第二章解析几何初步教案

合集下载

北师大版必修2,第二章,解析几何初步,教案(圆,空间直角坐标系)

北师大版必修2,第二章,解析几何初步,教案(圆,空间直角坐标系)

4.1.1 圆的标准方程三维目标:知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

2、会用待定系数法求圆的标准方程。

过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。

情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。

教学重点:圆的标准方程教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。

教学过程:1、情境设置:在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究:2、探索研究:确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。

(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件r = ①化简可得:222()()x a y b r -+-= ②引导学生自己证明222()()x a y b r -+-=为圆的方程,得出结论。

方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。

3、知识应用与解题研究例(1):写出圆心为(2,3)A -半径长等于5的圆的方程,并判断点12(5,7),(1)M M --是否在这个圆上。

分析探求:可以从计算点到圆心的距离入手。

探究:点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2r ,点在圆内例(2): ABC 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程师生共同分析:从圆的标准方程222()()x a y b r -+-= 可知,要确定圆的标准方程,可用待定系数法确定a b r 、、三个参数.(学生自己运算解决)例(3):已知圆心为C 的圆:10l x y -+=经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为C 的圆的标准方程.师生共同分析: 如图确定一个圆只需确定圆心位置与半径大小.圆心为C 的圆经过点(1,1)A 和(2,2)B -,由于圆心C 与A,B 两点的距离相等,所以圆心C 在险段AB 的垂直平分线m 上,又圆心C 在直线l 上,因此圆心C 是直线l 与直线m 的交点,半径长等于CA 或CB 。

高中数学第2章平面解析几何初步第1课时直线的斜率教学案(无答案)苏教版必修2

高中数学第2章平面解析几何初步第1课时直线的斜率教学案(无答案)苏教版必修2

第1课时直线的斜率教学目标:1.理解直线的斜率,掌握过两点的直线的斜率公式;2.理解直线倾斜角的定义,知道直线的倾斜角的范围;3.掌握直线的斜率与倾斜角之间的关系;4.使学生初步感受直线的方向与直线的斜率之间的对应关系,从而体会到要研究直线的方向的变化规律,只要研究直线斜率的变化规律.教材分析及教材内容的定位:本节课是平面解析几何的入门课,应该让学生知道解析几何的本质;斜率和倾斜角是刻画直线的两个基本量,要让学生理解两个量的定义及两个量之间的关系,应该明确斜率的两种计算方法;要让学生体会斜率变化规律和直线变化规律的关系.教学重点:过两点的直线的斜率公式的运用.教学难点:斜率的引入及倾斜角与斜率之间的关系.教学方法:合作交流法.教学过程:一、问题情境1.本章研究的问题是——对于基本的几何图形——直线与圆.——如何建立它们的方程?——如何通过方程来研究它们的性质?——位置关系(平行、相交、…).2.本节课研究的问题是:——如何确定直线?——两个要素(两点、点与方向)——通过建立直角坐标系,点可以用坐标来表示.——如何用一个代数的量来刻画直线的方向(倾斜程度)?二、学生活动1.探究1:在同一坐标系中作出下列函数的图象:(1)y =x +1;(2)y =2x +1;(3)y =-x +1.2.探究2:上图为环法自行车赛某日路线图的一部分,OA ,AB 两段哪段路程更“陡峭”?为什么?用什么来刻画山坡的倾斜程度?怎样将“直观”量化?三、建构数学1.直线的斜率.已知两点P (x 1,y 1),Q (x 2,y 2),如果x 1≠x 2,那么直线PQ 的斜率(slope )为: )(211212x x x x y y k ≠--= 说明:(1)如果x 1=x 2,那么直线PQ ⊥x 轴,此时k 不存在(斜率不存在);(2)k =y 2-y 1x 2-x 1=纵坐标的增量横坐标的增量=∆y ∆x; (3)对于一条(与x 轴不垂直的)直线而言,它的斜率是一个定值,由该直线上任意两点确定的直线的斜率总是相等的.2.直线的倾斜角.在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角(inclination ),并规定:与x 轴平行或者重合的直线的倾斜角为0o.900m说明:(1)由定义可知,直线的倾斜角α的取值范围是 1800<≤α;(2)与斜率比较,直线的倾斜角和直线的斜率都是刻画直线的倾斜程度的一个量,其中所有直线都有倾斜角,但不是所有直线都有斜率;(3)通过研究发现:当直线与x 轴不垂直时,直线的斜率k 与倾斜角α之间满足k =tan α.四、数学运用例1 已知直线l 1,l 2,l 3,l 4都经过点P (3,2),又l 1,l 2,l 3,l 4分别经过点Q 1(3,7),Q 2(-3,2),Q 3(-2,-1),Q 4(4,-2),讨论l 1,l 2,l 3,l 4的斜率是否存在,如存在,求出直线的斜率.例2 经过点(3,2)画直线,使直线的斜率分别为:(1)34 ; (2)− 45; (3)0; (4)斜率不存例3 根据下列条件,分别画出经过点P ,且斜率为k 的直线,并写出倾斜角α:(1)P (1,2),k =1; (2)P (-1,3),k =0;(3)P (0,-2),k = (4)P (1,2),斜率不存在.五、要点归纳与方法小结1.如何确定直线?直线的方向(倾斜程度)用什么量来刻画?——斜率是刻画直线方向(倾斜程度)的代数量,它可以由直线的方程直接地体现.2.斜率的取值范围是什么?倾斜角的取值范围是什么?斜率与倾斜角有什么关系? ——斜率k ∈R ,倾斜角α∈[0,π),k =tan α,一般地,斜率k 随着倾斜角α的增大而增大,但是,[0,π)不是其单调区间(分隔成两个单调区间).。

北师大版 数学 必修二 第二章 解析几何初步

北师大版 数学 必修二   第二章 解析几何初步
第二章解析几何初步(四)
备写人: 审核人:
课 题:§2.2.3直线方程的应用
学习目标:
1.我能通过条件熟练的求出直线方程.
2.我能准确掌握直线方程的几种形式并会互相转化.
使用说明:
1.先预习课本65-69页,然后完成导学案.
2.重点:掌握直线方程的几种形式. 难点:能讲出直线方程的几种形式并会互相转化.
探究二已知直线 线 不经过第二象限,求 的取值范围.
三、拓展训练
1.若方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,则实数m满足()
A.m≠1B.m≠=-
C.m≠0D.m≠1且m≠=- 且m≠0
四、师生总结
第二次批阅人:时间:
学习过程: 第一次批阅人:时间:
一、自主预习
1.完成下列表格
名称
已知条件
方程
使用范围
点斜式
点 和斜率
与 轴不垂直的直线
斜截式
斜率 和直线在 轴上的截距
与 轴不垂直的直线
两点式
点 和
与 轴、 轴均不垂直的直线
截距式
在 轴上的截距为 ,
在 轴上的截距为
与 轴、 轴均不垂直且不过原点的直线
一般式
2.过点(-1,1)和(3,9)的直线在x轴上的截距是________.
学习笔记
教、学之思
3.直线ax+by-ab=0(ab≠0)在两坐标轴上截距之和是________.
我的疑惑:
二、合作探究
探究一求满足下列条件的直线方程,并将结果化为一般式:
(1)斜率为2,在y轴上截距为3;
(2)直线的斜率为2,与x轴交点横坐标为-1;
(3)在 轴、 轴上的截距分别为4,-5;

高中数学必修2第二章《解析几何初步》全部教案

高中数学必修2第二章《解析几何初步》全部教案

高中数学必修2第二章《解析几何初步》全部教案(2009年秋期)南阳市八中王庆凡§2、1直线与直线的方程第一课时直线的倾斜角和斜率一、教学目标: 1、知识与技能:(1)、正确理解直线的倾斜角和斜率的概念.(2)、理解直线的倾斜角的唯一性.(3)、理解直线的斜率的存在性.(4)、斜率公式的推导过程,掌握过两点的直线的斜率公式.2、情感态度与价值观:(1) 通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.(2) 通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.二、重点与难点:直线的倾斜角、斜率的概念和公式.三、教学用具:计算机教学方法:启发、引导、讨论.四、教学过程(一)、直线的倾斜角的概念我们知道, 经过两点有且只有(确定)一条直线. 那么, 经过一点P的直线l的位置能确定吗? 如图, 过一点P可以作无数多条直线a,b,c, …易见,答案是否定的.这些直线有什么联系呢?(1)它们都经过点P. (2)它们的‘倾斜程度’不同. 怎样描述这种‘倾斜程度’的不同?引入直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角....特别地,当直线l与x轴平行或重合时, 规定α= 0°.问: 倾斜角α的取值范围是什么? 0°≤α<180°.当直线l与x轴垂直时, α= 90°.因为平面直角坐标系内的每一条直线都有确定的倾斜程度, 引入直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.如图, 直线a∥b∥c, 那么它们YXcbaO的倾斜角α相等吗? 答案是肯定的.所以一个倾斜角α不能确定一条直线.确定平面直角坐标系内的一条直线位置的几何要素: 一个点...P.和一个倾斜角α........(二)直线的斜率一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.例如, α=45°时, k = tan45°= 1;α=135°时, k = tan135°= tan(180°- 45°) = - tan45°= - 1.学习了斜率之后, 我们又可以用斜率来表示直线的倾斜程度.(三) 直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,如何用两点的坐标来表示直线P1P2的斜率?可用计算机作动画演示: 直线P1P2的四种情况, 并引导学生如何作辅助线,共同完成斜率公式的推导.(略)斜率公式: 对于上面的斜率公式要注意下面四点:(1) 当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角α= 90°, 直线与x轴垂直;(2)k与P1、P2的顺序无关, 即y1,y2和x1,x2在公式中的前后次序可以同时交换, 但分子与分母不能交换;(3)斜率k可以不通过倾斜角而直接由直线上两点的坐标求得;(4) 当 y1=y2时, 斜率k = 0, 直线的倾斜角α=0°,直线与x轴平行或重合.(5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到.(四)例题:例1 已知A(3, 2), B(-4, 1), C(0, -1), 求直线AB, BC, CA的斜率, 并判断它们的倾斜角是钝角还是锐角.(用计算机作直线, 图略)分析: 已知两点坐标, 而且x1≠x2, 由斜率公式代入即可求得k的值;而当k = tanα<0时, 倾斜角α是钝角;而当k = tanα>0时, 倾斜角α是锐角;而当k = tanα=0时, 倾斜角α是0°.略解: 直线AB的斜率k1=1/7>0, 所以它的倾斜角α是锐角;直线BC的斜率k2=-0.5<0, 所以它的倾斜角α是钝角;直线CA的斜率k3=1>0, 所以它的倾斜角α是锐角.例2 在平面直角坐标系中, 画出经过原点且斜率分别为1, -1, 2, 及-3的直线a, b, c, l. 分析:要画出经过原点的直线a, 只要再找出a上的另外一点M. 而M的坐标可以根据直线a的斜率确定; 或者k=tanα=1是特殊值,所以也可以以原点为角的顶点,x 轴的正半轴为角的一边, 在x 轴的上方作45°的角, 再把所作的这一边反向延长成直线即可.略解: 设直线a上的另外一点M的坐标为(x,y),根据斜率公式有, 1=(y-0)/(x-0)所以 x = y,可令x = 1, 则y = 1, 于是点M的坐标为(1,1).此时过原点和点M(1,1), 可作直线a. 同理, 可作直线b, c, l.(用计算机作动画演示画直线过程)(五)练习: P91 1. 2. 3. 4.(六)小结: (1)直线的倾斜角和斜率的概念.(2) 直线的斜率公式.(七)课后作业: P94 习题3.1 1. 3.五、教后反思:第二课时两条直线的平行与垂直一、教学目标(一)知识教学:理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直.(二)能力训练:通过探究两直线平行或垂直的条件,培养学生运用已有知识解决新问题的能力, 以及数形结合能力.(三)学科渗透:通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.二、重难点重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用.难点:启发学生, 把研究两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题.注意:对于两条直线中有一条直线斜率不存在的情况, 在课堂上老师应提醒学生注意解决好这个问题.三、教学方法:启发、引导、讨论.四、教学过程(一)先研究特殊情况下的两条直线平行与垂直上一节课, 我们已经学习了直线的倾斜角和斜率的概念, 而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度, 并推导出了斜率的坐标计算公式. 现在, 我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.讨论: 两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.(二)两条直线的斜率都存在时, 两直线的平行与垂直设直线 L1和L2的斜率分别为k1和k2. 我们知道, 两条直线的平行或垂直是由两条直线的方向决定的, 而两条直线的方向又是由直线的倾斜角或斜率决定的. 所以我们下面要研究的问题是: 两条互相平行或垂直的直线, 它们的斜率有什么关系?首先研究两条直线互相平行(不重合)的情形.如果L1∥L2(图1-29),那么它们的倾斜角相等:α1=α2.(借助计算机, 让学生通过度量, 感知α1, α2的关系)∴tgα1=tgα2.即 k1=k2.反过来,如果两条直线的斜率相等: 即k1=k2,那么tgα1=tgα2.由于0°≤α1<180°, 0°≤α<180°,∴α1=α2.又∵两条直线不重合,∴L1∥L2.结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在........的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2; 反之则不一定.下面我们研究两条直线垂直的情形.如果L1⊥L2,这时α1≠α2,否则两直线平行.设α2<α1(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有α1=90°+α2.因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0°.,可以推出: α1=90°+α2. L1⊥L2.结论: 两条直线都有斜率........,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即注意: 结论成立的条件. 即如果k1·k2 = -1, 那么一定有L1⊥L2; 反之则不一定.(借助计算机, 让学生通过度量, 感知k1, k2的关系, 并使L1(或L2)转动起来, 但仍保持L1⊥L2, 观察k1, k2的关系, 得到猜想, 再加以验证. 转动时, 可使α1为锐角,钝角等). (三)、例题:例1 已知A(2,3), B(-4,0), P(-3,1), Q(-1,2), 试判断直线BA与PQ的位置关系, 并证明你的结论.分析: 借助计算机作图, 通过观察猜想:BA∥PQ, 再通过计算加以验证.(图略)解: 直线BA的斜率k1=(3-0)/(2-(-4))=0.5, 直线PQ的斜率k2=(2-1)/(-1-(-3))=0.5, 因为 k1=k2=0.5, 所以直线BA∥PQ.例2 已知四边形ABCD的四个顶点分别为A(0,0), B(2,-1), C(4,2), D(2,3), 试判断四边形ABCD 的形状,并给出证明. (借助计算机作图, 通过观察猜想: 四边形ABCD是平行四边形,再通过计算加以验证) 解同上.例3 已知A(-6,0), B(3,6), P(0,3), Q(-2,6), 试判断直线AB与PQ的位置关系.解: 直线AB的斜率k1= (6-0)/(3-(-6))=2/3,直线PQ的斜率k2= (6-3)(-2-0)=-3/2, 因为k1·k2 = -1 所以 AB⊥PQ.例4 已知A(5,-1), B(1,1), C(2,3), 试判断三角形ABC的形状.分析: 借助计算机作图, 通过观察猜想: 三角形ABC是直角三角形, 其中AB⊥BC, 再通过计算加以验证.(图略)(四)、课堂练习:P94 练习 1. 2.(五)、课后小结:(1)两条直线平行或垂直的真实等价条件;(2)应用条件, 判定两条直线平行或垂直.(3) 应用直线平行的条件, 判定三点共线.(六)、布置作业:P94 习题3.1 5. 8.五、教后反思:第三课时直线的点斜式方程一、教学目标1、知识与技能:(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程。

