数字都不相同,那么A 与B 乘积的最大值是____________.14.直线AB 和AC 与圆O 分别为相切于B ,C 两点,P 为圆上一点,P 到AB ,AC 的距离分别为4厘米,6厘米,那么P 到BC 的距离为 厘米.15.每一本书都有一个国际书号: A B C D E F G H I J ,其中A B C D E F G H I 由九个数字排列而成,J 是检查号码.令S =10A +9B +8C +7D +6E +5F +4G +3H +2I , r 是S 除以11所得的余数,若r 不等于0或1,则规定J =11-r.(若r =0,则规定J =0;若r =1,规定J 用x 表示)现有一本书的书号是962y 707015,那么y = .第二试1.求所有正实数a ,使得方程043=+-a ax x 仅有整数根.2.已知P 为□ABCD 内一点,O 为AC 与BD 的交点,M 、N 分别为PB ,PC 的中点,Q 为AN 与DM 的交点,求证:(1)P ,Q ,O 三点在一条直线上; (2)PQ =2OQ.3.试写出5个自然数,使得其中任意两个数中的较大的一个数可以被这两个数的差整除.1.设15+=m ,那么mm 1+的整数部分是 .2.在直角三角形ABC 中,两条直角边AB ,AC 的长分别为1厘米,2厘米,那么直角的角平分线的长度等于 厘米.3. 已知013=--x x ,那么代数式123+-x x 的值是 .4.已知m ,n 是有理数,并且方程02=++n mx x 有一个根是25-,那么n m +的值是 .5. 如图,ABCD 为正方形,A ,E ,F ,G 在同一条直线上,并且AE =5厘米,EF =3厘米,那么FG = ________________厘米.6. 满足19982+2m =19972+2n )19980(<<<n m 的整数对),(n m ,共有 _______个.7. 设平方数2y 是11 个连续整数的平方和,则y 的最小值是 .8. 直角三角形ABC 中,直角边AB 上有一点M ,斜边BC 上有一点P , 已知BMP BC MP ∆⊥,的面积等于四边形MP CA 的面积的一半, BP=2厘米, PC=3厘米,那么直角三角形ABC 的面积是__________平方厘米.9. 已知正方形ABCD 的面积35平方厘米, E , F 分别为边AB , BC 上的点, AF , CE 相交于点G ,并且ABF ∆的面积为5平方厘米,BCE ∆的面积为14平方厘米,那么四边形BEGF 的面积是____________平方厘米.10. 把100个苹果分给若干个人,每人至少分一个,且每人分的数目各不相同,那么至多有__________人.11. 设),(b a 为实数,那么b a b ab a 222--++的最小值是__________.12. 1, 2, 3,…98共98个自然数中,能够表示成两整数的平方差的个数是_______.13. 在右边的加法算式中,每一个□表示一个数字,任意两个数字都不相同,那么A与B乘积的最大值是____________.14. 直线AB和AC与圆O分别为相切于B,C两点,P为圆上一点,P到AB,AC的距离分别为4厘米,6厘米,那么P到BC的距离为厘米.15. 每一本书都有一个国际书号: A B C D E F G H I J ,其中A B C D E F G H I 由九个数字排列而成,J 是检查号码.令S =10A +9B +8C +7D +6E +5F +4G +3H +2I , r 是S 除以11所得的余数,若r 不等于0或1,则规定J =11-r.(若r =0,则规定J =0;若r =1,规定J 用x 表示)现有一本书的书号是962y 707015,那么y = .第 二 试1.求所有正实数a ,使得方程043=+-a ax x 仅有整数根.2.已知P为□ABCD内一点,O为AC与BD的交点,M、N分别为PB,PC的中点,Q为AN与DM的交点,求证:(1)P,Q,O三点在一条直线上;(2)PQ=2OQ.3. 试写出5个自然数,使得其中任意两个数中的较大的一个数可以被这两个数的差整除.11。

