高三单元试题八:圆锥曲线方程

合集下载

高三数学第一轮复习测试及详细解答(8)——圆锥曲线

高三数学第一轮复习测试及详细解答(8)——圆锥曲线

2y高三数学第一轮复习单元测试(7)—圆锥曲线一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若椭圆经过原点,且焦点为 F 1 (1, 0), F 2 (3, 0) ,则其离心率为()3 2 A .B .4321 1 C .D .24x 2 y 22.若抛物线 y = 2 px 的焦点与椭圆 + = 1的右焦点重合,则 p 的值为( ) 6 2A . -2B . 2C . -4D . 4 3.已知双曲线3x 2 - y 2 = 9 ,则双曲线右支上的点 P 到右焦点的距离与点 P 到右准线的距离之比等于()A .B .3C . 2D .44.与 y 轴相切且和半圆 x 2+ y 2= 4(0 ≤ x ≤ 2) 内切的动圆圆心的轨迹方程是()A . y 2= -4(x -1)(0 < x ≤ 1) B . y 2= 4(x -1)(0 < x ≤ 1) C . y 2 = 4(x +1)(0 < x ≤ 1)D . y 2= -2(x -1)(0 < x ≤ 1)5.直线 y = 2k 与曲线9k 2 x 2+ y 2= 18k 2x(k ∈ R , 且k ≠ 0) 的公共点的个数为 () A . 1 B . 2 C . 3 D . 46.如果方程 x2 + y 2 =表示曲线,则下列椭圆中与该双曲线共焦点的是()- p q1x 2y 2x 2y 2A . + = 12q + p qB . + = -12q + p px 2+ y 2 =x 2y 2C . 2 p + q q 1D .+ 2 p + qq = -17.曲线x 210 - m2 + = 1(m < 6) 与曲线 6 - mx 2 5 - m y 2 + = 1(5 < m < 9) 的 ( )9 - m A .焦距相等 B .离心率相等 C .焦点相同 D .准线相同 8.双曲线 mx 2 + y 2 = 1的虚轴长是实轴长的 2 倍,则 m = ()A . - 14B . -4C . 4D . 14 9.设过点 P (x , y )的直线分别与 x 轴的正半轴和 y 轴的正半轴交于 A 、B 两点,点Q 与点 P关于 y 轴对称, O 为坐标原点,若 BP = 2PA ,且OQ ⋅ AB = 1,则 P 点的轨迹方程是2 32()A . 3x 2+ 3y 2= 1(x > 0, y > 0)2C . 3x 2- 3y 2= 1(x > 0, y > 0)2B . 3x 2- 3y 2= 1(x > 0, y > 0)2D . 3 x 2+ 3y 2= 1(x > 0, y > 0)210.抛物线 y = -x 2上的点到直线 4x + 3y - 8 = 0 距离的最小值是 ()4 7 8 A .B .C .355D . 311.已知抛物线 x 2= y + 1上一定点 A (-1, 0) 和两动点 P , Q 当 PA ⊥ PQ 是,点Q 的横坐标的取值范围是 ()A . (-∞, -3]B . [1, +∞)C . [-3,1]D . (-∞, -3] [1, +∞)12.椭圆 x4y231= 1上有 n 个不同的点: P 1 , P 2 ,....P n , ,椭圆的右焦点为 F ,数列{| P n F |}是公差大于100的等差数列,则 n 的最大值为( )A .199B .200C .198D .201二、填空题(本大题共 4 小题,每小题 4 分,共 16 分.把答案填在题中的横线上)x 2 y 213.椭圆 + 12 3= 1的两个焦点为 F 1 , F 2,点 P 在椭圆上.如果线段 PF 1 的中点在 y 轴上,那么| PF 1 |是| PF 2 |的倍.214.如图把椭圆 x + y = 1 的长轴 AB 分成 8 等25 16分,过每个分点作 x 轴的垂线交椭圆的上半部分于 P 1,P 2,…,P 7 七个点,F 是椭圆的焦点,则|P 1F|+|P 2F|+…+|P 7F|=.15.要建造一座跨度为 16 米,拱高为 4 米的抛物线拱桥,建桥时,每隔 4 米用一根柱支撑,两边的柱长应为.16.已知两点 M (-5, 0), N (5, 0) ,给出下列直线方程:① 5x - 3y = 0 ;② 5x - 3y - 52 = 0 ;③x - y - 4 = 0 .则在直线上存在点 P 满足| MP |=| PN | +6 的所有直线方程是.(只填序号)三、解答题(本大题共 6 小题, 共 74 分,解答应写出文字说明,证明过程或演算步骤)2航天器运行(按顺时针方向)的轨迹方程为1,变轨(即航天器运行轨迹由 17.(本小题满分 12 分)学校科技小组在计算机上模拟航天器变轨返回试验. 设计方案如图:x 2 + y 2= 100 25⎛64 ⎫椭圆变为抛物线)后返回的轨迹是以 y 轴为对称轴、 M 0, ⎝⎪ 为顶点的抛物线的实7 ⎭ 线部分,降落点为 D ( 8, 0 ) . 观测点 A ( 4, 0 )、B ( 6, 0 ) 同时跟踪航天器. (1)求航天器变轨后的运行轨迹所在的曲线方程;(2)试问:当航天器在 x 轴上方时,观测点 A 、B测得离航天器的距离分别为多少时,应向航天 器发出变轨指令?18.(本小题满分 12 分)已知三点 P (5,2)、 F 1 (-6,0)、 F 2 (6,0)。

圆锥曲线与方程测试题及参考答案

圆锥曲线与方程测试题及参考答案

高中数学选修2—1第二章《圆锥曲线与方程》单元测试题及参考答案(时间120分钟 总分150分)一、选择题(本大题共8小题,每小题5分,共40分。

每小题只有一个选项符合题目意思)1.设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32a x =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为 ( C ) A.12 B. 23 C.34 D.452.已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为 ( D )A.2833x y =B. 21633x y = C. 28x y = D. 216x y = 3.已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠= ( C )A.14B.35C.34D.454.已知椭圆2222:1(0)x y C a b a b +=>>的离心学率为32.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为 ( D )A.22182x y += B.221126x y += C.221164x y += D.221205x y += 5.已知双曲线22214x y b-=的右焦点与抛物线212y x =的焦点重合,则该双曲线的焦点到其渐近线的距离等于(A)A.5B.42C.3D.56.方程22ay b x c =+中的,,{2,0,1,2,3}a b c ∈-,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有 ( B ) A.28条 B.32条 C.36条 D.48条7.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =; 则AOB ∆的面积为 ( C )A.22B.2C.322D.228.椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2。

高中试卷-专题15 圆锥曲线的方程(单元测试卷)(含答案)

高中试卷-专题15 圆锥曲线的方程(单元测试卷)(含答案)

专题15 《圆锥曲线的方程》单元测试卷一、单选题1.(2020·辽宁省高三月考(文))若抛物线上的点M 到焦点的距离为10,则M 点到y 轴的距离是( )A .6B .8C .9D .10【答案】C 【解析】抛物线的焦点,准线为,由M 到焦点的距离为10,可知M 到准线的距离也为10,故到M 到的距离是9,故选C .2.(2019·涟水县第一中学高二月考)椭圆的焦距为,则的值等于( )A .B .C .或D .【答案】C 【解析】若椭圆的焦点在轴上时,则有,解得;若椭圆的焦点在轴上时,则有,解得.综上所述,或.故选:C.3.(2018·镇原县第二中学高二期末(文))设抛物线的顶点在原点,准线方程为x=﹣2,则抛物线的方程是( )A .y 2=﹣8x B .y 2=8xC .y 2=﹣4xD .y 2=4x【答案】B 【解析】∵准线方程为x=﹣2∴=2∴p=424y x =24y x =()10F ,1x =-2214x y m +=2m 53538x 2=5m =y 2=3m =5m =3∴抛物线的方程为y 2=8x 故选B4.(2020·天津高三一模)设为抛物线的焦点,过且倾斜角为的直线交于,两点,则( )AB .C .D .【答案】C【解析】由题意,得.又因为AB 的方程为,与抛物线联立,得,设,由抛物线定义得,,选C .5.(2018·镇原县第二中学高二期末(文))已知,,则椭圆的标准方程是( )A .B .C .或D .【答案】C 【解析】由,,,可解得,,则当椭圆的焦点在轴上时,此时椭圆的标准方程为:;当椭圆的焦点在轴上时,椭圆的标准方程为:.故选:C6.(2018·镇原县第二中学高二期末(文))双曲线,则()F 2:3C y x =F 30o C A B AB =6123(,0)4F 0k tan 30==34y x =-2=3y x 21616890x x -+=1122(,),(,)A x y B x y 12AB x x p =++=168312162+=9a b +=3c =221259x y +=2212516x y +=2212516x y +=2251162x y+=221169x y +=9a b +=3c =222a b c =+225a =216b =x 2212516x y +=y 2251162x y +=()2221012x y b b-=>0+=b =A .3B .2CD .【答案】D 【解析】双曲线的焦点在轴,,渐近线方程是,,解得:.故选:7.(2018·民勤县第一中学高二期末(文))已知椭圆的一个焦点为F (0,1),离心率,则椭圆的标准方程为()A .B .C .D .【答案】D 【解析】由题意知,又离心率,所以,,即所求椭圆的标准方程,故选D .8.(2019·涟水县第一中学高二月考)设双曲线(a >0,b >0)的虚轴长为2,焦距为( )A.y =x B .y =±2xC .y =x D .y =±x【答案】C 【解析】由题意知∴,a 2=c 2-b 2x a =by x a=±0+=k ===b =D12e =2212x y +=2212y x +=22143x y +=22134x y +=1c =12e =2a =2223b a c =-=22134x y +=22221x y a b-=12∴渐近线方程为y=±x.故选C.9.(2019·浙江省高二期中)如图,,,是椭圆上的三个点,经过原点,经过右焦点,若且,则该椭圆的离心率为( )A.BCD【答案】B【解析】取左焦点,连接,,根据椭圆的对称性可得:是矩形,设,中,即:解得:,则在中即:,.b a A B C 22221x y a b+=()0a b >>AB O AC F BF AC ^3BF CF =121F 111,,AF CF BF BF AC ^1AFBF 11,2,3,23,22CF m CF a m BF AF m AF a m AC a m ==-===-=-1Rt AF C D 22211AF AC CF +=222(3)(22)(2)m a m a m +-=-3am =1,AF a AF a ==1Rt AF F D 22211AF AF FF +=222(2)a a c +=222212,2c a c a ==故选:B10.(2018·安徽省合肥一中高三一模(文))已知椭圆的左、右焦点分别为,,是椭圆在第一象限上的一个动点,圆与的延长线,的延长线以及线段都相切,且为其中一个切点.则椭圆的离心率为( )ABCD【答案】B 【解析】设圆与的延长线相切于点,与相切于点,由切线长相等,得,,,,,由椭圆的定义可得,,,则,即,又,所以因此椭圆的离心率为.故选:B.二、多选题11.(2019·山东省青岛二中高二月考)(多选题)下列说法正确的是( )2221(1)x y a a+=>1F 2F A C 1F A 12F F 2AF ()3,0M C 1F A N 2AF T AN AT =11F N F M =22F T F M =1(,0)F c -2(,0)F c 122AF AF a +=()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+-222(3)a F M a c =-=--26a =3a =1b =c ==c e a ==A .方程表示两条直线B .椭圆的焦距为4,则C .曲线关于坐标原点对称D .双曲线的渐近线方程为【答案】ACD 【解析】方程即,表示,两条直线,所以A 正确;椭圆的焦距为4,则或,解得或,所以B 选项错误;曲线上任意点,满足,关于坐标原点对称点也满足,即在上,所以曲线关于坐标原点对称,所以C 选项正确;双曲线即,其渐近线方程为正确,所以D 选项正确.故选:ACD12.(2019·山东省高二期中)已知椭圆的中心在原点,焦点,在轴上,且短轴长为2,离心率,过焦点作轴的垂线,交椭圆于,两点,则下列说法正确的是( )A .椭圆方程为B .椭圆方程为C .D .的周长为【答案】ACD 【解析】2x xy x +=221102x y m m +=--4m =22259x y xy +=2222x y a b l -=b y xa=±2x xy x +=()10x x y +-=0x =10x y +-=221102x y m m +=--()1024m m ---=()2104m m ---=4m =8m =22259x y xy +=(),P x y 22259x y xy +=(),P x y (),P x y ¢--()()()()22259x y x y --+=--(),P x y ¢--22259x y xy +=22259x y xy +=2222x y a b l -=0l ¹b y x a=±C 1F 2F y 1F y C P Q 2213y x +=2213x y +=PQ =2PF Q D由已知得,2b =2,b =1,又,解得,∴椭圆方程为,如图:∴,的周长为.故选:ACD.13.(2019·江苏省苏州实验中学高二月考)已知双曲线过点且渐近线为,则下列结论正确的是( )A .的方程为B .C .曲线经过的一个焦点D .直线与有两个公共点【答案】AC 【解析】对于选项A :由已知,可得,从而设所求双曲线方程为,又由双曲线过点,从而,即,从而选项A 正确;对于选项B :由双曲线方程可知,,从而离心率为,所以B 选项错误;c a =222a b c =+23a =2213y x +=22b PQ a ===2PF Q D 4a =C (y x =C 2213x y -=C 21x y e -=-C 10x -=C y =±2213y x =2213x y l -=C (22133l ´-=1l =a =1b =2c =c e a ===对于选项C :双曲线的右焦点坐标为,满足,从而选项C 正确;对于选项D :联立,整理,得,由,知直线与双曲线只有一个交点,选项D 错误.故选AC 三、填空题14.(2019·江苏省高三三模)双曲线的焦距为______.【答案】【解析】双曲线的焦距为.故答案为:.15.(2019·重庆巴蜀中学高二期中(理))若双曲线的左焦点在抛物线的准线上,则的值为________.【答案】6【解析】双曲线的左焦点为,即,故.故答案为:.16.(2020·浙江省高三二模)已知椭圆,F 为其左焦点,过原点O 的直线l 交椭圆于A ,B 两点,点A 在第二象限,且∠FAB =∠BFO ,则直线l 的斜率为_____.【答案】【解析】设,则,,且,()2,021x y e -=-221013x x y ì-=ïí-=ïî220y +=2420D =-´=C 2212x y -=2212x y -=2c ==22154x y -=22y px =p 22154x y -=()3,0-32p -=-6p =622197x y C +=:()00,A x y ()00,B x y --00x <00y >2200197x y +=∵F 为其左焦点,∴,AB 的斜率.经分析直线AF 的斜率必存在,设为则,又,,∴,又,,可解得:,,∴直线l的斜率为.故答案为:17.(2019·乐清市知临中学高二期末)已知抛物线的焦点为,定点.若抛物线上存在一点,使最小,则点的坐标为________,最小值是______.【答案】 【解析】根据题意,作垂直于准线,画出几何关系如下图所示:()F tan BFO Ð=10y k x =2k =1212tan 1k k FAB k k -Ð==+FAB BFO Ð=Ð=220002x y ++=2200197x y +=0(3,0)x Î-0x =0y =00y x =22y x =F ()32A ,M MA MF +M ()22,72MH根据抛物线定义可知,,因而当在同一直线上时,的值最小,此时,的纵坐标为2,代入抛物线解析式可知,所以的横坐标为2,即,故答案为:,;四、解答题18.(2018·镇原县第二中学高二期末(文))已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上.(1)求双曲线的焦点坐标;(2)求双曲线的标准方程.【答案】(1);(2)【解析】因为抛物线的准线方程为,则由题意得,点是双曲线的左焦点.(1)双曲线的焦点坐标.(2)由(1)得,又双曲线的一条渐近线方程是,所以,,所以双曲线的方程为:.19.(2019·湖南省衡阳市八中高二月考)已知抛物线的焦点为,点在抛物线上,且点的横坐标为,.MF MH =,,A M H MA MF +72MA MF AH +==M 42x =M ()2,2M ()2,2M 72()222210,0x y a b a b-=>>y =224y x =()6,0F ±221927x y-=224y x =6x =-()16,0F -()6,0F ±22236a b c +==y =ba=29a =227b =221927x y -=22(0)y px p =>F M M 45MF =(1)求抛物线的方程;(2)设过焦点且倾斜角为的交抛物线于两点,求线段的长.【答案】(1);(2).【解析】(1)由题意得,∴,故抛物线方程为.(2)直线的方程为,即.与抛物线方程联立,得,消,整理得,其两根为,且.由抛物线的定义可知,.所以,线段的长是.20.(2020·陕西省西安市远东一中高二期末(理))已知抛物线C 的顶点为坐标原点O ,对称轴为x 轴,其准线过点.(1)求抛物线C 的方程;(2)过抛物线焦点F 作直线l ,使得抛物线C 上恰有三个点到直线l 的距离都为l 的方程.【答案】(1);(2)【解析】(1)由题意得,抛物线的焦点在轴正半轴上,设抛物线C 的方程为,因为准线过点,所以,即. 所以抛物线C 的方程为.(2)由题意可知,抛物线C 的焦点为.当直线l 的斜率不存在时,C 上仅有两个点到l 的距离为当直线l 的斜率存在时,设直线l 的方程为,F 45°l A B 、AB 24y x =8452p MF +==2p =24y x =l 0tan 45(1)y x -=°⋅-1y x =-214y x y x =-ìí=îy 2610x x -+=12,x x 126x x +=12||628AB x x p =++=+=AB 8()2,1--28y x =20x y ±-=x 22y px =()2,1-22p =4p =28y x =()2,0F ()2y k x =-要满足题意,需使在含坐标原点的弧上有且只有一个点P 到直线l 的距离为,过点P 的直线平行直线且与抛物线C 相切.设该切线方程为,代入,可得.由,得.,整理得,又,解得,即.因此,直线l 方程为.21.(2019·会泽县第一中学校高二月考(理))设抛物线:的焦点为,是上的点.(1)求的方程:(2)若直线:与交于,两点,且,求的值.【答案】(1)(2).【解析】(1)因为是上的点,所以, 因为,解得,抛物线的方程为.(2)设,,由得,则,,():2l y k x =-y kx m =+24y x =()222280k x km x m +-+=()2222840km k m D =--=2km =224m k =2km =21k =1k =±20x y ±-=C 22(0)x py p =>F (,1)M p p -C C l 2y kx =+C A B 13AF BF ⋅=k 24x y =1k =±(),1M p p -C ()221p p p =-0p >2p =C 24x y =()11,A x y ()22,B x y 224y kx x y=+ìí=î2480x kx --=216320k D =+>124x x k +=128x x =-由抛物线的定义知,,,则,,,解得.22.(2018·民勤县第一中学高二期末(文))在直线:上任取一点,过作以,为焦点的椭圆,当在什么位置时,所作椭圆长轴最短?并求此椭圆方程.【答案】,【解析】设关于:的对称点,则,,连交于,点即为所求点.:,即,解方程组,,当点取异于的点时,.满足题意的椭圆的长轴最短时,,所以,,.椭圆的方程为:.11AF y =+21BF y =+()()()()12121133AF BF y y kx kx ⋅=++=++()2121239k x x k x x =+++24913k =+=1k =±l 90x y -+=M M ()13,0F -()23,0F M ()5,4M -2214536x y +=()13,0F -l 90x y -+=(),F x y 3909220613x y x y y x -ì-+=ï=-ìïÞíí-=îï=-ï+î()9,6F -2F F l M M 2F F 1(3)2y x =--230x y +-=2305904x y x x y y ì+-==-ìÞíí-+==îî()5,4M -'M M 22''FM M F FF +>22a FF ===a =3c =22245936b a c =-=-=2214536x y +=23.(2019·安徽省高二期末(理))已知点为坐标原点椭圆的右焦点为,离心率为,点分别是椭圆的左顶点、上顶点,的边.(1)求椭圆的标准方程;(2)过点的直线交椭圆于两点直线分别交直线于两点,求.【答案】(1);(2)0.【解析】(1)如图所示由题意得为直角三角形,且,所以则所以椭圆的标准方程为:.O 2222:1(0)x y C a b a b+=>>F 12,P Q C POQ △PQ C F l A B 、PA PB 、2x a =M N 、FM FN ⋅uuuu r uuu r 22143x y +=POQ △PQ PQ =222a b c =+=ïïî1a b c ìï=íï=î22143x y +=(2)由题意,如图设直线的方程为:,,,则,,联立方程化简得.则.由三点共线易得,化简得,同理可得..l 1x my =+()11,A x y ()22,B x y ()34,M y ()44,N y 221143x my x y =+ìïí+=ïî22(34)690m y my ++-=122122634934m y y m y y m ì+=-ïï+íï⋅=-ï+î,,P A M ()31100422y y x --=--+13163y y my =+24263y y my =+1234341266(3,)(3,)9933y y FM FN y y y y my my ⋅==+=+⋅++uuuu r uuu r g ()122121236939y y m y y m y y =++++2222222936()36934990969189(34)()3()93434m m m m m m m m m --´+=+=+=--++-+-+++。