必修二第二章解析几何初步

必修二第二章解析几何初步

四、说建议
说建议
教学建议
关注学生的 主体参与
注重数学知 识与实际的
联系
加强几何直 观,重视图 形的作用
注重探究创新 精神的培养

适当运用

现代信息

技术

说建议
评价建议
注重对学生
评价主体的
能力的全评面价了解学生的学习状况,多元化
促使学生更进一步的发展。
注重对学习 过程的评价
评价方式的

多样化

普通高中课程标准实验教科书北师大版必修2
解析几何初步
大荔中学高一数学组 马翠敏
编写 体例
编写意图 及特点
课程内 容标准
解析几何 课程目标
说教材 说课标
课程 总目

内容结 构及知 识整合
说考点
说建议
解 析 几 何 初 步
教学 建议
评价 建议
课程资 源的开 发与利

一、说课标
说课标
提高学生的数学思维能力
• M为PD上一点,且 | MD | 4 | PD | .
5
• (1)当P在圆上运动时,求点M的轨迹C的方程;
4
• (2)求过点(3,0)且斜率为 5 的直线被C所截线段的长度.
2011陕西卷文 17.(本小题满分12分)
3
设椭圆 C:
x2 y2 a2 b2
1a b 0过点(0,4),离心率
说教材

纵向整合
解析几何初步
坐标法
圆锥曲线与方程
数形结合
直线
代数方法解决直线几与何圆锥问曲题线


代数问题的几何背景

高中数学 第二章 解析几何初步本章知识体系学案(含解析)北师大版必修2-北师大版高一必修2数学学案

高中数学 第二章 解析几何初步本章知识体系学案(含解析)北师大版必修2-北师大版高一必修2数学学案

第二章解析几何初步本章知识体系专题一倾斜角、斜率问题【例1】已知点A(2,-1),B(5,3),若直线l:kx-y+1=0与线段AB相交,求k的取值范围.【思路探究】k为直线l的斜率,所以本题可以从倾斜角入手,找出满足条件的直线l 的极端位置的斜率,根据倾斜角的变化情况求k的取值范围,也可以写出直线AB的方程,与l联立,求出交点的坐标,再对坐标的范围加以限制,这也是一种比较常见的思路和解法.【解答】 解法一:由方程kx -y +1=0可知, 直线l 恒过定点P (0,1),如图所示,连接P A ,PB ,解得k P A =-1,k PB =25.又∵直线l 的斜率为k ,∴k 的取值范围为-1≤k ≤25.解法二:由两点式求得直线AB 的方程为4x -3y -11=0,联立方程组⎩⎪⎨⎪⎧4x -3y -11=0,kx -y +1=0.解得x =-143k -4,满足2≤-143k -4≤5,解得-1≤k ≤25.已知实数x ,y 满足y =-2x +8,且2≤x ≤3,求yx的最大值和最小值.解:如图,由已知,点P (x ,y )在线段AB 上运动,其中A (2,4),B (3,2),而y x =y -0x -0,其几何意义为直线OP 的斜率,由图可知k OB ≤k OP ≤k OA ,而k OB =23,k OA =2.故所求的y x 的最大值为2,最小值为23.专题二 直线的方程【例2】 设直线l 的方程为(m +1)x +y +2-m =0(m ∈R ). (1)若l 在两坐标轴上的截距相等,求直线l 的方程; (2)若直线l 不经过第二象限,求实数m 的取值范围.【解答】 (1)当直线过原点时,该直线在x 轴和y 轴上的截距为零,显然相等,所以m =2满足条件,此时直线l 的方程为3x +y =0.当m =-1时,直线为平行于x 轴的直线,在x 轴上无截距,不合题意. 当m ≠-1且m ≠2时,直线在x 轴上的截距为m -2m +1,直线在y 轴上的截距为m -2,因此m -2m +1=m -2,即m +1=1,所以m =0,此时直线l的方程为x +y +2=0.综上所述,当m =2或m =0时,直线l 在两坐标轴上的截距相等,方程为3x +y =0或x +y +2=0.(2)将l 的方程转化为y =-(m +1)x +m -2,所以⎩⎪⎨⎪⎧ -(m +1)>0,m -2≤0,或⎩⎪⎨⎪⎧-(m +1)=0,m -2≤0,所以m ≤-1,所以m 的取值范围为(-∞,-1].已知直线的斜率为16,且和坐标轴围成面积为3的三角形,求该直线方程.解:设直线方程为y =16x +b ,则该直线在两坐标轴上的截距分别为b ,-6b ,∴S =12|b |·|-6b |=3b 2=3,∴b =±1,∴直线方程为x -6y +6=0或x -6y -6=0. 专题三 两直线位置关系【例3】 已知两条直线l 1:ax +3y -3=0,l 2:4x +6y -1=0,若l 1∥l 2,则a =________. 【解答】 本题主要考查直线的位置关系. ∵l 1:ax +3y -3=0,l 2:4x +6y -1=0, ∴kl 1=-a 3,kl 2=-23,b 1=1≠b 2=16,又∵l 1∥l 2,∴kl 1=kl 2,∴-a 3=-23,∴a =2,故填2.【答案】 2已知直线l 1:(k -3)x +(4-k )y +1=0,与l 2:2(k -3)x -2y +3=0平行,则k 的值是( C ) A .1或3 B .1或5 C .3或5D .1或2解析:本题考查平面中两直线平行的条件.由题意,得-2(k -3)-2(k -3)(4-k )=0,解得k =3或5.经检验知当k =3或5时,直线l 1与直线l 2平行.故选C.专题四 距离的最值问题【例4】 圆x 2+y 2-4x -4y -10=0上的点到直线x +y -14=0的最大距离与最小距离的差是( )A .36B .18C .62D .5 2【解答】 圆x 2+y 2-4x -4y -10=0化为标准方程为(x -2)2+(y -2)2=18,∴圆心坐标为C (2,2),半径r =3 2.∴圆心C 到直线x +y -14=0的距离为d ,则d =|2+2-14|12+12=52,∴圆上的点到直线x +y -14=0的最大距离为d 1=d +r ,最小距离d 2=d -r ,∴d 1-d 2=2r =6 2.故选C.【答案】 C规律方法 本题可直接利用几何性质知所求的最大距离与最小距离的差为2r ,只需把圆的一般方程化为标准方程,即可求出半径,可免去求点到直线的距离这一环节.已知x ,y 满足x +y +3=0,求(x +1)2+(y -2)2的最小值.解:x ,y 满足x +y +3=0,即(x ,y )在此直线上.(x +1)2+(y -2)2的几何意义就是(x ,y )到(-1,2)的距离的平方,问题转化为:求点P (-1,2)到直线x +y +3=0上的点的距离平方的最小值(如图).根据点到直线的距离公式得(x +1)2+(y -2)2的最小值为8.专题五 直线与圆、圆与圆的位置关系【例5】 已知直线l :kx -y -3k =0,圆M :x 2+y 2-8x -2y +9=0. (1)求证:直线l 与圆M 相交.(2)当圆M 截l 所得的弦最长时,求k 的值.【解答】 (1)证明:直线l 的方程可化为y =k (x -3),则直线l 过定点A (3,0). 因为⊙M 的方程为(x -4)2+(y -1)2=8, 又(3-4)2+(0-1)2<8,所以点A 在⊙M 的内部, 所以直线l 与⊙M 相交.(2)显然,当直线l 过圆M 的圆心时,弦最长,其值为42,此时k =1-04-3=1.规律方法 (1)先判断出直线过定点,再根据点和圆的位置关系来确定;(2)最长的弦是过定点的直径.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦的长为23,则a =1.解析:本小题主要考查两圆的位置关系,求解时注意公共弦平行于x 轴.两圆方程相减得公共弦方程y =1a ,代入x 2+y 2=4得两圆交点横坐标x =±4-1a2,∴4-1a2=3,∴a =1(a >0),专题六 对称问题【例6】 在直线l :3x -y -1=0上求一点P ,使得: (1)P 到A (4,1)和B (0,4)的距离之差最大; (2)P 到A (4,1)和C (3,4)的距离之和最小.【思路探究】 利用图形将文字语言转化到图形中,结合图形求解即可,同时注意对于A 、B 两点,若求一点P 使|P A |+|PB |最小,则遵循“同侧对称异侧连”,若求一点P 使|P A |-|PB |最大,则遵循“异侧对称同侧连”.【解答】 作图得A ,B 在l 异侧,A ,C 在l 同侧.设B 关于l 的对称点为B ′,AB ′与l 的交点满足(1);C 关于l 的对称点为C ′,AC ′与l 的交点满足(2).事实上,若P ′是l 上异于P 的点,则对于(1),|P ′A |-|P ′B |=|P ′A |-|P ′B ′|<|AB ′| =|P A |-|PB ′|=|P A |-|PB |;对于(2),|P ′A |+|P ′C |=|P ′A |+|P ′C ′|>|AC ′|=|P A |+|PC |.(1)如图所示,设点B 关于l 的对称点B ′的坐标为(a ,b ),则k BB ′·k l =-1,即3·b -4a =-1,∴a +3b -12=0.①又由线段BB ′的中点坐标为⎝ ⎛⎭⎪⎫a 2,b +42,且在直线l 上,∴3×a 2-b +42-1=0, 即3a -b -6=0.②解①②得a =3,b =3,∴B ′(3,3),于是AB ′的方程为y -13-1=x -43-4,即2x +y -9=0.解⎩⎪⎨⎪⎧ 3x -y -1=0,2x +y -9=0,得⎩⎪⎨⎪⎧x =2,y =5.故l 与AB ′的交点P (2,5)即为所求.(2)如图所示,设C 关于l 的对称点为C ′,求出C ′的坐标为⎝⎛⎭⎫35,245.∴AC ′所在直线的方程为19x +17y -93=0,AC ′和l 交点坐标为⎝⎛⎭⎫117,267.故l 与AC ′的交点P ⎝⎛⎭⎫117,267即为所求.如图所示,光线从点A (-2,4)射出,经直线l :2x -y -7=0反射,若反射光线过点B (5,8).(1)求反射光线所在直线的方程; (2)求光线从A 到B 经过的路程.解:(1)如图,设点A 关于直线l 的对称点为A ′(x ,y ),由⎩⎨⎧2·x -22-y +42-7=0,y -4x +2=-12.即⎩⎪⎨⎪⎧ 2x -y -22=0,x +2y -6=0,解得⎩⎪⎨⎪⎧x =10,y =-2.即A ′(10,-2).∴反射光线所在直线A ′B 的方程为y +210=x -10-5.即2x +y -18=0.(2)s =|AP |+|PB |=|A ′P |+|PB |=|A ′B |=102+52=5 5.专题七 空间直角坐标系【例7】 如图所示,已知正四面体A -BCD 的棱长为1,点E ,F 分别为棱AB ,CD 的中点.(1)建立适当的空间直角坐标系,写出顶点A ,B ,C ,D 的坐标. (2)证明:△BEF 为直角三角形.【思路探究】 正四面体也是正三棱锥,即其顶点和底面正三角形中心的连线是正四面体的高,以底面正三角形的中心为坐标原点,高为z 轴,建立空间直角坐标系.【解答】 (1)设底面正三角形BCD 的中心为点O ,连接AO ,DO ,延长DO 交BC 于点M ,则AO ⊥平面BCD ,点M 是BC 的中点,且DM ⊥BC ,过点O 作ON ∥BC ,交CD 于点N ,则ON ⊥DM ,故以O 为坐标原点,OM ,ON ,OA 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.∵正四面体A -BCD 的棱长为1,点O 为底面△BCD 的中心,∴OD =23DM =231-14=33,OM =13DM =36.OA =AD 2-OD 2=1-13=63,BM =CM =12. ∴A (0,0,63),B (36,-12,0),C (36,12,0),D (-33,0,0). (2)证明:由(1)及中点坐标公式,得 E (312,-14,66),F (-312,14,0), ∴|EF |=(-36)2+(12)2+(-66)2=22, |BE |=(312)2+(-14)2+(-66)2=12, |BF |=(34)2+(-34)2=32. ∴|BE |2+|EF |2=|BF |2,故△BEF 为直角三角形.规律方法 (1)在解答有关正三棱锥的问题时,常用的一条辅助线就是高线.建立空间直角坐标系必须根据题目的条件找出从同一点出发的三条两两垂直的直线.(2)求坐标易出错的原因有:一是弄不清y 轴与CD ,CB 的位置关系;二是忽视了重心定理的应用;三是忽视了点的位置对坐标的影响,如点B 的纵坐标应是BM 长的相反数.另外解答本类问题还常出现计算错误而失分,所以要加强计算能力的训练与培养.如图所示,BC =4,原点O 是BC 的中点,点A 的坐标⎝⎛⎭⎫32,12,0,点D 在平面yOz上,且∠BDC =90°,∠DCB =30°,求AD 的长度.解:由题意得B (0,-2,0),C (0,2,0),设D (0,y ,z ),则在Rt △BDC 中,∠DCB =30°, ∴BD =2,CD =23,z =3,2-y =3.∴y =-1. ∴D (0,-1,3).又∵A ⎝⎛⎭⎫32,12,0,∴|AD |=⎝⎛⎭⎫322+⎝⎛⎭⎫12+12+(3)2= 6.。