1998年全国高中数学联赛试题及答案详解_PDF压缩

1998年全国高中数学联赛试题及答案详解_PDF压缩
另一方面,若取 n1=x2k+2,由于xk(x4k+6)=x2k·n1+x2k对于每个 a≤xk(x4k+6),令 a=qn1+r,那么 或者 q=x2k,r≤x2k;或者 q≤x2k-1,r≤n1-1=x2k+1。 两种情况下均有 q+r≤xk,因此 xk+1=xk(x4k+6)。此外,因为 xk 为偶数,若 4|xk,由 2|xk+6
A
hRa=b+ca-a即可。连 AI 并延长交⊙O 于 K,连 OK 交 BC 于 M,则 K、
M 分别为弧 BC 及弦 BC 的中点。且 OK⊥BC。于是 OK∥AD,又 OK=R, 故
hRa=AODK=IIAK=IKAB,
N
O
I
故只须证KIBA=b+ach-a a=12(b+BcM-a).
B
DM
a 的集合是(
) [来源:学,科,网]
(A){a | 1≤a≤9}
(B) {a | 6≤a≤9}
(C) {a | a≤9}
(D) Ø
【答案】B
【解析】AB,A≠Ø. 3≤2a+1≤3a-5≤22,6≤a≤9.故选 B.
4.设命题 P:关于 x 的不等式 a1x2 +
b1x2 +
c1 >
0与a
x2
2
+
物线上的点, 设直线 AM, BM 与抛物线的另一交点分别为 M1, M2. 求证:当 M 点在抛物线上变动时(只要 M1, M2 存在且 M1 M2) ,直线 M1M2 恒过一个定点.并
求出这个定点的坐标.
第二试
nn 二、(满分 50 分)设 a1,a2,…,an,b1,b2,…,bn∈[1,2]且iΣ=1a2i=iΣ=1bi2, 求证:iΣ=n1abi3i≤1170iΣ=n1ai2.并问:等号成立的充要条件. 三、(满分 50 分)对于正整数 a、n,定义 Fn(a)=q+r,其中 q、r 为非负整数,a=qn+r, 且 0≤r<n.求最大的正整数 A,使得存在正整数 n1,n2,n3,n4,n5,n6,对于任意的正整 数 a≤A,都有

历年全国高中数学竞赛试卷及答案(77套)

历年全国高中数学竞赛试卷及答案(77套)
2017年全国高中数学联合竞赛(四川初赛)
(5月14日下午14:30—16:30)
题目



总成绩
13
14
15
16
得分
评卷人
复核人
考生注意:1.本试卷共有三大题(16个小题),全卷满分140分
2.用黑(蓝)色圆珠笔或钢笔作答。
3.计算器,通讯工具不准待入考场。
4.解题书写不要超过封线
一,单项选择题(本大题共6个小题,每小题5分,共30分)
化简得, ①
与抛物线方程联立,得
即 ②
此时,方程②有两个相等的根:
代入①,得
所以直线DE与此抛物线有且只有一个公共点 ……10分
(2) ……15分
设直线DE与xቤተ መጻሕፍቲ ባይዱ交于点G,令
解得
于是
所以 ……20分
16.解:取
(1)先证:
因为
……5分
(2)再证:
综上可知,α的最大值是3,β的最小值是3 ……20分
1988年全国高中数学联赛试题
由归纳原理知,对任意的正整数n,都有
综上,所求实数a的取值范围 ……20分
14.解:因为 ……5分

又 ……10分
(2)由
又 ……15分
(3)因为对任意奇质数
所以,存在无穷多个合数n,使得 ……20分
15,解:
(1)设
所以可得

于是

所以E的坐标为
因此直线DE的斜率为: , ……5分
所以直线DE的方程是
(2)设直线DE与此抛物线的公共点F,记△BCF与△ADE的面积分别为 ,求 的值.
16.设 为实数,若对任意的实数 恒成立,其中

历年全国高中数学竞赛试卷及答案(77套)

历年全国高中数学竞赛试卷及答案(77套)
A.M P NB.M N PC.P N MD.A、B、C都不成立
4.已知三个平面α、β、γ,每两个之间的夹角都是θ,且α∩β=a,β∩γ=b,γ∩α=c.若有
命题甲:θ> ;
命题乙:a、b、c相交于一点.