单元素养卷圆锥曲线的方程A卷+答案解析(附后)

单元素养卷圆锥曲线的方程A卷+答案解析(附后)

单元素养卷圆锥曲线的方程A卷命题人:泉州五中高级教师苏文新一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知抛物线的准线经过点,则抛物线的焦点坐标为 ( )A. B. C. D.2.椭圆上任意一点到两焦点的距离之和为( )A. B. 8 C. D. 43.已知顶点在x轴上的双曲线实轴长为4,其两条渐近线方程为,该双曲线的焦点为( )A. B. C. D.4.党的十八大报告指出,鼓励共同奋斗创造美好生活,不断实现人民对美好生活的向往。

为响应中央号召,某社区决定在现有的休闲广场内修建一个半径为4m的圆形水池来规划喷泉景观.设计如下:在水池中心竖直安装一根高出水面为2m的喷水管水管半径忽略不计,它喷出的水柱呈抛物线型,要求水柱在与水池中心水平距离为处达到最高,且水柱刚好落在池内,则水柱的最大高度为( )A. B. C. D.5.已知椭圆的长轴长是短轴长的2倍,则实数m的值是( )A. 2B. 或4C.D. 或26.抛物线的焦点为F,其准线与双曲线相交于A,B两点,若为等边三角形,则( )A. B. C. 2 D. 37.如图所示,,是双曲线C:的左、右焦点,过的直线与C的左、右两支分别交于A,B两点.若,则双曲线的离心率为( )A. 2B.C.D.8.已知椭圆的左,右焦点分别是,,若椭圆上存在一点M,使为坐标原点,且,则实数t的值为( )A. 2B.C.D. 1二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.若方程所表示的曲线为C,则下面四个说法中错误的是( )A. 若,则C为椭圆B. 若C为椭圆,且焦点在y轴上,则C. 曲线C可能是圆D. 若C为双曲线,则10.已知双曲线的一条渐近线方程为,则( )A. 为C的一个焦点B. 双曲线C的离心率为C. 过点作直线与C交于两点,则满足的直线有且只有两条D. 设为C上三点且关于原点对称,则斜率存在时其乘积为11.已知曲线C上任意一点到直线的距离比它到点的距离大2,则下列结论正确的是( )A. 曲线C的方程为B. 若曲线C上的一点A到点F的距离为4,则点A的纵坐标是C. 已知曲线C上的两点M,N到点F的距离之和为10,则线段MN的中点横坐标是5D. 已知,P是曲线C上的动点,则的最小值为512.已知椭圆C:,,分别为它的左右焦点,A,B分别为它的左右顶点,点P是椭圆上的一个动点,下列结论中正确的有( )A.存在P使得 B. 的最小值为C. ,则的面积为9D. 直线PA与直线PB斜率乘积为定值三、填空题:本题共4小题,每小题5分,共20分。

第八章 圆锥曲线方程 阶段质量检测

第八章 圆锥曲线方程  阶段质量检测

第八章 圆锥曲线方程一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.设a ≠0,a ∈R ,则抛物线y =ax 2的焦点坐标为 ( ) A .(a 2,0) B .(0,12a )C .(a 4,0)D .(0,14a )解析:先把抛物线的方程化为标准方程的形式, 由y =ax 2得,x 2=1a y ,∴其焦点坐标为(0,14a ).答案:D2.如果双曲线x 213-y 212=1上一点P 到右焦点的距离等于13,那么点P 到右准线的距离是 ( ) A.135B .13C .5D.513解析:由双曲线方程得a 2=13,b 2=12, ∴c 2=25,∴e =c a =513,由双曲线的第二定义知|PF 2|d =e =513,而|PF 2|=13,∴d =135.答案:A3.抛物线y 2=2px (p >0)的准线经过等轴双曲线x 2-y 2=1的左焦点,则p = ( )A.22B. 2 C .2 2 D .4 2解析:双曲线x 2-y 2=1的左焦点为(-2,0),故抛物线的准线为x =-2,∴p2=2,p =2 2. 答案:C4.两个正数a 、b 的等差中项是52,等比中项是6,则双曲线x 2a 2-y 2b 2=1的离心率e 等于( )A.52B.53或52 C.133 D.133或132解析:由题意可得⎩⎪⎨⎪⎧ a +b =5ab =6,解之得⎩⎪⎨⎪⎧ a =3b =2或⎩⎪⎨⎪⎧a =2b =3. 当a =3,b =2时,e =c a =a 2+b 2a =133;当a =2,b =3时,e =c a =a 2+b 2a =132.答案:D5.设椭圆C 1的离心率为56,焦点在x 轴上且长轴长为12.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为 ( ) A.x 216-y 29=1B.x 210-y 25=1 C.x 29-y 216=1D.x 25-y 210=1 解析:由已知得,在椭圆C 1中,a =6,c =5,由此可得在双曲线C 2中的a =4,c =5, 故双曲线C 2中的b =3,故双曲线C 2的方程为x 216-y 29=1.答案:A6.如图,有公共左顶点和公共左焦点F 的椭圆Ⅰ与Ⅱ的长半 轴的长分别为a 1和a 2,半焦距分别为c 1和c 2,且椭圆Ⅱ 的右顶点为椭圆Ⅰ的中心.则下列结论不.正确的是( ) A .a 1+c 1>a 2+c 2 B .a 1-c 1=a 2-c 2 C .a 1c 2<a 2c 1 D .a 1c 2>a 2c 1 解析:由题意知,a 1=2a 2,c 1>2c 2,∴a 1c 2<a 2c 1. ∴不正确的为D. 答案:D7.设椭圆x 2m 2+y 2n 2=1(m >0,n >0)的焦点在抛物线y 2=8x 的准线上,离心率为12,则椭圆的方程为( )A.x 212+y 216=1B.x 216+y 212=1C.x 248+y 264=1D.x 264+y 248=1解析:抛物线的准线方程为x =-2,故椭圆的左焦点坐标为(-2,0),显然椭圆的焦 点在x 轴上,且c =2,又因为离心率为12,所以a =4,故b 2=a 2-c 2=12.∴椭圆的方程为x 216+y 212=1.答案:B8.若直线mx +ny =4与圆O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为 ( )A .至多一个B .2C .1D .0 解析:∵直线与圆没有公共点, ∴4m 2+n2 >2,即m 2+n 2<4. ∴P (m ,n )在椭圆的内部∴过P 点的直线与椭圆必有两个公共点. 答案:B9.若直线y =kx -2与抛物线y 2=8x 交于A 、B 两个不同的点,且AB 的中点的横坐标 为2,则k =( )A .2或-1B .-1C .2D .1±5解析:由⎩⎪⎨⎪⎧y =kx -2y 2=8x ,消去y 得k 2x 2-4(k +2)x +4=0,故Δ=16(k +2)2-16k 2=64(1+k )>0,解得k >-1. 又x 1+x 2=4(k +2)k 2=4,解之得k =2或k =-1(舍).答案:C10.(2010·宁德摸拟)已知抛物线x 2=2py (p >0)的焦点F 恰好是双曲线y 2a 2-x 2b2=1的一个焦点,且两条曲线交点的连线过点F ,则该双曲线的离心率为 ( ) A.2 B .1±2 C .1+ 2 D .无法确定解析:由题意知p2=c ,根据圆锥曲线图象的对称性,两条曲线交点的连线垂直于y 轴,对双曲线来说,这两个交点连线的长度是2b 2a ,对抛物线来说,这两个交点连线的长度是2p ,即4c ,得2b 2a =4c ,得b 2=2ac ,得c 2-a 2=2ac ,得e 2-2e -1=0,解得e =1±2,因为e >1,所以e =1+ 2. 答案:C11.(2010·温州摸拟)在平面直角坐标系xOy 中,过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=a 2的一条切线(切点为T )交双曲线的右支于点P ,若M 为FP 的中点, 则|OM |-|MT |等于( )A .b -aB .a -b C.a +b 2D .a +b解析:如图,F ′是双曲线的右焦点,由双曲线的定义得,|PF |-|PF ′|=2a .又M 为 PF 的中点,∴|MF |-|OM |=a ,即|OM |=|MF |-a . 又直线PF 与圆相切, ∴|FT |=OF 2-OT 2=b ,∴|OM |-|MT |=|MF |-a -(|MF |-|FT |) =|FT |-a =b -a . 答案:A12.过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B (如图所示),交其准线 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为 ( )A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x解析:点F 到抛物线准线的距离为p ,又由|BC |=2|BF |得点B 到准线的距离为|BF |, 则|BF ||BC |=12,∴l 与准线夹角为30°, 则直线l 的倾斜角为60°.由|AF |=3,如图作AH ⊥HC , EF ⊥AH ,垂足分别为H 、E ,则AE =3-p , 则cos60°=3-p 3,故p =32.∴抛物线方程为y 2=3x . 答案:C二、填空题:本大题共4小题,每小题5分,共20分.将答案填在题中横线上. 13.(2009·杭州模拟)直线x +2y -2=0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点和一个顶点,则该椭圆的离心率等于________.解析:直线过点(2,0)和(0,1),即为椭圆的一个焦点和一个顶点,又a >b >0,∴焦点在 x 轴上,∴c =2,b =1,a =22+12=5,∴e =255.答案:25514.(2009·湖南高考)过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点作圆x 2+y 2=a 2的两条切线,切点分别为A ,B .若∠AOB =120°(O 是坐标原点),则双曲线C 的离心率 为________.解析:∵∠AOB =120°,∴∠AOF =60°. 在Rt △OAF 中,|OA |=a ,|OF |=c , ∴e =c a =|OF ||OA |=1cos60°=2.答案:215.抛物线y =-x 2上的点到直线4x +3y -8=0的距离的最小值等于________. 解析:由抛物线的方程,可设抛物线上点的坐标为(x ,-x 2),根据点到直线的距离 公式得d =|4x +3(-x 2)-8|42+32=35(x -23)2+43,所以当x =23时,d 取得最小值43.答案:4316.已知双曲线x 29-y 216=1的右焦点为F ,点A (9,2),试在双曲线上求一点M ,使||MA +35||MF 的值最小,那么这个最小值是________. 解析:由已知,35与双曲线的离心率53互为倒数.因而35|MF |=|MF |e =d (d 为点M 到相应准线的距离),所以求|MA |+35|MF |的最小值,即求|MA |+d 的最小值.作右准线l ,作MN ⊥l 于N ,AA ′⊥l 于A ′. 由x 29-y 216=1,可知e =53,∴|MF ||MN |=53,∴|MA |+35|MF |=|MA |+|MN |≥|AA ′|,因此,当A ,M ,N 三点共线时,|MA |+|MN |最小,M 为AA ′与双曲线右支的交点, M (325,2),∴|MA |+35|MF |的最小值为9-a 2c =9-95=365.答案:365三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知椭圆的中心在坐标原点,焦点在x 轴上,离心率为45,F 1、F 2分别为椭圆的左、右焦点,椭圆上有一点P ,∠F 1PF 2=π3,且△PF 1F 2的面积为33,求椭圆的方程.解:设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),F 1(-c,0)、F 2(c,0).因为点P 在椭圆上,所以|PF 1|+|PF 2|=2a . 在△PF 1F 2中,由余弦定理,得 |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos π3=(|PF 1|+|PF 2|)2-3|PF 1|·|PF 2|, 即4c 2=4a 2-3|PF 1|·|PF 2|.又因S △PF 1F 2=33,所以12|PF 1|·|PF 2|sin π3=33,得|PF 1|·|PF 2|=12.所以4c 2=4a 2-36,得b 2=9,即b =3. 又e =c a =45,故a 2=259b 2=25,所以所求椭圆的方程为x 225+y 29=1.18.(本小题满分12分)已知点(x ,y )在曲线C 上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程x 2+y 2=8;定点M (2,1),平行于OM 的直线l 在y 轴上的截距为m (m ≠0),直线l 与曲线C 交于A ,B 两个不同点. (1)求曲线C 的方程; (2)求m 的取值范围.解:(1)在曲线C 上任取一个动点P (x ,y ), 则点(x,2y )在圆x 2+y 2=8上. 所以有x 2+(2y )2=8.整理得曲线C 的方程为x 28+y 22=1.(2)∵直线l 平行于OM ,且在y 轴上的截距为m , 又k OM =12,∴直线l 的方程为y =12x +m .由⎩⎨⎧y =12x +m ,x 28+y22=1.得x 2+2mx +2m 2-4=0∵直线l 与椭圆交于A 、B 两个不同点, ∴Δ=(2m )2-4(2m 2-4)>0, 解得-2<m <2且m ≠0.∴m 的取值范围是-2<m <0或0<m <2.19.(本小题满分12分)已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且(PC +12PC )·(PC -12PQ )=0.(1)问点P 在什么曲线上?并求出该曲线的方程;(2)若EF 为圆N :x 2+(y -1)2=1的任一条直径,求PE ·PF的最大值. 解:(1)设P (x ,y ),则Q (8,y ).由(PC +12PQ )·(PC -12PQ)=0得:|PC |2-14|PQ |2=0,即(x -2)2+y 2-14(x -8)2=0,化简得x 216+y 212=1.所以点P 在椭圆上,其方程为x 216+y 212=1.(2)PE ·PF =(NE -NP )·(NF -NP) =(-NF -NP )·(NF -NP)=(-NP )2-NF 2=NP 2-1,P 是椭圆x 216+y 212=1上的任一点,设P (x 0,y 0),则有x 2016+y 2012=1,即x 20=16-4y 203. 又N (0,1),所以NP 2=x 20+(y 0-1)2=-13y 20-2y 0+17=-13(y 0+3)2+20, 因为y 0∈[-23,23],所以当y 0=-3时,NP 2取最大值20,故PE ·PF 的最大值为19.20.(本小题满分12分)椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,2),离心率e =63.(1)求椭圆的方程;(2)直线l :y =kx -2(k ≠0)与椭圆相交于不同的两点M 、N ,且满足MP =PN, AP ·MN=0,求直线l 的方程. 解:(1)设c =a 2-b 2,依题意得⎩⎪⎨⎪⎧b =2,e =c a =a 2-b 2a =63,即⎩⎪⎨⎪⎧b =2,6a 2=9a 2-9b 2, ∴a 2=3b 2=12,即椭圆方程为x 212+y 24=1.(2)∵MP =PN ,AP ·MN=0,∴AP ⊥MN , 且点P 是线段MN 的中点,由⎩⎪⎨⎪⎧y =kx -2,x 212+y 24=1消去y 得x 2+3(kx -2)2=12, 即(1+3k 2)x 2-12kx =0,(*)由k ≠0,得方程(*)中Δ=(-12k )2=144k 2>0,显然方程(*)有两个不相等的实数根. 设M (x 1,y 1)、N (x 2,y 2),线段MN 的中点P (x 0,y 0), 则x 1+x 2=12k 1+3k 2,∴x 0=x 1+x 22=6k1+3k 2. ∴y 0=kx 0-2=6k 2-2(1+3k 2)1+3k 2=-21+3k 2,即P ⎝ ⎛⎭⎪⎫6k 1+3k 2,-21+3k 2.∵k ≠0,∴直线AP 的斜率为k 1=-21+3k 2-26k 1+3k 2=-2-2(1+3k 2)6k .由MN ⊥AP ,得-2-2(1+3k 2)6k ·k =-1,∴2+2+6k 2=6,解得k =±33,故直线方程为y =±33x -2.21.(本小题满分12分)抛物线的顶点在原点,焦点在x 轴的正半轴上,直线x +y -1=0 与抛物线相交于A 、B 两点,且|AB |=8611.(1)求抛物线的方程;(2)在x 轴上是否存在一点C ,使△ABC 为正三角形?若存在,求出C 点的坐标;若 不存在,请说明理由.解:(1)设所求抛物线的方程为y 2=2px (p >0),由⎩⎪⎨⎪⎧y 2=2px ,x +y -1=0,消去y ,得x 2-2(1+p )x +1=0,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2(1+p ),x 1·x 2=1. ∵|AB |=8611,∴(1+k 2)[(x 1+x 2)2-4x 1x 2]=8611, ∴121p 2+242p -48=0.∴p =211或-2411(舍).∴抛物线的方程为y 2=411x .(2)设AB 的中点为D ,则D (1311,-211).假设x 轴上存在满足条件的点C (x 0,0), ∵△ABC 为正三角形,∴CD ⊥AB ,∴k CD =1, ∴x 0=1511.∴C (1511,0),∴|CD |=2211.又∵|CD |=32|AB |=12211,故矛盾, ∴x 轴上不存在点C ,使△ABC 为正三角形.22.(本小题满分12分)(2010·启东模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),直线l 为圆O :x 2+y 2=b 2的一条切线,且经过椭圆C 的右焦点,记椭圆C 的离心率为e . (1)若直线l 的倾斜角为π6,求e 的值;(2)是否存在这样的e ,使得原点O 关于直线l 的对称点恰好在椭圆C 上?若存在,请 求出e 的值;若不存在,请说明理由.解:(1)设椭圆C 的右焦点为(c,0),则c =a 2-b 2,所以直线l 的方程为y =(x -c )×tan π6,即x -3y -c =0.因为直线l 与圆O 相切,所以圆心O 到直线l 的距离|-c |2=b ,即b=12c .所以a 2=b 2+c 2=54c 2,从而离心率e =c a =255.(2)假设存在满足条件的e .显然直线l 的斜率不为0,不妨设直线l 的方程为x =my +c , 即x -my -c =0.因为直线l 与圆O 相切,所以圆心O 到直线l 的距离|-c |1+m 2=b ,即m 2=c 2b 2-1.①设原点O 关于直线l 的对称点为点O ′(x 0,y 0),则⎩⎨⎧y 0x 0=-m x 02=m y2+c,解得⎩⎨⎧x 0=2cm 2+1y 0=-2mcm 2+1,因为点O ′在椭圆C 上,所以x 20a 2+y 20b2=1,即4c 2a 2(m 2+1)2+4m 2c 2b 2(m 2+1)2=1.②将①代入②,化简得b 2=3c 2,由①可得, 此时m 2=c 2b 2-1=-23,不成立.故不存在符合条件的e .。