解析几何初步直线方程的概念与直线的斜率教案说明

解析几何初步直线方程的概念与直线的斜率教案说明

解析几何初步——直线方程的概念与直线的斜率教案说明:本教案旨在让学生掌握直线方程的基本概念,了解直线方程的表示方法,并通过实例理解直线的斜率。

本教案适用于高中一年级学生,需具备一定的代数和几何基础。

教学目标:1. 理解直线方程的概念,掌握直线方程的表示方法。

2. 了解直线的斜率,并能运用斜率公式计算直线的斜率。

3. 能运用直线方程和斜率解决实际问题。

教学内容:一、直线方程的概念1. 引入直线方程的概念,让学生了解直线方程是用来表示直线位置和性质的数学表达式。

2. 讲解直线方程的基本形式,如点斜式、截距式和一般式等。

二、直线方程的表示方法1. 讲解点斜式方程的推导过程,让学生理解点斜式方程的含义。

2. 介绍截距式方程的推导过程,让学生掌握截距式方程的表示方法。

3. 讲解一般式方程的推导过程,让学生了解一般式方程的应用。

三、直线的斜率1. 引入直线斜率的概念,让学生了解斜率是表示直线倾斜程度的量。

2. 讲解斜率的计算公式,让学生能运用公式计算直线的斜率。

3. 通过实例讲解斜率的运用,让学生能结合直线方程和斜率解决实际问题。

四、直线方程的应用1. 讲解如何利用直线方程求直线与坐标轴的交点。

2. 介绍如何利用直线方程解决两点间距离问题。

3. 通过实例让学生掌握直线方程在实际问题中的应用。

1. 布置课堂练习题,让学生巩固所学知识。

教学评价:通过本节课的学习,学生能掌握直线方程的基本概念和表示方法,了解直线的斜率,并能运用所学知识解决实际问题。

在课堂练习中,学生应能独立完成相关习题,展示对直线方程和斜率的理解。

六、直线方程的进一步应用1. 讲解如何利用直线方程判断两直线的位置关系,如相交、平行或重合。

2. 介绍如何利用直线方程解决两直线的交点问题。

3. 通过实例让学生掌握直线方程在解决两直线关系问题中的应用。

七、直线的斜率与倾斜角1. 讲解斜率与倾斜角的关系,让学生了解斜率与直线倾斜程度的关系。

2. 讲解如何利用斜率公式求直线的倾斜角,让学生能运用公式计算直线的倾斜角。

解析几何专题教案

解析几何专题教案

解析几何专题教案一、教学目标1. 知识与技能:(1)理解解析几何的基本概念,掌握直角坐标系中点的坐标表示方法。

(2)熟练运用解析几何方法解决实际问题,提高空间想象能力。

2. 过程与方法:(1)通过实例分析,引导学生掌握点的坐标表示方法,培养学生的抽象思维能力。

(2)运用图形直观展示解析几何问题,培养学生数形结合的解题思想。

3. 情感态度与价值观:(1)培养学生对数学的兴趣,激发学生探索几何问题的热情。

(2)培养学生克服困难的意志,增强学生解决问题的信心。

二、教学内容1. 解析几何基本概念(1)直角坐标系(2)点的坐标表示方法(3)直线、圆的方程2. 点的坐标表示方法及应用(1)坐标轴上的点(2)坐标轴上的点与几何图形的关系(3)点的坐标在实际问题中的应用三、教学重点与难点1. 教学重点:(1)解析几何的基本概念(2)点的坐标表示方法及应用2. 教学难点:(1)直线、圆的方程的推导与理解(2)坐标轴上的点与几何图形的关系四、教学方法与手段1. 教学方法:(1)讲授法:讲解解析几何基本概念、直线的方程等。