A.甲是乙的充分条件但不必要B.甲是乙的必要条件但不充分
C.甲是乙的充分必要条件D.A、B、C都不对
化简得, ①
与抛物线方程联立,得
即 ②
此时,方程②有两个相等的根:
代入①,得
所以直线DE与此抛物线有且只有一个公共点 ……10分
(2) ……15分
设直线DE与x轴交于点G,令
解得
于是
所以 ……20分
16.解:取
(1)先证:
因为
……5分
(2)再证:
综上可知,α的最大值是3,β的最小值是3 ……20分
1988年全国高中数学联赛试题
(2)设直线DE与此抛物线的公共点F,记△BCF与△ADE的面积分别为 ,求 的值.
16.设 为实数,若对任意的实数 恒成立,其中
求 的最大值和 的最小值
2017年全国高中数学联赛(四川初赛)试题
草考答案及评分标准
一,选择题(本大题共6个小题,每小题5分,共30分)
1.A 2.B 3.C 4.C 5.B 6.A
5.在坐标平面上,纵横坐标都是整数的点叫做整点,我们用I表示所有直线的集合,M表示恰好通过1个整点的集合,N表示不通过任何整点的直线的集合,P表示通过无穷多个整点的直线的集合.那么表达式 ⑴M∪N∪P=I; ⑵N≠Ø. ⑶M≠Ø. ⑷P≠Ø中,正确的表达式的个数是
A.1B.2C.3D.4
解:均正确,选D.
⑴ 点(1,1)∈ln,(n=1,2,3,……);

1998年全国高中数学联合竞赛试题及解答.

1998年全国高中数学联合竞赛试题及解答.

1998年全国高中数学联合竞赛一试一、选择题:本大题共6个小题,每小题6分,共36分。

1998*1、若1,1>>b a 且b a b a lg lg )lg(+=+,则)1lg()1lg(-+-b a 的值( ) A.等于2lg B.等于1 C.等于0 D.不是与b a ,无关的常数 ◆答案:C★解析:由已知得ab b a =+,即()()111=--b a ,由01,01>->-b a ,故01lg )1)(1lg()1lg()1lg(==--=-+-b a b a 。

1998*2、若非空集合{}5312|-≤≤+=a x a x A ,{}223|≤≤=x x B ,则能使B A A ⊆成立的所有a 的集合是( )A.{}91|≤≤a aB. {}96|≤≤a aC. {}9|≤a aD.φ◆答案:B★解析:即B A ⊆,φ≠A .所以2253123≤-≤+≤a a ,解得96≤≤a 。

故选B .1998*3、各项均为实数的等比数列{}n a 前n 项和记为n S ,若1010=S ,7030=S ,则40S 等于( )A. 150B.200-C. 150或200-D. 400或50- ◆答案:A★解析:首先1≠q ,于是()1011101=--q q a ,()7011301=--q qa,两式相除得061020=-+q q 得210=q ,1011=-qa ,所以()1501210440=-⨯=S1998*4、设命题P :关于x 的不等式01121>++c x b x a 与02222>++c x b x a 的解集相同;命题Q :212121c c b b a a ==。

则命题Q ( ) A.是命题P 的充分必要条件 B.是命题P 的充分条件但不是必要条件C.是命题P 的必要条件但不是充分条件D.既不是命题P 的充分条件也不是命题P 的必要条件◆答案:D★解析:若两个不等式的解集都是R ,否定A 、C ,若比值为1-,否定A 、B ,选D1998*5、设G F E ,,分别是正四面体ABCD 的棱CD BC AB ,,的中点,则E FG C --的大小是( ) A.36arcsin B. 33arccos 2+π C. 2arctan 2-πD. 22arctan -π◆答案:DB D★解析:取BD AD ,中点M H ,,则BD FG EH ////, 于是EH 在平面EFG 上.设P FG CM = ,Q EH AM = ,则Q P ,分别 为AM CM ,中点,且AC PQ //∵BD AC ⊥,得FG PQ ⊥,FG CP ⊥, 所以CPQ ∠是二面角E FG C --的平面角. 设2=AC ,则3==MA MC ,33cos =∠ACM .故选D .1998*6、在正方体的8个顶点,12条棱的中点,6个面的中心及正方体的中心共27个点中,共线的三点组的个数是( )A.57B.49C.43D.37◆答案:B★解析:注意到8个顶点中无3点共线,故共线的三点组中至少有一个是棱中点或面中心或体中心.⑴ 体中心为中点:4对顶点,6对棱中点,3对面中心;共13⑵ 面中心为中点:2464=⨯组; ⑶ 棱中点为中点:12个.共49个,选B .二、填空题:本大题共6小题,每小题9分,共54分。