高三数学圆锥曲线与方程

高三数学圆锥曲线与方程

圆锥曲线与方程1. 已知动抛物线的准线为x 轴,且经过点(0,2),求抛物线的顶点轨迹方程。

解:设抛物线的顶点坐标为)2,(),,(y x y x 则焦点坐标为, ……………………3分由题意得4)22(22=-+y x , ………………6分即顶点的轨迹方程为.1)1(422=-+y x ………………8分 2.动点P 在x 轴与直线l :y =3之间的区域(含边界)上运动,且到点F (0,1)和直线l的距离之和为4.(1)求点P 的轨迹C 的方程;(2)过点(0,1)Q -作曲线C 的切线,求所作的切线与曲线C 所围成区域的面积. 【解】(1)设P (x ,y )+3-y =4,化简,得y =14x 2(y ≤3).…………………4分(2)设过Q 的直线方程为y =kx -1,代入抛物线方程,整理得x 2-4kx +4=0. 由△=16k 2-16=0.解得k =±1.于是所求切线方程为y =±x -1(亦可用导数求得切线方程). 切点的坐标为(2,1),(-2,1).由对称性知所求的区域的面积为S =220132(1)d .44x x x ⎡⎤--=⎢⎥⎣⎦⎰ ………………… 10分 3.已知圆F 1:(x +1)2+y 2=16,定点F 2(1,0).动圆M 过点F 2,且与圆F 1相内切.(1)求点M 的轨迹C 的方程;(2)若过原点的直线l 与(1)中的曲线C 交于A ,B 两点,且△ABF 1的面积为32,求直线l 的方程.解:(方法一)(1)设圆M 的半径为r . 因为圆M 与圆F 1相内切,所以MF 1=4-r . 因为圆M 过点F 2,所以MF 2=r .所以MF 1=4-MF 2,即MF 1+MF 2=4.………2分 所以点M 的轨迹C 是以F 1,F 2为焦点的椭圆.………且此椭圆的方程形式为x 2a 2+y 2b2=1(a >b >0).其中2a =4,c =1,所以a =2,b =3.……………4分所以曲线C 的方程x 24+y 23=1.……………5分(方法二)设M (x ,y),由MF 1+MF 2=4得4= ……3分化简得x 24+y 23=1,所以曲线C 的方程x 24+y 23=1.…5分(2)(方法一)当直线l 的斜率不存在时, A ,B 两点的坐标分别是(0,3),(0,-3),此时S △ABF 1=3≠32,不合题意.………………………………………………………6分设直线l 的方程为y =kx (k ≠0),代入椭圆方程x 24+y 23=1,得y 1=12k 23+4k 2,y 2=-12k 23+4k 2.所以S △ABF 1=S △AOF 1+S △BOF 1=12OF 1⋅∣y 1∣+12OF 1⋅∣y 2∣=12OF 1⋅(y 1-y 2)=12k 23+4k 2.……………………………………………7分因为S △ABF 1=32,所以12k 23+4k2=32.解得k =±12. …………………………8分 故所求直线l 的方程为x ±2y =0.……………………………………………………10分 (方法二)因为直线l 过椭圆的中心,由椭圆的对称性可知,S △ABF 1=2S AOF 1.因为S △ABF 1=32,所以S AOF 1=34. ………………………………6分 不妨设点A (x 1,y 1)在x 轴上方,则S AOF 1=12⋅OF 1⋅y 1=34.所以y 1=32,x 1=±3,即点A 的坐标为(3,32)或(-3,32). (8)分所以直线l 的斜率为±12.故所求的直线l 的方程为x ±2y =0.…………………………………………………10分 4. 点(,)n n n P x y 在曲线:xC y e -=上,曲线C 在n P 处的切线n l 与x 轴相交于点1(,0)n n Q x +,直线1n t +:1n x x +=与曲线C 相交于点111(,)n n n P x y +++,(1,2,3,n =L ).由曲线C 和直线n l ,1n t +围成的图形面积记为n S ,已知11x =.(1)证明:11n n x x +=+; (2)求n S 关于n 的表达式;(3)若数列{}n S 的前n 项之和为n T ,求证:11n n n nT x T x ++<(1,2,3,n =L ).解(Ⅰ)证明:因为x y e -=,所以xy e -'=-,则切线n l 的斜率nx n k e -=-,所以切线n l 的方程为()nx n n y y ex x --=--,令0y =,得1n Q n x x =+,即11n n x x +=+·2分(Ⅱ)解:因为11x =,所以n x n =,所以11111(2)()()|222n nn x xx n n n n n n n x e e S e dx x x y e e e +---+-+-=--⋅=--⨯=⎰ ·5分(Ⅲ)证明:因为12(2)2()(1)22(1)n n n e e T e e e e e e e ------=++⋅⋅⋅+=--, 所以1111111111n n n n n n n T e e e T e e e e e --++-++---===+---,又1111n nx n x n n ++==+, 故要证11n n n n T x T x ++<,只要证111n e e e n+-<-,即要证1(1)n e e n e +>-+·7分下用数学归纳法(或用二项式定理,或利用函数的单调性)等方法来 证明1(1)n ee n e +>-+(略)·10分5.在平面直角坐标系xOy 中,抛物线C 的顶点在原点,焦点F 的坐标为(1,0). (1)求抛物线C 的标准方程;(2)设M 、N 是抛物线C 的准线上的两个动点,且它们的纵坐标之积为-4,直线MO ,NO 与抛物线C 的交点分别为点A 、B .求证:动直线AB 恒过一个定点.解:(1)设抛物线的标准方程为y 2=2px (p >0),则p2=1,p =2.所以抛物线C 的标准方程为y 2=4x .………………………………………………3分 (2)(方法一)抛物线C 的准线方程为x =-1,设M (-1,y 1)、N (-1,y 2), 其中y 1y 2=-4.则直线MO 的方程为:y =-y 1x . 将y =-y 1x 与y 2=4x 联立方程组.解得A 点坐标为(4y 21,-4y 1).同理可得B 点坐标为(4y 22,-4y 2).则直线AB 的方程为:y +4y 1-4y 2+4y 1=x -4y 214y 22-4y 21.整理,得(y 1+y 2)y -4x +4=0.由⎩⎨⎧y =0,-4x +4=0,解得⎩⎨⎧x =1,y =0.故动直线AB 恒过一个定点(1,0).………………10分(方法二)抛物线C 的准线方程为x =-1,设M (-1,y 1)、N (-1,y 2). 由于y 1y 2=-4,取y 1=2,则y 2=-2,可得M (-1,2)、N (-1,-2).此时直线MO 的方程分别为y =-2x ,由⎩⎨⎧y 2=4x ,y =-2x .解得A 点坐标为(1,-2).同理,可得B 点坐标为(1,2).则直线AB 的方程为l 1:x =1. 再取y 1=1,则y 2=-4,同理可得A (4,-4),B (14,1).此时直线AB 方程为l 2:4x +3y -4=0.于是可得l 1与l 2的交点为(1,0). 下面验证对任意的y 1,y 2,当y 1y 2=-4时,动直线AB 恒过一个定点(1,0). 直线MO 的方程为:y =-y 1x . 将y =-y 1x 与y 2=4x 联立方程组.解得A 点坐标为(4y 21,-4y 1).同理可得B 点坐标为(4y 22,-4y 2).则直线AB 的方程为:y +4y 1-4y 2+4y 1=x -4y 214y 22-4y 21.整理,得(y 1+y 2)y -4x +4=0. 可得点(1,0)在直线AB 上.所以动直线AB 恒过一个定点(1,0).………………………………………………10分 6.(本题满分10分)在平面直角坐标系xoy 中,抛物线C 的顶点在原点,经过点(2,2)A ,其焦点F 在x 轴上。