(2)实践操作法:引导学生动手绘制图形,分析点的坐标表示方法。

(3)案例分析法:分析实际问题,培养学生运用解析几何方法解决问题的能力。

2. 教学手段:(1)黑板:板书关键知识点、解题步骤等。

(2)多媒体课件:展示图形、动态演示等。

(3)练习题:巩固所学知识,提高解题能力。

五、教学过程1. 导入新课:(1)复习相关知识点,如坐标轴、坐标系等。

(2)通过实例引入解析几何的基本概念。

2. 讲解新课:(1)讲解直线的方程,引导学生理解直线的几何性质。

(2)讲解点的坐标表示方法,结合实例进行分析。

3. 课堂练习:(1)布置练习题,巩固点的坐标表示方法。

(2)选讲典型题目,分析解题思路和方法。

4. 课堂小结:总结本节课所学内容,强调解析几何的基本概念和点的坐标表示方法的重要性。

5. 课后作业:布置作业,要求学生掌握点的坐标表示方法,并能运用解析几何解决实际问题。

(教师用书)高中数学 第二章 平面解析几何初步教案 苏教版必修2

(教师用书)高中数学 第二章 平面解析几何初步教案 苏教版必修2

【课堂新坐标】(教师用书)2013-2014学年高中数学第二章平面解析几何初步教案苏教版必修22.1直线与方程2.1.1 直线的斜率(教师用书独具)●三维目标1.知识与技能(1)理解直线的倾斜角和斜率概念及他们间的关系.(2)经历用代数方法刻画直线斜率的过程,掌握过两点的直线的斜率公式.2.过程与方法(1)通过教学,使学生从生活中坡度自然迁移到数学中直线的斜率的过程,感受数学概念来源于生活实际,数学概念的形成是自然的,从而渗透辩证唯物主义思想.(2)充分利用倾斜角和斜率是从数与形两方面刻画直线相对于x轴倾斜程度的两个量这一事实,渗透数形结合思想.3.情感、态度与价值观(1)通过直线倾斜角的概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.(2)通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合的思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.●重点难点重点:直线的倾斜角、斜率的概念和公式.难点:倾斜角与斜率的关系及斜率公式的导出过程.重难点突破:从学生熟知的概念“坡角”入手,充分利用学生已有的知识,引导学生把这个刻画倾斜程度的量与斜率联系起来,并通过坡度的计算方法,引入斜率的计算公式,难点之一得以解决;然后以确定直线位置的几何要素为切入点,采用数形结合思想给出直线倾斜角的概念,并分析斜率同倾斜角的关系,从而化难为易,突破难点.(教师用书独具)●教学建议鉴于本节知识概念抽象、疑难点较多的特点,教学时,可采用观察发现、启发引导、探索实验相结合的教学方法,把概念化抽象为直观,突出概念的形成过程,另在直线斜率公式教学的导出过程中,应渗透几何问题代数化的解析几何研究思想.引导帮助学生将直线的位置问题(几何问题)转化为倾斜角问题,进而转化为倾斜角的正切即斜率问题(代数问题)进行解决,使学生进一步体会“数形结合”的思想方法.●教学流程创设问题情境,引出问题:直线位置的倾斜程度如何刻画?⇒引导学生通过观察、思考,类比坡度给出斜率的计算方式.⇒通过引导学生回答所提问题理解倾斜角的概念及斜率与倾斜角的关系.⇒借助直线的斜率公式及倾斜角的内在联系,完成例3及其变式训练,使学生的知识进一步深化.⇒通过例2及其变式训练,使学生理解直线的倾斜角同斜率的关系.⇒通过例1及其变式训练,使学生掌握直线的斜率公式.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.(见学生用书第38页)课标解读1.理解直线的倾斜角和斜率的概念及它们之间的关系.(难点)2.掌握过两点的直线斜率计算公式.(重点)3.了解直线的倾斜角的范围,能根据直线的倾斜角求出直线的斜率.(易错点)直线的斜率【问题导思】如图,楼梯或路面的倾斜程度可用坡度来刻画.1.平面直角坐标系中,过点P (1,1),Q (3,3)的直线,其倾斜程度如何刻画? 【提示】 其倾斜程度如图所示,可用3-13-1=1来刻画.2.对于平面直角坐标系中,过点P (x 1,y 1),Q (x 2,y 2)(其中x 1≠x 2)的直线的倾斜程度如何刻画?【提示】 可用y 2-y 1x 2-x 1来刻画. 已知两点P (x 1,y 1),Q (x 2,y 2),如果x 1≠x 2,那么直线PQ 的斜率为k =y 2-y 1x 2-x 1(x 1≠x 2),如果x 1=x 2,那么直线PQ 的斜率不存在.直线的倾斜角在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角,并规定:与x 轴平行或重合的直线的倾斜角为0°.倾斜角α的范围为0°≤α<180°.直线的斜率与倾斜角的关系【问题导思】观察下图中的三条直线l 1、l 2和l 3,回答下列问题.1.直线l 1的斜率k 1与其倾斜角α1间存在怎样的等量关系? 【提示】 k 1=tan α1 2.直线l 3的斜率存在吗? 【提示】 不存在.3.直线的斜率为正时,其倾斜角范围如何?直线的斜率为负时呢?【提示】 当直线的斜率为正时,其倾斜角α的范围为(0°<α<90°);当直线的斜率为负时,其倾斜角α的范围为(90°<α<180°).1.从关系式上看:若直线l 的倾斜角为α(α≠90°),则直线l 的斜率k =tan_α. 2.从几何图形上看 直线 情形α的0°0°<α<90°90°90°<α<180°大小k 的大小k =tan_α不存在k =tan_α=-tan(180°-α)k 的范围0 k >0 不存在k <0(见学生用书第39页)求直线的斜率经过下列两点的直线的斜率是否存在?如果存在,求其斜率. (1)A (-1,0),B (0,-2); (2)A (-3,2),B (2,-3); (3)A (a ,a +b ),B (c ,b +c ); (4)A (2,-1),B (m ,-2). 【思路探究】 当x 1≠x 2时,利用y 1-y 2x 1-x 2求解直线的斜率,否则斜率不存在. 【自主解答】 (1)∵-1≠0, ∴斜率存在,且k =-2-00--1=-2.(2)∵-3≠2, ∴斜率存在,且k =2--3-3-2=2+3-2-3=-1. (3)∵a ≠c (否则A ,B 两点重合为一点), ∴斜率存在,且k =a +b -b +ca -c=1.(4)当m =2时,斜率不存在.当m ≠2时,斜率k =-2--1m -2=12-m.1.本题(4)因m与2的关系不定而分m=2和m≠2两种情况求解.2.注意事项:(1)运用公式的前提条件是“x1≠x2”,即直线不与x轴垂直,因为当直线与x轴垂直时,斜率是不存在的;(2)斜率公式与两点P1,P2的先后顺序无关,也就是说公式中的x1与x2,y1与y2可以同时交换位置.设A(m,-m+3),B(2,m-1),C(-1,4),直线AC的斜率等于直线BC的斜率的3倍,求实数m的值.【解】依题意知直线AC的斜率存在且m≠-1,由k AC=3k BC,得-m+3-4 m--1=3×m-1-42--1,∴m=4.倾斜角与斜率的关系已知两点A(-3,4),B(3,2),过点P(1,0)的直线l与线段AB有公共点.(1)求直线l的斜率k的取值范围;(2)求直线l的倾斜角α的取值范围.【思路探究】画图――→斜率公式斜率k的范围――→k=tan α倾斜角α的范围【自主解答】如图所示,由题意可知k PA=4-0-3-1=-1,k PB=2-03-1=1.(1)要使直线l与线段AB有公共点,则直线l的斜率k的取值范围是k≤-1或k≥1.(2)由题意可知,直线l的倾斜角介于直线PB与PA的倾斜角之间,又PB的倾斜角是45°,PA的倾斜角是135°,所以α的取值范围是45°≤α≤135°.1.本题在求解过程中应用了数形结合思想,求解的关键是分析边界点的斜率同其他点斜率间的关系.2.数形结合是解决数学问题的常用思想方法.当直线绕定点由与x 轴平行(或重合)的位置按逆时针方向旋转到与y 轴平行(或重合)的位置时,斜率由零逐渐增大到+∞,按顺时针方向旋转到与y 轴平行(或重合)的位置时,斜率由零逐渐减小到-∞.这种方法既可定性分析倾斜角与斜率的关系,又可以定量求解斜率和倾斜角的取值范围.已知直线AB 的斜率为-3,直线l 的倾斜角是直线AB 的倾斜角的一半,求直线l 的斜率.【解】 ∵k AB =-3,∴直线AB 的倾斜角是120°, ∴直线l 的倾斜角是60°,∴k l =tan 60°= 3.斜率公式的综合应用已知某直线l 的倾斜角α=45°,又P 1(2,y 1),P 2(x 2,5),P 3(3,1)是此直线上的三点,求x 2,y 1的值.【思路探究】 直线l 的倾斜角α――→k =tan α直线l 的斜率――→三点共线kp 1p 2=kp 2p 3――→解方程得x 2,y 1的值【自主解答】 由α=45°,故直线l 的斜率k =tan 45°=1, 又P 1,P 2,P 3都在此直线上,故kP 1P 2=kP 2P 3=k l , 即5-y 1x 2-2=1-53-x 2=1,解得x 2=7,y 1=0.三点共线问题的求解策略 (1)从三点中任取两点,求其斜率.(2)若斜率存在且相等,则由两直线有公共点得到三点共线;若斜率都不存在,由两直线有公共点,也可得到三点共线.(2013·怀化检测)若三点A (3,1),B (-2,b ),C (8,11)在同一直线上,则实数b 等于________.【解析】 ∵A 、B 、C 三点共线, ∴k AB =k AC . ∴b -1-2-3=11-18-3, 即b =-9.【答案】 -9(见学生用书第40页)因忽略斜率不存在的情况而致误求经过A (m,3),B (1,2)两点的直线的斜率,并指出倾斜角α的取值范围. 【错解】 由斜率公式可得k =3-2m -1=1m -1.①当m >1时,k =1m -1>0, 所以直线的倾斜角α的取值范围是0°<α<90°. ②当m <1时,k =1m -1<0, 所以直线的倾斜角α的取值范围是90°<α<180°.【错因分析】 在上述解题过程中遗漏了m =1的情况,当m =1时,斜率不存在. 【防范措施】 斜率公式k =y 2-y 1x 2-x 1的适用前提条件为x 1≠x 2,因此在含字母的点的坐标中,需计算直线的斜率时,要保证斜率公式有意义.【正解】 当m =1时,直线的斜率不存在,此时直线的倾斜角α=90°. 当m ≠1时,由斜率公式可得k =3-2m -1=1m -1.①当m >1时,k =1m -1>0, 所以直线的倾斜角α的取值范围是0°<α<90°. ②当m <1时,k =1m -1<0, 所以直线的倾斜角α的取值范围是90°<α<180°.1.倾斜角是一个几何概念,它直观地描述并表现了直线对于x 轴正方向的倾斜程度. 2.直线的斜率是直线倾斜角的正切值,但两者并不是一一对应关系,学会用数形结合的思想分析和理解直线的斜率同其倾斜角的关系.3.运用两点P 1(x 1,y 1),P 2(x 2,y 2)求直线斜率k =y 2-y 1x 2-x 1应注意的问题: (1)斜率公式与P 1,P 2两点的位置无关,而与两点横、纵坐标之差的顺序有关(即x 2-x 1,y 2-y 1中x 2与y 2对应,x 1与y 1对应).(2)运用斜率公式的前提条件是“x 1≠x 2”,也就是直线不与x 轴垂直,而当直线与x 轴垂直时,直线的倾斜角为90°,斜率不存在.(见学生用书第40页)1.直线l 的倾斜角α=120°,则其斜率为________.【解析】 直线的斜率为tan 120°=-tan 60°=- 3. 【答案】 - 32.与x 轴垂直的直线,其倾斜角α=________. 【解析】 与x 轴垂直的直线,其倾斜角α为90°. 【答案】 90°3.(2013·广州检测)若直线过点(1,2),(4,2+3),则此直线的倾斜角是________. 【解析】 过点(1,2),(4,2+3)的斜率k =2+3-24-1=33,由tan α=33可得α=30°.【答案】 30°4.求证:A (1,5)、B (0,2)、C (2,8)三点共线.【解】 利用斜率公式计算出AB 和AC 两条直线的斜率.k AB =5-21-0=3,k AC =8-52-1=3. ∵k AB =k AC ,又过同一点A ,∴A 、B 、C 三点共线.(见学生用书第101页)一、填空题1.(2013·中山检测)已知A (1,1),B (2,4),则直线AB 的斜率为________. 【解析】 由题意可知,k AB =4-12-1=3.【答案】 32.(2013·无锡检测)过点P (2,3)和Q (-1,6)的直线PQ 的倾斜角为________. 【解析】 ∵k PQ =6-3-1-2=-1,设直线PQ 的倾斜角为α,由tan α=-1,可知α=135°.【答案】 135°3.(2013·泰兴检测)已知两点A (1,-1),B (3,3),点C (5,a )在直线AB 上,则a =________.【解析】 由题意可知k AB =k AC ,即3--13-1=a --15-1,解得a =7.【答案】 74.下列说法中正确的是__________. ①倾斜角为0°的直线只有一条; ②一条直线的倾斜角是-30°;③平面直角坐标系内,每一条直线都有惟一的倾斜角;④直线倾斜角α的集合{α|0°≤α<180°}与直线集合建立了一一对应关系. 【解析】 ①与x 轴平行或重合的直线的倾斜角都为0°,这样的直线有无数条,①错误;②直线的倾斜角的取值范围是0°≤α<180°,②错误;③平面直角坐标系内,每一条直线都有惟一的倾斜角,③正确;④一条直线的倾斜角确定时,直线位置不能确定,直线倾斜角α集合{α|0°≤α<180°}与直线集合不能建立一一对应的关系,④错误.【答案】 ③图2-1-15.如图2-1-1,已知直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则k 1,k 2,k 3的大小关系是________.【解析】 由图可知,直线l 3比直线l 2的倾斜度大,故k 3>k 2>0,又k 1<0,所以k 3>k 2>k 1. 【答案】 k 3>k 2>k 16.过点P (-2,m )和Q (m,4)的直线斜率不存在,则m 的值等于________. 【解析】 由题意可知,点P 和Q 的横坐标相同,即m =-2. 【答案】 -27.若直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来位置,那么直线l 的斜率是________.【解析】 设P (a ,b )为l 上任一点,经过平移后,点P 到达点Q (a -3,b +1),此时直线PQ 与l 重合.故l 的斜率k =k PQ =b +1-b a -3-a =-13.【答案】 -138.已知A (3,4),在坐标轴上有一点B ,使直线AB 的斜率为2,则B 点坐标为________. 【解析】 设B (x ,y ),则2=y -4x -3,若x =0,则y =-2;若y =0,则x =1.故B 为(0,-2)或(1,0).【答案】(0,-2)或(1,0)二、解答题图2-1-29.如图2-1-2所示,直线l1的倾斜角α1=30°,直线l1⊥l2,求l1、l2的斜率.【解】l1的斜率:k1=tan α1=tan 30°=3 3.∵l2的倾斜角α2=90°+30°=120°,∴l2的斜率k2=tan 120°=tan(180°-60°)=-tan 60°=- 3.10.求经过下列两点的直线的斜率,并判断其倾斜角是锐角还是钝角.(1)(-3,5),(0,2);(2)(4,4),(4,5);(3)(10,2),(-10,2).【解】(1)k=2-50--3=-1<0,∴倾斜角是钝角.(2)倾斜角是90°,斜率不存在.(3)k=2-2-10-10=0,∴倾斜角是0°.11.