1988年全国高中数学联合竞赛试题及解答

1988年全国高中数学联合竞赛试题及解答
1988 年全国高中数学联合竞赛一试
一、选择题:本大题共 6 个小题,每小题 7 分,共 35 分。
1988*1.设有三个函数,第一个是 y (x) ,它的反函 数是第二个函数,而第三个函数的图象与第
二个函数的图象关于 x y 0 对称,那么,第三个函数是( )
A. y (x)
C. P N M
D.A、B、C 都不成立
◆答案:A
★解析:M 表示以 1,0, 0,1, 1,0, 0,1 为顶点的正方形内部的点的集合(不包括边界);N 表示
焦点为 1 , 1 , 1 , 1 ,长轴为 2 2 的椭圆内部的点的集合,P 表示由 x y 1 ,x 1, 2 2 2 2
种比赛过程。那么所有可能出现的比赛的过程种数为

◆答案: C174
★解析:画 1 行 14 个格子,每个格子依次代表一场比赛,如果某场比赛某人输了,就在相应的格子
中写上他的顺序号(两方的人各用一种颜色写以示区别).如果某一方 7 人都已失败则在后面的格子
中依次填入另一方未出场的队员的顺序号.于是每一种比赛结果都对应一种填表方法,每一种填表
B. y (x)
C. y 1(x)
D. y 1(x)
◆答案:B
★解析:第二个函数是 y 1 (x) .第三个函数是 x 1 ( y) ,即 y (x) .选 B.
1988* 2.已知原点在椭圆 k 2 x2 y2 4kx 2ky k 2 1 0 的内部,那么参数 k 的取值范围为( )
y 1围成的六边形内部的点的集合.故选 A.
1988*4.已知三个平面 、 、 ,每两个之间的夹角都是 ,且 a , b ,

1998数学竞赛

1998数学竞赛

1998数学竞赛
1998年的数学竞赛涵盖了多个级别和类型的比赛,其中包括
国际、全国、省级和校级的比赛。

以下是一些1998年数学竞
赛的例子:
1. 国际数学奥林匹克(IMO):1998年IMO比赛于7月12日至7月24日在台湾台北举行。

共有81个国家和地区的277名
学生参加了此次比赛。

2. 全国中学生数学竞赛(NMC):1998年全国中学生数学竞
赛是指全国中学生数学竞赛的各个学科组,包括小学数学竞赛、初中数学竞赛和高中数学竞赛。

不同年级的学生在各自的比赛中进行了竞争。

3. 省级数学竞赛:各个省市也都举办了本地区的数学竞赛,以选拔出优秀的学生代表参加全国或国际的比赛。

4. 校级数学竞赛:许多学校也组织了自己的数学竞赛,旨在提高学生的数学能力和兴趣。

以上只是1998年数学竞赛的一些例子,实际上还有许多其他
类型的比赛和活动。

这些竞赛旨在鼓励学生们对数学的兴趣,并提供一个展示和比较数学能力的平台。

1998年高中奥林匹克数学全国一等奖雅安

1998年高中奥林匹克数学全国一等奖雅安

1998年高中奥林匹克数学全国一等奖雅安
【最新版】
目录
1.1998 年高中奥林匹克数学全国一等奖的背景和意义
2.雅安地区的教育状况和数学竞赛的发展
3.1998 年高中奥林匹克数学全国一等奖对雅安地区的影响
正文
1998 年高中奥林匹克数学全国一等奖是当时中国高中数学竞赛中最
高的荣誉之一。