高三圆锥曲线大题

高三圆锥曲线大题

高三圆锥曲线大题
圆锥曲线大题是高中数学中的一个重要题型,主要涉及椭圆、双曲线和抛物线等圆锥曲线的性质和应用。

以下是一些高三圆锥曲线大题的常见类型和解题技巧:
1.求圆锥曲线的方程:给定一些条件(如焦点、顶点、离心率等),
要求出圆锥曲线的方程。

这类题目需要掌握圆锥曲线的标准方
程和性质,以及如何利用这些条件求解方程。

2.求圆锥曲线的交点:给定两个圆锥曲线方程,要求它们的交点
坐标。

这类题目需要联立两个方程,通过解方程组得到交点坐
标。

在解方程组时,需要运用代数运算和韦达定理等数学知识。

3.求圆锥曲线的离心率:给定圆锥曲线的方程和焦点,要求离心
率。

这类题目需要利用离心率的定义和公式,通过计算得到离
心率。

4.判断圆锥曲线的位置关系:给定两个圆锥曲线,判断它们的位
置关系(如相交、相切、相离等)。

这类题目需要利用圆锥曲线
的几何性质,通过比较半径、距离等参数来判断位置关系。

解题技巧:
1.熟悉圆锥曲线的标准方程和性质,能够灵活运用它们解决问题。

2.掌握代数运算和韦达定理等数学知识,能够熟练处理方程组和
解的问题。

3.注意圆锥曲线的几何性质,如对称性、焦点、离心率等,能够
利用它们简化问题和提高解题效率。

4.多做练习题,熟悉不同类型的圆锥曲线大题,提高解题能力和
思维水平。

高三数学:圆锥曲线与方程

高三数学:圆锥曲线与方程

第八章圆锥曲线的方程脑图一、第一定义【利用第一定义求轨迹】例1.(Ⅰ)若ABC ∆的两个顶点坐标为()4,0A -,()4,0B ,ABC ∆的周长为18,则顶点C 的轨迹方程为 .(Ⅱ)设点Q 是圆C :25)1(22=++y x 上一动点,点()1,0A 是圆内一点,AQ 的垂直平分线与CQ 交于点M ,求点M 的轨迹方程.(Ⅲ)动圆M 过定点(4,0)P -,且与圆C :22(4)16x y -+=相切,求动圆圆心M 的轨迹方程.(Ⅳ)已知1F 、2F 分别为双曲线22221x y a b-=的左、右焦点,点P 为右支上一点,过1F 作12F PF ∠的角平分线的垂线,垂足为M ,求点M 的轨迹. (Ⅴ)——见《直线和圆的方程脑图》例8(Ⅲ)(Ⅳ).【焦点三角形问题】例2.(Ⅰ)已知P 是椭圆2214x y +=上一点,12F F 、分别是椭圆的左、右焦点,且1260F PF ∠=︒,则12F PF ∆的面积是 . (Ⅱ)双曲线221916x y -=的左、右焦点分别是12F F 、,点P 在双曲线上,且直线1PF 、2PF 倾斜角之差为3π,则12F PF ∆的面积为 . (Ⅲ)在椭圆2214520x y +=上求一点P ,使它与两焦点12F F 、的连线互相垂直. (Ⅳ)12F F 、是椭圆22194x y +=的两个焦点,点P 为其上一动点,当12F PF ∠为钝角时,点P 的横坐标的取值范围是 . (Ⅴ)设12F F 、是双曲线2214x y -=的两个焦点,点P 在双曲线上,当12F PF ∆的面积为1时,12PF PF ⋅ 的值是 .【利用第一定义求最值】例3.(Ⅰ)已知F 是椭圆22195x y +=的左焦点,P 是椭圆上一动点,(1,1)A 为一定点,求PA PF +的最值. (Ⅱ)若P 为双曲线2213x y -=的右支上一动点,F 为双曲线右焦点,已知()3,1A ,求PA PF +的最小值.二、第二定义【利用第二定义求轨迹】例4.(Ⅰ)已知动点(),M x y 满足|43|)2()1(22y x y x +=-+-,则点M 的轨迹是A .椭圆B .双曲线C .抛物线D .两条相交直线(Ⅱ)已知圆A :()2221x y ++=与定直线l :1x =,动圆M 和圆A 外切且与直线l 相切,求动圆的圆心M 的轨迹方程. (Ⅲ)已知圆的方程为224x y +=,动抛物线过点(1,0)A -、(1,0)B ,且以圆的切线为准线,求抛物线焦点的轨迹方程.(Ⅳ)——见《直线和圆的方程脑图》例8(Ⅱ)、例9(Ⅱ)(Ⅸ).【利用第二定义求最值】例5.(Ⅰ)已知F 是椭圆22195x y +=的左焦点,P 是椭圆上一动点,(1,1)A 为一定点,求32PA PF +的最小值.(Ⅱ)若P 为双曲线2213x y -=的右支上一动点,F 为双曲线右焦点,已知()3,1A ,求(1)PA 的最小值. (Ⅲ)若F 为抛物线x y 22=的焦点,点M 在抛物线上移动,)2,3(A ,求MF MA +的最小值.(Ⅳ)已知点P 是抛物线2y = 2x 上的动点,点P 在y 轴上的射影是M ,点A 的坐标是7,42⎛⎫⎪⎝⎭,则PA PM +的最小值是 A .211 B .4 C .29 D .5【焦半径公式】 例6.(Ⅰ)已知点P 在椭圆()222210x y a b a b+=>>上,12F F 、为椭圆的左右焦点,求12PF PF ⋅的取值范围. (Ⅱ)双曲线222x y a -=的两个焦点分别为12F F 、,P 为双曲线上的任意一点,求证:1PF 、PO 、2PF 成等比数列.(Ⅲ)已知抛物线24y x =的一条焦点弦被焦点分成为m 、n 的两部分,求证:m n m n +=⋅. (Ⅳ)若双曲线()222210,0x y a b a b-=>>,在右支上有一点P ,且P 到左焦点1F 与到右焦点2F 的距离之比为4:3,求P 点的横坐标. (Ⅴ)在双曲线2211213y x -=的一支上有不同的三点()11,A x y 、()2,6B x ,()33,C x y 与焦点()0,5F 的距离成等差数列,求13y y +.三、标准方程【待定系数法求圆锥曲线方程】例7.(Ⅰ)已知椭圆焦点在x 轴上,焦距等于4,并且经过点(3,P ,求椭圆的标准方程.(Ⅱ)已知椭圆经过两点)2A -,()B -,求椭圆的标准方程. (Ⅲ)已知椭圆的长轴长是短轴长的2倍,且过点()2,6-,求椭圆的标准方程.(Ⅳ)双曲线2222mx my -=的一条准线是1y =,则m 的值为 .(Ⅴ)已知双曲线的右准线为4x =,右焦点为()10,0F ,离心率2e =,求双曲线方程.(Ⅵ)求与双曲线221916x y -=有共同的渐近线,且经过点(M -的双曲线方程. (Ⅶ)求以椭圆221133x y +=的焦点为焦点,以直线12y x =±为渐近线的双曲线的方程. (Ⅷ)k 为何值时,方程22121x y k k +=--表示①圆;②椭圆;③双曲线?(Ⅸ)抛物线()210y x a a=≠的焦点坐标是 . (Ⅹ)已知抛物线的准线为2y =,求抛物线的标准方程. (Ⅺ)已知抛物线的焦点在x 轴上,且()2,3A -到焦点的距离是5,求抛物线的标准方程.(Ⅻ)已知抛物线焦点在x 轴上且截直线210x y -+=【利用椭圆的参数方程求最值】例8.已知实数x 、y 满足2214x y +=,①求222u x y y =+-的取值范围;②求v x y =+的取值范围.四、几何性质【求离心率】例9.(Ⅰ)已知12F F 、为椭圆()222210x y a b a b+=>>的焦点,M 为椭圆上一点,1MF 垂直于x 轴,且1260F MF ∠=︒,求离心率. (Ⅱ)椭圆()222210x y a b a b +=>>的左焦点为F ,(),0A a -,()0,B b 是两个顶点,如果F 到直线AB ,求椭圆的离心率. (Ⅲ)椭圆()222210x y a b a b+=>>的两焦点为12F F 、,以12F F 、为边作正三角形,若椭圆恰好平分正三角形的两条边,则椭圆的离心率为 . (Ⅳ)已知双曲线的两条渐近线方程是34y x =±,求此双曲线的离心率. (Ⅴ)设双曲线()222210,0x y a b a b -=>>的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果PQF ∆是直角三角形,则双曲线的离心率是 . (Ⅵ)已知12F F 、是椭圆的两个焦点,满足120MF MF ⋅= 的点总在椭圆内部,求椭圆离心率的取值范围. (Ⅶ)已知双曲线()222210,0x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60︒的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 A .(]1,2 B .()1,2 C .[)2,+∞ D .()2,+∞五、直线与圆锥曲线的位置关系【有一个公共点】例10.(Ⅰ)已知椭圆2288x y +=,在椭圆上求一点P ,使P 到直线l :40x y -+=的距离最小并求出最小值. (Ⅱ)求经过点1,22⎛⎫⎪⎝⎭且与双曲线2241x y -=仅有一个公共点的直线方程.【有两个不同交点】——韦达定理【弦长】例11.(Ⅰ)抛物线212y x =截直线21y x =+所得弦长等于 .(Ⅱ)已知椭圆的中心在原点,焦点在坐标轴上,直线1y x =+与该椭圆相交于P 和Q ,且OP OQ ⊥ ,PQ =,求椭圆方程. 【弦中点】例12.(Ⅰ)已知椭圆2212x y +=,①求斜率为2的平行弦的中点轨迹方程;②过()2,1A 的直线l 与椭圆相交,求l 被截得的弦的中点轨迹方程;③过点11,22P ⎛⎫ ⎪⎝⎭且被P 点平分的弦所在直线的方程. (Ⅱ)已知双曲线2212y x -=,①过定点()2,1P 作直线交双曲线于12P P 、点,使P 点是12PP 的中点,求此直线方程;②过定点()1,1Q 能否作直线l ,使l 与双曲线相交于两点1Q 、2Q ,且Q 是12Q Q 的中点?若存在,求出l 的方程;若不存在,说明理由.【垂直】例13.(Ⅰ)若直线l :1y ax =+与双曲线2231x y -=交于A 、B 两点,且以AB 为直径的圆过原点,求a 的值.(Ⅱ)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.①求椭圆C 的标准方程;②若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A 、B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标. 【对称】例14.(Ⅰ)已知椭圆C 的方程为22143x y +=,试确定m 的取值范围,使得对于直线4y x m =+,椭圆C 上有不同的两个点关于该直线对称. (Ⅱ)已知抛物线212y x =上总存在关于直线4y x m =+对称的两点,则实数m 的取值范围是 .【数量积】例15.已知中心在原点的双曲线C 的右焦点为()2,0,右顶点为),①求双曲线C 的方程;②若直线y kx =C 有两个不同的交点A 和B ,且2OA OB ⋅> (O 为原点),求k 的取值范围.【面积】例16.(Ⅰ)已知双曲线C :()222210,0x y a b a b-=>>的两个焦点为()12,0F -、()22,0F ,点(3,P 在双曲线C 上.①求双曲线C 的方程;②记O 为坐标原点,过点()0,2Q 的直线l 与双曲线C相交于不同两点E 、F ,若OEF ∆的面积为l 的方程.(Ⅱ)已知中心在原点的双曲线C 的一个焦点是()13,0F -20y -=. ①求双曲线C 的方程;②若以()0k k ≠为斜率的直线l 与双曲线C 相交于不同两点,M N ,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为812,求k 的取值范围.答案一、第一定义【利用第一定义求轨迹】例1.(Ⅰ)()2210259x y y +=≠.(Ⅱ)224412521x y +=(Ⅲ)221412x y -= (Ⅳ)222x y a +=(Ⅴ)——见《直线和圆的方程脑图》例8(Ⅲ)(Ⅳ).【焦点三角形问题】例2.(Ⅱ)(Ⅲ)()3,4()3,4-()3,4-()3,4--(Ⅳ)x <<(Ⅴ)0. 【利用第一定义求最值】例3.(Ⅰ)66二、第二定义【利用第二定义求轨迹】例4.(Ⅰ)B (Ⅱ)28y x =-(Ⅲ)22143x y += (Ⅳ)——见《直线和圆的方程脑图》例8(Ⅱ)、例9(Ⅱ)(Ⅸ).【利用第二定义求最值】例5.(Ⅰ)112(Ⅱ)32(Ⅲ)72(Ⅳ)C 【焦半径公式】 例6.(Ⅰ)2212b PF PF a ≤⋅≤(Ⅱ)证略(Ⅲ)证略(Ⅳ)20x =12三、标准方程【待定系数法求圆锥曲线方程】例7.(Ⅰ)2213632x y +=(Ⅱ)221155x y +=(Ⅲ)22114837x y +=或2215213x y +=(Ⅳ)43-. (Ⅴ)()22211648x y --=(Ⅵ)2219164x y -=或221944x y -=(Ⅶ)22182x y -= (Ⅷ)①32k =②3122k k <<≠且③21k k ><或(Ⅸ)0,4a ⎛⎫ ⎪⎝⎭.(Ⅹ)28x y =- (Ⅺ)28y x =或224y x =- (Ⅻ)212y x =或24y x =-【利用椭圆的参数方程求最值】例8.①131,3⎡⎤-⎢⎥⎣⎦;②⎡⎣四、几何性质【求离心率】例9.(Ⅱ)121.(Ⅳ)54e =或53(Ⅵ)⎛ ⎝⎭(Ⅶ)C 五、直线与圆锥曲线的位置关系【有一个公共点】例10.(Ⅰ)31,83P ⎛⎫- ⎪⎝⎭,min d =(Ⅱ)5324y x =+,21y x =+,23y x =-+和12x = 【有两个不同交点】——韦达定理 【弦长】例11.(Ⅱ)221223x y +=或221223x y += 【弦中点】例12.(Ⅰ)①444033x y x ⎛⎫+=-<< ⎪⎝⎭②222220x y x y +--=③2430x y +-= (Ⅱ)①470x y --=②不存在【垂直】例13.(Ⅰ)1a =±(Ⅱ)①22143x y +=②2(,0)7 【对称】例14.(Ⅰ)1313x -<<(Ⅱ)216m <-. 【数量积】例15.1,⎛⎫- ⎪ ⎪⎝⎭⎝⎭【面积】例16.(Ⅰ)①22122x y -=②2y =+ (Ⅱ)①22145x y -=②55,,44⎛⎫⎛⎛⎫⎛⎫-∞-+∞ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭。

高三数学圆锥曲线试题答案及解析

高三数学圆锥曲线试题答案及解析

高三数学圆锥曲线试题答案及解析1.设、是定点,且均不在平面上,动点在平面上,且,则点的轨迹为()A.圆或椭圆B.抛物线或双曲线C.椭圆或双曲线D.以上均有可能【答案】D【解析】以为高线,为顶点作顶角为的圆锥面,则点就在这个圆锥面上,用平面截这个圆锥面所得截线就是点的轨迹,它可能是圆、椭圆、抛物线、双曲线,因此选D.【考点】圆锥曲线的性质.2.已知点是双曲线右支上一点,是双曲线的左焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是( )A.B.C.D.【答案】D【解析】设直线:求直线与渐近线的交点,解得:是的中点,利用中点坐标公式,得,在双曲线上,所以代入双曲线方程得:,整理得,解得.故选D.【考点】1.双曲线的几何性质;2.双曲线的方程.3.已知椭圆的焦点重合,则该椭圆的离心率是.【答案】【解析】抛物线的焦点为,椭圆的方程为:,所以离心率.【考点】1、椭圆与抛物线的焦点;2、圆的离心率.4.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.【答案】C【解析】由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.【考点】1.双曲线方程的求法;2.双曲线的渐近线.5.已知动点到定点和的距离之和为.(Ⅰ)求动点轨迹的方程;(Ⅱ)设,过点作直线,交椭圆异于的两点,直线的斜率分别为,证明:为定值.【答案】(Ⅰ);(Ⅱ)证明过程详见解析.【解析】本题考查椭圆的基本量间的关系及韦达定理的应用.第一问是考查椭圆的基本量间的关系,比较简单;第二问是直线与椭圆相交于两点,先设出两点坐标,本题的突破口是在消参后的方程中找出两根之和、两根之积,整理斜率的表达式,但是在本问中需考虑直线的斜率是否存在,此题中蕴含了分类讨论的思想的应用.试题解析:(Ⅰ)由椭圆定义,可知点的轨迹是以为焦点,以为长轴长的椭圆.由,得.故曲线的方程为. 5分(Ⅱ)当直线的斜率存在时,设其方程为,由,得. 7分设,,,.从而.11分当直线的斜率不存在时,得,得.综上,恒有. 12分【考点】1.三角形面积公式;2.余弦定理;3.韦达定理;4.椭圆的定义.6.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.【答案】C【解析】由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.【考点】1.双曲线方程的求法;2.双曲线的渐近线.7.已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点、,以线段为直径作圆.(1)求椭圆的标准方程;(2)若圆与轴相切,求圆被直线截得的线段长.【答案】(1);(2).【解析】(1)先根据题中的条件确定、的值,然后利用求出的值,从而确定椭圆的方程;(2)先确定点的坐标,求出圆的方程,然后利用点(圆心)到直线的距离求出弦心距,最后利用勾股定理求出直线截圆所得的弦长.试题解析:(1)设椭圆的方程为,由题意知,,解得,则,,故椭圆的标准方程为 5分(2)由题意可知,点为线段的中点,且位于轴正半轴,又圆与轴相切,故点的坐标为,不妨设点位于第一象限,因为,所以, 7分代入椭圆的方程,可得,因为,解得, 10分所以圆的圆心为,半径为,其方程为 12分因为圆心到直线的距离 14分故圆被直线截得的线段长为 16分【考点】椭圆的方程、点到直线的距离、勾股定理8.已知为抛物线的焦点,抛物线上点满足(Ⅰ)求抛物线的方程;(Ⅱ)点的坐标为(,),过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为,问是否为定值,若是求出该定值,若不是说明理由.【答案】(Ⅰ),(Ⅱ).【解析】(Ⅰ)利用抛物线的定义得到,再得到方程;(Ⅱ)利用点的坐标表示直线的斜率,设直线的方程,通过联立方程,利用韦达定理计算的值.试题解析:(Ⅰ)由题根据抛物线定义,所以,所以为所求. 2分(Ⅱ)设则,同理 4分设AC所在直线方程为,联立得所以, 6分同理 (8分)所以 9分设AB所在直线方程为联立得, 10分所以所以 12分【考点】抛物线标准方程,直线与抛物线位置关系的应用.9.极坐标系中椭圆C的方程为以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度. (Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;(Ⅱ)若椭圆的两条弦交于点,且直线与的倾斜角互补,求证:.【答案】(Ⅰ)(Ⅱ)详见解析【解析】将椭圆的极坐标方程转化为一般标准方程,再利用换元法求范围,利用参数方程代入,计算得到结果.试题解析:(Ⅰ)该椭圆的直角标方程为, 2分设,所以的取值范围是 4分(Ⅱ)设直线的倾斜角为,直线的倾斜角为,则直线的参数方程为(为参数),(5分)代入得:即 7分同理 9分所以(10分)【考点】极坐标、参数方程,换元法应用.10.已知直线,,过的直线与分别交于,若是线段的中点,则等于()A.12B.C.D.【答案】B【解析】设、,所以、.所以.故选B.【考点】两点之间的距离点评:主要是考查了两点之间的距离的运用,属于基础题。

(18)“圆锥曲线与方程”单元测试

(18)“圆锥曲线与方程”单元测试

“圆锥曲线与方程”单元测试(第一卷)一、选择题:(每小题5分,计50分)1、(2008海南、宁夏文)双曲线1102x y -=的焦距为( )D.2.(2004全国卷Ⅰ文、理)椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( )A .23B .3C .27D .43.(2006辽宁文)方程22520x x -+=的两个根可分别作为( )A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率4.(2006四川文、理)直线y=x-3与抛物线x y 42=交于A 、B 两点,过A 、B 两点向 抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为( ) (A )48. (B )56 (C )64 (D )72.5.(2007福建理)以双曲线116922=-y x 的右焦点为圆心,且与其渐近线相切的圆的方程是( )A . B.C . D.6.(2004全国卷Ⅳ理)已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线 x y 42-=的焦点重合,则此椭圆方程为( )A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x7.(2005湖北文、理)双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( ) A .163 B .83 C .316 D .388. (2008重庆文)若双曲线2221613x y p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( )(A)2 (B)3 (C)49.(2002北京文)已知椭圆1532222=+n y m x 和双曲线1322222=-n y m x 有公共的焦点,那么 双曲线的渐近线方程是( ) A .y x 215±= B .x y 215±= C .y x 43±= D .x y 43±=10.(2003春招北京文、理)在同一坐标系中,方程)0(0122222>>=+=+b a by ax by a x 与的曲线大致是( )二、填空题:(每小题5分,计20分)11. (2005上海文)若椭圆长轴长与短轴长之比为2,它的一个焦点是()0,152,则椭圆的标准方程是_________________________12.(2008江西文)已知双曲线22221(0,0)x y a b a b -=>>的两条渐近线方程为y x =,若顶点到渐近线的距离为1,则双曲线方程为 .13.(2007上海文)以双曲线15422=-y x 的中心为顶点,且以该双曲线的右焦点为焦点的 抛物线方程是 .14.(2008天津理)已知圆C 的圆心与抛物线x y 42=的焦点关于直线x y =对称.直线0234=--y x与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为 .“圆锥曲线与方程”单元测试(第二卷)11._______________, 12.________________, 13.________________, 14.________________.三、解答题:(15—18题各13分,19、20题各14分)15.(2006北京文)椭圆C:22221(0)x y a b a b +=>>的两个焦点为F 1,F 2,点P 在椭圆C 上,且11212414,||,||.33PF F F PF PF ⊥== (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 过圆x 2+y 2+4x-2y=0的圆心M , 交椭圆C 于,A B 两点, 且A 、B 关于点M 对称,求直线l的方程..16.(2005重庆文)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的 交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.17.(2007安徽文)设F是抛物线G:x2=4y的焦点.(Ⅰ)过点P(0,-4)作抛物线G的切线,求切线方程:(Ⅱ)设A、B为抛物线G上异于原点的两点,且满足0FA,延长AF、BF分别交抛物线G于点·FBC,D,求四边形ABCD面积的最小值.18.(2008辽宁文) 在平面直角坐标系xOy 中,点P 到两点(0,(0的距离之和等于4,设点P 的轨迹为C . (Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时OA ⊥OB ?此时AB 的值是多少?19. (2002广东、河南、江苏)A 、B 是双曲线x 2-y22=1上的两点,点N(1,2)是线段AB 的中点(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?20.(2007福建理)如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且=。

高三一轮测试(理)8圆锥曲线方程(1)(通用版)

高三一轮测试(理)8圆锥曲线方程(1)(通用版)