若直线l的斜率为函数f(a)=a2+4a+3(a∈R)的最小值,求直线l的倾斜角α.【解】f(a)=a2+4a+3=(a+2)2-1,∴f(a)的最小值为-1,∴k l=-1=tan α.又0°≤α<180°,∴α=135°.(教师用书独具)过点M (0,-3)的直线l 与以点A (3,0),B (-4,1)为端点的线段AB 有公共点,求直线l 的斜率k 的取值范围.【思路点拨】 画图斜率公式,倾斜角α的取值范围k =tan α,斜率k 的取值范围【规范解答】 如图所示,(1)直线l 过点A (3,0)时,即为直线MA ,倾斜角α1为最小值,∵tan α1=0--33-0=1,∴α1=45°.(2)直线l 过点B (-4,1)时,即为直线MB ,倾斜角α2为最大值, ∵tan α2=1--3-4-0=-1,∴α2=135°.所以直线l 倾斜角α的取值范围是45°≤α≤135°. 当α=90°时,直线l 的斜率不存在;当45°≤α<90°时,直线l 的斜率k =tan α≥1; 当90°<α≤135°时,直线l 的斜率k =tan α≤-1. 所以直线l 的斜率k 的取值范围是 (-∞,-1]∪[1,+∞).1.直线l 过点M ,斜率变化时,可以理解为直线l 绕定点M 旋转,使直线l 与线段AB 的公共点P 从端点A 运动到端点B ,直线l 的倾斜角就由最小值α1变到最大值α2.这是数形结合的思想方法.2.当直线绕定点旋转时,若倾斜角为锐角,逆时针旋转,倾斜角越来越大,斜率越来越大,顺时针旋转,倾斜角越来越小,斜率越来越小;若倾斜角为钝角,也具有同样的规律.但倾斜角是锐角或钝角不确定时,逆时针旋转,倾斜角越来越大,但斜率并不一定随倾斜角的增大而增大.已知直线l 过P (-2,-1),且与以A (-4,2)、B (1,3)为端点的线段相交,求直线l 的斜率的取值范围.【解】 根据题中的条件可画出图形,如图所示: 又可得直线PA 的斜率k PA =-32,直线PB 的斜率k PB =43,结合图形可知当直线l 由PB 变化到与y 轴平行的位置时,它的倾斜角逐渐增大到90°,故斜率的取值范围为[43,+∞);当直线l 由与y 轴平行的位置变化到PA 位置时,它的倾斜角由90°增大到PA 的倾斜角.故斜率的变化范围是(-∞,-32],综上可知,直线l 的斜率的取值范围是(-∞,-32]∪[43,+∞).2.1.2 直线的方程第1课时点斜式(教师用书独具)●三维目标1.知识与技能(1)理解直线方程的点斜式、斜截式的形式特点和适用范围.(2)能正确利用直线的点斜式、斜截式公式求直线方程.(3)体会直线的斜截式方程与一次函数的关系.2.过程与方法(1)在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程.(2)学生通过对比理解“截距”与“距离”的区别.3.情感、态度与价值观通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题.●重点难点重点:直线的点斜式方程和斜截式方程.难点:直线的点斜式方程和斜截式方程的应用.重难点突破:以“直角坐标系内确定一条直线的几何要素”为切入点,先由学生自主导出“过某一定点的直线方程”,再通过组内分析、交流,找出所求方程的差异,明其原因,最终达成共识,得出直线的点斜式的形式及适用前提,最后通过题组训练,采用师生互动、讲练结合的方式,在帮助学生突出重点化解难点的同时,引出斜截式方程,并通过多媒体演示“截距”与“距离”的异同,化解难点.(教师用书独具)●教学建议解析几何的实质是“用代数的知识来研究几何问题”,而直线方程恰恰体现了这种思想.由于直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位.故本节课易采用“启发式”的教学方法,从学生原有的知识和能力出发,寻找过某一定点的直线方程的求解方法,鉴于学生在“数”和“形”之间转换的难度,教师可引导学生通过合作、交流等方式,对难点予以突破;可通过多媒体直观演示,让学生明确点斜式方程和斜截式方程的适用条件.对于斜截式方程,明确以下三点:(1)他是点斜式方程的特殊形式;(2)讲清“截距”的概念;(3)了解其与一次函数的关系,其他问题不必扩充太多.由于点斜式方程是学习其他方程的前提,故教师可适当的补充教学案例,让学生在训练中进一步感知解析法的思想.●教学流程创设问题情境,引出问题:过某一定点的直线方程,如何求解?⇒通过引导学生回忆直线的斜率公式,找出求“过某一定点的直线方程”的方法.⇒通过引导学生回答所提问题理解直线的点斜式方程及斜截式方程的适用条件.⇒通过例1及其变式训练,使学生掌握直线的点斜式方程的求法.⇒通过例2及其变式训练,使学生掌握直线的斜截式方程的求法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.(见学生用书第41页)课标解读 1.掌握直线的点斜式与斜截式方程.(重点、难点)2.能利用点斜式求直线的方程.(重点)3.了解直线的斜截式与一次函数之间的区别和联系.(易混点)直线的点斜式方程【问题导思】1.若直线l过点P0(x0,y0),且斜率为k,设点P(x,y)是直线l上不同于点P0的任意一点,那么x,y应满足什么关系?【提示】y-y0=k(x-x0).2.经过点P0(x0,y0)且斜率不存在的直线l如何表示?【提示】x=x0.1.过点P1(x1,y1)且斜率为k的直线方程y-y1=k(x-x1)叫做直线的点斜式方程.2.过点P1(x1,y1)且与x轴垂直的方程为x=x1.直线的斜截式方程【问题导思】经过点(0,b)且斜率为k的直线l的方程如何表示?【提示】y=kx+b.斜截式方程:y=kx+b,它表示经过点P(0,b),且斜率为k的直线方程.其中b为直线与y轴交点的纵坐标,称其为直线在y轴上的截距.(见学生用书第41页)直线的点斜式方程根据下列条件,求直线的方程.(1)经过点B(2,3),倾斜角是45°;(2)经过点C(-1,-1),与x轴平行;(3)经过点D(1,1),与x轴垂直.【思路探究】(1)(2)先求斜率,再利用点斜式求解;(3)利用垂直于x轴的直线方程形式求解.【自主解答】(1)∵直线的倾斜角为45°,∴此直线的斜率k=tan 45°=1,∴直线的点斜式方程为y-3=x-2,即x-y+1=0.(2)∵直线与x轴平行,∴倾斜角为0°,斜率k=0,∴直线方程为y+1=0×(x+1),即y=-1.(3)∵直线与x轴垂直,斜率不存在,故不能用点斜式表示这条直线的方程,由于直线所有点的横坐标都是1,故这条直线方程为x=1.1.求直线的点斜式方程的前提条件是:①已知一点P(x0,y0)和斜率k;②斜率必须存在.只有这两个条件都具备,才可以写出点斜式方程.2.求直线的点斜式方程的步骤是:先确定点,再确定斜率,从而代入公式求解.直线经过点P(2,-3),且倾斜角α=45°,求直线的点斜式方程,并画出直线l.【解】直线经过点P(2,-3),且斜率k=tan 45°=1,代入点斜式方程可得x-y -5=0.画图时,根据两点确定一条直线,只需再找出直线l上的另一点即可.如点Q(5,0)在该直线上,则过P,Q两点的直线即为所求.如图所示.直线的斜截式方程根据条件写出下列直线的斜截式方程.(1)斜率是3,在y轴上的截距是-3;(2)倾斜角是60°,在y轴上的截距是5;(3)倾斜角是30°,在y轴上的截距是0.【思路探究】求直线的斜率k→求直线在y轴上的截距→得方程y=kx+b.【自主解答】 (1)根据题意得直线的斜截式方程是y =3x -3. (2)∵k =tan 60°=3,∴直线的斜截式方程是y =3x +5. (3)∵k =tan 30°=33, ∴直线的斜截式方程是y =33x .1.使用斜截式方程的前提是直线的斜率必须存在,在利用斜截式求解直线方程时,应对直线的斜率是否存在进行讨论.2.直线的斜截式方程y =kx +b 中只有两个参数,因此要确定某直线,只需两个独立的条件.3.利用直线的斜截式求方程务必灵活,如果已知斜率k ,只需引入参数b ;同理如果已知截距b ,只需引入参数k .已知直线l 在y 轴上的截距为-3,且它与两坐标轴围成的三角形的面积为6,求直线l 的方程.【解】 由题意可知,直线l 的斜率必存在,设l 的方程为y =kx -3,则l 与两坐标轴的交点分别为(3k,0)和(0,-3).由它与两坐标轴围成的三角形的面积为6可知 2×|3k |×3=6,解得k =±34.故直线l 的方程为y =±34x -3.(见学生用书第42页)因忽略点斜式方程的适用条件致误已知直线l 的倾斜角为α,且经过点(1,-2),求直线l 的方程.【错解】 由直线l 的倾斜角为α,得该直线的斜率k =tan α,由点斜式得,直线l 的方程为y +2=tan α(x -1).【错因分析】 上述解法的错误在于忽略了倾斜角α=90°时,tan α不存在的情形. 【防范措施】 在使用点斜式求直线方程时,应分“斜率存在”与“斜率不存在”两种情况分别考虑,以免丢解.故本题在求解时,应分α=90°和α≠90°两类分别求直线l 的方程.【正解】 当α≠90°时,直线l 的斜率为tan α,由点斜式得,直线l 的方程为y +2=tan α(x -1).当α=90°时,直线的斜率不存在,故过点(1,-2)的直线方程为x =1. 综上,可得直线l 的方程为y +2=tan α(x -1)或x =1.1.建立点斜式方程的依据是:直线上任一点与这条直线上一个定点的连线的斜率相同,故有y -y 1x -x 1=k ,此式是不含点P 1(x 1,y 1)的直线方程,必须化为y -y 1=k (x -x 1)才是整条直线的方程.当直线的斜率不存在时,不能用点斜式表示,此时方程为x =x 1.2.斜截式方程可看作点斜式的特殊情况,表示过(0,b )点、斜率为k 的直线y -b =k (x -0),即y =kx +b ,其特征是方程等号的一端只是一个y ,其系数是1;等号的另一端是x 的一次式,而不一定是x 的一次函数.(见学生用书第42页)1.过点P(1,1)平行于x轴的直线方程为________,垂直于x轴的直线方程为________.【解析】过点P(1,1)平行于x轴的直线方程为y=1,垂直于x轴的直线方程为x=1.【答案】y=1 x=12.过点(0,1),且斜率为-1的直线方程为________.【解析】由斜截式方程得,所求直线方程为y=-x+1.【答案】y=-x+13.直线方程为y+2=2x-2,则直线的斜率为________,在y轴上的截距为________.【解析】直线的方程可以化为y=2x-4,故斜率为2,在y轴上的截距为-4.【答案】 2 -44.求满足下列条件的直线方程.(1)经过点A(2,5),斜率为4;(2)过点B(-2,2),倾斜角为30°;(3)倾斜角为直线y=-3x+1的倾斜角的一半,且在y轴上的截距为-10.【解】(1)y-5=4(x-2),即4x-y-3=0.(2)由斜率k=tan 30°=33,得直线方程为y-2=33(x+2),即33x-y+63+2=0.(3)由直线y=-3x+1的斜率为-3可知此直线的倾斜角为120°,由题意知所求直线的倾斜角为60°,所求直线的斜率k= 3.直线在y轴上的截距为-10,由直线的斜截式方程得y=3x-10,即3x-y-10=0.(见学生用书第103页)一、填空题1.(2013·湖南师大附中检测)已知直线的倾斜角为45°,在y轴上的截距为2,则此直线方程为________.【解析】 由题意可知,该直线的倾斜角为45°,故其斜率k =tan 45°=1.所以由斜截式得,所求方程为y =x +2.【答案】 y =x +22.(2013·广州检测)过点P (-2,0),且斜率为3的直线的方程是________. 【解析】 设所求直线方程为y =3x +b ,由题意可知3×(-2)+b =0. ∴b =6,故y =3x +6. 【答案】 y =3x +63.(2013·郑州检测)直线x +y +1=0的倾斜角与其在y 轴上的截距分别是________. 【解析】 直线x +y +1=0变成斜截式得y =-x -1,故该直线的斜率为-1,在y 轴上的截距为-1.若直线的倾斜角为α,则tan α=-1,即α=135°.【答案】 135°,-1图2-1-34.如图2-1-3,直线y =ax -1a的图象如图所示,则a =________.【解析】 由图知,直线在y 轴上的截距为1,∴-1a=1,∴a =-1.【答案】 -15.斜率与直线y =32x 的斜率相等,且过点(-4,3)的直线的点斜式方程是________.【解析】 ∵直线y =32x 的斜率为32,∴过点(-4,3)且斜率为32的直线方程为y -3=32(x +4).【答案】 y -3=32(x +4)6.直线y =kx +b 经过二、三、四象限,则斜率k 和在y 轴上的截距b 满足的条件为________.【解析】 直线y =kx +b 经过二、三、四象限,如图所示,故直线的斜率k <0,在y 轴上的截距b <0.【答案】 k <0,b <07.下列关于方程y =k (x -2)的说法正确的是________.(填序号)①表示通过点(-2,0)的所有直线 ②表示通过点(2,0)的所有直线 ③表示通过点(2,0)且不垂直于x 轴的直线 ④通过(2,0)且除去x 轴的直线.【解析】 直线x =2也过(2,0),但不能用y =k (x -2)表示. 【答案】 ③8.将直线l :y =-3(x -2)绕点(2,0)按顺时针方向旋转30°得到直线l ′,则直线l ′的方程为________.【解析】 因为直线的倾斜角为120°,并且(2,0)是该直线与x 轴的交点,绕着该点顺时针旋转30°后,所得直线的倾斜角为120°-30°=90°,此时所得直线恰好与x 轴垂直,方程为x =2.【答案】 x -2=0 二、解答题9.求倾斜角为直线y =-3x +1的倾斜角的一半,且分别满足下列条件的直线的方程: (1)经过点(-4,1); (2)在y 轴上的截距为-10.【解】 由直线y =-3x +1的斜率为-3可知此直线的倾斜角为120°,由题意知所求直线的倾斜角为60°,所求直线的斜率k = 3.(1)直线过点(-4,1),由直线的点斜式方程得y -1=3(x +4),即为3x -y +1+43=0.(2)直线在y 轴上的截距为-10,由直线的斜截式方程得y =3x -10,即为3x -y -10=0.10.(2013·临沂检测)已知直线l 经过点(0,-2),其倾斜角是60°. (1)求直线l 的方程;(2)求直线l 与两坐标轴围成三角形的面积.【解】 (1)因为直线l 的倾斜角的大小为60°,故其斜率为tan 60°=3,又直线l 经过点(0,-2),所以其方程为3x -y -2=0.(2)由直线l 的方程知它在x 轴、y 轴上的截距分别是23,-2,所以直线l 与两坐标轴围成三角形的面积S =12·23·2=233.11.已知△ABC 在第一象限中,A (1,1)、B (5,1),∠A =60°,∠B =45°,求:(1)AB边所在直线的方程;(2)AC边、BC边所在直线的方程.【解】(1)∵A(1,1),B(5,1),∴直线AB的方程是y=1.(2)由图可知,k AC=tan 60°=3,∴直线AC的方程是y-1=3(x-1),即3x-y-3+1=0.∵k BC=tan(180°-45°)=-1,∴直线BC的方程是y-1=-(x-5),即x+y-6=0.(教师用书独具)已知直线l经过点P(-1,-2),在y轴上的截距的取值范围为[2,6],求此直线斜率的取值范围.【思路点拨】解答本题可先写出点斜式方程,再化为斜截式方程,求出直线在y轴上的截距,最后解不等式求斜率的取值范围.也可设出直线l的斜截式方程,再将点P坐标代入找到斜率与在y轴上截距的关系,从而求出斜率的范围.【规范解答】法一设直线l的斜率为k,由于这条直线过点P(-1,-2),所以,它的点斜式方程是y-(-2)=k[x-(-1)],可化为斜截式方程是y=kx+k-2,。