该奖项的设立旨在鼓励和表彰在数学领域表现出色的高中生,激发他们对数学的热爱和兴趣,同时也为他们提供了更好的发展机会。

雅安地区作为中国的一个教育重镇,一直以来都十分重视教育工作,特别是数学竞赛。

在 1998 年,雅安地区的数学竞赛水平在全国范围内已经有了一定的影响力。

当地的学校和教师积极组织和参与数学竞赛,为学生提供了良好的学习环境和竞赛平台。

1998 年高中奥林匹克数学全国一等奖的获得者来自雅安地区,这不
仅是对该地区数学竞赛水平的肯定,也是对当地教育工作的一次巨大鼓舞。

这个奖项的获得,使得雅安地区的数学竞赛得到了更多的关注和认可,同时也激发了更多学生对数学的热爱和追求。

总的来说,1998 年高中奥林匹克数学全国一等奖对雅安地区产生了
深远的影响。

它不仅提高了雅安地区在全国范围内的知名度,也推动了当地教育工作的进一步发展。

第1页共1页。

1998年高考数学试题及答案(全国理)

1998年高考数学试题及答案(全国理)

1998年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷(选择题共65分)一、选择题:本大题共15小题;第(1) (10)题每小题4分,第(11) (15)题每小题5分,共65分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、sin600°的值是23.D 23.C 21.B 21.A --[Key] D2、函数)1a (a y |x |>=的图象是[Key] B3、曲线的极坐标方程θ=ρsin 4化成直角坐标方程为A . 4)2y (x 22=++B .4)2y (x 22=-+ C . 4y )2x (22=+- D .4y )2x (22=++[Key] B4、两条直线0C y B x A ,0C y B x A 222111=++=++垂直的充要条件是A . 0B B A A 2121=+B . 0B B A A 2121=-C . 1B B A A 2121-=D . 1B B A A 2121=[Key] A5、函数)0x (x 1)x (f ≠=的反函数=-)x (f 1A . x(x ≠0)B . )0x (x 1≠C . -x(x ≠0)D .)0x (x 1≠-[Key] B6、已知点)tg ,cos (sin P αα-α在第一象限,则在)2,0(π内α的取值范围是A . )45,()43,2(ππ⋃ππ B . )45,()2,4(ππ⋃ππ C . )23,45()43,2(ππ⋃ππ D . ),43()2,4(ππ⋃ππ[Key] B °7、已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为A .120°B .150°C .180°D .240°[Key] C8、复数-i 的一个立方根是i ,它的另外两个立方根是A . i 2123±B .i 2123±-C . i 2123+±D .i 2123-± [Key] D9、如果棱台的两底面积分别是S , S',中截面的面积是S 0,那么A . 'S S +=22B . S 'S S =0C . 'S S S +=02D . S 'S S 220=[Key] A10、向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如右图所示,那么水瓶的形状是[Key] B11、3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有A .90种B .180种C .270种D .540种[Key] D12、椭圆131222=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的A .7倍B .5倍C .4倍D .3倍[Key] A13、球面上有3个点,其中任意两点的球面距离都等于大圆周长的1/6,经过这3个点的小圆的周长为4π,那么这个球的半径为A . 34B .32C .2D .3[Key] B14、一个直角三角形三内角的正弦值成等比数列,其最小内角为A . 215arccos -B . 215arcsin -C .251arccos - D . 251arcsin - [Key] B15、在等比数列{a n }中,a 1>1,且前n 项和S n 满足11lim a S n n =∞→,那么a 1的取值范围是A .(1,+∞)B .(1,4)C .(1,2)D .(1,2)[Key] D16、设圆过双曲线116922=+y x 的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是 _______。

1998年高考数学试题及答案(全国理)

1998年高考数学试题及答案(全国理)