圆锥曲线方程—————————————————————————————————————【说明】 本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入答题格内,第Ⅱ卷可在各题后直接作答,共150分,考试时间120分钟.第Ⅰ卷 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案题目要求的)1.双曲线x 216-y 29=1的焦点坐标为( )A .(-7,0)、(7,0)B .(0,-7)、(0,7)C .(-5,0)、(5,0)D .(0,-5)、(0,5)2.若拋物线y 2=2px (p >0)的焦点到准线的距离为4,则其焦点坐标为( )A .(4,0)B .(2,0)C .(0,2)D .(1,0)3.已知双曲线x 24-y 212=1的离心率为e ,拋物线x =2py 2的焦点为(e,0),则p 的值为( )A .2B .1 C.14 D.116 4.过点M (-2,0)的直线l 与椭圆x 2+2y 2=2交于P 1,P 2,线段P 1P 2的中点为P .设直线l 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2等于( )A .-2B .2 C.12 D .-125.若点P (2,0)到双曲线x 2a 2-y2b2=1的一条渐近线的距离为2,则该双曲线的离心率为( )A. 2B. 3 C .2 2 D .2 36.椭圆x 2a 2+y 2b 2=1(a >0,b >0)的离心率为22,若直线y =kx 与椭圆的一个交点的横坐标为b ,则k 的值为( )A.22 B .±22 C.12 D .±127.如图所示,设椭圆x 2a 2+y2b2=1(a >b >0)的面积为ab π,过坐标原点的直线l 、x 轴正半轴及椭圆围成两区域面积分别设为s 、t ,则s 关于t 的函数图象大致形状为图中的( )8.椭圆x 225+y 216=1的右焦点为F ,P 是椭圆上一点,点M 满足|M |=1,·=0,则|M |的最小值为( )A .3 B. 3 C .2 D. 29.两个正数a ,b 的等差中项是5,等比中项是4.若a >b ,则双曲线x 2a -y 2b=1的渐近线方程是( )A .y =±2xB .y =±12xC .y =±24x D .y =±22x10.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.95 B .3 C.977 D.9411.直线l 过抛物线C ∶y 2=2px (p >0)的焦点F ,且交抛物线C 于A ,B 两点,分别从A ,B 两点向抛物线的准线引垂线,垂足分别为A 1,B 1,则∠A 1FB 1是( )A .锐角B .直角C .钝角D .直角或钝角12.已知点F 为双曲线x 216-y29=1的右焦点,M 是双曲线右支上一动点,定点A 的坐标是(5,1),则4|MF |+5|MA |的最小值为( )A .12B .20C .9D .1613.已知点F (1,0),直线l :x =-1,点P 为平面上的动点,过点P 作直线l 的垂线,垂足为点Q ,且·=·,则动点P 的轨迹C 的方程是________.14.以双曲线x 24-y 25=1的中心为顶点,且以该双曲线的右焦点为焦点的拋物线方程是____________.15.椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点是F 1(-c,0)、F 2(c,0),M 是椭圆上一点,且F 1M ·=0,则离心率e 的取值范围是________.16.给出如下四个命题:①方程x 2+y 2-2x +1=0表示的图形是圆;②若椭圆的离心率为22,则两个焦点与短轴的两个端点构成正方形;③抛物线x =2y 2的焦点坐标为⎝⎛⎭⎫18,0;④双曲线y 249-x 225=1的渐近线方程为y =±57x .其中正确命题的序号是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知离心率为45的椭圆的中心在原点,焦点在x 轴上.双曲线以椭圆的长轴为实轴,短轴为虚轴,且焦距为234.求椭圆及双曲线的方程.18.(本小题满分12分)若一动点M 与定直线l :x =165及定点A (5,0)的距离比是4∶5.(1)求动点M 的轨迹C 的方程;(2)设所求轨迹C 上有点P 与两定点A 和B (-5,0)的连线互相垂直,求|P A |·|PB |的值.19.(本小题满分12分)抛物线的顶点在原点,焦点在x 轴的正半轴上,直线x +y -1=0与抛物线相交于A 、B 两点,且|AB |=8611.(1)求抛物线的方程;(2)在x 轴上是否存在一点C ,使△ABC 为正三角形?若存在,求出C 点的坐标;若不存在,请说明理由.20.(本小题满分12分)如图,已知点F (1,0),直线l :x =-1,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且·=·.(1)求动点P 的轨迹C 的方程;(2)过点F 的直线交轨迹C 于A ,B 两点,交直线l 于点M ,已知=λ1,=λ2,求λ1+λ2的值.21.(本小题满分12分)如图所示,已知椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的3倍且经过点M (3,1).平行于OM 的直线l 在y 轴上的截距为m (m ≠0),且交椭圆于A ,B 两不同点.(1)求椭圆的方程; (2)求m 的取值范围;22.(本小题满分12分)已知双曲线2x 2-2y 2=1的两个焦点为F 1,F 2,P 为动点,若|PF 1|+|PF 2|=4. (1)求动点P 的轨迹E 的方程; (2)求cos ∠F 1PF 2的最小值.答案: 一、选择题1.C c 2=a 2+b 2=16+9=25,c =5.2.B 根据p 的几何意义可知p =4,故焦点为(2,0).3.D 依题意得e =2,拋物线方程为y 2=12p x ,故18p =2,得p =116,选D.4.D 设直线l 的方程为 y =k 1(x +2),代入x 2+2y 2=2,得(1+2k 21)x 2+8k 21x +8k 21-2=0,所以x 1+x 2=-8k 211+2k 21,而y 1+y 2=k 1(x 1+x 2+4)=4k 11+2k 21,所以OP 的斜率k 2=y 1+y 22x 1+x 22=-12k 1,所以k 1k 2=-12.5.A 由于双曲线渐近线方程为bx ±ay =0,故点P 到直线的距离d =2b a 2+b 2=2⇒a =b ,即双曲线为等轴双曲线,故其离心率e =1+⎝⎛⎭⎫b a 2= 2.6.B 由e =c a =a 2-b 2a =22得a 2=2b 2,设交点的纵坐标为y 0,则y 0=kb ,代入椭圆方程得b 22b 2+k 2b 2b2=1,解得k =±22,选B.7.B 根据椭圆的对称性,知s +t =12ab π,因此选B.8.B 依题意得F (3,0),MF ⊥MP ,故|M |=|P F →|2-|M F →|2=|P F →|2-1,要使|M |最小,则需|P |最小,当P 为右顶点时,|P |取最小值2,故|M |的最小值为3,选B.9.B 由已知得⎩⎪⎨⎪⎧ a +b =10ab =16⇒⎩⎪⎨⎪⎧a =8b =2(a >b ).故双曲线的渐近线方程为y =±bax =±12x (在这里注意a ,b 与双曲线标准方程中的a ,b 的区别,易由思维定势而混淆).10.D 设椭圆短轴的一个端点为M . 由于a =4,b =3,∴c =7<b . ∴∠F 1MF 2<90°,∴只能∠PF 1F 2=90°或∠PF 2F 1=90°. 令x =±7得y 2=9⎝⎛⎭⎫1-716=9216,∴|y |=94.即P 到x 轴的距离为94.11.B 如图,由抛物线定义可知AA 1=AF ,故∠1=∠2,又AA 1∥x 轴,故∠1=∠3,从而∠2=∠3,同理可证得∠4=∠6,故∠A 1FB 1=∠3+∠6=12×π=π2, 故选B.12.C 由题意可知,a =4,b =3,c =5, ∴e =54,右准线方程为x =165,且点A 在双曲线张口内.则|MF |=e ·d =54d (d 为点M 到右准线的距离).∴4|MF |+5|MA | =5(d +|MA |),当MA 垂直于右准线时,d +|MA |取得最小值,最小值为5-165=95,故4|MF |+5|MA |的最小值为9. 二、填空题13..【解析】 设点P (x ,y )则Q (-1,y ),由·=·,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得y 2=4x .故填y 2=4x . 【答案】 y 2=4x14.【解析】 双曲线x 24-y 25=1的中心为O (0,0),该双曲线的右焦点为F (3,0),则拋物线的顶点为(0,0),焦点为(3,0),所以p =6,所以拋物线方程是y 2=12x .【答案】 y 2=12x15.【解析】 设点M 的坐标为(x ,y ),则=(x +c ,y ),=(x -c ,y ). 由·=0,得 x 2-c 2+y 2=0.①又由点M 在椭圆上,得y 2=b -b 2x 2a 2,代入①,解得x 2=a 2-a 2b 2c2.∵0≤x 2≤a 2,∴0≤a 2-a 2b 2c 2≤a 2,即0≤2c 2-a 2c 2≤1,0≤2-1e 2≤1.∵e >0,解得22≤e ≤1.又∵e <1,∴22≤e <1. 【答案】 [22,1)16.【解析】 对①,(x -1)2+y 2=0,∴x =1,y =0, 即表示点(1,0).对②,若e =c a =22,则b =c .∴两焦点与短轴两端点构成正方形.对③,抛物线方程为y 2=12x ,其焦点坐标为⎝⎛⎭⎫18,0. 对④,双曲线y 249-x 225=1的渐近线方程为y 7±x5=0,即y =±75x .【答案】 ②③ 三、解答题17.【解析】 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0)则根据题意,双曲线的方程为 x 2a 2-y 2b 2=1且满足 ⎩⎨⎧a 2-b 2a =452a 2+b 2=234解方程组得⎩⎪⎨⎪⎧a 2=25b 2=9∴椭圆的方程为x 225+y 29=1,双曲线的方程x 225-y 29=118.【解析】 (1)设动点M (x ,y ), 根据题意得⎪⎪⎪⎪x -165(x -5)2+y 2=45,化简得9x 2-16y 2=144, 即x 216-y 29=1. (2)由(1)知轨迹C 为双曲线,A 、B 即为C 的两个焦点, ∴|P A |-|PB |=±8.①又P A ⊥PB ,∴|P A |2+|PB |2=|AB |2=100.② 由②-①2得|P A |·|PB |=18.19.【解析】 (1)设所求抛物线的方程为y 2=2px (p >0),由⎩⎪⎨⎪⎧y 2=2px ,x +y -1=0,消去y , 得x 2-2(1+p )x +1=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2(1+p ),x 1·x 2=1.∵|AB |=8611, ∴(1+k 2)[(x 1+x 2)2-4x 1x 2] =8611,∴121p 2+242p -48=0, ∴p =211或-2411(舍).∴抛物线的方程为y 2=411x .(2)设AB 的中点为D ,则D ⎝⎛⎭⎫1311,-211. 假设x 轴上存在满足条件的点C (x 0,0),∵△ABC 为正三角形,∴CD ⊥AB ,∴x 0=1511.∴C ⎝⎛⎭⎫1511,0,∴|CD |=2211. 又∵|CD |=32|AB |=12211,故矛盾,∴x 轴上不存在点C ,使△ABC 为正三角形. 20.【解析】 (1)设点P (x ,y ),则Q (-1,y ),由· =·,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得C :y 2=4x .(2)设直线AB 的方程为x =my +1(m ≠0).设A (x 1,y 1),B (x 2,y 2),又M ⎝⎛⎭⎫-1,-2m ,联立方程组⎩⎪⎨⎪⎧y 2=4x ,x =my +1, 消去x ,得y 2-4my -4=0, Δ=(-4m )2+16>0,故⎩⎪⎨⎪⎧y 1+y 2=4m ,y 1y 2=-4. 由=λ1,=λ2,得y 1+2m =-λ1y 1,y 2+2m=-λ2y 2,整理,得λ1=-1-2my 1,λ2=-1-2my 2,∴λ1+λ2=-2-2m ⎝⎛⎭⎫1y 1+1y 2 =-2-2m ·y 1+y 2y 1y 2=-2-2m ·4m-4=0.21.【解析】 (1)设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),⎩⎪⎨⎪⎧ a =3b 9a 2+1b2=1⇒⎩⎪⎨⎪⎧a 2=18b 2=2,所求椭圆的方程为x 218+y 22=1(2)∵直线l ∥OM 且在y 轴上的截距为m ,∴直线l 方程为:y =13x +m由⎩⎨⎧y =13x +m x 218+y 22=1⇒2x 2+6mx +9m 2-18=0 ∵直线l 交椭圆于A 、B 两点,∴Δ=(6m )2-4×2(9m 2-18)>0⇒-2<m <2 m 的取值范围为-2<m <2,且m ≠0.22.【解析】 (1)依题意双曲线方程可化为x 212-y 212=1,则|F 1F 2|=2, ∴|PF 1|+|PF 2| =4>|F 1F 2|=2.∴点P 的轨迹是以F 1,F 2为焦点的椭圆,其方程可设为x 2a 2+y 2b 2=1(a >b >0). 由2a =4,2c =2, 得a =2,c =1,∴b 2=4-1=3.则所求椭圆方程为x 24+y 23=1,故动点P 的轨迹E 的方程为x 24+y 23=1.(2)设|PF 1|=m >0, |PF 2|=n >0,∠F 1PF 2=θ, 则由m +n =4,|F 1F 2|=2, 可知在△F 1PF 2中, cos θ=m 2+n 2-42mn谢谢大家。

高三单元试题八圆锥曲线方程

高三单元试题八圆锥曲线方程

高三单元试题八:圆锥曲线方程一、 选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. AB 是抛物线y 2=2x 的一条焦点弦,|AB|=4,则AB 中点C 的横坐标是( )A .2B .12C .32D .522.⊙O 1与⊙O 2的半径分别为1和2,|O 1O 2|=4,动圆与⊙O 1内切而与⊙O 2外切,则动圆圆心轨迹是( )A .椭圆B .抛物线C .双曲线D .双曲线的一支 3.双曲线tx 2-y 2-1=0的一条渐近线与直线2x +y +1=0垂直,则双曲线的离心率为( )A .5B .25C .23 D .34.P 是以F 1、F 2为焦点的椭圆上一点,过焦点F 2作∠F 1PF 2外角平分线的垂线,垂足为M ,则点M 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 5.若抛物线y 2=2px (p >0)与抛物线y 2=2q (x -h )(q >0)有公共焦点,则( ) A .2h =p -q B .2h =p +q C .2h =-p -q D .2h =q -p6. 设双曲线12222=-by a x (a ,b >0)两焦点为F 1、、F 2,点Q 为双曲线上除顶点外的任一点,过焦点F 1作∠F 1QF 2的平分线的垂线,垂足为P ,则P 点轨迹是 ( ) A .椭圆的一部分; B .双曲线的一部分;C .抛物线的一部分;D .圆的一部分7.方程12sin 3sin 222=-++θθy x 所表示的曲线为( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在x 轴上的双曲线 D .焦点在y 轴上的双曲线8.我国发射的“神舟四号”宇宙飞船的运行轨道是以地球的中心F 2为一个焦点的椭圆,近地点A 距地面为m 千米,远地点B 距地面为n 千米,地球半径为R 千米,则飞船运行轨道的短轴长为( )A .千米))((2R n R m ++B .千米))((R n R m ++C .mn 千米D .2mn 千米9.双曲线x a y ba b 2222100-=>>(),的离心率e =+152,点A 与F 分别是双曲线的左顶点和右焦点,B (0,b ),则∠ABF 等于( )A. 45°B. 60°C. 90°D. 120°10.设F 1,F 2是双曲线x y 2241-=的两个焦点,P 在双曲线上,当△F 1PF 2的面积为1时,12PF PF 的值为( )A .2B .1C .21 D .0 11.设a ,b ∈R ,ab ≠0,则直线ax -y +b =0和曲线bx 2+ay 2=ab 的大致图形是 ( )12.下列命题正确的是() ①动点M 至两定点A、B 的距离之比为常数)10(≠>λλλ且.则动点M 的轨迹是圆。

数学高三圆锥曲线练习题

数学高三圆锥曲线练习题

数学高三圆锥曲线练习题1. 已知一个圆锥的高为10 cm,底面半径为6 cm。

求解:(1)该圆锥的侧面积。

(2)该圆锥的体积。

解答:(1)圆锥的侧面积可以通过以下公式计算:侧面积= πrl,其中r 为底面半径,l为斜高。

首先计算斜高。

根据勾股定理,斜高可以表示为h = √(r² + h²),其中h为圆锥的高。

代入已知量,可得h = √(6² + 10²) = √(36 + 100) = √136 ≈ 11.66 cm。

接下来,计算侧面积。

侧面积= πrl = π * 6 * 11.66 ≈ 219.911 cm²。

因此,该圆锥的侧面积约为 219.911 cm²。

(2)圆锥的体积可以通过以下公式计算:体积 = (1/3) * 底面积 * 高。

首先计算底面积。

底面积为圆的面积,可以表示为A = πr²。

代入已知量,可得A = π * 6² = 36π ≈ 113.1 cm²。

接下来,计算体积。

体积 = (1/3) * 113.1 * 10 = 377 cm³。

因此,该圆锥的体积为 377 cm³。

2. 已知一个圆锥的半径为3 cm,侧面积为15π cm²。

求解该圆锥的高和体积。

解答:圆锥的侧面积可以表示为:侧面积= πrl,其中r为底面半径,l为斜高。

已知侧面积为15π cm²,底面半径为 3 cm,代入公式可得15π = 3πl。

解方程,可得斜高 l = 5 cm。

圆锥的高可以通过勾股定理计算:高= √(l² - r²)。

代入已知量,可得高h = √(5² - 3²) = √(25 - 9) = √16 = 4 cm。

因此,该圆锥的高为 4 cm。

圆锥的体积可以通过公式体积 = (1/3) * 底面积 * 高计算。

底面积A = πr² = π * 3² = 9π cm²。

第八章 圆锥曲线方程单元检测题(三)抛物线(A)