平面解析几何教案

平面解析几何教案

学港教育第2章 平面解析几何1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[︒∈α,︒=90α斜率不存在. (2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ).①k=0时,直线平行于x 轴或与x 轴重合,倾斜角为0 。

②k>0时,直线倾斜角为锐角,k 增,倾斜角增。

③k<0时,直线倾斜角为钝角,k 增,倾斜角增。

④直线与x 轴垂直,斜率不存在,倾斜角等于90 。

2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =.(2)斜截式:b kx y += (b 为直线l 在y 轴上的截距,不能表示与x 轴垂直). (3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠).注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线.(4)截距式:1=+bya x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:B C x B A y --=,即,直线的斜率:BAk -=. 3.直线在坐标轴上的截矩可正,可负,也可为0.(1)直线在两坐标轴上的截距相等....⇔直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......⇔直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......⇔直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直:(1)若111:l y k x b =+,222:l y k x b =+① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且.② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式:(111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P-+-=.x 轴上两点间距离:A B x x AB -=.线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x .6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200BA CBy Ax d +++=.7.两平行直线间的距离:两条平行直线002211=++=++C By Ax l C By Ax l :,:距离:2221BA C C d +-=.8.对称问题 (1)中心对称:① 点关于点对称:点),(11y x A 关于),(00y x M 的对称点)2,2(1010y y x x A --.② 直线关于点对称:法1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程. 法2:求出一个对称点,在利用21//l l 由点斜式得出直线方程. (2)轴对称:① 点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.点 A A '、关于直线l 对称⎩⎨⎧''⇔上中点在⊥l A A l A A ⎩⎨⎧'-=⇔'方程中点坐标满足·l A A k k l A A 1.② 直线关于直线对称:(设b a ,关于l 对称)法1:若b a ,相交,求出交点坐标,并在直线a 上任取一点,求该点关于直线l 的对称点.若l a //,则l b //,且b a ,与l 的距离相等.法2:求出a 上两个点B A ,关于l 的对称点,在由两点式求出直线的方程.(3)点(a , b )关于x 轴对称:(a ,- b )、关于y 轴对称:(-a , b )、关于原点对称:(-a ,- b )、点(a , b )关于直线y=x 对称:(b , a )、关于y=- x 对称:(-b ,- a )、关于y = x +m 对称:(b -m 、a +m )、关于y=-x+m 对称:(-b+m 、- a+m ) . 9.过定点的参数方程(m+2)x-(2m-1)y-(3m-4)=0过定点 (x-2y-3)m+(2x+y+4)=0x 230240y x y --=⎧⎫⎨⎬++=⎩⎭10.直线系方程:(1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程..② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x x B y y -+-=. (2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=. (3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数. (4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除2l ),其中λ是待定的系数.11.最值:(利用轴对称知识求最小值)12.曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x yg x y ==的解.13.圆的方程:(1)圆的标准方程:222)()(r b y a x =-+-(0>r ).(2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x . (3)圆的直径式方程:若),(),(2211y x B y x A ,,以线段AB 为直径的圆的方程是:0))(())((2121=--+--y y y y x x x x . 注:(1)在圆的一般方程中,圆心坐标和半径分别是)2,2(E D --,F E D r 42122-+=. (2)一般方程的特点:① 2x 和2y 的系数相同且不为零;② 没有xy 项; ③ 0422>-+F E D (3)二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的等价条件是: ① 0≠=C A ; ② 0=B ; ③ 0422>-+AF E D .14.圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则:“半弦长2+弦心距2=半径2”——222)2(r d l =+;(2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,,则||11||1||22B A B A y y kx x k AB -+=-+= (其中|||,|2121y y x x --的求法是将直线和圆的方程联立消去y 或x ,利用韦达定理求解)15.点与圆的位置关系:点),(00y x P 与圆222)()(r b y a x =-+-的位置关系有三种①P 在在圆外22020)()(r b y a x r d >-+-⇔>⇔. ②P 在在圆内22020)()(r b y a x r d <-+-⇔<⇔.③P 在在圆上22020)()(r b y a x r d =-+-⇔=⇔. 【P到圆心距离d =16.直线与圆的位置关系:①直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA C Bb Aa d +++=):圆心到直线距离为d ,②由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为∆. ③0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 17.两圆位置关系:设两圆圆心分别为21,O O ,半径分别为21,r r ,d O O =21条公切线外离421⇔⇔+>r r d ; 无公切线内含⇔⇔-<21r r d ;条公切线外切321⇔⇔+=r r d ;条公切线内切121⇔⇔-=r r d ; 条公切线相交22121⇔⇔+<<-r r d r r .18.圆系方程:)04(02222>-+=++++F E D F Ey Dx y x (1)过点11(,)A x y ,22(,)B x y 的圆系方程:1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程.(2)过直线0=++C By Ax l :与圆C :022=++++F Ey Dx y x 的交点的圆系方程:0)(22=+++++++C By Ax F Ey Dx y x λ,λ是待定的系数.(3)过圆1C :011122=++++F y E x D y x 与圆2C :022222=++++F y E x D y x 的交点的圆系方程:0)(2222211122=+++++++++F y E x D y x F y E x D y x λ,λ是待定的系数.特别地,当1λ=-时,2222111222()0x y D x E y F x y D x E y F λ+++++++++=就是121212()()()0D D x E E y F F -+-+-=表示两圆的公共弦所在的直线方程,即过两圆交点的直线.19.圆的切线方程:(1)过圆222r y x =+上的点),(00y x P 的切线方程为:200r y y x x =+.(2)过圆222)()(r b y a x =-+-上的点),(00y x P 的切线方程为:200))(())((r b y b y a x a x =--+-- . (3)过圆220x y Dx Ey F ++++=上的点),(00y x P 的切线方程为:0000()()022D x x E y y x x y y F ++++++=. (4) 若P(0x ,0y )是圆222x y r +=外一点,由P(0x ,0y )向圆引两条切线, 切点分别为A,B则直线AB 的方程为200xx yy r +=(5) 若P(0x ,0y )是圆222()()x a y b r -+-=外一点, 由P(0x ,0y )向圆引两条切线, 切点分别为A,B 则直线AB 的方程为200()()()()x a x a y b y b r --+--=(6)当点),(00y x P 在圆外时,可设切方程为)(00x x k y y -=-,利用圆心到直线距离等于半径,即r d =,求出k ;或利用0=∆,求出k .若求得k 只有一值,则还有一条斜率不存在的直线0x x =. 20.圆与圆交点的直线方程:把两圆22()0x y Dx Ey F Ax By C λ+++++++=与022222=++++F y E x D y x 方程相减 即得相交弦所在直线方程:0)()()(212121=-+-+-F F y E E x D D . 21.直线与圆交点的圆系方程:22()0x y Dx Ey F Ax By C λ+++++++=21.空间两点间的距离公式:若A 111(,,)x y z ,B 222(,,)x y z ,则AB =23.若),(),(),(332211y x C y x B y x A ,,,则△ABC 的重心G 的坐标是⎪⎭⎫⎝⎛++++33321321y y y x x x ,.24.各种角的范围:(1)两个向量的夹角 ︒≤≤︒1800α(2)直线的倾斜角 ︒<≤︒1800α 两条相交直线的夹角 ︒≤<︒900α (3)两条异面线所成的角 ︒≤<︒900α 直线与平面所成的角 ︒≤≤︒900α斜线与平面所成的角 ︒<<︒900α 二面角 ︒≤≤︒1800α。

第二章解析几何初步教材分析与教学建议 (2)

第二章解析几何初步教材分析与教学建议 (2)

第二章:“解析几何初步”教材分析与教学建议房山区教师进修学校中学数学教研室张吉一、内容与要求(1)直线与方程①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。