1998年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷(选择题共65分)一、选择题:本大题共15小题;第(1) (10)题每小题4分,第(11) (15)题每小题5分,共65分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、sin600°的值是23.D 23.C 21.B 21.A --[Key] D2、函数)1a (a y |x |>=的图象是[Key] B3、曲线的极坐标方程θ=ρsin 4化成直角坐标方程为A . 4)2y (x 22=++B .4)2y (x 22=-+ C . 4y )2x (22=+- D .4y )2x (22=++[Key] B4、两条直线0C y B x A ,0C y B x A 222111=++=++垂直的充要条件是A . 0B B A A 2121=+B . 0B B A A 2121=-C . 1B B A A 2121-=D . 1B B A A 2121=[Key] A5、函数)0x (x 1)x (f ≠=的反函数=-)x (f 1A . x(x ≠0)B . )0x (x 1≠C . -x(x ≠0)D .)0x (x 1≠-[Key] B6、已知点)tg ,cos (sin P αα-α在第一象限,则在)2,0(π内α的取值范围是A . )45,()43,2(ππ⋃ππ B . )45,()2,4(ππ⋃ππ C . )23,45()43,2(ππ⋃ππ D . ),43()2,4(ππ⋃ππ[Key] B °7、已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为A .120°B .150°C .180°D .240°[Key] C8、复数-i 的一个立方根是i ,它的另外两个立方根是A . i 2123±B .i 2123±-C . i 2123+±D .i 2123-± [Key] D9、如果棱台的两底面积分别是S , S',中截面的面积是S 0,那么A . 'S S +=22B . S 'S S =0C . 'S S S +=02D . S 'S S 220=[Key] A10、向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如右图所示,那么水瓶的形状是[Key] B11、3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有A .90种B .180种C .270种D .540种[Key] D12、椭圆131222=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的A .7倍B .5倍C .4倍D .3倍[Key] A13、球面上有3个点,其中任意两点的球面距离都等于大圆周长的1/6,经过这3个点的小圆的周长为4π,那么这个球的半径为A . 34B .32C .2D .3[Key] B14、一个直角三角形三内角的正弦值成等比数列,其最小内角为A . 215arccos -B . 215arcsin -C .251arccos - D . 251arcsin - [Key] B15、在等比数列{a n }中,a 1>1,且前n 项和S n 满足11lim a S n n =∞→,那么a 1的取值范围是A .(1,+∞)B .(1,4)C .(1,2)D .(1,2)[Key] D16、设圆过双曲线116922=+y x 的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是 _______。