第八章 圆锥曲线方程单元检测题(三)抛物线(A)

第八章 圆锥曲线方程单元检测题(三)抛物线(A )一、选择题:(每小题6分,共48分)1、抛物线2x 2-5y=0的准线方程是( )(A )x=85(B )x=45- (C )y= 45- (D )y=85 2、已知抛物线y 2=mx 的焦点坐标是(2,0),则m 的值为( )(A )4 (B )-4 (C )-8 (D )83、过抛物线y 2=4x 的焦点作直线交抛物线于P 1(x 1,y 1),P 2(x 2,y 2)两点,若 x 1+x 2=5,那么│P 1 P 2│等于( )(A ) 10 (B )9 (C )7 (D )34、抛物线y=ax 2(a <0)的准线方程是( )(A )y=a 21(B )y=-a 21(C )y=a 41(D )y=-a 415、抛物线上的点(-5,25)到焦点F (x ,0)的距离是6,则抛物线的标准方程是( )(A )y 2=-2x (B )y 2=-4x (C )y 2=-6x (D )y 2=-18x6、动圆过点(0,1)且与直线y=-1相切,则动圆圆心的轨迹方程为( )(A )y=0 (B )x 2+y 2=1 (C )x 2=4y (D )y 2=4x7、P 是抛物线y=x 2上一动点,当它与直线y=2x -4的距离最短时,P 点坐标为( )(A )(0,0) (B )(1,3) (C )(1,1) (D )(2,4)8、已知A 、B 是抛物线y 2=2px (p >0)上两点,O 为坐标原点,若|OA|=|OB|且△AOB 的垂心恰是此抛物线的焦点,则直线AB 的方程是( )(A )x=p (B )x=3p (C )x=23p (D )x=25p二、填空题:(每小题6分,共24分)9、抛物线y 2=4x 的弦被点A (2,1)平分,则此弦所在直线方程是 。

10、抛物线y 2=10x 的焦点到准线的距离为 。

11.已知抛物线的焦点坐标为(0,-2),准线方程为y=2,则抛物线方程为。

第八章 圆锥曲线方程单元检测题(二)双曲线(B)

第八章 圆锥曲线方程单元检测题(二)双曲线(B)

第八章 圆锥曲线方程单元检测题(二)双曲线(B )一、选择题(每小题6分,共48分) 1、已知双曲线与椭圆1166422=+y x 共焦点,双曲线的渐近线方程为x ±3y=0,则双曲线方程为( ) (A )1123622=-y x (B )1123622=-x y (C )1123622±=-y x (D )1123622±=-x y 2、双曲线1322=-my mx的一条准线方程为y=6,则实数m 的值为( )(A )-16 (B )16 (C )-4 (D )12 3、有共同渐近线的双曲线12222=-b y a x 与122=-By A x 的关系是( )(A )四个焦点共圆 (B )互为共轭的双曲线(C )都是等轴双曲线(D )22b B aA =4、直线y= k(x -3)与双曲线14922=-y x 只有一个公共点,则满足条件的直线斜率k 的取值有( )(A )3个 (B )2个 (C )1个 (D )无数个 5、设θ 为三角形的一个内角,且sin θ+cos θ=51,动点P (x ,y )满足1sin 22=+θθcox y x ,则P 点的轨迹方程为( ) (A )1453522=+-y x (B )1354522=+y x(C )1354522=-y x(D )1354522=-y x 或1354522=-x y 6、双曲线的渐近线方程为y=±34x 准线方程为x=±59,则双曲线方程为( ) (A )116922=-y x (B )191622=-x y (C )13422=-y x (D )14322=-y x7、双曲线12222=-by ax (a >0,b >0)的焦点为F 1、F 2,弦AB 过F 1且在双曲线的一支上,若∣A F 2∣+∣B F 2∣=2∣AB ∣,则∣AB ∣为( )(A )2a (B )3a (C )4a (D )不确定 8、若椭圆122=+ny m x (m >n >0)和双曲线12222=-by ax (a >b >0)有相同的焦点F 1、F 2,P是两曲线的一个交点,则∣P F 1∣·∣P F 2∣的值是( )(A )m -a 2(B )21(m -a ) (C )m 2-a 2(D二、填空题(每小题6分,共24分)9、双曲线21kx 2-ky 2=3的一个焦点为(0,3),则k 的值是 。

第八章 圆锥曲线方程单元检测题(一)椭圆(A)

第八章 圆锥曲线方程单元检测题(一)椭圆(A)

第八章 圆锥曲线方程单元检测题(一)椭圆(A )一、选择题(每小题6分,共48分)1、椭圆两准线间的距离为焦距的3倍,则椭圆离心率为( ) (A )31 (B )33 (C )22 (D )32、若椭圆12222=+ayax 的一个焦点是(3-,0),则a 的值为( )(A )3 (B )-1 (C )3或-1 (D )13、线段∣AB ∣=4,∣PA ∣+∣PB ∣=6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值是( ) (A )2 (B )2(C )5(D )54、若椭圆13222=++ym x的焦点在x 轴上,且离心率e=21,则m 的值为( )(A )2(B )2 (C )-2(D )±25、 中心在原点,准线方程为x=±4的椭圆的方程为( ) (A )13422=+yx(B )14322=+yx(C )1422=+yx(D )1422=+yx6、椭圆131222=+yx 的焦点为F 1和F 2,点P 在椭圆上,如果线段P F 1的中点在y 轴上,那么P F 1是P F 2的( )(A )7倍 (B )5倍 (C )4倍 (D )3倍 7、P 是椭圆192522=+yx上一点,如果P 与椭圆左焦点距离是2,则P 到椭圆的右准线距离等于( )(A )8 (B )10 (C )25(D )48、已知椭圆x 2si n α-y 2cos α=1(0<α<2π)的焦点在x 轴上,则α的取值范围是( ) (A )(43π,π) (B )(4π,43π ) (C )(2π,π) (D )(2π,43π )二、填空题(每小题6分,共24分) 9、椭圆2x 2+3y 2=6的焦点是 。

10、若椭圆1222=-+a yax焦点在x 轴上,则a 的取值范围是 。

11、点P 是椭圆16410022=+yx上的一点,F 1、F 2是其焦点,若∠F 1PF 2=60°,则△F 1PF 2的面积是 。

高三单元试题八:圆锥曲线方程

高三单元试题八:圆锥曲线方程

高三单元试题八:圆锥曲线方程一'选择题:本大题共12小题,每题5分,共60分。

在每题给岀的四个选项中,只有一项为哪一项符合题目要求的。

1.AB是抛物线y2=2x的一条焦点弦,IABI=4,那么AB中点C的横坐标是()1 3 5A. 2 B・一C・一D・一2 2 22.OOi与002的半径分不为1和2, 10^21=4,动圆与00]内切而与0O?外切,那么动圆圆心轨迹是()A.椭圆B.抛物线C.双曲线D.双曲线的一支3.双曲线圧一尸_ ] =0的一条渐近线与直线Zv+y+l=0垂直,那么双曲线的离心率为( )A. y[5B. —C. —D. V32 24.P是以R、F?为焦点的椭圆上一点,过焦点F?作ZF,PF2外角平分线的垂线,垂足为M, 那么点M的轨迹是()A.圆B.椭圆C.双曲线D.抛物线5.假设抛物线y2=2px(p>0)^j抛物线y2=2q(x—h)(q>0)有公共焦点,那么()A. 2h=p—q B・2h=p+q C・2h=—p—q D・2h=q—pv2v26.设双曲线r-亠=1b>0)两焦点为F— F2,点Q为双曲线上除顶点外的任一点,过焦点Fi作ZFiQFz的平分线的垂线,垂足为P,那么P点轨迹是 ()A.椭圆的一部分;B.双曲线的一部分:C.抛物线的一部分:D.圆的一部分2 27.方程, \ + — ' — = !所表示的曲线为()2sin<9 + 3 sin<9 - 2A.焦点在x轴上的椭圆B.焦点在y轴上的椭圆C.焦点在x轴上的双曲线D.焦点在y轴上的双曲线8.我国发射的”神舟四号"宇宙飞船的运行轨道是以地球的中心F?为一个焦点的椭圆,近地点A距地而为加千米,远地点B距地而为”千米,地球半径为R千米,那么飞船运行轨道的短轴长为()A. 2j(m + + 7?)千米B. + R)(n + 7?)千米C・nm千米 D. 2inn千米9.双曲线二一二= l(d>0, b>0)的离心率点A与F分不是双曲线的左cr 2顶点和右焦点,B (0, b),那么ZABF等于()A.45°B.60°C. 90°D. 120°210•设F" F2是双曲线—-y2 = 1的两个焦点,P在双曲线上,沁F1PF2的而积为1时,4的值为()A・2 B・1 C・丄D・0211・设a.bwR, abHO,那么直线cix-y+b=O和曲线bx^ay^ib的大致图形是()12・以下命题正确的选项是()①动点M至两泄点A、B的距离之比为常数2(2 >0且兄H 1).那么动点M的轨迹是圆。

人教版高中数学选择性必修第一册-第3章-圆锥曲线的方程 单元测试卷(含解析)

人教版高中数学选择性必修第一册-第3章-圆锥曲线的方程 单元测试卷(含解析)