②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。

③能根据斜率判定两条直线平行或垂直。

④根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。

⑤能用解方程组的方法求两直线的交点坐标。

⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

(2)圆与方程①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。

②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系。

③能用直线和圆的方程解决一些简单的问题。

(3)在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。

(4)空间直角坐标系①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置。

②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。

二、高考说明要求三、本章说明本章主要是较系统地学习坐标几何的基本概念和方法。

编写的基本理念是,以直线上的坐标几何为基础,一步步地把一维坐标几何推广到二维和三维坐标几何。

在讲二维和三维坐标几何时,把二维转化为一维,把三维转化为二维来处理。

通过学习,让学生体会用坐标法研究几何的优点。

解析几何的思想方法,就是代数和几何联姻,用代数方法研究几何,把对几何图形的研究代数化。

这一章实质上就是代数在几何中的应用。

解决问题的基本思路都是:在坐标系中,设动点的坐标,把图形的特征性质转化为代数表示。

设未知数列方程或方程组解几何问题。

要注意到同学们的代数基础,如果不太好,要在这一章,通过用代数方法解几何问题,复习代数学的基本方法和技能。

高中数学教案:解析几何初步

高中数学教案:解析几何初步

高中数学教案:解析几何初步解析几何初步第一章直线与平面一、直线的性质直线是解析几何的基本概念之一,具有以下几个重要的性质:1. 直线上的任意两点可以确定一条直线。

2. 一条直线可以由其上的一个点和一个不在直线上的向量唯一确定。

3. 两条不平行的直线必定相交于一点。

4. 三条不共线的直线必定交于一点。

二、平面的性质平面是另一个重要的解析几何概念,具有以下性质:1. 平面上的任意三点不共线,可以确定一个平面。

2. 平面可以由其上的一个点和两个不在平面上的向量唯一确定。

3. 如果直线与平面相交,交点是直线与平面上的一个点。

4. 如果两个平面不平行,它们必定相交于一条直线。

5. 如果直线与平面平行,则直线上的一点到该平面的距离为垂直于该平面的向量与直线上的一点相乘的模长。

三、直线与平面的关系1. 直线与平面的位置关系可以分为以下几种情况:a. 直线在平面上:直线的每一个点都在平面上。

b. 直线与平面平行:直线上的向量与平面的法向量垂直。

c. 直线与平面相交:直线与平面有一个交点。

d. 直线位于平面的一侧:直线与平面上的点的连线和平面的法向量夹角小于90度。

e. 直线位于平面的另一侧:直线与平面上的点的连线和平面的法向量夹角大于90度。

2. 判断直线与平面的位置关系,可以使用以下两种方法:a. 代入法:将直线的参数方程代入平面的方程,判断是否成立。

b. 距离法:计算直线上的一点到平面的距离,并判断是否为零。

四、直线的方程1. 直线的一般方程:Ax + By + C = 0,其中A、B、C为常数,A和B不同时为零。

2. 直线的斜截式方程:y = kx + b,其中k为斜率,b为y轴截距。

3. 直线的点斜式方程:y - y1 = k(x - x1),其中k为斜率,(x1, y1)为直线上的一点。

4. 直线的两点式方程:(y - y1)/(x - x1) = (y2 - y1)/(x2 - x1),其中(x1, y1)和(x2, y2)为直线上的两点。

《第二章平面解析几何初步》教案5人教B版

《第二章平面解析几何初步》教案5人教B版

《第二章平面解析几何初步》教案5(人
教B版必修2)
人教B版数学必修2:平面与平面平行的判定和性质
[适用章节]
数学②中1.2.2空间中的平行关系之3平面与平面平行
[使用目的]
使学生通过操作理解平面与平面平行的判定定理和性质定理,并结合图形了解定理正确的理由
[操作说明]
首先要用蓝色标尺选定研究判定还是研究性质。

研究判定时
使用红色的标尺和按钮,研究性质时使用绿色的标尺和按钮。

左下方的旋转图形的按钮是公用的。

对于判定和性质,都要用标尺选定问题、研究结论正确的理
由和归纳定理。

这些内容在画面上都有文字的说明。


2123-1和图2123-2分别是研究判定定理和性质定理时的图形,图形已经旋转了一定的角度。

图2123-1图2123-2
图中有控制方向用的圆和控制每次平移步长的线段。

高中数学 第二章 平面解析几何初步学案 新人教B版必修2

高中数学 第二章 平面解析几何初步学案 新人教B版必修2

第二章平面解析几何初步知识建构综合应用专题一位置关系问题两条直线的位置关系有相交、平行、重合几种,两直线垂直是相交的一种特殊情况,高考中对平行与垂直的考查是重点,多以选择及填空为主,属于容易题.而直线与圆的位置关系几乎是每年必考内容,有时结合向量,考查形式可以是选择题、填空题,也可以是解答题,属于中低档类题目.圆与圆的位置关系有外离、外切、相交、内切、内含等5种,在高考中单独考查的情况不多.应用1已知两直线l1:x+my+6=0,l2:(m-2)x+3y+2m=0,若l1∥l2,则m的值为( ).A.-1或3 B.-1C.3 D.0提示:利用两直线平行的条件求解.应用2(2011·福建泉州模拟)若直线3x+y+2n=0与圆x2+y2=n2相切,其中n∈N n的值等于( ).+,则A.1 B.2 C.4 D.1或2提示:利用圆心距等于半径列方程求解.应用3已知圆C1:x2+y2-2mx+4y+m2-5=0,圆C2:x2+y2+2x-2my+m2-3=0.试讨论两圆的位置关系.提示:随着m取值的不同,也会影响两圆的位置关系,所以需要根据两圆的不同位置关系求出m的不同取值范围.专题二对称问题对称问题是高考中常见的一种题型,解析几何中有关对称问题,可分为点关于点对称;直线关于点对称;曲线关于点对称;点关于直线对称;直线关于直线对称;曲线关于直线对称.但总的来说,就是关于点对称和关于直线对称这两类问题.应用1(2010·湖南高考)若不同两点P,Q的坐标分别为(a,b),(3-b,3-a),则线段PQ的垂直平分线l的斜率为__________;圆(x-2)2+(y-3)2=1关于直线l对称的圆的方程为__________.提示:(1)l1⊥l2⇔k1k2=-1;(2)求出圆心(2,3)关于l的对称点即可.应用2(2011·安徽安庆模拟)从点(2,3)射出的光线沿与直线x -2y =0平行的直线射到y 轴上,则经y 轴反射的光线所在的直线方程为__________.提示:画出示意图,注意反射光线与入射光线的斜率互为相反数,且反射光线经过点(-2,3).专题三 用图示法解题 用图示法解题,实质是将抽象的数学语言与直观的图形结合起来,即把代数中的“数”与几何上的“形”结合起来认识问题、理解问题并解决问题的思维方法.数形结合一般包括两个方面,即以“形”助“数”,以“数”解“形”;本章中有关斜率、距离、截距、直线与圆的位置关系等很易转化为形来说明,借助于形分析和求解,往往事半功倍.应用1讨论直线y =x +b 与曲线y =4-x 2的交点的个数.提示:画出y =4-x 2的图象,注意等价变形.应用2设点P (x ,y )在圆x 2+(y -1)2=1上.(1)求x -2+y 2的最小值;(2)求y +2x +1的最小值. 提示:(1)x -2+y 2理解为动点(x ,y )到定点(2,0)的距离即可; (2)y +2x +1理解为动点(x ,y )与定点(-1,-2)连线的斜率即可.应用3若实数x ,y 满足x 2+y 2+8x -6y +16=0,求x +y 的最小值. 提示:令x +y =b ,则y =-x +b ,问题即转化为求截距b 的最小值问题. 专题四 轨迹问题轨迹是满足某些特殊几何条件的点所形成的图形,在平面直角坐标系中,求动点的轨迹就是求动点的横坐标、纵坐标满足的等量关系.我们可以借助圆这个几何性质较多的图形,研究一些与之相关的轨迹方程.应用1已知圆C :x 2+y 2-4x +2y -4=0,求长为2的弦中点的轨迹方程.提示:利用定义法,即动点的运动轨迹满足圆的定义,只需确定圆心和半径,直接写出圆的方程.应用2已知动圆P 与定圆C :x 2+(y +2)2=1相外切,又与定直线l :y =1相切,求动圆圆心P 的轨迹方程.提示:利用直接法,即若动点的运动规律满足一些简单的几何等量关系,可以直接将这个等量关系用动点的坐标表示出来,写出轨迹方程.应用3已知圆C 的方程为(x -2)2+y 2=1,过点P (1,0)作圆C 的任意弦,交圆C 于另一点Q ,求线段PQ 的中点M 的轨迹方程.提示:点M 的运动受到点Q 运动的牵制,而点Q 在圆C 上,故用“相关动点法”. 真题放送1.(2011·四川高考)圆x 2+y 2-4x +6y =0的圆心坐标是( ). A .(2,3) B .(-2,3) C .(-2,-3) D .(2,-3)2.(2011·安徽高考)若直线3x +y +a =0过圆x 2+y 2+2x -4y =0的圆心,则a 的值为( ).A .-1B .1C .3D .-33.(2011·重庆高考)在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( ).A .5 2B .10 2C .15 2D .20 24.(2011·大纲全国高考)设两圆C 1,C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=( ).A .4B .4 2C .8D .8 25.(2011·江西高考)若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是( ).A .⎝ ⎛⎭⎪⎫-33,33 B .⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33 C .⎣⎢⎡⎦⎥⎤-33,33D .⎝ ⎛⎭⎪⎫-∞,-33∪⎝⎛⎭⎪⎫33,+∞ 6.(2011·浙江高考)若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m =________.7.(2011·重庆高考)过原点的直线与圆x 2+y 2-2x -4y +4=0相交所得弦的长为2,则该直线的方程为__________.8.(2011·湖北高考)过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,则直线l 的斜率为______.答案: 综合应用 专题一应用1:B ∵l 1∥l 2,∴1×3-m (m -2)=0. ∴m =-1或3,经检验m =-1适合.应用2:D 圆心(0,0)到直线的距离为d =2n32+1=2n -1.由n =2n -1,结合选项,得n =1或2.应用3:解:圆C 1:x 2+y 2-2mx +4y +m 2-5=0可化为(x -m )2+(y +2)2=32,圆心为C 1(m ,-2),半径为r 1=3;圆C 2:x 2+y 2+2x -2my +m 2-3=0可化为(x +1)2+(y -m )2=22,圆心为C 2(-1,m ),半径为r 2=2,圆心距为d =m +2+-2-m2=2m 2+6m +5,所以①当d =r 1+r 2=5时,此时m =2或m =-5,两圆外切; ②当d =r 1-r 2=1时,此时m =-1或m =-2,两圆内切; ③由②可知,当-2<m <-1时,两圆内含; ④由①可知,当m <-5或m >2时,两圆外离; ⑤当-5<m <-2或-1<m <2时,两圆相交. 专题二应用1:-1 x 2+(y -1)2=1 k PQ =b --aa --b=1, ∴k l =-1.P ,Q 的中点坐标为⎝ ⎛⎭⎪⎫32,32,∴l 的方程为y -32=-⎝ ⎛⎭⎪⎫x -32, 即x +y -3=0.点(2,3)关于x +y -3=0的对称点为(0,1),∴圆(x -2)2+(y -3)2=1关于直线l 对称的圆的方程为x 2+(y -1)2=1. 应用2:x +2y -4=0 由题意得,射出光线方程为y -3=12(x -2),即x -2y +4=0,与y 轴交点为(0,2), 又(2,3)关于y 轴的对称点为(-2,3),∴反射光线所在的直线方程为y -3=-12(x +2),即x +2y -4=0. 专题三应用1:解:如图所示,在坐标系内作出曲线y =4-x 2的图象(半圆弧).直线l 1:y =x -2,直线l 2:y =x +2 2.当直线l :y =x +b 夹在l 1与l 2之间(包括l 1,l 2)时,l 与曲线y =4-x 2有公共点;进一步观察交点的个数可有如下结论:(1)当b <-2或b >22时,直线y =x +b 与曲线y =4-x 2无公共点;(2)当-2≤b <2或b =22时,直线y =x +b 与曲线y =4-x 2仅有一个公共点;(3)当2≤b <22时,直线y =x +b 与曲线y =4-x 2有两个公共点. 应用2:解:(1)式子x -2+y 2的几何意义是圆上的点与定点(2,0)的距离.因为圆心(0,1)与定点(2,0)的距离是22+12=5,圆的半径是1,所以x -2+y 2的最小值是5-1.(2)解法一:令y +2x +1=t ,则方程组⎩⎪⎨⎪⎧y +2=t x +x 2+y -2=1一定有解.消去y ,整理得(1+t 2)x 2+2(t 2-3t )x +(t 2-6t +8)=0有解.所以Δ=4(t 2-3t )2-4(1+t 2)(t 2-6t +8)≥0, 即6t -8≥0,解得t ≥43.故y +2x +1的最小值是43.解法二:式子y +2x +1的几何意义是点P (x ,y )与定点(-1,-2)连线的斜率.如图,当为切线l 1时,斜率最小.设y +2x +1=k ,即kx -y +k -2=0,由直线与圆相切,得|-1+k -2|k 2+1=1,解得k =43.故y +2x +1的最小值是43.应用3:解:原方程化为(x +4)2+(y -3)2=9,设x +y =b ,则y =-x +b ,可见x +y 的最小值就是过圆(x +4)2+(y -3)2=9上的点作斜率为-1的平行线中,纵截距b 的最小值,此时,直线与圆相切.由点到直线的距离公式得|4-3+b |2=3.解得b =32-1或b =-32-1. 所以x +y 的最小值为-32-1.专题四应用1:解:由条件知,圆心坐标为C (2,-1),半径r =3. 设所求弦中点为P (x ,y ),则|PC |2=r 2-12=8,|PC |=2 2.∴P 点在以C 为圆心,半径为22的圆上.故所求轨迹方程为(x -2)2+(y +1)2=8.应用2:解:设点P (x ,y ),如图,故动点P 在直线y =1的下侧,∵圆P 与直线y =1相切, ∴圆P 的半径等于1-y . 又圆C 与圆P 相外切,∴|PC |=1-y +1,即x 2+y +2=2-y .两边平方,整理得y =-18x 2.应用3:解法一:设点M 的坐标为(x ,y ),点Q 的坐标为(x 0,y 0),∵M 是线段PQ 的中点,∴x =x 0+12,y =y 0+02.∴x 0=2x -1,y 0=2y .①∵点Q 在圆C :(x -2)2+y 2=1上运动,∴点Q 的坐标满足方程(x -2)2+y 2=1,即(x 0-2)2+y 20=1.②把①代入②得(2x -1-2)2+(2y )2=1,整理得⎝ ⎛⎭⎪⎫x -322+y 2=14.但P 是圆C 上一点,且P ,Q 不重合,∴x 0≠1,从而x ≠1+12,即x ≠1.∴点M 的轨迹方程是⎝ ⎛⎭⎪⎫x -322+y 2=14(x ≠1),即点M 的轨迹是以⎝ ⎛⎭⎪⎫32,0为圆心,12为半径的圆,不包括点(1,0). 解法二:∵点M 是弦PQ 的中点,∴CM ⊥PM .设点M 的坐标为(x ,y ),点Q 的坐标为(x 0,y 0), 则k CM =y x -2,k PM =yx -1. 由k CM k PM =-1,得y x -2·yx -1=-1.整理得⎝ ⎛⎭⎪⎫x -322+y 2=14.但P 是圆C 上一点,且P ,Q 不重合, ∴x 0≠1,从而x ≠1+12,即x ≠1.故点M 的轨迹方程是⎝ ⎛⎭⎪⎫x -322+y 2=14(x ≠1).真题放送1.D 将圆化为标准方程为(x -2)2+(y +3)2=13,故其圆心坐标为(2,-3).2.B 圆x 2+y 2+2x -4y =0化为标准方程:(x +1)2+(y -2)2=5,可得圆心(-1,2).∵直线过圆心,∴将(-1,2)代入直线3x +y +a =0,可得a =1.3.B 由(x -1)2+(y -3)2=10,可知圆心为M (1,3),半径为10,过E (0,1)的最长弦为圆的直径210,最短弦为以E 为中点的弦,其长为210-ME 2=2 5.因两条弦互相垂直,故四边形ABCD 的面积为12×210×25=10 2.4.C 由题意可设两圆的方程均为(x -r )2+(y -r )2=r 2.将(4,1)代入,可得(4-r )2+(1-r )2=r 2, ∴r 2-10r +17=0.∴此方程两根分别为两圆半径, ∴两圆心的距离|C 1C 2|=r 1-r 22+r 1-r 22=2×r 1+r 22-4r 1r 2=2×100-4×17=2×42=8.5.B ∵y (y -mx -m )=0,∴y =0,或y -mx -m =0.当y =0时,显然与圆x 2+y 2-2x =0有两个不同的交点,要使两曲线有四个不同的交点,只需y -mx -m =0与圆x 2+y 2-2x =0有两个不同的交点,且m ≠0.由方程组⎩⎪⎨⎪⎧y -mx -m =0,x 2+y 2-2x =0消去y ,得关于x 的一元二次方程,再令Δ>0,解得m ∈⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33.6.1 ∵直线x -2y +5=0与直线2x +my -6=0互相垂直, ∴1×2+(-2)·m =0,即m =1.7.2x -y =0 圆的方程可化为(x -1)2+(y -2)2=1,可知圆心为(1,2),半径为1.设直线方程为y =kx ,则圆心到直线的距离为d =|k -2|1+k 2,故有|k -2|1+k 2=0,解得k =2. 故直线方程为y =2x ,即2x -y =0.8.1或177 当直线l 的斜率不存在时,显然不符合题意.设直线的斜率为k ,则可得直线方程为y -kx +2-k =0,圆心到直线距离d =|3-2k |k 2+1,又圆心到直线的垂线段,圆的半径,弦的一半构成直角三角形,所以d 2+⎝⎛⎭⎪⎫222=1,可求得k =1或k =177.。