1998年高中奥林匹克数学全国一等奖雅安

1998年高中奥林匹克数学全国一等奖雅安

1998年高中奥林匹克数学全国一等奖雅安
1998年,我国高中生在奥林匹克数学竞赛中再创佳绩,其中来自雅安的选手凭借出色的表现,荣获全国一等奖。

这场竞赛不仅展示了获奖者的数学才能,更是对他们不懈努力的肯定。

奥林匹克数学竞赛起源于20世纪,旨在选拔和培养青少年数学人才。

自1989年我国加入国际数学奥林匹克竞赛以来,成绩斐然,为国家赢得了无数荣誉。

1998年的竞赛,我国选手在激烈角逐中脱颖而出,再次彰显了我国在国际数学领域的地位。

雅安选手获得全国一等奖,意义非凡。

首先,这是对他们数学才能的肯定。

获奖者在比赛中展现出扎实的基本功、独特的解题思路和严谨的逻辑能力,这些都是数学家所需的基本素质。

其次,这次荣誉的获得,对获奖者和整个雅安地区的教育事业起到了鼓舞人心的作用。

它激励了更多学生投身于数学学习,推动了当地教育事业的发展。

此外,数学竞赛对我国教育事业也起到了积极的推动作用。

一方面,竞赛选拔出了大量优秀的数学人才,为国家未来发展储备了强大的人力资源。

另一方面,竞赛的举办和选拔过程,使得我国数学教育水平不断提高,教育教学方法不断优化。

对于获奖者个人来说,这次荣誉无疑是对他们努力的最好回报。

在竞赛背后,是他们付出了艰辛的努力,积累了丰富的数学知识,锻炼了思维能力。

获奖者在今后的学习和工作中,将更加自信地面对挑战,充分发挥自己的才能。

总之,1998年高中奥林匹克数学全国一等奖的雅安选手,不仅为自己赢得
了荣誉,也为国家和民族争光。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一九九八年全国高中数学联合竞赛试卷
一、 选择题(本题满分36分,每小题6分)
1. 若a >1,b >1且lg(a +b )=lg a +lg b ,则lg(a -1)+lg(b -1)的值
(A) 等于lg2 (B)等于1 (C)等于0 (D)不是与a ,b 无关的常数
2. 若非空集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},则能使A ⊆A B 成立的所有a 的集合是( )
(A){a |1≤a ≤9} (B){a |6≤a ≤9} (C){a |a ≤9} (D)∅
3. 各项均为实数的等比数列{a n }前n 项和记为S n ,若S 10=10,S 30=70,则S 40等于( )
(A) 150 (B) -200 (C) 150或-200 (D)400或-50
4. 设命题P :关于x 的不等式a 1
x 2
+b 1
x +c 1
>0与a 2
x 2
+b 2
x +c 2
>0的解集相同;命题Q :2
1
212
1c c b b a a ==。

则命题Q
(A)是命题P 的充分必要条件 (B)是命题P 的充分条件但不是必要条件 (C)是命题P 的必要条件但不是充分条件
(D)既不是命题P 的充分条件也不是命题P 的必要条件
5. 设E ,F ,G 分别是正四面体ABCD 的棱AB ,BC ,CD 的中点,则二面角C -FG -E 的大小是( )
(A)
3
6arcsin
(B)
33arccos
2

(C)2arctg 2

(D)
2
2arcctg

6. 在正方体的8个顶点,12条棱的中点,6个面的中心及正方体
的中心共27个点中,共线的三点组的个数是( ) (A) 57 (B) 49 (C) 43 (D) 37 二、 填空题(本题满分54分,每小题9分) 1. 若
)
)((R x x f ∈是以2为周期的偶函数,当
]
1,0[∈x 时,
1
)(x
x f =,则
)1998(f ,)17101(f ,)
15104(f 由小到大的排列是_________________.
2. 设复数z =θθ
sin cos i +(︒0≤θ≤18︒0),复数z ,(1+i )z ,2z 在复平面上对应的三个点分别是
P ,Q ,R ,当P ,Q ,R 不共线时,以线段PQ ,PR 为两边的平行四边形的第四个顶点为S ,则点S 到原点距
离的最大值是
_______.
B
D
3. 从0,1,2,3,4,5,6,7,8,9这10个数中取出3个数,使其和为不小于10的偶数,不同的取法有________
种.
4. 各项为实数的等差数列的公差为4,其首项的平方与其余各项之和不超过100,这样的数列至多有
___________项.
5. 若椭圆4)(422=-+a y x 与抛物线y x 22
=有公共点,则实数a 的取值范围是_____________.
6. △ABC 中,∠C =90°,∠B =30°,AC =2,M 是AB 的中
点,将△ACM 沿CM 折起,使A ,B 两点间的距离为
22,此时三棱锥A -BCM 的体积等于________.
三、 (本题满分20分)
已知复数z =1-sin θ+i cos θ(π
θπ
<<2
),求z 的共轭复数z 的辐角主值。

四、 (本题满分20分)
设函数
38)(2++=x ax x f (a <0),对于给定的负数a ,有一个最大的正数l (a ),使得在整个区
间[0,l (a )]上,不等式|f
(x )|≤5都成立。

问:a 为何值时l (a )最大?求出这个最大的l (a ),证明你的结论。

五、 (本题满分20分)
已知抛物线
px y 22=及定点),(b a A ,B (-a ,0),)2,0(2pa b ab ≠≠,M
是抛物线上的点,设
直线AM ,BM 与抛物线的另一交点分别为M 1,M 2.
求证:当M 点在抛物线上变动时(只要M 1,M 2存在且M 1≠M 2),直线M 1M 2恒过一个定点,并求出这个定点的坐标。

B
C
1998年全国高中数学联合竞赛答案
一、选择题
1.C
2.B
3.A
4.D
5.D
6.B
二、填空题
1.
)
15
104
(
)
19
98
(
)
17
101
(f
f
f<
<
2.3
3.51
4.8
5. -1≤a≤
8
17
6.
3
2
2
三、
2
4

π
-
四、a=-8时,l(a)的最大值是2
1
5+
五、定点是(a,
b
pa
2
)。

相关文档
最新文档