第3章 圆锥曲线的方程单元测试卷(原卷版)[时间:120分钟 满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =ax 2的准线方程是y =1,则a 的值为( )A .4 B .-4C .-14D.142.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的标准方程为( )A.x 23+y 2=1B.x 23+y 22=1C.x 29+y 28=1D.y 29+x 28=13.直线l :y =k (x -2)与双曲线x 2-y 2=1仅有一个公共点,则实数k 的值为( )A .1 B .-1C .1或-1 D .1或-1或04.已知中心在原点,焦点在y 轴的双曲线的渐近线方程为y =±12x ,则此双曲线的离心率为( )A.52 B.5C.52D .55.设a ,b ∈R ,a ≠b 且ab ≠0,则方程bx -y +a =0和方程ax 2-by 2=ab 在同一坐标系下的图象可能是( )6.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2 B .4C .6 D .87.如图,已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上的一点,F 2P 的延长线与y 轴交于点A ,△APF 1的内切圆在边PF 1上的切点为Q ,若|PQ |=1,则双曲线的离心率是( )A .3 B .2C.3 D.28.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3) B .(1,4)C .(2,3) D .(2,4)二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知点F (1,0)为曲线C 的焦点,则曲线C 的方程可能为( )A .y 2=4x B .x 2=4yC.x 2cos 2θ+y 2sin 2θ=1(0<θ<π2)D.x 2cos 2θ-y 2sin 2θ=1(0<θ<π2)10.已知A ,B 为圆锥曲线E 的焦点,点C 在E 上,若△ABC 为等腰直角三角形,则E 的离心率可能为( )A.2-1B.22C.2D.2+111.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左、右焦点,且△F 1PF 2的面积为3,则下列说法正确的是( )A .P 点纵坐标为3B .∠F 1PF 2>π2C .△F 1PF 2的周长为4(2+1)D .△F 1PF 2的内切圆半径为32(2-1)12.已知A ,B 两点的坐标分别是(-1,0),(1,0),直线AP ,BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是( )A .当m =-1时,点P 的轨迹为圆(除去与x 轴的交点)B .当-1<m <0时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当0<m <1时,点P 的轨迹为焦点在x 轴上的抛物线(除去与x 轴的交点)D .当m >1时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知a ∈{-2,0,1,3},b ∈{1,2},则曲线ax 2+by 2=1为椭圆的概率是________.14.抛物线y 2=2px (p >0)的准线与双曲线x 2-y 24=1的两条渐近线所围成的三角形的面积为2,则p =________,抛物线焦点到双曲线渐近线的距离为________.(本题第一空2分,第二空3分)15.在椭圆x 2a 2+y 2b2=1(a >b >0)上,与两焦点张角为90°的点可能有________个(填出所有可能情况).16.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|PA |=|PB |,则该双曲线的离心率是________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知Q 点是双曲线x 2a 2-y 2b2=1(a ,b >0)上异于两顶点的一动点,F 1,F 2是双曲线的左、右焦点.从F 2向∠F 1QF 2的平分线作垂线F 2P ,垂足为P ,求P 点的轨迹方程.18.(12分)已知点P 到F 1(0,3),F 2(0,-3)的距离之和为4,设点P 的轨迹为C ,直线y =kx +1与轨迹C 交于A ,B 两点.(1)求轨迹C 的方程;(2)若|AB |=825,求k .19.(12分)已知直线l :y =x +m 与抛物线y 2=8x 交于A ,B 两点.(1)若|AB |=10,求m 的值;(2)若OA ⊥OB ,求m 的值.20.(12分)如图,已知抛物线C 1:y =14x 2,圆C 2:x 2+(y -1)2=1,过点P (t ,0)(t >0)作不过原点O 的直线PA ,PB 分别与抛物线C 1和圆C 2相切,A ,B 为切点.(1)求点A ,B 的坐标;(2)求△PAB 的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.21.(12分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左顶点为M (-2,0),离心率为22.(1)求椭圆Γ的方程;(2)过N (1,0)的直线AB 交椭圆Γ于A ,B 两点;当MA → ·MB →取得最大值时,求△MAB 的面积.22.(12分)已知曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)2倍.(1)求曲线C 的方程;(2)设曲线C 与x 轴正半轴交于点A 2,不垂直于x 轴的直线l 与曲线C 交于A ,B 两点(异于点A 2).若以AB 为直径的圆经过点A 2,试问直线l 是否过定点?若是,请求出该定点坐标;若不是,请说明理由.1.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是( )A.(14,94)B.(23,1)C.(12,23)D.(0,12)2.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b=1(a >b >0)有相同的左、右焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是( )A .m -a B.12(m -a )C .m 2-a 2D.m -a3.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.433B.233C .3D .24.已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1 B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=15.【多选题】已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个顶点分别为A 1(-a ,0),A 2(a ,0),P ,Q 的坐标分别为(0,b ),(0,-b ),且四边形A 1PA 2Q 的面积为22,四边形A 1PA 2Q 的内切圆的周长为263π,则双曲线C 的方程为( )A.x 22-y 2=1B .x 2-y 22=1C.x 24-y 22=1 D.x 22-y 24=16.【多选题】我们通常称离心率是5-12的椭圆为“黄金椭圆”.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A 1,A 2,B 1,B 2分别为其左、右、上、下顶点,F 1,F 2分别为左、右焦点,P 为椭圆上一点,下列条件中能使椭圆C 为“黄金椭圆”的是( )A .|A 1F 1|·|F 2A 2|=|F 1F 2|2B .∠F 1B 1A 2=90°C .PF 1⊥x 轴,且PO ∥A 2B 1D .四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 27.【多选题】已知方程mx 2+ny 2=1,其中m 2+n 2≠0,则( )A .mn >0时,方程表示椭圆B .mn <0时,方程表示双曲线C .n =0时,方程表示抛物线D .n >m >0时,方程表示焦点在x 轴上的椭圆8.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则b a=________.9.设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.10.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于________.11.如图,已知椭圆上横坐标等于焦点横坐标的点,其纵坐标等于短半轴长的23,求椭圆的离心率.12.已知抛物线y 2=-4x 的焦点为F ,其准线与x 轴交于点M ,过M 作斜率为k 的直线l 与抛物线交于A ,B 两点,弦AB 的中点为P ,AB 的垂直平分线与x 轴交于E (x 0,0).(1)求k 的取值范围;(2)求证:x 0<-3.13.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC → ·DB → +AD → ·CB →=8,求k 的值.14.已知抛物线C 的顶点在原点O ,焦点与椭圆x 225+y 29=1的右焦点重合.(1)求抛物线C 的方程;(2)在抛物线C 的对称轴上是否存在定点M ,使过点M 的动直线与抛物线C 相交于P ,Q 两点时,有∠POQ =π2.若存在,求出M 的坐标;若不存在,请说明理由.15.如图所示,已知椭圆x 2a 2+y 2b2=1(a >b >0),A ,B 分别为其长、短轴的一个端点,F 1,F 2分别是其左、右焦点.从椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且AB → 与OM→是共线向量.(1)求椭圆的离心率e ;(2)设Q 是椭圆上异于左、右顶点的任意一点,求∠F 1QF 2的取值范围.第3章 圆锥曲线的方程单元测试卷(解析版)[时间:120分钟 满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =ax 2的准线方程是y =1,则a 的值为( )A .4 B .-4C .-14D.14答案 C2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的标准方程为( )A.x 23+y 2=1B.x 23+y 22=1C.x 29+y 28=1D.y 29+x 28=1答案 C解析 因为△AF 1B 的周长为12,所以4a =12,所以a =3.又c a =13,所以c =1,b 2=8,所以C 的标准方程为x 29+y 28=1.3.直线l :y =k (x -2)与双曲线x 2-y 2=1仅有一个公共点,则实数k 的值为( )A .1 B .-1C .1或-1 D .1或-1或0答案 C解析 由题意可知直线l 恒过点(2,0),即双曲线的右焦点,双曲线的渐近线方程为y =±x .要使直线l 与双曲线只有一个公共点,则该直线与渐近线平行,所以k =±1.故选C.4.已知中心在原点,焦点在y 轴的双曲线的渐近线方程为y =±12x ,则此双曲线的离心率为( )A.52 B.5C.52D .5答案 B解析 由已知可设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0).∴±a b =±12,∴b =2a ,∴b 2=4a 2,∴c 2-a 2=4a 2.∴c 2=5a 2,∴c 2a 2=5,∴e =c a=5.5.设a ,b ∈R ,a ≠b 且ab ≠0,则方程bx -y +a =0和方程ax 2-by 2=ab 在同一坐标系下的图象可能是( )答案 B解析 方程ax 2-by 2=ab变形为x 2b -y 2a =1,直线bx -y +a =0,即y =bx +a 的斜率为b ,纵截距为a .当a >0,b >0时,x 2b -y 2a=1表示焦点在x 轴上的双曲线,此时直线的斜率b >0,纵截距a >0,故C 错误;当a <0,b <0时,x 2b -y 2a=1表示焦点在y 轴上的双曲线,此时直线的斜率b <0,纵截距a <0,故D 错误;当a <0,b >0,且-a ≠b 时,x 2b -y 2a=1表示椭圆,此时直线的斜率b >0,纵截距a <0,故A 错误.故选B.6.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2 B .4C .6 D .8答案 B解析 由题意,不妨设抛物线方程为y 2=2px (p >0).由|AB |=42,|DE |=25,可取A (4p ,22),D (-p 2,5),设O 为坐标原点,由|OA |=|OD |,得16p 2+8=p 24+5,得p =4.故选B.7.如图,已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上的一点,F 2P 的延长线与y 轴交于点A ,△APF 1的内切圆在边PF 1上的切点为Q ,若|PQ |=1,则双曲线的离心率是( )A .3 B .2C.3 D.2答案 B解析 如图,记AF1,AF 2与△APF 1的内切圆分别相切于点N ,M ,则|AN |=|AM |,|PM |=|PQ |,|NF 1|=|QF 1|,又因为|AF 1|=|AF 2|,则|NF 1|=|AF 1|-|AN |=|AF 2|-|AM |=|MF 2|,因此|QF 1|=|MF 2|,则|PF 1|-|PF 2|=(|PQ |+|QF 1|)-(|MF 2|-|PM |)=|PQ |+|PM |=2|PQ |=2,即2a =2,则a =1.由|F 1F 2|=4=2c ,得c =2,所以双曲线的离心率e =c a=2.故选B.8.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3) B .(1,4)C .(2,3) D .(2,4)答案 D解析 如图,显然当直线l 的斜率不存在时,必有两条直线满足题意,当直线l 的斜率存在时,设斜率为k ,设A (x 1,y 1),B (x 2,y 2),x 1≠x 2,M (x 0,y 0),则{y 12=4x 1,y 22=4x 2,两式相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2).由于x 1≠x 2,所以y 1+y 22·y 1-y 2x 1-x2=2⇒ky 0=2.①圆心为C (5,0),由CM ⊥AB ,得k ·y 0-0x 0-5=-1⇒ky 0=5-x 0.②由①②解得x 0=3,即点M 必在直线x =3上,将x 0=3代入y 2=4x ,得y 02=12⇒-23<y 0<23,因为点M 在圆(x -5)2+y 2=r 2(r >0)上,所以(x 0-5)2+y 02=r 2(r >0),r 2=y 02+4<12+4=16.因为斜率存在,所以y 0≠0,所以4<y 02+4<16⇒2<r <4.故选D.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知点F (1,0)为曲线C 的焦点,则曲线C 的方程可能为( )A .y 2=4x B .x 2=4yC.x 2cos 2θ+y 2sin 2θ=1(0<θ<π2)D.x 2cos 2θ-y 2sin 2θ=1(0<θ<π2)答案 AD解析 对于A ,y 2=4x ,抛物线的焦点为F (1,0),满足;对于B ,x 2=4y ,抛物线的焦点为F (0,1),不满足;对于C ,x 2cos 2θ+y 2sin 2θ=1(0<θ<π2),焦点为(±cos 2θ-sin 2θ,0)或(0,±sin 2θ-cos 2θ)或曲线表示圆不存在焦点,均不满足;对于D ,x 2cos 2θ-y 2sin 2θ=1(0<θ<π2),双曲线的右焦点为F (1,0),满足.10.已知A ,B 为圆锥曲线E 的焦点,点C 在E 上,若△ABC 为等腰直角三角形,则E 的离心率可能为( )A.2-1 B.22C.2D.2+1答案 ABD解析 若圆锥曲线E 为椭圆,不妨设椭圆方程为x 2a 2+y 2b2=1(a >b >0),设椭圆的离心率为e .因为△ABC 为等腰直角三角形,所以当AB 为斜边时,可以得到b =c =22a ,则e =c a =22;当AB 为直角边时,不妨令|AC |=|AB |=2c ,所以22c +2c =2a ,所以e =ca=2-1.若圆锥曲线E 为双曲线,不妨设双曲线方程为x 2a ′2-y 2b ′2=1(a ′>0,b ′>0),设双曲线的离心率为e ′.因为△ABC 为等腰直角三角形,所以AB 只能为直角边,不妨令AC ⊥AB ,则|AC |=|AB |=2c ,可以得到22c ′=2a ′+2c ′,则e ′=c ′a ′=2+1.故选ABD.11.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左、右焦点,且△F 1PF 2的面积为3,则下列说法正确的是( )A .P 点纵坐标为3B .∠F 1PF 2>π2C .△F 1PF 2的周长为4(2+1)D .△F 1PF 2的内切圆半径为32(2-1)答案 CD解析 设点P 的坐标为(x ,y ),由椭圆E :x 28+y 24=1,可知a 2=8,b 2=4,所以c 2=a 2-b 2=4,所以c =2,F 1(-2,0),F 2(2,0).因为△F 1PF 2的面积为3,所以12×2c ×|y |=12×4×|y |=3,得到y =±32,A 说法错误;将y =±32代入椭圆E 的方程,得到x 28+916=1,解得x =±142,不妨取P (142,32),因为PF 1→ ·PF 2→=(-2-142,-32)·(2-142,-32)=144-4+94>0,所以∠F 1PF 2为锐角,B 说法错误;因为a =22,所以|PF 1|+|PF 2|=42,所以△F 1PF 2的周长为4+42=4(2+1),C 说法正确;设△F 1PF 2的内切圆半径为r ,因为△F 1PF 2的面积为3,所以12×r ×4(2+1)=3,解得r =32(2-1),D 说法正确.故选CD.12.已知A ,B 两点的坐标分别是(-1,0),(1,0),直线AP ,BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是( )A .当m =-1时,点P 的轨迹为圆(除去与x 轴的交点)B .当-1<m <0时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当0<m <1时,点P 的轨迹为焦点在x 轴上的抛物线(除去与x 轴的交点)D .当m >1时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)答案 ABD解析 设点P 的坐标为(x ,y )(x ≠±1),则直线AP 的斜率为k AP =y x +1,直线BP 的斜率为k BP=y x -1.因为k AP ·k BP =m ,所以yx +1·yx -1=m (x ≠±1),化简得到点P 的轨迹方程为x 2+y 2-m=1(x ≠±1),所以正确结论有A 、B 、D.故选ABD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知a ∈{-2,0,1,3},b ∈{1,2},则曲线ax 2+by 2=1为椭圆的概率是________.答案 38解析 由题意,得(a ,b )共有8种不同情况,其中满足“曲线ax 2+by 2=1为椭圆”的有(1,2),(3,1),(3,2),共3种情况,由古典概型的概率公式,得所求概率P =38.14.抛物线y 2=2px (p >0)的准线与双曲线x 2-y 24=1的两条渐近线所围成的三角形的面积为2,则p =________,抛物线焦点到双曲线渐近线的距离为________.(本题第一空2分,第二空3分)答案 2 255解析 抛物线y 2=2px (p >0)的准线方程为x =-p2,双曲线x 2-y 24=1的两条渐近线方程分别为y =2x ,y =-2x ,这三条直线构成等腰三角形,其底边长为2p ,三角形的高为p 2,因此12×2p×p2=2,解得p =2.则抛物线焦点坐标为(1,0),且到直线y =2x 和y =-2x 的距离相等,均为|2-0|5=255.15.在椭圆x 2a 2+y 2b2=1(a >b >0)上,与两焦点张角为90°的点可能有________个(填出所有可能情况).答案 0或2或4解析 设该点为P (x ,y ),椭圆的左、右焦点分别为F 1(-c ,0),F 2(c ,0)(c >0),则|PF 1|=(x +c )2+y 2=(x +c )2+b 2(1-x 2a 2)=a +ex ,|PF 2|=a -ex .|PF 1|2+|PF 2|2=4a 2-2|PF 1|·|PF 2|=2a 2+2c 2a2x 2=4c 2.∴x 2=2a 2-a 4c 2=a 2(2c 2-a 2)c 2≥0.∴当a 2>2c 2时,该点不存在;当a 2≤2c 2时,该点存在,且当a 2=2c 2时这样的点有2个,当c 2<a 2<2c 2时有4个.16.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|PA |=|PB |,则该双曲线的离心率是________.答案 52解析 利用渐近线与直线方程求出交点A ,B 的坐标,进而得出中点C 的坐标;由|PA |=|PB |可知,PC 与直线x -3y +m =0(m ≠0)垂直,利用斜率关系求出a ,b 的关系式.双曲线x 2a2-y 2b 2=1的渐近线方程为y =±b ax .由{y =bax ,x -3y +m =0,得A(am 3b -a ,bm3b -a).由{y =-bax ,x -3y +m =0,得B (-am a +3b ,bma +3b).所以AB 的中点C 的坐标为(a 2m9b 2-a 2,3b 2m 9b 2-a 2).设直线l :x -3y +m =0(m ≠0),因为|PA |=|PB |,所以PC ⊥l .所以k PC =-3,即3b 2m 9b 2-a 2a 2m9b 2-a 2-m=-3,化简得a 2=4b 2.在双曲线中,c 2=a 2+b 2=5b 2,所以e =c a=52.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知Q 点是双曲线x 2a 2-y 2b2=1(a ,b >0)上异于两顶点的一动点,F 1,F 2是双曲线的左、右焦点.从F 2向∠F 1QF 2的平分线作垂线F 2P ,垂足为P ,求P 点的轨迹方程.解析 如图,延长F 2P 交F 1Q 于点A ,连接OP ,则由角平分线的性质,知|AQ |=|F 2Q |.由三角形中位线性质,知|OP |=12|F 1A |.∴|OP |=12(|QF 1|-|QA |)=12(|QF 1|-|QF 2|).若点Q 在双曲线的左支上时,|OP |=12(|QF 2|-|QF 1|), 即|OP |=12×2a =a ,∴P 点的轨迹方程为x 2+y 2=a 2(y ≠0).18.(12分)已知点P 到F 1(0,3),F 2(0,-3)的距离之和为4,设点P 的轨迹为C ,直线y =kx +1与轨迹C 交于A ,B 两点.(1)求轨迹C 的方程;(2)若|AB |=825,求k .解析 (1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3),(0,3)为焦点,长半轴长为2的椭圆,即a =2,c =3,b =22-(3)2=1,故轨迹C 的方程为x 2+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2).联立{x 2+y 24=1,y =kx +1,得(k 2+4)x 2+2kx -3=0,则Δ=4k 2+12(k 2+4)=16(k 2+3)>0,且x 1+x 2=-2kk 2+4,x 1x 2=-3k 2+4.则(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=16(k 2+3)(k 2+4)2,所以|AB |2=(1+k )2(x 1-x 2)2=(1+k )2·16(k 2+3)(k 2+4)2=12825,整理得(17k 2+53)(k 2-1)=0,解得k 2=1,所以k =±1.19.(12分)已知直线l :y =x +m 与抛物线y 2=8x 交于A ,B 两点.(1)若|AB |=10,求m 的值;(2)若OA ⊥OB ,求m 的值.解析 设A (x 1,y 1),B (x 2,y 2),(1)由{y =x +m ,y 2=8x ,得x 2+(2m -8)x +m 2=0,∴{Δ=(2m -8)2-4m 2>0,x 1+x 2=8-2m ,x 1x 2=m 2.由|AB |=2|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=10.得m =716(m <2).(2)∵OA ⊥OB ,∴x 1x 2+y 1y 2=0.∴x 1x 2+(x 1+m )(x 2+m )=0.∴2x 1x 2+m (x 1+x 2)+m 2=0.∴2m 2+m (8-2m )+m 2=0.∴m 2+8m =0,m =0或m =-8.经检验得m =-8.20.(12分)如图,已知抛物线C 1:y =14x 2,圆C 2:x 2+(y -1)2=1,过点P (t ,0)(t >0)作不过原点O 的直线PA ,PB 分别与抛物线C 1和圆C 2相切,A ,B 为切点.(1)求点A ,B 的坐标;(2)求△PAB 的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.解析 (1)由题意知直线PA 的斜率存在,故可设直线PA 的方程为y =k (x -t ),由{y =k (x -t ),y =14x 2,消去y ,整理得x 2-4kx +4kt =0,由于直线PA 与抛物线相切,令Δ=0,得k =t .因此,点A 的坐标为(2t ,t 2).设圆C 2的圆心为D (0,1),点B 的坐标为(x 0,y 0),由题意知点B ,O 关于直线PD 对称,故{y 02=-x 02t +1,x 0t -y 0=0,解得{x 0=2t 1+t 2,y 0=2t 21+t 2.因此,点B 的坐标为(2t 1+t 2,2t 21+t 2).(2)由(1)知|AP |=t ·1+t 2,直线PA 的方程为tx -y -t 2=0.点B 到直线PA 的距离是d =t 21+t 2.设△PAB 的面积为S ,所以S =12|AP |·d =t 32.21.(12分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左顶点为M (-2,0),离心率为22.(1)求椭圆Γ的方程;(2)过N (1,0)的直线AB 交椭圆Γ于A ,B 两点;当MA → ·MB →取得最大值时,求△MAB 的面积.解析 (1)由已知a =2,ca =22,得c =2,∴a 2-b 2=2,即4-b 2=2,∴b 2=2,∴椭圆Γ的方程为x 24+y 22=1.(2)当直线AB 与x 轴重合时,MA → ·MB →=0.当直线AB 与x 轴不重合时,设直线AB 的方程为x =ty +1,A (x 1,y 1),B (x 2,y 2),则MA →=(x 1+2,y 1),MB →=(x 2+2,y 2).由{x =ty +1,x 24+y 22=1,得(t 2+2)y 2+2ty -3=0.显然Δ>0,∴y 1+y 2=-2t t 2+2,y 1y 2=-3t 2+2.∴MA → ·MB →=(x 1+2)(x 2+2)+y 1y 2=(ty 1+3)(ty 2+3)+y 1y 2=(t 2+1)y 1y 2+3t (y 1+y 2)+9=(t 2+1)·-3t 2+2+3t ·-2tt 2+2+9=-3-3t 2-6t 2t 2+2+9=-9t 2-3t 2+2+9=15t 2+2≤152,∴MA → ·MB →的最大值为152.此时t =0,直线AB 的方程为x =1.综上可知MA → ·MB →的最大值为152.联立{x =1,x 24+y 22=1,解得{x =1,y =62或{x =1,y =-62,不妨令A (1,62),B (1,-62),∴|AB |=6,又|MN |=3,∴S △MAB =12|MN |·|AB |=12×3×6=362.22.(12分)已知曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)2倍.(1)求曲线C 的方程;(2)设曲线C 与x 轴正半轴交于点A 2,不垂直于x 轴的直线l 与曲线C 交于A ,B 两点(异于点A 2).若以AB 为直径的圆经过点A 2,试问直线l 是否过定点?若是,请求出该定点坐标;若不是,请说明理由.解析 (1)∵曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)的距离的2倍,∴|x -2|=2·(x -1)2+y 2,化简,得x 22+y 2=1,即曲线C 是椭圆,其方程为x 22+y 2=1.(2)设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),由{y =kx +m ,x 22+y 2=1,得(1+2k 2)x 2+4mkx +2m 2-2=0,∴Δ=(4mk )2-4(1+2k 2)(2m 2-2)>0,即2k 2+1>m 2,x 1+x 2=-4mk 1+2k 2,x 1x 2=2m 2-21+2k 2.∵y 1=kx 1+m ,y 2=kx 2+m ,∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=k 2·2m 2-21+2k 2+mk ·-4mk1+2k 2+m 2=m 2-2k 21+2k 2.∵点A 2(2,0)在以AB 为直径的圆上,∴AA 2⊥BA 2,即AA 2→ ·B A 2→=0.又AA 2→ =(2-x 1,-y 1),BA 2→=(2-x 2,-y 2),∴(2-x 1,-y 1)·(2-x 2,-y 2)=0,即(2-x 1)(2-x 2)+y 1y 2=2-2(x 1+x 2)+x 1x 2+y 1y 2=0,∴2+2·4mk1+2k 2+2m 2-21+2k 2+m 2-2k 21+2k 2=0,化简得2k 2+42mk +3m 2=0,即(2k +m )(2k +3m )=0,∴2k +m =0或2k +3m =0.当2k +m =0时,直线l :y =k (x -2)过定点(2,0),即过点A 2(2,0),不满足题意;当2k +3m =0时,直线l 的方程可化为y =k (x -23),过定点(23,0).综上,直线l 过定点(23,0).1.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是( )A.(14,94)B.(23,1)C.(12,23)D.(0,12)答案 C解析 由题意知B (c ,b 2a ),∴k =b 2ac +a =a -c a=1-e ,∴13<1-e <12,∴12<e <23.故选C.2.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b=1(a >b >0)有相同的左、右焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是( )A .m -a B.12(m -a )C .m 2-a 2D.m -a答案 A解析 不妨取P 在双曲线的右支上,则{|PF 1|+|PF 2|=2m ,|PF 1|-|PF 2|=2a ,解得|PF 1|=m +a ,|PF 2|=m -a .∴|PF 1|·|PF 2|=(m +a )(m -a )=m -a .3.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.433 B.233C .3 D .2答案 A解析 利用椭圆、双曲线的定义和几何性质求解.设|PF 1|=r 1,|PF 2|=r 2(r 1>r 2),|F 1F 2|=2c ,椭圆长半轴长为a 1,双曲线实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2,由(2c )2=r 12+r 22-2r 1r 2cosπ3,得4c 2=r 12+r 22-r 1r 2.由{r 1+r 2=2a 1,r 1-r 2=2a 2,得{r 1=a 1+a 2,r 2=a 1-a 2.∴1e 1+1e 2=a 1+a 2c=r 1c .令m =r 12c 2=4r 12r 12+r 22-r 1r2=41+(r 2r 1)2-r2r 1=4(r 2r 1-12)2 +34,当r 2r 1=12时,m max =163,∴(r 1c )max =433.即1e 1+1e 2的最大值为433.4.已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1 B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=1答案 D解析 根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b2x ,x 2+y 2=4得x A =44+b 2,y A =2b 4+b 2,故四边形ABCD 的面积为4x A y A =32b4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1.故选D.5.【多选题】已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个顶点分别为A 1(-a ,0),A 2(a ,0),P ,Q 的坐标分别为(0,b ),(0,-b ),且四边形A 1PA 2Q 的面积为22,四边形A 1PA 2Q 的内切圆的周长为263π,则双曲线C 的方程为( )A.x 22-y 2=1B .x 2-y 22=1C.x 24-y 22=1D.x 22-y 24=1答案 AB解析 因为A 1(-a ,0),A 2(a ,0),P (0,b ),Q (0,-b ),所以|A 1A 2|=2a ,|PQ |=2b ,所以|A 1P |=|A 2Q |=|A 1Q |=|A 2P |=a 2+b 2=c .又四边形A 1PA 2Q 的面积为22,所以4×12ab =22,即ab=2.记四边形A 1PA 2Q 的内切圆的半径为r ,则2πr =263π,解得r =63,所以2cr =22,所以c =3.又c 2=a 2+b 2=3,所以{a =2,b =1或{a =1,b =2,所以双曲线C 的方程为x 22-y 2=1或x 2-y 22=1.故选AB.6.【多选题】我们通常称离心率是5-12的椭圆为“黄金椭圆”.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A 1,A 2,B 1,B 2分别为其左、右、上、下顶点,F 1,F 2分别为左、右焦点,P 为椭圆上一点,下列条件中能使椭圆C 为“黄金椭圆”的是( )A .|A 1F 1|·|F 2A 2|=|F 1F 2|2B .∠F 1B 1A 2=90°C .PF 1⊥x 轴,且PO ∥A 2B 1D .四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 2答案 BD解析 ∵椭圆C :x 2a 2+y 2b2=1(a >b >0),∴A 1(-a ,0),A 2(a ,0),B 1(0,b ),B 2(0,-b ),F 1(-c ,0),F 2(c ,0).对于A ,若|A 1F 1|·|F 2A 2|=|F 1F 2|2,则(a -c )2=(2c )2,∴a -c =2c ,∴e =13,不符合题意,故A 错误;对于B ,若∠F 1B 1A 2=90°,则|A 2F 1|2=|B 1F 1|2+|B 1A 2|2,∴(a +c )2=a 2+a 2+b 2,∴c 2+ac -a 2=0,∴e 2+e -1=0,解得e =5-12或e =-5-12(舍去),符合题意,故B 正确;对于C ,若PF 1⊥x 轴,且PO ∥A 2B 1,则P (-c ,b 2a),∵k PO =kA 2B 1,∴b 2a-c =b-a ,解得b =c ,又a 2=b 2+c 2,∴e =c a =c 2c =22,不符合题意,故C 错误;对于D ,若四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 2,即四边形A 1B 2A 2B 1的内切圆的半径为c ,则由菱形面积公式可得ab =c a 2+b 2,∴c 4-3a 2c 2+a 4=0,∴e 4-3e 2+1=0,解得e 2=3+52(舍去)或e 2=3-52,∴e =5-12,故D 正确.故选BD.7.【多选题】已知方程mx 2+ny 2=1,其中m 2+n 2≠0,则( )A .mn >0时,方程表示椭圆B .mn <0时,方程表示双曲线C .n =0时,方程表示抛物线D .n >m >0时,方程表示焦点在x 轴上的椭圆答案 BD解析 mx 2+ny 2=1表示椭圆的充要条件是m >0,n >0,A 不正确;mx 2+ny 2=1表示双曲线的充要条件是mn <0,B 正确;当n =0时,mx 2=1不表示抛物线,C 不正确;mx 2+ny 2=1表示焦点在x 轴上的椭圆的充要条件是n >m >0,D 正确.故选BD.8.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.答案 2+1思路分析 根据正方形的边长及O 为AD 的中点,求出点C ,F 的坐标,将两点坐标代入抛物线方程列式求解.解析 ∵正方形ABCD 和正方形DEFG 的边长分别为a ,b ,O 为AD 的中点,∴C (a2,-a ),F (a2+b ,b ).又∵点C ,F 在抛物线y 2=2px (p >0)上,∴{a 2=pa ,b 2=2p (a 2+b ),解得ba=2+1.9.设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.答案 x 2+32y 2=1思路分析 根据题意,求出点B 的坐标代入椭圆方程求解.解析 设点B 的坐标为(x 0,y 0).∵x 2+y 2b 2=1,∴F 1(-1-b 2,0),F 2(1-b 2,0).∵AF 2⊥x 轴,∴A (1-b 2,b 2).∵|AF 1|=3|F 1B |,∴AF 1→ =3F 1B →.∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0).∴x 0=-51-b 23,y 0=-b 23.∴点B 的坐标为(-51-b 23,-b 23).将B (-51-b 23,-b 23)代入x 2+y 2b 2=1,得b 2=23.∴椭圆E 的方程为x 2+32y 2=1.10.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于________.答案 ±1解析 设直线l 的方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2).由{y 2=4x ,y =k (x +1),得k 2x 2+2(k 2-2)x +k 2=0.∴x 1+x 2=-2(k 2-2)k 2.∴x 1+x 22=-k 2-2k 2=-1+2k 2,y 1+y 22=2k ,即Q (-1+2k 2,2k).又|FQ |=2,F (1,0),∴(-1+2k 2-1)2 +(2k)2=4,解得k =±1.11.如图,已知椭圆上横坐标等于焦点横坐标的点,其纵坐标等于短半轴长的23,求椭圆的离心率.解析 方法一:根据题图设焦点坐标为F 1(-c ,0),F 2(c ,0),M 是椭圆上一点,依题意设M点坐标为(c ,23b ).在Rt △MF 1F 2中,|F 1F 2|2+|MF 2|2=|MF 1|2,即4c 2+49b 2=|MF 1|2.而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理,得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a ,所以b 2a 2=49.所以e 2=c 2a 2=a 2-b 2a2=1-b 2a 2=59,所以e =53.方法二:设M (c ,23b ),代入椭圆方程,得c 2a 2+4b 29b 2=1,所以c 2a 2=59,所以c a =53,即e =53.12.已知抛物线y 2=-4x 的焦点为F ,其准线与x 轴交于点M ,过M 作斜率为k 的直线l与抛物线交于A ,B 两点,弦AB 的中点为P ,AB 的垂直平分线与x 轴交于E (x 0,0).(1)求k 的取值范围;(2)求证:x 0<-3.解析 (1)由y 2=-4x ,可得准线x =1,从而M (1,0).设l 的方程为y =k (x -1),联立{y =k (x -1),y 2=-4x ,得k 2x 2-2(k 2-2)x +k 2=0.∵A ,B 存在,∴Δ=4(k 2-2)2-4k 4>0,∴-1<k <1.又k ≠0,∴k ∈(-1,0)∪(0,1).(2)证明:设P (x 3,y 3),A (x 1,y 1),B (x 2,y 2),可得x 3=x 1+x 22=k 2-2k 2,y 3=k(x 1+x 22-1)=-2kk2=-2k.即直线PE 的方程为y +2k =-1k (x -k 2-2k 2).令y =0,x 0=-2k2-1.∵k 2∈(0,1),∴x 0<-3.13.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC → ·DB → +AD → ·CB →=8,求k 的值.解析 (1)设F (-c ,0),由ca=33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b3.于是26b 3=433,解得b =2.又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组{y =k (x +1),x 23+y 22=1,消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.由根与系数的关系可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以AC → ·DB → +AD → ·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1)=6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.14.已知抛物线C 的顶点在原点O ,焦点与椭圆x 225+y 29=1的右焦点重合.(1)求抛物线C 的方程;(2)在抛物线C 的对称轴上是否存在定点M ,使过点M 的动直线与抛物线C 相交于P ,Q 两点时,有∠POQ =π2.若存在,求出M 的坐标;若不存在,请说明理由.解析 (1)椭圆x 225+y 29=1的右焦点为(4,0),所以抛物线C 的方程为y 2=16x .(2)设点M (a ,0)(a ≠0)满足题设,当PQ 的斜率存在时,PQ 的方程为y =k (x -a ),则联立{y 2=16x ,y =k (x -a )⇒k 2x 2-2(ak 2+8)x +a 2k 2=0,则x 1+x 2=2(ak 2+8)k 2,x 1x 2=a 2.设P (x 1,y 1),Q (x 2,y 2),则由∠POQ =π2,得x 1x 2+y 1y 2=0.从而x 1x 2+k 2(x 1-a )(x 2-a )=0⇒a 2-16a =0⇒a =16,若PQ 的方程为x =a ,代入抛物线方程得y =±4a ,当∠POQ =π2时,a =4a ,即a =16,所以存在满足条件的点M (16,0).15.如图所示,已知椭圆x 2a 2+y 2b2=1(a >b >0),A ,B 分别为其长、短轴的一个端点,F 1,F 2分别是其左、右焦点.从椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且AB → 与OM→是共线向量.(1)求椭圆的离心率e ;(2)设Q 是椭圆上异于左、右顶点的任意一点,求∠F 1QF 2的取值范围.解析 (1)设M (x M ,y M ),∵F 1(-c ,0),∴x M =-c ,y M =b 2a ,∴k OM =-b 2ac .由题意知k AB =-b a,∵OM → 与AB →是共线向量,∴-b 2ac =-ba,∴b =c ,∴a =2c ,∴e =22.(2)设|F 1Q |=r 1,|F 2Q |=r 2,∠F 1QF 2=θ,则r 1+r 2=2a .又|F 1F 2|=2c ,∴由余弦定理,得cos θ=r 12+r 22-4c 22r 1r 2=(r 1+r 2)2-2r 1r 2-4c 22r 1r 2=a 2r 1r 2-1≥a 2(r 1+r 22)2-1=0,当且仅当r 1=r 2时等号成立,∴cos θ≥0,∴θ∈(0,π2]..。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三单元试题八:圆锥曲线方程
一、 选择题:本大题共12小题,每题5分,共60分。