高中数学 第二章 平面解析几何初步 2.1 直线与方程教案2 苏教版必修2(2021年最新整理)

高中数学 第二章 平面解析几何初步 2.1 直线与方程教案2 苏教版必修2(2021年最新整理)

高中数学第二章平面解析几何初步2.1 直线与方程教案2 苏教版必修2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章平面解析几何初步2.1 直线与方程教案2 苏教版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章平面解析几何初步2.1 直线与方程教案2 苏教版必修2的全部内容。

2.1 直线与方程教学目标掌握直线方程的两点式、截距式,能根据条件熟练求出直线的方程;能正确理解直线方程一般式的含义;能将点斜式、斜截式、两点式转化成一般式。

重点难点掌握直线方程的两点式、截距式,能根据条件熟练求出直线的方程;能将点斜式、斜截式、两点式转化成一般式.引入新课1.直线的两点式方程:(1)一般形式:(2)适用条件:2.直线的截距式方程:(1)一般形式:(2)适用条件:注:“截距式”方程是“两点式”方程的特殊形式,它要求直线在坐标轴上的截距都不为0.3.直线的一般式方程:4.直线方程的五种形式的优缺点及相互转化:思考:平面内任意一条直线是否都可以用形如()00不全为,BACByAx=++的方程来表示?例题剖析例1 三角形的顶点()()()3345--,,,,,CBA,试求此三角形所在直线方程.例2 求直线01553=-+yxl:的斜率以及它在x轴、y轴上的截距,并作图.例3 设直线l的方程为0myx,根据下列条件分别确定m的值:+m+62=-(1)直线l在x轴上的截距是3-; (2)直线l的斜率是1;(3)直线l与y轴平行.例4 过点()21 ,的直线l与x轴的正半轴、y轴的正半轴分别交于BA,两点,当AOB∆的面积最小时,求直线l的方程.巩固练习1.由下列条件,写出直线方程,并化成一般式:3,-3;(1)在x轴和y轴上的截距分别是2(2)经过两点P1(3,-2),P2(5,-4).2.设直线l的方程为()0Ax=By+,根据下列条件,+0不全为C,BA求出C,应满足的条件:A,B(1)直线l过原点; (2)直线l垂直于x轴;(3)直线l垂直于y轴; (4)直线l与两条坐标轴都相交.课堂小结掌握直线方程的两点式、截距式,能根据条件熟练求出直线的方程;能将点斜式、斜截式、两点式转化成一般式.课后训练一 基础题1.下列四句话中,正确的是( )A .经过定点()000y x P ,的直线都可以用方程()00x x k y y -=-表示;B .过任意两个不同点()()222111y x P y x P ,,,的直线都可以用方程()()()()121121y y x x x x y y --=--表示;C .不经过原点的直线都可以用方程1=+b ya x表示;D .经过定点()b A ,0的直线都可以用方程b kx y +=表示.2.在x 轴、y 轴上的截距分别为32 -,的直线方程是( ) A .0632=--y x B .0623=--y xC .0623=+-y xD .0632=+-y x3.如果直线12=+y x 的斜率为k ,在x 轴上的截距为a ,则k = ,a = .4.过点()13 ,且在两坐标轴上截距相等的直线的方程为 .5.直线()00126≠=--a a y ax 在x 轴上的截距是它y 轴上的截距的3倍,则a = .6.已知点()121- -m P ,在经过()()4312 - - ,,,N M 两点的直线上,则=m .7.已知B A ,是x 轴上的两点,点P 的横坐标为2,且PB PA =,若直线PA 的方程 为01=+-y x ,则直线PB 的方程为 .8.已知两点()()4003 ,,,B A ,动点()y x P ,在线段AB 上运动,则xy 的 最大值是 ,最小值是 .9.倾斜角πα32=直线l 与两坐标轴围成的三角形面积S 不大于3,则直线l 在y 轴上的截距的取值范围为 .二 提高题10.分别求下列直线与两坐标轴围成的三角形面积:(1)0632=--y x ; (2)253--=y x .11.求经过()()1432- -,,,B A 的两点式方程,并把它化成点斜式、斜截式和截距式.三 能力题12.设直线l 的方程为()()306232≠=+--+k k y k x ,根据下列条件分别确定k 的值:(1)直线l 的斜率是1-; (2)直线l 在x 轴、y 轴上的截距之和等于0.13.设直线l 的方程为()23+=-x k y ,当k 取任意实数时,这样的直线具有什么共有的特点?14.已知两条直线0111=++y b x a 和0122=++y b x a 都过点()21 ,A , 求过两点()111b a P ,,()222b a P ,的直线的方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2、1直线与直线的方程
第一课时直线的倾斜角和斜率
一、教学目标: 1、知识与技能:(1)、正确理解直线的倾斜角和斜率的概念.(2)、理解直线的倾斜角的唯一性.(3)、理解直线的斜率的存在性.(4)、斜率公式的推导过程,掌握过两点的直线的斜率公式.
二、重点与难点: 直线的倾斜角、斜率的概念和公式.
三、教学用具:计算机教学方法:启发、引导、讨论.
四、教学过程(一)、直线的倾斜角的概念
我们知道, 经过两点有且只有(确定)一条直线. 那么, 经过一点P的直线l的位置能确定吗? 如图, 过一点P可以作无数多条直线a,b,c, ?易见,答案是否定的.这些直线有什么联系呢?
(1)它们都经过点P. (2)它们的‘倾斜程度’不同. 怎样描述这种‘倾斜程度’的不同? 引入直线的倾斜角的概念:
当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°. ...问: 倾斜角α的取值范围是什么? 0°≤α<180°.
当直线l与x轴垂直时, α= 90°.
因为平面直角坐标系内的每一条直线都有确定的倾斜程度, 引入直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.
如图, 直线a∥b∥c, 那么它们
案是肯定的.所以一个倾斜角α不能确定一条直线. 的倾斜角α相等吗? 答确定平面直角坐标系内的一条直线位置的几何要素: 一个点和一个倾斜角
(二)直线的斜率
一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα
⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;
⑵当直线l与x轴垂直时, α= 90°, k 不存在.。

相关文档
最新文档