在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

1. AB 是抛物线y 2=2x 的一条焦点弦,|AB|=4,那么AB 中点C 的横坐标是( )
A .2
B .
12
C .
32
D .
52
2.⊙O 1与⊙O 2的半径分不为1和2,|O 1O 2|=4,动圆与⊙O 1内切而与⊙O 2外切,那么动圆圆心轨迹是( )
A .椭圆
B .抛物线
C .双曲线
D .双曲线的一支 3.双曲线tx 2-y 2-1=0的一条渐近线与直线2x +y +1=0垂直,那么双曲线的离心率为〔 〕
A .5
B .
2
5
C .
2
3 D .3
4.P 是以F 1、F 2为焦点的椭圆上一点,过焦点F 2作∠F 1PF 2外角平分线的垂线,垂足为M ,那么点M 的轨迹是( )
A .圆
B .椭圆
C .双曲线
D .抛物线 5.假设抛物线y 2=2px (p >0)与抛物线y 2=2q (x -h )(q >0)有公共焦点,那么( ) A .2h =p -q B .2h =p +q C .2h =-p -q D .2h =q -p
6. 设双曲线122
22=-b
y a x 〔a ,b >0〕两焦点为F 1、、F 2,点Q 为双曲线上除顶点外的任一
点,过焦点F 1作∠F 1QF 2的平分线的垂线,垂足为P ,那么P 点轨迹是 ( ) A .椭圆的一部分; B .双曲线的一部分;
C .抛物线的一部分;
D .圆的一部分
7.方程
12
sin 3sin 22
2=-++θθy x 所表示的曲线为( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在x 轴上的双曲线 D .焦点在y 轴上的双曲线
8.我国发射的〝神舟四号〞宇宙飞船的运行轨道是以地球的中心F 2为一个焦点的椭圆,近地点A 距地面为m 千米,远地点B 距地面为n 千米,地球半径为R 千米,那么飞船运行轨道的短轴长为( )
A .千米))((2R n R m ++
B .千米))((R n R m ++
C .mn 千米
D .2mn 千米
9.双曲线x a y b
a b 222
2100-=>>(),的离心率e =+152,点A 与F 分不是双曲线的左
顶点和右焦点,B 〔0,b 〕,那么∠ABF 等于( )
A. 45°
B. 60°
C. 90°
D. 120°
10.设F 1,F 2是双曲线x y 2
24
1-=的两个焦点,P 在双曲线上,当△F 1PF 2的面积为1时,
12PF PF 的值为( )
A .2
B .1
C .
2
1 D .0 11.设a ,b ∈R ,ab ≠0,那么直线ax -y +b =0和曲线bx 2+ay 2=ab 的大致图形是 ( )
12.以下命题正确的选项是〔
〕 ①动点M 至两定点A 、
B 的距离之比为常数)10(≠>λλ
λ且.那么动点M 的轨迹是圆。

②椭圆c c b e b a b
y a x (,22)0(122
22==>>=+则的离心率为半焦距〕。

③双曲线)0,0(122
22>>=-b a b
y a x 的焦点到渐近线的距离为b 。

④抛物线y 2=2px 上两点A(x 1,y 1),B(x 2,y 2)且OA ⊥OB(O 为原点),那么y 1y 2=-p 2。

A .②③④
B .①④
C .①②③
D .①③
二、填空题:本大题共4小题,每题4分,共16分,把答案填在题中横线上。

13.圆x 2+y 2-6x -7=0与抛物线y 2=2px 〔p >0〕的准线相切,那么抛物线的焦点坐标是 。

14.椭圆3x 2+4y 2=12上一点P 与左焦点的距离为
2
5
,那么点P 到右准线的距离为 。

15.以双曲线19
162
2=-y x 的右焦点为顶点,左顶点为焦点的抛物线方程是 。

16.假设平移椭圆4(x +3)2+9y 2=36,使平移后的椭圆中心在第一象限,且它与x 轴、y 轴分
不只有一个交点,那么平移后的椭圆方程是 ______.
三、解答题:本大题共6小题,共74分。

解承诺写出文字讲明,证明过程或演算步骤。

17.在△ABC 中,顶点A 、B 、C 所对三边分不为a 、b 、c ,B 〔-1,0〕,C 〔1,0〕且b 、
a 、c 成等差数列,求顶点A 的轨迹方程。

18.如图,椭圆134:2
21=+y x C
的左右顶点分不为A 、B ,P 为双曲线13
4:222=-y x C 右支上〔x 轴上方〕一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD
的面积相等,求直线PD 的斜率及直线CD 的倾斜角.
19.椭圆C 的方程为12222=+b y a x 〔a >b >0〕,双曲线122
22=-b
y a x 的两条渐近线为l 1.l 2,
过椭圆C 的右焦点F 作直线l ,使l ⊥l 1,又l 与l 2交于P 点,设l 与椭圆C 的两交点从左到右依次为B 、A 〔如图2-3〕,求|
PA ||
PB |的最大值及取得最大值时椭圆C 的离心率e 的值。

20.(本小题总分值12分)AB 是椭圆)0(122
22>>=+b a b
y a x 的一条弦,M 〔2,1〕是AB
的中点,以M 为焦点,以椭圆的右准线为相应准线的双曲线与直线AB 交于N 〔4,-
1〕
M
x
N
P
l 2
B
l 1
o
A
F
y 图2-3
⑴设椭圆和双曲线的离心率分不为1,2121=⋅e e e e 当和时,求椭圆的方程.
⑵求椭圆长轴长的取值范畴.
21.〔本小题总分值12分〕如图,定直线l 是半径为3的定圆F 的切线,P 为平面上一动
点,作PQ ⊥l 于Q ,假设|PQ|=2|PF|.
⑴点P 在如何样的曲线上?并求出该曲线E 的标准方程;
⑵过圆心F 作直线交曲线E 于A 、B 两点,假设曲线E 的
中心为O ,且23=+, 求点A 、B 的坐标.
22.如图,线段|AB|=4,动圆O ′与线段AB 切于点C ,且|AC|-|BC|=22,过点A , B 分不作⊙O ′的切线,两切线相交于P ,且P 、O ′均在AB 的同侧
⑴建立适当坐标系,当O ′位置变化时,求动点P 的轨迹E 的方程;⑵过点B 作直线l 交曲线E 于点M 、N ,求△AMN 的面积的最小值.
Q。

相关文档
最新文档